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Chapter One

General introduction

Abstract

This chapter discusses shortly the development of radiation measurement techniques since the
discovery of radioactivity in 1896. 1t introduces the problem of coincidence summing resulting
Jrom the trend of using more efficient detectors and detection geometries. Finally, based on the
literature it spectfies the aims of the work described by this thesis.

1.1 y-Ray spectrometry

Since the discovery of radioactivity in 1896 by H. Becquerel, techniques have been
developed to identify its source. The earliest measurement devices for individual particles
consisted of a thin layer of zinc sulfide crystals; first on film (Sir William Crookes!!, and
independently Elster and Geitel in 1903 and later in an apparatus called the
spinthariscope (Crookes and Regener in 1908%). These first devices were only sensitive for
alpha and beta radiation. Since they had no energy discrimination capabilities, chemical
preparations or separations were necessary to positively identify radionuclides. With the
development of ionization chambers, measurement devices became sensitive for y-
radiation as well.

It was not until the late 1940’s that devices had enough energy discriminating
capabilities to be used as spectrometric devices. By then, sensitive photomultiplier tubes
had been developed and were combined with scintillation crystals. In 1948, Hofstadtertl
reports the detection of y-rays using Nal(Tl) crystals. This crystalline material has
remained for almost twenty years the most important detector medium for y-ray
spectrometry.

{2

* Information obtained from'™.
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At the present, scintillation spectrometers are not considered high-resolution devices
anymote. Although they are still widely used for applications that need simplicity of use
rather than high energy resolution, Ge(Li) and HPGe detectors have outdated them for
use in y-ray spectrometry. Current developments in y-ray spectrometry do no longer focus
on a high energy resolution of detection systems. Instead they pursue higher throughputs
of signals and higher detection efficiency. While the aim of high signal throughput is
covered by the improvement of electronic equipment, the aim of higher efficiency is
approached by growing larger crystals and improving source-detector configurations.
Although y-ray spectrometry has a much wider applicability, two examples of the need for
more efficient detectors are discussed below.

1.1.1 y-Ray spectrometry in relation to neutron activation analysis

Neutron activation analysis (NAA) is a technique to measure amounts of chemical
elements in a sample, based on the conversion of stable nuclei to other, mostly radioactive
nuclei, via irradiation with neutrons. It uses y-ray spectrometry to identify, qualitatively
and quantitatively, either the prompt y-rays, or the delayed ones of the radioactive
irradiation products. Since, for virtually every stable nucleus, the probability of forming its
irradiation products is accurately known, the identity of these products indicates which
element was activated. Similatly, the activities of specific products indicate the amount of
a specific isotope, and therefore of specific element.

Introduced by Georg von Hevesy and Hilde Levi in 1936/, NAA developed to a
powerful technique in the late 50’s when nuclear research reactors became available as
intense neutron sources and the detection limits of NAA reached the mg/kg and pg/kg
levels. Later, its development was accelerated by the introduction of Nal(Tl) y-ray
detectors in 1948, by multichannel pulse-height analysers in the early 60’s, by the
introduction of Ge(Li) detectors in the late 60’s and by programmable minicomputers in
the 70’s. Nowadays, other trace element analysis techniques such as Atomic Absorption
Spectrometry (AAS), Proton Induced X-ray Emission (PIXE) and Inductvely Coupled
Plasma Mass Spectrometry (ICP/MS) have pretty much caught up in their development
with NAA. Especially ICP/MS has become a serious competitor.

Therefore, next to the pursuit of lower detection limits, current developments in
NAA emphasize its strong points: (i) The advantages of sample preparation simplicity and
of the high penetrating power of both neutrons and y-rays is exploited by the introduction
of a big sample neutron irradiation system (BISNIS) at IRIPML. (if) The advantage over
ICP/MS of very low detection limits for halogens (mainly fluor) is exploited by the recent
improvements in an irradiation and measurement facility for short-lived radionuclides!”.
(iii) The advantages of NAA being a physically independent technique from 1CP/MS are
exploited by its use in the certification of reference materials® !,

Lower detection limits in NAA can be realized by using more intense neutron
sources, by irradiating more material or by using more efficient y-ray detectors and
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detection geometries. At IRI, detection limits have been lowered mainly owing to the use
of efficient detectors. Already in the late 70’s, a well-type detector was installed. Another
two well-type detectors accompanied this detector in the 80’s. By that time, larger
germanium detector crystals of over 500 cm? became available, and in the early 90%s, a
500-cm3 germanium detector was installed.

The introduction of BISNIS has had its influence on the y-spectrometry performed at
IRI The large dimensions of the samples cause effects of sample self-attenuadon of y-
rays. y-Spectrometric methods had to be developed to take these effects into account.

1.1.2 y-Ray spectrometry in relation to environmental studies

Samples encountered in environmental studies usually contain very low amounts of
radioactivity, in the order of 50 Bq/kg. To measure these low amounts, the use of highly
efficient detectors alone does not suffice. In addition, samples should consist of large
volumes of material. For this purpose, Marinelli beaker type detection geometries are
often used. These are optimized to place a large volume of sample material as close to the
detector as possible, effectively surrounding the detector. Self-attenuation effects play a
large role with these geometrics.

1.2 Coincidence summing

The tendency of using the newly available, highly efficient detectors and detection
geometries calls for an extension of existing spectrometric interpretation methods. Highly
efficient detection geometries cause coincidence summing effects: Two or more y-quanta
emitted from the same atom can interact with a detector within a very short time (up to
1 ps). As a result, the detector cannot distinguish between them and treats them as a single
interaction, the energy transfer being the sum of the individual interactions. Such count-
rate independent coincidence summing effects can seriously affect a y-ray spectrum.

Coincidence effects are most prominent when using well-type detectors. They can be
corrected for if the source can be considered as a point, i.e. if the detection efficiency does
not vary over the source volume. However, in 1978, de Bruin ¢# @™ found that owing to

coincidence effects, the areas of high-cnergy peaks in a y-ray spectrum were influenced by
the attenuation of low-energy photons in the sample, and therefore were matrix
dependent. As a consequence, the source cannot be considered as a point, and the
cotrection for coincidence summing is setiously hampered. Coincidence effects therefore
necessitate time-consuming radionuclide specific calibrations.

Also when using Marinelli beakers, detection efficiencies generally are high enough to
give rise to coincidence summing. Evidenty, Marinelli beaker sources cannot be
considered as point sources cither. Therefore, coincidence summing corrections for
Marinelli beaker detection geometries are not trivial. Like well-type geometries, Marinelli
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beaker geometries are usually calibrated specifically for each radionuclide and each
sample-matrix composition of interest.

1.2.1 Coincidence summing corrections for point sontces

Point-source coincidence summing effects are in principle well understood. In fact,
many authors have reported coincidence summing correction methods for point sources:
In 1972, Andreev ef o/ 1'% have given a general quantitative procedure for the treatment
of coincidence effects. In 1975, McCallum and Coote!™® have rewritten Andreev’s
formulas and extended them to include coincidences with annihilation photons. In 1979,
Debertin and Schotzig"! have checked Andreev’s solution experimentally for cobalt-60,
yttrium-88 and europium-152, both for point-source and for beaker geometries close to
the detector. In his thesis, Moens!” has generalized Debertin’s method and has derived
mathematical formulae covering practically all important cases. In 1987, de Corte!” has
updated the approach by Moens, has extended it for the cases of y-KX(EC) and y-KX{IT)
coincidences, and has given practical recommendations for the application of Moens’
approach.

In 1993, Blaauw!"” published a calibration method for highly efficient point source
geometries that uses information implied in a y-spectrum to determine efficiency curves.
Instead of regarding coincidence effects as disturbing, in fact it exploits them. Since the
method extracts information to correct for coincidence summing from the effects of
coincidence summing, the method can be considered as self-validating; #% the method
implicitly cotrects for erroneous assumptions or simplifications made in its development.

This analysis of the literature shows that the problem of coincidence corrections for
point sources is indeed practically resolved. However, this conclusion is hardly applicable
for the case of voluminous sources.

1.2.2 Coincidence summing corvections for voluminous sources

Although many authors have described calibration methods for voluminous sources
that circumvent the large efforts of radionuclide specific calibration, most authors only
address the problem of y-ray attenuation and neglect coincidence summing corrections.
Some authors have developed methods closely related either to the ‘Effective solid angle”
method introduced by Moens ¢f @/!'* or to the attenuation correction method introduced
by Debertin eral”. Others have developed methods based on Monte Carlo
calculations?” #'h2 All authors who use Monte Carlo related calibration methods report
the adjustment of some detector dimensions to match the Monte Catlo results with real
measurements.

As has been stated by Kolotov e# 2/, in spite of the fact that coincidence cotrections
for small point-like sources are well understood, only few authors have reported
coincidence-summing correction methods for voluminous sources!™ P4 BP9 Ths s
probably owing to the fact that coincidence correction methods for point sources cannot
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simply be applied to voluminous sources. A proper coincidence correction method for
voluminous samples should take into account the differential behaviour of both the full-
energy peak efficiency and the total efficiency over the source volume. To find this
behaviour, the coincidence correction method introduced by Debertin uses  the
information of 40 measurcments of a point source located at various positions in a
Marinelli beaker filled with inactive material that matches the sample material with respect
to y-ray attenuating properties. A numerical integration then calculates coincidence
summing corrections for the whole source. Also de Corte ef @/l and Kolotov ez o/
use a similar integration for their correction methods.

Although Debertin introduced the concept of “differential efficiencies” already in 1979,
only recently methods have been reported that explicitly use them. In 1995, Korun ez all!
introduced an exponential distribution function that describes the variation of the
efficiency over the source volume. This function is then added to Semkow’s”" formalism
to calculate the detector’s response to a specific source of a given radionuclide. However,
Korun does not specify why an exponential function should be used, nor does he provide
means to determine the parameters of the function.

In 1996, Wang e7 al™ introduced “volume effect factors” that describe the differential
behaviour of the peak and total efficiencies. Volume effect factors have to be calculated
for every combination of photon energies that can occur when a given radionuclide
decays. This calculatdon is performed by an adjusted version of Moens’ program
SOLANG™,

The coincidence correcdon methods described above all require cither large
calibration efforts or accurate knowledge of detector dimensions, in addition to dedicated
computer programs to perform the volume integration. Moreover, the reported results of
these correction methods for voluminous sources are far less accurate than correction
methods for point soutces. For voluminous sources Korun ef al® for instance, teport
disagreements between calculated and measured peak areas of up to 15% whereas for
7 reports no disagreement of statistical significance.

The reason for the high quality of Blaauw’s coincidence calculations may be that
Blaauw obtains all information necessary to correct for coincidence effects from
measurements that do show these effects. In this way, possible errors or simplifications
made in the theory are automatically corrected for. However, Blaauw reports the failure of
his method when applied to voluminous source geometries™,

point sources Blaauw

1.3 This thesis

The aim of the work described in this thesis is to extend the theory of coincidence
summing effects to be valid for voluminous sources as well. Therefore, it should take into
account the variation of the efficiency over the source volume. In addition, it should
introduce a calibration method that is based on the extended theory. Like Blaauw’s
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method, it should use the theory to provide the general form of efficiency curves. It
should, however, obtain the actual curve parameters from measurements showing
coincidence effects. This way, the self-validating character of Blaauw’s method is
preserved.

The newly introduced method should be applicable to point sources as well as to
voluminous sources, ze. it should cover well-type geometries as well as Marinelli beaker
detection geometries. For the method to be competitive, its inaccuracy and imprecision
should be as low as those of the most accurate and precise conventional methods, ie. as
low as those of radionuclide specific calibration methods. It should therefore provide both
a maximal inaccuracy and imprecision of 1% for its resulting actvity values.

1.3.1 Part I: Theory and tools

Chapter Two describes the principles of the calibration method. It gives the
calculation of full-energy peak detection probabilities in a spectrum based on catalogued
decay scheme data. To propetly account for coincidence summing effects in voluminous
sources, it introduces a new concept of quadratic efficiencies.

Chapter Three describes Monte Catlo simulation techniques for the calculation of
efficiency curves and of y-ray spectra. The subsequent parts will use these calculations to
validate the theory and to examine the characteristics of the calibration method.

1.3.2 Part 11: Well-type detection geometries

Owing to large summation effects encountered with well-type detectors, the
attenuation of low-energy photons in the sample can influence high-energy peak areas. In
1979 de Bruin e 2/ suggested the use of a high-Z lining inside the well to prevent these
low-energy photons from reaching the detector. Chapter Four and Chapter Five discuss
the consequences of the application of a high-Z lining. They show that the problems of
sample self-attenuation and coincidence summing should be treated analytically rather
than by attempts to eliminate them by means of a lining.

Chapter Six describes the analytical treatment of coincidence summing and sample
self-attenuation effects for well-type detectors. It describes how the theory developed in
Chapter Two provides the general shape of calibration curves. It also describes how actual
measurements of a terbium-160 spectrum can provide the parameters of the curves.

Chapter Seven describes the actual use of the calibration method developed in the
previous chapter. Whereas the previous chapter used Monte Catlo simulated data, this
chapter uses real-life measurements.

1.3.3 Part III: Marinelli-beaker detection geometries

Chapter Eight describes the development of a calibration method that includes
coincidence effect corrections for Marinelli beaker type detection geometries using Monte
Carlo simulation techniques. Like in the well-type case, it describes how the theory
developed in Chapter Two provides the general shape of calibration curves. It also shows
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how actual measurements of a bromine-82 spectrum in principle can provide the
parameters of the curves.

Chapter Nine again describes the use of the of the calibration method with real-life

measurements.

1.3.4 Epilogne

Finally, Chapter Ten discusses the general aspects of the calibration methods. Based

on these aspects, it draws conclusions and gives recommendations for future work.

References

[11  W. Crookes, Chemical News, 87 (1903) 241

[2} C.E. Crouthamel, “AApplied gamma-ray spectrometry”, 204 Ed., Pergamon press, Oxford
(1970)

[3] R.Hofstadter, Phys. Rev., 74 (1948) 100, 75 (1949) 796, 79 (1950) 389

[4] G.Hevesy, H. Levi, Det. Ko/ Danske 1 idenskabernes Selskab, Mathematisk fysiske
Meddelelser, XIV, 5 (1936) 3

[5] M. Blaauw, O. Lakmaker, P. van Aller, Anal.Chem., 69 (1997) 2247

[6] P.Bode, RM.W. Overwater, J.J.M. De Goelj, |. Radioanal. Nucl. Chem., 216 (1997) 5

{71 M.J.J. Ammerlaan, P. Bode, S.S. Then, “CAFLA: Carbonfiber Antonomous Facility for
Irradiation and Analysis”, 1R1 report IRI-133-90-001, (1990)

[8] JJM. De Goeij, “Neutron Activation Analysis: Trends in Developments and Applications”,
proceedings of the Intern.Conf. ‘Neutrons and their applications”, The international
society for optical engineering (1994)

[9] P.Bode, E.A. De Nadai Fernandes, R.R. Greenberg, |. Rudioanal. Nucl. Chem., 245
(2000 109

[10] M. de Bruin, P.J.M. Korthoven, P. Bode, Nuc/ Instr. and Meth., 159 (1979) 301

[11] D.S. Andreev, K.I. Erokhina, V.S. Zvonov, L.Kh. Lemberg, Instr. Expt. Techn., 15
(1972) 1358.

(12] D.S. Andreev, K.I. Erokhina, V.S. Zvonov, IL.Kh. Lemberg, I3r. Akad. Nauk SSSR,
Ser. Fizg., 37 (1973) 1609.

{13] G.J. McCallum, G.E. Coote, Nuc/. Instr. and Meth., 130 (1975) 189

[14] K. Debertin, U. Schotzig, Nucl Instr. and Merh., 158 (1979) 471

{15] L. Moens, Agrégé thesis, Rijksuniversiteit Gent (1981).

[16] F.de Corte, “The ko-standardigation method, -1 move to the optimiation of neutron activation
analysis”, Agrégé thesis, Rijksuniversiteit Gent (1987).

(17} M. Blaauw, Nucl Instr. and Meth., A332 (1993) 493

[18] L.Moens, J. de Donder, LIN Xi-Lei, F. de Corte, A. de Wispelaere, A. Simonits,
J. Hoste, Nucl. Instr. and Meth., 187 (1981) 451

[19] K. Debertin, R. Jianping, Nucl. Instr. and Meth., A278 (1989) 541



Prologue

(20]
21]
(22]
(23]
[24]
23]
[26]
(27

(28]

10

F. Sanchez, E. Navarro, ].L. Ferrero, A. Moreno, C. Roldan, Nuc/. Instr. and Meth.,
B61 (1991) 535

A. Bertolo, C. Manduchi, G. Manduchi, Nuc/. Instr. and Meth., A314 (1992) 584

O. Sima, C. Dovlete, App/. Radiat. Isot., 48 (1997) 59

V.P. Kolotov, V.V. Atrashkevich, S.J. Gelsema, |. Radivanal. Nucl. Chem., Articles,
210 (1996) 183

F. de Corte, A. de Wispeleare, L. Vancraeynest, P. de Neve, P. van den Haute, Nac/.
Instr. and Meth., A353 (1994) 539

V.V. Atrashkevich, V.P. Kolotov, J. Radioanal. Nucl. Chem., Articles, 169 (1993) 397
M. Korun, R. Martincic, Nuc/. Instr. and Meth., A355 (1995) 600

T.M. Semkow, G.Mehmood, P.P. Parekh, M. Virgil, Nuc/ Instr. and Meth., A290
(1990) 437

Tien-Ko Wang, Tzung-Hua Ying, Wei-Yang Mar, Chia-Lian Tseng, Chi-Hung Liao,
Mei-Ya Wang, Nucl. Instr and Meth., A376 (1996) 192

M. Blaauw, M.].]. Ammerlaan, S.J. Gelsema, Nuc/. Instr. and Meth., A385 (1997) 330



Part 1
Theory and tools







Chapter Two

Y-Ray spectrometry

Abstract

This chapter starts with a brief introduction into the principles of y-ray spectrometry. It then
describes the calculation of full-energy peak detection probabilities in the spectra using catalogued
decay scheme data. For this purpose, it first describes the full-energy peak efficiency curve. In
order to properly account for coincidence summing effects in point source geometries, it then
describes the peak-to-total curve. Finally, to properly account for coincidence-summing effects in
voluminous source geomelries, it introduces the newly developed concept of stochastic efficiencies. In
addition it introduces a third curve that relates the conventional linear efficiencies to the quadratic
ones: the linear-to-squared curve.

2.1 Introduction

In order to identify radionuclides within a radioactive source and at the same time to
determine their absolute activities, it is necessary to be able to discriminate the emitted y-
quanta with respect to their energy. The discrimination is the main property of y-ray
spectrometry. y-Spectrometry is generally performed with either sodium iodide or
germanium detectors. The latter type excels in its high energy resolution of approximately
1%o , allowing the separation of many closely spaced y-ray energies. Since an incident y-
quantum is uncharged and creates no direct ionization or excitation in the detector
material, the purpose of the detector is twofold: First it acts as a conversion medium in
which incident y-quanta have reasonable probability of interacting to yield one or more

fast electrons. Second, it acts as a conventional detector transfetring these fast electrons to
electric signals.

13
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Figure 2.1: Differential pulse-height distribution

2.1.1 Pulse-height spectra and y-specira

Any interaction causes the detector to produce an electronic pulse of which the
amplitude is proportional to the energy transferred with the interaction. These pulses are
all collected and stored for later interpretation. The most common way of displaying pulse
information is through the differential pulse-height distribution. Figure 2.1 shows a particular
distribution. The abscissa is a linear pulse amplitude scale that covers the range of pulse
heights observed from the source. The ordinate is the differential number of pulses dN
. observed with an amplitude within the differential amplitude increment dH, divided by
that increment, i.e. dN/dH. The horizontal scale then has units of pulse amplitude,
whereas the vertical scale has units of inverse amplitude. The number of pulses whose
amplitude lies between two specific values Hy and H> can be obtained by integrating the
area under the distribution between those limits (see Figure 2.1),

H
fdN

N H<H<H, = dH . 2.1
o

The proportionality between pulse amplitudes and energy transfer allows for the
transformation of the horizontal scale units from units of amplitude to units of energy
(keV or MeV are most often used, where 1 eV = 1.6:10-1 J). The vertical scale unit then
transforms to units of inverse energy. Equation (2.1) then transforms to

14
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E,
tdN
Ei<E<E, = J

L

“dE
%, 2.2)

E,

representing the number of photon interactions with energy transfer between E; and Fo.
The pulse-height spectrum is now called a y-ray spectrum. The physical interpretation of
differential pulse height-spectra or y-ray spectra always involves areas under the spectrum
between two given limits of pulse height or, equivalenty, energy. The value of the
ordinate itself has no significance until multiplied by an increment of the abscissal'l,

2.1.2 Detection efficiency

An incident photon can interact with the detector material via one of three main
mechanisms: photoelectric absorption, Compton scattering and pair production. Of these
three mechanisms, photoelecttic absorption will transfer the full-energy of the photon to
the detector. The other two mechanisms transfer only part of the photon-energy to the
detector. Though scattering followed by photoelectric absorption can still cause the total
energy of the primary photon to be fully transferred, in a considerable number of cases
the primary photon is detected only partially (for a detailed and more precise treatment of
all three interaction mechanisms, see Chapter Three).

Based on this property of detection, two types of detection efficiency arc defined: The
first type considers all photon interactions, irrespective of the amount of energy
transferred. It is therefore called fotal efficiency &, and is defined as: The probability of a photon
emitted by the source depositing any non-gero part of ifs energy in the active volume of the detector. The
other type considers only those interactions that transfer the full amount of photon energy
to the detector. This fill-energy peak efficiency € is defined as: The probability of a photon emitted
by the source depositing all its energy in the active volume of the detector.”

The full-energy peak efficiency and the total efficiency are related by the peak-to-total
ratio 7,

r= % . (2.3)

Because the probability of each interaction mechanism depends on the energy of the
incident photon, so do the full-energy peak efficiency and the peak-to-total ratio. In
literature, various parameterizations of the efficiency curves have been proposed[l].
Section 2.2 discusses the parameterization applied in this work.

* The definition of the full-energy peak efficiency according to the IUPAC yicldslz]: “The ratio between
the number of ... photons counted with a radiation counter and the number of similar ... photons emitted by the radiation
source when only considering the events recorded in the photopeak”. This definition only equals the definition of this
thesis if the number of photons emitied by the source goes to infinity. Furthermore, it neglects the influence of

. o . - 3
some spectrometer settings (I.1.D) and of coincidence summing cffectst!.
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Highly efficient detection geometries cause coinctdence summing effects: two or more y-
quanta have interactions with the detector within a time period shorter than the temporal
resolution of the detector system, typically 1 ps. As a result, the detection system cannot
separate them and treats them as a single interaction, the energy transfer being the sum of
the transfers of the individual interactions. Two types of coincidence summing can be
distinguished. Random coincidence summing, or pile-up occurs if the y-quanta originate from
more than one decaying nucleus. Its occurrence is therefore dependent on the activity of
the source. It can always be reduced by limiting the source activity, even in highly efficient
detection geometries. Trwe coincidence summing occurs if the y-quanta originate from the
same decaying nucleus. It is therefore not dependent on the activity of the source and
cannot be avoided by limiting the source activity.

True coincidence summing effects can only be corrected for if the total efficiency of
the detector is known as a function of photon energy, for example by using the peak-to-
total ratio, 7, as a function of energy: the peak-to-total curve. Section 2.2.2 desctibes
coincidence summing effects and introduces a parameterization for the peak-to-total
curve.

In the case of voluminous sources, the description of coincidence summing effects
should also take into account the degree of variation of the efficiency over the source
volume. As has been outlined in Chapter One, the description of voluminous source
coincidence cotrections has been subject of investigations world-wide. However, no
adequate and easy-to-use description has been proposed yet'. Section 2.3 does give an
adequate and useful description of coincidence effects for voluminous sources. For this
purpose it introduces the novel concept of stochastic efficiency. In addition, it introduces
a third curve relating quadratic efficiencies to conventional linear efficiencies, thus taking
into account the variation of the efficiency over the source volume.

2.2 Existing theory

2.2.1 The full-energy peak efficiency curve

The parameterization of the full-energy peak efficiency used in this work is an
adaptation of that developed by Gunnink™ 1. Tt covers the energy range from 50 keV to
4 MeV with an error less than a few percent. The reason for the choice of Gunninks
parameterization is twofold. First, Gunnink has based his parameterization on data
gathered from a large number of coaxial detectors, their active volumes ranging from
30 cm3 to 350 cm3. Tt therefore represents a wide range of detectors. Second, previous

* Tn this respect, the reader is referred to a recently published IAEA technical document!l that reads:
“... there are two important lopics for which there are not yet practical, easy-to-use solutions, They relate to the
quantification of activities in samples and involve Irue-coincidence s ing and self-attenuation corvections.”
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Chapter Two: y-Ray spectrometry

studies performed at IRI have credited its usel”!

well-type detectors as well.

In his papers, Gunnink also introduces a method for detector calibration, ie. a
method to obtain the parameter values for a specific detector set-up. Since his method
uses empirical relations between the parameters and detector specifications that are
specific for coaxial detectors and point sources, it will be disregarded in this work.
Therefore, the adaptation of Gunninks curve discussed hereafter disregards all relations
that are specific for coaxial detectors, thus vielding a more general curve.

, not only for coaxial detectors, but for

Gunnink distinguishes three factors in the definition of the efficiency for a y-ray of a
given encrgy: (1) the Zntrnsic efficiency &a of the detector, (ii) the source-to-detector

distance ¢, and (iii), the attenuation of y-ravs by the sample or by external absorbers. He
defines the intrinsic cfficiency as

p2
_cp !

int,E 2
(/
.VE(O

2.4)

where ¢ is the observed counting rate in the full-energy peak at energy E in the absence
of attenuation and coincidence effects, y: is the known y emission rate and ¢y is a
reference source-to-detector distance”. He determines the true source-to-detector distance
by a semi-empirical model® "', The adaptation discussed here will not use the concept
of intrinsic efficiency and thus circumvent the use of the source-to-detector distance.
Instead it uses the absolute efficiency which is related to the intrinsic efficiency by

2
Emrly

gahs,E = _[2— . (2.5)

Since Gunnink has fitted an efficiency curve using higher-order polynomial equations
on 2 double-log scale, the use of the absolute efficiency instead of intrinsic efficiency will
only affect the zeroth-order parameter of the polynomial representation. Originally,
Gunnink views the efficiency curve from 50 keV to 4 MeV in three regions: <90 keV, 90
to 200 keV, and >200 keV. This adaptation uses only two regions: respectively <200 keV
and >200 keV. In addition, it uses two factors that describe attenuation effects by external
absorbers and by the source itself, respectively. Thus, the overall expression for the full-
energy peak efficiency of a given source-detector geometry yields

85 = Zcxt,E : z:self,lz' ) gnbs,E >

" Notice that Gunnink’s definition of the efficiency resembles the IUPAC definition. The fact that
this work uses a different definition of efficiency does not have any influence on the derived

parameterization of the efficiency curve. Furthermore, Gunnink’s use of source-to-detector distance ¢ is
not undisputed. Kooll [1], for instance, uses solid angles instead which yields a more precise definition.
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or equivalently

Ing, =InX_ ,+InZ , ,+Ing, ., (2.6)

ext

where Z.w, E represents the transmission through external absorbers and Zsei;, E represents
the transmission of the source itself.

Energy region above 200 kel”

The region of the efficiency curve for E > 200 keV has long been known to be nearly
linear when the logarithms of the efficiency and the energy are plotted. Because of this,
the use of a polynomial function of the following form is convenient,

E s Eo02MeV = exp{g0 a, (m[% : DJ} ’ @en

where Ep is 1 MeV. However, a fifth-order polynomial like Equation (2.7) over-
determines the nearly linear relationship between logarithmic efficiency and energy. The
polynomial coefficients are correlated. Based on his experience with a large number of
detectors of various dimensions, Gunnink found the following relations.

a, =8

a,=0.06(1-g,)-1.15-0.0778(In g, )+0.0296 (In g, f,

a, =0.333-0.1154 g, +0.009427 g2,

a, =-0.1456+0.01592 g,,

a, =—0.015,

a, =—0.003+0.0092 g, —0.00124 g;.

(2.8)

Gunnink also found relations between the g coefficients and detector dimensions and
other specifications. The adaptation of this thesis however does not use them. The reason
for this is threefold: In the first place, g is affected by the use of absolute efficiency
instead of intrinsic efficiency. In the second place, coefficient g3 is supposed to correspond
with the active volume of the detector. Gunnink however, is not clear about the units to
be used. Furthermore, Gunnink may very well mean that g corresponds with the
logarithm of the active detector volume. Finally: the relations are found using only data
from point sources measured on coaxial detectors. Since this adaptation is to be used for
voluminous source geometries as well as for well-type geometries, the coefficients are very
likely to lose their physical meaning. Later chapters will show that the parameterization
itself can be used for voluminous source and well-type geometries.
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Energy region below 200 kel-”

The region of the efficiency curve for E<200 keV is modelled by a simple second
order polynomial on double-log scale,

2 i
e =X b|In|E D . .
€ s E<0.2MeV p{; ,,( |:A‘o ’ } 2.9)

Since at FI =200 keV both the efficiency curve and its first derivative should be
continuous, this parameterization of the curve below 200 keV introduces one additional
| parameter g. Explicitly

i b: = go ?
5
b =a,+(a,~b,)In0.2+> a (In0.2)", (2.10)

=3

5 .
b, =a, +(a, ~b;)In0.2+(a, - b, \In0.2)" + ¥ a,(In0.2)’.

J=3

Excternal absorbers

For the modelling of external absorbers, ie. all layers of material located between the
source and the detector, it is assumed that all material is composed of low-Z elements. For

these elements, the logarithmic total mass attenuation coefficient yg/p is independent of
the material and linearly dependent on logarithmic energy (hence the subscript E) as long

as E is larger than the energy of the K-edge and as long as g/ p is larger than 0.1 m?kgl.
For smaller values of ur/p, deviations from linearity occur, but these will be of minor

importance because these smaller value of u:/p implicate only minor attenuation effects.
The dependency on logarithmic cnergy of the logarithmic total mass attenuation
coefficient of a mixture or of several layers of low-Z material is linear as well,

In { ;‘E/: } m, +m, In %E , (2.11)

with i/ = 1 m%kg!. For the term in Equation (2.6) representing the external absorbers,
the following parameterization is derived:

In2Z, ;= —ﬁpf—b‘ = —5%‘]—exp[m0]exp|:m1 In %.J =g, exp|:gS In %J, (2.12)
(1]

where p is the density of the absorber material in [kg m~], dis the mass thickness of the
material in [kgm?] which is defined as the mass per unit area, and is obtained by
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multiplying the thickness of the absorber material, 4 by its density, ie, 8 = pd. The
parameters g4 and gs are the parameters modelling the absorber.

Sample self-attenuation

Fleming'? has given an analytical expression for neutron self-shielding factors for e.g.
non-scattering spherical samples in a homogeneous, isotropic Maxwellian neutron flux
distribution. Since the absorption of neutrons is governed by the same exponential law as
the attenuation of y-rays, Fleming’s expression is directly applicable to the latter case. The
attenuation of y-rays in spherical samples thus is described by

3p° 2R* 1 (1 R R
Zoee =——~—f) 3 He ;5 S £ oxpl 2 BETm || 213)
4R P 22 p p

where p/p is the sample’s total mass attenuation coefficient that is modelled by
Equation (2.11) and Rm is the sample mass-radius, in terms of mass per unit area.
Expression (2.13) does not account for a variation of the efficiency over the source owing
to other causes than self-attenuation, like varying detector distance. Hence, it is only
applicable for well-type detectors or if the sample-detector distance is large compared to
sample dimensions. In the case of Marinelli beaker samples, this work models the sample
self-attenuation as being caused by an external absorber.

2.2.2 Coincidence summing caleulations; the Peak-to-Total curve

Coincidence summing calculations

Let us consider a source of a radionuclide with an arbitrary decay scheme as shown in
Figure 2.2. In this general set-up, the decay of a nucleus is described as a set of cascades
of transitions, each cascade having its own probability of occurrence Pc. For the cascade
indicated in Figure 2.2, Pc would be given by

F.= fn—an—l,le,le,O > (214)

where fi denotes the feeding probability to the ith level and X, denotes the
probability of the transition from the ith to the /-th level.

The probability Pg of detecting a count in the full-energy peak at energy E owing to
the decay of a given nucleus is now obtained by summing, over all cascades, the product
of the cascade probability and the probability of the cascade contributing to the peak, i.e.

=Y l:PC.l_C[gigi f[(1—gje,,)}, (2.15)

Cascades i=1 J=Me+l

20



Chapter Two: y-Ray spectrometry

fr ,
f\ Xn,n-I Xn,Z >£rl,/ 1\7/7,0
n-1 -
¢ X122 X110 Xt o

D

N
fz\ v Xo1 Xoo
fi
,\ \ A 4 l Nio
fo
BN

Figure 2.2: General decay scheme with one specific cascade indicated bold. Here f denotes the
feeding probability to the /th Jevel and X, denotes the probability of the transition from the /-th
to the j-th level.

where & denotes the full-energy peak efficiency, & denotes the total cfficiency, and g
denotes the photon emission probability, more often expressed as g=1/(1+¢) where a
denotes the internal conversion coefficient. In Equation (2.15), Nc is the number of
photons emitted in a specific cascade and Mc is the number of photons constituting the
full-energy of the peak. This means that if Mc=1, the product over index / describes
simple detection of a photon of energy E. Else, if Mc>1, it describes coincidence
summing-in of multiple photons with energies adding up to E. The product over index ;
describes summing-out effects by the remaining photons in the cascade. For the sake of
simplicity, in the remainder of this chapter, the emission probabilities g will assumed to be
unity. Since, if relevant, all £and & can be always replaced by ge and g&, this will not alter
the generality of the formulas. The formulas can be complicated further by accounting for
angular correlations between the photons in the cascade. Angular correlation however are
discarded in this work.

The peak-to-total curve

Since the full-energy peak efficiency € and the total efficiency & are related by the
peak-to-total value r = &/ &, Equation (2.15) can be transformed to

M Nc E.
P= Y |RJle T a-D1. (2.16)
Cascades i=1 J=Me+l I‘j
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The dependency of the peak-to-total ratio r on energy is commonly described by a
linear relation on double-log scale,

Inr=r,+rInk E, 2.17)

Since the total efficiency & is always larger than or equal to the peak efficiency &, the
peak-to-total ratio should be limited to values 7 < 1, thus In[A] < 0. In the parameterization
of the peak-to-total curve in this work, this limitation is expressed by a third parameter .
If In[A} > r2 then In[A is limited by the following function,

1V oluminous sources

L(lnr) = (2.18)

Equation (2.15) or (2.16) is only applicable if the efficiencies can be considered
constant throughout the source volume 1. If this condition does not hold, volume
averages must be taken and for Equation (2.15) is obtained

PE%J > [Pcﬁs, Iclo—eg-)}dl’ =¥ [Pcfles ﬁ(l—%)J-a-w)

Cascades i=1 J=Mc+1 Cascades i=1 J=Mc+l
4

Let us focus on one term in Equation (2.19) that describes one specific cascade. For
point-source geometries it was possible to. use full-energy-peak efficiency and total
efficiency curves describing the complete source-detector geometry. However, for
voluminous sources it is not, since those curves would generally yield the volume average

efficiencies £ and ;t as a function of photon energy. Equation (2.19) however uses the
average product of a set of efficiencies which, in general, is not equal to the product of a

set of averaged efficiencies ;, and g . In other words
MC NC MC J— NC —
[1e [Ia-¢)=[]e [10-2). (2.20)
i=1 J=Mc+l i=l J=Me+1

This inequality was noted and expetimentally demonstrated earlier by e.g. Debertin!"
and de Corte", It is also this inequality that causes Blaauw’s method for point sources to
fail for voluminous sources!’\.
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2.3 Newly developed theory

2.3.1 Coincidence summing caleulations for voluminons sonrces: A Stochastic approach to efficiencies

For voluminous sources, full-energy peak efficiencies £ and total efficiencies & cannot
be consideted constant throughout the source volume. Instead, for every single decay,
they depend upon the location of the decaying nucleus. Since this location is subject to

probabilistic processes, it is natural to view them as stochastic variables € and &. In this
context, the distribution over the source volume of the full-energy peak efficiency as a
function of energy can be described by its moments, of which the first and the second are
its mean Mg and its variance G2,

. (F)=E [e(£)] ,
o.(E)=E [(e(E)-p, (E))z] : (2.21)

Although strictly, these first two moments do not fully describe every possible distribution
of the full-energy peak efficiency, in the context of this work, where the source activity is
homogeneous, they will prove to suffice.

Similarly, the distribution of the total efficiency is described by

w. (E)=Ele.(E)] ,
o2 (E)=E [e.(B)-n., ()] . @.22)

€t
Using these relations, the full-energy peak efficiency curve for voluminous sources is

now defined as p.(E). The peak-to-total value for voluminous sources is defined as
7 = e/ Hes, and consequently, the peak-to-total curve is defined as nA(E) = pe(E)/ P E).
Notice that, since pl, and U are both constants for a given detector, a given source and
for a given energy, so is rn. In other words: By definition, - is not a stochastic variable.
Furthermore, for non-voluminous sources 71~ reduces to ras defined by (2.3).

At this point, it is convenient to relate the variance of a stochastic variable to its mean
by introducing 1 and M., defined by

2 2

2 & 2 _ ce»f
ns = aﬂd na,t = 92 .

He We
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Since it can safely be assumed that the distributions of the full-energy peak efficiency
€ and the total efficiency & are fairly similar", we can write

i (E) _ O..(E)

2(E)= =3
nEE e T E

(2.23)

additionally expressing that 1 is a function of energy. Instead of being characterized by its
mean Mg (Of Kgy) and variance 6% (or 6%y), a stochastic variable € (or &) can equally well
be characterized by . (or Me) and .

To be able to use these efficiency curves, equivalently to the point source case, it is
necessary to write the average product on the right-hand term of Equation (2.19) in terms
of Wg and W The approach chosen by this work regards every factor of two stochastic
variables as a new stochastic variable having its own mean M and scaled variance 1. The
next paragraph subsequently considers the occurting factors.

First, consider the factors in Equation (2.19), describing summing out effects. The
mean and variances of these factors can be written as

E[l—at]=1—um ,
var [l - 8'] = 0‘:)‘ and thus (2.24)
1-p? "

2 .2
nl—a,t - Tl.,:

Next, consider a product of two stochastic variables €1 and €2, having means p1 and po,
variances G1 and G2, and cross-cotrelation p12. Since the correlation between €1 and €2 can
be written as

E [(81 —}11)(82 _HZ)] _ E [8182]_“1u2
0,0, - 0,0, ’

P2 =

we can write for the mean product s 2 of the two stochastic variables

W= E [8182] =K M, +p,0,0,

=(1+Px.z'71772)u.u2' (2.25)

* This assumption is justified by T.-K. Wang et al.l'%l, who write: “According to the work done by (1) Erten
et al.’% [..], € and & have similar variation with distance to [a] detector and by (2) Lin and Heydorn'’), the uncertainty
in the & value is of minor importance to the COI factor”, where COI denotes the coincidence correction factor.
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To be able to express the variance G122 of the product of € and €2 in terms of their means,
their variances and their cross-correlation, we need to linearize the product using a Taylor
expansion about the point (i, M),

a é
g6, =, + (g, —p, )t e, -, )08 NeY

581 (1,82 Flny 1y ) (’82 (&1,82 =y 1) L]
~H,E T E) Uy
(2.26)

yielding a variance of
o;,=var [8183] ~var [p:al +HE, — plpz] = WI0] + 103 +2p 1, 1,0,0,,
and a scaled variance of

var {p,e, +p.g, — 1, ,
LTl 7] =n7 15 +2p,M M, @27
E [“281 tHE, H)Hz]

I

ue :
We have now developed the necessary expression to calculate the mean and (scaled)
variance of a product of two stochastic variables.

Let us now discuss the implementation of this stochastic approach. Firstly, let us
focus on the cross-correlation coefficients. They express the correlation between, on the
one hand, the efficiency for a certain energy, say, & at a random position within the source
volume and, on the other hand, the efficiency for a different energy, say &, but for exactly
that same position. Since the efficiency values are related by position, it is clear that the
correlation between the two is large and positive. Also, since efficiency values are positive
by definition, it is safe to say that the correlation between a product of two efficiencies,
€1€2, and a third, €3, is also large and positive. Therefore, the practical implementation of
the stochastic approach considers all correlations between efficiencies or products of
efficiencies large and positive, i.e. it replaces them by a single parameter p near 1. The
actual value of p is to be determined by calibration methods.

Secondly, notice that Equation (2.19) contains products of more than two stochastic
variables. In principle, these can be calculated by first calculating mean and (scaled)
variance of two variables using Equation (2.25) and then subsequently adding extra
factors, each time considering the outcome of (2.25) as a single factor. This requires
keeping track of the mean and (scaled) variance of the intermediate products.

The final point of discussion concerns the order in which to calculate the constituting
factors of Equation (2.19). This point is closely related to the cross-correlation issue.
Equation (2.19) distinguishes two main factors, namely that of consisting of factors &:
TTg;, and that consisting of factors (1-g): I1(1-g.)). It is clear that, while the correlation
between two factors of € or between two factors of (1-g,) is positive, the correlation
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between a factor g; and a factor (1-&) is negative. Therefore, in order to maintain the
33y argumentation for replacing all correlations by a single large and positive parameter
p, the first steps in the evaluation of (2.19) will be to calculate the two main factors
separately. The last step then calculates the mean final product by (2.25), only this time
taking the correlation large and negative: -p. The systematic application of this approach to
expression (2.19) yields

PE"'%J z |:Pc ﬁgi ﬁ(l_gt.k)}dV

i Cascades i=l k=M +1
M
(Z"J[ 2 uek ]
i=1 k=Mc+1
zCa;ies - Nc M. Ne m
{HpZan,} {Hp ﬁnm,} I1x. H ( "‘L

i=l j=i k=Mc+1 1=k i=1 k=M +l

(2.28)

as can be verified in Appendix A. The validity of (2.28) is limited by a constraint on 7,
M < 1, set by (A 1). Recalling the definition of 1 this means that the standard deviation of
the distribution of the efficiency over the source volume should not exceed the mean
value. Since efficiencies are positive valued by definition, the constraint is met by the
majority of sources.

The application of this expression requires knowledge of the mean peak efficiency
values Y, and the peak-to-total ratios 7, which relate the mean peak efficiency values p, to
the mean total efficiency values .., both as a function of energy. Both the mean full-
energy peak efficiency curve and the peak-to-total curve can be described using the same
parameterizations as in the non-voluminous case. In fact, by defining them as mean
curves, they are identically defined as the non-voluminous ones. The voluminous nature
of the source is described by the scaled variance, 1, also as a function of energy, and by
the constant p. The only thing that we need yet is a parametertization of the scaled

variance
2.3.2 Parameterization of the stochastic approach: The Linear-to-squared curve
For practical reasons, it is beneficial to write
s var [¢] E [ez]—E [e] E [82]
+1= > +1= 5 +1= 3 -
E [e) E [e] E[s]

(2.29)

26



Chapter Two: y-Ray spectrometry

. . 2 . .
This way, we notice that 4N +1-values directly relate the volume-averaged linear

efficiency € to the volume-averaged squared efficiency €. Therefore, instead of using the
term scaled rariance, and in accordance with calling the rvalues “pewk-to-total” or “PT-ratios”,

the M~ +1-values are referred to as “Uinear-to-squared” or *1.S-ratios”. Since the LS-ratios

depend on energy (sce Eq. (2.23)), similarly, JN° +1-curves are referred to as “LS-curves”,
The reason for using LS-valucs instead of scaled variances is the possibility of calculating
them by Monte Carlo simulation methods, which play an important part in the validation
of the stochastic approach. The exact Monte Carlo method is described in the next
Chapter.

To arrive at a sensible paramcterization of the LS-curve, consider the following. The
scaled variance, 1, was introduced to take into account the variation of efficiency over the
volume of a source. On the once hand, the variation can occur for geometrical reasons: the
distance to the detector, or rather the solid angle varies over the volume of the source. On
the other hand, it can vary because of y-ray attenuation in the source volume. At high
photon energies, where attenuation in the source is negligible, the variation is mainly
determined by the source-detector geometry only (ie. the solid angle), which is
independent of energy. The linear-to-squared curve is therefore expected to have a
horizontal asymptote for high energies, defined by one parameter, /. At lower energies,
attenuation comes into play and the efficiencies will vary more strongly over the sample
volume. The LS-ratio will be larger than at high energies. Since the probability of the
photons interacting in the sample depends both on the sample density and on the average
atomic number of the elements in the sample through exponential relations, two more
parameters, 5% and 4?2 will be required. These considerations are reflected by the
following functional form:

e
N =h2+h2(l £ ) . 2.30
n b T nﬁo ( )

where h? is the horizontal asymptote and /2 and 422 are related to the sample density and
to the average atomic number. In this parameterization, all parameters are squared to

ascertain that it yields only physically possible values for 4N’ +1. The constraint 1 < 1

implies that the I.S-ratio should be smaller than V2. Since this constraint does not
originate from the definition of 1 itself, but rather from its use in Equation (2.28), this
constraint is not reflected in the parametrization of the LS-curve.

Figure 2.3 shows Monte Carlo simulated LS-ratios and a cotresponding LS curve for
a typical Marinelli beaker geometry. Indeed, for high energies, the LS-rado approaches an
asymptote of approximately 1.1. This value is determined from the varying detector
distance over the source volume: photons originating from inner layers of the Marinelli
beaker are detected more efficiently than those from outer layers because the effective
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Figure 2.3: Example of simulated LS-values and a corresponding L.S-
curve for a typical Marinelli-beaker geometry.
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Figure 2.4: Example of simulated LS-values and a corresponding LS-
curve for a high-Z source in a well-type geometry.

solid angle is larget. The lower the photon energies, the more the attenuation of y-rays by
the source matrix becomes important. Photons originating from the inner layers are
detected yet more efficiently, resulting in higher I.S-values. The figure shows that the
parametrization of the LS cutrve allows it to follow the individual LS-ratios. For details
about the simulation the reader is referred to section 3.3 of the next Chapter.

Figure 2.4 shows simulated LS-ratios and a corresponding LS-curve for a high-Z
soutce in a well-type detector. The high energy asymptote has a value of 1.0. This means
that for high energies, the source can be considered as a point source. For energies below
approximately 100 keV, the attenuation by the high-Z matrix becomes important and the
LS-ratio increases. Again, the parametrization of the LS-curve allows it to follow the
simulated 1.S-values. Notice also the discontinuity owing to the K-edge of the matrix
material. The parametrisation of this discontinuity is discussed in Chapter Six.
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Chapter Three

Monte Carlo calculations

Abstract

This chapter describes the use of Monte Carlo simulation technigues for the calculation of
efficiency curves and of y-ray spectra. First, it describes the modelling of y-interactions with
wmatter in general. Then it focuses on each of the three main interaction types specifically:
photoelectric  absorption, incoberent “Compton” scattering and pair production. It is
ascertatned that the Monte Carlo code described here yields results identical to the widely
available and evaluated code EGS4 when electron bistories are disregarded. Since later chapters
will use Monte Carlo caleulations only to compare results with other Monte Carlo calenlations,
disregarding electron histories will not degrade the usefulness of the code.

3.1 Introduction

The theory described in the previous chapter is validated for well-type detection
geometries in Part II of this thesis and for Marinelli beaker type detection geometries in
Part IIT of this thesis. For both, the validation is performed using simulation techniques as
well as experimental techniques.

The validation of the theory using Monte Carlo methods requires several programs:
for the calculation of both full-encrgy peak efficiency and total efficiency, for the
calculation of 1.S-ratios and for spectrum simulations. All programs use the same Monte
Carlo code that simulates the history of a single photon. This code is based on a code
originally written by Overwater!'l. Initially, Overwater’s code took into account scattering
processes only inside the active volume of the detector. The code has been modified to
take into account scattering processes in all other materials as well. The code accounts for
the three major types of photon interaction with matter, viz. photoelectric effect,
Compton effect and pair production. It does not account for the history of electrons to
which energy has been transferred during a photon interaction. It assumes that the energy
from the photon is absorbed by the matter at the exact location of the interaction. In the
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case of pair production, additionally it assumes two photons of . to be created at that
same location. For a simple geometry of a point source and a germanium crystal, it has
been ascertained that the code yields results identical to the widely used Monte Carlo code
EGS4”, EGS4 used with the option of simulating electron histories disabled. Since the
results of the Monte Catlo calculations are only compared with each other, and are not
used for calculation of real-life spectra, neglecting electron histories will not degrade the
quality of tests.

The use of simulation techniques has several advantages over real-life measurements.
First, with these techniques, all the curves needed to test the developed theory can be
determined explicitly; in a real-life situation, it can be hard or even impossible to measure
these curves directly. Second, possible errors in the decay-scheme data of the test
radionuclides are circumvented, since both the procedure to simulate a test spectrum and
the procedure that uses the theory to reproduce this spectrum use the same decay-scheme
data. Deviations between the two procedures are therefore solely the results of errors,
assumptions or simplifications of the theory.

3.2 Modelling of photon interactions

The most important interaction process at low Y- or X-ray-energies is the
photoelectric effect (3.2.1), defined as the absorption of a photon with subsequent
ejection of an atomic electron. For higher energies, the dominant interaction process is
incoherent scattering, also known as Compton scattering (3.2.2): A photon is deflected
with a reduction in energy, and an electron recoils out of the atom. For photon-energies
higher than 2m.?, pair-production (3.2.3) becomes rapidly important: A photon is
absorbed to produce an electron-positron pair. After transferring its kinetic energy to the
scattering material, the positron annihilates with an electron, producing two secondary
quanta each with an energy of m. and with opposite directions. A fourth interaction
process is coherent or Rayleigh scattering: A photon is deflected with hardly any loss in
energy, and the atom recoils as a whole under the impact. Its probability is largest in the
low-energy region, but still an order of magnitude lower than that of the photoelectric
effect. Therefore, and because there is practically no energy loss involved, Rayleigh
scattering is disregarded in the modelling,

The Monte Carlo program characterizes a photon by its energy E, its origin and its
direction. It characterizes the sample-detector environment by a list of objects, each object
by its location, its dimensions and its composition in terms of density and atomic mass
numbers Z; of its constituting elements combined with their relative occurrence. When the
program simulates the history of a photon, it first determines the geometrical path length
A for the object the photon travels through. It then decides where and if an interaction
within that object occurs by evaluating the following condition,
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2 =2Me g (3.1)

1 bl
HiotaiE

where A is the location of the interaction along the photon path, &= U(0..1), ie a
randomly chosen number from a uniform distribution ranging from 0 to 1, and ftowE 15
the linear attenuation coefficient of the object material depending on the photon-energy.
The linear attenuation cocfficient is a summation of the linear attenuation coefficients for
the different possible interactions,

lutotul.E = /uphoto,h‘ + (lucoherem,E = 0)+ lu(‘umpton.E + :upair_E . (3'2)

The Monte Catlo program calculates the various coefficients by logarithmic interpolation
using tabulated nuclear scattering data from the XCOM program by Berger/ Hubbel!,

If condition (3.1) holds, then the program decides that interaction indeed takes place
and it determines the nature of the interaction according to:

ﬂ hoto -
0 <é< == :photo effect,
ﬂxoml
ﬂ hoto lll hoto + ﬂ(:nm or .
o <fg TR :Compton scattering, (3.3)
lutotal lutoul
ﬂ hoto + ﬂ(ﬁn Lot . .
—EE T << 1 :pair production,
lutotal

where, again, £= U(0..1). The program then calls the appropriate subroutine. Depending
on the subroutine, one or two secondary y-quanta can be returned, which are followed
through the scattering environment identically to the primary quantum. If no interaction
takes place, it shifts the origin of the y-quantum to the point where it enters the next
object, and the procedure is performed again.

One of the objects in the list that characterizes the sample-detector environment is
labelled as being the detector. All energy-loss owing to scattering events in this object is
recorded. By coupling the energy-loss to the energy of the primary y-quantum, it becomes
possible to calculate the various efficiency curves and even complete spectra.

3.2.1 Photoelectric absorption

Photoelectric absorption is modelled by simply eliminating the primary photon. The
energy of the photon is fully transferred to the scattering medium. The history of the
atomic ejected electron is not modelled. This means that the electron is supposed to lose
its kinetic energy instantaneously. Also the X-rays following the ejection of the atomic
electron are supposed to be absorbed completely by the crystal.
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Figure 3.1: Compton scattering

3.2.2 Incoberent “Compton” scattering

The subroutine that models Compton scatteting returns a secondary photon. The

energy E’of this secondary photon is determined by sampling from the Klein-Nishina
collision cross-section disttibution and depends on the primary photon-energy. However,

the Klein-Nishina differential collision cross-section do: gives the probability of finding
the secondary photon in a unit solid angle A2 = 2x sin 3 d9°,

do, 06[ : T Lt 3], a*(l-coss) 3.4
dQ [1+a(l-cos9) 2 (1+cos? 9)[1+a(1-cos )] B4

where @ = A o and & is the scattering direction (see Figure 3.1). Since the energy of

the primary photon and the energy of the secondary photon are related by the scattering
angle by*

a
@ = 1+ a(l-cos9)’ (3-5)

Equation (3.4) can be written as

da°oc1(-0—‘i)2(i+a—’ '2.9) 3.6
aQ 2\a a o« sm : (3-6)

* Equation obtained from [4]
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The probability of finding the secondary y-quantum with energy between a’ and
a+da’is calculated with the aid of Equations (3.4) through (3.6) by

do, do.dQ d$ 1 (af a' 2 2 2 1 1 )
Py=—t=—t g |22 ,
o da' dQ d8da’ o

a a a a aa' ot a'?

3.7
Since at this point the Monte Carlo program already has cstablished that Compton
scattering indeed takes place, it can determine the energy of the secondary y-quantum by
solving the following integral equation numerically for
o
j P, . da’

a.q

0

(23
— 1+2a

g, (3.8)

o]‘P,),_a.dar’ U]‘P da'
0 a/

1+2a

where the boundaries of the integration are determined by physical limits and & = U(0..1).
The corresponding scattering angle is determined using Equation (3.5). To fully determine
the direction of the secondary y-quantum, an azimuth angle ¥ = U(0..27) is selected.

3.2.3 Pair production

Like photoelectric absorption, pair production is modelled by simply eliminating the
primary y-quantum. Two secondary y-quanta are created, each with energy me? and in
random directions relative to the direction of the primary y-quantum, but in opposite
directions relative to each other. The energy of the y-quantum minus 2m. is transferred
to the scattering medium. Again, the history of the positron and the electron is not
modelled, i.c. the secondary y-quanta are created at the exact location of the interaction.

3.3 Determination of full-energy peak efficiency-, PT- and LS-curves, and
correlation values

To determine a volume-averaged full-energy peak efficiency curve, for the detection
geometries described in later chapters, volume-averaged full-energy peak efficiency values

£ are calculated for twelve energies in the range of 50...3000 keV, approximately equally
spaced on a logarithmic scale. For each of the energies, a large number of photons is
created randomly in the source volume and followed through the detection geometry. The
number of times is counted that the total energy of the photon is deposited in the active
volume of the detector. Dividing this number by the total number of generated photons
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yields the efficiency value £ . The total number of photons is to be taken large enough to

obtain an imprecision for & lower than 0.5%. A full-energy peak efficiency curve &(E)

can then be fitted to the twelve &-values using Gunnink’s efficiency curve (Section 2.2.1).
Typically, the fit is accurate within 1% for any detection geometry for all energies up to
1000 keV and within 3% for energies up to 3000 keV.

Similarly, to determine PT-curves, volume-averaged total efficiency values & can be
calculated by counting the number of times that any part of the original photon energy is
deposited in the active volume of the detector, and dividing this number by the total
number of generated photons. Again, the imprecision of the total efficiency values should

be lower than 0.5%. Peak-to-total ratios r can then be calculated from the & and ¢, -
values. A peak-to-total curve /(E) can be fitted to the PT-ratios, using a straight line on
double-log scale. Thus, in essence, two parameters were used to describe the peak-to-total
curve. A third peak-to-total parameter limits the curve to physical values (Section 2.2.2).

To determine LS-curves, squared efficiency values & can be calculated essentially in
75, 59 ¥ y

the same manner as the &-values. However, now two photons of the same energy are
followed simultaneously through the detection geometry. The number of times is counted
that the total energy of both photons was deposited in the active volume of the detector.
The imprecision for the squared efficiency values should typically be lower than 1% for
energies between 70 and 700 keV and lower than 5% for all energies. Linear-to-squared
ratios ate calculated from these values using Equation (2.29). A Linear-to-squared curve
can then be fitted to the individual LS-ratios using the empirical relation (2.30) given in
Chapter Two:

P +1=h2 + R (ln %0)% _ (3.9)

Finally, the determination of correlation coefficients p, for the detection geometries
described in later chapters is somewhat less straightforward. This is owing to the fuzzy
approach of replacing all correlations by a single parameter (sce 2.3.2). Equation (2.25)
forms the basis for this determination. This equation is rewritten as

b/ 4
M
p,, =Lt 3.10
j m, (3.10)

First, p;; are estimated by &€, -values, which can be calculated for any combination

of energies, by following two photons of different energy and, again, counting the number
of times the total energy of the two photons was detected. The imprecision obtained for
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the _8,7, -values is typically lower than 3% for energies between 100 and 700 keV and 5%
for energies outside this range. W, estimated by volume-averaged full-energy peak
efficiency values &, and 1, are determined as described above. Thus, for any combination

of energies, a correlation coefficient can be calculated. The final correlation coefficient p
simply is the average value of all p;;.

3.4 Spectrum simulation

For any geometry, the spectrum of any radionuclide can be simulated by following a
large number of batches of photons through the detection geometry. Each batch then
contains the photons from a possible cascade from the decay-scheme of the daughter
from a fed level to the ground state. Thus, each batch simulates the disintegration of one
single nucleus. The specific cascade is determined by Monte Carlo methods too, using the
decay-scheme data from Firestone. The spectrum is then reconstructed by calculating
the energy that was deposited in the active volume of the detector by all photons in the
batch. If the deposited energy is equal to the energy of a (sum)peak, a count is added to
that peak. The number of disintegrations, effectively the number of batches, determines
the imprecision for the areas of the peaks in the spectrum.
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Chapter Four

Geometry effects in well type detectors
owing to the introduction of high-Zlinings

Abstract

In well-type detectors and other highly efficient geometries, the combined effects of sample self-
attensation involving low-energy photons and coincidence summing of a low- and a high-energy
photon often influence the entire y-spectrum of a radionnclide. For well-type detectors, these effects
are well understood and it should be possible to correct for these effects analytically. Another
possibility to deal with these effécts is to prevent the low-energy photons from reaching the detector
by lining the well with a high-Z material, as was suggested in the past.

This chapter presents a series of measurements which indicates that the problems resulting
[from sample self-attennation and coincidence summing shonld be treated analytically rather than
by attempts to eliminate the effects by means of a lining.

4.1 Introduction

In y-ray spectroscopy, Ge(Li)- and HPGe-detectors ate most commonly used.
Compared with Nal scintillation detectors they have a very high-energy resolution but a
lower detection efficiency. To increase detection efficiency, efficient counting geometries,
such as the well-type geometry, are applied.

A major advantage of well-type detectors is the detection efficiency being nearly
constant within a range of source positions near the bottom of the well and therefore,
when not considering sample self-attenuation effects, being nearly independent of sample
dimensions within this range. Although the increased detection efficiencies may give rise
to considerable cascade summing effects, these effects can be corrected for, mainly
because the detection efficiency often can be considered independent of sample geometry.
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In 1978, de Bruin et a/!'! found that owing to the large summation effects, peak areas
of high-energy peaks of a y-ray spectrum were influenced by the attenuation of low-energy
photons in the sample, and therefore were matrix-dependent. The authors suggested the
use of a high-Z lining inside the detector well, which absorbs the low-energy photons to
such an extent that summation with these photons could be neglected or at least could be
considered matrix-independent.

More recent measurements indicated that, although the introduction of the lining in
the well indeed reduces the matrix-dependency of the y-ray spectra, a geometry-
dependency is introduced. As a consequence coincidence effects cannot be treated
separately from sample dimensions. To investigate the geometry-dependency of spectra
from lined well-type detectors more extensively we performed calculatdons on the
attenuation of the lining and we performed a seties of measurements on radionuclides
emitting several photons in cascade, in a well-type geometry with and without a lining and
at varying source positions.

4.2 Theoretical considerations

Consider a radionuclide with a decay scheme as shown in Figure 4.1. The count-rates
of the three full-energy peaks can be calculated from the detection efficiencies for the
specific combination of detector and sample for the three energies.

When assuming that internal conversion is absent, and with Xj; representing the

probability of transition from the ith to the f-th level, thereby emitting Yij, Ewt; the total
detection efficiency for ¥i;, &, the full-energy peak efficiency for vyi;, g, the full-energy
count-rate for ¥;; [s!], and A the disintegration rate [Bq], then eto, 20 and o1 are given by

¢ =4 leglo(l ~ &1 l
Cy =4 (Xzogzo + XZIEZISIO)’ “.1)
¢y =4 X8, (1 - Etouo)
X X
Y20 ‘Ym

Y10

Y

Figure 4.1: Hypothetical decay scheme
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For Y2 lower than approximately
120 keV, and both yi0 and 2 much higher
than a1, only 21 will be subject to substantial I__
self-attenuation effects for samples normally
measured in well-type detectors. Since self-

]

attenuation of y2; reduces both &2 and &, Gl d lining
T

. . ~ Emitted ¢
y21 will not only have a decreasing effect on ) mm

a1, but it will also have a decreasing effect on i
o, and an increasing effect on ¢. Point Sources

As mentioned above, a solution to this
problem of matrix-dependent distortion of the

y-rays

Y-ray spectrum is to prevent the low-energy
photons from reaching the detector, by
applying a high-Z absorber inside the well,

between the source and the Ge-crystall'l, A ! 0.85 mm

typical lining consists of a tube of gold with > 4\

wall- and bottom-thickness between 0.5 and

1 mm (Figure 4.2) which tightly fits inside the -io.s?, m-me

well of the detect(.)r. . Figure 4.2: y’s emitted from different
I.et us consider again the radionuclide positions have different travel

from Figure 4.1, positioned as a point source lengths through the lining.

at the two different positions in the well

indicated by Iigure 4.2. As can be seen, the

average distance a photon travels through the absorber lining is much larger for a photon
generated by a source at the bottom of the well than for a photon generated by a source
located higher in the well. As a result, the transmission through the absotber of y-rays of
low-energy emitted by the two sources will differ, as will the detection efficiency.

To describe the influence of the lining on the detection efficiencies we should
introduce a transmission-factor of the lining as a function of energy and position, which
we define as the fraction of photons of energy E emitted by a soutce in the well which do
not lose any part of their energy in the absorber. This factor T(F,4) can be calculated by
first calculating the transmission for a photon of enecrgy L, emitted at height 4, in the
direction characterized by @ and 6, and then averaging over all possible angles @ and 6,

2nm

_”exp _Fze plh~0jsin(6’)d6d¢

T(E,n)=20 2 7 , .2)

-”sin(ﬁ)de do
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where @ is the azimuth integration angle (azimuth direction of an emitted photon), @is the
polar integration angle (polar direction of an emitted photon), Z is the atomic number of
lining material, t1zr/p is the total mass attenuation coefficient as a function of Z and E
[keV] in [m2kg!], pis the density of the lining matetial in {kg'm?3], 4 is the distance from
the bottom of the well to the position of photon emission in [m], and A(h,6) is the
distance a photon travels through the lining, as a function of 4 and @in [m). It should be
noted that this expression only gives the transmission coefficient for a source located at
height 4 along the axis of the well.

In addition we also introduce an average total transmission factor Tw{E,h) of the
lining, defined as the fraction of photons emitted by a source in the well which is not
absorbed totally by the absorber lining. A precise analytical expression for Ti is difficult
to give because of the possibility of photons being Compton-scattered once or several
times before being absorbed totally. The photons resulting from these scattering events
will not have the same energy as the incoming photon, which means that the attenuation
coefficient 4/ p will differ between scattering events.

Very low-energy photons will be absorbed by the lining and as a result both T and T
will be 0 for all positions in the well. This was of course the reason for introducing the
lining. For high-energy y-rays, almost all photons will pass through the lining without any
energy loss, resulting in a value of ~1 for both T and Tiw, for all positions. For
intermediate energies T and Tior will have (different) values between 0 and 1, and depend
on the position 4 of the source in the well.

If we consider the lining as an integral part of the detector, the full-energy peak
efficiency ¢ of this detector will be proportional to T, and the total efficiency &o will be
dependent on Twr. Because in some energy range, both transmission coefficients are
dependent on 4, both efficiencies are as well. Thus, from theoretical considerations we can
expect that one of the main advantages of a well-type detector, namely the
aforementioned geometry-independency of the efficiency, will be impaired when using a
high-Z lining,

Moreover, this geometry dependency is not only restricted to ‘intermediate’ energies.
By applying the same arguments from the beginning of this section to these position-
dependent efficiencies we can see that owing to coincidence summing effects, the lining
causes position-dependent distortions of the whole y-ray spectrum of radionuclides
emitting several photons in cascade.

Calculations of the transmission T of the lining, by numerically solving the integrals in
Equation (4.2) for different energies and for infinite height of the lining, show that the
position-dependency of the transmission is largest for photon energies in the order of
120 keV. Figure 4.3 shows the theoretical variation with height of T for energies in the
range of 50 keV to 1 MeV. The curves are normalized to 1 for infinite heights so that the
relative variation of the transmission for the different energies can be compared.
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Figure 4.3: Theoretical transmission through a gold lining of typical dimensions (Figure 4.2) for
photons of different energies, and through an acrylic lining for photons of 50 keV as a

function of height. Curves are normalized to 1 for infinite heights. The bottom of the well is
at /= 0.0 mm.

4.3 Methods and measurements

To investigate the extent of spectrum variations owing to the high-Z lining in the well,
we measured a europium-152 point source, a tantalum-182 point source and a selenium-
75 point source, each with two different linings and at varying heights in a well-type
detector. In the decay scheme of curopium-152 and tantalum-182, high-energy y-
transitions are preceded or followed by a low-energy transition (for example 1408 and
122 keV respectively for europium-152). The selenium-75-spectrum has a 401 keV peak
mainly owing to summation of a 136 keV and a 265 keV peak in the spectrum.

For our measurements we used a Philips well-type Ge(LLi)-detector with absolute full-
energy peak efficiencies of 0.5 and 0.05 at 122 keV and 1115 keV respectively, for sources
positioned at or near the bottom of the well. The well lining consisted of a tube of either
acrylic or gold with a wall thickness of 0.53 mm, and a flat bottom with a thickness of 0.85
mm. To position the sources in the well several solid acrylic cylinders were made with
heights varying in the range of 0.25 to 15 mm. The geometry used is shown in Figure 4.4

With a value of 0.2 cm! for (u/p)-p at 50 keV, it can be asserted that photons with
energies greater than 50 keV are absorbed by the actylic lining only to a very limited
extent. In addition to the transmission curves for a typical gold lining, Figure 4.3 also
shows the transmission through an acrylic lining for 50 keV photons. The nominal value
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Figure 4.4: Geometry used. The lining consisted of either acrylic or gold.

for infinite height of this T, as calculated with Equation (4.2) is 0.98. Therefore, we state
that the acrylic lining only has negligible influence on the detection efficiency of the well.
Other effects on counting efficiencies, such as varying solid angle and varying attenuation
of photons in the spacers, are eliminated by dividing the count-rates measured in the gold-
lined geometry by those measured in the acrylic-lined geometry.

In addition to the europium-152-, the tantalum-182- and the selenium-75-spectra, we
also measured the spectrum of sodium-22. The decay scheme of sodium-22 consists of
one transition of 1275 keV. The photon emitted with this transition does only coincide
with two 511 keV gammas, produced with the annihilation of the B+-particle emitted with
the decay of sodium-22 to neon-22. Because both photon energies lie outside the region
where the variation of detection efficiency is large (Figure 4.3), the well behaves nearly
ideally for these energies. This means that although the 1275 keV and the two 511 keV
gammas do not originate from the same point, because of the range of the f*-particle, one
should expect a negligible variation of the 1275 keV full-energy peak efficiency. Measuring
the spectrum of sodium-22 thus gives the possibility to check if auxiliary effects on
detection efficiencies indeed are eliminated by the division method mentioned in the
previous paragraph. This does not mean, however, that the 1275 keV peak areas of
sodium-22 measured in the two geometries are the same. Since 20% of the 511 keV
photons and only 8% of the 1275 keV photons are absorbed by the gold lining, one
expects greater summing-out effects in the acrylic-lined case. Therefore, the ratio of the
1275 keV peak area measured in gold-lined to that measured in the acrylic-lined geometry
can be expected to be somewhat greater than 1.
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Table 4.1: Ratio of tantalum-182 peak areas measured with gold lining to those measured with
acrylic lining. The difference is given relative to the lowest ratio.

182Tq Jowest ratio  highest ratio  difference 8T q lowest ratio  highest ratio  difference

%) %]
68 keV 0.19 0.27 42 1189 keV 1.06 1.09 2.8
100 keV 0.060 0.095 58 1221 keV 1.34 1.44 7.5
152 keV 0.35 0.46 31 1231 keV 1.80 1.81 0.6
156 keV 0.38 0.50 32 1274 keV 0.51 0.61 20
179 keV 0.79 1.03 30 1289 keV 0.30 0.34 13
198 keV 0.73 0.94 29 1374 keV 0.33 0.42 27
204 keV 0.85 0.96 13 1387 keV 0.55 .73 33
1002 keV 2.0l 2.82 8.0 1474 keV 0.58 0.72 24
1121 keV 1.80 1.93 7.2

4.4 Results

The results of the measurements are summarized in Table 4.1 and Figure 4.5 to
Figure 4.9. Figure 4.5a-b show the general shape of the peak area curve as a function of
height for selenium-75, for the acrylic-lined- and the gold-lined geometry respectively. The
ratios of the selenium-75-peak areas measured with gold lining to those measured with
acrylic lining are given in Figure 4.6. Figure 4.7 and Iligure 4.8 show the general shape of a
‘peak area-ratio curve’ as a function of height, for one particular set of transitions for
europium-152 and tantalum-182, respectively. Figure 4.9 shows the result for sodium-22.
This figure indicates that there is no significant variation in the detection efficiency for
this radionuclide. The degree of variation of the full-encrgy peak efficiency for tantalum-
182-lines is given in the table. For each characteristic gamma energy, the highest and
lowest peak area-ratios in the series of measurements for different heights are given,
together with the difference between the two, relative to the lowest rado.

4.5 Discussion and conclusions

Section 4.3 has asserted that counting efficiencies of gammas with energies greater
than 50 keV are not noticeably influenced by the acrylic lining. Figure 4.5a (acrylic-lined
geometry) therefore shows the behaviour of a well without a lining. One notices that for
source-positions lower than 10 mm from the bottom of the well, the peak areas of
selenium-75 do not depend on the position, so the well behaves ideally for these heights.
When the source is moved from this position towards the entrance of the well, the effect
of a smaller solid angle starts playing a role in the detection efficiency of the well, resulting
in less summation of the 136 keV and 265 keV gammas. As the figure shows, the 401 keV
peak area becomes smaller. For the 136 and 256 keV peaks there are two competitive
effects resulting from a decreasing full-energy-peak efficiency namely, first, a decreasing
peak area owing to less efficient detection, and second, summing-out effects becoming
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smaller resulting in an increasing peak area. It can be shown that for relatively high
detection efficiencies the latter effect plays the most important role as is illustrated in the
figure. This result shows that this well-type detector (without lining) should be operated
with sample positions in the range of 0 to 10 mm.

However, if a high-Z lining is introduced (Figure 4.5b), then there is no range of
possible sample-positions where the peak areas of selenium-75 are constant. In the first
10 mm the transmission of the lining varies as can be expected from the theory. Notice
that the reduction of the 136 keV and the 265keV full-energy peak efficiency as
compared to the acrylic-lined geometry reduces both the 136 keV and the 401 keV peak
areas, but increases the 256 keV peak area. Notice too that for sample positions higher
than 10 mm the peak areas all drop owing to the smaller solid angle. Apparently the lining
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Figure 4.5: Peak areas of selenium-75 measured in the acrylic-lined geometry (top) and in the gold-
lined geometry (bottom). One-sigma error bars are drawn.
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has decreased the 136 keV and 265 keV full-energy peak efficiency to such an extent that
the summing out effects play a less important role than the detection efficiency itself, thus
resulting in decreasing peak areas.

By dividing the results, we eliminated all cffects on counting efficiencies which lie
beyond the scope of this study. Thus, the ratios presented in Table 4.1 and Figure 4.6 to
Figure 4.9 only depend on the effect of the gold lining. As one should expect, the ratio of
counting efficiencies for the 1275 keV peak of sodium-22 does not change as the position
of the source changes, which proves that our method is valid.
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Figure 4.6: Ratio of peak arcas of sclenium-75 measured in the gold-lined geometry to those
measured in the acrylic-lined geometry. One-sigma error bars are drawn
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Figure 4.7: Ratio of peak areas of europium-152 measured in the gold-lined geometry to those
measured in the acrylic-lined geometry. One-sigma error bars are drawn
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The results of our measurements show that owing to the introduction of the gold lining,
the counting efficiencies for y-rays with energies around 100 keV become dependent on
the position of the source in the well. This means that lined well-type detectors do not
have the major advantage of normal well-type detectors, namely the efficiency being
independent of source position or dimensions. This fact itself could be considered as a
disadvantage of a high-Z lining. Owing to the high detection efficiency of well-type
geometries, resulting in large summation effects, the position- and sample dimension-
dependent efficiency for low-energy y-rays can cause variations in the detection efficiency
for high-energy y-rays. In the case of tantalum-182 we found variations of over 25 percent

¢ 156 keV o 1231 keV 4 1387 keV_

0.8 8
T

_ I Pt MR

0.6 e I é H 6
—¢ SRPIR b

S 04} g 28 ° 14

s .
0.2+ s 2 % g & soo o@cadmosen |2
0.1 ' 10 20

1
height [mm]
Figure 4.8: Ratio of peak areas of tantalum-182 measured in the gold-lined geometry to those
measured in the acrylic-lined geometry. One-sigma error bars are drawn
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Figure 4.9: Ratio of peak areas of sodium-22 measured in the gold-lined geometry to those
measured in the acrylic-lined geometry. One-sigma error bars are drawn
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for y-rays with encrgies higher than 1 MeV, when varying the position of the source by
several millimetres. These variations can causeserious problems in quantitatively
interpreting measured spectra. In general this means that coincidence summing effects
occurring in high-Z lined well-type detectors cannot be treated separately from sample
dimensions and position.

It is clear that the geometric form of the lining plays an important role in the
occurrence of geometry effects in the well-type detector. One might be tempted to think
of some form for which the transmission coefficient does not change with height.
However, looking at Equation (4.2), one should realize that this form would in general
only give good results for one single energy, and only for either T or Tia

Thus, sample self-attenuation problems cannot be solved by applying a high-Z lining
inside the well, and the solution should be searched for in other areas. For coaxial Ge-
detectors it is proven to be possible to calculate the amount of sample self-attenuation
from a measured spectrum itselfd. M.Blaauw" showed the possibility of determining
efficiencies from a spectrum in the presence of coincidences. Based on these
considerations we are exploring methods to calculate the amount of sample self-
attenuation from a spectrum, measured in a well-type detector.
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Chapter Five

The influence of counting geometry and
lining on the Compton continuum in well-
type detectors

Abstract

To demonstrate the influence of counting geometry on the performance of a well-type detector,
as represented by the PC- and PT-ratio, caesium-137 and cobalt-60 sources were measured at
30 cm distance from the well and in the well; the latter both with and without a gold lining.
Observed differences in the Compton continua are discussed. A significant increase in PC- and
PT-ratios for caesium-137 is found when repositioning the source from 30 cm distance to a
position in the well. For cobalt-60, only the PT-ratio shows a similar behavionr. It is concluded
that the detector performs best when counting the source in the well without a lining. It is also
concluded that, even though the PT-ratio is preferred as an index of performance, only mono-
gamma emitting radionuclides should be used when measuring PC-ratios of a well-type detector.

5.1 Introduction

To increase the detection efficiency of germanium detectors, efficient counting
geometries such as the well-type geometry are applied. The increased detection efficiencies
may give rise to considerable cascade summing effects which, however, can be corrected
for. Apart from a higher efficiency of well-type detectors, an increase in peak-to-Compton
ratio was reported[ll, but no explanation was given.

At IRI, it was found that owing to the summation effects, peak areas of high-energy
peaks were influenced by the attenuation of low-energy photons in the sample, and
therefore were matrix—dependentm. To avoid summation, our well-type detectors were
lined with a high-Z material. The lining absorbs low-energy photons to such an extent that
summation with these photons now can be neglected or at least can be considered matrix-
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Figure 5.1: y-Ray spectrum from a Ge(Li)-detector (Well-type).
B denotes the backscatter peak; E denotes the Compton
edge.

independent?. Since it was observed in Chapter Four that the lining introduces a
geometry dependency of the spectra, methods are explored to correct for the combined
effects of sample self-attenuation and coincidence summing by using information
obtained from the spectra themselves.

This study uses spectra of cobalt-60 and caesium-137 measured with a well-type
detector, at positions outside the well without lining, and inside the well, both with and
without a lining. It compares the spectra with respect to differences in the Compton
continuum and we provide a theoretical explanation for the differences. It also compares

detector performances as represented by the peak-to-Compton- and the peak-to-total
ratios.

5.2 Compton continuum in y-ray spectra

Pulse height spectra measured with germanium detectors show various characteristic
features, of which a few will be discussed here. In germanium, photons with energy higher
than 140 keV have a higher probability for Compton interaction than for photoelectric
interaction. Therefore, the Compton continuum is a prominent part of the spectra. Figure
5.1 shows a schematic germanium detector spectrum. The relation between the scattering
angle $and the energy E’ of the secondary photon after Compton interaction is given by

, E

T1+ a|l - cos(9)]” G1)
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where E is the energy of the incident photon and a= E/ med.

It follows that for 9=, the minimum in the energy distribution of the scattered
photon is reached and consequently a maximum in the energy deposit in the detector is
obtained. This maximum can be found in the spectrum as a sharp edge on the right of the
Compton continuum (marked ‘E’ in Figure 5.1.). Counts in the spectrum between the
Compton edge and the full-encrgy peak are owing to multiple Compton interactions. The
full-energy peak results from any number of scattering events followed by a photoelectric
interaction.

The presence of a broad peak at approximately 200 keV (marked ‘B’ in Figure 5.1)
reflects the influence of material surrounding the detector. This so-called backscatter peak
is the result of the detection of secondary photons which are produced by Compton
interaction, with 3 = 7t rad, with the material surrounding the detector.

5.3 Indexes of petformance; the peak-to-total ratio and the peak-to-Compton ratio

As an index of detector performance, the peak-to-Compton (PC-) ratio is often
quoted. It is officially defined as the ratio of the count in the highest full-encrgy peak
channel to the count in a typical channel of the Compton continuum associated with that
peak. This sample of the continuum is to be taken in the interval from 358 to 382 keV for
the 662 keV y-ray from caesium-137 and from 1040 to 1096 keV for the 1332 keV y-ray
from cobalt-60M.

Thus, the PC-ratio only takes into account the registration of Compton-scattering
events in a limited range of the scattering-angle. The Compton-edge and the backscatter
peak lie outside this region. It should be noted that this ratio is associated with the
spectrum of a radionuclide and therefore can be dependent on the radionuclide.

In addition to the PC-ratio this work uses the peak-to-total ratio which is commonly
used in coincidence-cotrection computations and which is associated with one photon of
a particular energy E. This index can be defined as the ratio of the probability of a photon
of energy E depositing all its energy in the detector to the probability of the photon
depositing any non-zero fraction of its energy in the detector. This ratio is a characteristic
of the detection geometry, and depends only on photon energy, as opposed to the PC-
ratio, which can depend on the emitting radionuclide as well. The following sections will
refer to this definition when the term ‘PT-ratio” is used. Both the PC-ratios and the PT-
ratios are evaluated from the spectrum of caesium-137 and from the spectrum of cobalt-
60.

The PC-ratios can be calculated by simply applying the definition. Because the decay
product of caesium-137, barium-137m, is a mono gamma-emitter, the PT-ratio for
662 keV can be calculated by dividing the area of the 662 keV peak by the total number of
counts in the spectrum, after subtracting the background. Cobalt-60, however, emits two
coincident gammas per disintegration and evaluation of the PT-ratio from the cobalt-60
spectra directly is not possible, unless we approximate the PT-ratios for 1173 keV and for
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1332 keV to be equal. Since the PT-ratio as a function of energy can be described by a
relatively flat linear relation on log-log scale, and because on a log scale the energies of the
cobalt-60 peaks are near to equal, this is a valid approximation. For low-efficient
geometries, i.e. where coincidence effects can be neglected, the PT-ratio for these energies
can now be calculated by dividing the sum of the areas of the two full-energy peaks of
cobalt-60 by the total number of counts in the spectrum, again after subtracting
background.

For highly efficient geometries another approach has to be followed. In the presence
of coincident summing, and when neglecting the weak transition of 2505 keV, the
counting rates in the respective peaks, a (1173 keV), & (1332 keV) and a2 (the 2505 keV
sumpeak of cobalt-60) can be described by

¢, =Ag (1 - r“sz),

¢, =Ag,(1-r"¢,) (5.2)
¢, =Ag&,,

where A is the activity of the source during the measurement, & and & are the peak
efficiencies for 1173 keV and 1332 keV photons respectively and r is the PT-ratio for
these energies. The PT-ratio can now be evaluated by solving this set of equations with
respect to 7, i.e. solving the following quadratic equation with respect to 7,

r? (c,(:2 —Ac, )+ r(clc12 +¢,¢), )+ (:122 =0. (5.3)

5.4 Measurements

The PT-ratio for the system used was evaluated by measuring a cobalt-60 source and
a caesium-137 source at a position of 30 cm above the detector without a high-Z lining
(“30-em” geometry). This position was chosen because many manufacturers specify the
PC-ratio of a detector for this position. Measurements in the well were performed both
with and without a lining (referred to as the “Uned” and “won-lined” geometry respectively).
The detector used was a Philips well-type Ge(Li)-detector with a specified PC-ratio of
26.5 (1332 keV of cobalt-60, 30 cm) and absolute full-energy peak efficiencies of 0.5 and
0.05 at 122 keV and 1115 keV respectively, measured in the non-lined geometry. The
lining consisted of a tube of gold with a wall-thickness of 0.53 mm and a bottom-
thickness of 0.85 mm. Figure 5.2 shows the detection geometries used.

After background-subtraction from the spectra, peak areas were obtained by
integration. To determine the total number of counts in the spectra, the spectra were cut
off at 25 keV to eliminate electronic noise and then were lineatly extrapolated towards
0 keV.
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Figure 5.2: Detection geometry. Dimensions are in
mm. X denotes the source position

5.5 Results and discussion

Figure 5.3 and Figure 5.4 show the spectra of caesium-137 and cobalt-60 measured in
the three geometries. Table 5.1 shows the values of the conventional PC-ratio and of the
PT-ratio for all six measurements.

5.5.1 PT-ratio

From the measurements, two comparisons can be made. First, the measurements
from the 30 cm geometry can be compared to the measurements from the non-lined
geometry. Second, the measurements from the lined geometry can be compared to the
measurements from the non-lined geometry. In both cases the increase of the PT-ratio is
evident. The main reason for the high PT-rato in the non-lined geometry is the higher
probability of detecting photons which are scattered (nearly) 180° in the detector.

Figure 5.5 explains this effect: In the 30 cm geometry the probability of the secondary
photon leaving the detector is relatively high, whereas in the lined geometry this photon is
likely to be absorbed by the lining because of it’s low energy of approximately 200 keV. In
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Table 5.1: Peak-to-total ratios (PT) and peak-to-Compton ratios (PC) for 662 keV y-rays from
caesium-137 and for 1332 keV y-rays from cobalt-60 measured with a well-type detector at
30 cm without a lining, in the well with a lining and in the well without a lining.

Geometry 662 keV from '¥Cs 1332 keV from “Co
PT PC PT PC
30-cm 0.12 34 0.07 24
In-well, lined 0.17 61 0.11 22
In-well, non-lined 0.19 68 0.12 24

\\H geometryt
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Figure 5.3: Spectra of caesium-137 from three geometries
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Figure 5.4: Spectra of cobalt-60 from three geometries
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Figure 5.5: Backscattering of a primary photon in the three different geometries

the non-lined geometry, 180° scattered photons can reach the detector at the other side of
the well. Owing to the more efficient detection of these photons in the non-lined
geometry, the full-energy of the primary photon is more likely to be absorbed totally by
the detector resulting in a higher full-energy peak and a less prominent Compton-edge.
The spectra in Figure 5.3 and Figure 5.4 clearly show the decreased Compton-edge in the
non-lined geometry as opposed to the higher edges in the 30 cm and the lined geometries.
The difference is particularly clear when comparing the lined geometry with the non-lined
geometry, because in this case the only difference in the detection of photons concerns
those which are scattered 180° or nearly 180°. The difference in photon-detection
between the 30 cm geometry and the non-lined geometry on the other hand concerns
photons in a much wider scattering range namely, in the range between 90° and 180°.

The spectra of cobalt-60 also show the occurrence of coincidence summing, not only
by the occurrence of a sum peak at 2505 keV, but also by the following. When comparing
the spectrum of cobalt-60 in the 30 cm geometry to those measured inside the well, the
low-energy part of the “30cm-spectrum” is relatively higher than the spectra from the
lined and non-lined geometries. Coincidence summing involving an event of particular
energy shifts the resulting count in the spectrum towards a higher energy. This, of course,
also holds for Compton events. Thercfore, the whole continuum of the spectrum is
spread towards higher energies.

A final remark regarding the spectra can be made about the presence of the two peaks
in the low energy region of the lined-geometry spectrum. These peaks are owing to the
gold-X-rays which are emitted when a gamma is absorbed by the lining.
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5.5.2 PC-ratio

In the case of caesium-137, when repositioning the source from a position of 30 cm
outside the well to a position in the well without lining, the PC-ratio increases from 34 to
68, which behaviour is similar to that of the PT-ratio of caesium-137. For cobalt-60,
however, the PC-ratio does not change significantly, while its PT-ratio displays the same
behaviour as the caesium-137 ratios. For both nuclides, the difference between the PT-
ratio of the lined geometry and the non-lined geometry is similar to the equivalent
difference in PC-ratio. However both PC-ratios in the cobalt-60 case are neatly three
times lower than in the caesium-137 case, while the PT-ratio only shows a decrease by a
factor of 1.5.

The reason for the deviant behaviour of the PC-ratio of cobalt-60 is the occurrence of
coincidence summing effects in the well. Apparently, the reduction owing to coincidence
summing of the 1332 keV peak area is relatively larger than the corresponding reduction
of the defined region of the Compton continuum.

5.6 Conclusions

From the measurements, two conclusions can be drawn. Specifying the PC-ratio of
cobalt-60 for a well-type detector using measurements at 30 cm distances, as is common
practice, may prejudice potential usets. Only measurements of the PC-ratio using mono-
gamma emitting radionuclides measured in the well will give a well-type detector full
credit. As an alternative for the cobalt-60-PC-ratio, the PT-ratio for approx. 1332 keV is
suggested which, as the PC-ratio, is energy dependent, but which does not depend on the
radionuclide used. This introduces slightly more calculation which, however, is considered
only as a minor drawback.

In addition to the geometry effects in well-type detectors introduced by a high-Z
lining®, the lining also deteriorates detector performance with respect to the Compton
continuum, most notably in the region of the Compton edge. For these reasons, instead of
using a lining to absorb low energy photons from the sample, the problems of summation
with these photons, which ate subject to attenuation in the sample, should be dealt with in
another way. The next chapter describes the appliance to well-type detection geometries
of the methods developed in Chapter Two.
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Chapter Six

The missing curve for well-type
detection geometries;
A Monte Catlo survey

Abstract

This chapter describes an efficiency calibration method that includes coincidence, as well as
attenuation effect corvections for well-type detection geometries. The method requires knowledge of
the variation of the full-energy peak efficiency and the total efficiency over the sowrce volume.
Therefore, in addition to a peak efficiency curve and a peak-to-total curve, it uses a third curve
that accounts for this variation. Since samples encountered in well-type detectors may have high-
Z matrices, this chapter gives special attention to the parameterization of K-edges.

This chapter describes two variants of the calibration method and their verification using
Monte Carlo simnlated data. 1t is concluded that either variant applied to a terbinm-160-
spectrum produces accnirate values for the parameters describing the well-type detector. Compared
to radionuclide specific calibration, potentially the method greatly reduces calibration efforts
without compromizing calibration quality.

6.1 Introduction

The quantitative analysis of small radioactive samples with low specific activity such
as environmental samples, or INAA samples after a long decay time, requires the use of a
sample-detection geometry that places the sample as close to a radiation detector as
possible. Preferably, the detector should even enclose the sample. Well-type detection
geometries are frequently used for this purpose. The small sample volume does only give
rise to photon-attenuation at y-ray or X-ray energies below approximately 100 keV,
depending on the matrix composition of the source. Well-type detectors typically have no
dead layer between sample and active crystal and are therefore sensitive to these low-
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energy Y- and X-rays. In addition, detection efficiencies are usually high enough to give
rise to considerable coincidence summing effects. Therefore, the calibration of a well-type
detection geometry deserves critical attention.

Chapter Four and Chapter Five showed that even though the effects of attenuation of
low-energy y-rays and X-rays within the sample can be mitigated by the insertion of a
high-Z lining, this lining deteriorates the peak-to-total rato as well as the geometry
insensitivity of the detection efficiency. This chapter explores the possibility of modelling
the sample and detector together with three efficiency curves as described in Chapter Two
through Monte Carlo methods.

In addition to a full-energy peak efficiency curve combined with a peak-to-total curve,
the model uses a third curve, the linear-to-squared curve that accounts for the vatiation of
the efficiency over the source. The corresponding calibration method enables
simultaneous determination of all three curves. It is based on the philosophy that the
curves, that are used to accurately describe coincidence effects, should be obtained from
coincidence effects observed in practice. In principle, it only needs one measurement of a
radionuclide of known activity that shows considerable coincidence effects (Variant I).
This way, it produces curves that are accurate for the energy range limited by the lowest
and highest energy in the spectrum. A second vatiant of the method allows for an
extended energy range if the full-energy peak efficiency curve is obtained from a
supplementary measurement (Variant II).

6.2 Theory

6.2.1 High-Z source matrix; parameterization of K-edges

In addition to the general theory developed in Chapter Two, this section presents
additional expressions required to deal with the specific well-type detector phenomenon
of efficiency curve discontinuities stemming from the discontinuous probability of
photoelectric interaction near the so-called K-edge of an absotber. Chapter Two gave a
general expression for the full-energy peak efficiency of a given source-detector geometry
(see Equation (2.6)), namely

Ing; =InZ_ ,+In Zurtin Ee ks 6.1)

where €aubs, £ represents the absolute efficiency defined by (2.5), Zext, E represents the

transmission through external absorbers and Zser, 1 represents the transmission through
the source itself. The parameterization described in Chapter Two uses four parameters for

the absolute efficiency curve &€us k, namely g...g3, and two parameters for the

transmission through an external absorber Xex, £, namely g and gs.
In well-type detectors, the transmission through the source can be approximated by
Fleming’s!! expression for spherical samples (see Equation (2.13)),
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2

3p° R 1 (1 R R
Zself,E = 2 /: : {ﬂh 2m _5+(E+M)exp|i_ ZM_"’]} . (6'2)
Hp R, p p p

If, like in the case of an external absorber, t:/p as a function of energy is described
by a linear relation on double-log scale,

ln|: #E/P}:mn +m, ln% , (6.3)
0

Hy! Py

with 2/ = 1 m?’kg! and Ly = 1 McV, then the factor f:Ra/p can be described by

R
Leln _ R, ﬂexp[mo]- exp|:ml In % } =g exp[g7 In % }, 6.4)
P Po 0 0

where g and g are the extra parameters modelling the sources transmission.

Strictly, if the sample consists of high-Z material, then the applicability of
parameterization (6.4) is limited by two facts. First, the assumption of a linear relation on
a double log scale for wg/p is only valid for energies for which ur/p does not exceed
0.1 m%g!. However, since in well-type detectors self-attenuation effects are important
only in this energy region, this fact does not limit the use of (6.4) in practice. Secondly, K-
edges” occur at energies that can be higher than the lowest energy of interest. Therefore K-
edges have to be modelled.

In this work, K-edges are modelled by two additional parameters, g8 and g. If Ex
represents the K-edge energy and Aw represents the discontinuity in ge/p, then (6.3) can
be written as

~A In| £ .
lnl:/‘E/pi|= Mo = Am ¥ n[ﬁo] if E<Ey

. (6.5)
tlpol | myam, m{%ﬂ] if £2 E

and (6.4) as

" A K-edge (or I, M, ...} is the occurrence of a seties of discontinuities in the (mass) attenuation
coefficient z4: (or 4n:/p) of a specific material at the binding energies of this materials K atomic shell(s)
or L, M, ...). Just above the K-edge encrgy, a photon has enough energy to remove a K-electron,
whereas just below this energy it has not. This causes a sudden change in the photoelectric absorption
probability, resulting in the discontinuity in gg (Ue/ p).
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Figure 6.1: Modelling of K-edges; Transformation of the attenuation coefficient step to an energy
step for Ta:0s (inside axes show logarithmic values).

o —Am]- E/ |= E
R, R, Py exp|m, —Am] exp|:m1 ln/Eo] =g expl:g7 lnﬁvjo:l/g8 ifE<g,

if £
P R, %";exp[mo ] exp[ml In %o] =g, exp[g7 In %0] 1 &
(6.6)

Thus, g8 tepresents exp[An] and g represents the energy of the K-edge. For the case of a
tantalum pentaoxide matrix (T220s), the previous is summarized by Figure 6.1.

The LS-curve for a high-Z matrix source is also influenced by the occurrence of K-
edges. Therefore, its parameterization has to be modified. For this purpose, the step in the

attenuation coefficient (g/p is transformed to a step in energy Aln[E/Eq). Since ur/p is
desctibed by a linear relation on double-log scale, this transformation is straightforward

(see Figure 6.1). Aln[E/Ey) is given by

Ing
Alnfy =——58 (6.7)
E, 87

and the resulting parameterization of the LS-cutve is (cf. Equation (2.30))

-),22
h? +}:f(ln[% ]+Aln[% D S E<E
[1] 0 K
-hi ifE>E, "
aGErAl “
0

Jyni+l= (6.8)
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Thus, the modified parameterization for the LS-curve does not introduce extra
parameters. Moreover, since the variation of efficiency over the source volume for well-
type geometries is caused only by the sample-self-attenuation, the asymptote of the LS-
curve is 1.0. Thus parameter /v’ can be set to 1.0 and the LS-curve for a well-type detector
source is described by two parameters.

In order to obtain enough information on the other LS-parameters, /2 and /22, the
calibration radionuclide must be carefully chosen. Bringing in memory its use in Equation
(2.25), we see that only if two low-energy photons coincide, the I.S-curve, or rather the
scaled variance 0, is effective. Only then, both associated efficiencies show variation over
the over the source volume. If, however, only one of them varies, we are merely faced
with the task to determine the mean product of a constant and a stochastic variable, which
simply amounts to the product of the constant and the mean value of the variable. Since
in well-type detectors, the source volume is rather small, the coinciding photons should
both have energies below 100 keV typically.

6.3 Methods

6.3.1 Detection geometries

The well-type detector modelled by the simulation program bears close resemblance
to an actual well-type detector as used for the experiments in Chapter Seven. Figure 6.2
shows the geometry in detail. Two different source types are considered. The first is a
point source located at 3.5 mm above the bottom of the well. The second consists of a
cylindrical Ta20s matrix with dimensions of (8.0 x 9.0) mm, its base located at 3.5 mm
above the bottom of the well. The latter type is depicted in the figure.

6.3.2 Determination of efficiency-, PT- and LS-curves, and correlation coefficients

Volume-averaged full-energy peak efficiency curves, PT-curves, LS-curves and
correlation coefficients for each detection geometries were determined by Monte Catlo
calculations as described in Chapter Three.

For the full-energy peak efficiency values &, the total number of photons was taken

large enough to obtain an imprecision for & lower than 0.5%. A full-energy peak

efficiency curve E(E) was then fitted to the &-values using Gunnink’s efficiency
curve™P! (see Section 2.2).

The imprecision of the total efficiency values ;, , was also lower than 0.5%. Peak-to-

total ratios 7 were calculated from the £ and E, -values. The peak-to-total curve r(E) was
then fitted to the r~ratios, using a straight line on a double-log scale. (Subsection 2.2.2)
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Figure 6.2: Well-type geometry. The lining consists of a zirconium tube with wall and bottom
thickness of 0.92 mm and 0.70 mm respectively. Sources are placed on the bottom of a glass test
tube that acts as a sample holder.

The imprecision for the squared efficiency values was lower than 1% for energies
below 2000 keV and lower than 1.5% for all energies. Linear-to-squared ratios Vmz+1)
were calculated from these values using Equation (2.29). A Linear-to-squared curve was
then fitted to the LS-ratios using relation (6.8), where parameter by was kept fixed at 1.0.

Finally, the imprecision obtained for the &¢; -values, needed to calculate the

correlation parameter according to Equation (3.10), was lower than 3% for energies
between 100 and 700 keV and typically 5% for energies outside this range. The resulting
correlation coefficients did not significantly deviate from unity.

6.3.3 Spectrum simulation

For both geometries, the spectra of terbium-160 and erbium-171 were simulated by
following a large number of batches of photons through the detection geometry, as
described in Chapter Three. Each batch contained the photons from a possible cascade
from the decay-scheme of the daughter from a fed level to the ground state. The number
of disintegrations, effectively the number of batches, was taken large enough to obtain an
imprecision lower than 0.5% for the areas of the most important peaks in the spectra.

6.3.4 Spectrum interpretation

The theory presented Chapter Two was validated by interpreting the simulated spectra
with respect to the number of disintegrations, N. This number was obtained by first

68




Chapter Six: The missing curve for well-type detection geometries; -\ Monte Carlo surrey

calculating a separate number of disintegrations, NE, associated with each peak in the
spectrum, i.e., by dividing peak areas by their corresponding Pr-values (Equation (2.28)).
The reported number of disintegrations, N, is the weighted average of all the numbers of
disintegrations associated with each peak. This calculation of N also produced a y>-value.
The number of disintegrations, N, was then compared to the real number, Niwe, used in
the simulation. The exact procedure is described in Appendix B.

6.3.5 Principles of the calibration method

The theory developed in Chapter Two allows for the calculation of all peak areas of a
spectrum if the tull-energy peak efficiency curve including external and internal y-
attenuation, the PT-curve and the LS-curve are known. For a well-type detector, in
principle four parameters are used to describe the full-energy peak cfficiency curve, two
parameters for external absorbers, four parameters for the sample self-attenuation, three
parameters for the PT-curve and two for the LS-curve. Together with two additional
parameters representing the correlation coefficient and the number of disintegrations, the
total number of parameters used to predict a spectrum is seventeen.

The calibration method described here inverses the problem of calculating peak areas
from seventeen paramcters: it calculates the parameters from measured peak areas. In the
case of terbium-160, over fifty peaks can easily be observed with a well-type detector set-
up. This means that over fifty equations can be solved for these parameters. In principle,
all seventeen parameters can be obtained by non-linear least squares methods, where the
JX2-value of the measured full-energy peaks areas as compared to the computed areas is
minimized.

A computer program was written to perform the fitting. As all non-linear least squares
fitting algorithms, the program requires a reasonable initial estimate of the parameter
values. An estimate for the number of disintegrations is usually available and must be
supplied to the program by the user. An initial estimate for the other parameters can either
be supplied by the user or by the program itself. If the program is to supply a first estimate
for the full-energy peak efficiency parameters, it calculates efficiency values for all main
peaks in the spectrum disregarding all coincidence losses or gains. It then fits a Gunnink
curve™ to the individual values. As a first estimate for the PT-parameters and the 1.S-
parameters, the program takes a predefined set of parameters for a typical well-type
detection geometry. Once the program has obtained estimated values for all parameters it
can fit all parameters at once, or one or more sets at a time, three sets consisting of the
parameters associated with a specific curve, two sets consistng of the parameters
associated with external and internal y-attenuation, and the fourth consisting of the
parameter used for the number of disintegrations.
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6.4 Point source calibration

The previous section stated that in principle seventeen parameters are needed to
predict a well-type spectrum. However, for point-sources, self-attenuation effects are
absent. Therefore, the parameters g. .. can be excluded from the total set of parameters.
Also, the LS-curve can be set to 1.0 for all energies, reflecting no efficiency variation over
the source volume and obviating the need for a correlation parameter. The total number
of parameters thus is limited to ten, including the number of disintegrations.

6.4.1 Spectrum interpretation using calculated curves

Figure 6.3(a,b) shows calculated efficiency and PT-ratios and corresponding curves.
It shows the quality of these curves by showing the ratios between the simulated values
and the values calculated using these curves. In addition, Figure 6.3(c,d) shows the quality
of the spectrum interpretations of terbium-160 and erbium-171 by showing the ratios
between the interpreted number of disintegrations associated with each peak, NE, and the
true number, Nirue.

6.4.2 Spectrum interpretation using the curves determined from the spectrum

Originally, the calibration method was introduced and tested using a lined well-type
detector and using bromine-82 as a calibration radionuclide!!l. Furthermore, it used only
two parameters for the PT-curve, disregarding the limitation parameter. Instead it applied
a constraint in the fitting procedure to limit the PT-curve to physical values.

‘This section studies the characteristics of the calibration method for a non-lined well-
type detector, using terbium-160 as a calibration nuclide and using parameterization (2.18)
for the PT-curve. Thus, instead of having 92 keV as lowest energy, it tests the method
using 46 keV (dysprosium-160 K, X-ray) as lowest energy.

Two variants of the calibration method have been investigated. Variant I only needs
one measurement of a radionuclide of known activity that shows considerable coincidence
effects. It produces curves that are accurate for energy range limited by the lowest and
highest full-energy peak energies in the spectrum. Variant I can be extended (Variant I+)
by including the number of disintegrations in the fitting procedure. Thus, only an estimate
of the activity of the source would have to be supplied.

Variant IT allows for an extended energy range if the full-energy peak efficiency curve
is obtained from a supplementary measurement. Now only the PT-parameters are to be
varied in the fit.

Figure 6.4(a,b) and Figure 6.5(a,b) show the curves resulting from Variant I and II
tespectively and their relation to the individually calculated values. Additionally, the
figures (c,d) show the fit results for each peak area of terbium-160 and the interpretation
results for each peak area of erbium-171.
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Table 6.1: Fit results of the various procedures and interpretation results using fitted curves, in
terms of: The ratio between the fitted/interpreted and the true number of disintegrations;
The y:-value for the comparison between the two.

Fit variant: Fitting (*Tb) Interpretation
Niie/ Nisue Y N/ Nirue (“’“Tb) Zrl N/Nirue ("lEr) Xt
MC: n.a. na. | (0,989 % 0.004) 18 (10240005 70
I: &r and PT N fixed 1.9 (1.000 £ 0.001) 17 (1.007 £ 0.005) 60
I+:€p, PTand N | (0.96 + 0.04) 2.0 (0.961  0.001) 1.7 (0.981 £ 0.005) 80
II: Only PT N fixed 12| (0.999 +0.003) 1 (1001 £ 0.007) 120
6.4.3 Results

In addition to their graphical representation by Figure 6.3 through Figure 6.5, Table
6.1 shows the results of the various procedures numerically.

6.4.4 Discussion

The interpretation results obtained with the Monte Catlo curve-set show that the
numbers of disintegrations of both the terbium-160 and the erbium-171 spectra are
recovered within approx. 2%, however individual peak areas may vary a lot. This is
illustrated by the lower plots of Figure 6.3, and explains the high y2-values in Table 6.1.

The interpretation results are improved when using either (non-extended) variant of
the fitting procedure. The number of disintegrations now is recovered within 1% when
using Variant I and even within 0.1% when using Variant II. This improvement may be
explained simply by a better determination of the curves. Whereas in the Monte Carlo
case, the full-energy peak efficiency curve and the peak-to-total curve are determined by
thirteen points each, in the fitting cases, they are determined by at least fifty points.
Furthermore, in the fitting case they are determined simultaneously, implicitly taking into
account covariances between efficiency and peak-to-total parameters.

Despite the better recovery of the numbers of disintegrations, the g-scores from
individual peaks in the erbium-171 spectrum still are fairly large (Figure 6.4 and Figure
6.5). Although this is mainly owing to the high precision of the peak areas, the low energy
area is somewhat suspect. This cannot be explained from inaccuracy of the decay schemes
since the same decay schemes were employed throughout the spectrum simulations as well
as throughout the interpretation procedures. Possibly, the terbium-160 spectrum does not
yield enough information on the shape of the efficiency curve at low energies in
conjunction with possibly inadequate parameterization of the full-energy efficiency curve
in this energy region. Generally, however, peak areas of erbium-171-peaks with high 2
scores are accounted for within 5%.

Finally, the results of Variant I+ indicate that the number of disintegrations is
strongly correlated with some or all of the other parameters; the resulting value of the
fitted number of disintegrations does not deviate significandy from the true value,
however, the weighted averages of the numbers of disintegrations obtained from the
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individual peaks through the use of the fitted efficiency curves strongly deviate from the
truth in the statistical sense. Thus, the instability of the fit in Variant I+ results in biased
measured activities after calibrating this way. This implies that, in practice, it is preferable
to calibrate with a source of known activity so N can be kept fixed in the fitting
procedure.

6.5 Tantalum pentaoxide matrix calibration

Section 6.3.5 stated that in principle scventeen parameters are needed to predict a
well-type spectrum. Since for point-sources sclf-attenuation effects are absent as described
above, the paramerers g...g were excluded from the total set of parameters. Also, the 1.S-
curve was set to 1.0 for all energies.

In the tantalum pentaoxide case, self-attenuation effects are present and parameters
. ..g have to be determined. Also, the LS-curve is not necessarily unity for all energies.
However, some a priori knowledge can be taken into account. First, the point source
calibration provides information about external absorbers. Therefore, parameters gs and gs,
representing external attenuation, can be kept fixed at their values obtained from the point
source fit. This is necessary to avoid instability of the fit owing to indistinguishability
between these parameters and the parameters representing internal attenuation. Second,
parameter g representing the K-energy of the matrix material is kept fixed at its
theoretical value of 67.42 keV. Thus, the total number of free parameters now is limited
to fourteen, including the number of disintegrations.

6.5.1 Spectrum interpretation using simulated curves

Figure 6.6(abc) shows simulated full-energy peak efficiency values, PT- and LS-ratios
and corresponding curves. It shows the quality of these curves by showing the ratios
between simulated values and calculated values using these curves. In addition, Figure
6.6(d) shows the quality of the spectrum interpretations of terbium-160 by showing the
ratios between interpreted number of disintegrations associated with each peak, NE, and
the true number, Nirve.
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6.5.2 Spectrum interpretation using the curves determined from the spectrum

Two variants of the calibration method where the parameters characterizing the
detector were fitted to the simulated terbium-160 spectrum were investigated. Table 6.2
shows the recipes for each variant. The value determined for p was 0.94 £ 0.06. Each
variant could be extended (I+ and II+) by including in the fit the number of
disintegrations of the calibration radionuclide during the measurement.

Figure 6.7(abc) and Figure 6.8(abc) show the curves resulting from Variant I and II
respectively and their relation to the individually calculated values. Additionally, the
figures (d) show the fit results for each peak area of terbium-160. The curves resulting
from the extended variants I+ and II+, ie. those that included the number of
disintegrations in the fit, are not shown.

6.5.3 Results

Figure 6.9 shows the results of the interpretation of an erbium-171 spectrum using
the Monte Carlo curves, as well as the curves obtained by Variants I and II. In addition to
their graphical representation, Table 6.3 shows the results of all the various procedures
numerically. The table includes results obtained by the extended vatiants I+ and IT+.

Table 6.2: Calibration recipes for the two variants I and II. The table shows the parameters that
are varied in each step of the fit procedure.

Variant 1 | I+ | 11 | 11+
First Estimate Monte Carlo calculated curves
Step 1 p only (p = 0.94 £ 0.06)
Step 2 Efficiency curve (go.,g3, g6-.g8)
Step 3 PT only Go-.23, Gogs and PT
Step 4 PT and LS PT,LS 202, g8, PT and LS 202 G2, PT, LS
and N and NV

Table 6.3: Results of the various fit procedures to a terbium-160 spectrum (fitting) and results of
applying the fitted curves to the terbium-160 spectrum and to an erbium-171 spectrum
(interpretation), in terms of: The ratio between the fitted/interpreted and the true number of
disintegrations; The y-value for the comparison betwcen the two.

Fit variant: Fitting ('¢“Tb) Interpretation

Nie/ Nirue Z,Z N/Nuue (160Tb) /‘(fz N/ Nirue (""Er) 72
MC na (0.991 £ 0.003) 12 (1.025 £ 0.006) 56
I N fixed 18 (1.000 + 0.001) 1.4 (0.996 + 0.005) 36
I+ (0.96 £ 0.04) 2.1 (0.960 £ 0.001) 2.0 (0.971 £ 0.005) 36
I N fixed 3.0 (1.001 £ 0.002) 29 (1.005 % 0.004) 22
I+ (0.995+0.003) 2.1 (0.995 + 0.001) 2.0 {0.999 + 0.004) 22
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Figure 6.9: Interpretation results of erbium-171 spectra in terms of Ni/Ne ratios and g-scores for
three curve sets: upper plots: using Monte Carlo calculated curves; middle plots: using
Variant I curves; lower plots: using Variant II curves; Filled diamonds indicate full-energy
peaks, open diamonds indicate sum-peaks.
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0.5.4 Discussion

The correlation parameter determined is statistically equal to unity. The results in the
table show the same behaviour as the results obtained for the point source case: Usage of
the Monte Carlo curve set results in relatively large g-scores on individual peak areas, cven
in the terbium-160 case. The number of disintegrations recovered with these curves again
deviates approx. 2% for both terbium-160 and erbium-171.

The curves determined from the terbium-160 spectrum itself yield a perfect spectrum
reproduction. Also the numbers of disintegrations do not deviate significantly from the
true values. Varying the number of disintegrations in the fitting procedures (extended
variants) is not an option in Variant I. However, if the full-energy peak efficiency curve is
obtained from an auxiliary measurement like in Variant II, the terbium-160 spectrum can
very well deliver the number of disintegrations.

The reproduction of the erbium-171 spectra is less satisfactory. Large g-scores on
individual peaks are combined with high ratios (Figure 6.9). While the areas of most
intense peaks are accounted for within 10%, some areas show deviations of over 20%.
Especially Variant I results show large g-scores in the region near 100 keV.

6.6 General discussion and conclusion

The Monte Catlo based results in this chapter indicate that it is possible to determine
the parameters required to characterize the sample-detector geometry from the measured
spectrum of a calibration radionuclide like terbium-160, to the point where coincidence
summing corrections with accuracies far better than the required 1 % can be made for
terbium-160 itself. The quality of the results will be optimal if the number of
disintegrations in the calibration source is known and kept constant in the fitting
procedure.

However, the simulated erbium-171 spectra were not satisfactorily explained from the
curves obtained with terbium-160. Especially peaks in the low-cnergy region near 100 keV
show large statistically significant deviations. Possibly, the full-energy peak efficiency
curve is not well defined in this region. In this context, the reader is referred to section
2.2.1 which introduced an adapted version of the Gunnink parametetization. Originally,
Gunnink divides the efficiency curve in three regions: <90 keV, 90 to 200 keV, and
>200 keV. This work, however, uses only two regions, hereby combining the regions
below 200 keV. This may very well explain the observed discrepancy in this region.

A second explanation for the observed discrepancy lies in the behaviour of the LS-
curve as described in the last paragraph of section 6.2.1. Only very few terbium-160
photons in the low-energy region do coincide and therefore only marginally determine the
curvature of the LS-curve. The determination in this region may simply be not accurate
enough to fully explain low energy erbium-171 coincidences. This latter explanation,
however, only explains discrepancies observed with the tantalum pentaoxide matrix
source.
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Chapter Seven

The missing curve for well-type
detection geometries;
Experimental verification

Abstract

This chapter verifies the calibration method described in the previous chapter. The method
requires knowledge of the variation of the full-energy peak efficiency and the total efficiency over
the source volume. Therefore, in addition to a peak-¢fficiency curve and a peak-to-total enrve, it
uses a third curve, the linear-to-squared curve, that accounts for this variation. This chapter
describes two variants of the calibration method and their verification using experimental data. It
is concluded that a calibration based on a combination of a measurement of a mixed
radionuclide source and a measurement of a terbium-160 source provides the most accurate
resulls. Compared to radionuclide-specific calibration, the method greatly reduces calibration
efforts withont compromizing calibration quality too much.

7.1 Introduction

Chapter Six explored the feasibility of the three efficiency curves approach in the case
of well-type detectors developed in Chapter Two, using Monte Carlo simulations. For
high-Z sources it was necessary to introduce a parameterizaton for K-edges
(section 6.2.1). This parameterization affected both the full-energy peak efficiency curve
and the LS-curve. Chapter Six further argued that in well type detectors, the LS-curve and
the cotrelation parameter play only a role in the case of summaton of two low-energy
photons. Therefore, depending on the decay scheme of the radionuclide of concern, it can
be expected that the LS-curve, as well as the correlation parameter is of minor
significance. On the other hand, only radionuclides emitting several low-energy photons
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simultaneously are expected to provide enough information to estimate the LS-curve and
the correlation parameter accurately.

Chapter Six observed discrepancies between spectra directly calculated via Monte
Carlo methods and those predicted by the theory using Monte Catlo calculated efficiency
curves. They were partly contributed to insufficient coverage of coincidence effects in the
low-energy region by the terbium-160 decay, and partly to the simplified adaptation of
Gunnink’s efficiency curve in the energy region below 90 keV.

This Chapter explores the feasibility of the three efficiency curves approach in the
case of well-type detectors using real measurements. Firstly, a measurement of a
terbium-160 low-density source alone or combined with a measurement of a standard
calibration source containing cadmium-109, cobalt-57, cerium-139, tin-113, caesium-137,
cobalt-60, and yttrium-88 was used to determine the efficiency curves for a zirconium-
lined well-type detector. The expected response of the detector for erbium-171 was
calculated from these curves and compared to the measured response of a erbium-171
low-density source. Then, the same experiment was performed for the same detector after
removal of the lining. Finally, the experiment was repeated with the activities in a tantalum
pentaoxide (T220s) sample matrix and the unlined detector to achieve high sample self-
attenuation.

As a result of Blaauw’s earlier work, low-Z bromine-82 sources are routinely used to
calibrate commonly used counting geometries at IRI. Two such measurements were
petformed with the detector used in this chapter, once lined, once unlined. These
measurements are incorporated in the analysis of the calibration method performance.

7.2 Experimental

7.2.1 Low-Z sources in lined detector

Source preparation

The low-Z source containing approximately 1 kBq of each of the standard calibration
radionuclides cadmium-109, cobalt-57, cerium-139, tin-113, caesium-137, cobalt-60, and
yttrium-88 (the “TM-source”) was prepared by pipetting aliquots from a certified solution
purchased from the Physikalisch-Technische Bundesanstalt (PTB) on a 4.5 mm thick layer
of filter paper in a 1 cm high high-density polyethylene capsule. The source was dried in
air for 16 hours.

Terbium peroxide (TbsO7) and erbium oxide (Er2O3) were obtained from Aldrich at
99.999 % purity, containing less than ppm-levels of europium and gadolinium.

Terbium-160 was produced by dissolving 43 mg terbium peroxide in 16 m¢ 65 %
nitric acid (HNO3) at 70 °C. An aliquot of 1 m# of the solution was irradiated in the HOR
(Hoger Onderwijs Reaktor) BP3 facility during 30 minutes at a neutron flux of
approximately 5x1016 m2s1. After irradiation, the solution was diluted with 4 m¢ 65 %
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nitric acid. Three low-Z sources were prepared by gravimetrically pipetting aliquots of 50
pf in polyethylene capsules as described above for the PTB solution.

Erbium-171 was produced by dissolving 375 mg erbium oxide in 10 m¢ 6.5 % nitric
acid at 70 °C. An aliquot of 1 m/ of the solution was irradiated during 3 minutes in the
same irradiadon facility. After irradiation, the solution was diluted with 9 m¢ 6.5 % nitric
acid. Three low-Z sources were prepared by gravimetrically pipetting aliquots of 50 pf in
polyethylene capsules as described above for the PTB solution.

The bromine-82-sources were prepared by pipetting aliquots of ammonium bromine
(NH4Br) dissolved in water in polyethylene capsules as described above. The capsules
were irradiated after drying during 30 minutes at a neutron flux of approximately
5x1016 m-2s-1.

The radioactive lanthanides and bromine-82 sources were counted in independently
calibrated counting geometries at large distances from coaxial detectors to establish the
absolute activities.

Measurements

All sources were counted in a well-type detector lined with approx. 0.8 mm
zirconium. The exact geometry is the same as the one that has been modelled in the
previous chapter and is depicted in Figure 6.2. This detector in its lined state has an
absolute efficiency for the 1333 keV photons of 4.6 %. All counting times were long
enough to achieve uncertainties in the main peak areas owing to counting statistics of
better than 0.5 %. Peak areas were determined as described in ref.{1].

Fitting procedure

Two sets of efficiency curves characterizing the counting geometry, sample included,
were determined. A set of efficiency curves consists of the peak efficiency curve defined
by parameters g through gs as defined in Chapter Two, and a peak-to-total efficiency
curve defined by parameters m through r. The LS-ratios were kept fixed at unity in these
procedures. The first set was obtained from the terbium-160 spectrum alone (Variant I),
and the second set from the terbium-160 and the TM-source together (Variant IT). The
latter variant was performed by fitting the full-energy peak efficiency curve to the
spectrum of the TM-source and the peak-to-total curve to the spectrum of the terbium-
160 source alternatingly until the quality of the result improved no further.

Verification procedure

The two sets of efficiency curves obtained as described above were employed to
compute the expected peak areas for erbium-171 and bromine-82, and these expected
peak areas were compared to the experimental results in terms of g-scores and IN/Ng-
ratios, as well as in terms of erbium-171 and bromine-82 source activities, as described in
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Appendix B. The set determined by VariantI was also verified in terms of source
activities with the TM-source spectrum.

7.2.2 Low-Z. sources in unlined detector

Source preparation

The sources used in this experiment were the same as those used in the experiment
with the lined detector.

Measurements

All sources were counted in the same well-type detector after removal of the
zirconium lining. All counting times were long enough to achieve uncertainties in the main
peak areas owing to counting statistics of less than 0.5 %.

Fitting procedure

Two sets of efficiency curves characterizing the counting geometry, sample included,
were determined by the same procedures (i.e. Variant I and IT) as for the lined experiment
described above. However, the energy region below 88 keV obtained in Variant I was
preserved when fitting the peak efficiency curve to the TM source spectrum in Variant IL

Verification procedure

The two sets of efficiency curves obtained were again verified with the erbium-171,
bromine-82 and TM-source spectra.

7.2.3 High-Z. sources in unlined detector

Source preparation

The source containing approximately 1 kBq of each of the standard calibration
radionuclides cadmium-109, cobalt-57, cerium-139, tin-133, caesium-137, cobalt-60, and
yttrium-88 was prepared by pipetting aliquots from a certified solution purchased from
PTB in a 1.5 cm high polyethylene capsule filled to 1 cm height with tantalum pentaoxide
(T2205). The source was dried in air for 16 hours, and shaken after sealing to homogenize
the contents.

Three high-Z samples of the terbium-160 and erbium-171 solutions obtained as
described for the previous experiments were prepared by gravimetrically pipetting aliquots
of 50 pf in polyethylene capsules as described above for the PTB solution. The activities
of the sources were derived from the measured activities of the equivalent low-Z sources.

86




Chapter Seven: The missing curre for well-type detection geometries; inperimental verification

Measurements

All sources were counted in the same well-type detector after removal of the
zirconium lining, All counting times were long enough to achieve uncertainties in the main
peak areas owing to counting statistics of less than 0.5 %.

Fitting procedure

Two sets of efficiency curves characterizing the counting geometry, sample included,
were determined by the same procedures (i.e. Variant I and IT) as for the lined experiment
described above for the unlined/low-7Z experiment. However, the self-attenuation
parameters were involved in the peak efficiency and the LS-curves this time as described
and defined in Chapter Six. Parameters g4 and gs, characterizing external attenuation, were
kept fixed at the values obtained for the low-Z sources. Of the parameters g through g,
only the optical density related parameter g was determined by fitting. The others were
derived from the known matrix element properties. The correlation parameter, p, was
kept fixed in this procedure at the same value of 0.94 used in the Monte Carlo exercise.

In the spectra, sum peaks were observed that were the result of simultaneous
detection of tantalum X-rays and terbium-160 y-rays. Some of these interfered with pure
terbium-160 peaks. These multiplets were disregarded in the fitting procedure. For
example, the terbium-160 y-ray energy 355 keV also happens to be the sum of 298 keV
and 57 keV, where 57 keV is the tantalum K X-ray. The other cases were 486 (= 433 +
57), 572 (= 506 + 66) and 1338 (=1272 + 66) keV.

Vertfication procedure

The two sets of efficiency curves obtained were again verified with the erbium-171
and TM-source spectra.

7.3 Results
The results are presented in Figure 7.1 through Figure 7.7 and in Table 7.1.

Table 7.1: Fit results of the various procedures and interpretation results using fitted curves, in

terms of: The ratio between interpreted and the true number of disintegrations; The y2-value
for the comparison between the two.

Geometry  Variant 160Th 13°Cs “Co 82Br
N/ Necue Vs N/Nirue N/Nume Z,Z N/Niwue X
Low-Z lined I | 1.000+0003 27 - 1.010 £ 0.005 0911003 64
M| 1.001 £0.003 3.1 - 1.004  0.005 090+0.03 04

Low-Zunlined I |1.000+0004 22102940013 | 0976+0.003 29| 0942004 113
I ]0998+0004 2.3 [ 1.025+0.008 | 0.998+0.003 30| 1.00+0.04 112
High-Z unlined 1 | 1.000+0.003 1.2 | 1.033+0.005 | 1.001 £0.004 4.1 | 1.00£005 89
I | 1.000+£0.004 2.0 ] 0.990+0.005 [ 1.026 £0.006 0.7 | 0.96+0.05 92
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Part 11: Well-type detection geometries

7.4 General discussion and conclusion

The results show that the problem of coincidence summing with X-rays, (in low-Z
sources counted in a lined well-type, as well as in the other counting geometries), is
extremely difficult to correct for theoretically. For the purpose of analysis, let’s
subsequently treat the three source-detector geometries used in this chapter in the order of
increasing complexity.

The first well-type geometry under consideration is the lined one, using a standard
low-Z, low-density source. This geometry is used routinely at IRL. The calibration results
and the interpretation results obtained from this calibration are depicted in Figure 7.1
and Figure 7.2, in Table 7.1, and in the upper plot of Figure 7.7. Both variants of the
calibration method succeed in reproducing the terbium-160 spectrum, as well as the
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Figure 7.7: Interpretation results of bromine-82 spectra in terms of Ni/Nie ratios and g-scores

using the curves obtained with Variant I for the low-density, low-Z source measured in either
the lined geometry (upper plot) or in the unlined well-type geometry (lower plot)
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caesium-137, cobalt-60 and bromine-82 spectra from this geometry. The erbium-171
spectra, however, are not satisfactorily reproduced. The erbium-171 discrepancy is strange
if one realizes that the calibration method that was used for this geometry docs not in any
aspect differ from Blaauw’s method, which is known to be accurate for a great many
radionuclides by now!. Furthermore, Blaauw uses the same parameterization for the
efficiency curves.

A plausible explanation for the erbium-171 discrepancy is hard to give. Possibly, the
simplification of Gunnink’s parameterization of the full-energy peak efficiency curve in
the low energy region (see section 2.2.1) explains it, even though the lining prevents low-
energy photons from being detected. The erbium-171 decay, however, might somehow be
sensitive for said simplification. Another explanation might be deficient information on
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Figure 7.8: Interpretation results for erbium-171 spectrum from a high-Z Ta;Os-matirx source
measured in the non-lined well-type geometry using either the curve sct obtained with Variant I
of the calibration method (upper plot) or the curve set obtained with Variant II (lower plot).
Filled diamonds indicate full-energy peaks, open diamonds indicate sum-peaks.
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Part IT: Well-type detection geometries

the erbium-171 decay. From the agreement between terbium-160 and the simple
radionuclides cobalt-60, caesium-137 and bromine-82, it appears that the decay scheme of
erbium-171 is suspect. This suspicion is confirmed by interpretation of the erbium-171
spectrum using the efficiency curves that were obtained by Blaauw, showing similar
discrepancies between theory and experiment. However, if a deficiency of the erbium-171
decay scheme exists, it would rather concern information on X-ray emission than on y-ray
emission. Erbium-171 X-rays, for that matter, are stopped by the lining very effectively.

The second well-type geometry under consideration is the non-lined one, using again
a standard low-Z, low density source. The calibration results and the interpretation results
are depicted in Figure 7.3 and Figure 7.4, in Table 7.1 and in the lower plot of Figure 7.7.
Again, both variants of the method succeed in successfully reproducing the terbium-160
spectrum. Also they successfully reproduce the spectra of simple radionuclides cobalt-60,
caesium-137 and bromine-82. They do not however explain the erbium-171 spectrum
satisfactorily. Although vatiant IT of the method (i.e. the one using an auxiliary full-energy
peak efficiency curve) does recover the correct number of disintegrations, it does so at the
cost of a very large y:? score.

Again, the same two explanations can be offered: An oversimplification of Gunnink’s
efficiency curve in the low-energy region, and a suspect decay scheme of erbium-171.
Both are more plausible here than in the lined geometry since X-rays play a very important
patt in the non-lined erbium-171 spectrum mainly owing to coincidence effects (in this
context the reader is referred to Chapter Four). Again, the suspicion of the erbium-171
decay scheme is confirmed by the interpretation of the erbium-171 spectrum using the
efficiency curves that were obtained by Blaauw, showing similar discrepancies between
theory and experiment. Thirdly, at the low energies involved in the unlined geometries,
thickness variations in the glass sample holders may have played a part.

The final well-type detection geometry under consideration is the non-lined one, using
a high-Z, tantalum pentaoxide matrix source. The calibration results and the interpretation
results are depicted in Figure 7.5, Figure 7.6 and Figure 7.8 and in Table 7.1. Again while
the terbium-160, the cobalt-60 and the caesium-137 measurements are interpreted well,
the erbium-171 measurement shows rather large discrepancies.

Next to the same three previous explanations, a fourth one can be offered: Physical
phenomena such as the emission of X-rays by the lining and/or the source mattix should
have been accounted for in the modelling, and/or the decay schemes of the radionuclides
involved are not known well enough. The X-ray emissions by sample matrix and detector
lining were assumed to be encompassed by the definition of total efficiency, but the
resulting peaks in the spectrum may coincide with others - the more complex the
spectrum becomes, the higher the likelihood of this happening.

The agreement between experiment and theory is, at least for the erbium-171 case
rather unsatisfactory. However, employing the calibration methods described in this
chapter would lead to systematic errors in reported activities of only 0 to 3 % for simple
radionuclides such as caesium-137, depending on the counting geometry and the
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radionuclide. It would lead to errors of 3 % for a complex case like bromine-82, and only
up to 10 % for a complex radionuclide such as erbium-171. This latter value is an upper
limit owing to the uncertainty in the true activity of the erbium-171 source, which was
considerably larger than the uncertaintes in the caesium-137 and cobalt-60 source
activities; it may be that the systematic error made for erbium-171 in this work is in fact
somewhat smaller than 10 %. The difference in the quality of the results for bromine-82
and erbium-171 may be owing to energies between 50 and 90 keV not playing a part for
bromine-82.

In those cases where the radionuclide to be determined cannot be obtained in a
known amount in the matrix of interest, and the use of well-type is deemed necessary, the
procedures presented here currently are the only option for quantitative determination.
One should realize that systematic errors caused by true coincidence summing in well-type
counting geometries can easily amount to a factor of 2 to 3 for complex radionuclides (e.g.
the magnitude of the coincidence summing effect for the 111 keV of erbium-171 is 0.40
in the lined geometry, 0.68 for the 879 keV of terbium-160) - in that respect, the methods
presented here certainly are an improvement. However, the rather extreme variations
between expected and measured peak arcas of different peaks in the case of complex
radionuclides emitting low-energy photons like etbium-171 make interference corrections
by peak stripping rather hazardous.
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Chapter Eight

The missing curve for voluminous source
coincidence corrections;
A Monte Carlo survey

Abstract

This chapter describes a calibration method that includes coincidence effect, as well as
attennation effect corrections for Marinelli-beaker type detection geometries. The method requires
knowledge of the variation of the full-energy peak efficiency and the total efficiency over the source
volume. Therefore, in addition to a peak efficiency curve and a peak-to-total curve, it uses a third
curve that accounts for the variation. This chapter describes how the theory developed in
Chapter Two provides the general shape of the curves. The actual calibration determines the
curve parameters using a bromine-82 spectrum that shows severe coincidence effects. AAthough, in
this chapter, the method is verified using computer simulations, the method itself does not require
any simulation or volume integration caleulations. Compared to other calibration methods for
voluminous sources, the method greatly reduces calibration efforts. The next chapter will describe
the use of the method in practice.

8.1 Introduction

In y-ray spectrometry, the quantitative measurement of radioactive samples with low
specific activity such as environmental samples requires the use of a detection geometry
that places a large volume of sample material as close to a radiation detector as possible.
Marinelli beaker geometries are frequently used for this purpose. The large sample volume
gives rise to y-ray attenuation, which has to be accounted for. ln addition, detection
efficiencies are usually high enough to give considerable coincidence summing effects.
Therefore, the calibration of a Marinelli beaker detection geometry deserves critical
attention.
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Part II: Marinelli-beaker detection geometries

The most accurate method to calibrate the Marinelli geometry is by using a standard
source containing all the radionuclides of interest and having exactly the same dimensions,
atomic composition and density as the unknown sample. Furthermore, the disttibutions of
the activity over the sample volume should be identical in both the standard source and in
the unknown sample. This method, however, can be very laborious and time-consuming,
especially when a large range of radionuclides or samples of different composition and/or
densities are used. Moreover, standard soutces are not always available.

This chapter describes a novel calibration method based on the mathematical model
described in Chapter Two. It tests its feasibility using computer-simulated spectra
(Chapter Three). It is organized as follows: Section 8.2 defines the geometries used, it
describes the explicit determination by computer simulation of all curves and it introduces
the simulated test spectra. Section 8.3 then validates the theory. Section 8.4 describes the
use of the simulated spectrum of bromine-82 as a calibraton spectrum. In addition, it
describes the reproduction of the simulated spectra of batium-133 and caesium-134, now
using the curves obtained by the calibration. The quality of the spectrum reproductions
will show the quality of the method. Finally, Section 8.5 discusses the results from the
previous sections and gives general conclusions.

At this point, it should be emphasized that although the tests of the method involve
simulation techniques, the method itself does not need them, nor does it need dedicated
programs to perform volume integrations. The next chapter will desctibe the application
of the method in a real-life situation.

. *D.e
«—D,—»
«——D,—»

- Dy —»

Figure 8.1: General Marinelli beaker detection geometry. Actual dimension are given by Table 8.1
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8.2 Methods

The validation in Section 8.3 of the theory and the development in Section 8.4 of the
calibration method require the calculation of both full-energy peak efficiency and total
efficiency values, LS-ratios and the simulation of spectra. This section describes the
geometries for which the calculation is performed and it describes the calculation itself in
more detail. In addition it describes the use of z-scores and y>-values when comparing
spectta.

8.2.1 Detection geometries

The simulation programs use two Marinelli beaker type detection geometries. Each
geometry bears close resemblance to actual measurement geometries. The first geometry
consists of a 1 litre Marinelli beaker placed over a 18% relative efficiency Ge(Li) detector.
This geometry will be referred to as “ORT”. The other geometry consists of a 2 litre
Marinelli beaker placed over a 98% HPGe detector. It will be referred to as “BIG”.
Figure 8.1 shows a general Marinelli beaker geometry. Table 8.1 shows the actual
dimensions of both the ORT and the BIG geometry. For each geometry, two simulations
have been performed. For the first simulated measurement, the beakers were modelled as
being filled with pure water of density 1.0-10°kg'm3. For the other simulated
measurements, the beakers were filled with sand, modelled as silicon dioxide of bulk
density 2.0-103 kg'm-3.

8.2.2 Determination of efficiency-, P1- and 1.S-curves, and correlation coefficients

Volume averaged full-energy peak efficiency curves, PT-curves, LS-curves and
correlation coefficients for each of the four detection geometries were determined by

Table 8.1: Dimensions of detection geometries. Variables are defined by Figure 8.1

ORT geometry BIG Geometry

Detector dimensions [mm]
Endcap diameter (Al): D, 70 95
Findcap thickness (Al) top 0.5 1

side 1 1.6
Crystal depth: d 5 4
Dead layer thickness (Ge): 0.7 1
Crystal diameter (Ge): Dy 48 76
Crystal height (Ge): ha 56 97
Core diameter: D, 15 11
Core height: b 38 85
Beaker dimensions {mm] Material: Polyethylene Material: Lucite
Inner wall thickness: 2 1.5
Diameter: Dhy 117 151
Total height: bt 130 173
Top height: bt ip 56 34
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computer simulation as described in Chapter Three.

For the full-energy peak efficiency values £ used for the determination of the full-
energy efficiency curves, the total number of photons was taken large enough to obtain an
imprecision for & lower than 0.5%. A full-energy peak efficiency curve &E) was then
fitted to the twelve & -values using Gunnink’s efficiency curve!!! (see Section 2.2), with the
supposed presence of an absorber. Thus, four parameters were used to describe the curve
and an additional two parameters to allow for the presence of the absorber. Full-energy
peak efficiency values and the results of the fits are shown by the upper plots of

Figure 8.2

0.05. ORT detector 005,  mSTeg BIG detector

& & y
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Figure 8.2: Simulation results for ORT (left) and BIG geometry (tight). Open circles and dashed
lines denote values and curves for water-filled beakers; Solid circles and solid lines denote values
and curves for sand-filled beakers. Upper plots: Efficiency values and fitted Gunnink curves.
Middle plots: PT-ratios and fitted PT-curves. Lower plots: LS-ratios and fitted LS-curves.
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Table 8.2: Correlation parameter value results

Water Sand
ORT 0.98 +0.02 1.01 £ 0.01
BIG 0.97 + 0.01 0.88 + 0.01

The imprecision of the total efficiency values & used for the determination of PT-
curves was also lower than 0.5%. Peak-to-total ratios r were calculated from the £ and
€, -values. The peak-to-total curve n+(L) was then fitted to the twelve PT-ratios, using a
straight line on double-log scale. Thus two parameters were used to describe the peak-to-
total curve, and a third was used to limit the PT-curve to physically possible values. PT-
ratios and PT-curves are shown by the middle plots of Figure 8.2.

The imprecision of the squared efficiency values & used for the determination of
LS-curves, was lower than 1% for energies between 70 and 700 keV and lower than 5%
for all energies. Linear-to-squared values \/(n2+1) were calculated from these values using
Equation (2.29). A Linear-to-squared curve was then fitted to the twelve LS-ratios using
relation (2.30). Thus, three parameters were used to describe this curve. LS-ratios and LS-
curves are shown by the lower plots of Figure 8.2.

Finally, the imprecision obtained for the &&; -values used for the determination of

correlation coefficients, was lower than 3% for combinations of energies between 100 and
700 keV and typically 5% for energies outside this range. Table 8.2 shows the values of
the correlation coefficients for all four detection geometries.

8.2.3 Spectrum simulation

For all geometries, the spectra of bromine-82, barium-133 and caesium-134 were
simulated by following a large number of batches of photons through the detection
geometry. As described in Chapter Three, each batch contained the photons from a
possible cascade from the decay-scheme of the daughter from a fed level to the ground
state. The number of disintegrations, effectively the number of batches, was taken large
enough to obtain an imprecision lower than 0.5% for the areas of the most important
peaks in the spectra.

8.3 Validation.

This section presents the validation of the theory for both the water-filled and the
sand-filled beakers on both detectors. Subsecton 8.3.1 describes the interpretation of the
simulated spectra of bromine-82, barium-133 and caesium-134 with respect to the number
of disintegrations. This interpretation uses Equation (2.19) which is calculated using the
stochastic approach described in Chapter Two. Thus, the interpretation validates the
overall theory. Finally, subsection 8.3.2 discusses the results of the various validations.
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8.3.1 1 alidation of the overall theory

The theory was validated by interpreting the simulated spectra with respect to the
number of disintegrations, N. This number was obtained by first calculating a separate
number of disintegrations associated with each peak in the spectrum, i.e., by dividing peak
areas by their corresponding Pr-values (Equation (2.19)). The reported number of
disintegrations, IN, is the weighted average of all the numbers of disintegrations associated
with each peak. This calculation of N also produced a y2-value. The number of
disintegrations, [N, was then compared to the real number, Niwe, used in the simulation.
The exact procedure is described in Appendix B.

For all geometries, Table 8.3 gives the results of the interpretation of the spectra in
terms of the N/Nuye ratios and p?-values. In addition, Figure 8.3(a-d) shows the
interpretation results for the bromine-82 spectra in more detail. For each peak in the
spectra, their upper parts show the ratio between the true peak area and the interpreted
peak area. Their lower parts show the corresponding z-scores.

To demonstrate the importance of the LS-curve, Table 8.4 shows the results of the
interpretation when neglecting coincidence corrections or when neglecting the proper use
of volume averages. For the latter interpretation, the warning expressed by
Equation (2.20) is distegarded, effectively regarding the source as a point.

Table 8.3: Interpretation results of spectra regarding the source as voluminous in terms of
N/ N ratios and g2-values.

2B 133Ba 134Cg

N/Nuwe 72 N/Nue e N/Nuse 22

ORT (nater) (1000 £ 0.002) 30 | (1.011£0001) 09 | (1.003+0002) 1.4
ORT (sand) 0999 £ 0.002) 22 | (10010003 11 | (1.000+0002) 20
BIG (water) (1000 £0.001) 20 | (1.008+0.002) 12 | (0.99+0001) 08
BIG (sand) (1.002+0002) 41 | 0994+0002) 23 | (1.003+0002) 1.0

Table 8.4: Interpretation results of spectra when distegarding the LS-curve, effectively regarding
the source as a point, and when excluding coincidence effect calculations. Reported values are

N/Nine ratios and z2-values.

By 133Ba 14Cs

N/ N y N/ Nerue X3 N/Nitue X
Coincidence correction: Point source interpretation.
ORT (warer) (0.961 £ 0.005) 27 (0.996 £ 0.010) 47 (0.981  0.007) 13
ORT (sand) (0.947 % 0.0006) 37 (0.979 +£0.012) 204 | (0.962 * 0.008) 46
BIG (water) (0.943 £ 0.006) 91 (0.991 + 0.010) 42 (0.970 % 0.008) 52
BIG (sand) 0.932 £ 0.007) 86 (0973 £0.013) 129 (0.960 £ 0.011 50
No Coincidence corrections.
ORT (water) (0.856 + 0.004) 17 (0960 £ 0.014) 114 | (0.918 £ 0.008) 16
ORT (sand) (0.832 * 0.005) 29 (0946 £ 0.014 291 0.902 + 0.009) 67
BIG (water) 0.719 £0.008) 294 | (0.935+0.023) 218 | (0.825%+0.016) 248
BIG (sand) (0.698 £ 0.007) 190 | (0.921 £0.025) 462 | (0.817£0.017) 181
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8.3.2 Discussion of resnlts

Table 8.4 clearly shows the need for a coincidence correction method. Errors of over
25% can be made if coincidence corrections are omitted. Coincidence correction methods
should take into account the voluminous nature of the source and not rely on cotrection
for point source geometries. Else, etrors of 5% can stll be made. Our newly introduced
LS-cutve, combined with a correlation parameter p, does take into account the volume
nature of the soutces. If they are used in the coincidence calculations using the stochastic
approach, errors are generally less than 0.5% and lie within the reported uncertainty.
(Table 8.3) ,

The interpretation result with respect to the N-ratio for barium-133 in the ORT (water)
case is slightly worse if the voluminous nature is accounted for, as compared to the point-
source interpretation, viz. 1.011 vs 0.996, while the result with respect to the y?-value is
much better, viz. 0.9 vs 47. Apparently, the individual Ng-values defined by
Equation (B 3) in Appendix B show less variation when using the LS-curve. Since
batium-133 emits several gammas below 90 keV, a probable cause for the worse N-ratio
may be the influence of the PT-curve and the LS-curve not accurately representing the
actual values in this region, see also Figure 8.2.

Let us focus in detail on the bromine-82-spectrum reproduction results for the ORT
beaker filled with water as presented by the upper left plot of Figure 8.3. According to the
g-scotes, the reproductions of the 554 keV peak (3=4.0) and the 1318 keV peak (3=-4.7)
are statistical outlyers. However, the areas of these peaks are determined with a very low
uncertainty of less than 0.4%. The cotresponding ratios are 1.01 and 0.98 respectively.
Since our interpretation routine uses all peaks to interpret the spectrum, these deviations
are of very limited importance. In fact, the interpretation of this spectrum yields a number
of disintegrations which is right on top of the true value.

The results for the bromine-82-spectrum reproduction for the other ORT beaker and
for BIG beakers show similar effects (Figure 8.3 lower left, upper right and lower right
respectively). For all main peaks that have g-scores outside the -3...3 region, the ratios are
off by a maximum of 3%. The reproduction of the 2051.4 keV sum peak in the BIG(warer)
spectrum however, shows not only a large negative g-scotes of -3.4, but also a deviation of
more than 5% (N-ratio=0.82). Still, the overall result of the spectrum interpretations for
this geometry and for the other geometries as well, is very accurate and precise.

Intermezzo

To apply the developed theoty in a real-life situation, it is necessaty to determine the
three cutves. Direct determination of the full-energy peak efficiency cutrve can still be
done relatively easy by measuring 2 mixed radionuclide source containing radionuclides
that emit coincidence free y-rays. The direct determination of the peak-to-total curve
requires yet mote effort since a number of sources must be measured, each source
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containing only one radionuclide that emits only one gamma. Finally, it is impossible to
measure a linear-to-squared curve directly, since this would require a set of radionuclides
that emit two gamma’s with exactly the same energy in coincidence”.

Although the curves can be determined using Monte Catlo or other volume
integration techniques, this is undesirable because this would require accurate knowledge
of all detector dimensions. This knowledge is often not readily available. Furthermore, as
already mentioned in the introduction, the aim of the calibration method is to extract all
information necessary to account for coincidence effects from measurements showing
these effects.

The next section describes the principles of a calibration method that determines
indirectly all three curves from a single bromine-82-spectrum. The calibraton is an
extension of a calibration method for point-source geometries, developed and described
earlier by Blaauw!. Several variants of the method are tested and their properties are
investigated using the simulated spectra from the water-filled beaker on the ORT
geometry. The final variant is applied to the other geometries as well.

8.4 Calibration method

8.4.1 Principles of the calibration method

The theory developed in Chapter Two allows for the calculation of all peak areas of a
bromine-82-spectrum if the full-energy peak efficiency curve, the PT-curve and the LS-
curve are known. Six parameters are used to describe the full-energy peak efficiency curve,
two parameters for the PT-curve and three for the LS-curve. Together with the
correlation parameter and an additional parameter representing the number of
disintegrations, the total number of parameters used to predict a spectrum is thirteen.

The calibration method described here inverses the problem of calculating peak areas
from thirteen parameters: it calculates the parameters from measured peak areas. In the
case of bromine-82, over thirty peaks can easily be observed with a Marinelli beaker
detector set-up. This means that over thirty equations can be solved for these thirteen
parameters. In principle, all parameters can be obtained by non-linear least squares
methods, where the y:2-value of the measured full-energy peak areas as compared to the
computed areas is minimized.

A computer program was written to perform the fitting. As all non-linear least squares
fitdng algorithms, the program requires a reasonable initial estimate of the parameter
values. An estimate for the number of disintegrations is usually available and must be

* For the direct measurement of a linear-to-squared curve, one would need a radionuclide that
simultaneously emits two photons of the same energy in random, uncorrelated directions. Even the
simultaneous emission of to 511 keV photons in position annihilation is of no avail because the two
photons are emitted in opposite directions.
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supplied to the program by the user. An initial estimate for the other parameters can either
be supplied by the user or by the program itself. If the program is to supply a first estimate
for the full-energy peak efficiency parameters, it calculates efficiency values for all main
peaks in the spectrum disregarding all coincidence losses or gains. It then fits a Gunnink
curvelll to the individual values. As a first estimate for the PT-parameters, the LS-
parameters and the correlation parameter, the program takes a predefined set for a typical
Marinelli beaker detection geometry

Once the program has obtained estimated values for all parameters it can fit all
parameters at once, Or one or more sets at a time, three sets consisting of the parameters
associated with a specific curve and the fourth consisting of the parameter used for the
number of disintegrations. The correlation parameter in this respect is associated with the
LS-curve parameter set.

8.4.2 Demonstration of the calibration method

The characteristics of the calibration method have been studied using the Monte
Carlo simulated bromine-82-spectrum of the water-filled beaker on the ORT geometry
that was also used to test the validity of the theory (Section 8.3). The calibration method
has been performed several times.

First, the calibration has been performed while not varying the number of
disintegrations in the fit. Using the calibration method this way in real-life situations
would require accurate knowledge of the source activity to calculate the number of
disintegrations during the measurement. In our case the number of disintegrations is
readily given by the program that simulated the bromine-82 spectrum. Two variants have
been investigated. For Variant I, first estimates for the parameters have been used that
were supplied by the program itself. This would be the way to use the calibration method
in real-life situations. For Variant I, a first estimate was obtained via the independent
computer simulations described in subsection 8.2.2. This was done to check the
robustness of the fitting procedure. Then the calibration has been performed using the
same variants, while allowing the number of disintegrations to vary in the fitting
(Variant I+ and Variant II+). As a first estimate for the number of disintegrations the true
value was used.

Table 8.5 shows the results of the various fitting procedures. In all cases, the
procedure yields acceptable results with respect to the y2-value of the comparison.
However, if the number of disintegrations is allowed to vary in the fitting, the procedure
does not accurately reproduce this number. Although in the case of Variant IL i.e. if the
simulated curves are used as a first estimate, the ratio of the fitted to the real number is
acceptable but the reported uncertainty for the fitted numbers is very large. Also, the
covariance matrix of the fit results showed very large elements. This indicates that the
number of disintegrations is interchangeable with the other parameters. Therefore, it is
not recommended that the number of disintegrations is to be varied in the fitting
procedure.
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The two different uses of the fitting procedures in which the number of

disintegrations was not varied, resulted in two sets of cutves. To test the quality of these
sets, they have been used to interpret the simulated spectra of barium-133 and caesium-
134 that were also used to validate the theory. Table 8.6 summarizes the interpretation
results for all nuclides.
For caesium-134, both sets of curves yield accurate results, indicated by a N/ Nipe-ratio
close to 1.0, and reasonable low values for the y2-values. Contrary to the caesium-134
spectrum, the barium-133 spectrum is not correctly interpreted with both sets: they
combine a wrong interpretation result with high y2-values, indicatng a discrepancy
between these sets and the true curve sets. The full-energy peak efficiency curve of these
two sets is the result of a fit to the bromine-82 spectrum. Since bromine-82 does not emit
photons with energies below 92 keV, the fit does not accurately determine the efficiency
curve below this energy. Barium-133 however has several peaks below 92 keV. It is
therefore understandable that set I and set II do not yield good interpretation results for
barium-133. Notice however that the curve set trom Section 8.3.1 does yield accurate
results (Table 8.3). This set has been determined using 50 keV as the lowest energy.

Table 8.5: Results of the various fitting procedures in terms of: Ratio between fitted and true
number of disintegrations.; y2-value of the comparison between the two.

First estimate supplied Fitting ORT (water)
by:

72
I: Fitting Program N fixed 4.0
II: Simulation N fixed 1.6
IIb:  Simulation N and ¢ fixed 3.4
I+:  Fitting Program (1.05 £ 0.66) 4.4
II+:  Simulation (0.99 £ 0.63) 1.6
IIb:  Simulation & fixed 0.96 £ 0.01) 2.3

Table 8.6: Interpretation results of spectra of bromine-82, barium-133 and caesium-134, using the
sets of curves obtained from the fitting procedure (Set I: Using programs first estimatc;
Set II: Using simulated curves as first esdmate; Set IIb: Using simulated curves as first
estimate and keeping peak efficiency parameters fixed)

ORT geometry (Water)
82Br 1338 1MCs
N / Nirue 2’,3 ]\T/ [\me ZIZ N, / Ntrue Zrz
SetI (1.000 % 0.002) 2.6 (1.043 £ 0.007) 17 (1.001 * 0.002) 12
Set IT (1.000 £ 0.001) 1.0 (1.017 £ 0.009) 38 (1.006 £ 0.002) 1.0
Set IIb (1.000 + 0.002) 2.9 (1.010 + 0.002) 1.3 (1.003 * 0.002) 1.3
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At this point variant IT of the calibration method to be investigated is redefined. Like
before, this newly defined vatiant IIb uses as a first estimate the curves from section 8.3.1,
but now only the parameters describing the PT-curve and the LS-curve are allowed to
vary in the fitting. Thus, the full-energy peak efficiency curve is valid for energies down to
50 keV. In real-life situations, using the method this way would necessitate a preliminary
measurement of a calibration source emitting non-coincident y-rays to determine the
parameters of the full-energy peak efficiency curve. This variant of the fitting procedure
yielded a y2-value of 3.4 if the number of disintegradons was kept fixed, and a y?-value
of 2.3 if this number was allowed to vary. The found number of disintegrations relative to
the true value in the latter case was (0.96 + 0.01). The interpretation tesults for the newly
defined Variant IIb are added to Table 8.6. Using this set of cutves, all spectra are
interpreted well. Figure 8.4 shows the curves obtained with this variant and the resulting
reproduction of the bromine-82 spectrum if the number of disintegrations is kept fixed at
its true value.

8.4.3 Discussion of the calibration results.

The results from the previous subsection show that in principle a bromine-82
spectrum can be used to determine a set of curves that describe 2 Marinelli beaker type
detection geometry. However, if the method is to be used in real-life situations, some
remarks must be made.

First, the number of disintegrations of bromine-82 duting the calibration
measurement should be accurately known. The apparent interchangeability between the
number of disintegrations and other parameters, especially the LS-parameters, causes the
fitting procedure to report inaccurate results. It is therefore not recommended that the
number of disintegrations is varied in the fit.

Second, since bromine-82 does not emit y-rays with energies below 92 keV, the
validity of the curves below this energy is questionable. However, for energies lower than
92 keV, the method can very well provide accurate PT- and LS-curves if an accurate full-
energy peak efficiency curves is obtained from another measurement. The parameters of
this curve should then be used as first estimate and should not be varied in the fit.

Set IIb results from the method used as desctibed above. The PT- and LS-curves
from this set are compared to the PT- and LS-ratios obtained by the independent Monte
Carlo calculation. Obviously, there is no need for compatison of the peak efficiency curve
in set ITb since this curve is the result of a direct fit to the Monte Catlo efficiency values.
Figure 8.4 shows the obtained curves from set IIb together with the values obtained by
direct calculations (Section 8.3.1). Calculated values are plotted as open circles. In
addition, it shows the bromine-82 spectrum reproduction. ‘This figure shows that the PT-
curves reproduce the calculated PT-ratios faitly well. Also the LS-curves reproduce the
LS-ratios satisfactory.

The above shows that calibration procedure IIb provides the best curve set to
interpret all three nuclides. This calibration procedute has been applied to the other
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Part 11I: Marinelli-beaker detection geometries

Table 8.7: Interpretation results of Monte Carlo simulated spectra of bromine-82, barium-133 and
caesium-134, using the set of curves obtained from calibration procedure IIb. (Using MC-curves
as first estimate and keeping peak efficiency parameters fixed)

82Br 133Ba 134Cg
N/Nm:e x,3 N/N(rue 2"2 N/Ntruz Z,z
ORT (water) 0999 £0002) 29 | (1.010*0.002) 1.8 | (1.003+£0.003) 1.6
ORT (sand) (1.000 +0.001) 1.8 | (0.998+0.003) 16 | (1.001 +0.002) 18
BIG (water) (1.000 £ 0.001) 1.8 | (1.007+0.002) 18 | (099 +0001) 08
BIG (sand) (1.000 000D 21 | (0.999+0.001) 1.1 | (1.002+0.001) 04

geometries as well. Table 8.7 summarizes the results for all radionuclides and all
geometries using calibration procedure IIb. In addition, Figure 8.5 through Figure 8.7
show the interpretation results on individual peaks of the respective radionuclides, for all
four geometries.

Let us compare these interpretation results with the interpretation results using the
simulated curves (Table 8.3). In all cases, interpretation using set IIb is as accurate as
using the simulated curves. Only barium-133 shows large y?-values in the sand cases,
indicating a large variation of the individual NE values relative to their errors. However,
the error in the final number of disintegrations, accounting also for the variation of the
Ng-values, is still acceptably low. Moreover, the teported number of disintegrations is
cotrect. The interpretation of bromine-82 in the BIG(sand) case is better with the use of
set IIb than with the use of the simulated curves. Since set IIb is obtained from a
spectrum showing coincidence effects, this illustrates our presumption stating that in
order to accurately account for coincidence effects, the required information should be
obtained from measurements that show these effects.

114




Chapter Eight: The missing curve for voluminous source coincidence corvections: A Monte Carlo survey

‘syjead-wns a1ea1pur spuowerp uado ‘syead £31ous-[ng 33¥d[pUI SPUOWEIP
polltd “poxy sivoweted [exor 03 yead oy uidooy pue oleWINSS 151y € SE SIAIND palE[nwuls Fuisn 97 ‘qIT JUBLEA IM PIUMEIGO $IAIMD
oy Buisn ‘s23008% puE sOIES TN /N JO SWIAL UL sou3Pw0aF Inoy s woly endads gg-aunwoiq ayr jo synsas voneiasdiaiuy :g'g 2Indry

115

A3rouy A3rouyg
00sT 0002 0051 0001 00 0 00s¢ 000z 00s1 0001 00s 0
: - ’ : - t 9 k * = : 9-
* o ,' [ \/_N \ “ . . . tog- \/w
[ [ .. w 7,5 7 w
. R A . & AR o o ) m ‘e L s . 00000 000 Lo &
’ et L e i 2 iy % e 4 e S
” Lk Y . - ¢ [¢] ‘ L ¢ o
=9 ﬁ 9
-89 (80
. -60 2 “ b F60 2
S e 0\\ \0 . o : R g . o el WO . Mm 0 ~u./
Ly LGt L S g eee 01 R et 2 S e LS FO
) \‘q oo VT ooooo ¢ i :N .\o ey « : 4. * .uN
2 . 2 1'% , : : FULE
(purs) O19 Tl (purs) 14O Lz
&3rouy 48saug
00s¢ 000Z 00cl 0001 00S 0 00s¢ 000¢ 00¢1 0001 00s 0
L e Q- e " " 9-
’ V ‘
‘e re o , . o [ EX
‘ , » . . & o, K RN W
% & 0\\\\ * . s ’00 (AL 28 * ro «OJ T % “ ¢ * * + % * 0 m
o e S - OO o E 3 =
\ o | € : . o€
9 -9
e 80 80
2 , F60 2 . ,m . F60 2
7% 3 :./ \\\\ o . Lo ) +0 ,J/
B B £ 2 o1 e T nﬁ BRete S arync i’ >
, . SeE 7yt g
(1ap) YG P H o (appa) 14O LY




m 'syjead-ums a3e1pur spuowerp uado ‘syead £81sus-[my S1E21pUT SpuowEIp
N PaId ‘paxy s1e3owered [e303 03 jead ayp Fuideoy pue aewnss 1S3 € st saaId paremuurs Suisn ‘371 ‘qI JUELEA YIIM PIURIGO SIAIND
& o3 Buisn ‘s2100$¥ pue SONEI PN /N JO SWI U $330wo0a3 Inoj oYy wozy endads ¢¢ [-wnueq oy jo sinsas vonesazdioyug :9°g anSrg
=
m £3rouyg AZrouy
X 00S 00¥ 00¢ 00z 001 0 005 00r 00¢ 00¢ 001 0
..M : : * * 9- ‘ ! : ’ : 9-
ﬂM * & %ﬁ\u e o« ’ . ¢ \/_~
ﬂm o e 2 .- g7 08§ * * . .o m mS
-§ o S — : :
Ma . [ ¢ @ © 9 a
=) -9 o 6
& r60 60
[
i HN ~— -~ ¢ Ad 5 01 HN
> $ 01 > >
4 . ) - FLls
M & fed o H
't - 'l
(purs) O14 () 14O
£330 elC
00s (104 00¢ 00¢ 001 0 00S 00t 00¢ 00¢ 001 0
X 9 . , 9-
. . € «mw\u . : &
— , . B SR & .« _* . 14
hod 3 . o o 0 m > hd % . * * 0 m
& * [ O ¢ a
- 9
80 160
| 60 2 4 =z
. ——r N, o1 S P S m * 3 01 S
G Z 3 t2
i FLT m v "
o :
(o) S19 ‘21 (4opm) 1O T
0
-
- -




45 source coincidence corvections; A Monte Carlo surrey

Chapter Eight: The missing curve for voluminos

‘syead-wms agorpur spuowerp uado ‘syead A33oud-[ng a1EdIpUT SPUCWIEIP
PaIL] paxy simswered 101 01 yead oy Suidosy pue arewnss 183  se soaInd pajenwis Juisn 37 ‘qI IUEHEA IPIA PAUTEIGO SAAIND
atp Susn ‘621028 puE SONEI N /Y] JO SULIDY UL $MoW0ad oy ayp woaj endads H¢[-wnisaed oy jo synsas vonesasdinug :£-g sy

A8rouyg
0007 0051 0001 00< 0
. X o
L g
2 . e .. “ kXS 0
r ¢
L9
r 80
r60
z g : Ho o 3 —t 01
FTL
(purs) O14 Lzt
£3rug
000Z 00S1 0001 00S 0

, 9-
- m.|

. . .

2, ** L
.« : .o 0
r ¢
L9
80
) “ , 60
e S T FOL
P11
(appa) DIG

"7l

000¢

AS3ouyg

00S1 0001 00 0

<
‘e
*
2300G-%

000<

(purs) 1,90

noct 00¢ 0

<

<

o
*
*
<

‘) Z ; - .

<&
e
2l

(i) 1O

117



Part 11I: Marinelli-beaker detection geometries

8.5 General discussion and conclusion

This chapter described the development and test of a model that enables accurate
calculation of peak areas obtained from the measurement of voluminous sources,
specifically Marinelli beaker sources. For the test of the model we used computer
simulation techniques.

To obtain accurate results for voluminous sources, the use of a full-energy peak
efficiency curve in combination with a peak-to-total curve is not sufficient. In addition to
these two curves, a third curve is needed that accounts for the variation of the efficiency
over the source volume. In principle a bromine-82 spectrum can be used to determine all
three curves that describe a Marinelli beaker type detection geometry. Moreover, the
spectrum interpretation results are slightly better using curves obtained from a bromine-82
spectrum than using the curves obtained by direct calculation. This demonstrates the
presumption expressed in the introduction that methods correcting for coincidence effects
should obtain their information from these effects.

If the method is to be used in real-life situations, the number of disintegrations of the
bromine-82 during the calibration measurement should be accurately known. The
interchangeability between the number of disintegrations and the parameters describing
the LS-curve causes the calibration method to produce inaccurate results. Furthermore,
the validity of the curves based on a single bromine-82 measurement is questionable
below 92 keV. However, for energies lower than 92 keV, the method can very well
provide PT- and LS-curves if an accurate full-energy peak efficiency cutrve is obtained
from a measurement of a source emitting non-coincident y-rays covering the whole energy
range of interest. Thus, the method would require at most two calibraon measurements,
or a single measurement of a suitable mixture of radionuclides. Typically, it allows for
activity measurements results that are accurate within 1%.

These conclusions are drawn based upon Monte Carlo simulations of Marinelli beaker

sources with volumes of 14 and 2/ filled with low-Z materials (Z < 14) with densities of
1103 kg'm3 and 2-10° kg-m3. The limits on the source dimensions and composition

translate into a upper limit on the attenuation coefficient . This upper limit is given by
the combination of highest Z, largest density and lowest energy of interest, i.e. 50 keV of
barium-133. For these values, 4 is approximately 1 cm!. This limit is an expetimental one,
in the sense that the method has been verified (yet only by simulations) for sources with
M <1 cml. The method may very well perform for higher values of x4 as well. Recall that
the theoretical limit is set by the LS-ratio being smaller than V2.
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Chapter Nine

The missing curve for voluminous source
coincidence corrections;
Experimental verification

Abstract

This chapter verifies the calibration method for Marinelli beaker type detection geometries of
the previons chapter. The method requires knowledge of the variation of the full-energy peak
¢fficiency and the total efficiency over the source volume. Iherefore, in addition to a peak efficiency
curve and a peak-to-total curve, it uses a third curve that accounts for this variation. This
chapter verifies two variants of the calibration method using experimental data. 1t is concluded
that a caltbration based on a combination of a measurement of a commercially avatlable mixed
radionuclide source and a measurement of a bromine-82 source provides the most accurate
results. Compared to radionuclide specific calibration, the method greatly reduces calibration
efforts without compromizang calibration quality.

9.1 Introduction

Chapter Eight explored the feasibility of the three efficiency curves approach
developed in Chapter Two for the Marinelli beaker case, using Monte Carlo simulations. It
showed that the mathematical model from Chapter Two and a cortesponding calibration
method introduced in Chapter Eight, in principle allow for accurate activity measurements
in Marinelli beaker if the attenuation coefficient, 4, of the sample material is smaller than
1 em . In addidon to a full-energy peak efficiency curve combined with a peak-to-total
curve, the model uses a third curve, the linear-to-squared curve, and a correlation
parameter that account for the variation of the efficiency over the source. The
corresponding calibration method enables the simultaneous determination of all three
curves. 1t is based on the philosophy that the curves, that are used to accurately describe
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Part I1I: Marinelli-beaker detection geometries

coincidence effects, should be obtained from coincidence effects observed in practice. In
principle, it only needs one measurement of a radionuclide of known activity that shows
considerable coincidence effects (Variant I). This way, it produces curves that are accurate
for the energy range limited by the lowest and highest energy in the spectrum. A second
variant of the method allows for an extended energy range if the full-energy peak
efficiency curve is obtained from a supplementary measurement (Variant II).

This chapter describes the experimental verification of the mathematical model and
the corresponding calibration method. It uses the proposed method both in the original
variant (I}, and in the extended variant (II) as described above. It then uses the resulting
curves from the two variants to interpret a measurement of a Marinelli beaker verification
source prepared and certified independently from the calibration sources. In addition, for
those radionuclides present in both the calibration and the verification source, it interprets
the verification measurement using radionuclide specific calibration.

The verification is performed for one Marinelli beaker geometry only. Based on the
results of the computer simulation described in the previous chapter, the conclusion of
this chapter can be extended to other Marinelli beaker geometries, as long as the upper
limit of 1.0 cm! on the attenuation coefficient is not exceeded.

9.2 Experimental

9.2.1 Preparation of calibrated sources

Mixed radionuclide calibration source

A Marinelli beaker calibration source was prepared by taking (251.05 + 0.05) mg of a
mixed radionuclide y-ray reference solution from Amersham International ple. The exact
amount was determined by weighing the solution in a small counting vial on a calibrated
mechanical balance. After weighing, it was rinsed down with 0.5M hydrochloric acid in a
1€ volumetric flask. Finally the flask was filled up to 14 with the same hydrochloric acid
and poured out in a 14 Marinelli beaker. The negligibly small amount of solution that was
left behind was determined gravimetrically. The Marinelli calibration source thus prepared
covers the energy range from 88.03 keV (cadmium-109) to 661.7 keV (caesium-137) with

radionuclides that emit non-coincident y-rays, and it covers the range up to 1836 keV with
yttrium-88 and cobalt-60.

Bromine-82 Marinelli beaker calibration source

In order to obtain a bromine-82 solution of known activity, first a concentrated
bromine stock solution was made by dissolving 0.5 g of sodium bromine in 10 ml of 0.5M
hydrochloric acid. Thereafter, 1 ml of this solution was irradiated during 6 minutes at a

120




Chapter Nine: The missing curve for roluminous source coincidence corrections; Experimental verification

neutron flux of 4-10' m2s-l. Then, weighed aliquots of this solution of respectively
(8.6£0.1) mg, (94+0.1)mg and (11.0£0.1) mg were put into three polyethylene
capsules. After weighing, the solvent in the capsules was evaporated and
sodium-24/bromine-82 activity ratios were used to verify that no bromine was lost in the
evaporation process.

The Marinelli beaker bromine-82 calibration source was based on the same stock
solution. Thus, the activity of this source could be derived from the specific activity of the
stock solution. From the stock a weighed amount of (14.9 = 0.1) mg was added to 1¢ of
0.5M hydrochloric acid in a Marinelli beaker.

Mixced radionuclide verification sonrce

The Marinelli beaker verification source was prepared independently at the
Kernfysisch Versneller Instituut in Groningen. It was part of a validation of a protocol for
y-ray measutements by means of an interlaboratory test programme among Dutch
laboratories”. Tt was prepared by taking 47.000 g of a mixed radionuclide reference
solution from the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig in
Germany. The exact amount was determined by weighing the solution in a 100 ml beaker
on a three-digit balance. It was rinsed down with 0.5M hydrochloric acid in a 5¢
polyethylene bottle. In addition, a weighed amount of 40.000 g of potassium chloride was
added to the solution. Hereafter, the solution was filled up to 3500.0 g with the same
hydrochloric acid and mixed for 1 hour on a magnetic stirrer. It was then shipped to
Delft, where 1012.5 g was put in a 1/ Marinelli beaker. The verification source thus
prepated contains certified amounts of cobalt-57, cobalt-60, barium-133, caesium-134
caesium-137, and a known amount of potassium-40.

Owing to the added potassium chloride the density and the atomic composition of
this source is slightly different from the previously described sources. However,
calculation showed that for 100 keV photons the resulting difference in the sample self-
attenuation is less than 0.5%.

9.2.2 Detection equipment

The bromine-82 point sources were measured in a 120 cm? germanium well-type
detector that was lined™ with a thin layer of zirconium. Sources were placed in glass test
tubes on the bottom of the cryostat well. The efficiency calibration of the detector!!
allows for activity measurements that are accurate to within 1% (1), taking into account
coincidence effects.

The various Marinelli beakers had inner core dimensions of (@70 x 74) mm. and the
outer dimensions of (J117 x 130) mm. All beakers were counted on an 18% relative
efficiency coaxial germanium (lithium doped) detector.

The counting times for all sources were chosen long enough to get uncertainties in the
main full-energy peak areas of less than 1%. The counting tme for the bromine-82
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Part 11I: Marinelli-beaker detection geometries

calibration source was chosen long enough to obtain the same uncertainty in the main
sum peak areas. Peak areas were determined using in-house analysis software. Dead time
and pile-up were corrected for using the pulser method.

9.2.3 Data handling

As described in the introduction, two variants of the proposed method to calibrate
the Marinelli beaker detection geometry have been investigated. For Variant I, all curves
were determined from the bromine-82 Marinelli beaker measurement. First estimates for
the curve parameters were supplied by the fit program.

For Variant II, ideally the measurement of the Marinelli beaker calibration source
should provide the full-energy peak efficiency curve. Knowing this curve, the
measurement of the bromine-82 should then provide the PT- and the LS-curve. However,
next to radionuclides emitting non-coincident y-rays, the source contains yttrium-88 and
cobalt-60, both emitting two gamma photons in coincidence. To accurately determine the
full-energy peak efficiency curve using this source, one should be able to calculate
coincidence effect corrections, which cannot be done without the knowledge of the PT-
and the LS-curve. However, in this variant, this knowledge can only be obtained if a full-
energy peak efficiency curve is already known.

This circular problem was solved by iterative calibration: First, Variant IT of the
method was performed without correcting the yttrium-88 and cobalt-60 for coincidences.
The resulting curve set was then used to calculate the corrections and Variant IT was
performed again. This was repeated until both the y?-value for the fit of the peak-
efficiency curve to the mixed radionuclide measurement and the :2-value for the fit of the
PT- and LS-curves to the bromine-82 measurement showed no further improvement.

The three final curves, resulting from either vatiant of the proposed calibration
method, were used to calculate the activity of all radionuclides present in the PTB
verification source. The areas of all peaks corresponding to one specific radionuclide were
divided by their Pg-value using Equation (2.19). For each peak, this results in a
corresponding number of disintegrations. The reported number of disintegratons, N, of
the specific radionuclide is the weighted mean of the separate values associated with each
peak. The imprecision of the reported number is obtained from the imprecision of the
peak areas. The exact procedure is outlined in Appendix B.

In addition, for those radionuclides present in both the calibration and the verification
source, the verification-source activity was determined using radionuclide specific
calibration.
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Part III: Marinelli-beaker detection geometries

9.3 Results

Figure 9.1(a-c) show the curves resulting from the two variants of the proposed
calibration method. Full-energy peak efficiency values measured with the mixed
radionuclide calibration source have been added to Figure 9.1a. The yttrium-88 and
cobalt-60 values have been corrected for coincidence losses using the results from the
iterative calibration. The correlation parameter determined with both variants did not
deviate significantly from unity (Pvariant 1 = 1.00 % 0.02; Poarianc 1t = 0.95 * 0.42). Figure 9.1d
shows the results of the fits to the bromine-82 spectrum in terms of g-scores. f2-values
yield respectively 2.2 for Variant I and 3.0 for Variant IL. The first two columns of Table
9.1 show the interpretation results for the PTB verification source using the curves. The
last column shows the interpretation results using radionuclide specific calibration. Figure
9.2 shows the results of the spectrum interpretations of those radionuclides in the PTB
source that exhibit large coincidence effects, namely barium-133 and caesium-134.

9.4 Discussion

Variant I of the proposed calibration method uses only a bromine-82 spectrum to
obtain all three curves. The full-energy efficiency curve from VariantI deviates
considerably from the measured values at energies below 200 keV (see Figure 9.1a). The
most intense peak of bromine-82 in this region, is the 92 keV peak which has an absolute
intensity of only 0.75%. Also, the uncertainty of its intensity is relatively large. The
determination of the full-energy efficiency curve in this region, however, is very critical
owing to its strong curvature. The observed deviation of the efficiency curve can therefore
be well understood. VariantII of the proposed method uses a supplementary

Table 9.1: Interpretation results of PTB verification source relative to reference for both variants
of the proposed calibration method. In addition, interpretation results of PTB verification
source when using radionuclide specific calibration. The standard deviation & includes
counting statistics and precision of reference values.

Calibration method
Radionuclide Vatiant I Variant IT Radionuclide specific

N/Nest 1o N/Nest 1o N/N,st 1o
5Co 1.062 £ 0.009 0.990 + 0.008 0.991 £ 0.008
133Ba 1.032 £ 0.008 0.983 £ 0.010 -
14Cs 0.999 + 0.006 0.989 + 0.006 -
WCs 1.003 £ 0.008 0.978 + 0.008 0.974 £ 0.009
“Co 1.015 £ 0.007 0.998 + 0.007 1.000 + 0.007
WK 0.978 + 0.024 0.948 + 0.023 -
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Part III: Marinelli-beaker detection geometries

measurement for the determination of the full-energy efficiency curve. It uses a calibration
source that emits three photons in the critical region. With this variant, the curvature of
the efficiency curve is well defined.

Comparing the other cutves of the two variants with each other, the PT-curves show
no significant difference. The observed difference between the two LS-curves has the
same cause as the difference between the full energy efficiency curves. Like these curves,
the LS-curve has a strong curvature, and therefore a degree of freedom, in the low energy
region. Via coincidence effects, errors introduced by either the deviating full-energy
efficiency curve or the uncertain 92 keV intensity are propagated to higher energy peaks,
and are then corrected for by the deviating LS-curve in the low energy region.

The deviation of the efficiency curve of VariantI in the Jow energy region, is also
shown by the results of the interpretation of the PTB verification source using this variant
(Table 9.1). Since both 5Co and !33Ba emit photons below 200 keV, their activity is not
well determined. The other radionuclides do not show significant deviations, taking into
account the uncertainty of the used bromine-82 activity of 1%.

The interpretation results of the PTB verification source using Variant II show no
inconsistencies. However, these results do show a slight bias of 1.5%. This bias may be
owing to badly calibrated weighing equipment, certification errors, the additional KCl in
the verification source, or owing to the proposed calibration method. To exclude the latter
as a bias source, the PTB verification source measurement has been interpreted for those
radionuclides also present in the calibration source, using radionuclide specific calibration.
Since the results of this interpretation show a similar bias, it is concluded that the bias is
not introduced by the calibration method. Motreover, the calibration method shows to be
as accurate as radionuclide specific calibration.

9.5 Concluding remarks

The calibration method, presented in the previous chapter has been verified for one
Marinelli beaker geometry. Based on the results of computer validations, there should be
no fundamental limitation to extend the conclusions to other Marinelli beaker geometries,
as long as the attenuation coefficient, f, of the sample material is smaller than 1 cm.

The model that has been developed enables accurate calculation of peak areas
obtained from the measurement of voluminous sources, specifically Marinelli beaker
sources. In addition the calibration method described can obtain all information necessary
to apply this model. In principle the method allows for the determination of all
information from one calibration measurement of a bromine-82 source with known
activity. Although bromine-82 has been chosen for the calibration, other radionuclides
may also be suited for this purpose. These radionuclides should have a decay scheme that
is complex enough to show coincidence effects covering a large energy range, yet is simple
enough to allow rapid fit sessions. Furthermore, it should allow easy homogenization with
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different kinds of sample material. Caesium-134, for instance, would be a suitable
candidate.

If bromine-82 is used as a calibration radionuclide, curves resulting from a single
calibration measurement (Variant I) are questionable in the energy region approximately
below 200 keV. If, on the other hand, an accurate full-energy peak efficiency curve is
obtained from a supplementary measurement (Variant IT), then the use of bromine-82 can
very well provide accurate PT- and LS-curves. Thus, the method would require at most
two calibration measurements, or a single measurement of a suitable mixture of
radionuclides. It allows for calibrations that are as accurate as radionuclide specific
calibradons and considerably less labotious.
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Chapter Ten

General discussion

Abstract

This chapter discusses the performance of the developed calibration method that includes
coincidence effects in combination with sample self-attenunation effects. The method is based on
three efficiency curves, the full-energy peak efficiency curve, the PT-curve and the LS-curve
introduced in Chapter Two. While the previous chapters discuss its performance for well-type
detection geometries and Marinelli beaker geometries separately, this chapter focuses on the
overall performance.

10.1 Introduction

It was at IRI in earlier years that first attempts were made to obtain both efficiency
curves required for point-source coincidence computations from a single y-ray spectrum.
Still earlier methods required independent measurements to obtain a full-energy peak
efficiency and a total efficiency (or peak-to-total) curve. The measurement of a full-energy
peak efficiency curve is still relatively easy, but the measurement of a total efficiency curve
requires yet more effort.

However, using an independently obtained peak-to-total curve for coincidence
summing calculations addresses a more fundamental problem. Typically, total efficiency
values obtained from direct measurements comply with the IUPAC definition, i.e. they are
defined as a number of counts relative to the number of emitted photons, rather than as
probabilities of detection. Total efficiency values to be used for coincidence summing
calculations should be defined in terms of probabilities, which are a lot harder to measure,
if at all. In Chapter Two, we saw that this thesis indeed uses the latter definition for the
total efficiency as well as for the full-energy peak efficiency rather than the ITUPAC one,
despite the measurement problem.

To overcome the measurement problem, the IRT method (in this thesis previously
referred to as Blaauw’s method) discards the idea that an independent method must be
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used to obtain the curves, and instead determines the curves from one single y-ray
spectrum, showing coincidence effects. This philosophy cleared the way for the definition
of a curve that certainly could never be measured independently at all, i.e. the linear-to-
squared curve’. This linear-to-squared curve is the essence of this thesis. It was atrived at
intuitively even before the theory of stochastic efficiencies desctribed in Chapter Two was
developed. The debugging of Monte Carlo software (Chapter Three) contributed greatly
to the insight required to atrive at the linear-to-squared curve, as well as to the concept of
stochastic efficiencies.

These aspects perhaps explain why nobody else arrived at the same idea eatlier, even
though the problem of coincidence summing in conjunction with self shielding had been
noted and had even been worked on by others before. As compared to e.g. Tien-Ko
Wang’s form factors!"), which also account for the difference between the product of two
volume-averaged efficiencies and the volume average of the product of two efficiencies
but must be computed for each peak and each radionuclide to fully characterize a
detector, the linear-to-squared curve is compact and hardly slows down the computation
of coincidence summing effects. Sima’s approach, where each radionuclide must be
submitted to Monte Carlo algorithms to obtain full-energy peak detection probabilities,
obviously is slower in the extreme.

10.2 Theory aspects

The aim of the work described in this thesis was to extend the existing theory of
coincidence summing effects for point sources to voluminous source cases. Therefore, it
was to take into account the variation of efficiency over the source volume. In addition, it
was to introduce a calibration method that was based on this extended theory. Like
Blaauw’s method, it was to use the theory to provide the general form of efficiency curves.
It was, however, to obtain the actual curve parameters from measurements showing
coincidence effects. This way, the self-validating character of Blaauw’s method was to be
preserved, and moreover, this allowed for curves that could be determined implicitly only.

The newly introduced method would have to cover well-type geometries as well as
Marinelli beaker detection geometries. For the method to be competitive, its inaccuracy
and imprecision were to be as low as those of the most accurate and precise conventional
methods, i.e. as low as those of radionuclide specific calibration methods. It was therefore
to yield activities with an accuracy of better than 1%.

In order to properly account for coincidence summing effects in voluminous sources,
Chapter Two developed the new concept of stochastic efficiencies. For voluminous

* For the direct measurement of a linear-to-squared curve, one would need a radionuclide that
simultaneously emits two photons of the same energy in random, uncorrelated directions. Fven the
simultaneous emission of two 511 keV photons in positron annihilation is of no avail because the two
photons are emitted in two opposite directions.
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sources, full-energy peak efficiencies and total efficiencies cannot be considered constant
throughout the source volume. Instead, for every single decay, they depend upon the
location of the decaying nucleus. Since this location is subject to probabilistic processes, it
is natural to view efficiencies as stochastic variables having means, variances and cross-
correlations. Having said that, Chapter Two introduced in a natural manner a third
efficiency curve that accounts for the variation of the cfficiency over the source volume
by relating the variance of the efficiency distributions to their mean. It turned out that this
third efficiency curve directly relates volume-averaged linear efficiencies to volume
averaged quadratic ones. Therefore it is called the linear-to-squared (or LS-) curve.

The practical use of the newly introduced LS-curve was somewhat hampered by the
appearance of cross-correlation coetficients in the applicable formulae. These coefficients
express the correlation between, on the one hand, the efficiency for a certain energy, say,
& at a random position within the source volume and, on the other hand, the efficiency
for a different energy, say &, but for exactly that same position. Strictly, one would need a
separate correlation parameter for every possible combination of energics. However, since
the efficiency values are related by position, it is clear that the correlation between the two
is large and positive. Therefore, all scparate parameters are replaced by a single patameter
p near 1. Using this approach however, care should be taken to first calculate summing-in
effects and summing-out effects separately while using a large and positive correlation.
Only as a last step, summing-in and summing-out effects can be combined, this time
taking the correlation large and negative, i.e. near -1.

10.3 Monte Carlo aspects

Throughout this thesis it was explicitly stated several times that the applicability of the
developed calibration methods should not rely on Monte Carlo calculations ot on other
volume integration routines, despite of their obvious advantage of the absence of need for
calibration radionuclides. This approach is not owing to the computational demands of
these methods. Although the time-aspect and possibly the complexity of these calculatons
might be a drawback when these methods ate applied today, tomorrow there will be faster
and user-friendlier computers that do the same computations in only one tenth of the
time.

The motivation for the independence on Monte Carlo calculations is much more
fundamental. To provide accurate calibration results, Monte Carlo based methods require
accurate knowledge of the detector- and source geometry and of source-matrix
composition. This knowledge includes the inner-dimensions of the detector such as those
of the detectors active volume. This information is hardly ever available, at least not upto
the accuracy needed. Therefore, Monte Carlo methods always must be calibrated
themselves for every new detector via a calibration measurement. If one does need a
calibration measurement after all, why not exploit this measurement to the fullest, like the
method desctibed in this thesis attempts to do.
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Chapter Three, however, does deal completely with Monte Carlo techniques. The
reason for the emphasis on these techniques lies not in their use in the application of the
methods itself, but rather in their development. Monte Carlo techniques made it possible
to test the internal consistency of the calibration methods. By using them, interfering
sources of (systematic) error like for instance not sufficiently known decay schemes, could
be completely eliminated, remaining only those introduced by the calibration methods.
This advantage is well illustrated in Chapter Six and perhaps even better in Chapter Eight:
As a first step, a set of efficiency curves and, independently, a bromine-82 spectrum are
calculated. Both the geometry and the bromine-82 decay scheme used with these
calculations are well defined. As a second step, the set of efficiency curves is used to
reproduce the spectrum. Since the decay scheme is well defined, it is beyond suspicion as
a source of error. Therefore, the second step gives great confidence in the consistency of
the developed theory. As a third step, a curve set resulting from a fit to the spectrum is
compared with the ‘true’ set. This step gives confidence in the quality of the fitting
procedures. Moreover, it enabled a quest for the optimal fitting procedure.

A second advantage of the use of Monte Catlo techniques is the possibility to
simulate events ot calculate quantities that would never occur or be measured in real-life
situations. An obvious example is the simulation of the detection of two simultaneously
emitted gamma quanta of exactly the same energy, used to calculate LS-ratios. Another
example is the calculation of PT-ratios that obey the definition of Chapter Two. (In this
respect, the reader is also referred to the introductory section of this chapter.)

Perhaps the most important aspect of the use of Monte Carlo techniques is the insight
it generated in complex scattering processes. The debugging of Monte Carlo software
showed very well how often a photon can undergo Compton scattering in the source
volume or in the detector volume before being totally absorbed by the photoelectric
effect. As such, it contributed greatly to the insight required to arrive at the concept of
stochastic efficiencies and to the definition of the LS-curve.

10.4 Well-type detector aspects

To apply voluminous source coincidence summing corrections to well-type detectors
might at first sight appear strange. After all, sources ordinarily counted in well-type
detectors are small enough to behave as point sources. However, well-type detectors
typically have no dead layer on the inside, and in some cases, the source matrix may
absotb low-energy photons to a significant extent. For these photons, the detection
probability depends on the exact location of the disintegrating nucleus within the source
and therefore, the source is indeed voluminous, at least for these low-energy photons.
Coincidence summing with their high-energy counterparts transfers the voluminous
nature to the entire y-spectrum.

Currently at IRI, well-type detectors are equipped with a high-Z lining that prevents
low-energy photons from being detected. That way, the voluminous nature of high-Z
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matrix sources is suppressed. This is, however, a rather unsatisfying solution since it
degrades detector performance. Firstly, while unlined well-types have a large area of
constant detection efficiency, lined well types show a gcometry dependency of the
detection efficiency on the source position in the well. This is demonstrated by
experiments described in Chapter Four. Secondly, while well-types originally were
introduced for their high (maximum) absolute detection cfficiency of almost 1.0 for
photons with energies around 100 keV, the lining considerably reduces maximum
detection efficiencies to values near 0.5. Finally, the lining leads to a somewhat higher
Compton continuum relative to the full-energy peak, that can obscure small peaks. This
latter effect is revealed by the slightly worse PC- or PT-ratio for lined well-type detectors,
as compared to non-lined ones in Chapter Five.

It is therefore that this thesis attempted to correct analytically for the voluminous
nature of some of the well-type sources. It applied the strategy outlined in section 10.3 to
develop such a method. First, the general theory from Chapter Two was expanded to
include effects of K-edges in photoelectric absorption processes. Then, its internal
consistency was verified by incorporating it in a calibration method which was applied to
Monte Carlo generated spectra. Finally the method was applied to experimental data.

The Monte Carlo based results from Chapter Six were obtained with an unlined well-
type geometry and two sources, a low-density, low-Z source and a high-Z tantalum
pentaoxide matrix source. They indicate that that it is possible to determine the
parameters required to characterize the sample-detector geometry from the measured
spectrum of a calibration radionuclide like terbium-160, to the point where coincidence
summing corrections with accuracies far better than the required 1 % can be made for
terbium-160 itself. The quality of the results will be optimal if the number of
disintegrations in the calibration source is known and kept constant in the fitting
procedure. However, the simulated erbium-171 spectra were not satisfactorily explained
from the curves obtained with terbium-160. Especially peaks in the low energy region near
100 keV show large statistically significant deviations.

The experimental results from Chapter Seven look very similar to the Monte Carlo
based ones. They were obtained using not only a non-lined well-type geometty but also a
lined one, using again both a low-density, low-Z source and a high-Z tantalum pentaoxide
matrix source. The high-Z source was measured only in the non-lined geometry. Again,
the terbium-160 spectra from all measurements were explained very well. Also spectra
from additional radionuclides like cobalt-60, bromine-82 and caesium-137 proved to be
no problem, but erbium-171 spectra did.

The failure of the method with erbium-171 occurs in all counting geometries, lined
and non-lined, for both types of sources, low-Z and high-Z, and in the Monte Carlo world
as well as in the real world. Chapter Six offers a first explanaton for the observed
discrepancy: It lies in the behaviour of the LS-curve as described in the last paragraph of
section 6.2.1. Only very few terbium-160 photons in the low energy region do coincide
and therefore only marginally determine the curvature of the LS-curve. The determination
in this region may simply be not accurate enough to fully explain low energy erbium-171
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coincidences. This explains, however, only discrepancies observed with the high-Z
tantalum pentaoxide sources.

Chapter Seven offers several expetimental explanations: Firstly, the decay scheme of
erbium-171 may be suspect, which is confirmed by applying Blaauw’s “proven-to-be-
accurate” method to the erbium-171 showing similar discrepancies between theory and
experiment. Secondly, at the low energies involved, thickness variations in the glass
sample holders may have played a part. Finally, physical phenomena such as the emission
of X-rays by the lining and/or the source matrix should have been accounted for in the
modelling, and/or the decay schemes of the radionuclides involved are not known well
enough. The X-ray emissions by sample matrix and detector lining were assumed to be
encompassed by the definition of total efficiency, but the resulting peaks in the spectrum
may coincide with others - the more complex the spectrum becomes, the higher the
likelihood of this happening.

While all these explanations might be very plausible in themselves, they ignore the fact
that the method fails with erbium-171 in all cases, including that uses the lined detector.
The only explanation offered by both Chapter Six and Chapter Seven together that does
account for the general nature of the problem is the following. The full-energy peak
efficiency curve might not be well defined in the low-energy region. In this context, the
reader is referred to section 2.2.1 which introduced an adapted version of the Gunnink
parameterization. Originally, Gunnink divides the efficiency curve in three regions:
<90 keV, 90 to 200 keV, and >200 keV. This work, however, uses only two regions,
hereby combining the regions below 200 keV. This may very well explain the observed
discrepancy in this region.

The obvious solution is to use Gunnink’s original parametetization of the low-energy
region of the full-energy efficiency curve. The researcher should, however, be aware that
Gunnink did not incorporate well-type detectors in his investigation and that therefore his
parameterization might not fulfil either. More research will still be required to establish
which radionuclides behave according to the theory developed here and which do not.
Unfortunately, more experiments in the counting geometry used in this thesis will be
impossible since the detector’s efficiencies changed drastically in a recent repair.

For the erbium-171 case, the agreement between experiment and theory is rather
unsatisfactory. However, employing the calibration methods described in this chapter
would lead to systematic errors in reported activides of only 0 to 3 % for simple
radionuclides such as caesium-137, depending on the counting geometry and the
radionuclide. It would lead to errors of 3 % for a complex case nuclides like bromine-82
and terbium-160, and up to 10 % only for complex radionuclides such as erbium-171.

In those cases where the radionuclide to be determined cannot be obtained in a
known amount in the matrix of interest, and the use of well-type is deemed necessary, the
procedures presented here currently are the only option for quantitative determination.
One should realize that systematic errors caused by true coincidence summing in well-type
counting geometries can easily amount to a factor of 2 to 3 for radionuclides with
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complex decay schemes. In that respect, the methods presented here certainly are an
improvement.

10.5 Marinelli beaker aspects

The value of developing voluminous source coincidence correction methods for

Marinelli beaker detectdon geometries is obviously very high. Marinelli-beaker geometries
are used much more often and in many more laboratories than well-type geometries, and
the possible impact of a method in such applications is therefore much larger than it
would have been for well-types even if I would have obtained the 1 % accuracy level.
For Marinelli beaker geometries, the general theory provided by Chapter Two could be
used without any modifications or expansions. The Monte Carlo based results obtained
with four Marinelli beaker geometries from Chapter Eight show that, to obtain accurate
results for voluminous sources, the use of a full-energy peak efficiency curve in
combinaton with a peak-to-total curve is not sufficient. In addition to these two curves,
indeed a third curve is needed that accounts for the variation of the efficiency over the
source volume, i.e. the LS-curve. In principle a bromine-82 spectrum can be used to
determine all three curves. Moreovert, the spectrum interpretation results are slightly better
using curves obtained from a bromine-82 spectrum than using the curves obtained by
direct calculation. This demonstrates the presumption expressed in the introduction that
methods correcting for coincidence effects should obtain their information from these
effects.

If the method is to be used in real-life situations, the number of disintegrations of the
bromine-82 during the calibration measurement should be accurately known. The
interchangeability between the number of disintegrations and the parameters describing
the LS-curve causes the calibration method to produce inaccurate results. Furthermore,
the validity of the curves based on a single bromine-82 measurement is questionable
below 92 keV. However, for energies lower than 92 keV, the method can very well
provide PT- and LS-curves if an accurate full-energy peak efficiency curve is obtained
from a measurement of a source emitting non-coincident y-rays covering the whole energy
range of interest. Thus, the method would require at most two calibration measurements,
or a single measurement of a suitable mixture of radionuclides. Typically, it allows for
activity measurements results that are accurate within 1%.

These conclusions are supported by the experimental results of Chapter Nine.
Although the experiments were performed only for a 1¢, water-filled Marinelli beaker,
there should be no fundamental limitation to extend the conclusions to other Marinelli
beaker geometries, as long as the attenuation coefficient, 4, of the sample material is
smaller than 1 cm-L.

The model that has been developed enables accurate calculation of peak areas
obtained from the measurement of voluminous sources, specifically Marinelli beaker
sources. In addition the calibration method described can obtain all information necessary
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to apply this model. In principle the method allows for the determination of all
information from one calibration measurement. Although bromine-82 has been chosen
for the calibration, other radionuclides may also be suited for this purpose. Suitable
radionuclides should have a decay scheme that is complex enough to show coincidence
effects covering a large energy range, yet is simple enough to allow rapid fit sessions.
Furthermore, it should allow easy homogenization with different kinds of sample material.
Caesium-134 is an example of such a radionuclide.

If bromine-82 is used as a calibration radionuclide, curves resulting from a single
calibration measurement are questionable in the energy region approx. below 200 keV. If,
on the other hand, an accurate full-energy peak efficiency curve is obtained from a
supplementary measurement, then the use of bromine-82 can very well provide accurate
PT- and LS-curves. Thus, the method would require at most two calibration
measurements, or a single measurement of a suitable mixture of radionuclides. It allows
for calibrations that are as accurate as radionuclide specific calibrations and is considerably
less laborious.

10.6 Conclusions

The approach developed in this thesis to analytically account for coincidence
summing effects in combination with sample self-attenuation did meet the majority of
criteria that Chapter One set for it. It certainly takes the variation of the efficiencies over
the source volume into account. It provides a calibration method based on a parametric
model while the actual parameters are obtained from measurements showing coincidence
summing effects. It is applicable to point sources as well as voluminous sources.
Furthermore, for Marinelli-beaker geometries, the accuracy of the method is indeed better
than 1 %.

For well-type detection geometries however this aim is not met. While the majority of
radionuclides, including terbium-160 and bromine-82 can be reproduced with accuracies
better than 3 %, erbium-171 showed to be a problem. Further investigation should
demonstrate if a more accurate parameterization of the full-energy peak efficiency curve
below 200 keV might be a solution. Notice though that the lining did not solve the
erbium-171 problem either.

On one hand, the worse performance of the method in the well-type case is a pity,
because the work as a whole was started in order to be able to remove the lining from
well-type detectors and dispense of its negative effects shown by Chapter Four and
Chapter Five. On the other hand, Marinelli-beaker geometries are used much more often
and in many more laboratories than well-type geometries, and the possible impact of the
method in such applications might therefore be much larger than it would have been for
well-types even at 1 % accuracy. In fact, this is already being demonstrated by the fact that
PerkinElmer’s ORTEC company incorporated the algorithms developed here in their

popular y-ray spectrometryprogram GammaVision version 5.2, released after Quality
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Assurance testing in January 2001. Also as a consequence of this work, the company
Analytics Inc. in Oak Ridge has begun the manufacturing process of voluminous
calibration sources containing coincidence-rich ceasium-134 as well as some of the well-
known, coincidence-free calibration radionuclides, in October 2000.
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Appendix A

A stochastic approach to Py

A.1 Introduction

The implementation of the stochastic approach introduced two specific assumptions.
Firstly, efficiency terms (€ - ) of higher order are neglected and secondly, the correlation
between two factors & and € are taken close to 1 while the correlation between two

factors €& and (1-g,) are taken close to -1. The implications of these assumptions for
equation (2.19) are outlined in this appendix, vielding a simplified and workable
expression for Pg. The original exptession for Pg yields

pE%J 3 {PCI_LIS,- f[ca—ey-)}dh > {Pl‘[a ﬁil—eg>}.(2-l9>

Cascades i=1 Cascades

The task this Appendix is facing with is to write the mean product on the left hand
side of (2.19) as a product of its mean constituting factors, i.e. as a product of mean
efficiencies. Therefore, we will first develop the necessary expressions for the mean value
of a product of two stochastic variables.

The product of two stochastic variables, & and €2, with mean p and po respectively
and scaled variance 1 and M3 respectively, has mean Hi2 of

wo = (1+pnm, ) mu, (2.25)

. 2
and scaled variance M;; of

N &N’ +n; +2eMm,, (227)
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where the latter was found using a Taylor expansion (2.26) about the point (i, K2) and
using only linear terms. If, in the latter expression, we set p to 1, this expression
transforms to

T1122 & (m '*’nz)z,
or
M, ®N; +M,.

We can now add a third stochastic variable, &3, to the product by treating the product
of &1 and & as a single factor &12 with mean and scaled variance 12 and M5, respectively,
and taking p3 and M3 as mean and scaled variance for €s. For m1, 2 and M3 smaller than 1,
this yields for the mean of the product of three stochastic variables, p123

Pz = (L+ Py ikt = L+ pryms +pnpms )L+ prymy ) iiman,

@an
=(1+pnn, +pnm; + pPNyny) tap; + OM*)

where the higher order 1-terms are accounted for by the Q-operator. The (square root of
the) scaled variance of the product can be derived in a similar manner as for the product
of two variables:

My &N +N, +M3 A2)

When neglecting the higher-order terms, for a product of # stochastic vatiables,
€1...En, (A 1) generalizes to

By n z[HPZme]HHi s A3)

i=1 j=1 i=1

and (A 2) generalizes to

M =2 M (A4
i=1

A.2 Summing-in factor

We can distinguish two main factors in the expression for P, (2.19), namely

Il (A 5)
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Appendix: A: A stochastic approach to PE.

and

Ne-Me

H(l—e,j)A (A6)

of which (A 5) accounts for summing in effects. Using the general expressions (A 3) for
the mean value of a product of efficiencies, the mean value of (A 5) can be written as

A

1, Me M M,
I1e Z(HPZZM,]HM”. A7

i=1 i=l j=i i=|

The scaled variance of this product can be derived from (A 4). For this expression we had
to approximate the correlation coefficient p to 1 in the scaled variance calculations. In
section 2.3.2, it was argued that this is a valid approximation for the case of stochastic

efficiency variables. Furthermore, we had to neglect n-terms of order 4 and higher, which
is a simplification that is of the same order of the one used in the Taylor expansion (2.26).

A.3 Summing-out factor

The mean value of the product (A 6), of factors (1 - &) accounting for summing out

effects owing to all photons in a specific cascade can be written in a similar manner as the
product (A 5), using (A 3) and (A 4). Recalling that

E[l._et]:l_ua,t ’
var [1-¢ ]= ol and thus (2.24)
2
L=l
R b

and again setting the correlation parameter p in the scaled variance calculations to 1 and
neglecting M-terms of order 4 and higher, the mean of the product (A 6) is given by

Neeme Ne-Mc Ne=M Ne=M,
H(l—eu)z[l'f‘p Z] Zn:njj H(l_p'st,i)a (A 8)
i= i= J=i

i=1

while the scaled variance of this product, using (A 4) and (2.24), is given by

N -M. ’ 2
¢ u'i:l.i
nsumming—our = Zl ni 1_“2 ] . (A 9)
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A.4 Combination

The final step in the derivation of a general simplified expression for Pg is combining
the two factors that account for summing-in and summing-out effects, (A 5) and (A 6),
respectively. We can use expression (2.25) in which for g1 we insert expression (A 3), for
p2 we insert (A 8), for M1 we insert (A 4) and for n2 we insert (A 9). Following the
approach outlined in section 2.3.2 we use -p as our correlation parameter. Thus
expression (2.19) transforms to

P, = VJ 3 {P I1e Ni’[(l s,‘k)}dV

Cascades i=1
- Hex 2.28
1-p n) . (2.28)
{ (Z; [ % 'P‘:k J}

b Cascades Mc M Ne—-M: Nc-Mc Nc-Mc 1] "
{l+pzzn,~n,-} {1+p 2 an,} Hu“ I1 [ —]

i= j=i k=1 I=k k=1 %

In this expression the summations and products over index / (and j) are taken over all
photons in a specific cascade that constitute the full energy of the peak at energy E.
Hence, they account for summing-in effects. The summation and product over index £
(and /) are taken over all other photons thus accounting for summing out effects.

The application of this expression requires knowledge of the mean peak efficiency
values Mg and the peak-to-total ratios 7, which relate the mean peak efficiency values i, to
the mean total efficiency values P, both as a function of energy. Both the mean full-
energy peak efficiency curve and the (mean)peak-to-(meanjtotal curve can be described
using the same parametetizations as in the non-voluminous case. In fact, by defining them
as mean curves, they are identically defined as the non-voluminous ones. The voluminous
nature of the source is described by the scaled variance 1, also as a function of energy,
and by the constant p. 1 can be parameterized indirectly by the newly introduced Znear-to-
squared curve (2.23).

The validity of (2.28) is limited by the constraint on M, 1 < 1, set by (A 1). Recalling
the definition of 1 this means that the standard deviation of the distribution of efficiency
over the source should not exceed the mean value. Since efficiencies are positive valued
by definition, this constraint is met by the majority of sources.
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Weighted mean, g-scores and y2-values

B.1 Spectrum comparison

Much of the comparison results of this thesis are presented in terms of g-scores and

X:2-values. For two instances (A4 + G.4) and (B + op) of the same quantity, the g-score can
be written as

A-B

R @31
Jo+o;

If the two instances are realizations of a normally distributed stochastic process, they are
considered equal (on a 95% confidence level) if the g-score lies between -2.0 and 2.0.

For the comparison of a range of instances (e.g. peak areas of a spectrum) the
individual squared g-scores can be summed and divided by their total number, yielding a
X2-value. For two series of instances (4¢* 6.44) and (Be® ope) the previous can be
written as

7= (B2)

If the series of instances stem from normal distributions, the expectation of the resulting
XA2-value is unity. The variance of the y2-distribution depends on the number K of
squated g-scores in the summation. Table B1 shows the cumulative p2-distribudons for

different values of K.
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‘Table B1:
x P(r? <x) P(xA<x) P(r?<x) Py < x) Py £ x)
K=5 K=10 K=20 K =50 K =100
0.1 0.0079 0.0002 0.0000 0.0000 0.0000
0.2 0.0374 0.0037 0.0000 0.0000 0.0000
0.3 0.0869 0.0186 0.0011 0.0000 0.0000
0.4 0.1509 0.0527 0.0081 0.0000 0.0000
0.5 0.2235 0.1088 0.0318 0.0012 0.0000
0.6 0.3000 0.1847 0.0839 0.0112 0.0005
0.7 0.3766 0.2746 0.1695 0.0532 0.0098
0.8 0.4506 0.3712 0.2834 0.1568 0.0703
0.9 0.5201 0.4679 0.4126 0.3262 0.2468
1.0 0.5841 0.5595 0.5421 0.5266 0.5188
11 0.6421 0.6425 0.6595 0.7090 0.7678
1.2 0.6938 0.7149 0.7576 0.8428 0.9156
1.3 0.7394 0.7763 0.8342 0.9246 0.9765
14 0.7794 0.8270 0.8906 0.9676 0.9949
1.5 0.8140 0.8679 0.9301 0.9874 0.9991
1.6 0.8438 0.9004 0.9567 0.9955 0.9999
1.7 0.8693 0.9256 0.9739 0.9985 1.0000
1.8 0.8909 0.9450 0.9846 0.9996 1.0000
1.9 0.9093 0.9597 0.9911 0.9999 1.0000
2.0 0.9248 0.9707 0.9950 1.0000 1.0000
2.5 0.9715 0.9947 0.9998 1.0000 1.0000
3.0 0.9896 0.9991 1.0000 1.0000 1.0000
3.5 0.9964 0.9999 1.0000 1.0000 1.0000
4.0 0.9988 1.0000 1.0000 1.0000 1.0000
45 0.9996 1.0000 1.0000 1.0000 1.0000
5.0 0.9999 1.0000 1.0000 1.0000 1.0000

B.2 Spectrum interpretation

The theory presented by Chapter Two of this thesis was validated repeatedly for
different geometries by interpreting the simulated spectra with respect to the number of
disintegrations IN. This number was then compared to the real number Nie used in the
simulation, or in the measurement. The calculation of N also produced a y:>-value.

The number of disintegrations was calculated using the Pg-values from
Equation (2.19) together with the cutves to be validated. The areas Ar of the peaks in the
spectrum were divided by their corresponding Pg-values. Thus, for each peak, a
corresponding number of disintegrations Ng was obtained. The reported number of
disintegrations N now is the weighted average of the number of disintegrations associated
with each peak. The standard deviation of the reported number of disintegrations N is
found from the vatiation of the individual NEg-values,. Summarizing
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A, 64

N, =-%; 6N, =—E%L

P We=TE ®3)

and
Z wljl\'rxzz Z w N ’
E — E_.
Z w.N, 1 Z wy; Z L 1

N="te—; 8N = - e =
! z w), V n—1 W ON,.’ B4

5

where the summations are taken over all peaks and Kis the total number of peaks.

147






Appendix C

Decay schemes

The decay schemes presented in this appendix are extracted from {1]. The nuclear decay
data listed in the tables is obtained from the IAEA Nuclear Data Centrel?l.

£
52714y X
£ 90 P &
= 60 oPF &
2760 Xy ge ¢
1Q, =2823.9 SR Ay &
| B DL @
! SASINGIE
199925% 75 a4t VRS OS ° 2505765 g3
_<00022% 1337 2% TTISY 215884 g5ob
| &
| 0.057% 150, 2t 4 _ 4% 1332516 o743 00
LM L ; 0 9 stable
2gNi

Gammas for Ni: €Co - decay (5.2714 y)

E, Eevel It I(y+ce)t T, a

34693 7 2505.766 7 0.0076 5 030 ps 9

826.28 9 215882 5 0.0076 8

1173.237 4 2505.766 7 99.9736 7 99.9913 5 0.30 ps 9 1.77-104 5
1332.501 5 1332.517 5 99.9856 4 99.9989 2 09ps 3 1.33:10+ ¢
2158.77 9 2158.82 5 0.00111 78

2505 2505.766 7 2.0-106 4 0.30 ps 9

tFor absolute intensities per 100 decays, multiply by 1
1 Deduced from intensity balance
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e B |0 | RS e e
i — g Y — l=nit= J_Iﬂj;é’ 182028 57 bo
02% . >98, 2+ i) o l |4 ‘ ';",?if;\é" 1474998 _y5
| <
BIRRIIE
04% >0z, 2* ' & 776520 4 45 ps
!
L a2 l 8 stable
36Kr
Gammmas for 32Kir: 32Br 8- decay (35.30 h)
E, Eeva Lt I(y+ce)* Ty a
92.190 76 2648.362 5 0.86 4 0.115
100.89 8 2648.362 5 0.084 8 054
129.29 3 2556.178 13 0.036 7 021175
137.40 5 2094.011 5 0.1822 017 12
179.8 2 2828.11 3 0.012 9 0.07 4
221.480 2 2648.362 5 27118 0.025 15
273480 8 2094.011 5 0.96 3 0.0098 4
33290 3 2426.882 6 0.108 5 0.009 4
345.62 1820.530 5 <0.001
401.16 6 2828.11 3 0.0109 9
554.348 2 2648.362 5 84.7 &
599.5 3 2556.178 13  0.016 9
606.37 2426.882 6 1.45
619.106 4 2094.011 5 520 5
698.374 5 1474.899 5 3413
734.12 2828.11 3 <0.01
735.64 7 2556.178 13 0.091
776.517 3 776.521 3 100.0 70
827.828 6 2648.362 5 28.77 29
952.02 3 2426.882 6 0.44 2
1007.59 3 2828.11 3 1.522 15

1 For absolute intensities per 100 decays, multiply by 0.835
1 Deduced from intensity balance
a Placement of transition in this level scheme is uncertain
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Gammas for #2Kr: 82Br 8- decay (35.30 h), cont.

E, Fieve It I(y+ce) t T a
1044.002 5 1820.530 5 3263
1072.9 1 2547.60 7 0.095 75
1081.29 5 2556.178 13 0.74 2
1099.9 2 2920.44 20 0.007 3
1174.0 4 2648.362 5 0.021 9
1180.1 2 1956.65 5 0.103 9
1317.473 10 2094.011 5 31.7 3
1474.88 7 1474899 5 19.53 20
1650.37 +4 2426.882 6 0.889 9
1779.66 2 2556178 13 0.136 2
1871.6 2 2648.302 5 0037
1956.8 7 1956.65 5 0.0468 73
t For absolutc intensitics per 100 decays, multiply by 0.835
# Deduced from intensity balance
& 106.65 d
$ T
Fef o Y *
& 3 & Qg =3622.6
eS8 ¥ o ro"36228
. S LOF o
01ans 3 S oo VS § 3584.783 0.065% 69
013ps TSR oA & | 3218507 0028% 047
0.78 ps L,,AL‘ %J_Qr'f"-’v,wv? 2734135 944% 6.9 -
ote2ps 2 e 48 1836.087 55% 0481 |
stable L 1 L 8'8 9
3ssr
Gammas for 88Sr: 88Y B+(EC) decay (106.65 d)
E, Elevel It Iiytce)t T, a
850.6 8 3584.7 8 0.066 73
898.042 3 2734130 13 944 3 0.00031
1382.2 10 3218.6 9 0.021 6 0.00035
1836.063 12 1836.084 12 100.0 3
273405 2734130 713 0727
3219.7 20 3218.6 9 0.0071 20

1 For absolutc intensities per 100 decays, multiply by 0.9924

1 Deduced from intensity balancc
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'+

YN 133p, +
e & Ba ©
S o8 56°°
e':?”,g'??a%’ & Q5174
x5 t
< . N g28 Ko asors se% 66 |
150 ps o? " & P |
2ps 325 TTTRTS " oF & wmusili% a0
CTTT &€ s
Pl & e‘?
! | g
190ps 824 2| SV & 160.614 _<0.3% >10.7 |
6.27 ns 512* R {“3 80997 <3%  >99 |
stable 12 1 r ; 3 L] ]
55C5

Gammas for 133Cs: 133Ba ¢ decay (10.52 y)

T,

E, Ejevel It I(y+ce)t a
53.1625 6 437.0111 9 2199 22 <150 ps 6.0 3
79.6139 13 160.6113 70 2626 172 ps 4 170 6
80.9971 712 80.9972 8 34.06 27 6.28 ns 2 1.72
160.6109 77 160.611370  0.6458 172 ps 4 0.296 3
223.2373 14 383.8487 & 0.450 4 42ps 11 0.098
2763997 13 437.0111 9 7.164 22 <150 ps 0.0569
302.8510 6 383.8487 & 18336 42ps 11 0.0438
35601346 43701119 620519 <150 ps 0.0255
383.8480 72  383.8487 & 8.94 3 42 ps 11 0.0203

1 For absolute intensities per 100 decays, multiply by 1
# Deduced from intensity balance

152




Appendix: C: Decay schemes

2.062y &
’ 2 Qs
~ 134 Sy &
5 SES L
Qg =2058.7 ESET &858 o
99.9997% IOFY SOV Xy o8
(2740% 65, 4 VY N PV ok 1969.87
T oS S e
248% 97,3 | NS NS S Y 164339 75
T0m% 89, 4 _ v 15 S0 & 1400.61 ¢ g5 s
045% 115, 2% v x_ an% & 1167.939 3¢
&
0.008% 141, 2% v vov S 604.705 5 4
i
U 13i 1 9 stable
sgBa
Gammas for 134Ba: 134Cs 8- decay (2.062 y)
1:‘1 Eleva IYT I(Y+cc) i T, o
2326 @ 1400.592 4 <0.0011 0.83ps 9 0.104
242738 & 1643.336 4 0.0272 30 78 ps 21 0.088 2
326.589 13 1969.924 4 0.0162 70 0.037 2
475.365 2 1643.336 4 1.486 10 78 ps 21 0.01139 4
563.246 5 1167.970 3 8.354 0.00727
569.331 3 1969.924 4 15.38 6 0.00956
604.721 2 604.7233 19 97.62 3 0.00599
795.864 4 1400.592 4 85.53 4 0.83ps 9 0.00305
801.953 4 1969.924 4 8.69 4 0.00300
1038.610 7 1643.336 4 0.988 4 78 ps 21 0.00208 9
1167.968 5 1167.970 3 1.789 7 0.00131
1365.185 7 1969.924 4 3.014 12 0.00096

# Deduced from intensity balance
@ Placement of transiton in this level is uncertain

T For absolute intensities per 100 decays, multiply by 1
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Appendis: C: Decay schemes

Gammas for 160Dy: 0Tb - decay (72.3 d)

B Eieva Lt Iiy+ee)t T, p
86.7882 4 86.7882 4 437 4 202608 12 4.69
93919 6 1358.673 5 0.1886 270 ns 14 347
176.49 3 1535157 23 0.0205 77 0.364
197.0352 11 2838236 72  17.229 103 ps 5 0.250
2156464 12 1264754320 13355 <10 ps 0.0400
230628 13 1386439 19  0.268 3 0.0336
237.64 9 1286.695 24 0.020 7
23976 1288.67 3 0.007 3 0.131
2425 8 1398942 23 0.025 3
246489 16 153515723 0.069 3 0.0283
297.3b 581.1 7 0.031 16 0.0667
208.5800 79 1264754320 868 6 <10 ps 0.0174
300.561 15 13586735  2.867 12 2.70 ns 14 0.0160 7
337.32 3 1386.439 19 1.1279 0.0132 3
349.92 11 1398.942 23 0.048 3
379.41 8 1535.157 23 0.047 2
30251426 13586735 4443 2.70 ns 14
432.66 12 1398.942 23 0.077 3
486.06 5 1535157 23 0.281 5
682.31 4 966.1738 18 1.98 3
707.6 10 1288.67 3 0.033 17
765.28 4 1049.1079 22 7.11 4
872.03 6 1155.815 21  0.723 12
879.383 3 966.1738 18 100.0 2
962.317 4 1049.1079 22 32.6 3
966.171 3 966.1738 18 83.4 4
1002.88 4 1286.695 24 3.45 2§

1005.0 10 1288.67 3 0.13 3§

1069.09 5 1155.81527 03325

1102.60 3 1386.439 19 1.932 71

1115.12 3 1398.942 23 5205

1177.9624 1264754320 49.42 <10 ps
1199.89 3 1286.695 24 7.924

125127 5 1535157 23 0.352 3

1271.880 8§ 13586735 24737 270 ns 14
1285.58 10 12855970  0.0514

1299.3 3 1386.439 79 0.0181 78

1312.14 4 1398.942 23 9.51 12

1468.6 3 1555.8 2 0.0019 5

1556.6 4 1555.8 2 0.0016 2

t For absolutc intensities per 100 decays, multiply by 0.335
 Deduced from intensity balance
b Placement of transition in this level scheme is uncertain

155



Epilogue

7.516h

X

o,
%
&0
J@&ww
s 2%
2% , 0
Nsb«g v,cw _ hn«e
567 00
£ 00,9
u.&w\ 0
‘5% u
Wy
[
L
I~
@
A&
3
)
[SHI)
v Nkg
-3
w2 .
=0 i
~NO L gl
- a SO
o So
" )

3/2% 512,712+
T2)*
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83
75
71

0.011%
0.52%
219%

92

0.029%

0.044%

0.19%

az+
/73

8.7
~9.7

~0.02%

9iz-

64, 12

94.4%
0.020%.

902t

10.8',

S8y
ot

13Tm

2.3% !

1296.4
285.0
1225.7

13911

1400.6

998.6
912,99

822.4
737.44

675.86

635.57 1 26 ns

520.30
424.950 5 50 g

.Né)’

129.042
116852 4100°
5029 4.77 ns

192y
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Gammas for "'T'm: 17Er - decay (7.516 h)

Ele\'cl

Tw

E, It I(y+ce)t a
5.025 6 5.028 5 907 31 477 ns 8 1408 55
12.385 8 129.044 6 0.305 78 824 415 ps 20 268
85.6 1 998.6 1 0.60 4 5.01
111.621 4 116.653 5 2058 55ps 73 2.31
116.656 6 116.653 5 23.06 55ps 13 1.74
124,017 4 129.044 6 91 3 415 ps 20 1.39
166.4 3 Unplaced

175.63 4 913.01 4 0.899 0.643
197.7 2 326.88 70 0275 0.463
2101 2 326.88 10 ~0.07 0.223

210.60 3 635.56 3 64219 1.26 ns 6 0.0472
237.14 4 913.01 4 3.02170 0.278
26142 998.6 1 <0.2

27743 5 913.01 4 582 0.175
286.5 2 1285.0 7 ~0.08 0.167
295.901 14 424,948 12 289 8 2.60 ps 2 0.0199
308.291 718 424948 12 644 16 2.60 ps 2 0.0180
36291 14 998.6 1 0.197 11 0.0893
371.96 9 1285.0 7 2.57 10 0.0804
419.9 3 424948 12 0.834 260 ps 2 0.207
4249 5 424,948 12 0.224 23 2,60 us 2 0.0864
455.6 2 Unplaced 0.06 2

487.9 2 913.01 4 0.052

49542 82242 0.02 7

506.9 6 635.56 3 0.227 20 126ns 6 0.0376
519.2 6 635.56 3 0177 16 126 ns 6 0.0353
5478 5 1285.0 7 0174

559.5 4 675.87 6 0.466 19 0.0292
573.52 998.6 1 0.098 15

586.0 2 913.01 4 0.04 2

608.6 2 737.39 5 ~0.37

609.0 2 1285.0 7 ~0.2

621.03 23 737.39 5 0.89 3 0.0224
630.7 2 635.56 3 0.0571 126 s 6

670.7 2 675.87 6 2525 0.0183
671.72 998.6 1 0225

676.1 3 675.87 6 2856 0.0180
693.9 5 82242 0.150 76

705.8 2 82242 0.124

732.53 73739 5 0.976 24 0.0148
745.0 5 Unplaced 0.066 8

767.82 Unplaced 0.045 5

784.09 17 913.01 4 2405 0.0118 4

t For absolute intensities per 100 decays, multiply by 0.100
1 Deduced from intensity balance
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Gammas for "'T'm: "Er B- decay (7.516 h), cont.

Ey Elevel I y t I (’Y+CC) Ty, [24
796.55 13 913.01 4 6.40 13 0.0105 6
860.0 2 1285.0 7 0.0150 24 0.00191
869.7 3 998.6 1 0.555 0.00940
87152 1296.4 2 0.20 5

882.0 4 998.6 7 0.385 719 0.00929
907.7 4 913.01 4 635173 0.00828
912,65 913.01 4 0775

966.1 4 1391.1 4 0.264 8

976.2 5 1400.6 3 0.007 3

994.0 5 998.6 1 0.006 3

1051.0 5 Unplaced 0.004 2

1096.9 8 1225.7 4 0.0106 79

1109.0 5 1225.7 4 0.0679 21

1156.0 5 1285.0 7 0.0060 75

11684 5 1285.0 7 0.0184 715

11729 5 Unplaced 0.008 3

11820 5 Unplaced 0.003 2

12205 8 1225.7 4 0.028 2

127125 1400.6 3 0.0034 15

1279.9 5 1285.0 7 0.025 2

12844 5 1285.0 1 0.024 2

13955 5 1400.6 3 0.028 8

1400.5 5 1400.6 3 0.025 1

tFor absolute intensities per 100 decays, multiply by 0.100
+ Deduced from intensity balance
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Advanced y-ray spectrometry dealing with coincidences and attenuation effects

In y-ray spectrometry, the use of highly cfficient detectors and detection geometries
introduces coincidence summing effects: Two or more y-quanta emitted from the same
nucleus can both interact with the detector within a very short time frame, not allowing
the detector to distinguish between them. As a result, the detector treats them as a single
interaction, the energy transfer being the sum of the transfers of the individual
interactions. Such count-rate independent coincidence effects can setiously affect a y-ray
spectrum.

Coincidence effects are most prominent when using well-type detectors. They can be
accurately modelled if the source can be considered as a point, i.c. if the detection
cfficiency does not vary over the source volume. However, in 1978, de Bruin ef /.
[Nucl. Instr. and Meth., 159 (1979) 301] found that owing to coincidence effects, the areas
of high-energy peaks in a y-ray spectrum were influenced by the attenuation of low-energy
photons in the sample, and therefore were sample-matrix dependent. As a consequence,
the source cannot be considered as a point, and the mathematical modelling of
coincidence summing is seriously hampered. Coincidence effects therefore necessitate
time-consuming radionuclide specific calibrations.

Also when using Marinelli beakers, detection efficiencies generally are high enough to
give rise to coincidence summing. Evidendy, Marinelli beaker sources cannot be
considered as point sources either. Therefore, coincidence summing modelling for
Marinelli beaker detection geometries is not trivial. Like well-type geometrics, Marinelli
beaker geometries are usually calibrated specifically for each combination of radionuclide
and sample-matrix composition of interest.

In the y-ray spectrometry community, coincidence summing effects generally are
considered as a problem that preferably should be avoided, or else should be ‘corrected for
Blaauw [Nucl. Instr. and Meth., A332 (1993) 493], however, does not regard them as
disturbing but exploits them as a source of informatdon used for the calibration of point-
source detection geometries. Indeed, instead of being hampered by coincidence effects,
Blaauws method actually relies on coincidence effects to occur. Specifically, his method
uses a general parametric model that describes the formation of a y-ray spectrum,
accounting for coincidence summing effects. Then it determines the actual parameters by
fitting them to a calibration spectrum that shows coincidence effects. In this way, his
method can be considered self-validating, meaning that possible etrors or simplifications
made in the model are either automatically corrected for, or show up by bad fit results.
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However, Blaauws method fails when applied to voluminous source geometties
[INucl. Instr. and Meth., A385 (1997) 330]. The work described in this thesis therefore
develops a similar method that does include voluminous-source coincidence summing
effects. Like Blaauws method, it uses a general parametric model that describes the
formation of y-ray spectra, taking into account the combination of coincidence effects and
sample self-attenuation effects. The actual calibration of a voluminous source detection
geometry is performed by fitting the model parameters to a calibration measurement.

After Chapter One of this thesis elaborates more on the history of the problem and it
specifies the aims of the work described in this thesis, Chapter Two develops the general
parametric model. It provides a parameterisation of the full-energy efficiency curve, based
on the one by Gunnink [J. Radioanal. Nucl. Chem., Articles, 160 (1992) 305], and of the
peak-to-total ratio, based on the one commonly used. For voluminous sources, these
curves describe the mean full-energy peak efficiency and the mean peak-to-total ratio over
the source volume as a function of energy. However, Chapter Two argues that, if the full-
energy peak efficiency varies over the source volume, coincidence summing calculations
should not only make use of mean efficiencies, but should take into account their
variation as well. In the general parametric model, this variation is described by third
newly introduced curve: the /inear-to-squared curve.

The derivation of this linear-to-squared curve is based upon the following philosophy.
For voluminous sources, detection efficiencies cannot be considered constant throughout
the source volume. Instead, for every single decay, they depend upon the location of the
decaying nucleus. Since this location is subject to probabilistic processes, it is natural to
view them as stochastic variables. In this context, the distribution over the source volume
of the full-energy peak efficiency as a function of energy can be described by its moments,
of which the first and the second are its mean and its variance. Further development of
this philosophy in Chapter Two shows that it is more convenient to use a scaled variance
of the efficiency, instead of the variance itself, hence the name Anear-fo-squared ratio.

Chapter Three of this thesis emphasizes Monte-Carlo techniques. Monte-Carlo
techniques made it possible to test the internal consistency of the proposed method. By
using these techniques, interfering sources of (systematic) error, e.g. insufficiently
accurately known decay schemes, could be completely eliminated, remaining only those
introduced by the calibration method itself. This advantage is well illustrated in
Chapter Six and perhaps even better in Chapter Eight: As a first step, a set of efficiency
curves and, independently, a calibration spectrum are calculated. Both the geometry and
the decay scheme of the calibration radionuclide used with these calculations are well
defined. As a second step, the set of efficiency curves is used to reproduce the spectrum.
Since the decay scheme is well defined, it is beyond suspicion as a source of error.
Therefore, the second step gives great confidence in the consistency of the developed
theory. As a third step, a curve set resulting from a fit to the spectrum is compared with
the ‘true’ set. This step gives confidence in the quality of the fitting procedures. Moreover,
it enabled a quest for the optimal fitting procedure.
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Chapter Four and Chapter Five provide a justification for the work on well-type
detectors. Currently at IRI, well-type detectors are equipped with a high-Z lining that
prevents low-energy photons from being detected. That way, the voluminous nature of
high-Z matrix sources is suppressed. This is however a rather unsatisfying solution since it
degrades detector performance. Firstly, while unlined well-types have a large arca of
constant detection efficiency, lined well-types show a geometry dependency of the
detection efficiency on the source position in the well. This is demonstrated by
experiments described in Chapter Four. Secondly, while well-types originally were
introduced for their high (maximum) absolute detection efficiency of almost 1.0 for
photons with energics around 100 keV, the lining considerably reduces maximum
detection efficiencies to values near 0.5. Finally, the lining leads to a higher Compton
continuum relative to the full-energy peak, which can obscure small peaks. This latter
effect is revealed by the slightly worse PC- or PT-ratio for lined well-type detectors, as
compared to non-lined ones in Chapter Five.

Chapter Six and Chapter Seven describe the performance of the calibration method
for a well-type detection geometry, to Monte-Carlo simulated spectra and real spectra,
respectively. The Monte Carlo based results from Chapter Six were obtained with an
unlined well-type geometry and two sources, a low-density, low-Z source and a high-Z
Ta20s matrix source. They indicate that it is possible to determine the paramecters required
to characterize the sample-detector geometry from the measured spectrum of a calibration
radionuclide like terbium-160, to the point where coincidence summing corrections with
accuracies far better than the required 1 % can be made for terbium-160 itself. However,
the simulated erbium-171 spectra were not satisfactorily explained from the curves
obtained with terbium-160. Especially peaks in the low energy region near 100 keV show
large stadstically significant deviations.

The experimental results from Chapter Seven are very similar to the Monte Carlo
based ones. They were obtained using not only a non-lined well-type geometry but also a
lined one, using again both a low-density, low-Z source and a high-Z Ta;Os-matrix source.
The high-Z source was measured only in the non-lined geometry. Again, the terbium-160
spectra from all measurements were explained very well. Also spectra from additional
radionuclides like cobalt-60, bromine-82 and caesium-137 proved to be no problem, but
erbium-171 spectra did.

The failure of the method with erbium-171 occurs in all counting geometries, lined
and non-lined, for both types of sources, low-Z and high-Z, and in the Monte Carlo world
as well as in the real world. Both Chapter Six and Chapter Seven offer several
explanations. While all these explanations might be very plausible in themselves, they
ignore the fact that the method fails with erbium-171 in all cases, including the one that
uses the lined detector. The only explanation offered by both Chapter Six and
Chapter Seven together that does account for the general nature of the problem is the
following. The full-energy peak efficiency curve might not be well defined in the low-
energy region. Originally, Gunnink divides the efficiency curve in three regions: <90 keV,
90 to 200 keV, and >200 keV. This work however uses only two regions, hereby
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combining the regions below 200 keV. This may very well explain the observed
discrepancy in this region.

For the erbium-171 case, the agreement between experiment and theory is rather
unsatisfactory. However, employing the calibradon methods described in this thesis would
lead to systematic errors in reported activities of only 0 to 3 % for simple radionuclides
such as caesium-137, depending on the counting geometry and the radionuclide. It would
lead to errors of 3 % for complex case nuclides like bromine-82 and terbium-160, and up
to 10 % only for complex radionuclides such as erbium-171.

Chapter Eight and Chapter Nine describe the performance of the method to Monte-
Carlo simulated spectra and real spectra, respectively, for Marinelli beaker detection
geometries. Chapter Eight described the Monte-Carlo based results obtained with four
Marinelli beaker geometries filled with either water or siliciumdioxide, with dimensions
ranging from 1¢ to 2¢ and densities ranging from 1-10% kg-m- to 2-103 kg-m-3. The limits
on the Marinelli beaker geometry translate into an upper limit on the attenuation
coefficient of the sample material: £ <1 cm. Both chapters showed that, to obtain
accurate results for voluminous sources, indeed a third curve is needed that accounts for
the variation of the efficiency over the source volume, i.e. the linear-to-squared curve. A
bromine-82 spectrum was used to determine all three curves. Spectrum interpretations of
barium-133 and caesium-134 spectra using these curves were under complete statistical
control, i.e. within 1% imprecision owing to counting statistics. The experimental results
of Chapter Nine supported these conclusions. Although the experiments were performed
only for a 14, water-filled Marinelli beaker, the conclusions extend to other Marinelli
beaker geometries, as long as the attenuation coefficient, 4, of the sample material is
smaller than 1 cm!.

The approach developed in this thesis to analytically account for coincidence
summing effects in combination with sample self-attenuation meets the majority of
criteria set for it beforehand. It certainly takes the variatdon of the efficiencies over the
source volume into account. It provides a calibration method based on a parametric
model while the actual parameters are obtained from measurements showing coincidence
effects. It is applicable to point sources as well as voluminous sources. Furthermore, for
Marinelli-beaker geometries, the accuracy of the method is indeed better than 1 %.

For well-type detection geometries however this aim is not met. While the majority of
radionuclides, including terbium-160 and bromine-82 can be reproduced with accuracies
better than 3 %, erbium-171 showed to be a problem. On one hand, the worse
performance of the method in the well-type case is a pity, because the work as a whole
was started in order to be able to remove the lining from well-type detectors and dispense
of its negative effects shown by Chapter Four and Chapter Five. On the other hand,
Marinelli-beaker geometries are used much more often and in many more laboratories
than well-type geometries, and the possible impact of the method in such applications
might therefore be much larger than it would have been for well-types even at 1 %
accuracy. In fact, this is already being demonstrated by the fact that PerkinElmer’s
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ORTEC company incorporated the algorithms developed here in their popular y-ray
spectrometry program GammaVision version 5.2, released after Quality Assurance testing
in January 2001. Also as a consequence of this work, the company Analytics Inc. in Oak
Ridge has begun the manufacturing process of voluminous calibration sources containing
coincidence-rich caesium-134 as well as some of the well-known, coincidence-free
calibration radionuclides, in October 2000.

Sjoerd Gelsema
October 2001
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Samenvatting

Over hoe om te gaan met effecten van cascadesommatie en bronverzwakking in y-
spectrometrie.

(Advanced y-ray spectrometry dealing with coincidence and attenuation effects)

Radioactief verval van een radionuclide is cen proces waarbij de kern van het nuclide
van encrgietoestand, en in het algemeen ook van samenstelling verandert en waarbij
straling vrijkomt. Dit gebeurt vaak in twee stappen. De eerste stap omvat mecestal €én van
de volgende gebeurtenissen: Het afsplitsen van cen helium kern (a-straling), een elektron
of een positron (B~ of P*-straling), of uit het opnemen van een elektron uit de
omringende schil (Elektronvangst gevolgd door cmissie van Rontgenstraling). Na deze
eerste stap is de kern al van samenstelling veranderd, maar bevat vaak nog een overmaat
aan energic. Deze nieuwe kern bevindt zich zogezegd in een aangeslagen toestand. De tweede
stap omvat het verval van de aangeslagen toestand naar de grondtoestand, waarbij de
overmaat aan energie in de vorm van y-straling wordt uitgezonden. y-Straling en ook
Réntgenstraling bestaat uit fotonen met discrete energieén. De precieze energieén van de
uitgezonden fotonen liggen vast voor ieder radionuclide. Ook de relatieve aantallen
fotonen per fotonenergie liggen vast. Deze informatie kan worden samengevat in een
vervalschema zoals daarvan bijvootbeeld in Appendix C een aantal is gegeven.

y-Spectrometrie behelst het meten van zowel de energie van de fotonen, alsook van
het aantal fotonen per energic, of beter, per energiegebied. De meting laat zich weergeven
in de vorm van een y-spectrum zoals bijvoorbeeld in figuur 2.1. Het spectrum toont
pieken op die plaatsen die overeenkomen met de energie van de uitgezonden fotonen.
Anders dan de naam doet vermoeden bevat een fy-spectrum overigens ook
Réntgenpieken. y-Spectrometrie is tegenwoordig een volwassen technick, in die zin dat
alle valkuilen bekend zijn en dat voor het merendeel daarvan een oplossing bestaat. Dit
proefschrift levert een oplossing voor misschien wel de laatste open eindjes die de
techniek nog kent.

Bij het gebruik van efficiénte detectoren in y-spectrometrie spelen cascade-
sommatieeffecten een rol: twee of meer fotonen die zijn ontstaan bij het verval van één
enkele kern worden gelijktijdig gedetecteerd door de detector. Als gevolg hiervan ziet de
detector slechts één foton waarvan de energie gelijk is aan de som van de afzonderlijke

fotonen. In een y-spectrum onstaat op die manier een piek op de ‘verkeerde’ plaats. Deze
cascade-sommatieeffecten, of kortweg sommatieeffecten kunnen een y-spectrum dus
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behootlijk beinvioeden. Reden waarom men in het algemeen sommatieeffecten als storend
ervaart,

Het optreden van sommatieeffecten biedt echter ook voordelen. Een voorbeeld is het
kalibreren van de efficiéntie van een detecticopstelling. In dit geval wordt de foton-
detectiekans als functie van de fotonenergie voor de betreffende opstelling bepaald. Het is
handig een y-spectrum te beschouwen als cen stelsel vergelijkingen, waarbij iedere
vergelijking de inhoud geeft van één van de pieken in het spectrum. ledere vergelijking
heeft de detectiekans van het betreffende foton als onbekende parameter. Aangezien ook
de bronactiviteit nog een onbekende parameter in het stelsel is, is het stelsel niet
oplosbaar. Alleen indien de bronactiviteit bekend is kan het stelsel opgelost worden en
kunnen de detectickansen van de fotonen, of met andere woorden, kan de efficiéntie van
de detectieopstelling als functie van fotonenergie bepaald worden.

Indien sommatieeffecten optreden wordt het stelsel uitgebreid met vergelijkingen die
de inhoud van de sompieken geven. De kans op cen gesommeerde detectie is gelijk aan
het product van de detectickansen van de fotonen die met elkaar sommeren. De extra
vergelijkingen kosten dus geen extra onbekende parameters. Ze leveren zodoende extra
informatie die gebruikt kan worden om bijvoorbeeld de bronactiviteit, in combinatie met
de detectieefficiéntic te bepalen. Een andere mogelijkheid is om andere
detectorparameters te bepalen dan de detectieefficiéntie.

Een voorwaarde voor het gebruik van sommatieeffecten op deze manier is een goed
begrip van de manier waarop fotonen in de detector worden gedetecteerd. Voor bronnen
die als een punt kunnen worden beschouwd wordt het detectieproces inderdaad goed
begrepen. Voor het kalibreren van puntbronopstellingen gebruaikt Blaauw [Nuc. Instr. and
Meth., A332 (1993) 493] een parametrisch model dat de opbouw van een y-spectrum
beschrijft en dat rekening houdt met sommatieeffecten. De parameters van het model zijn
de onbekenden in het stelsel vergelijkingen dat wordt gegeven door het
kalibratiespectrum. Zoals hietboven beschteven maken sommaticeffecten het stelsel
oplosbaar. '

Blaauws methode blijkt echter te falen voor volumineuze bronnen [Nue. Instr. and
Merh., A385 (1997) 330]. In dit proefschrift wordt daarom de ontwikkeling beschreven van
een analoge methode die wel rekening houdt met sommatieeffecten in volumineuze
bronnen. Net als die van Blaauw maakt deze methode gebruik van een parametrisch
model om de opbouw van een y-spectrum te beschrijven, waarbij nu ook sommatic in
verzwakkende monsters mathematisch wordt beschreven. De daadwerkelijke kalibratie
van een detectieopstelling vindt weer plaats door de parameters van het model aan te
passen aan een kalibratiemeting.

Hoofdstuk 2 van dit proefschrift beschrijft het parametrisch model. Daarbij wordt
gebruik gemaakt van Gunninks parametrisatic van de piek-efficiéntiecurve [J. Radivanal.
Nucl. Chem., Articles, 160 (1992) 305] en van ecen zeer gangbare parametrisatie van de
totale-efficiéntiecurve, die beide nodig zijn om sommatieeffecten goed te beschrijven.
Deze curven beschrijven de gemiddelde waardes van de twee grootheden over het

166




Samenraiting

bronvolume, als functie van de fotonenergie. Het blijkt echter dat deze twee gemiddelde
curven niet voldoende informatie omtrent de bron bevatten om sommaticberekeningen
goed te kunnen uitvoeren. Niet alleen zijn de gemiddelde pick- en totale-efficiéntic
belangrijk, ook de variaties van de efficiénties over het bronvolume moeten in rekening
worden genomen. In het parametrische model wordt deze informatie geleverd door cen
derde, nieuw geintroduceerde curve. Deze curve relateert de gemiddelde pickefficiéntic
aan het gemiddelde kwadraat van de pickefficiéntie. Vandaar de naam ‘lwear-to-squared
curve’ of ‘LS-curve’.

De afleiding van deze LS-curve is gebasecerd op het volgende idee. Voor cen
volumineuze bron is de detectieefficiénte niet constant over het bronvolume, maar hangt
onder andere af van de precieze positie van de vervallende kern. Omdat de positic
onderhevig is aan stochastische processen, is het logisch om ook de detecticefticiéntic als
een stochastische grootheid te beschouwen. De verdelingsdichtheid van de efficiéntic over
het bronvolume kan in benadering worden beschreven door een gemiddelde en cen
variantie. De LS-curve is direct gerelateerd aan de variantie van de verdeling,

De rest van het proefschrift beschrijft de validatie van de nieuwe methode. Daartoe
maak ik gebruik van twee typen detectieopstellingen waarbij de bron niet als een punt kan
worden beschouwd. Het eerste type opstelling is de putdetector. Hierbij wordt een kleine
bron omringd door de detector. Omdat de afstand van de bron tot de detector erg klein is,
en omdat de detector de bron min of meer volledig omringt, is de detector erg efficiént.
Sommaticeffecten spelen hier cen grote rol. Als het bronmateriaal zodanig wvan
samenstelling is dat laagenergetische fotonen al in de bron geabsorbeerd kunnen worden,
dan kan de bron niet meer als een punt worden beschouwd. Een oplossing hiervoor is het
verlagen van de detectieefficiéntie voor laagenergetische fotonen door het aanbrengen van
een voering van absorberend materiaal in de put. Dit is echter weinig elegant, en kent
bovendien enige ongewenste bijwerkingen. Deel IT van het proefschrift gaat geheel over
putdetectoren.

Het tweede type detecticopstelling dat ik beschouw is de Marinellibeker. Dit is een
emmer met een extra, aan de bovenkant gesloten cilinder middenin, die over een detector
heen geschoven kan worden. Op die manier omringt het bronmateriaal de detector en zo
kan een grote hoeveelheid bronmateriaal dicht bij een detector worden geplaatst. Ook hier
is, door de kleine afstand tussen bron en detector, de opstelling erg efficiént en ook hier
spelen sommatieeffecten een rol. Bovendien is het duidelijk dat, vanwege zijn afmetingen,
de bron niet als een punt kan worden beschouwd. Deel IIT van het proefschrift gaat over
Marinellibeker opstellingen.

Een belangrijk onderdeel van de validatie is gedaan met Monte Carlo technieken voor
spectrum berekeningen. Het gebruik van Monte Carlo technieken maakt het mogelijk de
interne consistentie van de ontwikkelde methode te testen. De Monte Carlo exercitie heeft
namelijk geen last van systematische fouten zoals bijvoorbeeld het onvoldoende bekend
zijn van vervalschema’s. De enige fouten die een rol spelen zijn die fouten of
vereenvoudigingen die door de methode zclf veroorzaakt worden. Zowel Hoofdstuk 6 als
Hoofdstuk 8 illustreren dit. Hierin bercken ik eerst een volledige set van efficiéntiecurven

167



Samenvatting

en daarnaast, onafhankelijk, een kalibratiespectrum. Zowel de bron-detector geometrie en
het vervalschema zijn goed bekend. Daarna gebruik ik de theorie ontwikkeld in
Hoofdstuk 2 om met behulp van de curven het spectrum te reproduceren. Juist omdat het
vervalschema foutloos is, zijn de afwijkingen tussen het gesimuleerde en gereproduceerde
spectrum uitsluitend het gevolg van de gebruikte reproductie methode. Tenslotte pas ik
een set efficiéntie curven aan het gesimuleerde spectrum aan en vergelijk deze met de
vooraf berekende set. Deze vergelijking geeft vertrouwen in de gebruikte
aanpassingsmethode.

De validatie met zowel Monte Carlo simulaties alsook met werkelijke metingen laat
zien dat de onnauwkeurigheid van de methode, in het geval van Marinellibeker
opstellingen beter is dan 1%. Voor putdetectoren is de methode minder nauwkeurig.
Hoewel de activiteit van het merendeel van de radionucliden in de bronnen
gereproduceerd kan worden met een onnauwkeurigheid van beter dan 3%, blijkt vooral
het nuclide erbium-171 een probleem te vormen.

Aan de ene kant is het jammer dat de methode zich bij putdetectoren niet perfect
gedraagt, want de hele exercitie was eigenlijk begonnen om de voering uit de put te
krijgen. Aan de andere kant worden wereldwijd putdetectoren lang niet zoveel gebruikt als
Marinellibeker opstellingen. De relevantie van de ontwikkelde methode is dus veel hoger
voor de laatste, zelfs al zou de nauwkeurigheid van de methode voor putdetectoren
vergelijkbaar zijn. Deze stelling wordt ondersteund door het feit dat het Amerikaanse
bedrijf ‘PerkinElmer — ORTEC’ de hier ontwikkelde algoritmes gebruikt in hun populaire
Y-spectrometrieapplicatie ‘GammaVision’. Bovendien is het bedrijf ‘Analytics Inc.’ uit Oak
Ridge in oktober 2000 begonnen met de fabricage van een kalibratiebron waarin ook
coincidenties een rol spelen.

Sjoerd Gelsema
Oktober 2001
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