
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Imitation learning for
an ASV path planner in
complex marine
environments:
A feasibility study

B. Rutteman

Imitation learning for
an ASV path planner in

complex marine
environments:

A feasibility study

by

B. Rutteman

TU Delft supervisor (Chair): L. Ferranti
Daily supervisor (Roboat): J. Klein Schiphorst
Project Duration: september, 2024 - june, 2025
Faculty: Faculty of Mechanical Engineering, Delft

Cover: Photograph of the founders of Roboat and their ASV watertaxi product
”Lucy”

Contents

1 Acknowledgments 1
2 Introduction 2
3 Research paper 3

1 Introduction . 3
2 Related Work . 4

2.1 Imitation Learning . 4
2.2 Imitation learning for AV planners . 4
2.3 Imitation learning for ASV planners . 5

3 Background . 5
3.1 ACT . 5
3.2 Diffusion policy . 6

4 Problem formulation . 7
5 Framework . 8

5.1 Simulator environments . 8
5.2 Framework design pipeline . 9

6 Experiments . 12
6.1 2D-grid simulator experimental setup . 12
6.2 GAZEBO simulator experimental setup . 12
6.3 Model Training . 13
6.4 Hyper parameter setup . 13
6.5 Debugging data logging . 13
6.6 Additional performance metrics . 13

7 Results . 14
7.1 Hyper parameter studies . 14
7.2 Additional performance metrics . 15

8 Discussion . 18
8.1 Interpretation of results . 18
8.2 Limitations . 20
8.3 Generalizability and reproducibility . 21
8.4 Recommendations . 22

9 Conclusion . 23
10 References . 23
11 Appendix . 25

ii

1
Acknowledgments

For attaining the product of my thesis I would like to thank particularly both L. Ferranti and J. Klein Schiphorst for their
supportive efforts. I would like to thank L. Ferranti specifically for providing guidance with respect to her academic/scientific
expertise and professionalism to achieve the final product of this thesis. Additionally, I would like to thank J. Klein Schiphorst
specifically for providing guidance in the process of constructing the final solution of this research, discussing interpretations
of its corresponding results and for giving me the chance to work on the interesting topic that is ASV navigation by means of
imitation learning.

B. Rutteman
Delft, June 2025

1

2
Introduction

This research article report is the second of two parts that comprises the thesis work performed byB. Rutteman in collaboration
with Roboat. In this research article report, a research article that concerns a study towards the application of imitation
learning (IL) algorithms Action Chunking Transformer (ACT) and diffusion policy as an autonomous surface vessel (ASV)
path planning algorithm in complexmarine environments has been documented. In collaborationwith Roboat, the decision for
conducting this particular research was made due to the growing interest in the application of imitation learning algorithms
for autonomous vehicle (AV) navigation in popular literature. ACT and diffusion policy were selected to be investigated
for the concerning application, out of the most prominent algorithm types used in the state-of-the-art literature regarding
imitation learning and robotic path planning. This selection process has been described in the first part of the thesis work,
which was the literature study. In this second part of the thesis work, a research was performed in which both model types
were evaluated for the concerning application by leveraging two simulators: a simple 2D-grid simulator and a more complex
GAZEEBO simulator of Roboat. Results from performed evaluative experiments led to the conclusion that the ACT model
in combination with the trained on data sources is not adequate to achieve significant performance for the complex task that
is realistic ASV navigation. Diffusion policy showed promise for this specific application, however could not be evaluated in
desirable detail due to encountered hardware limitations for training and evaluating the model its performance.

2

3
Research paper

Imitation Learning for an ASV
Path Planner in Complex

Marine Environments
A Feasibility Study

Abstract — This thesis proposes a study towards the
application of imitation learning (IL) algorithms Action
Chunking Transformer (ACT) and diffusion policy as
an autonomous surface vessel (ASV) path planner in
complex marine environments. Rationale for conduct-
ing this research are the ubiquitous limitations regarding
fine tuning cost- and or reward functions of conventional
state of the art algorithms for ASV navigation in complex
environments. In this study we trained both algorithm
types on data sources collected from a basic 2D-grid sim-
ulator and a more realistic GAZEBO simulator. Subse-
quently we evaluated both algorithm’s performances in
each respective simulator in terms of the success rate for
a standard navigation task. We found relatively high suc-
cess rates for the 2D-grid simulator (0.98 for ACT and
0.53 for diffusion policy). For the GAZEBO simulator,
we found poor performance for ACT (0.0 success rate)
and for diffusion policy we could not establish the perfor-
mance due to hardware limitations. For future work, the
capabilities of both models could be investigated further
by trying to bridge the gap between the simple 2D simula-
tor and the GAZEBO simulator. Mainly the effect of task
complexity and the quality and quantity of data used for
training the models on the performances of the models
can be investigated in these future work studies.

1. Introduction
Regarding Autonomous Surface Vessels (ASV’s), ensuring
a safe navigation of the vessel is paramount for real life
deployment. The associated economical cost of collisions
is a significant reason for this. Furthermore, especially for
deployment in proximity of humans or when the ASV is de-
signed for transport of human lives, navigation components
are vital to be designed adequately so that no human can be
physically harmed by the vessel.

State of the art solutions for (safe) ASV navigation
differ wildly and concern both end-to-end or modular/hier-
archical approaches [1]. Grid-based search methods such
as Dijkstra’s algorithm or the A* algorithm are commonly
used in hierarchical approaches. End-to-end methods often

apply artificial intelligence or neural networks to learn the
entire navigation task [2] which can entail including motor
control as well [3]. Additionally, model predictive control
(MPC) based methods [4] and reinforcement learning (RL)
based methods are applied regularly when designing an
ASV navigation component [1].

However the more conventional methods of these solu-
tions offer limited performance as ASV path planners in
complex environments due to the requirement of carefully
designing associated cost-functions (A*, Dijkstra’s, MPC)
or reward functions (RL) in order to define appropriate
navigation behavior. Carefully designing these functions
in order to define appropriate behavior for ASV navigation
in complex marine environments can be very challenging
due to the ubiquity of loose marine traffic regulations
and the consequentially wide range of possible obstacle
configurations in an ASV’s environment. However, these
strenuous optimization efforts might be avoided altogether
by making use of a technique called imitation learning (IL)
for solving the process of ASV navigation.

IL is an AI-based technique that allows a model to
learn the behavior corresponding to a specific task by being
trained on datasets containing proprioceptive data and corre-
sponding responsive data by the agent to these observations
collected during execution of the specific task by an expert.
More technically phrased, the model tries to learn a direct
mapping from each possible state to that state’s optimal
action for the concerning task based on the trained on
dataset. Hence, IL allows for direct interpretation of desir-
able (navigation) behavior inherent in a task related dataset
on which it is trained and thus does not require any manual
programming of behavior or the development of a suitable
reward- and/or cost function for defining this behavior [5].
Furthermore, IL might offer the ability of capturing appro-
priate behavior in situations of highly complex state- and
action spaces, [6] which is a characteristic of the workspace
of an ASV. This characteristic is even more pronounced
when the ASV is deployed in complex marine environments.

The last few years there has been a surge in researches
and applications that aim to apply imitation learning in
order to capture the desirable behavior for AV trajectory
planning and/or vehicle control [6]. In 2023 and 2024, two
novel state of the art types of imitation learning models,
respectively Action Chunking Transformers (ACT) and
diffusion policy, were developed and have been received
by the robotics community with great enthusiasm. Both

3

these models have been tested and evaluated for varying
applications and consistently with very good results in terms
of performance [7], [8], [9], [10]. This includes researches
that cover applications in which vehicle navigation is of
importance, such as automatic highway driving by means of
diffusion policy [11] and learning multiple complex tasks
and navigation between these tasks to a mobile robot by
means of ACT [12].

Because of these aspects, in collaboration with ASV
developing company Roboat, we propose to try and build
on these imitation learning developments. In this work, we
investigate the feasibility of applying ACT and diffusion
policy models for ASV path planning in complex marine en-
vironments. In order to assess this feasibility, we leveraged
two simulators. The first of these concerned a basic 2D-grid
simulator designed from scratch containing a 2D-LQR
controller for governing the navigation. Additionally, a
more complex premade ASV GAZEBO simulator of Roboat
was used which contained more realistic components, such
as realistic ASV dynamics, ASV sensor plugins and a
representation of the Marineterrein in Amsterdam. We
expanded both simulators to allow for extracting datasets for
the models to be trained on and for performing evaluative
experiments. Due to leveraging two simulators of different
complexities, the limitations of the models in terms of
capturing the task of ASV navigation could be established
in more detail. By researching the application of ACT
and diffusion policy as an ASV path planner algorithm in
complex marine environments, a promising research gap
in the field of robotic path planning will be addressed. To
the knowledge of the authors of this paper, no research
has yet been published that has tested and evaluated the
performance of both ACT and diffusion policy models for
this specific application.

2. Related Work
In order to contextualize the reason for researching the re-
search gap stated in the introduction, we investigated related
work in popular research literature. This entails research to-
wards imitation learning techniques, among which ACT and
diffusion policy are considered, as well as the application of
imitation learning as AV/ASV path planners.

2.1. Imitation Learning
According to a research overview concerning state of the art
imitation learning techniques from 2023 from Zare et al. [6],
the main imitation learning subcategories are: behavioral
cloning (BC), inverse reinforcement learning (IRL) and ad-
versarial imitation learning (AIL).

Behavioral Cloning
BC algorithms aim to learn directly from expert observa-
tions by identifying the correct actions for a specific state
and basing their learned behavior on this. BC has the
strength of being able to copy behavior directly and hence
requires no knowledge of environment dynamics to train the
algorithm. Furthermore, BC is a relatively computationally
efficient algorithm to train and deploy [5]. The main
drawback of using BC, generally lies in the phenomenon of
covariate shift. Covariate shift means the model produces
inadequate outputs regarding its state, which can lie out of

the trained on distribution, and allows the model to create
a chain of inadequate responses. By doing so the model
”drifts off” from the trained on state distribution, making it
even harder for the model to generate an adequate output.
Covariate shift is the consequence of training the model on
merely a limited distribution of possible states [5].

In order to overcome the problem of covariate shift,
so-called interactive imitation learning (IIL) was devel-
oped. Interactive imitation learning (also called Dataset
Aggregation or ”DAgger” based algorithms) provides the
most intuitive alternative for mitigating the covariate shift
problem associated to traditional imitation learning. The
discerning characteristic of interactive imitation learning
is the availability of an active expert during the training
phase to guide the process in the correct direction. This
means that a human will give active feedback during policy
iteration in order to collect new data in which the correct
action is associated with a specific state. This data is then
leveraged to retrain the policy at every iteration of this
process. Because of this, covariate shift is mitigated and
generalization capabilities of the model can be increased
[5].

Inverse Reinforcement Learning
A different kind of imitation learning algorithm that does not
require active expert feedback to prevent covariate shift, is
called inverse reinforcement learning (IRL). This algorithm
type is basically a backwards form of standard RL. IRL aims
to learn a reward function based on expert demonstrations
that inherently represent a specific task or behavior, and thus
also the desirable policy. The learned reward function is then
leveraged to determine the concerning policy function by
evaluating and improving iteratively until the solution con-
verges towards the optimal policy [13].

Adversarial Imitation Learning
Adversarial imitation learning (AIL) is another imitation
learning technique that has shown great potential in solving
trajectory planning tasks over the last few years. It borrows
from the general concept of generative adversarial networks
(GAN) in the sense that it also features an adversarial game
between a discriminator and a generator in order to train the
model. In a GAN adversarial game, both the discriminator
and generator aim to win a competition in which the gen-
erator tries to generate images which the discriminator can
not distinguish from real life images. Both components train
themselves on successfully and failed attempts at these gen-
erated images. This process is iterated until the model has
converged and can reproduce very real images that the dis-
criminator simply can not distinguish from artificial ones. In
AIL algorithms, this concept is used to train amodel to gener-
ate real life-like expert behavior (state-action outputs) based
on demonstrations. This means the model’s generator will
iteratively learn to come up with actions for any given state
that are indistinguishable from expert produced ones by the
discriminator.

2.2. Imitation learning for AV planners
Various IL alorithms have been successfully applied for
AV planning purposes. IIL has been successfully applied
with regard to the application of autonomous driving for

4

navigating structured environments by Yokoyoma et al. by
applying an improved online sampling method that is able
to distinguish moments of interventions from the rest of
the dataset on which the model is trained [14]. In other
researches such as the ones by Ahn et al, IIL has also been
successfully applied for AV navigation in unstructured en-
vironments which showcases the generalization capabilties
of IIL [15]. Ahn et al. achieves this by training its IIL
algorithm on vision based occupancy grids maps, generated
by making use of camera data collected during expert
demonstrations of the task. Subsequently, the IIL algorithm
separates drivable and non-drivable space based on these
vision inputs in order to navigate towards its goal.

IRL algorithms have also been successfully applied for
the purpose of AV navigation. In several researches the tech-
nique is applied for navigation in dynamic environments,
such as in the research from Phan-Minh et al. [16], the re-
searches from Huang et al. [17] [18], and the research from
Gonzalez et al. [19]. In the research from Phan-Minh et al.,
the algorithm first constructs a set of trajectory proposals,
subsequently removes the ones that are considered unsafe
and as a last step evaluates the remaining trajectories and
applies the highest scoring one for navigation. Huang et
al. applies a similar hierarchical approach of generating a
trajectory, however after the initially proposed trajectories
are generated, Huang et al. predicts future paths of all
dynamic objects in the environment and takes these into
account for selecting the most suitable option out of the
found proposals. Gonzalez et al. performs a lattice based
search method in the state space of the ego vehicle for
computing its trajectory. This allows the algorithm to
only consider feasible robot motions, which allows faster
inference and optimization of the selected path regarding
dynamic objects in the environment due to incorporating
the element of time in the optimization.

In terms of AIL, numerous algorithms have been de-
veloped for the purpose of AV navigation. In the research
from Couto et al., a hierarchical GAIL-approach is applied
[20]. During the first step of this hierarchy, a vanilla
GAN-type network is used in order to generate a bird’s
eye view (BEV) image from raw image data collected
during the training loop. Subsequently, these BEV-images
are fed to the GAIL-network in order to learn the task of
navigation in urban environments. In a research from Wang
et al. AIL is applied for ASV navigation by combining the
concepts of both IRL and AIL in the form of an adversarial
inverse reinforcement learning (AIRL) algorithm [21]. This
particular algorithm learns both the appropriate policy and
the cost function of the task corresponding to the dataset it
is trained on. The performance of the algorithm is further
improved by assigning semantic rewards to the GAIL its
generator reward function during the training process.

Diffusion policy has also been applied for AV naviga-
tion/planning. It has been used for mobile robotics [22] and
even dense autonomous driving by leveraging a training
procedure that applies reward gradient guided denoising
[11]. This algorithm is called Diffusion-ES and its training
procedure optimizes non-differentiable and black-box
objectives.

2.3. Imitation learning for ASV planners
Some researches have also shown success in applying the
technique of IL for ASV navigation. A 2023 research from
Chaysri et al. implemented a GAIL-based algorithm in or-
der to test the performance of ASV navigation from point
A to point B with added environmental disturbances such
as wind and current [23]. Associated experiments yielded
good performance with a 100% success rate for all evaluated
wind and current velocities in the research. In another re-
search by Higaki et al, the authors tested the performance
of a CNN-GAIL based network when applied as an ASV
navigation component for traversing environments with dy-
namic obstacles. The model was trained on COLREG ad-
hering data in order to test the ability of the model to learn
the corresponding apropriate behavior. The model showed
good performance with a 92-97% agreement rate in terms of
action output between expert behavior and model behavior.
However, the trained model showed limitation in handling
situations with traffic vessel approaching angles close to the
boundary angle that divides different action modalities. This
being either a pass to the right or to the left with respect to
the traffic vessel. At these approach angles, the model con-
sistently chose a rightwards pass, even though this violated
COLREG traffic conventions in certain situations [24].

3. Background
3.1. ACT
The original paper describing the concept of ACT is the
2023 paper from Zhao et al. [7]. ACT was originally
designed to enable low-cost and imprecise hardware to
perform complex tasks with a robotic manipulator. It is an
imitation learning algorithm which characteristic property
is to predict actions not one step at a time but in action
chunks of multiple consequential actions. In order to allow
for smooth trajectories, these chunks are computed at a high
frequency. Since the model is queued at a static frequency
even during chunk execution, overlapping actions of sep-
arate chunks are averaged. This averaging is designated
as ensembling. In order to train the model appropriately,
action chunks are fed to a transformer type architecture,
which characteristic property is to allow for interpretation
of the temporal coherency in the data on which it is trained.

The model is trained in a form that resembles a condi-
tional variational auto encoder (CVAE). The model consists
of a transformer encoder to function as the CVAE encoder
which determines the latent variable z during training time.
Besides the action sequence and the joint positions, this
”CVAE encoder” is also fed with a ”CLS-token”. This
token is used to allow for prediction of the mean and
variance of the z-variable, which is used as an input to the
CVAE decoder component later on. From a mathematical
perspective, this encoder computes the parameters of the
variational distribution 𝑞𝜃 (𝑧 | 𝑤, 𝑥, 𝑦) (formula 3.1).

[𝑞𝜃 (𝑧 | 𝑤, 𝑥, 𝑦) = N(𝑧; 𝜇𝜃 (𝑤, 𝑥, 𝑦), diag(𝜎2
𝜃 (𝑤, 𝑥, 𝑦)))

(3.1)
In this expression, 𝑤 represents the CLS-token, 𝑥 represents
the joint positions, 𝑦 represents the corresponding action se-
quence, 𝑧 represents the latent variable and 𝜇𝜃 (𝑤, 𝑥, 𝑦) and
𝜎2
𝜃 (𝑤, 𝑥, 𝑦) are the mean and variance of the normal Gaus-

5

sian distribution N respectively. The encoder’s parameters
are designated by 𝜃. The encoder subsequently generates the
mean 𝜇𝜃 𝜇𝜃 and standard deviation 𝜎𝜃𝜎𝜃 of the Gaussian
distribution and uses these to compute the z-value by means
of the following expression (formula 3.2).

𝑧 = 𝜇𝜃 (𝑤, 𝑥, 𝑦) + 𝜎𝜃 (𝑤, 𝑥, 𝑦) ⊙ 𝜖 (3.2)

This expression showcases how the model samples a value
from the corresponding distribution in a way that allows
backpropagation due to its differentiability. In this formula
𝜖 represents a random sample drawn from a normal distribu-
tion with a mean of 0 and a standard deviation of 1. After de-
termining the z-latent, the z-latent, the camera observations
and the robot states are then fed to a structure that resembles
the CVAE decoder. This decoder then learns the parameters
of the variational distribution in formula 3.3.

𝑝𝜙 (𝑦 | 𝑧, 𝑥, 𝑣) = N(𝑥; 𝜇𝜙 (𝑧, 𝑥, 𝑣), 𝜎2
𝜙 (𝑧, 𝑥, 𝑣)) (3.3)

In this expression 𝑣 designates the camera images captured
during demonstrations. By learning these parameters the
model is able to generate outputs corresponding to the
action sequence that one fed to the CVAE encoder.

Training the model can be achieved by minimizing the
following loss function (formula 3.4) through the process of
backpropagation.

LCVAE = Lrecon + LKL (3.4)

In which the reconstruction loss is defined as in formula 3.5.

Lrecon = −
∑

𝑠𝑡 ,𝑎𝑡:𝑡+𝑘 ∈𝐷
log 𝜋𝜃 (𝑎𝑡:𝑡+𝑘 | 𝑠𝑡) (3.5)

In this reconstruction loss, 𝑘 designates the chunk size of
the action sequence and 𝜋𝜃 (𝑎𝑡:𝑡+𝑘 | 𝑠𝑡) designates the result
of the current iteration’s policy probability function when
putting in the action chunk 𝑎𝑡:𝑡+𝑘 and corresponding observa-
tion sources here designated as states 𝑠𝑡 . For all state action
chunk sequence pairs in the demonstration dataset, these log
values are summed, which generates the reconstruction loss.
To this reconstruction loss a regularization term is added in
the form of KL-divergence loss (formula 3.6) which is com-
mon practice for VAE loss functions.

LKL = 𝐾𝐿 (𝑞(𝑧 |𝑥) | |𝑝(𝑧)) = −1
2

∑(
1 + log𝜎2 − 𝜇2 − 𝜎2

)
(3.6)

In this formula 𝜇2 designates the square of the mean
of the distribution of 𝑞(𝑧 |𝑥). The corresponding value
basically shows how far the distribution is shifted from the
origin. 𝜎2 designates the variance of the distribution and
hence shows the spread or the uncertainty of the distribution.

Adding KL-divergence to the overall loss function en-
sures a well structured, continuous and smooth latent space.
It is added to increase generalization capabilities of the
model [25]. The architecture of the ACT algorithm has been
visualized schematically in Figure 1.

3.2. Diffusion policy
In order to explain the concept of diffusion policy, it is help-
ful to first explain what general diffusion networks are, since
diffusion policy is a subtype of these types of networks.

Figure 1: ACT architecture schematics [7]

Denoising Diffusion Probabilistic Models (DDPM's)
Diffusion networks (Denoising Diffusion Probabilistic
Models or DDPM’s) are algorithms that learn by gradually
introducing noise to the data it is fed to and that try estimate
the amount of noise added at each of the corresponding
steps. This process is repeated until the model’s parameters
are tuned towards convergence. During inference, the model
is then able to denoise an artificially created distribution
of Gaussian noise back into an output residing in the data
distribution on which it was originally trained. [26]

In order to be able to guide the model towards convergence
during training, forward diffusion has to be performed.
During this process, 𝑘 amount of noise additions 𝜖𝑘 is added
to a clean data sample. The amount of noise added at each
step is determined by a predefined noise schedule. The
model will then learn to predict the noise 𝜖𝑘 added to the
sample at each step. During training, at each step 𝑘 , the
actual noise 𝜖𝑘 and the predicted noise 𝜖𝜃 (𝑥0 + 𝜖𝑘 , 𝑘) are
compared in a loss function. The discrepancy between the
actual added noise 𝜖𝑘 and the one predicted by the current
model 𝜖𝜃 (𝑥0 + 𝜖𝑘 , 𝑘) guides the model towards convergence.
In terms of loss function, the original DDPM paper of Ho
et al, uses a mean squared error loss function of the form in
formula 3.7 [27].

𝐿 = MSE(𝜖𝑘 , 𝜖𝜃 (𝑥0 + 𝜖𝑘 , 𝑘)) (3.7)

Mathematically speaking, during inference the network
takes a sample 𝑥 from a Gaussian noise distribution
and performs a selected amount of 𝑘 denoising steps
𝑥𝑘 , 𝑥𝑘−1, . . . , 𝑥0, to which for each iteration a certain amount
of noise 𝜖𝑘 is removed until the sample is converged to
the correct noise free output 𝑥0. The actual denoising pro-
cess, also called reverse diffusion, can be mathematically ex-
pressed as follows [27].

𝑥𝑘−1 = 𝛼
(
𝑥𝑘 − 𝛾𝜖𝜃 (𝑥𝑘 , 𝑘) + 𝑁 (0, 𝜎2𝐼)

)
(3.8)

In this expression 𝜖𝜃 is the noise prediction network with
parameters 𝜃 that will be optimized through learning, and
𝑁 (0, 𝜎2𝐼) is Gaussian noise added at each iteration. This
expression can be regarded as mathematically analogous to
the standard expression of a single noisy gradient descent
step (formula 3.9) [27].

𝑥′ = 𝑥 − 𝛾∇𝐸 (𝑥) (3.9)

In terms of this analogy, 𝜖𝜃 has a similar function as the
parameter gradient field ∇𝐸 and the terms of 𝛼 and 𝜎 are
functionally similar to 𝛾 in that they define the learning rate
schedule of the training procedure.

The main strengths of diffusion networks lie in the
characteristic of being able to train a model that is able of

6

creating high-quality and diverse outputs [28]. The main
limitation of this technique is that it requires a relatively
long time to create an output [29]. This may limit its use for
applications that require a relatively fast inference.

Diffusion policy theory
As stated in the previous paragraph, diffusion policy is a
specific diffusion network algorithm and is designed to
learn policies for a variety of robotic applications. During
the training phase it will try to denoise a sequence of actions
𝐴𝑡 conditioned on the current observations 𝑂𝑡 . In order to
achieve this it makes use of the gradient field of the action
distribution score for approximating the corresponding
conditional distribution 𝑃(𝐴𝑡 | 𝑂𝑡). The observations that
are used for each action sequence prediction are fed to
separate encoders each. By using these observations, the
model will generate action outputs by taking into account
𝑇𝑜 observation steps. The model will then generate an
action sequence of length 𝑇𝑝 which represents the action
prediction horizon, of which only the first 𝑇𝑎 actions of this
are to be executed, which represents the action execution
horizon. This way, the model is supposed to allow for tem-
porally consistent actions, a smooth follow up of successive
actions and receding horizon control of the model. The
corresponding architecture of the diffusion policy model
has been visualized schematically in Figure 2.

Two main architectural adaptations have to be made to
the standard DDPM architecture to create a diffusion
policy model. Firstly, the output 𝑥 must now designate
agent actions and not images anymore and secondly the
denoising process must be conditioned on the observations
𝑂𝑡 corresponding to the actions. Hence, mathematically
speaking the denoising process of equation 3.8 is changed
to the following expression (formula 3.10) in which the
denoising process is conditioned on the observations.

𝐴𝑡
𝑘−1 = 𝛼

(
𝐴𝑡
𝑘 − 𝛾𝜀𝜃

(
𝑂𝑡 , 𝐴

𝑡
𝑘 , 𝑘

)
+ 𝑁

(
0, 𝜎2𝐼

))
(3.10)

These adaptations result in the following adapted loss func-
tion (formula 3.11).

𝐿 = MSE
(
𝜀𝑘 , 𝜀𝜃

(
𝑂𝑡 , 𝐴

𝑡
0 + 𝜀𝑘 , 𝑘

))
(3.11)

It should be noted diffusion policy is notorious for having
a limited generalization capability. However, multiple algo-
rithms have successfully addressed and mitigated these is-
sues by adding additional rich data sources [9], [22] or by
querying an active expert during training [30].

4. Problem formulation
Consider the case in which an ASV has to travel from point
A to point B by means of either an ACT or diffusion policy
path planner (Figure 3). Additionally, for achieving this goal
the ASV is tasked with a safe and time and energy efficient
way of traversing the environment. On a global level, this
safety of environment traversal can be expressed by means
of the success rate, which expresses the rate at which the
ASV was able to find its path from A to B regardless of time
and energy efficiency. The time and energy efficiency of
the traversed path can be determined by looking at the time
it took and the amount of traversed meters the ASV required

in order to achieve its goal regarding some pre-defined
start- and goal position and comparing this with the optimal
solution. This being following the shortest possible path
with optimal velocity.

Now consider that in our concerning case its corre-
sponding range of possible marine environment scenarios,
multiple static and/or dynamic obstacles can be present. In
these scenarios, the number of static and dynamic obstacles
can vary and each dynamic traffic vessel can be encountered
from a multitude of directions, with a variety of different
properties such as object size, velocity, etc. These properties
make this environment relatively complex compared to
other AV environments such as driving on the road, where
road cues such as traffic lights, -lanes and -signs limit
the number of possible traffic scenario’s. Additionally,
the vessel encounter behavior in these scenarios can be
considered more complex than driving on the road as well.
In terms of movement organization in marine environments,
one-on-one vessel encounter behavior guidelines have been
constructed in the convention on the internal regulations
of preventing collissions at sea (COLREG), which allows
for somewhat predictable behavior. However, for multiple
vessel encounters these guidelines have not been defined
and general expert behavior is more loosely based in these
types of situations [31]. Hence, because of this traffic vessel
encounter behavioral complexity in certain situations, and
the high variety of possible environment configurations,
strictly defining the appropriate behavior for ASV naviga-
tion in complex environments can be challenging. It is
because of these aspects, the property of IL-algorithms,
ACT and diffusion policy in particular, of capturing behav-
ior inherently present in task-related datasets is supposed to
offer a good solution for this type of AV navigation.

As we stated in section 2, ACT has been successfully
applied for robotic manipulator planning. However, as to
the knowledge of the authors of this research, no research
has been performed in which the algorithm was applied for
pure AV navigation. Though, the model has been applied
for training tasks to a manipulator with a mobile base
called mobile ALOHA. Mobile ALOHA can be seen as a
somewhat in-between application of a manipulator and an
AV, as ACT is also applied in order to allow the manipulator
to navigate between tasks in the same room [12]. Hence,
this research suggests the notion that the algorithm might
be applied with adequate performance for pure navigation
purposes as well. Some characteristic strengths of ACT
emphasize this notion even further, such as its ability to
have a good generalizability [32], an accurate long horizon
prediction [33], having a low inference time [32] and having
a relatively stable training procedure [33]. Additionally,
the action chunking mechanism of ACT allows a corre-
spondingly trained algorithm to be agile in terms of evading
environmental objects, since the complete trajectory is not
computed at once [7]. This allows the ego vehicle to quickly
adapt its trajectory as it goes. Hence by considering these
strengths, investigating the performance of ACT for an ASV
navigation algorithm proves to be a promising research gap.

As we stated in section 2, diffusion policy has been
applied successfully for not only robotic manipulator path

7

Figure 2: Diffusion policy architecture schematics [27]

Figure 3: Scenario of an ASV attempting to cross Amsterdam’s IJ
channel. Ubiquity of multiple traffic vessels on the channel make this a

complex marine environment.

planning, but also AV navigation [11]. The corresponding
performance results emphasize the potential of this tech-
nique for closely resembling tasks, such as ASV navigation.
Furthermore, the characteristic properties of diffusion
policy such as having a stable training procedure [34], being
able to accurately capture long range dependencies [27] and
the ability to capture different action multi-modalities [27]
support this notion. Due to the stable training procedure,
the model is likely to converge to a functioning and optimal
solution after training. Due to its ability to capture long
range dependency, the model might be able to recognize
long temporal trends in the fed data sources such as anticipa-
tion of the planned trajectory with respect to obstacles in the
environment. Furthermore, due to characteristic of being
able to capture the action multi-modality, the model might
also be able to learn underlying COLREG-conventions in-
herent in the dataset. It should be noted, diffusion policy is
also known to have some weaknesses in terms of navigation
as we stated in section 2, which are the generalizability
and the inference time of the algorithm. However, Yang
et al accomplished inference times of 5.85 seconds for
a non-optimized diffusion policy model and even a 0.50
second inference time when the model is optimized for
this property [11]. This shows the potential of increasing
inference time of these types of models. Furthermore, the
inference time for ASV navigation is generally not required
to be as fast as for highway driving such as in the research
from Yang et al, due to traffic vessels typically traveling
less close to one another and the typically less high vessel
accelerations and velocities due to higher traffic vessel
inertia. In terms of generalizability, the studies from Ze et

al. [9], [22] have shown this property can be increased to an
extent where even multiple different tasks can be recognized
by the model, by feeding more rich data-sources to the
model. In the case of this research, LIDAR-data was added
in order to feed the model with 3D point cloud clusters of
objects in the environment. Altogether, by looking at these
strengths and weaknesses, investigating the performance of
diffusion policy applied as an ASV navigation algorithm
proves to be a promising research gap.

Because of the promises of applying either ACT or
diffusion policy as an ASV path planner, we chose to
investigate these two models for this particular application
in this research. In conclusion, the main goal of the thesis
project is to answer the following research question: ”To
what extent can an ASV navigate in complex marine
environments by means of an ACT or diffusion policy
algorithm?” For answering this question, the metric of
success rate in terms of traveling from point A to point B
will be the main guideline.

5. Framework
In order to be able to give a valid answer to the posed re-
search question in section 4, we leveraged two simulator en-
vironments for this research.

5.1. Simulator environments
For this research, we designed a basic 2D-grid simula-
tor from scratch. Additionally we used a more complex
GAZEBO simulator of Roboat. Due to leveraging two simu-
lators of different complexities, the limitations of the models
in terms of capturing the task of ASV navigation could be es-
tablished in more detail.

2D-grid simulator
Firstly, we designed a very basic 2D-grid ASV simulator.
By establishing performance of the models in terms of nav-
igation in the context of a basic simulator, the extent to
which the models can capture very basic navigation accu-
rately could be investigated. In Figure 4 the lay-out of this
simulator its environment and the corresponding bird’s eye
view (BEV) image can be seen.

GAZEBO simulator
Additionally, we used the GAZEBO simulator of Roboat.
This simulator contains realistic ASV dynamics, a path plan-

8

Figure 4: BEV-image of the 2D-grid simulator setup

ner for navigation towards a goal position, ASV sensor plug-
ins and an environment resembling the Marineterrein in Am-
sterdam, all contributing to a simulator environment closely
resembling a potential real life ASV scenario (figure 8 and
figure 9). The differences between the 2D-simulator and the
GAZEBO simulator in terms of complexity have been sum-
marized in Table 1.

Simulator Environment Dynamics Planner Sensors

2D-grid simulator 2D-grid (20x20) Basic dynamics A* (+add. heuris-
tics)

BEV-image

GAZEBO simula-
tor

3D ’Marineterrein’
representation

Realistic ASV dy-
namics

2D-LQR

Three cameras (front,
left-back,
right-back)
BEV-image
LIDAR-data

Table 1: Overview of both simulators in terms of complexity

5.2. Framework design pipeline
In order to establish the performance for ASV navigation in
complex marine environments for the twomodels for the two
simulator variants, we undertook a number of methodolog-
ical steps. First of all, we had to collect adequate datasets
from the simulators on which a path planning algorithm of
ACT and diffusion policy can be trained. These datasets had
to represent the behavior of ASV navigation in complex ma-
rine environments inherently. Subsequently, we had to adapt
the original model architectures of ACT and diffusion policy
(as they were designed by Zhao et al. and Chi. et al. re-
spectively) so that they were able to take in the appropriate
data sources of these ASV navigation datasets and so that
they generate the output of an ASV navigational path. As a
last step, we had to incorporate an inference component of
the models into the two simulator variants so that the perfor-
mance of thesemodels as ASV navigation components could
be evaluated in a series of experiments. In the sections below,
each of the three described methodological steps (Figure 5)
has been described in more detail.

Data collection design Model architecture design Model inference design

Framework design pipeline

Figure 5: The framework design pipeline showing the sequential steps
from data collection to model inference.

Data collection design
In both simulation environments, we ran automatic demon-
stration trials in which the ASV travels from a starting
location to a goal location during which informative ASV
training data was collected. For gathering this data from
the simulator, we assumed complete and direct knowledge
of the environment by the ASV. This entails that every
property thinkable regarding environmental objects could
be directly extracted from the simulator without having to
capture and process sensor data, which would convention-
ally be necessary for collecting this data.

For performing the automatic demonstration conduc-
tion in the 2D-grid simulator, firstly we sampled the starting
position of the ASV and a goal location randomly across the
20x20 grid. This ensured each region across the grid would
be represented with a relatively large density in terms of
starting- and goal locations for a complete training dataset
(Figure 6). Whenever these positions where determined

Figure 6: Distribution of starting position over 250 demonstrations

the ASV would make its way towards the goal position.
This was achieved by leveraging a 2D-dynamics model for
computing the next state at each iteration (equation 3.12
and equation 3.13) and by leveraging a 2D-LQR-controller
(equation 3.15) for computing the control input given the
current iteration’s state error (equation 3.20). The values
used for the A- and, B matrices for defining the dynamics of
the state space system and the values used for the Q- and R
matrices for tuning the behaviour of the control inputs can
be found in 3.14 and 3.16 respectively.

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (3.12)

𝑥𝑘 =

[
𝑥𝑘
𝑦𝑘 𝑓

]
, 𝑢𝑘 =

[
𝑣𝑥,𝑘
𝑣𝑦,𝑘

]
(3.13)

𝐴 =

[
1 0
0 1

]
, 𝐵 =

[
Δ𝑡 0
0 Δ𝑡

]
(3.14)

𝐽 =
∞∑
𝑘=0

(
𝑥⊤𝑘𝑄𝑥𝑘 + 𝑢⊤𝑘 𝑅𝑢𝑘

)
(3.15)

𝑄 =

[
1 0
0 1

]
, 𝑅 =

[
0.01 0

0 0.01

]
(3.16)

In terms of tuning the state and input matrices A and B
and the cost matrices Q and R, we attempted to design a
system that represents the most basic form of navigation
with respect to dynamics and control inputs.

We set the A-marix to be an identity matrix in order

9

to enforce very basic system dynamics in which the ASV
does not change its state unless acted on by control input.
Setting the values to 1 ensures growth or decay of the ASV’s
state parameters is not encouraged when input is absent. By
setting the diagonal of the B-matrix as the identity matrix
multiplied with Δ𝑡, the transition to the next state is merely
governed by the computed velocity input for the ASV at
each iteration step.

We set the Q-matrix to have the same values across
the matrix’s diagonal so that the controller would not
penalize presence of the ASV at any specific location more
or less across the 2D-grid. Furthermore, we set the values in
the matrix to the arguable value of 1 so that the model would
still allow for relatively tight reaction to the state-space error,
but would not allow the ASV to be too jerky or overshoot
easily. Additionally, we set the values of the R-matrix at an
arguable value as well. This was due to adding an additional
operation of clipping the computed control values so that the
velocity in neither direction (x,y) could be higher than 2.2.
By designing the controller this way, it was intended to gain
more control over the control inputs and thus the displayed
navigation behaviour. By doing so the ability of the models
to capture the aspect of a maximum velocity in its learned
dynamics could be interpreted later on during evaluation of
the experiments as well. Additionally, setting the maximum
velocity relatively low ensured changes in the ASV’s state
between iterations stayed relatively small, giving the models
larger datasets and more data to interpret the corresponding
behaviour for any demonstration trial. The sole aspect of
the R-matrix that was tuned with a strong rationale in mind
was that the control input costs of x- and y- were set to
equal values. This ensured no input (x- or y related) was
favored over the other and thus that the most basic form of
navigation behaviour is employed. The behaviour displayed
by this navigational system in the 2D-grid simulator over
250 demonstration trials has been displayed by means of a
streamline plot in Figure 7.

Figure 7: 2D-simulator dynamics visualized as streamline plot

We computed control input values by solving the Ri-
catti equation (equation 3.17 and equation 3.18) to establish
the control gain and multiply this value with the state error
(equation 3.19 and equation 3.20) for each iteration in this
simulator. One iteration in the simulation represented a Δ𝑡
of 0.9 s. Whenever the ASV would reach the goal location,
the goal location and the ASV would be spawned at a new
random location again and the next demonstration trial

would start.

𝑃new = 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴 +𝑄 (3.17)

𝐾 =
(
𝑅 + 𝐵⊤𝑃𝐵

)−1
𝐵⊤𝑃𝐴 (3.18)

𝑢 = −𝐾 · state error (3.19)

state error = 𝑥current − 𝑥goal (3.20)

For performing the automatic demonstration conduction
in the GAZEBO simulator, we wrote an algorithm from
scratch in which the ASV would be assigned a goal position
just beside an orange pole spawned at a random location in
the environment. Whenever the ASV would reach this goal
position near the pole, a new goal position and correspond-
ing orange pole would be placed. Additionally, besides
changing the position of the goal position and orange pole,
reaching the goal position also respawned the location of
three static obstacles available in the environment. These
were then respawned at randomly assigned locations in
the environment. These static obstacles were present
in the environment in the form of three blue disks which
base started on the level of the water surface in the simulator.

During the automatic demonstration trials, we logged
data sources from both simulators into hdf5-files, which is a
common file format used for training AI-models. We created
these hdf5-dataset loggers from scratch for this project. As
stated before in section 5.2, we assumed complete and direct
knowledge of the ASV environment for this project. Data
sources that we logged during demonstrations were: goal-
position with respect to the ego vehicle, ASV orientation,
ASV velocity, the pose data of all environmental objects
relative to the ego vehicle (GAZEBO sim. only), the relative
pose of the ASV with respect to the pose of the previous
logged pose, raw bird’s eye view (BEV) image data of the
scene and raw camera data of a camera sensor at the front,
the right back and the left back of the ASV (GAZEBO
sim. only). The relative pose of the ASV was the action
the models were intended to learn. An impression of the
logged camera images and BEV-image from the GAZEBO
simulator can be seen in Figures 8 and 9.

For the 2D-simulator, we extracted the data sources
straight from the simulator. However, for the GAZEBO
simulator this was not possible due to the fact that the
camera image data and BEV-image data were not directly
obtainable from the simulator environment. Hence, we
achieved data logging for the GAZEBO simulator by making
use of a function called ApproximateTimeSynchronizer
from the message filters library with a slop value of 0.1,
which allowed logged data of the same timestep to be within
a 0.1 second range. The data sources were transmitted at
a frequency of 2 Hz by means of robot operating system
(ROS) topics and the data was captured by the logger at
a frequency of 2 Hz. By setting the slop parameter to a
value of 0.1 in combination with transmitting and capturing
data every 0.5 seconds (2 Hz), we ensured all data that was
transmitted corresponding to each 0.5 second temporal bin
was stored together in the datasets. Additionally, choosing
this sampling frequency ensured collected hdf5-files were
still manageable in terms of size for both storing on laptop
SSD as well as storing them on the high performance

10

computing (HPC) server and loading the data to the models
before training and performing the actual training steps.
Due to RAM-limitations and GPU limitations of the
leveraged HPC-server, we set this sample frequency at this
relatively low value to balance an accurate representation
of the task being performedwithminimizing the dataset size.

(a) front camera image (b) right back camera image

Figure 8: Two camera images captured from the GAZEBO simulator

Figure 9: BEV-image captured from the GAZEBO simulator

In order to allow stacking of data in the downstream
task of training the ACT models, for the ACT demonstra-
tions we padded the non-camera data sources with zeroes
when the goal was reached for each demonstration. We
padded the camera image data and BEV-image data with
black images. For the 2D-grid simulator we performed
padding until each source had a length of 20 data points in
total. For the GAZEBO simulator we performed padding
until each data source would have a length of 200 data points
in total. We set the padding length so that a demonstration
trial of the maximum length would still fit in these sizes of
20 and 200 for each simulator respectively. The structure
of the hdf5-files for the GAZEBO simulator can be found
in the appendix (list 1 for ACT and list 2 for diffusion policy).

For both ACT and diffusion policy, we collected a to-
tal of 250 demonstrations for the 2D simulator and a total of
500 demonstrations for the GAZEBO simulator. For both
simulators the first 250 demonstrations consisted of the
task of navigation performed in an environment without a
dynamic obstacle. For the remaining 250 demonstrations for
the GAZEBO simulator, we performed the demonstrations
in an environment in which a dynamic traffic vessel was
present. By choosing these amounts of demonstrations
we aimed to balance obtaining an accurate representation
of the task being performed and minimizing dataset size.
Rationale for trying to limit dataset size was again the limit
in computational resources on the HPC-cluster node that
was to be used for training the models. As can be seen in
Figure 6, using 250 demonstrations with randomly sampled
locations allowed for the entire environment to be sampled
relatively densely.

For incorporating the traffic vessel component in the
GAZEBO simulator, we used a readily available urdf-file
from Roboat for the physical implementation of the vessel
(Figure 10). A basic movement algorithm that we designed
from scratch was applied to this vessel model. In this
movement algorithm, we programmed the traffic vessel
to keep going back and forth along one specific straight
line trajectory in the simulator. Whenever the ASV would
approach the traffic vessel close enough, the ASV would
wait for the traffic vessel to be traveled out of range before
resuming its trajectory. Furthermore, whenever the ASV
would be close to this traffic vessel and in the line of travel
of this traffic vessel, the traffic vessel would come to a stop
and the ASV was ordered to keep moving even if it would
be within the designated stopping range (algorithm 1).

Figure 10: Physical appearance of urdf traffic vessel

Algorithm 1 Traffic Vessel Algorithm
1: 𝑇𝑟𝑎 𝑓 𝑓 𝑖𝑐𝑉𝑒𝑠𝑠𝑒𝑙𝑀𝑜𝑣𝑖𝑛𝑔 = true and 𝐴𝑆𝑉𝑀𝑜𝑣𝑖𝑛𝑔 =

true
2: if 𝐴𝑆𝑉 ⊂ TrafficVesselTrajectory and
3: 𝐴𝑆𝑉𝑇𝑟𝑎 𝑓 𝑓 𝑖𝑐𝐷𝑖𝑠𝑡 < MinDist then
4: 𝑇𝑟𝑎 𝑓 𝑓 𝑖𝑐𝑉𝑒𝑠𝑠𝑒𝑙𝑀𝑜𝑣𝑖𝑛𝑔 = false
5: 𝐴𝑆𝑉𝑀𝑜𝑣𝑖𝑛𝑔 = true
6: else if 𝐴𝑆𝑉 ⊂ TrafficVesselTrajectory then
7: 𝑇𝑟𝑎 𝑓 𝑓 𝑖𝑐𝑉𝑒𝑠𝑠𝑒𝑙𝑀𝑜𝑣𝑖𝑛𝑔 = false
8: else if 𝐴𝑆𝑉𝑇𝑟𝑎 𝑓 𝑓 𝑖𝑐𝐷𝑖𝑠𝑡 <MinDist then
9: 𝐴𝑆𝑉𝑀𝑜𝑣𝑖𝑛𝑔 = false

10: end if

Model Architectural Design
In terms of developing the model architectures, we took
both the standard ACT and the standard diffusion policy as
a starting point. This entailed taking the original algorithms
of Zhao et al. [7] and Chi et al. [27] mentioned in section 3
and adapting these algorithms to enable training and infer-
ence with the collected hdf5-datasets from both simulators.
These adaptations mainly meant adapting the dataloader
components and adapting the input sources of the models.
Both the standard ACT- and diffusion policy algorithm were
open source available on GitLab [35], [36].

Implementing the necessary changes to diffusion pol-
icy was rather straightforward for us, since the model
available on GitLab is built in a flexible manner in terms
of defining the structure of the dataset on which the model
is trained on. We defined the necessary data sources for
diffusion policy by adapting the task related .yaml files,
from which the data sources were read by the algorithm

11

before constructing the model. Additionally, we adapted the
dataloader of the diffusion policy algorithm to enable data
normalization for each of the specific data sources to allow
for maintaining proper model training convergence.

In terms of ACT, adapting the model appropriately
was slightly more elaborate for us. First of all, as with
diffusion policy we had to adjust the dataloader to allow
interpretation of the hdf5-file that the model was trained on.
For ACT this meant we had to normalize each of the data
sources by means of their respective mean and standard
deviation and then passing the correct data sources by name
for the training procedure. Furthermore, we had to adjust
the encoder associated with the model its latent variable
z to take in the appropriate data sources. By doing so we
ensured that the algorithm did not use joint angles as an
input as was used in the original algorithm, but used the
sources corresponding to the new dataset. Additionally,
we had to adapt the CVAE decoder to take in all the same
proprioceptive data sources as the CVAE encoder.

Model Inference Design
In order to test model performance, we had to link the trained
models to both the simulator variants. As a first step, this
meant we had to implement the model libraries in the associ-
ated (robotic operating system) ROS-environment of Roboat
in the form of python modules. By doing so the inference
components could load the appropriate model architectures.
Secondly, we developed the actual inference components of
both ACT and diffusion policy for both simulators. In these
inference components, we loaded the model architectures
andwe set themodel parameters by loading in the checkpoint
files of the trained models. In order to allow the model to
make predictions for the 2D-simulator, we would queue the
model for an output based on data sources retrieved straight
from the simulator. In order to allow the model to make
predictions for the GAZEBO simulator, we would queue the
model for an output based on data sources retrieved from the
simulator by means of the ApproximateTimeSynchronizer
function with a slop value of 0.1 seconds. We set this pa-
rameter at a value of 0.1, the same as for the data loggers
we designed. We ran the inference of ACT on a NVIDIA
RTX A2000 GPU. We ran the inference of diffusion policy
on a intel Core i9-11950H CPU due to VRAM limitations
of the RTX A2000 GPU in the laptop on which the simula-
tions were performed. We added the action output of this
model, which was a sequence of relative poses to be added
to the ASV pose at each time step, to the current pose of
the ASV in the simulator. Hence, this way we constructed
a sequence of navigation waypoints for the ASV to navigate
towards. For the 2D-simularor these waypoints were navi-
gated to directly. For the GAZEBO simulator we published
the output of the models to the roboat local planner with a
frequency of 10 Hz to allow proper linking to this planner.
This planner was designed for interpreting trajectories opti-
mally at this frequency. The local planner of Roboat was
made to ensure the created trajectory would be straightened
out so that it would adhere to the vessel dynamics of the con-
cerning ASV if necessary.

6. Experiments
For being able to assess the model performances with
respect to the task of ASV navigation in (complex) marine
environments, we performed evaluative experiments in both
the 2D-simulator environment as well as the the GAZEBO
simulator environment. In these environments we identified
the performance of the models by determining the success
rate for ASV navigation towards a static goal position in the
environment over 50 trials. In order to be able to determine
the success rates of the models in these experiments, firstly
the models were trained on the HPC-cluster node of the
TU Delft. We performed our experiments for various
combinations of hyper parameters for both algorithms in
order to find their respective optimal hyper parameter config-
uration. Additionally, we used the optimal hyper parameter
configurations found for each model to determine the ability
of the models to accurately capture ASV dynamics and to
determine their generalization capabilities in a series of tests.

In order to contextualize the performance of the mod-
els compared to other non-traditional (non-grid search-,
non-MPC- or non-RL-based) state of the art ASV planning
algorithms, we used a 2024 study by Wiersma et al. as a
benchmark. In this study, deep reinforcement learning was
applied to perform the task of ASV navigation towards a
goal position. For an empty environment containing only a
goal location, Wiersma et al. found a success rate of 50%
for the model variant which had learned direct control and
MPC behaviour.

6.1. 2D-grid simulator experimental setup
For the 2D-grid simulator we created a basic experimental
setup in the simulator. We placed the goal location, which
we marked as a red cross in the BEV-image, in the middle
of the 2D-grid (coordinates 0,0) and we sampled the ASV
starting location randomly on the grid. Subsequently, the
ASV would attempt to reach the goal location within a mar-
gin of 1.5 distance units on the grid by applying the action
sequences obtained from model inference. Whenever this
margin would be reached, we spawned the ASV again at a
random location for the next trial. When a model would re-
quire more than 40 inference outputs to reach the goal, we
noted the trial as a failure. For these experiments, we ran 50
trials and we logged the corresponding success rate for both
models.

6.2. GAZEBO simulator experimental
setup

In order to determine the performance of both ACT and dif-
fusion policy for the GAZEBO simulator environment, we
applied a similar experimental setup as for the 2D-simulator.
In this setup we spawned the ASV at a random location in
the simulator while we placed the orange pole and the three
blue static obstacles at a static location. For 50 trials we then
let the ASV try to approximate the orange pole placed in
the middle of the environment within a margin of 2 meters.
Whenever the pole would be reached, we would respawn
the ASV at a random location in the simulator again until
the last trial was completed. Afterwards, we determined the
success rate based on these trials.

12

After we determined the optimal set of hyper param-
eters for ACT and diffusion policy for the GAZEBO
simulator environment, we evaluated the models for 50
trials in terms of the success rate in an additional scenario.
This scenario contained two static obstacles in between the
starting and the goal position and a dynamic traffic vessel
moving back and forth in a straight line creating a very basic
form of a complex marine environment.

6.3. Model Training
In order to train the algorithms, we used the HPC server node
of the TU Delft. This node allowed us to train the models by
means of a NVIDIA A40 GPU in order to allow time effi-
cient training sessions for the ACT and diffusion policy hy-
per parameter studies. In order to train the algorithms, we
had to upload and configure the models, the datasets and the
associated conda environments on the HPC server. We ac-
complished this by making use of apptainer scripts, which
allow for an organized set-up of the training procedure on
the server. After each training procedure was completed, we
retrieved the checkpoint files containing the tuned parame-
ters of the models from the server and used these to build
the ACT and diffusion policy inference components to eval-
uate the corresponding performance.

6.4. Hyper parameter setup
In order to fine tune the algorithms of ACT and diffusion
policy, we performed a hyper parameter study for both mod-
els in which the performance of the models was evaluated
when trained for various combinations of hyper parameter
values.

The hyper parameter values of the models that we var-
ied for ACT in this hyper parameter study were: chunk-size,
and the sources for data input. We set the chunk size to
the varying values of 2, 5, 10 and 20 (Table 2). According
to the authors of the original ACT paper, tuning the chunk
size towards a size corresponding to a wall clock time of 1
second of robot motion had proven to be optimal in their
experiments. Since for this study data loggers were running
at a frequency of 2 Hz, this meant having a chunk size of
2 was expected to show the best results. The combinations
of input data sources that we trained for ACT can be found
in Table 2. We established by looking at the training- and
validation loss functions of the ACT training procedure for
several hyper parameter combinations, that running 350-700
epochs in combination with a learning rate of 1e-6 and batch
size 16 allowed for proper convergence of the model and
plateau of the training- and validation loss functions (Figure
11). However, in a tuning tips document provided by the
developers of the model on the corresponding Git page, it
was stated to let the model train ”well after things plateau”
to allow for proper behaviour learning. The corresponding
graph implied training it 4-5 times as long, since the graph
plateaued at 300-700 epochs and ended at 2000 epochs.
Hence, for this research we trained all ACT models for 2500
epochs and evaluated these for performance assessments.

For diffusion policy the hyper parameters that we var-
ied were the number of action steps and the number of
observation steps. The number of action steps we varied at
4 and 8, and the number of observation steps we varied at

Figure 11: L1 loss function graph ACT

2 and 4. We trained the model for each hyper parameter
configuration with a batch size of 32 for a total of 1000
epochs for each model, since multiple training session
loss functions showed proper training convergence and
plateauing of the loss functions for this amount of epochs.
Additionally, the developers of the diffusion policy model
stated proper convergence around 1000 epochs of training
time [27]. The combinations of hyper parameters that we
trained for diffusion policy can be found in Table 2 as well.

Additionally, we established the inference time of both
models.

Method Chunk Size / Ac-
tion Steps

Obs. Steps Data Input

ACT 2, 5, 10, 20 – rel. goal pose + ASV orientation + ASV velocity
+ rel. ASV pose (action) + no image
/ front camera / three camera’s / BEV-image

Diffusion Policy 4, 8 2, 4 rel. goal pose + ASV orientation + ASV velocity
+ rel. ASV pose (action) + no image
/ front camera / three camera’s / BEV-image

Table 2: varied hyper parameters for ACT and diffusion policy

6.5. Debugging data logging
For potentially necessary debugging of the GAZEBO simu-
lator data logging components, we performed an additional
experiment for the 2D-grid simulator. In this experiment we
compared found navigation success rates for the most opti-
mal hyper parameter variation found for the ACT algorithm
when we retrieved data either straight from the control loop
or by means of the same ApproximatetimeSynchronizer as
for the GAZEBO simulator. This way we could later on ar-
gue that whenever any of the models was able to capture
the correct behavior for the 2D-simulator, but not for the
GAZEBO simulator for any of the loggers, the issue probably
lies in the lack of high quality data sources being fed to the
model from the GAZEBO simulator to represent the more
complex behaviour. Whenever, we would find the model
does not yield similar success rates for navigation in the 2D-
simulator for both the regular logger and the Approximate-
TimeSynchronizer, the ApproximateTimeSynchronizer log-
ger probably does not function properly and needs to be de-
bugged.

6.6. Additional performance metrics
In the sections below the applied method for determining the
performance of themodels in terms of copying dynamics and

13

displaying generalization capabilities can be found.

copying of dynamics
In order to assess the ability of copying the dynamics by both
models, we made two visualization output types for the op-
timally found hyper parameter configurations based on suc-
cess rate. These visualization outputs consisted of: a stream-
line plot of navigation trajectories towards the goal for 250
trials and a heatmap describing the number of steps required
for the models to converge towards the goal location for 250
trials. By comparing the visualizations found during infer-
ence for these models with the visualizations from the orig-
inal trained on navigation behaviour, we could gain insight
in the ability of the models to capture and understand the
correct navigation dynamics. Additionally, a series of trajec-
tory density plots (Figure 23, Figure 24 and Figure 26) and
corresponding success rate heatmaps (Figure 25 and Figure
27) were generated for an equidistantly sampled 20x20 grid
(Figure 22) in terms of starting positions. These plots were
made in order to be able to identify whether specific trajec-
tories were preferred over other ones by both model types.
Due to close resemblance to the mentioned streamline plots,
these plots have been included in the appendix section.

Generalization tests
In order to assess the generalization capabilities and pro-
found understanding of the navigation task and its corre-
sponding dynamics by both models, we made two main visu-
alizations for each of the model types. Firstly, we visualized
the success rates for the model outputs not only in the area
that contained the original starting locations of the trained
on demonstration dataset, but also for a small outer ring area
extending the simulator environment with 15 distance units/
meters (depending on the simulator) in both directions with
respect to both the x- and the y-axis. This way we could test
the level of understanding of the task of navigation even out-
side of the original training area by the models. Additionally,
we expanded the streamline plot for evaluating the ability to
capture dynamics in this outer region by the models. This
way we could assess the ability of the model to yield the cor-
rect dynamics even for a region on which the model was not
originally trained and that resides out of the trained on dis-
tribution.

7. Results
In the sections below the results for the 2D-grid simulator
and GAZEBO simulator experiments can be found.

7.1. Hyper parameter studies
The 2D-simulator trained ACT algorithm showed varying
success rates depending on the configuration of hyper
parameters applied. As can be seen we found the highest
success rate (0.98) for the variation with the action chunk
size of 5 and the BEV-image input. This variation also
showed a significantly higher success rate than Wiersma
et al. found for applying deep reinforcement learning for a
similar experiment (0.50), suggesting superiority of ACT
models for learning this type of navigation task. In terms
of the other ACT trained algorithms with BEV-image input,
the score is only slightly higher than what we found for
the version with chunk size 10 (0.94), but significantly
higher than what we found for the chunk size 2 (0.66) and

chunk size 20 (0.50) variants. Furthermore, we found all
non-BEV-image model variants to yield a 0.0 success rate
in reaching the goal location, suggesting high importance of
this data source to the model for adequate interpretation of
the navigation task to be learned. Furthermore, by looking
at Figure 13 one can see that the model learns how to
navigate correctly towards the goal location for the majority
of the grid regions. However, the lower left part of the
20x20 grid in terms of starting position appeared to yield
very low success rates in reaching the goal position. This
suggests the model is not able to fully grasp the navigation
task to be learned given the trained on data sources.

The 2D-simulator trained diffusion policy algorithm
also showed significantly different success rates depending
on the configuration of the hyper parameters applied. As
can be seen we found the highest success rate (0.53) for
the variation with 2 observation steps and 4 action steps.
This is only a slightly higher success rate than Wiersma et
al. found for applying deep reinforcement learning for a
similar experiment (0.53), suggesting similar capabilities
in learning this task to a diffusion policy model. As for
the other trained diffusion policy algorithms without BEV-
image input, the score is only slightly higher than what we
found for the version with 4 observation steps and 8 action
steps (0.50), but significantly higher than what we found for
the 2 observation steps and 4 action steps (0.3) and the 4
observation steps and 4 action steps variants (0.18). These
results suggest using a higher number of action steps than
observation steps for attaining highest possible success rates.
Unfortunately, due to RAM limitations on the HPC cluster
of the TU Delft, it proved to be impossible to train the
BEV-image variants for diffusion policy for us. Hence, no
success rates for these hyper parameter variants have been
established for diffusion policy. Furthermore, by looking at
figure 15 one can see that the model learns how to navigate
correctly towards the goal location for only a small region
of the grid. Merely, a downward sloped striped region in the
middle part of the 20x20 grid in terms of starting position
appeared to yield adequate success rates in reaching the
goal position. This might suggest that the the essence of the
navigation task is not fully grasped by the model.

In Table 5 one can see the success rates we determined for
the different hyper parameter configurations for the ACT
model for navigation in the GAZEBO simulator. Unfortu-
nately, for none of the trials for any of the hyper parameter
configurations the model of ACT was able to navigate the
ASV adequately towards the orange pole. Hence, for each
configuration we found a 0.0 success rate. These findings
suggest the model is unable to capture the more complex
task of navigation corresponding to the GAZEBO simulator
environment given the trained on data sources.

As can be seen when comparing Table 5 and 6 with
Table 3 and 4, the success rates we determined were sig-
nificantly lower for ACT for the 2D-simulator experiments
than for the GAZEBO simulator experiments. This results
suggests that the quality an/or quantity of the data sources
being fed to the model from the GAZEBO simulator
was insufficient to represent the more complex behaviour
associated to the GAZEBO simulator navigation task.

14

Unfortunately we could not establish the success rates
for the diffusion policy model for the GAZEBO simulator
environment (Table 6). Due to limited GPU resources of the
hardware on which experiments were performed, we could
not test diffusion policy inference performance adequately.
The laptop on which we ran our experiments contained a
NVIDIA RTX A2000 GPU, which proved to contain too
few VRAM capacity to allow the model to run the diffusion
policy inference on this GPU. Because of this, we attempted
to run our experiments on CPU resources (Core i9-11950H).
However, this would lead to very slow inference times
(10-15 minutes depending on the set hyper parameters) and
would eventually lead to the ROS memory manager killing
off the node, disabling the ability of testing the performance
for the GAZEBO simulator.

Due to the low success rates we found for the GAZEBO
simulator tests, we only performed the experiments in terms
of copying ASV dynamics and showing generalization
capabilities for the 2D-simulator environment.

Component Success Rate

input: rel. goal pose, ASV velocity, BEV-image, chunk size: 2 0.66
input: rel. goal pose, ASV velocity, BEV-image, chunk size: 5 0.98
input: rel. goal pose, ASV velocity, BEV-image, chunk size: 10 0.94
input: rel. goal pose, ASV velocity, BEV-image, chunk size: 20 0.50
input: rel. goal pose, ASV velocity, chunk size: 2 0.00
input: rel. goal pose, ASV velocity, chunk size: 5 0.00
input: rel. goal pose, ASV velocity, chunk size: 10 0.00
input: rel. goal pose, ASV velocity, chunk size: 20 0.00

Table 3: hyper parameter study ACT 2D-grid

Component Success Rate

input: rel. goal pose, ASV velocity, obs steps: 2, action steps: 4 0.53
input: rel. goal pose, ASV velocity, obs steps: 2, action steps: 8 0.30
input: rel. goal pose, ASV velocity, obs steps: 4, action steps: 4 0.18
input: rel. goal pose, ASV velocity, obs steps: 4, action steps: 8 0.50
input: rel. goal pose, ASV velocity, BEV-image, obs steps: 2,
action steps: 8

-

input: rel. goal pose, ASV velocity, BEV-image, obs steps: 2,
action steps: 16

-

input: rel. goal pose, ASV velocity, BEV-image, obs steps: 5,
action steps: 8

-

input: rel. goal pose, ASV velocity, BEV-image, obs steps: 5,
action steps: 16

-

Table 4: hyper parameter study diffusion policy 2D-grid

Debugging data logging
As can be seen in Table 7, we found that using any of the
two logging variants for capturing datasets resulted in simi-
lar ACT success rates for the 2D simulator (0.98 for direct
data extraction and 0.83 for AproximateTimeSynchronizer
extraction). Albeit, that we found a slightly higher success
rate for direct extraction than for the time synchronizer, this
small difference suggests the method of data logging was not
the main limiting factor for learning appropriate navigation
behaviour for both model types.

7.2. Additional performance metrics
In order assess the ability of both ACT and diffusion policy
to understand the essence of the navigation behaviour to be

Component Success Rate

input: rel. goal pose, ASV velocity, front camera, chunk size: 2 0.00
input: rel. goal pose, ASV velocity, front camera, chunk size: 5 0.00
input: rel. goal pose, ASV velocity, front camera, chunk size: 10 0.00
input: rel. goal pose, ASV velocity, front camera, chunk size: 20 0.00
input: rel. goal pose, ASV velocity, three camera’s, chunk size:
2

0.00

input: rel. goal pose, ASV velocity, three camera’s, chunk size:
5

0.00

input: rel. goal pose, ASV velocity, three camera’s, chunk size:
10

0.00

input: rel. goal pose, ASV velocity, three camera’s, chunk size:
20

0.00

input: rel. goal pose, ASV velocity, BEV-image, chunk size: 2 0.00
input: rel. goal pose, ASV velocity, BEV-image, chunk size: 5 0.00
input: rel. goal pose, ASV velocity, BEV-image, chunk size: 10 0.00
input: rel. goal pose, ASV velocity, BEV-image, chunk size: 20 0.00
input: rel. goal pose, ASV velocity, chunk size: 2 0.00
input: rel. goal pose, ASV velocity, chunk size: 5 0.00
input: rel. goal pose, ASV velocity, chunk size: 10 0.00
input: rel. goal pose, ASV velocity, chunk size: 20 0.00

Table 5: hyper parameter study ACT GAZEBO

Component Success Rate (%)

input: rel. goal pose, ASV velocity, front camera, action
steps: 2, obs. steps: 2

-

input: rel. goal pose, ASV velocity, front camera, action
steps: 4, obs. steps: 2

-

input: rel. goal pose, ASV velocity, front camera, action
steps: 2, obs. steps: 4

-

input: rel. goal pose, ASV velocity, front camera, action
steps: 4, obs. steps: 4

-

input: rel. goal pose, ASV velocity, three camera’s, action
steps: 2, obs. steps: 2

-

input: rel. goal pose, ASV velocity, three camera’s, action
steps: 4, obs. steps: 2

-

input: rel. goal pose, ASV velocity, three camera’s, action
steps: 2, obs. steps: 4

-

input: rel. goal pose, ASV velocity, three camera’s, action
steps: 4, obs. steps: 4

-

input: rel. goal pose, ASV velocity, BEV-image, action steps:
2, obs. steps: 2

-

input: rel. goal pose, ASV velocity, BEV-image, action steps:
4, obs. steps: 2

-

input: rel. goal pose, ASV velocity, BEV-image, action steps:
2, obs. steps: 4

-

input: rel. goal pose, ASV velocity, BEV-image, action steps:
4, obs. steps: 4

-

input: rel. goal pose, ASV velocity, action steps: 2, obs.
steps: 2

-

input: rel. goal pose, ASV velocity, action steps: 5, obs.
steps: 2

-

input: rel. goal pose, ASV velocity, action steps: 2, obs.
steps: 4

-

input: rel. goal pose, ASV velocity, action steps: 2, obs.
steps: 4

-

Table 6: hyper parameter study diffusion policy GAZEBO

Model Success Rate

ACT (2D-grid simulator) 0.98
ACT (GAZEBO simulator) 0.00
Diffusion policy (2D-grid simulator) 0.53
Diffusion policy (GAZEBO simulator) -
Deep Reinforcement Learning (Wiersma et al.) 0.50
ACT (2D-grid simulator + ApproxTimeSynchronizer) 0.83

Table 7: Model success rates compared to benchmark

captured, we also assessed the models on their ability to copy
vehicle dynamics and on their ability to perform the task ap-
propriately outside of the trained on distribution to assess
the generalization capabilities of the models. The results we

15

Model Inference time per
model type (s)

ACT 0.5
Diffusion policy 4.4

Table 8: Inference times 2D-grid simulator

Figure 12: Starting state for 250 trials using ACT inference

found for these tests can be found in the sections below.

copying of dynamics
We found that the ACT model is able to capture the appro-
priate navigation task and corresponding LQR-dynamics
quite accurately for the 2D-simulator as can be seen in the
concerning streamline plot (Figure 17). For most of the
regions on the grid the model is able to converge the ASV
towards the goal position with a similar trajectory as the
LQR-controller. The ACT streamline plot displays a straight
line navigation trajectory for starting positions removed
significantly far from either the x- or y-axis. Furthermore,
the model displays a priority in navigating towards any
of the closeby axes for starting locations close to the x-or
y-axes. Additionally, the the model appears to be able to
copy the behaviour of maximum velocity for the 20x20
region adequately as well, displaying similar velocities for
each region with respect to the original 2D-LQR dynamics
streamline plot. The most remarkable feature of this
plot are the trajectories generated in the bottom part of
the 2D-grid. The trajectories in this area contain a wide
downward sweep before returning on their path towards
the goal. This behaviour is not in line with the trained on
2D-LQR dynamics and indicates the model making wrong
assumptions regarding the dynamics for these locations and
not fully grasping the dynamics to be learned. Additionally,
as can be seen in Figure 13 the success rates for these
corresponding locations are found to be much lower as well,
suggesting the same notion.

Furthermore we found that the model is able to capture
the step size corresponding to the original LQR-controller
relatively accurately as can be seen in Figure 20. This
heatmap plot displays the expected pattern for most of the
20x20 region of requiring more steps to converge towards
the goal when starting further from the goal as the original
LQR controller. However, some areas in the environment
showed a slight deviation from this pattern, particularly the
lower left part. For these regions more steps were necessary
to reach then goal position than for the LQR-controller.

Figure 13: Success rate heatmap for 250 trials using ACT inference

Figure 14: Starting state for 250 trials using diffusion policy inference

We remark this region overlaps slightly with the regions
of lower success rates and deviated dynamics mentioned
before. These findings suggest limitation of the ACT model
to profoundly grasp the dynamics to be learned.

As can be seen in the diffusion policy streamline plot,
we found that the diffusion policy model is not as good
in capturing the LQR-dynamics as the ACT model. The
trajectories traversed for navigation towards the goal
location appear smeared out compared to the 2D-LQR
dynamics trajectory pattern. The phenomenon of straight
line trajectories towards the goal at any of the quadrants is
somewhat recognizable, however the trajectories seem to
be twisted as to form a leftward inward spiral as a general
trajectory pattern. Furthermore, for starting positions close
to the y-axis, the ASV does not prioritize converging to the
axes first as is the case for the LQR-controller. However,
this converging behaviour can be recognized for starting
locations close to the x-axis. Additionally, the model
does not appear to grasp the velocities corresponding to
the designed controller as well, and either yields actions
that allows the model to surpass these velocities or stay
below them. Lastly, another undesirable result that one
can recognize in the streamline plot upon closer inspection
is that the streamline trajectories in the upper half of the
plot and in a region of the lower right quadrant of the grid
do not converge towards the intended goal location of 0,0.
Instead these streamlines end at a location slightly to the
upper right with respect to the origin. This behaviour might
explain the low success rates found for diffusion policy for
the 2D simulator. This notion is supported by remarking
that these regions overlap with the low success rate regions

16

Figure 15: Success rate heatmap for 250 trials using diffusion policy
inference

Figure 16: streamline plot for 250 trials for 2D-LQR dynamics

found in the success rate heatmap of diffusion policy for the
2D simulator (Figure 15). These findings suggest limitation
of the diffusion policy model to accurately understand the
dynamics to be learned. However, it can be recognized from
these plots, the model is able to grasp the core concept of
the navigation task towards the middle region of the grid
well, since the majority of the stream lines end at roughly
the goal location.

Furthermore we found that the model does not capture
the step size corresponding to the original LQR-controller
accurately as can be seen in Figure 21. This heatmap plot
displays the same downward slope stripe pattern of requiring
more steps to converge towards the goal as the success rate
heatmap for diffusion policy showed in terms of successful
navigation in Figure 15. This again suggests the model is
not able to grasp the essence of the dynamics to be learned
given the trained on data sources. Manual inspection of the
ASV state as it converged towards the goal showed adequate
navigation of the ASV until it came within about 7.5 units
distance with respect to the goal location. Whenever the
ASV would approach the goal location closely, the size
of the generated action steps would decrease significantly.
This lead to the model requiring much more than the limit
of 40 steps to achieve the goal location within the 1.5 unit
margin, explaining the low success rates found across the
grid.

Generalization tests
In terms of generalization performance, we found the ACT
model is able to extend the high success rate to locations out

Figure 17: streamline plot for 250 trials for ACT inference

Figure 18: streamline plot for 250 trials for diffusion policy inference

of the trained on 20x20 grid as can be seen in Figure 3. How-
ever only the upper left quadrant and slightly upper right
quadrant display this generalization capability. In the other
outside regions success rates quickly taper off to 0.0, suggest-
ing limitation in capturing the essence of the navigation task.

In terms of capturing the dynamics outside of the trained on
20x20 region of grid, we found the ACT model showcases
some generalization capability. The model displays very
similar streamline behaviour for the outer region of the left
upper quadrant of the grid as for the 20x20 region (Figure
18), showcasing some abilities in understanding the essence
of the navigation dynamics. However, for the other regions
multiple disturbances can be recognized in each quadrant of
the outer region of the grid. The lower quadrants appear to
generate an ever wider downward sweep of the trajectories
as was found for the inner region of the grid. While the
upper right quadrant appears to show correct dynamics, pri-
oritizing convergence towards the x-axis was not understood
correctly by the model. In terms of extending the maximum
velocity property of the controller towards the outward
region, the model shows poor performance. For most of
the grid, velocities exceed expected velocities, especially in
the right upper quadrant in which velocities attain values
of 4.5 units per second. These findings suggest limitations
in terms of generalizing and capturing the essence of the
dynamics by the ACT model. In terms of steps required,
the model appears to follow the same trend as we found for
the extended success rate region (Figure 13). The model
appears to be able to extend the dynamics in terms of step
size for the regions it did yield adequate success rates for
to the outward regions suggesting some generalization

17

Figure 19: steps required for 250 trials for 2D-LQR dynamics

Figure 20: steps required 250 trials inference ACT

capabilities. Each outside of training distribution region,
besides the upper right one, shows an unexpectedly large in-
crease in steps required which form the dark areas in the plot.

In terms of generalization performance, we found the
diffusion policy model is also able to extend success rates
only with respect to the downward slope middle region in
the 2D-grid identified earlier (Figure 15). It can be seen
the out of grid regions that yield success are joined to this
main success rate region in the grid found for diffusion
policy. At the other out of grid regions, success rates of
0.0 were determined. This suggests some generalization
capabilities and profound understanding of the navigation
task interpreted by the model with regard to ASV navigation,
however only for regions where the task has been captured
significantly adequate.

In terms of capturing the dynamics outside of the trained on
20x20 region of grid, we found the diffusion policy model
showcases good generalization capability. The model
displays similar streamline dynamics and velocities for the
majority of the outer region as for the 20x20 region (Figure
18), showcasing abilities in understanding the essence of
the navigation dynamics as it was interpreted by the model.
However, in the outer region of the lower left quadrant,
a slight distortion can be seen for the associated stream
line trajectories, suggesting some limitation in terms of
this generalization capability. In terms of steps required,
the model appears to follow the same trend as we found
for the extended success rate region (Figure 15). The
model appears to be able to extend the dynamics in terms

Figure 21: steps required 250 trials inference diffusion policy

of step size for the regions it did yield adequate success
rates for to the adjacent outward regions suggesting some
generalization capabilities by the model.

8. Discussion
In the following sections the interpretation of the results and
the limitations and the recommendations regarding the re-
sults can be found.

8.1. Interpretation of results
In the sections below we elaborate on the results found for
both the 2D-grid simulator and GAZEBO simulator trained
models.

2D-grid simulator
In the sections below we elaborate on the results found for
the 2D-grid simulator.

ACT
By looking at the hyper parameter study results for ACT for
the 2D-simulator (Table 3), one can recognize the impor-
tance of including the BEV-image, or perhaps image data
in general, in the data sources for yielding an appropriate
action output sequence by the model. Apparently leaving
out this data and merely conditioning the action output
on the relative goal position and ASV velocity is simply
not enough to get adequate action outputs. These findings
suggest the BEV-image contained information inherently
that was necessary for the model to figure out the nature
of the task that was supposed to be learned. It might have
been possible this inherent information was the relative
location of the ASV with respect to the frame of the 2D-grid.
For the currently trained algorithm, the model was trained
on merely information regarding its relative position with
respect to the goal and its velocity. However, it may have
been unclear to the model in which direction the ASV was
supposed to navigate in order to approach the goal location.
Hence, these tests showcase the importance of adding
BEV-image data, or perhaps image data or ASV-orientation
data in general, to train an ACT model to achieve significant
success rates for learning the task of ASV navigation.

As can be seen in Table 3, the optimal hyper parame-
ter configuration concerns an action chunk size of 5. This is
a slightly different result as to what was expected. Based on
the tuning tips document of the authors of the ACT paper,

18

applying a chunk size corresponding to a wall-clock time
of 1.0 seconds would show optimal performance. However,
given that the timestep difference between action steps was
set to 0.9 seconds, these results suggest using a chunk size
corresponding to a 4.5-9.0 seconds wall clock time in order
to learn the task of ASV path planning to an ACT model
optimally.

The reason as to why the model was unable to capture
the correct dynamics for the lower (left) part of the environ-
ment remains hard to identify. As can be seen in Figure
6 the sampling of starting point locations for training is
most likely not the cause of this, since each region of the
grid appears to be sampled with similar densities. Although
it remains conjecture, it might have been that the goal
locations randomly assigned to these starting locations in
the demonstration dataset might all have been not close to
the origin point, meaning that this specific task has been
underrepresented for some regions of the grid in the dataset
causing this phenomenon. Hence, adding more than 250
demonstrations of the task to be performed, thus covering
a wider distribution of the task to be learned in terms of
starting- and goal location, might increase the success
rates of ASV navigation performed by an ACT model. If
this proves to be the limiting factor for achieving adequate
success rates in a potential future work study, this would be
another indicator for limited generalization capabilities of an
ACTmodel in terms of capturing the task of ASV navigation.

As for the determined generalization capabilities for
the ACT model, it can be seen in Figure 13 and Figure 17
that the ACT algorithm performs well for the upper left
part of the environment, however not so much for the rest
of the environment. The reason as to why this is remains
hard to identify. As for copying the dynamics it might
have been that the goal locations randomly assigned to the
starting locations corresponding to the low success rate
regions outside of the trained on distribution might all have
been not close to the origin point. This might have led to
the fact that this specific origin navigation task for these
locations has been underrepresented in the dataset causing
this phenomenon. Additionally, it might be possible that
providing merely 250 demonstrations of the task for training
was simply not enough to figure out the essence of the ASV
navigation and its corresponding dynamics. Increasing the
number of demonstrations for training the model might
solve these discrepancies across the grid environment. If
this proves to be the limiting factor for achieving adequate
dynamics and success rates outside of the trained on
distribution in future work studies, this would be another
indicator for limited generalization capabilities of an ACT
model in terms of capturing the task of ASV navigation.

Diffusion policy
In terms of the success rates found for the 2D-simulator
diffusion policy trained model (Table 4), the model perfor-
mance can be assessed to be quite low in terms of ASV
navigation. As we stated before, we expect the reason for
this to mainly lie in the identification of a shifted goal
location for a large portion of the 2D-grid by the model.
We expect this wrongly interpreted behaviour by the model
explains the established success rate heatmap for the 2D

simulator for diffusion policy (Figure 15). Additionally,
the reason partially lies in the large amount of action
steps required to converge towards the goal location for
the last part of the trajectory. By inspecting the traversed
trajectories per demonstration manually one could see a
trend in which the action step size or speed was appropriate
for relatively long distances with respect to the goal location.
However, as the ASV would approach the goal more closely,
the model would yield increasingly smaller action steps so
that the ASV would never come close enough to the goal
location for the trial to be considered successful (<1.5m
distance). Pinpointing the exact reason as to why this
decrease in velocity during convergence towards the goal
arises remains conjecture. However, as a matter of fact,
control input of the orginal LQR-controller is computed as
−𝐾 (computed by the Ricatti equation), multiplied by the
state error. This ensures that also in the original 2D-LQR
dynamics behaviour the iteration step size (or action) lowers
gradually as the ASV approaches the goal. However, since
the time step taken per iteration Δ𝑇 is relatively large in
the automatic demonstration, it is ensured the final step
towards the goal of each demonstration is still relatively
large. Subsequently during training, it might be possible the
model learns to interpolate this decrease in step size over
the grid-map, ensuring the ASV simply does not converge
with an adequate amount of steps to the goal position during
model inference. Additionally, the limiting factor here
might have been the fact that the model’s forward diffusion
steps and denoising steps were changed from 100, (as it
was in the original algorithm from Chi et al.) to the value
of 50. As stated before this was done, to reduce burden on
the training resources so that the diffusion policy models
could be trained on the HPC-cluster. However, it might have
been possible this number of steps for both forward- and
backward diffusion might not have been enough to yield an
accurate action sequence by the model.

Additionally, pinpointing as to why the found dynam-
ics represents more a leftward spiral pattern as opposed
to the 2D- LQR dynamics pattern expected remains hard
as well. The model simply does not capture the dynamics
perfectly. As for the ACT model it might have been possible
that the goal locations randomly assigned to the starting
locations corresponding to the low success rate regions
outside of the trained on distribution might all have been
not close to the origin point, resulting in an incomplete
distribution of starting- and corresponding goal states in the
training dataset. Additionally, again the limited amount of
diffusion steps may have been the cause of this.

In terms of generalization capabilities the model of
diffusion policy performed quite well. It showed ability to
apply more or less the same dynamics behaviour in the outer
ring region of the grid as for the trained on inner region.
However, still for most of these cases the success rates
remained close to 0.0 for these outside regions for the same
reasons of a second wrongly identified goal location and
decreasing action size over distance with respect to the goal.

Comparing the results of the 2D-grid simulator of both
ACT (Table 3) and diffusion policy (Table 4) yields another
interesting insight. ACT did require the BEV-image to yield

19

any success rates for the navigation tasks, however diffusion
policy did not require these images to learn the navigation
behaviour relatively adequately. The reason for this remains
conjecture. However, it could be possible that the incorpo-
rated observation steps in the diffusion policy model might
have been the reason for this. Since diffusion policy gets
multiple steps of history as an input for its inference output,
it might be able to figure out the orientation with respect to
the goal position due to this history and thus might figure
out which way its actions have to be directed to converge
to the goal location. Since the ACT models lacked both
orientation data and multiple observation steps, there might
have been no way for the model to figure out which way
to move to to approach the goal position. This might also
be a motivation to adapt the ACT model in future studies
to incorporate multiple observation steps and evaluate the
performance.

GAZEBO simulator
As can be seen in Table 5, the established success rates
for ACT for the GAZEBO simulator were very poor. For
each hyper parameter variation only a 0.0 success rate was
found. It might have been possible that the navigation task
to be captured was simply too complex for the model to
understand given the data that was used to train it. As
could be seen in Table 7 the data logging system most
likely was not the factor causing the low success rate values,
given the fact that quite similar success rates were found
for direct logging (0.98) as for leveraging the Approxi-
mateTimeSynchronizer for the task of logging (0.83). The
reason for yielding low success rates is expected to be the
quality or the amount of conditioning data sources, since
the model architecture was left unchanged with respect to
the original ACT algorithm [7], combined with the higher
complexity of the navigation to be learned. However,
the only data source that was not comparable to the ones
leveraged for training the ACT algorithms from Zhao et
al. was the camera data. For achieving the success rates in
the original ACT paper, four photorealistic camera images
were leveraged for training the model. However for this
research, collected camera data was of a lot poorer quality.
This camera data contained vision input of generally low
texture from a greyscale environment of the GAZEBO
simulator (Figure 8a and Figure 8b). This might have
been a big limitation for the models to interpret and under-
stand the environment and hence yield proper action outputs.

As the results for diffusion policy, since success rates
could not be established in this research for the GAZEBO
simulator, no elaborative comments and/or statements
can be made about its performance in this more complex
environment.

Assessment regarding ASV path planning
Based on our experiments, it appears that the ACT model is
not able to perform the task of realistic ASV navigation with
desirable performance given the trained on data sources.
However, for a less realistic and basic navigation task, the
model can achieve close to perfect success rates (0.98).
Additionally, results showed that when trained for a less
complex navigation task, the model is able to accurately
capture the corresponding navigation dynamics. It should

be noted that limited generalization capabilities of the
model ensures these adequate navigation performances are
merely present when the ASV is released in an environment
inside the trained on distribution. As we stated in the results,
the generalization capabilities we found for ACT regarding
ASV navigation are limited.

Diffusion policy showed inferior success rates with re-
spect to ACT and was only evaluated for the more basic
navigation task of the 2D-simulator. However, we assess its
promise with regard to ASV navigation (in complex marine
environments) to be high. The model was already able to
capture the essence of the navigation task with a significant
data source less than the ACT model (BEV-image), showing
converging behaviour towards the goal location region in
pretty much every tested region outside of the trained on
distribution. We expect the main limitation of achieving
success rates in the 2D-simulator for diffusion policy mainly
lies in the identification of a second slightly shifted goal
state for a portion of the ASV starting locations and in the
design of the LQR-controller for performing the automatic
demonstrations. We remark that the second goal state
limitation and the fact that the model displayed a slight but
significant deviation of the dynamics to be learned, suggests
fine tuning of the models its design might be necessary in
order to be able to apply it for ASV navigation in real life.

Due to the failed GAZEBO simulator tests in terms of
success rates (ACT) and training the model due to compu-
tational restrictions (diffusion policy) merely performance
results for simple environments and simple navigation
behaviour without dynamic obstacles were collected and
evaluated. The more complex environments, including
dynamic obstacles such as traffic vessels, have not been
investigated in depth in this study. Hence in terms of
being able to perform ASV navigation in complex marine
environments no elaborate comments and/or statements can
be made. In future work studies, the performances of the
models of ACT and diffusion policy in these environment
types could be evaluated.

8.2. Limitations
In this section, we analyzed the limitations of this study with
respect to the four major parts regarding the applied method-
ology. This means that for the simulator and corresponding
constructed demonstration loop, the method of data logging,
the model training methodology and the construction of the
inference components the limitations and recommendations
where established and elaborated on. Additionally, we elabo-
rate on the limitations of a potential ACT or diffusion policy
ASV path planner for complex marine environments.

Simulator and demonstration loop
In terms of how the automatic demonstrations where per-
formed in the simulator, there are some notable limitations.
Firstly, it should be noted that the ASV’s trajectory planner
applied for navigation during the automatic demonstration
loop of the GAZEBO simulator was not 100% successful
in avoiding collisions with the static obstacles. During
some trials, the planner still collided with these obstacles,
bumping them out of the way. This did not happen often,
estimated around once in 75-100 demonstrations. However,

20

it ensured that the demonstration datasets might not have
been 100% clean of correct demonstrations with regard to
obstacle avoidance and hence the correct obstacle avoidance
might not be perfectly represented.

Additionally, it should be remarked the currently performed
automatic demonstrations for the GAZEBO simulator were
representative of a relatively complex ASV navigation task.
The demonstration loop was programmed so that the vessel
would navigate towards a static orange pole goal location
with static obstacles present in the environment. Hence, not
the most basic task of navigation possible has been learned
to the models. It might be the case that when the model is
trained on demonstration data representing the more simple
task of strictly navigation without obstacle avoidance, any
of the two models might be able to capture the correct
behaviour correctly. Furthermore, the behaviour to be
learned is also extra complex due to the incorporated vessel
dynamics to the path planner currently used for navigation
in the GAZEBO demonstration trials.

Logging of data sources
There are also some noteworthy limitations in terms of the
nature of and the way in which the data was captured for
the training datasets from the simulator. In particular the
camera data that was retrieved from the GAZEBO simulator
might have been a limiting factor for both model perfor-
mances. In order to achieve the success rate of the original
ACT paper [7], Zhao et al. retrieved camera data from four
photorealistic camera’s in their corresponding simulator
environment. The original diffusion policy paper used only
one camera data source (BEV-image) [27], but still of high
photorealistic quality. However, for this research collected
camera data was of a lot poorer quality. This camera data
collected vision input from the generally low texture and
grey environment from the GAZEBO simulator (Figure 8a
and Figure 8b). This might have been a big limitation for
the models to interpret the environment on each time steps
and hence yield proper action outputs.

Additionally for this research, data was captured from
the simulator at a frequency of 2 Hz. However, the influence
of the sampling frequency was not tested in terms of
performance of the models. It might be that the chosen
sampling frequency yields suboptimal action values for the
models to learn and interpret the correct behaviour to be
learned.

Model training
For training the models, merely 250 demonstrations were
collected per task. This amount was chosen with the
HPC node restrictions in terms of RAM-size and GPU in
mind. Additionally, the original ACT paper algorithms
were trained on datasets of merely 50 trials, while the
original diffusion policy paper algorithm were trained on
200 demonstrations, suggesting the notion this amount of
demonstrations would be appropriate. However, it might be
the case that the complexity of the task of ASV navigation
requires a higher amount of samples to accurately represent
the task for the models. Hence, it might be the case that
the amount of 250 demonstrations chosen for the model
training was a suboptimal parameter choice.

Additionally, during the hyper parameter study not all
possible hyper parameter configurations were investigated.
Merely the ones that focused on model in- and outputs have
been varied for finding the optimal configuration. The task
of ASV navigation was deemed a task not more complex
than the ones achieved with high success rates in the original
papers (tying shoe laces and putting on a small lid for ACT
and performing accurate hanging of a tool for diffusion
policy). Because of this it was assumed the that original
model architecture and training procedure parameters would
suffice for learning the task of ASV navigation.

Additionally, it was hard to establish precisely when
the proper amount of epochs was achieved for ACT. Due
to the way the validation- and training loss functions were
constructed the train loss and validation loss were not
trustworthy to directly assess model parameter convergence.
Because of this, the models were trained for 4-5 times the
amount necessary for convergence as was advised by the
authors of the original ACT paper of Zhao et al.. Generally,
the ACT models would convergence around the amount of
350-700 epochs for the task of ASV navigation. Because of
this, the ACT models were trained for a total 2500 epochs
for each hyper parameter configuration.

Furthermore, diffusion policy with image data input
could not be trained properly due to RAM and GPU
limitations on the HPC-server. Merely running the training
steps with a batch size of 1 and cutting the camera images
to much smaller values of 50x50 pixels instead of 240x240
pixels, allowed the model to be trained given the available
resources for a maximum of 200 epochs, which was not
enough to allow the loss function of the model to plateau
adequately.

Inference components
In the currently designed GAZEBO inference components,
new actions are queued from the models even during action
sequence output execution. However for the original results
of Zhao et al. for ACT and of Chi et al. for diffusion policy, a
smooth continuous trajectory is generated by averaging over-
lapping action sequences during execution (designated as en-
sembling for ACT). However, for the inference components
of the GAZEBO simulator, overlapping actions are not av-
eraged, which can perhaps result in inadequate state transi-
tions for the ASV regarding its dynamics. This was how-
ever not an issue for the current experiments due to a compo-
nent of the GAZEBO simulator straightening out the trajec-
tory conditioned on the vessel dynamics. However, for more
widespread adaptation of the component, the action outputs
may lead to impractical state transitions.

8.3. Generalizability and reproducibility
Regarding the generalizability of the application of ACT
and diffusion policy as ASV path planners in complex
marine environments, we can make only limited statements
of the tests performed and the corresponding results.

As stated before, for ACT it appears that the model is
not able to perform well in a more realistically complex
navigation task given the current model architecture and

21

data sources. Hence, it is to be expected that releasing the
ASV in a different semi-realistic simulator environment
scenario (with or without inclusion of dynamic obstacles)
when being trained on the same single GAZEBO scenario
will result in success rates of 0.0 once again. Additionally,
since the generalization tests of ACT showed limited
results for performing the task of ASV navigation in the
2D-simulator outside of the trained on distribution, these
success rates are expected to be low. Thus, generalizability
of the currently designed solution of ACT for an ASV path
planner is estimated to be limited. In order to further analyze
the generalizability of the ACT model for ASV navigation,
in future studies one could try to apply a model trained on
the less complex navigation of the 2D-simulator and apply
it to the GAZEBO simulator inference. This could test the
ability of the model to interpret similar type BEV-images
and yield adequate action sequence outputs.

As stated before, diffusion policy appears to learn the
essence of the navigation behaviour and corresponding
dynamics to a significant extent for diffusion policy either
without or with BEV-image for the 2D-simulator, showcas-
ing the model its promise to be used for the more complex
environment of the GAZEBO environment as well. Since,
BEV-images are not required for achieving significant
success rates in the 2D-simulator, this is also expected for
performing the less complex navigation task in the more
complex GAZEBO environment. It should be noted that
since the success rates we found were limited (0.53), merely
limited success rates are expected to be found for the simple
navigation behaviour in the GAZEBO simulator as well.
Additionally, since the generalization tests of the diffusion
policy showcased significant, albeit limited, generalization
capabilities, it might be possible that testing the task of
ASV navigation in a slightly different environment (out of
training distribution) might still yield adequate success rates
in the GAZEBO simulator environment.

In terms of reproducibility, this study is expected to
be able to be reproduced with relatively few complications
for the 2D simulator. The setup and conduction of the exper-
iments was straightforward and simple and should not limit
any future studies towards the performance of either the
ACT or diffusion policy model. However, since this study
leveraged a company specific GAZEBO simulator with
associated NDA restrictions for sharing its specifics, it will
not be possible to re-evaluate these GAZEBO experiments
for outsiders of the company of Roboat.

8.4. Recommendations
In this section we will address possibilities for addressing
the current limitations of this research. Furthermore, we will
elaborate on additional recommendations that were not im-
plemented due to time constraints of the thesis.

Simulator and demonstration loop
Since the model performances we establised were relatively
poor for the GAZEBO simulator, but relatively high for
the 2D-grid version, an interesting opportunity lies in
incrementally building up the 2D-grid simulator complexity
until the realism of the GAZEBO simulator. This way it
might be possible to identify at which level of complexity

the models can not capture and hence perform the navigation
task correctly anymore. As a first step for this, the 2D-grid
simulator can be expanded by applying the same state space
equation as the GAZEBO simulator with regard to vessel
dynamics instead of the simple dynamics currently applied.
This might yield interesting insights, as to whether the
GAZEBO simulator vessel dynamics might have been too
complex to capture for the model and might have been the
reason the model fails in achieving a success rate higher than
0.0. Additionally, the 2D simulator could be expanded with
an A* planner to plan its trajectory. By applying this aspect,
obstacle avoidance could be tested as well in a rather simple
setup by adding static obstacles in the 2D-grid environment.
As for the incorporating the more complex dynamics, these
experiments might give insights as to whether the obstacle
avoidance or more complex path planner applied in the
GAZEBO simulator might have been the bottleneck for the
model performance due to complexity of the task.

Furthermore, as diffusion policy could not be tested
for the GAZEBO simulator with the current hardware setup,
in a future work study one could try to gather more powerful
hardware in order to also test diffusion policy in terms of
navigation in the GAZEBO simulator.

Logging of data sources
In terms of data logging, there is a multitude of design
choices one might investigate in order to try and make
the models achieve high success rates for the GAZEBO
simulator still. Firstly, one could try to tune the sampling
frequency of the data loggers to a higher or lower value.
When increasing this frequency, smaller ASV action values
will be logged, since the pose difference between logging
moments will be smaller. On the other hand, decreasing this
frequency will result in logging higher action values given
the same rationale. Investigating the model performance
for different sampling rates might be interesting, since
the sampling rate has a direct influence on the temporal
character of the logged data. Regarding one demonstra-
tion, increasing the sampling frequency will result in a
higher amount of logged data points, which might allow
the model to leverage more temporal information with
respect to the task to be learned. However, reducing the
sampling frequency reduces the number of logged poses
per demonstration. This results in a less detailed logged
pose trajectory. It might be possible that the less detailed
pose transition information ensures the task is more easily
interpretable for the model. However, it should be noted
that increasing the sampling frequency requires adequate
adaptation of the approximatetymesynchronizer slop value,
so that corresponding data of each action is still logged in
tandem.

Additionally, one could investigate the effect on the
model performances when learning the actions not relative
to the previously logged pose as was done in this research,
but by taking the starting point of each demonstration trial
as the origin point (0,0,0) with respect to the demonstration
trajectory and log each new ASV pose with respect to this
coordinate frame as the action of that timestep. This way
perhaps it might be more easy for the model to detect a more
temporal connection between the logged action poses, since

22

these action poses would increase until the relative goal
position approaches 0. Perhaps this temporal relation might
help the model to figure out what is the desirable navigation
behaviour to be learned.

As has been stated before, the leveraged camera data
used during training was of relatively poor quality. It might
be possible that a more photorealistic camera sensor data
might help the model extract more information from the
camera data which might help the model significantly in
interpreting its environment and hence yield adequate action
values.

The most rigorous option in attempting to allow the
models to capture correct behaviour correctly for the
GAZEBO simulator would be to simply add more (types
of) data sources to the model. One prominent data source
that might help is the inclusion of LIDAR point cloud data.
Before starting this research it was already intended to use
this data source for training both ACT and diffusion policy.
However, due to time constraints this was not brought
into practice. Ze et al. already showed that the inclusion
of LIDAR point cloud data might improve generalization
capability of diffusion policy considerably [22]. Hence, it
might be interesting to see what the effects are in terms
of performance when adding this data source for diffusion
policy, but also for ACT.

Lastly, in order to allow the model to model to cap-
ture the correct navigation behaviour more accurately one
could apply feature augmentation to the current datasets
to try and obtain more generalized behaviour from either
models. Feature augmentation is a standard method in
AI-model training that allows a model to have less tendency
to get stuck in local minima during training due to the higher
constrained nature of the datasources that represent the
behaviour to be learned. It might be possible that applying
feature augmenation yields an increase in success rates
found for the performed experiments.

Model training
In future work studies a number of non investigated hyper
parameters could be varied and perhaps finetuned in a more
elaborate hyper parameter study. For ACT one could still in-
vestigate the influence of varying: batch size, learning rate
and number of hidden layers. For diffusion policy one could
still investigate the influence of varying: batch size, learn-
ing rate schedule parameters, noise schedule parameters, the
action horizon and model architecture parameters.

Inference components
In order to make the design of the GAZEBO inference com-
ponents more flexible in its application, temporal ensem-
bling of overlapping action chunks can be implemented to
make the inference component more robust and flexible for
its application.

9. Conclusion
This research aimed to find out to what extent ACT and dif-
fusion policy trained algorithms allow for ASV navigation
in complex marine environments. Based on the results it
was found that ACT might show poor performance for a task

as complex as this, however multiple limitations of the ap-
plied simulator and logged data sources might have been the
cause for finding these poor results. For diffusion policy we
found results that show promise with respect to this appli-
cation, however due to hardware constraints for performing
experiments, no solid statements can be made regarding the
actual task of ASV navigation. Future work should focus
on trying to perform similar experiments in a simulator envi-
ronment containing more photorealistic camera images for
training with less complex dynamics as it is possible these
were the main reasons for failure. As for diffusion policy,
in future studies diffusion policy could be evaluated in more
detail when hardware resources in terms of GPU and RAM
are available.

10. References
[1] Yubing Wu, Tao Wang, and Shuo Liu. “A Review of

Path Planning Methods for Marine Autonomous Sur-
face Vehicles”. In: Journal of Marine Science and
Engineering 12.5 (2024). Academic Editor: Sergei
Chernyi, Received: 24 April 2024, Revised: 14 May
2024, Accepted: 15 May 2024, Published: 16 May
2024, p. 833. DOI: 10 . 3390 / jmse12050833. URL:
https://doi.org/10.3390/jmse12050833.

[2] Xinyu Zhang et al. “Collision-avoidance navigation
systems for Maritime Autonomous Surface Ships: A
state of the art survey”. In: Ocean Engineering 235
(2021), p. 109380. DOI: 10.1016/j.oceaneng.2021.
109380. URL: https://doi.org/10.1016/j.oceaneng.
2021.109380.

[3] Arman Asgharpoor Golroudbari and Mohammad
Hossein Sabour. Recent Advancements in Deep
Learning Applications and Methods for Autonomous
Navigation: A Comprehensive Review. 2023. arXiv:
2302.11089 [cs.RO]. URL: https://arxiv.org/abs/
2302.11089.

[4] Jonghwi Kim et al. “Navigable Area Detection and
Perception-Guided Model Predictive Control for Au-
tonomous Navigation in Narrow Waterways”. In:
IEEE Robotics and Automation Letters 8.9 (Sept.
2023), pp. 5456–5463. DOI: 10 . 1109 / LRA . 2023 .
3273512.

[5] Maryam Zare et al. A Survey of Imitation Learning:
Algorithms, Recent Developments, and Challenges.
2023. arXiv: 2309 . 02473 [cs.LG]. URL: https : / /
arxiv.org/abs/2309.02473.

[6] Jiang Hua et al. “Learning for a Robot: Deep Re-
inforcement Learning, Imitation Learning, Transfer
Learning”. In: Sensors 21.4 (2021), p. 1278. DOI: 10.
3390/s21041278.

[7] Tony Z. Zhao et al. Learning Fine-Grained Bimanual
Manipulation with Low-Cost Hardware. 2023. arXiv:
2304.13705 [cs.RO]. URL: https://arxiv.org/abs/
2304.13705.

[8] J Hyeon Park et al. “Hierarchical Action Chunking
Transformer: Learning Temporal Multimodality from
Demonstrations with Fast Imitation Behavior”. In:
2024 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). Abu Dhabi, United
Arab Emirates: IEEE, Oct. 2024, pp. 12648–12654.

23

https://doi.org/10.3390/jmse12050833
https://doi.org/10.3390/jmse12050833
https://doi.org/10.1016/j.oceaneng.2021.109380
https://doi.org/10.1016/j.oceaneng.2021.109380
https://doi.org/10.1016/j.oceaneng.2021.109380
https://doi.org/10.1016/j.oceaneng.2021.109380
https://arxiv.org/abs/2302.11089
https://arxiv.org/abs/2302.11089
https://arxiv.org/abs/2302.11089
https://doi.org/10.1109/LRA.2023.3273512
https://doi.org/10.1109/LRA.2023.3273512
https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2309.02473
https://doi.org/10.3390/s21041278
https://doi.org/10.3390/s21041278
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2304.13705

[9] Yanjie Ze et al. 3D Diffusion Policy: Generalizable Vi-
suomotor Policy Learning via Simple 3D Representa-
tions. 2024. arXiv: 2403.03954 [cs.RO]. URL: https:
//arxiv.org/abs/2403.03954.

[10] Yulai Zhao et al. Adding Conditional Control to Dif-
fusion Models with Reinforcement Learning. 2024.
arXiv: 2406.12120 [cs.LG]. URL: https://arxiv.org/
abs/2406.12120.

[11] Brian Yang et al. Diffusion-ES: Gradient-free Plan-
ning with Diffusion for Autonomous Driving and Zero-
Shot Instruction Following. 2024. arXiv: 2402.06559
[cs.LG]. URL: https://arxiv.org/abs/2402.06559.

[12] Zipeng Fu, Tony Z. Zhao, and Chelsea Finn. Mo-
bile ALOHA: Learning Bimanual Mobile Manipula-
tion with Low-Cost Whole-Body Teleoperation. 2024.
arXiv: 2401.02117 [cs.RO]. URL: https://arxiv.org/
abs/2401.02117.

[13] Saurabh Arora and Prashant Doshi. “A survey of in-
verse reinforcement learning: Challenges, methods
and progress”. In: Artificial Intelligence 294 (2021).
Available online 24 March 2021, p. 103457. DOI: 10.
1016/j.artint.2021.103457. URL: https://doi.org/
10.1016/j.artint.2021.103457.

[14] Tomoya Yokoyama et al. “Intervention Force-based
Imitation Learning for Autonomous Navigation in Dy-
namic Environments”. In: 2020 Asia-Pacific Signal
and Information Processing Association Annual Sum-
mit and Conference (APSIPA ASC). Auckland, New
Zealand: IEEE, Dec. 2020. URL: https://ieeexplore.
ieee.org/document/XXXXXXX.

[15] Joonwoo Ahn, Minsoo Kim, and Jaeheung Park.
Vision-based Autonomous Driving for Unstructured
Environments Using Imitation Learning. 2022. arXiv:
2202.10002 [cs.RO]. URL: https://arxiv.org/abs/
2202.10002.

[16] Tung Phan-Minh et al. Driving in Real Life with In-
verse Reinforcement Learning. 2022. arXiv: 2206 .
03004 [cs.RO]. URL: https://arxiv.org/abs/2206.
03004.

[17] Zhiyu Huang, Jingda Wu, and Chen Lv. Driving
Behavior Modeling using Naturalistic Human Driv-
ing Data with Inverse Reinforcement Learning. 2021.
arXiv: 2010.03118 [cs.RO]. URL: https://arxiv.org/
abs/2010.03118.

[18] Zhiyu Huang et al. “Conditional Predictive Behav-
ior Planning with Inverse Reinforcement Learning for
Human-like AutonomousDriving”. In: arXiv preprint
arXiv:2212.08787 (2022). Submitted on 17 Dec 2022,
last revised 7 Mar 2023. URL: https://doi.org/10.
48550/arXiv.2212.08787.

[19] David Sierra González et al. Modeling Driver Behav-
ior from Demonstrations in Dynamic Environments
Using Spatiotemporal Lattices. Brisbane, QLD, Aus-
tralia, 2018. DOI: 10 . 1109 / ICRA . 2018 . 8460208.
URL: https : / / ieeexplore . ieee . org / document /
8460208.

[20] Gustavo Claudio Karl Couto and Eric Aislan An-
tonelo. “Hierarchical Generative Adversarial Imita-
tion Learning With Mid-Level Input Generation for
Autonomous Driving on Urban Environments”. In:
IEEE Transactions on Intelligent Vehicles (2024),
pp. 1–14. ISSN: 2379-8858. DOI: 10.1109/tiv.2024.
3436587. URL: http://dx.doi.org/10.1109/TIV.
2024.3436587.

[21] Pin Wang et al. Decision Making for Autonomous
Driving via Augmented Adversarial Inverse Rein-
forcement Learning. 2021. arXiv: 1911.08044 [cs.AI].
URL: https://arxiv.org/abs/1911.08044.

[22] Yanjie Ze et al. Generalizable Humanoid Manipu-
lation with Improved 3D Diffusion Policies. 2024.
arXiv: 2410.10803 [cs.RO]. URL: https://arxiv.org/
abs/2410.10803.

[23] Piyabhum Chaysri et al. “Unmanned Surface Vehi-
cle Navigation Through Generative Adversarial Imi-
tation Learning”. In: Ocean Engineering 282 (2023),
p. 114989. DOI: 10.1016/j.oceaneng.2023.114989.
URL: https://doi.org/10.1016/j.oceaneng.2023.
114989.

[24] Takefumi Higaki and Hirotada Hashimoto. “Human-
like Route Planning for Automatic Collision Avoid-
ance Using Generative Adversarial Imitation Learn-
ing”. In: Applied Ocean Research 138 (2023). Avail-
able online 7 June 2023, p. 103620. DOI: 10 .
1016 / j . apor . 2023 . 103620. URL: https : / /
www . sciencedirect . com / science / article / pii /
S014111872300161X.

[25] Andrea Asperti and Matteo Trentin. Balancing recon-
struction error and Kullback-Leibler divergence in
Variational Autoencoders. 2020. arXiv: 2002.07514
[cs.NE]. URL: https://arxiv.org/abs/2002.07514.

[26] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
Diffusion Probabilistic Models. 2020. arXiv: 2006 .
11239 [cs.LG]. URL: https://arxiv.org/abs/2006.
11239.

[27] Cheng Chi et al. Diffusion Policy: Visuomotor Pol-
icy Learning via Action Diffusion. 2024. arXiv: 2303.
04137 [cs.RO]. URL: https://arxiv.org/abs/2303.
04137.

[28] Toshihide Ubukata, Jialong Li, and Kenji Tei. Diffu-
sion Model for Planning: A Systematic Literature Re-
view. 2024. arXiv: 2408.10266 [cs.LG]. URL: https:
//arxiv.org/abs/2408.10266.

[29] Florinel-Alin Croitoru et al. “Diffusion Models in Vi-
sion: A Survey”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 45.9 (Sept. 2023),
pp. 10850–10869. ISSN: 1939-3539. DOI: 10 . 1109 /
tpami.2023.3261988. URL: http://dx.doi.org/10.
1109/TPAMI.2023.3261988.

[30] Sung-Wook Lee and Yen-Ling Kuo. Diff-DAgger: Un-
certainty Estimation with Diffusion Policy for Robotic
Manipulation. 2024. arXiv: 2410 . 14868 [cs.RO].
URL: https://arxiv.org/abs/2410.14868.

24

https://arxiv.org/abs/2403.03954
https://arxiv.org/abs/2403.03954
https://arxiv.org/abs/2403.03954
https://arxiv.org/abs/2406.12120
https://arxiv.org/abs/2406.12120
https://arxiv.org/abs/2406.12120
https://arxiv.org/abs/2402.06559
https://arxiv.org/abs/2402.06559
https://arxiv.org/abs/2402.06559
https://arxiv.org/abs/2401.02117
https://arxiv.org/abs/2401.02117
https://arxiv.org/abs/2401.02117
https://doi.org/10.1016/j.artint.2021.103457
https://doi.org/10.1016/j.artint.2021.103457
https://doi.org/10.1016/j.artint.2021.103457
https://doi.org/10.1016/j.artint.2021.103457
https://ieeexplore.ieee.org/document/XXXXXXX
https://ieeexplore.ieee.org/document/XXXXXXX
https://arxiv.org/abs/2202.10002
https://arxiv.org/abs/2202.10002
https://arxiv.org/abs/2202.10002
https://arxiv.org/abs/2206.03004
https://arxiv.org/abs/2206.03004
https://arxiv.org/abs/2206.03004
https://arxiv.org/abs/2206.03004
https://arxiv.org/abs/2010.03118
https://arxiv.org/abs/2010.03118
https://arxiv.org/abs/2010.03118
https://doi.org/10.48550/arXiv.2212.08787
https://doi.org/10.48550/arXiv.2212.08787
https://doi.org/10.1109/ICRA.2018.8460208
https://ieeexplore.ieee.org/document/8460208
https://ieeexplore.ieee.org/document/8460208
https://doi.org/10.1109/tiv.2024.3436587
https://doi.org/10.1109/tiv.2024.3436587
http://dx.doi.org/10.1109/TIV.2024.3436587
http://dx.doi.org/10.1109/TIV.2024.3436587
https://arxiv.org/abs/1911.08044
https://arxiv.org/abs/1911.08044
https://arxiv.org/abs/2410.10803
https://arxiv.org/abs/2410.10803
https://arxiv.org/abs/2410.10803
https://doi.org/10.1016/j.oceaneng.2023.114989
https://doi.org/10.1016/j.oceaneng.2023.114989
https://doi.org/10.1016/j.oceaneng.2023.114989
https://doi.org/10.1016/j.apor.2023.103620
https://doi.org/10.1016/j.apor.2023.103620
https://www.sciencedirect.com/science/article/pii/S014111872300161X
https://www.sciencedirect.com/science/article/pii/S014111872300161X
https://www.sciencedirect.com/science/article/pii/S014111872300161X
https://arxiv.org/abs/2002.07514
https://arxiv.org/abs/2002.07514
https://arxiv.org/abs/2002.07514
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2408.10266
https://arxiv.org/abs/2408.10266
https://arxiv.org/abs/2408.10266
https://doi.org/10.1109/tpami.2023.3261988
https://doi.org/10.1109/tpami.2023.3261988
http://dx.doi.org/10.1109/TPAMI.2023.3261988
http://dx.doi.org/10.1109/TPAMI.2023.3261988
https://arxiv.org/abs/2410.14868
https://arxiv.org/abs/2410.14868

[31] Chia-Hsun Chang et al. “COLREG and MASS: An-
alytical review to identify research trends and gaps
in the Development of Autonomous Collision Avoid-
ance”. In: Ocean Engineering 302 (June 2024),
p. 117652. DOI: 10.1016/j.oceaneng.2024.117652.
URL: https://doi.org/10.1016/j.oceaneng.2024.
117652.

[32] AbrahamGeorge and Amir Barati Farimani. One ACT
Play: Single Demonstration Behavior Cloning with
Action Chunking Transformers. 2023. arXiv: 2309 .
10175 [cs.RO]. URL: https://arxiv.org/abs/2309.
10175.

[33] Thanpimon Buamanee et al. Bi-ACT: Bilateral
Control-Based Imitation Learning via Action Chunk-
ing with Transformer. 2024. arXiv: 2401 . 17698
[cs.RO]. URL: https://arxiv.org/abs/2401.17698.

[34] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deep-
Cache: Accelerating Diffusion Models for Free. 2023.
arXiv: 2312.00858 [cs.CV]. URL: https://arxiv.org/
abs/2312.00858.

[35] Tony Z. Zhao and Cheng Chi. ACT: Action Chunk-
ing with Transformers. https : / / github . com /
tonyzhaozh/act. Accessed: 2025-05-01. 2024.

[36] Cheng Chi et al. Diffusion Policy: Visuomotor Policy
Learning via Action Diffusion. https://gitlab.com/
real - stanford / diffusion _ policy. Accessed: 2025-
05-01. 2024.

11. Appendix
Listing 1: ACT HDF5 File Structure

1 action : <HDF5 dataset ” action ” : shape (200 , 4) ,
type ”<f4”>

2 observations : <HDF5 group ”/ observations ” (6
members)>

3 goal_pose : <HDF5 dataset ”goal_pose ” : shape
(200 , 4) , type ”<f4”>

4 images : <HDF5 group ”/ observations /images” (1
members)>

5 f ront : <HDF5 dataset ” front ” : shape (200 ,
400 , 480 , 3) , type ” | u1”>

6 lucy_orientation : <HDF5 dataset ”
lucy_orientation ” : shape (200 , 1) , type
”<f4”>

7 lucy_velocity : <HDF5 dataset ” lucy_velocity ” :
shape (200 , 6) , type ”<f4”>

8 poses : <HDF5 dataset ” poses ” : shape (200 , 24)
, type ”<f4”>

9 v e l o c i t i e s : <HDF5 dataset ” v e l o c i t i e s ” : shape
(200 , 36) , type ”<f4”>

Listing 2: Diffusion policy HDF5 File Structure (Reformatted with demo
data)

1 data : <HDF5 group ”/data” (2 members)>
2 demo_0: <HDF5 group ”/data/demo_0” (3 members

)>
3 act ions : <HDF5 dataset ” act ions ” : shape

(84 , 4) , type ”<f4”>
4 obs : <HDF5 group ”/data/demo_0/obs” (6

members)>
5 f ront : <HDF5 dataset ” front ” : shape

(84 , 240 , 240 , 3) , type ” | u1”>
6 goal_pose : <HDF5 dataset ”goal_pose ” :

shape (84 , 4) , type ”<f4”>
7 lucy_orientation : <HDF5 dataset ”

lucy_orientation ” : shape (84 , 1) ,
type ”<f4”>

8 lucy_velocity : <HDF5 dataset ”
lucy_velocity ” : shape (84 , 6) ,
type ”<f4”>

9 poses : <HDF5 dataset ” poses ” : shape
(84 , 24) , type ”<f4”>

10 v e l o c i t i e s : <HDF5 dataset ” v e l o c i t i e s
” : shape (84 , 36) , type ”<f4”>

11 s ta te s : <HDF5 dataset ” s ta te s ” : shape
(20 , 3) , type ”<f4”>

12 demo_1: <HDF5 group ”/data/demo_1” (3 members
)>

13 act ions : <HDF5 dataset ” act ions ” : shape
(20 , 4) , type ”<f4”>

14 obs : <HDF5 group ”/data/demo_1/obs” (6
members)>

15 f ront : <HDF5 dataset ” front ” : shape
(20 , 240 , 240 , 3) , type ” | u1”>

16 goal_pose : <HDF5 dataset ”goal_pose ” :
shape (20 , 4) , type ”<f4”>

17 lucy_orientation : <HDF5 dataset ”
lucy_orientation ” : shape (20 , 1) ,

type ”<f4”>
18 lucy_velocity : <HDF5 dataset ”

lucy_velocity ” : shape (20 , 6) ,
type ”<f4”>

19 poses : <HDF5 dataset ” poses ” : shape
(20 , 24) , type ”<f4”>

20 v e l o c i t i e s : <HDF5 dataset ” v e l o c i t i e s
” : shape (20 , 36) , type ”<f4”>

21 s ta te s : <HDF5 dataset ” s ta te s ” : shape
(20 , 3) , type ”<f4”>

Figure 22: equidistant sampling across the grid for trajectory density plots

Figure 23: trajectory density plot for 2D-LQR dynamics

25

https://doi.org/10.1016/j.oceaneng.2024.117652
https://doi.org/10.1016/j.oceaneng.2024.117652
https://doi.org/10.1016/j.oceaneng.2024.117652
https://arxiv.org/abs/2309.10175
https://arxiv.org/abs/2309.10175
https://arxiv.org/abs/2309.10175
https://arxiv.org/abs/2309.10175
https://arxiv.org/abs/2401.17698
https://arxiv.org/abs/2401.17698
https://arxiv.org/abs/2401.17698
https://arxiv.org/abs/2312.00858
https://arxiv.org/abs/2312.00858
https://arxiv.org/abs/2312.00858
https://github.com/tonyzhaozh/act
https://github.com/tonyzhaozh/act
https://gitlab.com/real-stanford/diffusion_policy
https://gitlab.com/real-stanford/diffusion_policy

Figure 24: trajectory density plot for ACT inference

Figure 25: success rate heatmap for ACT trajectory density plot

Figure 26: trajectory density plot for diffusion policy inference

Figure 27: success rate heatmap for diffusion policy trajectory density plot

26

	Acknowledgments
	Introduction
	Research paper
	Introduction
	Related Work
	Imitation Learning
	Imitation learning for AV planners
	Imitation learning for ASV planners

	Background
	ACT
	Diffusion policy

	Problem formulation
	Framework
	Simulator environments
	Framework design pipeline

	Experiments
	2D-grid simulator experimental setup
	GAZEBO simulator experimental setup
	Model Training
	Hyper parameter setup
	Debugging data logging
	Additional performance metrics

	Results
	Hyper parameter studies
	Additional performance metrics

	Discussion
	Interpretation of results
	Limitations
	Generalizability and reproducibility
	Recommendations

	Conclusion
	References
	Appendix

