
Faster Low-Thrust Trajectory Design
Through Finite Fourier Series
Thijs van Lith

Te
ch

ni
sc

he
Un

iv
er

si
te
it
De

lft

Faster Low-Thrust
Trajectory Design
Through Finite
Fourier Series

The effects of a new initialisation strategy
by

Thijs van Lith
to obtain the degree of Master of Science

at Delft University of Technology, to be defended publicly on Tuesday August 25, 2020 at 13:30.

Student number: 4359291
Thesis committee: Prof. dr. ir. P.N.A.M. Visser TU Delft, Chair

Ir. R. Noomen TU Delft, Supervisor
Dr. ir. R.C. Alderliesten TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover image: https://unsplash.com/photos/crs2vlkSe98

http://repository.tudelft.nl/
https://unsplash.com/photos/crs2vlkSe98

Preface

This document is the result of ten months of research dedicated to analytical low-thrust transfer orbit design
by means of Fourier series. It is submitted in partial fulfilment of the requirements for the degree of Master
of Science at the faculty of Aerospace Engineering.

This endeavour marks the end of a six-year lasting student period in Delft. It has been a special period I will
always happily and proudly cherish. I have enjoyed studying and the student life in Delft, but now it is time
for the next big step. I am delighted to complete it with the study presented in this document. Even though I
started studying aerospace engineering, I always have had a sincere interest in mathematics. Therefore, I am
highly contented to complete my time as a student with an investigation focused on a beautiful combination
of these two topics.

The final version of this thesis would of course not have been possible without the help of some special peo-
ple. First and foremost I would like to express my gratitude to my admirable supervisor Ron Noomen. When
I still had courses, I very much enjoyed the passion he has for space flight and the way he conveys this to his
students. Now, as my supervisor, I would like to thank him for his ever stimulating and constructive attitude
and ideas, especially when I thought I ran out of all my options. Furthermore, I would like to show my appre-
ciation to Dominic Dirkx and his great assistant Elmar Puts. TUDAT is a powerful tool, specifically when it is
working properly, but without the help of these two gentlemen, I would not have been able to execute my C++
code as smoothly. Then, I want to say thanks to my lovely Naomi, my parents and my brother. Even though
my problems and issues were outside their field of expertise, I could still rely on a firm dose of motivation and
positivity. Also, thanks to my (ex-)roommates in the most beautiful South for the great time I had. Without
them the Arthur van Schendelplein would not have been so fine. Subsequently, I cannot thank my friends
enough. Thanks to my aerospace buddies, who contributed to the ultimate Delft experience, thanks to my
friends from CfS, who broadened my worldview with regards to the social sciences and with whom I had an
unforgettable experience on the other side of the ocean, and at last, thanks to the gentlemen from the Dokter
Biegelstraat in G-Town, whom I can invariably rely on.

Thijs van Lith
Delft - Thursday 23rd July, 2020

iii

Summary

Low-thrust propulsion has gained more popularity over the past few decades because of its high efficiency.
Interplanetary transfer trajectories in particular benefit from low-thrust propulsion, considering the typically
high ∆V to be achieved. In order to allow a fast design of such missions, first-order, efficient representations
of transfer orbits are usually used before a more detailed and exact numerical model is applied. One of these
so-called shape-based methods is the finite Fourier series method is.

The finite Fourier series allows for the modelling of such trajectories by means of a set of Fourier series.
These coefficients will describe the trajectory, determine the thrust profile, and most importantly: the re-
quired ∆V. Besides satisfying constraints on the initial and final position and velocity, and on the time of
flight, it can also comply with optionally imposed thrust acceleration constraints. This greatly contributes to
an efficient generation of realistic and feasible transfer trajectories.

In this thesis, the focus lies on improving this first-order method through a different initialisation strategy
with the goal of decreasing the convergence time of the algorithm, and improving its three-dimensional sta-
bility.

The first step in this process is the implementation of the method. Both the two- and three-dimensional
variant have been added to TUDAT (Technical University of Delft Astrodynamics Toolbox) and a step-by-step
guide on the two versions can be read in this report.

During this process, some inconsistencies have been encountered that were not clearly, or even incor-
rectly addressed or documented by the inventors of this method. These include the calculation of the initial
guess, the definition of the decision vector, the performance of the two-dimensional unconstrained finite
Fourier series, the two-dimensional reference results and the interpretation of the reference frame.

After these problems have been overcome, the method has been validated against three case studies de-
parting from the Earth: a trajectory to Mars, both in two and three dimensions, and an additional trajectory
to the comet Tempel-1 in three dimensions. These targets were chosen to test the performance to a target
with both a simple orbital geometry, i.e. low inclination and a nearly circular orbit, and targets that are more
challenging at higher inclinations and with higher eccentricities.

The second step is the actual analysis of the initialisation strategy. The original strategy is based on the ap-
proximation of the trajectory by means of a third-order power function. In the search of a better strategy,
four different function types have been analysed: (the original) power function, an exponential function, a
trigonometric function and a logarithmic function. The results obtained from the power function obviously
serve as reference data. The four different functions were tested on two transfer trajectories, both in two and
three dimensions: from Earth to Jupiter and from Earth to Dionysus.

In two dimensions, the radial component r and the transfer angle θ are both approximated by the same
function. This holds for the three-dimensional version as well, but it should be noted that the parameters for
the axial component z are not initialised by any function and are just set to zero before they are fed to the
solver. To analyse the effects of different strategies, five test cases have been defined: two in two dimensions
and three in three dimensions.

The first two-dimensional case consists of using one of the four initialisation functions for both parame-
ters, while the second case prescribes that the two parameters are initialised by two functions that are tailored
to their natural behaviour. Because the radial component of a low-thrust trajectory naturally has the shape
of a power function and the transfer angle like a logarithmic function, these two function types are used to
initialise r and θ.

In three dimensions more or less the same protocol is followed. The first case comprises of using the same
function for both r and θ while z is still set to zero. The second case also allows z to be approximated by the
same initialisation function as r and θ, hence it is no longer set to zero. The third case again makes use of the
natural behaviour of the three design parameters. This time it means that r is estimated by a power function,
θ by a logarithmic function and z by a sinusoidal function.

v

vi Summary

The results in two dimensions look very promising, as for the first case the solver manages to find the solution
of 18.30 km/s with an average of 18.22 km/s and a spread of only 0.085 km/s for the trajectory to Jupiter, and
an average of 22.46 km/s with a spread of 0 km/s to Dionysus. The exponential initialisation function provides
the fastest results, which is 7.9% and 42.6% faster than the respective reference case.

The second case with a tailored initialisation function, on the contrary, fails to converge when finding a
trajectory to Dionysus. The best solution for a trajectory to Jupiter is 19.0 km/s, which is more than the refer-
ence case. Also, the computation time is 8.2% slower.

In three dimensions the results show a different trend. For the first case, it is only the exponential approach
that finds a feasible trajectory to Jupiter besides the reference solution, but it has a∆V outcome of 18.59 km/s
against 16.74 km/s for the reference solution. Not a single feasible trajectory solution to Dionysus is found.

For the second case, the results are of a similar form. Again no feasible trajectory solution to Dionysus
could be found. To Jupiter, it is only the power and exponential initialisation function that manage to find a
feasible solution of 19.29 km/s and 23.69 km/s respectively.

Finally, case number three, which makes use of tailored initialisation functions, does not contain any
feasible trajectory at all. For Jupiter, the solver converges to a ∆V of 126.44 km/s when the axial coefficients
are set to zero and 135.02 km/s when they are estimated as well. The ∆Vs for the trajectory to Dionysus are
167.13 km/s and 170.28 km/s respectively, which are all highly unrealistic.

Based on the results it can be concluded that the use of the proper initialisation strategy can consider-
ably boost the effectiveness of the finite Fourier series method. However, a clear contrast between the two-
dimensional and three-dimensional version can be observed: the two-dimensional version of the algorithm
can greatly benefit from an exponential function to generate a priori values, while there has not been a
single approach that decreases the convergence time of the solver nor improves the stability for the three-
dimensional version.

Therefore, it can also be concluded that the finite Fourier series method is extremely sensitive regarding a
priori values for the axial candidate. All cases in which the coefficients were left untouched and thus initially
set to zero yield better results than when they were estimated by one of the initialisation functions.

Nomenclature

Latin Symbols
[Ar] Fourier coefficient (Can , Cbn) matrix −
A Amplitude of trigonometric initialisation function −
A Cross-sectional area m2

a – g Inverse polynomial coefficients −
a – h Cubic polynomial coefficients −
a, b, c Initialisation function coefficients −
a0P Constant used to describe out-of-plane thrust −
aθn Finite polynomial design parameter for θ (t) −
ad Acceleration of perturbing body d acting on spacecraft m/s2

ak Acceleration of orbited body acting on spacecraft m/s2

an – fn Finite Fourier series coefficient −
arm Finite polynomial design parameter for r (t) −
az – dz Inverse polynomial 3D coefficients −
b0 Constant used to describe out-of-plane thrust −
C Thrust acceleration constraint −
c Speed of light [26] 2.99792458×108 km/s
Can , Cbn Short-handed notation for Fourier term −
ci Hodographic base function coefficient −
CR Coefficient of reflectivity −
d Dimension of Schwefel function −
D (θ) Time equation scalar function −
eS Unit vector pointing towards Sun −
e Eccentricity −
fSRP Solar Radiation Pressure m/s2

F Thrust force N
f (τ) Initialisation function for Fourier coefficients −
fθ Transverse thrust acceleration m/s2

fh Thrust acceleration acting along or against angular momentum vector of spacecraft m/s2

Fr Short-handed notation for Fourier term −
fr Radial thrust acceleration m/s2

fz Axial thrust acceleration m/s2

g0 Standard Earth gravity m/s2

i Inclination rad
Isp Specific impulse s
K Mean of trigonometric initialisation function −
k0 Scaling factor m
k1 Dynamic range parameter −
k2 Winding parameter −
ṁ Mass flow kg/s
m Mass kg
m Number of discretisation points −
md Mass of perturbing body kg
mk Mass of orbited body kg
n Thrust direction specifier −
n nth Fourier coefficient −
Nrev Number of revolutions −
nr Number of Fourier coefficients for r (t) −
nθ Number of Fourier coefficients for θ (t) −

vii

viii Nomenclature

napp Number of discretised data points to initialise finite Fourier series −
nz Number of Fourier coefficients for z (t) −
P Power W
p Semi-latus rectum m
P j Exhaust jet power W
ppr Points per revolution −
q Exponent of highest order out-of-plane term for inverse polynomial method −
q Positive integer −
ṙ f Radial velocity of arrival planet measured w.r.t. Sun m/s
r Radial position vector m
R Matrix to store all cosine and sine terms for 2D FFS −
r Magnitude of position vector m
R (θ) Function shaping r m
r (t) Fourier series for radius r m
rcp (t) Cubic polynomial function for radius r m
rd Distance between central body and perturbing body m
r f Radius of arrival planet measured w.r.t. Sun m
ri Radius of departure planet measured w.r.t. Sun m
rs Distance between central body and spacecraft m
ṙi Radial velocity of departure planet measured w.r.t. Sun m/s
s Out-of-plane distance m
T Orbital period s
T Thrust N
t Time s
T (θ) Time of flight function s
Ta Thrust acceleration vector m/s2

Ta Magnitude of thrust acceleration vector m/s2

Tamax Maximum allowed thrust acceleration m/s2

Tarθ In-plane thrust acceleration m/s2

Taz Out-of-plane thrust acceleration m/s2

V Velocity m/s
Vθ (t) Transverse velocity function m/s
Ve Exhaust velocity m/s
Vr (t) Radial velocity function m/s
Vz (t) Axial velocity function m/s
W Available power W
W Energy flux W/m2

[Xr] Fourier parameter (an – fn) vector −
x̃ State vector parametrised by azimuthal angle θ m,m/s
x Decision vector containing unknown Fourier coefficients −
xi Variable of the i -th dimension of Schwefel function −

Greek Symbols
α Right ascension rad
α Thrust pointing angle rad
γ Flight path angle rad
∆V Change in velocity m/s
δ Declination rad
ε Ecliptic angle rad
ε Power conversion efficiency −
ζ Short-handed trigonometric estimation parameter −
θ Azimuthal angle rad
θ Polar angle rad
θ True anomaly rad
θ f Transfer angle of arrival planet measured w.r.t. vernal equinox rad
θi Transfer angle of departure planet measured w.r.t. vernal equinox rad
θ (t) Fourier series for transfer angle θ rad

Nomenclature ix

θcp (t) Cubic polynomial function for transfer angle θ rad
θ̇ f Angular velocity of arrival planet measured w.r.t. vernal equinox rad/s
θ̇i Angular velocity of departure planet measured w.r.t. vernal equinox rad/s
λ Longitude rad
µ Gravitational parameter m3/s2

µ Mean of normal distribution −
σ Standard deviation of normal distribution −
σi Slack variable −
σ2 Variance of normal distribution −
τ Scaled time −
Φ (θ) Function shaping φ rad
φ Elevation angle rad
φ Latitude rad
φ Phase shift of trigonometric initialisation function rad
φ Phasing angle rad
Ω Right ascension of the ascending node rad
ω Argument of pericenter rad
ω Frequency of trigonometric initialisation function Hz
ω Measure of the width of the tangent hyperbolic function s/rad

Superscripts
ä̇ First derivative with respect to time t
ä̈ Second derivative with respect to time t
ä′

First derivative with respect to azimuthal angle θ
ä′

First derivative with respect to scaled time τ
ä̂ An integral with respect to polar angle
ä′′

Second derivative with respect to azimuthal angle θ
ä′′

Second derivative with respect to scaled time τ

Subscripts []
äi Initial
ä f Final

Abbreviations
2PBVP Two-Point Boundary Value Problem
AU Astronomical Unit
CFF Constrained Finite Fourier Series
CP Cubic Polynomial
DP Discretisation Point
DS1 Deep Space 1
DU Distance unit
EoM Equation(s) of Motion
FFS Finite Fourier Series
GA Genetic Algorithm
IP Inverse Polynomial
JD Julian Date
LEO Low Earth Orbit
LTP Low-Thrust Propulsion
MJD2000 Modified Julian Date, reference date: 01-01-2000. MJD2000 = JD - 2400000.5
NLP Non-Linear Programming
NMP New Millennium Program
SEP Solar Electric Propulsion
SPICE Spacecraft ephemeris - Planet, satellite, comet or asteroid ephemerides and physical, dynamical

and cartographic constants - Instrument information - C-matrix orientation information - Events
information

SQP Sequential Quadratic Programming
SRP Solar Radiation Pressure
TOF Time Of Flight

x Nomenclature

TH Tangent Hyperbolic
TU Time unit
TU Delft Delft University of Technology
TUDAT Technical University of Delft Astrodynamics Toolbox
UFF Unconstrained Finite Fourier Series

Table of Contents

Preface iii
Summary v
Nomenclature vii
1 Introduction 1

I Background 3
2 Celestial Mechanics 5

2.1 Reference Frame . 5
2.2 Coordinates and Orbital Elements . 5
2.3 Equations of Motion . 6

2.3.1 General Formulation. 7
2.3.2 Polar Coordinates . 7
2.3.3 Cylindrical Coordinates . 7
2.3.4 Spherical Coordinates . 8

2.4 Perturbations . 8
2.4.1 Thrust . 8
2.4.2 Third-Body Perturbations . 9
2.4.3 Radiation Pressure . 9
2.4.4 Gravity Field Perturbing Forces . 10
2.4.5 Aerodynamic Forces . 10
2.4.6 Electromagnetic Forces . 10
2.4.7 Relativistic Effects . 10
2.4.8 Summary . 10

3 Low-Thrust Propulsion 11
3.1 Physical Principles . 11
3.2 Types of Low-Thrust Propulsion . 12
3.3 Low-Thrust Space Missions . 12
3.4 Modelling Low-Thrust Transfer Trajectories. 13

4 Shape-Based Methods 15
4.1 Introduction . 15
4.2 Comparison. 16
4.3 Finite Fourier Series. 17

4.3.1 2D Finite Fourier Series . 17
4.3.2 3D Finite Fourier Series . 20

II Implementation 23
5 2D Implementation 25

5.1 Free Parameters . 25
5.2 Boundary Conditions . 26
5.3 Initial Guess. 26
5.4 Initial Coefficients . 27
5.5 Sine and Cosine Matrices . 28
5.6 Solving Procedure. 28
5.7 Thrust Constraint . 28
5.8 Trajectory Construction and Velocity Increment . 29

xi

xii Table of Contents

6 3D Implementation 31
6.1 Free Parameters . 31
6.2 Boundary Conditions . 31
6.3 Initial Guess. 32
6.4 Initial Coefficients . 32
6.5 Sine and Cosine Matrices . 33
6.6 Solving Procedure. 33
6.7 Trajectory Construction and Velocity Increment . 34

7 Validation 35
7.1 Solver Validation . 35

7.1.1 Nelder-Mead Simplex Method . 35
7.1.2 Schwefel Test Function. 35

7.2 Mars in 2D . 36
7.3 Mars in 3D . 39
7.4 Tempel-1 in 3D . 42

8 Model Development 47
8.1 Alternative Decision Vector . 47
8.2 2D Unconstrained Finite Fourier Series . 50
8.3 Solver Tuning . 50

8.3.1 ∆V Deviations . 50
8.3.2 Random Variables . 51

8.4 Reference Frame . 52
8.5 The Number of Fourier Coefficients. 53

III Initialisation 57
9 Strategy 59

9.1 Finding the Optimum . 59
9.2 Function Types . 60

9.2.1 Power Function . 60
9.2.2 Exponential Function . 60
9.2.3 Trigonometric Function . 61
9.2.4 Logarithmic Function . 62
9.2.5 Other Possible Function Types . 62

9.3 Test Objects . 63
9.3.1 Jupiter . 63
9.3.2 Dionysus. 65
9.3.3 Haumea . 67

9.4 Experimental Outline . 68
9.4.1 2D Test Set-Up . 69
9.4.2 3D Test Set-Up . 69
9.4.3 Time Assessment . 69

10 2D Results 71
10.1 Using a Different Initialisation Function . 71

10.1.1 Jupiter . 71
10.1.2 Dionysus. 72

10.2 Using a Tailored Initialisation Function . 76
10.3 Conclusion . 78

11 3D Results 79
11.1 Using an Alternative Initialisation Function (r and θ Only) . 79

11.1.1 Jupiter . 79
11.1.2 Dionysus. 80

11.2 Using a Different Initialisation Function (r , θ and z) . 81
11.2.1 Jupiter . 81
11.2.2 Dionysus. 82

Table of Contents xiii

11.3 Tailored Initialisation Functions . 82
11.3.1 Jupiter . 83
11.3.2 Dionysus. 85

11.4 Coefficient Analysis . 86
11.5 Multi-start Analysis . 87

12 Conclusions and Recommendations 91
12.1 Conclusions. 91

12.1.1 Implementation . 91
12.1.2 2D Initialisation . 92
12.1.3 3D Initialisation . 92

12.2 Recommendations . 93

Bibliography 95
A Cubic Polynomial Coefficient Derivation 97

A.1 Real Time . 97
A.2 Scaled Time . 98

B Initial Coefficients Derivation 101
C 3D Finite Fourier Series Derivations 103

C.1 Scaled Time . 103
C.2 Rephrased Fourier Terms . 103

D Implementation Issues 109
D.1 Initial Guess Calculation . 109
D.2 Decision Vector Definition . 110
D.3 2D Unconstrained Finite Fourier Series . 111
D.4 Validation . 111
D.5 Solving Process . 112
D.6 Reference Frame . 112

E Fourier Coefficients 115
F Background Information on Shape-Based Methods 119

F.1 Exponential Sinusoid . 119
F.2 Inverse Polynomial . 120
F.3 Spherical Shaping Method . 123
F.4 Hodographic Shaping Method . 125
F.5 Finite Polynomial . 127

G Uncorrected CPU-Time Measurements 129

1
Introduction

Because of its high efficiency, low-thrust propulsion is an attractive means to propel a spacecraft. Interplane-
tary transfer trajectories in particular benefit from low-thrust propulsion, considering the typically high∆V to
be achieved and the long transfer time required. In order to make the design of such missions fast, first-order,
efficient representations of transfer orbits are commonly used before a more detailed and exact numerical
model is applied. An elegant way to do so is to use so-called shape-based methods.

With Deep Space 1 being the first interplanetary low-thrust space mission in 1998 it did not take long
before the scientific community picked up on the trajectory design of this new type of transfer orbits [16]. The
exponential sinusoid by Petropoulos and Longuski [14] was one of the first shape-based methods. A more
advanced method designed by Wall [27] makes use of an inverse polynomial and paved the way for other
advanced methods like the spherical shaping method by Novak and Vasile [12], the hodographic shaping
method by Gondelach [6] and the finite Fourier series method by Taheri and Abdelkhalik [21].

The latter method is capable of finding rendezvous trajectories that meet the initial and final position
and velocity constraints, as well as the required time of flight. It can even incorporate a thrust magnitude
constraint, which makes the found solutions more realistic and omits the need for a second optimisation run
afterwards.

However, as with many shape-based methods, they become more fragile if the target body is at a higher
inclination. Furthermore, Taheri and Abdelkhalik [22] explicitly state that the currently used initialisation
strategy provides acceptable results, even though it might not be the best approach.

The purpose of this research is thence twofold: on the one hand it covers the implementation, validation and
testing of the existing two-dimensional as well as the three-dimensional finite Fourier series shape-based
method in TUDAT (Technical University of Delft Astrodynamics Toolbox). On the other hand, the goal is to
introduce a new initialisation approach in order to decrease the solver convergence time and increase its
three-dimensional stability, which can be translated to the following research question:

To what extent can an improved initialisation strategy enhance the efficiency and three-dimensional stability
of the finite Fourier series method?

The document is divided in three parts and twelve chapters. Part I contains background information on the
topic, starting with Chapter 2, which explains the relevant celestial mechanics. In Chapter 3 the potential of
low-thrust propulsion and some examples are illustrated. Chapter 4 will then shortly introduce shape-based
methods, after which a thorough explication of the finite Fourier series method in particular is given. The
focus in Part II is on the implementation and validation of the finite Fourier series method. It includes a step-
by-step guide of the two-dimensional and three-dimensional versions in Chapters 5 and 6. Subsequently,
the model is validated against three cases described in literature in Chapter 7. Chapter 8 concludes this part
with an overview of solved issues that were encountered during the implementation that have not been men-
tioned by literature. Part III involves the actual and novel research that has been performed on the existing
finite Fourier series method, concentrating on the initialisation strategy in Chapter 9 in particular. Consec-
utively the results of the research in two and three dimensions are discussed in Chapters 10 and 11. Finally,
conclusions of this research and recommendations for further research can be found in Chapter 12.

1

I
Background

3

2
Celestial Mechanics

In the field of astrodynamics, it is important to design the trajectory of a spacecraft while taking into account
the right reference frame and assumptions. Information about the frames that are to be used, is found in
Section 2.1. As soon as these are defined, the position of an object in space can be described by orbital
elements, which is explained in Section 2.2. Followed by that are the different equations of motion in different
coordinate systems in Section 2.3. To make appropriate assumptions, Section 2.4 concludes the chapter by
discussing all perturbing forces acting on a spacecraft. Note that in Sections 2.1, 2.2 and 2.4 all material is
based on Wakker [26], unless stated otherwise, and that only heliocentric orbits are considered.

2.1. Reference Frame
For interplanetary spaceflight it is most convenient to express the motion of a spacecraft in the non-rotating
heliocentric ecliptic reference frame, or heliocentric reference frame in short. A graphical representation is
shown in Figure 2.1. The reference frame is centred at the origin of the Sun and it uses the ecliptic plane as
the reference plane. This plane is at an angle ε of 23°27′ with respect to the equatorial plane of the Earth. The
z-axis points towards the celestial north pole and the x-axis is fixed in the direction of the vernal equinox à.
The direction of the y-axis is defined such that it lies in the reference plane and completes the right-handed
reference frame.

Figure 2.1: The axes of the heliocentric ecliptic reference frame [25].

2.2. Coordinates and Orbital Elements
To indicate the position of an object in space, the celestial sphere as shown in Figure 2.2 is used. In here, the
declination δ is the angle measured from the plane of the celestial equator to the object S along an hour circle.
The right ascension α is the angle measured from the vernal equinox to the projection of the object S along
the celestial equator. The variables φ and λ represent the latitude and longitude and they are comparable to
δ andα, respectively, but it should be kept in mind that the first two are measured with respect to the ecliptic.
For these element, several formulations are available, of which the most general are referred to as Keplerian
elements.

Another way of describing the location of an object in space is using so-called orbital elements. In two di-
mensions, a Kepler orbit can be described by three elements: the semi-major axis a, the eccentricity e and

5

6 2. Celestial Mechanics

Figure 2.2: A depiction of the celestial sphere [26].

the true anomaly θ. The semi-major axis gives an indication of the size of the orbit. The shape of the orbit
is expressed by the eccentricity. A value between zero and one shows how elliptic (e close to one), or how
circular (e close to zero) the orbit is. Finally, the true anomaly is the angle between the line from the focus of
the orbit towards the periapsis and the current position of the object.

If this is extended to three dimensions, some more elements are needed to fully describe the position of
an object in space. The elements that are added are the inclination i , the right ascension (or longitude) of
the ascending nodeΩ and the argument of pericenter ω. The inclination is the angle between the equatorial
plane and the orbital plane. This quantity can never be smaller than 0° or larger than 180°. The right ascension
of the ascending node goes by two names. In the equatorial plane, it is called the right ascension of the
ascending node, while it is referred to as the longitude of the ascending node in the ecliptic plane. Both names
represent the same parameter. It is the angle between the reference direction and the line that intersects the
ascending node of the orbital plane, measured in the ecliptic or equatorial plane. Its value lies between 0° and
360°. The last important element is the argument of pericenter, which is the angle between a nodal line in a
fixed reference direction and the radius vector from the origin to the pericenter. A clear overview is shown in
Figure 2.3.

Figure 2.3: A three-dimensional overview of the Keplerian elements [26].

2.3. Equations of Motion
The equations of motion (EoM) describe the variation of the state of the spacecraft at any point in time and
thus they are vital in getting insight in the dynamics of a trajectory. This section will briefly mention the three
sets of equations of motion, relevant for various coordinates systems.

2.3. Equations of Motion 7

2.3.1. General Formulation
In an inertial frame and using cartesian coordinates, the EoM are given by the following equation, assuming
two-body motion [26]:

r̈+ µ

r 3 r = Ta (2.1)

The Ta vector represents the thrust acceleration, which is in fact a perturbation acting on the spacecraft. The
position vector is denoted by r, while the gravitational parameter is depicted by µ.

2.3.2. Polar Coordinates
For multiple shape-based methods however this is not the form that is generally used, since they often use
polar coordinates. Therefore, Equation (2.1) has to be translated to such polar coordinates. In Figure 2.4 an
overview of all vectors and angles are shown to describe the EoM in polar coordinates.

Figure 2.4: A representation of the variables used in the polar notation of the EoM [21].

The figure shows a spacecraft in orbit around a central body. The position with respect to the centre of the
body is depicted by r and θ is the polar angle. The added angles are the flight path angle γ and the thrust
pointing angleα. The flight path angle represents the angle between the local horizon and the velocity vector
v, while the thrust pointing angle is the angle between the thrust acceleration vector Ta and the local horizon.
From the figure the following two equations can be derived [28]:{

r̈ − r θ̇2 + µ

r 2 = Ta sinα

2ṙ θ̇+ r θ̈ = Ta cosα
(2.2)

2.3.3. Cylindrical Coordinates
In case cylindrical coordinates are used, the equations mentioned above in polar form slightly change, be-
cause of the addition of a third component in the z-direction to describe the out-of-plane motion [27].

r̈ − r θ̇2 + µ

s3 r = Trθ sin(α)

2ṙ θ̇+ r θ̈ = Trθ cos(α)

z̈ + µ

s3 z = Taz

(2.3)

Note the difference in thrust acceleration with respect to the planar case. The subscript rθ in cylindrical
coordinates denotes the acceleration in the two-dimensional x y-plane, whereas the subscript z indicates the
acceleration in the z-direction. In Equation (2.3) the variable s is defined according to the following relation:

s =
√

r 2 + z2 (2.4)

whereas it should be noted that the general expression for r is given by:

r =
√

x2 + y2 (2.5)

Figure 2.5a gives a graphical explanation of the cylindrical coordinate system that is used.

8 2. Celestial Mechanics

2.3.4. Spherical Coordinates
In addition to cylindrical coordinates, a spherical coordinate system can be used to express polar coordinates
in three dimensions. The spherical coordinate system is defined in Figure 2.5b.

(a) A graphical representation of the cylindrical
coordinate system [27].

(b) A graphical representation of the spherical coordinate
system [12].

Figure 2.5: Two possible three-dimensional extensions of the polar coordinate system.

In here θ is the azimuthal angle, while φ is the elevation angle. The distance is described by r and is shown in
Equation (2.6). Note that the direction of r is substantially different in the two coordinates sytems, as can be
seen in Figure 2.5. In the cylindrical coordinate the radius vector is only expressed in the x y−plane, while it
is extended in the z−direction as well in the spherical coordinate system.

r =
[

r cos(θ)cos
(
φ

)
r sin(θ)cos

(
φ

)
r sin

(
φ

)]T

(2.6)

The equations of motion for spherical coordinates are presented by Taheri et al. [23]:
φ̈

θ̈

r̈

=


−2 φ̇ṙ

r − θ̇2 sin
(
φ

)
cos

(
φ

)−2 θ̇ṙ
r +2θ̇φ̇ tan

(
φ

)r
(
θ̇cos

(
φ

))2 + r φ̇2 − µ

r 2

+


0

0

1

0

1
r cos(φ)

0

1
r

0

0




fφ

fθ

fr

 (2.7)

in which the thrust acceleration components are indicated by f . The subscript specifies their direction, which
is either in the r -, θ- or φ-direction.

2.4. Perturbations
When designing a trajectory the effect of perturbations may have to be taken into account, but not taking
them into account can greatly simplify the design process. In any case, a trade-off will need to be made,
because if they are significant, not including them will not be beneficial for the accuracy of the results. An
analysis of perturbations that are common for interplanetary trajectories is shown below in the following or-
der: thrust, third-body perturbations, radiation pressure, gravity field perturbing forces, aerodynamic forces,
electromagnetic forces and finally relativistic effects.

2.4.1. Thrust
Even though this might not be evident, a thrust force acting on a spacecraft is a perturbing force as well. For
obvious reasons, low thrust is considered here only. When dealing with spacecraft that are equipped with
low-thrust engines the following equation applies:

P j = εP = 1

2
ṁV 2

e = 1

2
FVe (2.8)

2.4. Perturbations 9

in which P is the electrical power that is generated by the solar panels, or even a nuclear reactor, P j is the
power of the exhaust jet, ε is the power conversion efficiency, ṁ is the mass flow, F is the thrust force and
Ve is the exhaust velocity of the engine. The thrust acceleration is simply found by dividing Equation (2.8)
by the total mass M of the spacecraft. Two interesting conclusions can be drawn from this equation: first,
in contrast to high thrust, the propulsive force generated by a low-thrust engine is not limited to the exhaust
velocity, but to the maximum power. Secondly, the thrust force decreases with an increasing exhaust velocity.
The range of the thrust accelerations that a low-thrust engine can provide can be seen in Figure 2.6. Because
it is the propulsive force of the spacecraft, it cannot be neglected.

2.4.2. Third-Body Perturbations
Third-body perturbations are caused by the influence of other celestial bodies and are thus gravitational. In
the reader by Wakker [26] an equation for the relative perturbing acceleration of a spacecraft is given:

(
ad

ak

)
max

= md

mk

(
rs

rd

)2
∣∣∣∣∣
(

1

1− rs
rd

)2

−1

∣∣∣∣∣ (2.9)

The equation shows the ratio of the acceleration ad of perturbing body d over the main acceleration ak of
body k on spacecraft s. In case of an interplanetary flight, body k is the Sun, which reduces the influence
of these perturbations to a marginal level, as the mass fraction md

mk
becomes very small. However, the term

between brackets can become significant in case the spacecraft comes close to the perturbing body. This
effect is nicely depicted in Figure 2.6. From here it can be concluded that it can be left out of the models,
unless use is made of a flyby.

Figure 2.6: An overview of the magnitude of accelerations due to the gravity, a thrust force and Solar radiation pressure [6]. This
spacecraft has a cross-sectional area of 40 m2, a mass of 400 kg and a coefficient of reflectivity of 1.9.

2.4.3. Radiation Pressure
When talking about radiation pressure, it is mainly solar radiation pressure (SRP). There are other types of
radiation as well, like albedo or infra-red radiation, but for an interplanetary spacecraft, these barely influence
the accelerations acting on the spacecraft. Therefore, the radiation pressure is specified to SRP only, which
allows the acceleration caused by this radiation to be described by the following equation:

fSRP =−CR
W A

mc
êS (2.10)

In here, fSRP is the acceleration caused by the radiation, CR is the reflectivity of the spacecraft, W is the energy
flux of the incoming Solar radiation, A is the cross-sectional area of the spacecraft, m is its mass and c is the
speed of light. The vector eS is the unit vector from the spacecraft to the Sun, and SRP is always pointing in
the opposite direction of the Sun, hence the minus sign.

For a spacecraft with an A
m ratio of 12 m2/kg and a CR of 1.9 in an orbit around the Earth, the acceleration

is only 0.10 mm/s2 [26]. For an interplanetary flight to the outer planets of the Solar System, this can only

10 2. Celestial Mechanics

decrease, as the energy flux W decreases quadratically with the distance from the Sun. This is visible in
Figure 2.6. From here it can be seen that it can be easily neglected, unless a trajectory to Mercury is flown.

2.4.4. Gravity Field Perturbing Forces
None of the celestial bodies is a perfect sphere. There always exist some deviations and anomalies in the
gravity field. Also, most planets are more like an oblate sphere. This all influences the gravity force at a certain
point in the orbit of the spacecraft. The effects of these imperfections are expressed in e.g. J2 or J2,2 terms for
a spherical harmonics gravity model. For interplanetary flight, these perturbations will only be considered in
case of a flyby, as Figure 2.6 shows that gravity forces are only of a significant magnitude when the spacecraft
is close to such a body.

2.4.5. Aerodynamic Forces
A spacecraft can only experience aerodynamic forces when it is flying at low altitude and an atmosphere is
present on the nearby planet. As the drag is a function of the density, which on itself is a function of the alti-
tude, the effects of this perturbing force quickly reduce at high altitude. During an interplanetary trajectory
the spacecraft usually does not cross the atmosphere of a planet. For that reason, it is concluded that it can
be neglected.

2.4.6. Electromagnetic Forces
In the intense radiation environment of outer space, a spacecraft is constantly hit by highly charged particles.
These cause the spacecraft to have a potential difference over the entire object. With the magnetic field of
the Earth and a little amount of current flowing through the spacecraft, it will experience a Lorentz force. The
magnetic field decreases in strength with increasing altitude. A spacecraft with an orbital-radius-over-mass-
ratio of 0.3 m/kg at an altitude of 500 km experiences an acceleration of only 6.0×10−10 m/s2 [26]. Knowing
that this is only for a spacecraft in a low Earth-orbit (LEO), it is definitely insignificant for interplanetary travel.

2.4.7. Relativistic Effects
Finally, there are relativistic effects. Relativity can cause disturbances in the modelling of an orbit as well. It is
responsible for the precession of the argument of periapsis, for example. Nonetheless, these effects are only
very marginal and in an order of time of one century, hence, it can be neglected for interplanetary trajectory
design.

2.4.8. Summary
From the seven perturbing forces that are mentioned in Sections 2.4.1 to 2.4.7, thrust cannot be neglected,
while third-body perturbations and solar radiation pressure are only relevant to take into account for inter-
planetary flight, provided that the spacecraft is close to those bodies, e.g. in case of a gravity-assist. This is
only true for a minor part of the trajectory and therefore not of prime importance. The others can be ne-
glected in any case, or they are simply not applicable. Aerodynamic perturbations for example only need
to be considered in case of aerogravity-assists. This implies that an interplanetary low-thrust orbit can be
accurately modelled using the two-body approximation with thrust as the only extra component.

3
Low-Thrust Propulsion

Trajectory design has been a fascinating topic even before technology allowed the first objects to actually
reach outer space. When that finally happened, developments in this new field of engineering skyrocketed
and eventually led to the design of extremely efficient low-thrust engines. In this chapter, a succinct survey
of low-thrust propulsion (LTP) and its incidentals is given, starting with the principles of LTP in Section 3.1.
The different types of LTP are addressed in Section 3.2. Furthermore, two of the very first low-thrust space
missions and their newly discovered advantages are reviewed in Section 3.3. Finally, the new way of trajectory
design that comes with this type of trajectories is shortly touched upon in Section 3.4.

3.1. Physical Principles
The thrust generated by a rocket engine is a function of the mass flow ṁ and the exhaust velocity Ve of the
propellant:

T = ṁ ·Ve (3.1)

The thrust relies on Newton’s famous third law stating that for every action, there is an equal and opposite
reaction. This means that the thrust force T that expels the particles also acts on the spacecraft. The energy
that is given to the ejected propellant can be expressed as a change of kinetic energy per time unit:

dE

dt
=W = d

dt

(
mV 2

e

2

)
= ṁV 2

e

2
(3.2)

in which W is the power that is stored in the ejected gas. With this information, Equation (3.1) can be rewrit-
ten as follows:

T =
p

2ṁW = 2W

Ve
(3.3)

Both Equations (3.2) and (3.3) show interesting insights in the effect of the available power and exhaust veloc-
ity on the generated thrust. Equation (3.2) states that with a fixed thrust level the propellant used is minimised
at a high exhaust velocity, while on the contrary, Equation (3.3) shows that with a fixed amount of available
power, a high exhaust velocity leads to a lower thrust [19].

Another important parameter that is used to determine the thrust characteristics of an engine, is the specific
impulse Isp . This unit is a measure of the efficiency of a rocket engine and it is defined as follows:

Isp = T

ṁg0
= Ve

g0
(3.4)

in which g0 is the standard Earth gravity of 9.81 m/s2. In Table 3.1 an overview of several solar electric propul-
sion (SEP) engines and their specific impulse ranges can be found. Whereas conventional chemical engines
have a specific impulse in the order of 220 to 400 s, the table clearly shows the higher order ranges for ion
engines [30].

11

12 3. Low-Thrust Propulsion

Table 3.1: An overview of different SEP engines and their characteristics [8].

Engine T6 UK-25 RIT-XT RIT-35 ESA-XX

Exhaust gas Xe Xe Xe Xe Hg Xe
Mass [kg] 7.5 9 7 9 9 -

Power range [kW] 1.3 - 7.0 0.1 - 8 1.4 - 5.6 1.5 - 7 1 - 18 ? - 8.45
Specific impulse [s] 3000 - 4500 2800 - 4700 2100 - 5500 up to 5000 up to 4050 ? - 5400
Thrust range [mN] 30 - 205 37 - 320 15 - 200 40 - 200 50 - 250 10 - 240

3.2. Types of Low-Thrust Propulsion
In general, three different types of LTP engines can be distinguished: electrostatic engines, electrothermal
engines and electromagnetic engines. All will be shortly introduced in the upcoming three subsections.

Electrostatic Engines
Electrostatic engines use electrostatic forces to accelerate the particles in their exhaust gas. By means of
electricity the engine ionises the gas, after which a voltage gradient is accelerated to accelerate the particles
to a high exhaust velocity. Usually spacecraft that operate an engine of this type are equipped with solar
panels, but in case of missions to the outer Solar System or when simply a large amount of power is required,
the energy might come from a nuclear power source [6].

Electrothermal Engines
Electrothermal thrusters generate electromagnetic fields that are used to create a plasma in order to heat the
propellant. The thermal energy which is then stored in this propellant is converted into kinetic energy, which
results in a high exhaust velocity of the particles [6].

Electromagnetic Engines
Electromagnetic thrusters can accelerate the ions in two ways: either by creating a magnetic field that induces
the Lorentz force, or by creating an electric field and making use of the Coulomb force [6].

3.3. Low-Thrust Space Missions
The first spacecraft propelled by a low-thrust engine only flew in 1998. This section highlights and points out
the newly-discovered possibilities of two missions by the two most notable space agencies: Deep Space 1 by
NASA, and SMART-1 by ESA.

Deep Space 1
Launched in 1998, Deep Space 1 (DS1) was the first mission developed during the New Millennium Program
(NMP) by NASA. It was revolutionary in a sense that it made use of low-thrust SEP. The use of SEP for this
mission had three objectives: it should demonstrate flight operations using this new technology, it should
assess its interaction with the spacecraft and it should be capable of propelling the spacecraft into the desired
trajectory during which it would encounter an asteroid, as seen in Figure 3.1 [16].

In the past, these kind of missions were only studied at the level of conceptual design. With DS1 demand-
ing to dive into the design with much more detail, other interesting facets of LTP were found. Continuous
thrust is to be used in a direction tangential to the trajectory, for example. This comes with constraints on the
attitude or communication, because the antenna would not always be pointing towards Earth.

In the end the mission turned out to be a successful venture and a large amount of new knowledge re-
garding low-thrust trajectory and spacecraft design was gained, as the mission fulfilled all three objectives
the NMP stated well [16].

SMART-1
The ESA version of the NMP is called the ESA Horizons 2000 scientific programme. It launched their first
mission only a few years after DS1 in 2003 and it was called SMART-1. This was a mission to the Moon and
again, it would primarily be used as a test for new technology and the possibilities of SEP in particular. It
would take approximately 15 to 18 months before it was injected into a Lunar orbit. A benefit of SEP in this

3.4. Modelling Low-Thrust Transfer Trajectories 13

Figure 3.1: The trajectory of the Deep Space 1 spacecraft [16].

case, for example, is that it offered enough time to calibrate the instruments and even to do some additional
measurements before reaching its final destination [4].

3.4. Modelling Low-Thrust Transfer Trajectories
Modelling and optimising these previously discussed mission trajectories asks for a completely different ap-
proach compared to high-thrust trajectories, but the type of problem is essentially the same and can be solved
by two different methods: direct and indirect ones. Both numerical methods have their advantages and dis-
advantages.

When an indirect method is used, the trajectory is found by solving a control problem that corresponds to
a so-called two-point boundary value problem (2PBVP). This method can be solved by giving an initial guess
as input. A defect of this method is its high sensitivity to this initial solution. It easily heads towards the wrong
direction if this guess is of bad quality. However, the convenience of this method is found in the solution of
the 2PBVP, because the resulting trajectory determined thence is often optimal.

Direct methods on the other hand do not make use of a 2PBVP and directly solve the control problem. By
adjusting the control variables during each loop the algorithm eventually converges to the desired trajectory.
For direct methods the initial guess can be more robust. A downside of direct methods is that they are slower
compared to indirect methods [7].

4
Shape-Based Methods

Having addressed the capabilities of low-thrust propulsion, the actual trajectory design methods, shape-
based methods in particular, can be addressed. In Section 4.1, a short introduction of the most common
current shape-based methods can be read. Furthermore, a comparison of the properties of these methods
is given in Section 4.2. After that, a profound explanation of the finite Fourier series method is presented in
Section 4.3.

4.1. Introduction
If low-thrust propulsion is used, the assumption of an impulsive shot that applies to general high-thrust tra-
jectory design does not hold anymore. This new type of propulsion requires a new trajectory design approach,
which is best represented by shape-based methods. The theory behind these methods relies on the fact that
the (usually spiralling) trajectories are described by a shaping function that assumes a certain shape which
the trajectory is fitted to. In this section, a short overview of the most common shape-based methods and
their governing shaping functions are given. A more elaborate explication can be found in Appendix F.

One of the very first shape-based methods is the exponential sinusoid (exposin) by Petropoulos and Longuski
[14]. It is described by Equation (4.1) and relies on the constants k0, k1, k2 and φ. The winding parameter k2

determines the number of revolutions, the dynamic range parameter k1 controls the ratio of the apocenter
distance to the pericenter distance, the parameter k0 is only a scaling factor and the phase angle φ controls
the orientation of the exponential sinusoid in the plane.

r = k0e(k1 sin(k2θ+φ)) (4.1)

Later on, Wall and Conway [28] designed the inverse polynomial method, which was inspired by the exposin.
It expresses the shape of the transfer orbit by a fifth or sixth-order polynomial, as can be seen in Equation (4.2).
The order depends on the time of flight (TOF). If it is free, a fifth-order polynomial can be used, but when it
is fixed, a sixth-order polynomial is required in order to include it properly. The coefficients a to f are then
found by inserting the boundary conditions (BC) in the equation while assuming tangential thrust.

r (θ) = 1

a +bθ+ cθ2 +dθ3 +eθ4 + f θ5 + gθ6 (4.2)

The spherical shaping method by Novak and Vasile [12] is also parametrised by θ instead of t , just like the
inverse polynomial method. It is defined in the spherical coordinate system and uses a shaping function for
the radius R(θ), the elevation angle Φ(θ) and the TOF T (θ). It is the first fully three-dimensional method and
it is especially well suited for modelling trajectories to targets at higher inclinations. The shaping coefficients
are denoted by an and bn , while D(θ) is the time equation scalar function that ensures the curvature of the
trajectory is towards the target body. Finally, µ describes the gravitational parameter of the central body.

R (θ) = 1

a0 +a1θ+a2θ2 + (a3 +a4θ)cos(θ)+ (a5 +a6θ)sin(θ)
(4.3a)

15

16 4. Shape-Based Methods

Φ (θ) = (b0 +b1θ)cos(θ)+ (b2 +b3)sin(θ) (4.3b)

T (θ)′ =
√

D (θ)R (θ)2

µ
(4.3c)

The hodographic shaping method by Gondelach [6] is originated at TU Delft and shapes the trajectories in the
velocity domain, rather than the spatial domain. This means that there are three shaping functions: the radial
velocity Vr , the transverse velocity Vθ and the axial velocity Vz . Each of them is set up as in Equation (4.4),
which entails that it is composed of a sum of coefficients ci and velocity functions vi . The latter can have
any shape from a second-order polynomial to an exponential sinusoid. Furthermore, the method can both
be parametrised by the transfer angle θ and the time t .

V (t) =
n∑

i=1
ci vi (t) (4.4)

Back in the spatial domain and the time domain, Taheri and Abdelkhalik [21] designed a method that ap-
proximates trajectories by means of Fourier series. The three components are shown in Equation (4.5). As
this method is the main focus of this thesis, a thorough explanation can be found later on in Section 4.3.

r (τ) = a0

2
+

nr∑
n=1

{an cos(nπτ)+bn sin(nπτ)} (4.5a)

θ (τ) = c0

2
+

nθ∑
n=1

{cn cos(nπτ)+dn sin(nπτ)} (4.5b)

z (τ) = e0

2
+

nz∑
n=1

{
en cos(nπτ)+ fn sin(nπτ)

}
(4.5c)

The final method to be discussed is the finite polynomil method. Its shaping function in Equation (4.6) is very
similar to the inverse polynomial method, but here the radial distance and the transfer angle are shaped by
two different functions that are both parametrised by time.

r (t) = ar0 +ar1 t +ar2 t 2 +ar3 t 3 + . . .+arm t m (4.6a)

θ (t) = aθ0 +aθ1 t +aθ2 t 2 +aθ3 t 3 + . . .+ ...+aθn t n (4.6b)

4.2. Comparison
Knowing the ins and outs of various shape-based methods, it is possible to make a clear comparison between
them to highlight their strengths and weaknesses. This overview is captured in Table 4.1. Green cells show
properties that are beneficial, as these might improve the accuracy, feasibility and flexibility of the generated
trajectories. Red cells on the other hand indicate unwanted properties, as they could lead to long computa-
tion times, a worse accuracy or infeasible trajectories.

From the table it can be extracted that all methods have BCs set on the position, the velocity and the TOF.
The exposin is the only method that cannot handle a BC on its velocity, whereas the finite Fourier series and
the finite polynomial do not have a BC on the TOF. For these two methods, this is just set by trial and error.
The inverse polynomial and the spherical shaping method on the other hand do have a BC on the TOF, but
this cannot be solved directly. It has to be found by means of an iterative root-finding algorithm.

Also, almost all methods work with inclined trajectories, except for the exposin, as this is only capable of
marginal plane changes. Most of the methods that are said to work in three dimensions, provide acceptable
results up to an inclination of 15°, like the inverse and the finite polynomial. For the finite Fourier transform
it is not exactly known what the limit is, but the highest achieved inclination that has been found in literature
is that of asteroid Dionysus, which is 13.6°. By far, it is the spherical shaping method that performs notably

4.3. Finite Fourier Series 17

Table 4.1: An overview of the most important capabilities of a shape-based method, partially taken from Gondelach [6] and Roegiers
[17].

BC
Method

r V TOF
BC solved iteratively 3D Thrust constraint ≥ 2 Revolutions

Exposin Yes No Yes No No No Yes
Inverse polynomial Yes Yes Yes Yes Yes No No
Spherical shaping Yes Yes Yes Yes Yes No Yes
Hodographic shaping Yes Yes Yes No Yes No No
Finite Fourier series Yes Yes No No Yes Yes Yes
Finite polynomial Yes Yes No No Yes Yes No

well. With the original design by Novak and Vasile [12], it was already capable of attaining an inclination of
50°, but with the new shaping function by Vroom [25] it could reach objects with an inclination of 70°.

Furthermore, for some methods a constraint can be set on the thrust, or thrust acceleration. If this is
already implemented in the method, it is beneficial considering computation time. The other methods can
work with a thrust constraint as well, but for those it will be part of the optimisation process and it is not
directly incorporated in the method itself, which is computationally intense. Only the finite Fourier series
method and the finite polynomial have this constraint implemented, which is a major advantage, as it will
give a mission planner a much clearer overview due to infeasible trajectories that would require a thrust that
is technologically not feasible being immediately discarded in the design process.

Lastly, the capable number of revolutions need to be discussed. It is only the inverse and the finite poly-
nomial that seem to have trouble in case the trajectory contains two or more revolutions. This has probably
to do with the shaping functions that they use, as all the other methods have (the possibility) to use periodic
functions. The two polynomial functions are not capable of doing so, consequently leading to bad results
when many revolutions are considered.

4.3. Finite Fourier Series
The Finite Fourier Series (FFS) method is the main focus of this thesis and therefore it is awarded with its
own chapter. First, the method in two dimensions is explained in Section 4.3.1, after which its advantageous
extension in three dimensions is elaborated upon in Section 4.3.2.

4.3.1. 2D Finite Fourier Series
The method of FFS was first described by Taheri and Abdelkhalik [21]. It does not directly generate a fixed
shape, but it rather assumes an approximation for the shape in terms of an FFS. Using an FFS, one can choose
between two possible approaches: in one approach a radius r is assumed as a function of the polar angle θ,
which is then expanded. Taheri and Abdelkhalik [21] however decided to follow the other approach, which
assumed two separate expressions for r and θ as a function of time. These are shown below:

r (t) = a0

2
+

{ nr∑
n=1

an cos
(nπ

T
t
)
+bn sin

(nπ

T
t
)}

(4.7a)

θ (t) = c0

2
+

{ nθ∑
n=1

cn cos
(nπ

T
t
)
+dn sin

(nπ

T
t
)}

(4.7b)

In here, T is the total TOF, and nr and nθ indicate the number of Fourier terms that will be included. This
depends on the type of trajectory that is flown, but both of them being at least two, all BCs can be satisfied in
case of a rendez-vous.

Mathematical Fundamentals
The FFS assumes that the thrust direction is always pointing in the direction of the velocity, or against it, so
α equals γ (recall Figure 2.4). This condition will be used when the EoM in polar form are combined into one
expression. Both equations are stated here again for the sake of clarity:

18 4. Shape-Based Methods

α= γ+nπ (4.8)

{
r̈ − r θ̇2 + µ

r 2 = Ta sinα

2ṙ θ̇+ r θ̈ = Ta cosα
(4.9)

Rewriting the second equation of Equation (4.9) for Ta results in the following expression:

Ta = 2ṙ θ̇+ r θ̈

cos(α)
(4.10)

Substituting this expression for Ta into the first equation in Equation (4.9), yields:

r̈ − r θ̇2 + µ

r 2 = 2ṙ θ̇+ r θ̈

cos(α)
sin(α) = (

2ṙ θ̇+ r θ̈
)

tan(α) = (
2ṙ θ̇+ r θ̈

)
tan

(
γ
)

(4.11)

With the assumption of tangential thrust, the tangent can be replaced by:

tan(α) = tan
(
γ
)= ṙ

r θ̇
(4.12)

If then Equation (4.12) is plugged into Equation (4.11), some algebraic manipulation is needed to finally ob-
tain one governing equation:

f
(
r, ṙ , r̈ , θ̇, θ̈

)= r 2 (
θ̇r̈ − ṙ θ̈

)+ θ̇ (
µ−2r ṙ 2)− (

r θ̇
)3 = 0 (4.13)

The following condition follows directly from the imposed relation in Equation (4.8).

cos(α) = cos
(
γ
)= r θ̇√

ṙ 2 + (
r θ̇

)2
(4.14)

The thrust acceleration can then be calculated from Equation (4.10) and Equation (4.8). Note that C expresses
the entire constraint equation as in:

C :

(
Ta

Tamax

)2

≤ 1 (4.15)

If the two expressions in Equations (4.7a) and (4.7b) and their first and second derivaties are inserted in Equa-
tion (4.13), the initial differential equation is transformed into a non-linear algebraic expression in which the
Fourier coefficients and the independent time variable are the only unknown terms:

f
(
a0, a1, · · · , anr ,b1, · · · ,bnr ,c0,c1, · · · ,cnθ ,d1, · · · ,dnθ ; t

)= 0 (4.16)

General Approach
To find the trajectory, the Fourier coefficients need to be found. Depending on nr and nθ there are n = 2(nr +
nθ + 1) unknown coefficients to be solved for. The total TOF is divided by m discretisation points (DP), which
creates a non-linear system of m equations at m moments in time.

The general approach can be explained as follows: given a departure time, a TOF, Nr ev , nr and nθ: first
the boundary values (initial and final (angular) position and (angular) velocity) are computed. Followed by
that, an initial guess for the unknown coefficients is computed. The third step is to solve for the first eight
coefficients by enforcing the BCs. After that, the total TOF needs to be discretised into intervals and evaluated
at their boundary points to create m equations. Possibly, in case the thrust constraint is included in the
system, the total number of equations sums up to 2m equations, of which half consists of inequalities. Now
the non-linear programming problem can be solved at each time step, using the previous result as an initial
guess for the current time. This solving procedure can be formulated as an optimisation problem of the
following form:

min

(m∑
n=1

f
(
a0, a1, · · · , anr ,b1, · · · ,bnr ,c0,c1, · · · ,cnθ ,d1, · · · ,dnθ ; tn

))2

s.t.

(
Ta

Tamax

)2

≤ 1

(4.17)

4.3. Finite Fourier Series 19

Initial Guess
As the problem is non-linear, the system requires an initial guess for the coefficients. This is done by assuming
a simple shape for the trajectory, from which the corresponding Fourier coefficients are found to be used as
a priori information about the possible solution. For orbit-changing problems, use could be made of two
methods: a tangent hyperbolic (TH), or the cubic polynomial (CP). The TH is defined according to:

r (t) = 1

2

[
(ar +br)+ (br −ar) tanh

(
t − t0

ω

)]
(4.18a)

θ (t) = 1

2

[
(aθ+bθ)+ (bθ−aθ) tanh

(
t − t0

ω

)]
(4.18b)

where ar and aθ are equal to r0 and θ0, while br and bθ are equal to r f and θ f . t0 is T /2 and ω is an indicator
for the width of the function. It can be scaled such that it provides a gradual increase in the two parameters.

The CP approximation is defined by:

rC P (t) = at 3 +bt 2 + ct +d (4.19a)

θC P (t) = et 3 + f t 2 + g t +h (4.19b)

where the eight BCs are used to compute all coefficients. With Equations (4.7a) and (4.19a) a linear system
of the form Ax = B can be set up, in which the Fourier coefficient vector x in Equation (4.20) is found by
left-multiplying both sides with A−1.

x =
[

a0 a1 a2 · · · anr · · · b1 b2 · · · bnr

]T

(4.20)

In this expression the trigonometric terms from Equation (4.7a) are collected in A, which leads to Equa-
tion (4.21):

A =

 1
2

...

1
2

1
2

cos
(
π
T ti

)
...

cos
(
π
T t1

)cos
(
π
T t0

)

cos
(2π

T ti
)

...

cos
(2π

T t1
)cos

(2π
T t0

)

· · ·

...

· · ·

· · ·

cos
(nrπ

T ti
)

...

cos
(nrπ

T t1
)cos

(nrπ
T t0

)

sin
(
π
T ti

)
...

sin
(
π
T t1

)sin
(
π
T t0

)

sin
(2π

T ti
)

...

sin
(2π

T t1
)sin

(2π
T t0

)

· · ·

...

· · ·

· · ·

sin
(nrπ

T ti
)

...

sin
(nrπ

T t1
)sin

(nrπ
T t0

)
(4.21)

This then becomes a matrix of (2nr + 1) rows, as the total TOF is divided into (2nr + 1) intervals, and it has
(2nr + 1) columns. Its size is thus fully depending on the number of coefficients that are used. The B matrix
is a column vector that contains the evaluation of Equation (4.19a) at (2nr + 1) points in time, which can be
seen in Equation (4.22):

B =
[

rC P (t0) rC P (t1) · · · rC P (ti)

]T

(4.22)

To find the cn and dn Fourier coefficients, the same procedure is followed, but this time Equations (4.7b)
and (4.19b) are used.

It should however be noted that in contrast to what is stated in both the paper by Taheri and Abdelkhalik
[21], and the PhD thesis by Taheri [20], the time discretisation method stated above is slightly different, as
the two scientific documents both mention different matrix dimensions. It is written that Equations (4.7a)
and (4.19a) are evaluated at nr points in time, which means the column dimension of the matrix can never
exceed nr . Yet, it also mentions that matrix A should be an (2nr + 1) by (2nr +1) matrix, while matrix B is a
(2nr + 1) by 1 matrix. This last statement is simply not possible and therefore the time has to be discretised
into (2nr + 1) intervals.

20 4. Shape-Based Methods

4.3.2. 3D Finite Fourier Series
Just like the inverse polynomial method, Taheri and Abdelkhalik [22] extended the FFS approach into the
third dimension by adding a component in the z-direction and thereby adopting the cylindrical coordinate
system. The approach for determining the coefficients is largely the same as in the two-dimensional case.
Moreover, the new variable τ is introduced, which scales the total TOF according to τ = t

T onto the interval
[0,1]. The three position components are defined as follows:

r (τ) = a0

2
+

nr∑
n=1

{an cos(nπτ)+bn sin(nπτ)} (4.23a)

θ (τ) = c0

2
+

nθ∑
n=1

{cn cos(nπτ)+dn sin(nπτ)} (4.23b)

z (τ) = e0

2
+

nz∑
n=1

{
en cos(nπτ)+ fn sin(nπτ)

}
(4.23c)

Mathematical Fundamentals
With the adoption of the new cylindrical coordinate system comes a redefinition of the equations of motion
from Equation (4.9) as well: 

r̈ − r θ̇2 + µ

s3 r = fr

2ṙ θ̇+ r θ̈ = fθ

z̈ + µ

s3 z = fz

(4.24)

It can be seen that the z-component is added and that the variable s has been introduced, affecting the r and
θ-components too. The variable s is found by applying the Pythagorean theorem to the radial distance r and
the height z, leading to:

s =
√

r 2 + z2 (4.25)

The right-hand side of Equation (4.24) also introduces three new variables fr , fθ and fz , which represent the
thrust acceleration components in the radial, transverse and axial direction, respectively. The total thrust
acceleration Ta is then found by:

Ta =
√

f 2
r + f 2

θ
+ f 2

z (4.26)

from which the total ∆V can be computed by integrating Ta according to:

∆V =
∫ T

0
Ta dt (4.27)

With 12 BCs (an initial and final condition for each variable in terms of position and velocity) Taheri and
Abdelkhalik [22] decided that the first two coefficients of each Fourier approximation, excluding the first con-
stant number, will have to be expressed in terms of these BCs, as these coefficients influence the convergence
of the solver more than lower-order terms [24]. This implies that the individual number of coefficients, i.e.
nr , nθ and nz will each need to be larger than or equal to two. The BCs are defined as follows:

ri = ri r f = r f

r ′
i = T ṙi r ′

f = ṙ f

θi = θi θ f = θ f

θ′i = T θ̇i θ′f = T θ̇ f

zi = zi z f = z f

z ′
i = T żi z ′

f = T ż f

(4.28)

4.3. Finite Fourier Series 21

The BCs imposed on r and θ are identical to the ones used for the two-dimensional approach. The BCs that
are set on z indicate the axial position, which is effectively the "height" in the Solar System, as seen from the
ecliptic. It is also important to observe that due to the introduction of the scaled time variable τ, the BCs have
to be scaled as well.

In order to find the first two coefficients of each Fourier approximation, these terms have to be extracted
from the summation and the BCs have to be applied. This leads to a system of equations which can be
solved for these two coefficients. The derivation of this equation and the definition for the other two Fourier
approximations can be found in Appendix B. With this new information, Equation (4.23a) can be rewritten in
the following form:

r (τ) = Fr +Ca0 a0 +
nr∑

n=3

{
Can an +Cbn bn

}
(4.29)

where Fr represents a constant containing all a priori information:

Fr = 1

2

(
ri − r f

)
cos(πτ)+ 1

2π

(
r ′

i − r ′
f

)
sin(πτ)+ 1

2

(
ri + r f

)
cos(2πτ)+ 1

4π

(
r ′

i + r ′
f

)
sin(2πτ) (4.30a)

while all other Fourier terms (i.e. for n > 2 and n = 0) are contained in the Can terms, according to:

Cao =
1

2
[1−cos(2πτ)] (4.30b)

Can =
cos(nπτ)−cos(πτ) ; when n is odd

cos(nπτ)−cos(2πτ) ; when n is even
(4.30c)

Cbn =
sin(nπτ)−n sin(πτ) ; when n is odd

sin(nπτ)− π
2 sin(2πτ) ; when n is even

(4.30d)

General Approach
In order to find the unknown Fourier coefficients, each equation in Equation (4.24) is again evaluated at m
DPs. The number of DPs is computed with the following equation:

m = (Nrev +1) ·ppr (4.31)

where Nrev represents the number of revolutions of the trajectory and ppr is the corresponding points per
revolution. Due to the discretisation of the equations of motion, the number of DPs should not be too low,
otherwise Equation (4.27) might not be evaluated accurately. The minimum number of DPs depends both on
the problem itself and on the transfer time. Unfortunately, the approved value cannot be found analytically
and has to be found through trial and error.

With the definition of the discretisation points, the equations to solve for the Fourier coefficients can be
set up. An example is given with the Fourier function of r (τ), but the other two variables will follow the same
procedure.

[r]m×1 = [Ar]m×(2nr −3) [Xr](2nr −3)×1 + [Fr]m×1 (4.32)

in which

[Ar]m×(2nr −3) =
[
Ca0 Ca3 Cb3 Cb4 . . . Canr

Cbnr

]
(4.33a)

[Xr](2nr −3)×1 =
[
a0 a3 b3 . . . anr bnr

]T (4.33b)

and [Fr] is computed at each point in time according to Equation (4.30a). With this matrix equation, the
components of the thrust acceleration can be expressed as a function of the states and their derivatives, such
that: [

fr
]= fr

(
Xr , [r] , [r̈] ,

[
θ̇
]

, [z]
)

(4.34a)

22 4. Shape-Based Methods

[
fθ

]= fθ
(
Xθ, [r] , [ṙ] ,

[
θ̇
]

,
[
θ̈
])

(4.34b)

[
fz

]= fz (Xz , [r] , [z] , [z̈]) (4.34c)

which causes the thrust acceleration to be written as a function of those three components incorporating the
constraint:

[Ta] =
√[

fr
]2 + [

fθ
]2 + [

fz
]2 ≤ Tamax (4.35)

Finally, the trajectory shaping problem can be translated to a non-linear programming (NLP) problem of the
following kind:

min
Xr,Xθ ,Xz

∆V

s.t. [Ta] ≤ Tamax

(4.36)

Initial Guess
To initiate the algorithm, an initial estimate for the coefficients needs to be given. Assuming nr , nθ and nz

are already specified, Equation (4.32) can be rewritten for Xr :

[Xr](2nr −3)×1 =
(
[Ar]nApp×(2nr −3)

)−1 ([
r App

]
nApp×1 − [Fr]nApp×1

)
(4.37)

in which r App denotes a vector r containing an approximation of the radius and nApp is the number of dis-
cretised data points. This quantity should be larger than m. The equation to compute nApp is given by:

nApp = 100 · (Nrev +1) (4.38)

To find an initial estimate for r App and θApp , the same approach with the cubic polynomials as in Equa-
tion (4.19) is used, except for the fact that in this case they will be parametrised by the scaled time τ, instead
of regular time t .

For the initial axial coordinate z however, all initial Fourier coefficients are set equal to zero. No infor-
mation is available on the trend of the axial coordinate. Yet, Taheri and Abdelkhalik [22] concluded that this
approach worked for all their test cases despite the fact that it might not be the best method.

II
Implementation

23

5
2D Implementation

This chapter will restructure the two-dimensional finite Fourier series method that was introduced in Sec-
tion 4.3 in a step-by-step process to make it easier to understand how the method has been implemented in
TUDAT. First a short list of actions will be given, after which each step is chronologically explained in Sections
5.1 through 5.8. The majority of the procedure is based on the work by Taheri and Abdelkhalik [21]. Where
necessary, some corrections to their publication have been made and explained. Note that an overview of all
these corrections can be found in Appendix D.

Algorithm Roadmap
1. Set the free parameters, i.e. departure time, the time of flight, the number of revolutions and the num-

ber of terms to be used by the Fourier series representing r and θ.

2. Compute the eight boundary conditions on the (angular) position and velocity (i.e. ri , θi , r f , θ f , ṙi , θ̇i ,
ṙ f , θ̇ f).

3. With these boundary conditions, the eight coefficients of the two cubic polynomials can be computed
and a linear matrix system of the form Ax = B can be solved to obtain the initial guess.

4. The first two terms of each coefficient (i.e. a1, a2, b1, b2, c1, c2, d1 and d2) are computed by means of
the boundary conditions.

5. The total travel time is discretised into m discretisation points. With this data, a matrix containing all
sine and cosine terms at each discretisation point can be set up.

6. The initial guess is fed into a solver.

7. If desired, the thrust constraint can be activated as well in order to limit the maximum allowable thrust
acceleration the spacecraft is allowed to experience.

8. With the output of the solver (i.e. the Fourier coefficients), the trajectory can be constructed and the
∆V can be computed.

5.1. Free Parameters
The boundary values have been set by trial and error according to Taheri and Abdelkhalik [21]. For certain
bodies at certain distances, it is advised to use a certain number of terms for nr and nθ. The same holds for
the number of revolutions, the time of flight and the number of discretisation points. However, these can be
used as optimisation parameters in a later mission design stage as well. Another option is to vary them in a
grid search, for example.

25

26 5. 2D Implementation

5.2. Boundary Conditions
The boundary conditions depend on the arrival and departure body. These values can easily be extracted
from the TUDAT SPICE (Spacecraft ephemeris - Planet, satellite, comet or asteroid ephemerides and physical,
dynamical and cartographic constants - Instrument information - C-matrix orientation information - Events
information) interface. To reduce the computational load and improve the accuracy, the SI-units are scaled
to so-called canonical units. In case of interplanetary flight, it holds that 2π time unit (TU) is equal to 1 year
and that 1 distance unit (DU) is equal to 1 AU.

5.3. Initial Guess
To obtain an initial guess for the Fourier coefficients, a cubic polynomial function has been used [21]. The
function has already been mentioned in Section 4.3.1, but will be stated here again for the sake of clarity:

rC P (t) = at 3 +bt 2 + ct +d (5.1a)

θC P (t) = et 3 + f t 2 + g t +h (5.1b)

The eight cubic polynomial coefficients can be found by inserting the eight boundary conditions from the
previous step into the equations. The full derivation can be found in Appendix A. The polynomial coefficients
are then defined as follows:

a = 2
(
ri − r f

)+ (
ṙi + ṙ f

)
t f

t 3
f

(5.2)

b =−3
(
ri − r f

)+ (
2ṙi + ṙ f

)
t f

t 2
f

(5.3)

c = ṙi (5.4)

d = ri (5.5)

e = 2
(
θi −θ f

)+ (
θ̇i + θ̇ f

)
t f

t 3
f

(5.6)

f =−3
(
θi −θ f

)+ (
2θ̇i + θ̇ f

)
t f

t 2
f

(5.7)

g = θ̇i (5.8)

h = θi (5.9)

With the cubic polynomial coefficients and the number of Fourier terms, the initial guess can be computed.
In this description only the case for the radius r is explained, as the transfer angle θ follows the exact same
procedure. The only difference is that the nr term needs to be replaced by nθ. The total time of flight is
discretised into 2nr +1 points at which the polynomials in Equation (5.1) are evaluated. The same holds for
the Fourier series in Equation (4.7a). This results in a matrix system of the form Ax = B . All Fourier terms are
stored in A and thus it becomes a square (2nr +1) x (2nr +1) matrix. The coefficients are stored in x, which is
a (2nr +1) x 1 vector. Finally, the B vector contains all outcomes of the cubic polynomials, which means it is
a (2nr +1) x 1 vector as well. In this linear system, the solution of x can easily be found by left-multiplying B
with A−1. The introduced matrix and vectors contain the following terms:

5.4. Initial Coefficients 27

A =

 1
2

...

1
2

1
2

cos
(
π
T ti

)
...

cos
(
π
T t1

)cos
(
π
T t0

)

cos
(2π

T ti
)

...

cos
(2π

T t1
)cos

(2π
T t0

)

· · ·

...

· · ·

· · ·

cos
(nrπ

T ti
)

...

cos
(nrπ

T t1
)cos

(nrπ
T t0

)

sin
(
π
T ti

)
...

sin
(
π
T t1

)sin
(
π
T t0

)

sin
(2π

T ti
)

...

sin
(2π

T t1
)sin

(2π
T t0

)

· · ·

...

· · ·

· · ·

sin
(nrπ

T ti
)

...

sin
(nrπ

T t1
)sin

(nrπ
T t0

)
(5.10)

x =
[

a0 a1 a2 · · · anr b1 b2 · · · bnr

]T

(5.11)

B =
[

rC P (t0) rC P (t1) · · · rC P (ti)

]T

(5.12)

5.4. Initial Coefficients
The Fourier series in Equation (4.7) and their derivatives can be combined with the eight boundary conditions
to form a system of equations from which the first eight coefficients of each Fourier term can be obtained as
a function of the other (higher-order) terms. This is done because the first terms are more dominant than the
higher-order terms, hence they will influence the trajectory shape more significantly [22]. An exact derivation
of the systems of equations and their solution can be found in Appendix B. Here only the final solutions are
stated:

a1 =
ri − r f

2
−

nr∑
n=3

an ; nr ≥ 3, n : odd (5.13a)

a2 =
ri + r f −a0

2
−

nr∑
n=4

an ; nr ≥ 4, n : even (5.13b)

b1 = T

2π

(
ṙi − ṙ f

)− nr∑
n=3

nbn ; nr ≥ 3, n : odd (5.13c)

b2 = T

4π

(
ṙi + ṙ f

)− 1

2

nr∑
n=4

nbn ; nr ≥ 4, n : even (5.13d)

c1 =
θi −θ f

2
−

nθ∑
n=3

cn ; nθ ≥ 3, n : odd (5.13e)

c2 =
θi +θ f − c0

2
−

nθ∑
n=4

cn ; nθ ≥ 4, n : even (5.13f)

d1 = T

2π

(
θ̇i − θ̇ f

)− nθ∑
n=3

ndn ; nθ ≥ 3, n : odd (5.13g)

d2 = T

4π

(
θ̇i + θ̇ f

)− 1

2

nθ∑
n=4

ndn ; nθ ≥ 4, n : even (5.13h)

28 5. 2D Implementation

5.5. Sine and Cosine Matrices
The final data the solver requires are two matrices with all sine and cosine terms for both Fourier series.
By discretising the time of flight by m discretisation points and storing all trigonometric terms, much time is
saved during the solving procedure, as the terms only need to be retrieved, instead of being evaluated at every
iteration. The matrices for the radius r and transfer angle θ are m x 2nr and m x 2nθ , respectively. Matrix R,
containing all terms for the Fourier series describing r , is expressed as follows:

R =


cos

(πtm−1
T

)
...

cos
(πt1

T

)cos
(πt0

T

)

cos
(

2πtm−1
T

)
...

cos
(

2πt1
T

)cos
(

2πt0
T

)

· · ·

...

· · ·

· · ·

cos
(nrπtm−1

T

)
...

cos
(nrπt1

T

)cos
(nrπt0

T

)

sin
(πtm−1

T

)
...

sin
(πt1

T

)sin
(πt0

T

)

sin
(

2πtm−1
T

)
...

sin
(

2πt1
T

)sin
(

2πt0
T

)

· · ·

...

· · ·

· · ·

sin
(nrπtm−1

T

)
...

sin
(nrπt1

T

)sin
(nrπt0

T

) 
(5.14)

5.6. Solving Procedure
To eventually solve for the unknown Fourier coefficients, a non-linear solver is required, as it contains quadratic
terms and products of terms (recall from Equation (4.13)):

f
(
r, ṙ , r̈ , θ̇, θ̈

)= r 2 (
θ̇r̈ − ṙ θ̈

)+ θ̇ (
µ−2r ṙ 2)− (

r θ̇
)3 = 0 (5.15)

Due to its previously-proven compliance with shape-based methods by Vroom [25] and Gondelach [6], the
Nelder-Mead method has been chosen. More on this solver can be read in Section 7.1. The solver evaluates
Equation (5.15) at each DP and tries to minimise the sum of its squared residuals according to:

min

(m∑
n=1

f
(
a0, a1, · · · , anr ,b1, · · · ,bnr ,c0,c1, · · · ,cnθ ,d1, · · · ,dnθ ; tn

))2

(5.16)

The solver requires all above-mentioned information, such as the free parameters, the time discretisation
vector, the initial eight coefficients and the sine and cosine matrices. In case it keeps getting trapped in a
local minimum that provides an infeasible trajectory, some randomisation is introduced to the initial guess
by means of a normal distribution that gets its average value and variance from the content of the initial guess
vector. Furthermore, the size of the decision vector x is important. The correct implementation requires the
following vector to be fed to the solver:

x =
[

a0 a3 a4 · · · anr b3 b4 · · · bnr c0 c3 c4 · · · cnθ d3 d4 · · · dnθ

]
(5.17)

This decision vector has a size of (2nr + 2nθ - 6), which is exactly equal to the total number of Fourier terms
minus the first two coefficients of each sine and cosine term that are determined in Equation (5.13a) through
(5.13h). Note that the values that are fed into the solver only consist of the first part of these equations, i.e. the
summation terms are excluded, as these are added in the solving process by retrieving them from the decision
vector. Due to the ambiguity of the right method of the algorithm as described by Taheri and Abdelkhalik [21],
first a slightly different method had been implemented. Further details and an explanation why this method
cannot not be correct is found in Section 8.1 and Appendix D.

5.7. Thrust Constraint
If desired, the thrust constraint can be activated. This great asset, which is inherent to the finite Fouries series
method, allows for a maximum thrust acceleration value to be set. The constraint is formulated as follows:

C =
(

Ta

Tamax

)2

≤ 1 (5.18)

in which the thrust constraint C is the square of the ratio of the computed thrust acceleration Ta and the
maximum thrust acceleration Tamax . This value needs to be smaller than or equal to one.

5.8. Trajectory Construction and Velocity Increment 29

5.8. Trajectory Construction and Velocity Increment
When all coefficients are known the trajectory shape can be constructed from the spatial coordinates, while
the total ∆V can be determined after the thrust profile has been constructed. These terms can then be nu-
merically integrated in order to get the required ∆V.

6
3D Implementation

Whereas Chapter 5 contained a step-by-step guide of implementation of the two-dimensional finite Fourier
series method, this chapter will elaborate on the three-dimensional implementation. First a short list of ac-
tions will be given, after which each step is chronologically explained in Sections 6.1 through 6.7. The majority
of the procedure is based on the work by Taheri and Abdelkhalik [22]. In addition to the two-dimensional cor-
rections, changes that have been made to the three-dimensional version are summarised in Appendix D as
well.

Algorithm Roadmap
1. Set the free parameters, i.e. departure time, the time of flight, the number of revolutions and the terms

to be used by the Fourier series representing r , θ and z.

2. Compute the twelve boundary conditions on position and velocity. (i.e. ri , θi , zi , r f , θ f , z f , ṙi , θ̇i , żi ṙ f ,
θ̇ f , ż f).

3. Having converted them to the scaled time domain, the eight coefficients of the two cubic polynomials
can be computed and a linear matrix system of the form Ax+C = B can be solved to obtain the initial
guess.

4. The first two terms of each coefficient (i.e. a1, a2, b1, b2, c1, c2, d1, d2, e1, e2, f1 and f2) are computed
by means of the boundary conditions after which they are stored in a separate vector.

5. The total travel time is discretised into m discretisation points. With this data, a matrix containing all
sine and cosine terms at those discretisation points can be set up.

6. The initial guess is fed into a solver.

7. With the output of the solver (i.e. the Fourier coefficients), the trajectory can be constructed and the
∆V can be computed.

6.1. Free Parameters
The boundary values largely depend on the problem at hand. If the finite Fourier series is used to do a grid
search, all mentioned parameters will be varied over a certain region, except for the number of Fourier terms,
which is usually fixed. For certain bodies at certain distances, it is advised to use a certain number of terms
for nr , nθ and nz , however, these can be used as optimisation parameters in a later mission design stage as
well.

6.2. Boundary Conditions
The boundary conditions depend on the arrival and departure body. These values can easily be extracted
from the TUDAT SPICE interface. Also, as mentioned in Section 5.2, a scaling to so-called canonical units has
been applied to reduce the computational load and improve the accuracy.

31

32 6. 3D Implementation

6.3. Initial Guess
To obtain an initial guess for the Fourier coefficients, a cubic polynomial function has been used [22]. The
function has already been mentioned in Section 4.3.1, but note that this version uses the scaled time τ instead
of the standard time t :

rC P (τ) = aτ3 +bτ2 + cτ+d (6.1a)

θC P (τ) = eτ3 + f τ2 + gτ+h (6.1b)

The eight cubic polynomial coefficients can be found by inserting the first eight boundary conditions from
the previous step into the equations. This will lead to a system of eight equations, which can be solved lin-
early. The full derivation is nearly identical to the one in Chapter 5, which can be found in Appendix A. The
polynomial coefficients are then defined as according to:

a = r ′
f + r ′

i +2
(
ri − r f

)
(6.2)

b = 3
(
r f − ri

)−2r ′
i − r ′

f (6.3)

c = r ′
i (6.4)

d = ri (6.5)

e = θ′f +θ′i +2
(
θi −θ f

)
(6.6)

f = 3
(
θ f −θi

)−2θ′i −θ′f (6.7)

g = θ′i (6.8)

h = θi (6.9)

6.4. Initial Coefficients
The Fourier series in Equation (4.23) and their derivatives can be combined with the 12 boundary conditions
to form a system of equations from which the first 12 coefficients of each Fourier term can be isolated. This
is done because the first terms are more dominant regarding the convergence of the solver than higher-order
terms, hence they will influence the trajectory shape more significantly [21]. This will also narrow the solution
space and improve the convergence speed of the solver. An exact derivation of the systems of equations and
their solution can be found in Appendix C. Here only the final solution of the vector containing all boundary
conditions is stated:

Fr = 1

2

(
ri − r f

)
cos(πτ)+ 1

2π

(
r ′

i − r ′
f

)
sin(πτ)+ 1

2

(
ri + r f

)
cos(2πτ)+ 1

4π

(
r ′

i + r ′
f

)
sin(2πτ) (6.10)

As can be seen from Equation (6.10), the expression is a function of the scaled time τ. This entails that its value
changes depending on the DP it is evaluated at, resulting in m different outputs. These can be assembled in
a column vector of size (m x 1):

Fr =
[

Fr (τ0) Fr (τ1) · · · Fr (τm)

]T

(6.11)

The exact same method is applied to the other two dimensions (i.e. θ and z). In Appendix C the full represen-
tation of the different F equations and matrices can be found.

6.5. Sine and Cosine Matrices 33

6.5. Sine and Cosine Matrices
To speed up the solving process, all terms containing a sine or cosine component have been stored in matrices
before the solving process is initiated. These matrices are pushed into the solver as well. In this way the
algorithm only needs to fetch the right trigonometric term instead of computing it at each iteration. The
matrices are set up by discretising the time of flight by m discretisation points. The matrices for the radius
r , transfer angle θ and the axial component z have the following sizes: (m x 2nr −3), (m x 2nθ −3) and (m
x 2nz − 3), respectively. Matrix Ar , containing all terms for the Fourier series describing r is expressed as
follows:

Ar =


Ca0 (τm)

...

Ca0 (τ1)

Ca0 (τ0)

Ca3 (τm)

...

Ca3 (τ1)

Ca3 (τ0)

Cb3 (τm)

...

Cb3 (τ1)

Cb3 (τ0)

Ca4 (τm)

...

Ca4 (τ1)

Ca4 (τ0)

Cb4 (τm)

...

Cb4 (τ1)

Cb4 (τ0)

· · ·

...

· · ·

· · ·

Canr
(τm)

· · ·

Canr
(τ1)

Canr
(τ0)

Cbnr
(τm)

...

Cbnr
(τ1)

Cbnr
(τ0)


(6.12)

in which each Can or Cbn term is represented by:

Can =
{

cos(nπτ)−cos(πτ); n is odd
cos(nπτ)−cos(2πτ); n is even

(6.13a)

Cbn =
{

sin(nπτ)−n sin(πτ); n is odd
sin(nπτ)− n

2 sin(2πτ); n is even
(6.13b)

In a similar way, these matrices can also be constructed for the other two dimensions and their derivatives.
An overview hereof is found in Appendix C.

6.6. Solving Procedure
Eventually, the problem can be described by the following equation:

min
Xr,Xθ ,Xz

∆V

s.t. [Ta] ≤ Tamax

(6.14)

which says that the ∆V needs to be minimised such that the thrust acceleration Ta is less than the maximum
value Tamax . This last option is however optional, but the core of the problem is that the ∆V is a function of
the decision vector containing the Fourier coefficients in all three dimensions according to:

x =
[

Xr Xθ Xz

]T

(6.15)

in which the three separate terms are described by:

Xr =
[

a0 a3 b3 · · · anr bnr

]T

(6.16a)

Xθ =
[

c0 c3 d3 · · · cnθ dnθ

]T

(6.16b)

Xz =
[

e0 e3 f3 · · · enz fnz

]T

(6.16c)

The total thrust acceleration at each moment in time is found by adding the three separate components,
which are expressed by: 

r̈ − r θ̇2 + µ

s3 r = fr

2ṙ θ̇+ r θ̈ = fθ

z̈ + µ

s3 z = fz

(6.17)

34 6. 3D Implementation

The root of the squared sum of these equations is equal to the thrust acceleration as depicted in Equa-
tion (6.18). Even though Equation (6.14) states that the ∆V is minimised, it is effectively the Ta that is min-
imised, as the∆V is obtained from the thrust acceleration by means of integration over time. This means that
the ∆V scales directly proportionally with the thrust acceleration.

Ta =
√

f 2
r + f 2

θ
+ f 2

z (6.18)

6.7. Trajectory Construction and Velocity Increment
When the solver has converged, the trajectory shape and the thrust profile can be constructed from the newly
obtained Fourier coefficients. This then also determines the required ∆V, as it is found by numerically inte-
grating this thrust profile.

7
Validation

Before a model can actually be used for further research, it needs to be validated properly. This chapter
contains everything concerning the trustworthiness of the implementation of the method. In Section 7.1 the
choice for the Nelder-Mead algorithm is argumented, after which, in Section 7.2, the two-dimensional finite
Fourier series is validated against one case study to Mars. The three-dimensional extension is then validated
against two cases. In Section 7.3 another trajectory study to Mars is done, while Section 7.4 describes the case
study to the comet Tempel-1.

7.1. Solver Validation
To ensure that the chosen solver is the right one for this particular problem, it has been tested with an optimi-
sation test function to assess its performance. In Section 7.1.1 the solving algorithm is explained after which
it is tested against the Schwefel function in Section 7.1.2.

7.1.1. Nelder-Mead Simplex Method
Also referred to as the downhill simplex or the amoeba algorithm, the Nelder-Mead simplex method is a local
optimisation approach for searching the space of n-dimensional vectors. The method uses n + 1 points to
generate a polytope in an n-dimensional space. This entails that it looks like a line in one dimension, a
triangle in two dimensions and a tetrahedron in three dimensions. These shapes are called simplices.

Once the method has been initialised, it changes the simplex step by step, mostly by moving the point of
the simplex with the largest function value through the opposite face of the simplex to a point with a lower
value. This starting point is called P0, which allows for the other n points to be defined as:

Pi = P0 +∆ei (7.1)

in which ei represents the i th unit vector and where ∆ is a constant that denotes the step size. The latter one
can be specified such that it is different for each of the directions the unit vectors are pointing in [15]. The
steps the algorithm will be taking are called reflections. They make sure the simplex stays nondegenerate,
i.e. ensuring the surface encloses a finite n-dimensional inner surface. An overview of the sundry reflections
can be found in Figure 7.1. Once the simplex reaches a valley floor, it moves down into the valley, and finally
the simplex will contract around the optimum. The Nelder-Mead method has converged when the simplex
changes shape only marginally within the set tolerances [29].

7.1.2. Schwefel Test Function
To validate the implementation of the randomisation of the initial guess vector in combination with the
Nelder-Mead algorithm, they have been applied to the Schwefel function. This entails that the initial guess is
improved by means of the Nelder-Mead algorithm and if it gets stuck in a local minimum, a random push is
given to steer it into the right direction. The Schwefel function is a widely used optimisation test function, as
it has many local minima that are close to each other. The function, in which d denotes the dimension of the
problem, is defined as follows in Equation (7.2):

35

36 7. Validation

Figure 7.1: The possible steps of the simplices used in the Nelder-Mead simplex method. From left to right the following is shown: a
reflection, an expansion, a contraction and a shrinking [29].

f (x) = 418.9829d −
d∑

i=1
xi sin

(√
|xi |

)
(7.2)

To test the algorithm, two dimensions have been used. The input domain for the function is the hypercube
defined by xi ∈ [-500,500] for all i = 1, ..., d . With this data, Figure 7.2 can be generated [2].

Figure 7.2: The Schwefel function on the standard domain x1, x2 ∈ [-500,500].

It turned out that the algorithm required 133 pushes to finally end up at the value of f (x) = 2.55×10−5 at x =
[420.9687,420.9687], which is the global minimum [2]. This has proven that the algorithm is capable of finding
the global minimum with a high degree of accuracy, hence validating its use. Important input variables are
shown in Table 7.1.

Table 7.1: The settings that have been used for the validation of the randomisation and Nelder-Mead algorithm.

Criterion Value

Maximum number of iterations 1000
Nelder-Mead threshold 1×10−15

Solution treshold 1×10−3

Distribution seed 43.0
Distribution Uniform

7.2. Mars in 2D
In Table 7.2 the various boundary conditions and input parameters to compute a trajectory from Earth to
Mars can be found [21]. These values are used as a reference value to test whether the method is functioning
properly. In Figures 7.3a and 7.3b the exact trajectory and the corresponding thrust profile (in canonical
units) are shown.

Recall that the canonical units that are used on an interplanetary scale are TU and DU, which denote a
time unit and a distance unit respectively. One distance unit corresponds to one astronomical unit, while the
time unit is defined such that 2π TU equals one year. This scaling prevents the programme from using large
numbers.

7.2. Mars in 2D 37

Finally, a claim that at least 15 DPs are needed to fully capture the trajectory topologies and that more
than 80 DPs does not yield more accurate results, combined with the mere graphical results, are all valida-
tion means Taheri and Abdelkhalik [21] provided. Note that the abbreviations UFF and CFF represent the
unconstrained finite Fourier series and the constrained finite Fourier series, respectively.

Table 7.2: Input parameters and boundary conditions for the trajectory from Earth to Mars [21].

Boundary
Conditions

Input
Parameters

ri 1 DU Nrev 1
θi 0 rad nr 2
rf 1.5234 DU nθ 5
θf 9.831 rad Tamax 0.02 DU/TU2

ṙi 0 DU/TU # DP 22
θ̇i 1 rad/TU TOF 13.447 TU
ṙf 0 DU/TU
θ̇f 0.5318 rad/TU

(a) The trajectory from Earth to Mars. (b) The thrust profile for the trajectory from Earth to Mars.

Figure 7.3: The trajectory from Earth to Mars and the corresponding thrust profile [21].

The computed trajectories by both the unconstrained and the constrained Fourier series can be observed
in Figures 7.4a and 7.4b. It takes an eagle’s eye to see any difference between the two transfer orbits, but it
appears to be in line with Figure 7.3a.

A more serious distinction between the two methods can be noticed when looking at the thrust profiles in
Figure 7.5. The red line resembles the thrust constraint of 0.02 TU/DU2, which corresponds to 0.11 mm/s2.
In Figure 7.5a the thrust constraint is not activated and thus the trajectory is not limited in any way. Approx-
imately halfway it passes the constraint line. On the other hand, the constrained trajectory in Figure 7.5b
perfectly obeys the thrust acceleration limit and only shortly touches the line. Comparing the results to Fig-
ure 7.3b, both the shape and the order of magnitude are in line with Taheri and Abdelkhalik [21].

Furthermore, the claim that at least 15 DPs are required to accurately capture the trajectory and that work-
ing with more than 80 DPs does not enhance the accuracy, is examined. In Figure 7.6 the required ∆V for
the transfer orbit is plotted against the number of DPs that have been used to correctly capture that orbit. It
clearly shows the asymptotic behaviour that is expected when more DPs are used. Note that the graph starts
at 15 DPs and ends at 500 DPs. From the plot it can be concluded that indeed the increase in accuracy beyond
80 DPs is negligible.

38 7. Validation

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

(a) The trajectory obtained by
the unconstrained finite Fourier series.

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

(b) The trajectory obtained by
the constrained finite Fourier series.

Figure 7.4: The unconstrained (left) and constraint (right) trajectories.

0 2 4 6 8 10 12

Time [TU]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

T
h
ru

s
t
a
c
c
e
le

ra
ti
o
n
 [
D

U
/T

U
2
]

T
a

T
a

max

(a) The thrust profile corresponding to the unconstrained trajectory.

0 2 4 6 8 10 12

Time [TU]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
T

h
ru

s
t
a
c
c
e
le

ra
ti
o
n
 [
D

U
/T

U
2
]

T
a

T
a

max

(b) The thrust profile corresponding to the constrained trajectory.

Figure 7.5: The unconstrained (left) and constrained (right) thrust profile.

0 50 100 150 200 250 300 350 400 450 500

Number of DPs [-]

5.65

5.66

5.67

5.68

5.69

5.7

5.71

V
 [
k
m

/s
]

Figure 7.6: The ∆V shows asymptotic behaviour when more discretisation points are used, conforming Taheri and Abdelkhalik [21].

7.3. Mars in 3D 39

Finally, in Figures 7.7a and 7.7b clear evidence is presented that the finite Fourier series is not capable of
capturing trajectories correctly when less than 15 DPs are used. The two examples show a transfer orbit that
has been generated with the data from Table 7.2, but this time only eight and twelve DPs have been used.

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

(a) A transfer orbit to Mars when eight DPs are used.

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

(b) A transfer orbit to Mars when twelve DPs are used.

Figure 7.7: Two examples of transfer orbits that have been found with an insufficient number of DPs with the unconstrained finite
Fourier series.

7.3. Mars in 3D
Mars has proven to be a popular target in the field of trajectory design and therefore it has also been used as
a reference case for the three-dimensional finite Fourier series method, just as for the hodographic shaping
method and the spherical shaping method [5, 12, 22]. In Figures 7.8 to 7.11 the outcome of the comparison
of the results from Taheri and Abdelkhalik [22] and the author will be given in the form of a porkchop plot,
the three-dimensional trajectory and the corresponding thrust profile. The reference values to set up this
validation case can be found in Table 7.3.

Table 7.3: The input parameters that have been used to generate the trajectories from Earth to Mars. † The true value of this is
disputable, as in Taheri [20] a ppr value of 10 is mentioned, while Taheri and Abdelkhalik [22] use 30 ppr .

Input parameter Unit

Tamax [m/s2] 1.5×10−4

∆T Departure date [days] 50
∆T Time of flight [days] 50

Launch date range [MJD2000] 7304.5-10225.5
Time of flight bounds [days] 500-2000

Points per revolution [-] 30†

Nrev range [-] 1-4
nr [-] 6
nθ [-] 6
nz [-] 4

The porkchop plots that have been generated with the data from Table 7.3 can be found in Figure 7.8. Note
that the white space in the reference plot in Figure 7.8a indicates that the trajectory is infeasible. This is a
criterion that has not been specified any further by Taheri and Abdelkhalik [22], hence it has been decided to
actually include all computed solutions in Figure 7.8b. This required the scale to be set properly, as the actual
∆V ranges up to values of 154 km/s. Therefore it is important to note that the white arrow on top of the colour-
bar indicates that the scaling is cut of at 10 km/s, which entails that the white areas contain a large variety of
possibilities that are deemed infeasible by Taheri and Abdelkhalik [22]. Overall, Figures 7.8a and 7.8b show

40 7. Validation

considerable similarities. The overall shape of the porkchop plot, which is caused by the periodic motion of
the Earth and Mars, can be clearly seen, for example.

The∆V regions however seem to differ somewhat. This phenomenon can be attributed to the occurrence
of infeasible regions Taheri and Abdelkhalik [22] did include, whereas Figure 7.8b contains all computed tra-
jectory solutions.

Furthermore, the quality of the plot by Taheri and Abdelkhalik [22] is controversial, as their scaling only
shows two colours for the entire ∆V regime, while Figure 7.8a clearly shows 4 different colours. This is espe-
cially visible at the borders of the white triangular regions at the bottom.

Moreover, the departure date and the time of flight of the trajectory that requires the least amount of ∆V
slightly differ. In Figure 7.8b the difference is indicated by a green and a red dot. The green dot resembles the
optimal trajectory that has been found by Taheri and Abdelkhalik [22], while the red dot depicts the optimal
trajectory the author has found.

(a) The reference porkchop plot by Taheri and Abdelkhalik [22]. (b) The computed porkchop plot.

Figure 7.8: A comparison between the best porkchop plots computed by Taheri and Abdelkhalik [22] (left) and the author (right).

To clarify the definition of the so-called infeasible regions in Figure 7.8 a few examples have been presented in
Figure 7.9. It shows two different trajectories and their corresponding thrust profiles. An infeasible trajectory
is characterised by the following two properties: either their thrust profile or their trajectory is unrealistic.

In Figure 7.9a a nice example of the first is shown. The trajectory looks perfectly normal, but with a ∆V
of 28.6 km/s this is definitely not the optimal solution and when taking a closer look at the thrust profile in
Figure 7.9c it is evident that the thrust constraint is exceeded severely, hence the trajectory cannot be flown.

Additionally, whilst analysing Figure 7.9b one quickly comes to the conclusion that the trajectory itself is
impossible to fly. Especially because the spacecraft would have to descent nearly 2 AU after which it makes
a hairpin bend in order to ascend towards the final destination again. With such a trajectory it is no surprise
that the thrust profile in Figure 7.9d never complies to the imposed constraint of 15 mm/s2. This makes it a
clear example of an infeasible trajectory.

If then the optimal solution is analysed from a perspective of minimal∆V and compared to the solution found
in literature, there is a visible discrepancy. The two trajectories are depicted in Figure 7.10. The trajectory that
was obtained by Taheri and Abdelkhalik [22] in Figure 7.10a seems to end at a higher position in the positive
z-direction. This difference can be explained by looking at the grid that has been used for the porkchop plots.
Both the time of flight and the departure date are entered with an interval of 50 days. The optimal result the
author has found requires a time of flight which is 100 days shorter, while the departure date is about 50 days
later, hence the absolute arrival time will 50 days earlier as well.

Furthermore, looking at the underlying thrust profile of these trajectories in Figure 7.11, there is not much
that stands out. The overall shape of the thrust components is largely the same: It starts with the maximum
allowed thrust acceleration value, after which it drops to a minimum after about 400 days. From this point
onwards the reference trajectory in Figure 7.11a assumes the shape of a lumpy concave parabola, while Fig-
ure 7.11b shows two steep increases.

7.3. Mars in 3D 41

(a) The departure MJD2000 is 7453
and the time of flight is 500 days.

(b) The departure MJD2000 is 8245
and the time of flight is 500 days.

(c) The thrust profile corresponding to Figure 7.9a. (d) The computed thrust profile corresponding to Figure 7.9b.

Figure 7.9: An example of two trajectory solutions and their thrust profiles that have been deemed infeasible.

(a) The reference trajectory [22]. The departure MJD2000 is 9554.5
and the time of flight is 950 days.

(b) The computed trajectory. The departure MJD2000 is
9604.5 and the time of flight is 850 days.

Figure 7.10: A comparison between the best trajectories computed by Taheri and Abdelkhalik [22] (left) and the author (right).

On the other hand, specifically looking at the radial (fr) and axial (fz) components separately, the resem-
blance of Figures 7.11a and 7.11b is even stronger. The axial acceleration shows the same trend and in both

42 7. Validation

figures the radial thrust has a slight oscillation around the 0 m/s2 line, indicating the optimality of this so-
lution, as fr corresponds to gravity losses. Moreover, it makes sense that the transverse (fθ) acceleration is
significantly larger than the other two components at each epoch, as it is most efficient to apply thrust in the
direction of flight.

The explanation of the slightly different thrust profiles can probably be found in the tolerances that are
pushed through the solving algorithm. Figure 7.11b is found with a tolerance of 1×10−5 on the constraint,
the fitness vector and the decision vector. Lowering this value will lead to a closer similarity between the three
figure couples above, but this will be at the cost of computation time.

(a) The reference thrust profile corresponding to Figure 7.10a [22].

0 100 200 300 400 500 600 700 800

Time [days]

-5

0

5

10

15

T
a
 [
m

/s
2
]

10
-5

T
a

max
T

a
f
r

f f
z

(b) The computed thrust profile corresponding to Figure 7.10b.

Figure 7.11: A comparison between the best thrust profiles computed by Taheri and Abdelkhalik [22] (left) and the author (right).

To prove the effect of lower tolerances, they all have been set at 1×10−9 and the simulation has been run again
with the settings for the optimal trajectory as input data. The result of this run can be seen in Figure 7.12. Both
the trajectory in Figure 7.12a and the thrust profile in Figure 7.12b show a high degree of similarity with the
reference data in Figures 7.10a and 7.11a.

(a) The computed trajectory when the reference data as in
Figure 7.10a is used directly

0 100 200 300 400 500 600 700 800 900

Time [days]

-5

0

5

10

15

T
a
 [
m

/s
2
]

10
-5

T
a

max
T

a
f
r

f f
z

(b) The corresponding thrust profile to Figure 7.12a.

Figure 7.12: The separately computed transfer trajectory (left) and the corresponding thrust profile (right).

7.4. Tempel-1 in 3D
To gain a better insight in the compatibility of the finite Fourier series method with celestial objects which are
in a more eccentric or more inclined orbit, the comet Tempel-1 was chosen as a target. As seen in Table 7.5,

7.4. Tempel-1 in 3D 43

the eccentricity of the comet is 0.51159 and it is at an inclination of 10.5025° with respect to the ecliptic. In
Figures 7.13 to 7.16 the outcome of the comparison of the results from Taheri and Abdelkhalik [22], Novak
and Vasile [12] and the author will be given in the form of a porkchop plot, the three-dimensional trajectory
and the corresponding thrust profile. The reference values to investigate this validation case and construct
the unperturbed Tempel-1 orbit can be found in Tables 7.4 and 7.5.

Table 7.4: The input parameters that have been used to generate
the trajectories from Earth to the comet Tempel-1 [22].

Input parameter Value

Tamax [m/s2] 7.1×10−4

∆T Departure date [days] 15
∆T Time of flight [days] 20

Launch date range [MJD2000] 0.5 - 5845.5
Time of flight bounds [days] 400 - 1500

Points per revolution [-] 20
Nrev range [-] 0-2

nr [-] 8
nθ [-] 8
nz [-] 6

Table 7.5: The Keplerian elements of the comet Tempel-1 that have
been used to compute an unperturbed reference orbit [22].

Kepler element Value

a [AU] 3.14009
e [-] 0.51159

i [deg] 10.5025
Ω [deg] 68.8818
ω [deg] 179.3031
M [deg] 203.23760

Epoch [MJD] 56717

The porkchop plots that have been generated for the comet Tempel-1 can be seen in Figure 7.13. It should
be noted that Taheri and Abdelkhalik [22] did not present these results, but only the best trajectory and its
matching thrust profile. The plot in Figure 7.13a has been generated with the spherical shaping method by
Novak and Vasile [12]. Again, just as in Figure 7.8 the white areas in Figure 7.13a demonstrate infeasible
trajectories, whose criteria were again not specified, but in Figure 7.13b all computed trajectory solutions
have been included. The found ∆V values range from about 12 to 80 km/s. However, to better compare the
results, the scale of Figure 7.13b has been adjusted such that it matches the one of Figure 7.13a.

From Figure 7.13, the first conclusion that can be drawn is that by means of the finite Fourier series more
feasible solutions can be found, thus offering more possibilities to be used as an input for direct solvers.

A second observation is the double period variation that is shown in the white triangular regions. The
orbital period of the Earth is only 365 days, while Tempel-1 takes slightly over 2000 days to make one revolu-
tion around the Sun. In this time range from MJD2000 0.5 to MJD2000 5845.5 the comet can therefore make
almost three revolutions, which correspond to the large white areas in the figure. The smaller orbital period
of the Earth is responsible for the so-called subtriangles that can be observed. This means that the arrival
position of Tempel-1 has more effect on the required ∆V than the departure position of the Earth. Due to
the eccentricity of the orbit of Tempel-1, large velocity differences are induced over the entire trajectory. The
periphelion is at a distance of 1.53 AU, while the aphelion is at a distance of 4.75 AU from the Sun.

Finally, just as in the previously described case to Mars, the exact departure date and time of flight show
a slight difference with respect to the least ∆V solution that was found by Taheri and Abdelkhalik [22]. The
green dot in Figure 7.13b resembles the solution by Taheri and Abdelkhalik [22], while the red dot depicts the
optimal trajectory the author has found. As the figure shows, the time of flight only differs by 100 days, which
has a relatively small effect on the computed ∆V value. The departure date does however show a large differ-
ence of more than 2000 days. At first this might look like much, but as mentioned before, the orbital period
of Tempel-1 is slightly over 2000 days. Knowing this, it can be said that the optimal solution is practically in
the same region, except that it is shifted by one orbital period of the comet.

In Figure 7.14 two of the solutions from the infeasible regions have been shown. Apparently, both trajectories
are mathematically feasible, but the necessary thrust acceleration cannot be accommodated by modern low-
thrust engines, yet.

The difference in the departure date and the time of flight of the optimal trajectories by Taheri and Abdelkha-
lik [22] and the author were already mentioned before. In Figure 7.15 the two trajectories are shown and from
here the discrepancy in the arrival position of the comet becomes clear. The large difference in the depar-
ture dates of both solutions is about 150 days, due to the periodic motion of the celestial bodies. Combined

44 7. Validation

(a) Reference porkchop plot [12]. (b) Computed porkchop plot.

Figure 7.13: A comparison between the best porkchop plots computed by Novak and Vasile [12] (left) and the author (right).

(a) The departure MJD2000 is 300
and the time of flight is 400 days.

(b) The departure MJD2000 is 4676.5
and the time of flight is 400 days.

(c) The thrust profile corresponding to Figure 7.14a. (d) The computed thrust profile corresponding to Figure 7.14b.

Figure 7.14: An example of two trajectory solutions and their thrust profiles that have been deemed infeasible.

7.4. Tempel-1 in 3D 45

with the reduced flight time of 100 days it does make sense that Tempel-1 is about 50 days back in its orbit,
compared to the solution Taheri and Abdelkhalik [22] found.

(a) The reference trajectory [22]. The departure MJD2000 is 4004.5
and the time of flight is 1040 days.

(b) The computed trajectory. The departure MJD2000 is 1845.5 and
the time of flight is 940 days.

Figure 7.15: A comparison between the best trajectories computed by Taheri and Abdelkhalik [22] (left) and the author (right).

Figure 7.16 contains the thrust profiles that accompany the trajectories from Figure 7.15. Despite the fact that
the trajectories might not fully agree with each other, the thrust profiles do show a larger resemblance. Both
figures start with a rather steep increase in thrust after which it decreases and the spacecraft experiences a
long period of about 450 days of (nearly) ballistic flight. At the end the engine power is throttled up again
to fully match the orbit of Tempel-1. The only major difference can be seen in the behaviour of the radial
acceleration component fr . In Figure 7.16a it dives into the negative region, indicating a thrust force towards
the Sun, because it needs to compensate for the small overshoot it has compared to the orbit of the comet.
The radial acceleration is directed in the exact opposite direction in Figure 7.16b, as in this case the transfer
orbit has no overshoot with respect to the target orbit and even needs a tiny bit of force to direct it towards
the final destination. In the end, the difference in the behaviour of the acceleration can be explained by the
small difference in arrival position between Figure 7.15a and Figure 7.15b.

(a) The reference thrust profile corresponding to Figure 7.15a [22].

0 100 200 300 400 500 600 700 800 900

Time [days]

-4

-2

0

2

4

6

8

T
a
 [
m

/s
2
]

10
-4

T
a

max

T
a

f
r

f

f
z

(b) The computed thrust profile corresponding to Figure 7.15b.

Figure 7.16: A comparison between the best thrust profiles computed by Taheri and Abdelkhalik [22] (left) and the author (right).

Just as the trajectory to Mars described in Section 7.3, the proof for the effects of lowered tolerances can be
seen in Figure 7.17. This time, the tolerances have been set to 1×10−9 as well. On such a large distance scale,

46 7. Validation

the similarity in arrival position between Figures 7.15a and 7.17a is somewhat harder to see, but the improved
resemblance between the thrust profiles in Figures 7.16a and 7.17a is evident.

(a) The computed trajectory when the reference data as in
Figure 7.15a is used directly

0 100 200 300 400 500 600 700 800 900 1000

Time [days]

-4

-2

0

2

4

6

8

T
a
 [
m

/s
2
]

10
-4

T
a

max

T
a

f
r

f

f
z

(b) The corresponding thrust profile to Figure 7.17a.

Figure 7.17: The separately computed transfer trajectory (left) and the corresponding thrust profile (right).

8
Model Development

Before the correct implementation method as described in Chapters 5 and 6 was figured out, some ambigu-
ities had to be overcome when interpreting the discoveries by Taheri and Abdelkhalik [21, 22]. This chapter
will explain these inconveniences and it will elaborate on possible additions to the method, starting with the
definition of the decision vector in Section 8.1. The ambiguity of the unconstrained finite Fourier series is
demonstrated in Section 8.2. Followed by that is the tuning of the solver in Section 8.3. The reference frame
discrepancy is covered in Section 8.4 and Section 8.5 concludes the chapter with a sensitivity analysis con-
cerning the number of Fourier terms that are used to model a transfer orbit.

8.1. Alternative Decision Vector

Before the right implementation method as described in Chapter 5 was found, another approach was taken.
The first important difference is the definition of the decision vector. To recall Equation (5.17), the correct
decision vector looks as follows:

x =
[

a0 a3 a4 · · · anr b3 b4 · · · bnr c0 c3 c4 · · · cnθ d3 d4 · · · dnθ

]
(8.1)

It does not include the first two coefficients of each sine and cosine term in the Fourier series (i.e. a1, a2, b1,
b2, c1, c2, d1 and d2), which means that its length is (2nr + 2nθ - 6). The erroneously implemented decision
vector is displayed in Equation (8.2) below:

x =
[

a0 a1 a2 · · · anr b1 b2 · · · bnr c0 c1 c2 · · · cnθ d1 d2 · · · dnθ

]
(8.2)

In this case, the total length of the decision vector is (2nr + 2nθ + 2), as it includes the initial eight terms.

To ensure that the coefficients a1, a2, b1, b2, c1, c2, d1 and d2 are indeed equal to Equation (5.13a) through
(5.13h), eight equality constraints had to be applied. The result of this run with the data from Table 7.2 can be
seen in Figure 8.1.

47

48 8. Model Development

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

Figure 8.1: The found trajectory when only the first eight coefficients are enforced.

As can be observed, this caused an utterly unconventional trajectory shape. In addition to that, the corre-
sponding ∆V is 157.5 km/s, which is multiple times the amount it would normally take in order to get to the
red planet [12].

Because of these results, the solution space had to be restricted even more. For that reason it was decided
that an inequality constraint would be applied to the orbital radius stating that the radius at the current DP
should always be larger than at the previous DP. Depending on the number of discretisation points, this would
entail that (m −1) constraints are added to the problem, bringing the total number of constraints to (m +7).
This should prevent the trajectory from turning inward again. The result of this improvement is shown in
Figure 8.2.

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

Figure 8.2: The found trajectory when the first eight coefficients and an increasing radius are enforced.

This trajectory clearly shows more similarity to Figure 7.3a, but it still contains some big flaws. The radius does
increase over time, but when about 1.25 revolutions have been completed, two immediate inconsistencies
show up, which explains the high ∆V of 543.1 km/s.

Again, this has proven to not yield the desired result. Therefore, another set of constraints was introduced.
Due to the circular movement of an orbit, it makes sense that the transfer angle keeps on increasing when
moving outward in the Solar System. Hence, the other set of implemented inequality constraints states that
the current transfer angle should always be larger than the previous transfer angle. With this new set, another

8.1. Alternative Decision Vector 49

(m−1) constraints are added, bringing the total number of constraints to (2m+6). The resulting trajectory is
shown below in Figure 8.3a.

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

(a) The found trajectory when the first eight coefficients, an
increasing radius and an increasing transfer angle are enforced.

0 2 4 6 8 10 12 14

Time [TU]

-10

-8

-6

-4

-2

0

2

4

T
h
ru

s
t
a
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

10
-3

T
a

(b) The thrust profile including the constraints on the first eight
coefficients, the radius and the transfer angle.

Figure 8.3: The trajectory solution and the corresponding thrust profile as a result of the imposed limits on the transfer angle.

Comparing Figure 8.3a and Figure 7.3a, it is hard to see a difference, which is strange, as the trajecotory
requires a ∆V of 67.8 km/s. For that reason, the thrust profile in Figure 8.3b needs to be analysed as well.

Looking at the figure, the explanation immediately becomes clear. For a better interpretation of the re-
sults, the acceleration has been expressed in m/s2. Knowing that the constrained case, as in Table 7.2, uses a
thrust constraint of 0.11 mm/s2, this trajectory has a maximum acceleration of more than 3.11 mm/s2, which
is over 26x higher than the maximum acceleration the engine can handle.

In order to resolve these deviations, the thrust constraint has been turned on, resulting in the trajectory
and thrust profile as seen in Figure 8.4.

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

(a) The found trajectory when the first eight coefficients, an
increasing radius, the transfer angle and the thrust are enforced.

0 2 4 6 8 10 12

Time [TU]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

T
h
ru

s
t
a
c
c
e
le

ra
ti
o
n
 [
D

U
/T

U
2
]

T
a

T
a

max

(b) The thrust profile including the constraints on the first eight
coefficients, the radius, the transfer angle and the thrust.

Figure 8.4: The trajectory solution and the corresponding thrust profile as a result of the activation of the thrust constraint.

The transfer orbit in Figure 8.4a is identical to the one in Figure 8.3a, and thus to the original one by Taheri
and Abdelkhalik [21] in Figure 7.3a. However, this does not hold for the thrust profile. The thrust constraint
manages to keep the acceleration much closer to the limit of 0.02 DU/TU2, but it cannot totally prevent it
from exceeding this limit. The required ∆V for this mission is only 6.08 km/s, which makes much more sense

50 8. Model Development

than the values found before. Nonetheless, the thrust profile does not match Figure 7.3b at all, hence it was
concluded that this is not the proper way the finite Fourier series method had to be implemented.

8.2. 2D Unconstrained Finite Fourier Series
When the first test run with the unconstrained finite Fourier series method was done, some peculiar be-
haviour was observed. The trajectory to Mars has been set up with the exact same settings as in Section 8.1,
but this time the thrust acceleration was not limited. The trajectory solution that is obtained is plotted in
Figure 8.5.

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

Figure 8.5: The result of the first run obtained with the unconstrained finite Fourier series.

The required ∆V for this trajectory is a whopping 125.5 km/s, which is far beyond the nominal value of about
5.6 to 5.8 km/s. The reason why it is so high can be attributed to the sudden change in direction near the
end of the trajectory. This directional change requires the spacecraft to kill all its velocity and move into the
opposite direction, rendering the solution infeasible.

The problem was solved by adding additional constraints on the transfer angle. It is prescribed that the
transfer angle at DP n should always be larger than the transfer angle at DP (n −1), ensuring an orbit shape
that always continues in the same direction, similar to the method mentioned in Section 8.2. This also means
that the name unconstrained finite Fourier series only refers to the absence of the thrust constraint. The
total number of constraints on the transfer angle depends on the number of discretisation points and can be
described as (#DP −1).

8.3. Solver Tuning
Using a numerical solver is not as easy as selecting it and feeding it with the problem. It has to be tuned to
the specific problem it is solving. The problem concerning deviating ∆V values is explained in Section 8.3.1,
after which the solution is explained in Section 8.3.2.

8.3.1.∆V Deviations
As soon as the problem with the redefinition of the decision vector was solved, another interesting result was
found. The validation case as described in Section 7.2 exactly behaved as it should, hence conforming the
effectiveness of the finite Fourier series method.

However, when the same problem was fed into the solver with a different number of discretisation points,
a new issue showed up. For some DPs the ∆V shot up to excessively high values. This seems to happen at
random. Figure 8.6 shows the results of this analysis on a range from 15 to 80 DPs.

8.3. Solver Tuning 51

10 20 30 40 50 60 70 80

Number of DPs [-]

0

20

40

60

80

100

120

V
 [
k
m

/s
]

Figure 8.6: Excessively high ∆V values are found for some random DPs.

If the corresponding trajectories and thrust profiles are plotted, the results can be explained. This has been
done for the case with 33 DPs and a ∆V of 64.66 km/s in Figures 8.7a and 8.7b respectively. It can be seen
that the trajectory has a peculiar zigzag-shape at the very end, which could be seen in Figure 8.5 as well. This
zigzag indicates that suddenly all velocity needs to be killed, as it moves in the complete opposite direction
for a short period of time, after which it finds its way back to the correct destination orbit.

In the thrust profile in Figure 8.7b this effect is clearly standing out too. At the end, a large upward peak
is found that indicates much thrust is given in the direction of the current movement, probably to match the
orbital velocity of Mars.

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

(a) An example of an erroneous trajectory.

0 2 4 6 8 10 12 14

Time [TU]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
h
ru

s
t
a
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

T
a

T
a

max

(b) The corresponding thrust profile.

Figure 8.7: The incorrect trajectory solution and the corresponding thrust profile when 33 DPs are used.

8.3.2. Random Variables
In order to solve the problem that was encountered and described in Section 8.3.1, a different approach had
to be taken. The original idea was to take the initial guess found from the cubic polynomial in Equation (4.19)
and feed it into the solver as a starting point as prescribed by Taheri and Abdelkhalik [21]. Nonetheless this
led to the results in Figure 8.6, which are probably caused by the Nelder-Mead algorithm getting stuck in a
local minimum. Therefore, it was decided to include a random element in the solving procedure to push it
into a different direction to continue its search.

52 8. Model Development

It was decided that the numbers the initial guess vector comprised of would be used as the baseline for a
normal distribution. This means that with these values a mean and a variance have been calculated. Then,
if the solver is not able to find a possible solution with the given initial guess, a random number from this
normal distribution is added to each separate number in the vector such that the search can be resumed.

The initial guess vector for the problem described in Section 7.2 is presented in Table 8.1. With this data,
a mean µ of 1.44 and a variance σ2 of 6.55 are found, from which a normal distribution can be constructed.
The multi-start initial guesses will then be based on this distribution.

Table 8.1: The initial guess based on the case described in Table 7.2.

Coefficient a0 c0 c3 c4 c5 d3 d4 d5

Value 2.529 0 4.68 0.882 -0.77 3.82 3.17 -2.83

The results of a new run in which the number of DPs is increased up to 500 are shown in Figure 8.8. In here,
the expected asymptotic behaviour Taheri and Abdelkhalik [21] talked about can be clearly observed.

0 50 100 150 200 250 300 350 400 450 500

Number of DPs [-]

5.65

5.66

5.67

5.68

5.69

5.7

5.71

V
 [
k
m

/s
]

Figure 8.8: After the multi-start feature has been implemented, the ∆V behaves as it should for an increasing number of discretisation
points.

8.4. Reference Frame
The second step in setting up a finite Fourier series trajectory model is to define the boundary conditions.
The following equation is given in order to compute the transfer angle θ f at the position of the arrival body
(explaining the subscript f) as a function of the number of revolutions Nrev [21]:

θ f = θ0 +Nrev ·2π (8.3)

in which θ0 represents the initial angle between the departure body at the start (t = 0) and the arrival body at
the end (t = T), measured counter-clockwise, which is illustrated by Figure 8.9.

Taheri and Abdelkhalik [21] however did not mention that the transfer angle is always normalised in such
a way that the positive x-axis consistently serves as the datum line from which θ is measured. This causes
problems when the SPICE libraries are used to obtain the state vectors of celestial bodies with respect to the
ecliptic reference frame, as this normalisation is not accounted for.

In order to solve it, two things can be done: either the state vector is corrected for this normalisation, or
Equation (8.3) is slightly altered. The approach that has been followed in this implementation as explained
in Chapters 5 and 6 is the latter one, for which the initial transfer angle θi is added to Equation (8.3), resulting
in Equation (8.4).

θ f = θ0 +Nrev ·2π+θi (8.4)

8.5. The Number of Fourier Coefficients 53

Figure 8.9: A graphical representation explaining how the initial angle θ0 between the departure body at t = 0 and the arrival body at
t = T is found.

8.5. The Number of Fourier Coefficients
The finite Fourier series method allows its user to set the number of Fourier terms that are used to capture
a trajectory. This can be done in all dimensions and usually a certain degree of complexity asks for certain
settings. Taheri and Abdelkhalik [22], for example, used the following number of terms for a trajectory to Mars
(low eccentricity and inclination): nr = 6, nθ = 6 and nz = 4, while a more challenging target, like the comet
Tempel-1 (high eccentricity and inclination) requires: nr = 8, nθ = 8 and nz = 6. A different number of Fourier
series will influence the shape and thus the required ∆V for a certain candidate trajectory.

To show this, a trajectory to Jupiter has been computed. The parameters that have been used to generate
the transfer orbit are shown in Table 8.2, while the oribital elements that have been used to set up the orbit of
Jupiter are stated in Table 8.3. The corresponding trajectory solution is depicted in Figure 8.10.

Table 8.2: The input parameters that have been used to generate
the reference trajectory from Earth to Jupiter [13].

Input parameter Value

Departure date [MJD2000] 6653
Time of flight lower [years] 4

Points per revolution [-] 100
Nrev [-] 1

nr [-] 6
nθ [-] 6
nz [-] 4

Tolerances [-] 1×10−9

∆V [km/s] 17.30

Table 8.3: The orbital elements of Jupiter that have been used to
compute an unperturbed reference orbit [10].

Kepler element Value

a [AU] 5.2
e [-] 0.048

i [deg] 1.304
Ω [deg] 100.5
ω [deg] 274.25
M [deg] 19.66796

Epoch [MJD] 51544.5

To examine the influence of the number of Fourier coefficients on the trajectory solutions, the following ap-
proach was taken: each time a run was done, one Fourier term was added to one of the dimensions while the
others were kept at their standard value as in Table 8.2. This means that in total nearly 300 different trajecto-
ries were computed. Figure 8.11 shows the range of possible trajectories that are generated due to this large
variety in Fourier coefficients.

As can be seen in the figure, there is an especially clear difference in the axial position at a certain point in
time of the various trajectories. To illustrate what happens when the number of Fourier terms is set too high
for a certain trajectory design problem, one case was highlighted. The outcome of this case, where nr and nθ
are kept at their values as written in Table 8.2 whilst nz was set at 25, is displayed in Figure 8.13.

The random periodic behaviour can be observed in every aspect of the transfer orbit. The overall trajectory
shape in Figure 8.13a already shows some surprising bumps. When the orbit is inspected in the z y-plane, as
in Figure 8.13b, this effect is even more evident. The isolated axial component in Figure 8.13c shows the sinu-
soidal waves especially in the first half of the flight, but the effects are best witnessed in Figure 8.13d, where
the three components of the thrust are depicted together with the total thrust. The z−component shows an

54 8. Model Development

Figure 8.10: The reference trajectory to Jupiter [10].

Figure 8.11: An overview of the trajectories that are found when the number of Fourier coefficiens is increased up to 100 per dimension.

entirely sinusoidal wave pattern, which has its effects on the total thrust acceleration as well, specifically in
the first 400 days of the trajectory.

Another intriguing result was found when the final outcome in terms of ∆V is plotted against the number
of used coefficients. The impact caused by using more coefficients for the Fourier series describing r and
θ seems to be following the same pattern. However, this cannot be said for the axial Fourier series. Based
on Figure 8.12 it can be concluded that the obtained trajectory solution is most sensitive to the number of
Fourier coefficients that will be used to describe the movement in z.

Furthermore, the general trend that can be observed in Figure 8.12 prescribes that the ∆V increases the
more coefficients are used beyond a certain threshold, as the minimum ∆V is achieved with 18 terms for
nr . However, knowing that an increase of n terms will extend the complexity of the problem with an equal

8.5. The Number of Fourier Coefficients 55

0 10 20 30 40 50 60 70 80 90 100

Coefficients [-]

16

17

18

19

20

21

22

23

24

25

V
 [
k
m

/s
]

n
r

n

n
z

Figure 8.12: The increase in nz leads to a significantly higher increment regarding the ∆V compared to the increase of nr and nθ .

number of dimensions and thus it will require more computation time. Therefore, it should always be striven
for to have the least number of Fourier terms.

(a) An overall overview of the trajectory to Jupiter. (b) The trajectory in the z y-plane.

0 500 1000 1500

Time [days]

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Z
-d

is
ta

n
c
e
 [
A

U
]

(c) The behaviour of the axial coordiante.

0 200 400 600 800 1000 1200 1400

Time [days]

-5

-4

-3

-2

-1

0

1

2

3

4

5

T
a
 [
m

/s
2
]

10-4

T
a

f
r

f f
z

(d) The thrust profile.

Figure 8.13: The effects of a high number of Fourier coefficients in the axial direction (nz = 25).

III
Initialisation

57

9
Strategy

Having proven that the method functions properly, it can finally be used to do some additional research
on its performance and its initialisation strategy in particular. In this chapter, the concept of initialisation is
shortly summarised in Section 9.1, after which the steps that have been taking during the research process are
elaborated upon. The test functions are introduced in Section 9.2, the test objects can be found in Section 9.3
and finally the five analysis cases are explicated in Section 9.4.

9.1. Finding the Optimum
In Section 4.3 it is explained that the Fourier coefficients for a certain trajectory are obtained by solving a
non-linear programming problem. The fact that it is non-linear is crucial information here, as this entails
that the solving algorithm requires some a priori information in order to find the solution. It is at this point
where the so-called initialisation strategy comes into play. That strategy determines how these a priori values
are determined and thus it strongly influences the direction the solver moves into.

This effect is nicely seen in Figure 9.1. The graph shows the various ∆V regions for a transfer trajectory
from Earth to Uranus that incorporates a deep space manoeuvre, while taking advantage of the gravity-assists
from Mars and Jupiter. As usual in the field of trajectory design, the solution that requires the least amount
of ∆V is sought after, hence in this case it is preferred that the initialisation strategy directs the solver towards
the deep blue area.

Figure 9.1: An example of a solution region with its various areas with minima and maxima [11].

In the original design of the finite Fourier series, a cubic polynomial function is used as an approximation
for the trajectory from which the initial guess is derived. Furthermore, Taheri and Abdelkhalik [22] state that
the initial unknown Fourier coefficients of the axial coordinate, z, are set to zero in all of the cases. The goal

59

60 9. Strategy

of this research is to investigate whether a better initialisation method exists and if its three-dimensional
stability can be improved.

9.2. Function Types
This section contains an explanation of the four different initialisation functions and the derivations of their
coefficients. First, the reference case consisting of a power function is presented in Section 9.2.1. After that,
the newly designed exponential, trigonometric and logarithmic functions follow in Sections 9.2.2 to 9.2.4,
respectively. To conclude, Section 9.2.5 correspondingly comments on the use of an exponential function
combined with a power sine function. In Figure 9.2 a graphical overview of the all functions with various
coefficients can be found.

The initialisation function is denoted by f (τ) and the coefficients of this function are determined by the
boundary conditions of the trajectory design problem. Note that in this chapter only the radial distance r
will be used to show the derivations of the function coefficients, but naturally the same rules apply to the
transfer angle θ and the axial position z too. The boundary conditions for r are established as in Section 4.3,
but they are stated here again for clarity reasons in Equations (9.1) and (9.2):

f (t = 0) = ri f (t = T) = r f

ḟ (t = 0) = ṙi ḟ (t = T) = ṙ f
(9.1)

f (τ= 0) = ri f (τ= 1) = r f

f ′(τ= 0) = r ′
i f ′(τ= 1) = r ′

f
(9.2)

In the upcoming derivations of the initialisation function coefficient, the more complex three-dimensional
derivation will be presented first, after which the value of the two-dimensional coefficients is shown.

9.2.1. Power Function
The initialisation functions that are currently used by Taheri and Abdelkhalik [22] are power functions of the
third order. Their derivation and application have already been explained in Section 4.3 and chapters 5 and 6.
The derivation of the coefficients can be found in Appendix A. Yet, for the sake of completeness, the functions
are stated below:

f (t) = at 3 +bt 2 + ct +d (9.3)

f (τ) = aτ3 +bτ2 + cτ+d (9.4)

9.2.2. Exponential Function
Another proposed function that the solver can use as a reference value is an exponential function. As seen
in Figure 9.2, its behaviour is similar to that of the previously mentioned function, but it could provide a
more valuable estimation of the Fourier coefficients when the trajectory solution contains a rapidly increasing
position parameter, for example. When approximating the trajectory as an exponential function, the used
initialisation functions have the following form and contain only three coefficients:

f (t) = aebt + c (9.5)

f (τ) = aebτ+ c (9.6)

To find those three coefficients the derivative of Equation (9.6) is needed:

f (τ) = abebτ (9.7)

If the boundary conditions as in Equation (9.2) are substituted in Equation (9.7), the following two relations
are obtained: {

f ′(0) = ab = r ′
i

f ′(1) = abeb = r ′
f

(9.8)

9.2. Function Types 61

The two constants a and b are removed by dividing the two expressions in Equation (9.8) such that only the
exponent is left, resulting in:

f ′(1)

f ′(0)
= abeb

ab
= eb =

r ′
f

r ′
i

(9.9)

From Equation (9.9) the value for b is easily computed according to:

b = ln

(
r ′

f

r ′
i

)
(9.10)

To solve for the other two coefficients a and c another system of equations is set up:{
f (0) = a + c = ri

f (1) = aeb + c = r f
(9.11)

Substracting the equations from each other eliminates c such that the system can be solved for a:

a = ri − r f

1−eb
(9.12)

which can be further simplified by substituting the found solution for b from Equation (9.9):

a = r ′
i

(
ri − r f

)
r ′

i − r ′
f

(9.13)

By substituting Equation (9.13) in Equation (9.11) the final parameter c can be determined:

c =
r ′

i r f − ri r ′
f

r ′
i − r ′

f

(9.14)

Note that in this derivation only the three-dimensional function was used. The two-dimensional coefficients
are found in the exact same way, but it is just the regular time t that is used instead of the scaled time τ.
This does not affect coefficients a and c, as to convert them to two-dimensional coefficients, only the primes
need to be replaced by dots. For the b coefficient the scaling by T does however need to be accounted for. In
Equations (9.15) to (9.17) the two-dimensional expressions for the coefficients are listed:

a = ṙi
(
ri − r f

)
ṙi − ṙ f

(9.15)

b = 1

T
ln

(
ṙ f

ṙi

)
(9.16)

c = ṙi r f − ri ṙ f

ṙi − ṙ f
(9.17)

9.2.3. Trigonometric Function
A particular characteristic of low-thrust propulsion trajectories is their periodic circular motion (see Fig-
ure 9.2). The type of function that perfectly models this kind of behaviour would be a sinusoidal function.
Another reason to choose this function type is the close relation to the underlying theory of Fourier series,
which are sequences of sinusoidal functions. After all, the sine functions are modelled as follows:

f (t) = A sin
(
ω

(
t −φ))+K (9.18)

f (τ) = A sin
(
ω

(
τ−φ))+K (9.19)

in which the different parameters have a more tangible meaning compared to the two previously discussed
initialisation functions. The amplitude of the sine function is described by A, while the frequency and the
phase shift are denoted by ω and φ respectively. Finally, the K parameter indicates the mean of the curve.

62 9. Strategy

The mean K is immediately found, as it is simply the mean of ri and r f . This holds as well for the ampli-
tude A, because it is the maximum value of the difference between f (τ) and K . Subsequently, the other two
parameters are found by rewriting Equation (9.19) into:

ω
(
τ−φ)= arcsin

(
f (τ)−K

A

)
(9.20)

which can be rewritten for τ:

τ= 1

ω
ζ+φ (9.21)

in which ζ equals arcsin
(

f (τ)−K
A

)
. By evaluating Equation (9.21) at the two boundary conditions from Equa-

tion (9.2), a linear system of the following form can be set up:
ζ(τ= 1)

ζ(τ= 0)

1

1



φ

1
ω

=


1

0

 (9.22)

from whereφ is found directly, whileω is obtained by inverting the outcome. Note however that the equation
slightly changes in case a sine function is used to approximate a two-dimensional Fourier series, but the
procedure to obtain K and A is identical. If Equation (9.22) is evaluated in the regular time domain, it has the
following shape: 

ζ(t = T)

ζ(t = 0)

1

1



φ

1
ω

=


T

0

 (9.23)

9.2.4. Logarithmic Function
The last initialisation function that will be tested is a logarithmic one. This type of function, which could be
regarded as the inverse of the exponential function discussed in Section 9.2.2, could provide improved a priori
values for trajectories that show a rapid change in the beginning after which a long zero-thrust arc follows,
which can be seen in Figure 9.2. The logarithmic approximation that is used has the following expression:

f (t) = a +b ln(t) (9.24)

f (τ) = a +b ln(τ) (9.25)

With only two coefficients the system of equations that is obtained by substituting Equation (9.2) leads to:

f (1) = a = r f (9.26)

f ′(1) = b = r ′
f (9.27)

which results in a taking the value of r f and b taking the value of r ′
f . In case of a two-dimensional approxi-

mation, the b coefficient is equal to ṙ f instead of r ′
f .

9.2.5. Other Possible Function Types
For the design of more complex trajectories, a single periodic function that shows the same pattern over the
entire time of flight, as with a trigonometric function, might not be enough. Therefore an exponential sinu-
soid (or damped sine wave) could provide a possible better estimation of the parameters. The exponential
part allows for a change in amplitude and therefore a change in the overall function shape. Besides exponen-
tial terms, the amplitude can also be modelled by a power term, for example. In Figure 9.2 this function shape
is depicted. The exponential or power term is combined with a sine function as follows:

enτ sin(2πmτ) (9.28)

9.3. Test Objects 63

τn sin(2πmτ) (9.29)

However, it has been found that the estimation of the different initialisation function parameters that con-
struct an approximation of the trajectory takes up too much time. This is caused by the underlying data fitting
method, which requires an initial estimation of the parameters as well [1]. Due to the added computational
time and the reasonably added complexity of this problem, it has been decided to omit this function type
from the current analysis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaled time [-]

0

0.2

0.4

0.6

0.8

1

f(
)

[-
]

Power

t

t
2

t
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaled time [-]

0

2

4

6

8

f(
)

[-
]

Exponential

e
-t

e
t

e
2t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaled time [-]

-1

-0.5

0

0.5

1

f(
)

[-
]

Trigonometric

sin(2)

sin(2(2))

sin(3(2))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaled time [-]

-6

-4

-2

0

2

f(
)

[-
]

Logarithmic

Ln()

Ln(2)

Ln(3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaled time [-]

-1

-0.5

0

0.5

1

f(
)

[-
]

Power sine

sin(2)

tsin(2)

t
2
sin(2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaled time [-]

-6

-4

-2

0

2

f(
)

[-
]

Exponential sine

sin(2)

e sin(2)

e
2

sin(2)

Figure 9.2: The behaviour of the six different initialisation functions.

9.3. Test Objects

The performance of the new initialisation functions will be assessed by means of transfer trajectories to a
number of celestial bodies. Three different bodies have been picked to analyse their suitability: the planet
Jupiter, the asteroid Dionysus and the dwarf planet Haumea, which are laid out in Sections 9.3.1 to 9.3.3,
respectively. For Jupiter and Dionysus both a two-dimensional and a three-dimensional analysis have been
included in order to assess the performance of the new initialisation strategies in both dimensions. This has
not been done for Haumea, as a two-dimensional analysis would be of no use, considering its high inclina-
tion.

9.3.1. Jupiter

The first target that will be used to test the different functions will be Jupiter. Its orbit is determined by rel-
atively safe parameters, as it has an eccentricity of 0.048 and an inclination of only 1.304° with respect to
the ecliptic, which renders it a perfect example for the two-dimensional approach as well. This means that
the only challenging element is the semi-major axis. The nearly circular and two-dimensional orbit make
this planet a perfect target to analyse the behaviour of the simplest trajectory design problem. All Keplerian
elements of Jupiter can be found in Table 9.1. The input parameters and reference values of the transfer
trajectories are listed in Tables 9.2 and 9.3.

64 9. Strategy

Table 9.1: The Keplerian elements of Jupiter that have been used to compute an unperturbed reference orbit [10].

Kepler element Value

a [AU] 5.2
e [-] 0.048

i [deg] 1.304
Ω [deg] 100.5
ω [deg] 274.25
M [deg] 19.66796

Epoch [MJD] 51544.5

Table 9.2: The input parameters that have been used to generate
the 2D reference trajectory from Earth to Jupiter [13].

Input parameter Value

Departure date [MJD2000] 6653
Time of flight [years] 4

Discretisation points [-] 25
Nrev [-] 1

nr [-] 2
nθ [-] 5

Tolerances [-] 1×10−9

Multi-start seed [-] 123
∆V [km/s] 18.22

Tamax [mm/s2] 0.25

Table 9.3: The input parameters that have been used to generate
the 3D reference trajectory from Earth to Jupiter [13].

Input parameter Value

Departure date [MJD2000] 6653
Time of flight [years] 4

Points per revolution [-] 100
Nrev [-] 1

nr [-] 6
nθ [-] 6
nz [-] 4

Tolerances [-] 1×10−9

Multi-start seed [-] 123
∆V [km/s] 17.30

The reference trajectories are plotted in Figure 9.3 and show a smooth spiralling path of motion. As can be
seen in Figure 9.3a, the two-dimensional orbit is nearly identical to the three-dimensional one in Figure 9.3b,
as the axial movement from the latter one barely reaches 0.1 AU.

-6 -4 -2 0 2 4 6

X [AU]

-6

-4

-2

0

2

4

6

Y
 [
A

U
]

(a) The 2D reference trajectory to Jupiter. (b) The 3D reference trajectory to Jupiter.

Figure 9.3: The reference trajectories to the gas giant Jupiter in two (left) and three (right) dimensions.

In Figure 9.4 the behaviour of the three components (i.e. the radial distance, the transfer angle and the axial
distance) over time is shown.

The radial distance (Figures 9.4a and 9.4c) has the typical shape of a transfer orbit that comprises of only
one full revolution around the Sun and could be approximated by a polynomial. It starts off with a small slope
that increases rapidly to a maximum approximately halfway the trajectory after which it descends until the

9.3. Test Objects 65

destination is reached. The only difference between the two- and three-dimensional curve can be seen in the
first 250 days of the trajectory. The 3D approach shows a more constant behaviour during this time.

The transfer angle (Figures 9.4b and 9.4d) on the other hand, has the least interesting shape, as it is ex-
pected to constantly increase and show a logarithmic-like pattern. A trajectory would immidiately be clas-
sified as infeasible if the graph decreases, because this indicates a sudden change in direction meaning that
much ∆V is unnecessary killed. The flattening pattern is caused by the increasing total distance (i.e. the root
of the sum of the squares of r and z) and can be explained by Kepler’s second law: The further from the Sun,
the less angular distance is covered in a certain amount of time.

Finally, the axial distance (Figure 9.4e) has the most unpredictable shape of all three parameters, but it
can be best described by a polynomial as well. It is largely dependent on the number of revolutions that are
required to reach the target body and at what distance from the Sun this happens.

0 500 1000 1500

Time [days]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
a
d
iu

s
 [
A

U
]

(a) The 2D radial distance.

0 500 1000 1500

Time [days]

3

4

5

6

7

8

9

10

11

12

13

T
ra

n
s
fe

r
a
n
g
le

 [
ra

d
]

(b) The 2D transfer angle distance.

0 500 1000 1500

Time [days]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
a
d
iu

s
 [
A

U
]

(c) The 3D radial distance.

0 500 1000 1500

Time [days]

3

4

5

6

7

8

9

10

11

12

13

T
ra

n
s
fe

r
a
n
g
le

 [
ra

d
]

(d) The 3D transfer angle.

0 500 1000 1500

Time [days]

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02
Z

-d
is

ta
n
c
e
 [
A

U
]

(e) The 3D axial distance.

Figure 9.4: An overview of the behaviour of the three position coordinate for the trajectories in Figure 9.3.

9.3.2. Dionysus
The second target will be the asteroid Dionysus, for its orbit adds additional complexity to the problem. It
flies a fairly eccentric trajectory at an inclination that is challenging for most shape-based methods. On the
other hand, the two-dimensional approximation will be less accurate. The orbital parameters of the asteroid
can be seen in Table 9.4. The input parameters and outcome of the transfer trajectories are stated in Tables 9.5
and 9.6.

Due to the increased complexity in the orbit of Dionysus, it requires more ∆V to arrive there. This is mainly
caused by the increased inclination, as low-thrust spacecraft are not capable of the short and optimal impul-
sive shots at the aphelion in order to change the orbital plane. Additionally, a large part of the ∆V is used at
the end of the transfer as to match the eccentric orbit in the arrival point. The reference orbits can be found
in Figure 9.5, but the directional change at the end can be best observed in Figure 9.5b.

Just as for Jupiter, the three components the trajectory to Dionysus consists of are shown in Figure 9.6. The
two-dimensional radial distance (Figure 9.6a) shows one big overshoot up to a distance of 5 AU from the Sun,
after which it decreases and ends up at the position of Dionysus. The large overshoot is due to the eccentric
orbit of the asteroid. In combination with the current time of flight it requires to first move away from the
target to eventually match its position and velocity. The three-dimensional radial distance (Figure 9.6c) how-

66 9. Strategy

Table 9.4: The Keplerian elements of the asteroid Dionysus that have been used to compute an unperturbed reference orbit [22].

Kepler element Value

a [AU] 2.2
e [-] 0.542

i [deg] 13.6
Ω [deg] 82.2
ω [deg] 204.2
M [deg] 114.4232

Epoch [MJD] 53400

Table 9.5: The input parameters that have been used to generate
the 2D reference trajectory from Earth to Dionysus [22].

Input parameter Value

Departure date [MJD2000] 4739.5
Time of flight [days] 3534

Discretisation points [-] 25
Nrev [-] 3

nr [-] 2
nθ [-] 5

Tolerances [-] 1×10−9

Multi-start seed [-] 123
∆V [km/s] 22.46

Tamax [mm/s2] 0.71

Table 9.6: The input parameters that have been used to generate
the 3D reference trajectory from Earth to Dionysus [22].

Input parameter Value

Departure date [MJD2000] 4739.5
Time of flight [days] 3534

Points per revolution [-] 100
Nrev [-] 3

nr [-] 6
nθ [-] 6
nz [-] 4

Tolerances [-] 1×10−9

Multi-start seed [-] 123
∆V [km/s] 24.05

-3 -2 -1 0 1 2 3 4 5

X [AU]

-3

-2

-1

0

1

2

3

4

5

Y
 [
A

U
]

(a) The 2D reference trajectory to Dionysus. (b) The 3D reference trajectory to Dionysus.

Figure 9.5: The reference trajectories to the asteroid Dionysus in two (left) and three (right) dimensions.

ever shows two distinct bumps and has a classic polynomial shape. This can be explained by the fact that this
transfer orbit first makes three full revolutions around the Sun before it reaches the asteroid. The overshoot
in the last part of the trajectory is also clearly visible, as the last arc starting at about 3000 days shows a steep
decrease.

The second parameter, the transfer angle (Figures 9.6b and 9.6d), again shows a logarithmic-like shape
whose slope decreases over time, which is expected.

Ultimately, the z-component (Figure 9.6e) remains nearly constant during the first revolution, after which
the orbital inclination changes slightly in the second revolution. During its final revolution it is at such a
distance from the Sun that it takes nearly half the time of flight of the entire trajectory to arrive at the target
destination.

9.3. Test Objects 67

0 500 1000 1500 2000 2500 3000 3500 4000

Time [days]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

R
a
d
iu

s
 [
A

U
]

(a) The 2D radial distance.

0 500 1000 1500 2000 2500 3000 3500 4000

Time [days]

0

5

10

15

20

25

T
ra

n
s
fe

r
a
n
g
le

 [
ra

d
]

(b) The 2D transfer angle.

0 500 1000 1500 2000 2500 3000 3500 4000

Time [days]

0.5

1

1.5

2

2.5

3

3.5

4

R
a
d
iu

s
 [
A

U
]

(c) The 3D radial distance.

0 500 1000 1500 2000 2500 3000 3500 4000

Time [days]

0

5

10

15

20

25
T

ra
n
s
fe

r
a
n
g
le

 [
ra

d
]

(d) The 3D transfer angle.

0 500 1000 1500 2000 2500 3000 3500 4000

Time [days]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Z
-d

is
ta

n
c
e
 [
A

U
]

(e) The 3D axial distance.

Figure 9.6: An overview of the behaviour of the position components for the trajectory in Figure 9.5.

9.3.3. Haumea
Haumea is a particularly interesting research object, as it is one of the few known trans-Neptunian dwarf
planets, of which only four are known. Besides, it was one of the first objects of its size that posesses a ring
system [3]. The reason it has been considered as a test object, is because it basically combines the properties
of the two previous targets: both the semi-major axis, the inclination, and the eccentricity are a great chal-
lenge for a trajectory computed by a finite Fourier series. It should however be noted that due to the high
inclination, there is no point in applying the two-dimensional finite Fourier series method to this problem,
as the validity of this approach only holds up to inclinations of approximately 15° [21]. The parameters and
outcome of the transfer trajectory can be seen in Table 9.7, while the orbital parameters that have been used
to reconstruct the unperturbed orbit of Haumea can be found in Table 9.8.

Table 9.7: The input parameters that have been used to generate
the reference trajectory from Earth to Haumea [18].

Input parameter Value

Departure date [MJD2000] 12422.5
Time of flight [years] 70

Points per revolution [-] 500
Nrev [-] 14

nr [-] 6
nθ [-] 6
nz [-] 8

Tolerances [-] 1×10−9

∆V [km/s] 161.6

Table 9.8: The Keplerian elements of the dwarf planet Haumea that
have been used to compute an unperturbed reference orbit [9].

Kepler element Value

a [AU] 43.1819
e [-] 0.19489

i [deg] 28.2135
Ω [deg] 122.1627
ω [deg] 238.77988
M [deg] 217.7719

Epoch [MJD] 59000

Unfortunately, as is evident from Figure 9.7, the method is not capable of finding a suitable trajectory at
all. The z-component of the trajectory immediately goes down nearly 30 AU, after which it recovers and still
reaches its final destination. Even with this combination of the departure date and the time of flight, the
axial coordinate of Haumea is only 1.97 AU lower than the Earth, which is in the same range as the asteroid
Dionysus for which a feasible trajectory could be found. Nonetheless, this shape and the corresponding

68 9. Strategy

∆V deem this solution to be infeasible. Therefore it was decided to exclude Haumea from the initialisation
analysis.

Figure 9.7: The reference trajectory to Haumea.

Even though the trajectory does not make sense at all, it is still worth to take a look at the development of the
three trajectory components in Figure 9.8.

At first sight, the radial distance (Figure 9.8a) confirms the flaws of this transfer orbit. It starts in a normal
way, but after about 20 years it remains constant at a level of nearly zero. This region obviously depicts the
downwards movement as seen in Figure 9.7. The final increase in radius is caused by the uprising from the
lowest part of the descent to the location of the dwarf planet.

Furthermore, the transfer angle (Figure 9.8b) looks quite normal. Its overall shape is in line with a feasible
trajectory solution, however the small constant region between 10 and 20 years is unexpected.

Lastly, the axial distance (Figure 9.8c) depicts a large valley, which can be fully contributed to the unnatu-
ral downward movement of this trajectory solution.

0 10 20 30 40 50 60 70

Time [years]

0

5

10

15

20

25

30

35

40

R
a
d
iu

s
 [
A

U
]

(a) The radial distance.

0 10 20 30 40 50 60 70

Time [years]

0

10

20

30

40

50

60

70

80

90

100

T
ra

n
s
fe

r
a
n
g
le

 [
ra

d
]

(b) The transfer angle.

0 10 20 30 40 50 60 70

Time [years]

-30

-25

-20

-15

-10

-5

0

5

Z
-d

is
ta

n
c
e
 [
A

U
]

(c) The axial distance.

Figure 9.8: An overview of the behaviour of the three position components for the trajectory in Figure 9.7.

9.4. Experimental Outline
Now the different functions have been explained, the test objects have been defined and the reference tra-
jectories have been generated, the research procedure can be formulated. As mentioned in Section 9.1, the
goal is to investigate whether a more appropriate initialisation function exists for a certain trajectory design
problem that is capable of passing an initial guess to the solver such that the overall computation time is
shorter than it is now and that the method is more stable in three dimensions. Note that all test runs will be
performed on an Intel Core i7-4700MQ 2.40 GHz with 8.00 GB RAM on Windows 10.

9.4. Experimental Outline 69

9.4.1. 2D Test Set-Up

I. The first two-dimensional experiment will simply replace the standard initialisation function as de-
scribed in Section 9.2.1 and use one of the three approaches that were spelled out in Sections 9.2.2
to 9.2.4 to estimate r and θ.

II. The second analysis uses a more tailored focus. Based on the natural behaviour of the different com-
ponents, as displayed in Figures 9.4 and 9.6 the most appropriate initialisation function is chosen. In
short, this entails that the radial component is approximated by a polynomial function, while the trans-
fer angle is estimated by means of a logarithmic function.

9.4.2. 3D Test Set-Up

I. The first experiment in 3D will assess the convergence speed of the finite Fourier series solver when
an initialisation function is used other than the power function. This means that a trajectory to Jupiter
and Dionysus is computed where the initial guess for the coefficients in r and θ is found by the three
functions described in Section 9.2. In this experiment the coefficients for the z−coordinate will still be
set to zero, as to resemble the procedure by Taheri and Abdelkhalik [22].

II. The second experiment will basically have the same set-up as the first one, however, this time the axial
coordinate is initialised by the functions from Section 9.2 as well.

III. The final experiment will take a more in-depth look at the independent coordinates the trajectory is
built up from. Based on Figures 9.4 and 9.6, it was decided that r will be approximated by a power
function, θ will be approximated by a logarithmic function and z will either be set to zero, or it will be
approxiamted by a sinusoidal function.

9.4.3. Time Assessment
For each case, a comparison with respect to the reference trajectories will be made in terms of computation
time and the computed ∆V value. The ∆V merely functions as a control variable to assess the quality of the
newly obtained solution. In case one of the proposed initialisation methods has a feasible ∆V outcome, an
assessment of the computation time is done. To do so, a clear distinction between the two steps in the solving
procedure needs to be made. First, the initialisation time will be measured, after which the actual solver time
will be determined.

The initialisation time is the time required to compute the coefficients of the initialisation functions in all
dimensions, fill the matrices with the Fourier approximations, and solve for the approximation that results in
the initial guess for the main Fourier solver in the algorithm.

Later on, the main solving time is measured. As soon as the initial guess is passed to the solver, the Nelder-
Mead algorithm is activated and starts moving towards the right set of Fourier coefficients that yield a feasible
solution.

In order to diminish the effect of background processes on the computer, all other programmes were
closed. However, it is always possible that the computer suddenly starts to do some housekeeping tasks.
Therefore 1000 identical runs have been performed and the mean of these activities is used as a solid measure
regarding the required total solving time.

In case the CPU-time measurements still show a large spread, an outlier analysis will be done. This will
flatten the peaks and prevents the average CPU-time from being determined by a few data points that are
actually far off.

10
2D Results

As described in the previous chapter, the two-dimensional analysis comprises of two parts. First, the effects
of a different initialisation function applied to both the radial and the transverse component will be demon-
strated in Section 10.1. Consecutively, the outcome of the case for which tailored initialisation functions have
been used for each component is displayed in Section 10.2. Recall that the input and reference parameters of
the trajectories to Jupiter and Dionysus can be found in Tables 9.1 and 9.2, and Tables 9.4 and 9.5 respectively.
The chapter ends with a concise conclusion of the obtained results in Section 10.3.

10.1. Using a Different Initialisation Function
The first case of the two-dimensional initialisation analysis comprises of testing three new functions to gen-
erate a priori values to steer the solver into the right direction. With this approach, both the radial distance
and the transfer angle will be approached by either a power function, an exponential function, a sinusoidal
function and a logarithmic function. First the results for the Jupiter test case will be treated, after which the
Dionysus test case will be explained.

10.1.1. Jupiter
The results of the four different approximation functions are shown in Table 10.1. With the power function
initialisation operating as a reference value, it is interesting to note that another solution with an even lower
∆V outcome has been found when the solver is initialised by a sinusoidal function. The average of the ∆Vs is
18.22 km/s and the spread σ is only 0.085 km/s.

Table 10.1: The outcome of the solver when the a priori coefficients are computed by different functions that were applied to generate
an a priori estimate of the r - and θ-components for an unconstrained trajectory to Jupiter.

Function ∆V [km/s]

Power 18.22
Exponential 18.30
Sinusoidal 18.10

Logarithmic 18.25

The four outcomes are shown in Figure 10.1, but as the outcomes are very similar, it is hard to spot a differ-
ence between the four figures. An exception can be observed for the sinusoidal approximation, for which the
minimum orbital distance passes 0.06 AU more in the negative y-direction. This is indicated by the blue line,
but still it is hardly notable in the figure.

Because all four initialisation functions yielded feasible results, a CPU time test has been set up in order to
measure the computational speed. The results of both CPU time tests have been collected in Table 10.2. Note
that the two processes are expressed in a different unit. From here it becomes clear that the logarithmic func-

71

72 10. 2D Results

-6 -4 -2 0 2 4 6

X [AU]

-6

-4

-2

0

2

4

6

Y
 [
A

U
]

Sin

Pow-Exp-Log

Figure 10.1: The trajectories to Jupiter computed with four different initialisation functions that were applied to generate an a priori
estimate of the r - and θ-components.

tion requires the least time for the initialisation process, while the exponential approximation is the fastest in
terms of the main solving process: a gain of about 10%.

Table 10.2: An overview of the time required to compute the coefficients of the initialisation function and the actual Fourier coefficients
for a single-revolution trajectory to Jupiter.

Function
Initialisation

time [µs]
Solver

time [ms]

Power 14.5 312.0
Exponential 15.1 287.2
Sinusoidal 23.0 419.5
Logarithmic 13.5 341.0

The results from the initialisation process are displayed in Figure 10.2. All four graphs show some outliers,
but most data points are on one line, which is expected. Because the time unit is only microseconds, only
0.015 seconds have passed over the entire run of these simulations. This is such a short time span that it is
nearly impossible for the computer to initiate a computationally intense background process.

More valuable results are shown in Figure 10.3, as this figure contains the runtime of the actual Fourier co-
efficients solver, which is a more complex procedure than the initialisation process. The same principle that
explains the nearly absent spread in Figure 10.2 shows the exact opposite in Figure 10.3. The average solver
time with a priori values that have been generated by an exponential approximation, for example, is about
0.3 ms, which brings the total time required to complete all 1000 simulations to approximately five minutes.
These five minutes span an interval during which it is highly likely that some background processes are con-
ducted by the computer. Figures 10.3c and 10.3d showed many bumps that greatly influenced the average
CPU-time. Therefore an outlier analysis has been done for these two initialisation approaches has been done.
The original uncorrected figures can be seen in Appendix G.

10.1.2. Dionysus
In contrast to the outcome of the test trajectory to Jupiter, the trajectory to Dionysus does provide a more
constant range of results. In Table 10.3 the effect of the four different initialisation functions in terms of re-
quired ∆V can be seen. All three new initialisation functions manage to find the same result as the original
power function. The puny difference can be attributed to rounded values.

10.1. Using a Different Initialisation Function 73

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

0

10

20

30

40

50

60

70

80

T
im

e
 [

s
]

Data point

Mean time

(a) f (t) = at 3 +bt 2 + ct +d

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

0

10

20

30

40

50

60

70

80

T
im

e
 [

s
]

Data point

Mean time

(b) f (t) = aebt + c

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

0

10

20

30

40

50

60

70

80

T
im

e
 [

s
]

Data point

Mean time

(c) f (t) = A sin
(
ω

(
t −φ))+K

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

0

10

20

30

40

50

60

70

80

T
im

e
 [

s
]

Data point

Mean time

(d) f (t) = a +b ln(t)

Figure 10.2: An overview of the average CPU-time required to find the coefficients of the initialisation function for a trajectory to Jupiter.

Table 10.3: The outcome of the solver when the a priori coefficients are computed by different functions that were applied to generate
an a priori estimate of the r - and θ-components for an unconstrained trajectory to Dionysus.

Function ∆V [km/s]

Power 22.46
Exponential 22.46
Sinusoidal 22.46

Logarithmic 22.47

As the three new initialisation functions yielded the exact same outcome, their trajectories are identical as
well. The triple-revolution trajectory is shown in Figure 10.4.

The necessary computation times however do vary much from each other. Both for the initialisation time
and the main solver time large varieties are observed. The obtained results are presented in Table 10.4. In
here it can be seen that the logarithmic function is the fastest in terms of initialisation, while an exponential
approximation provides the fastest converging time for the main Fourier coefficient solver. It is especially re-
markable that the required time is nearly 50% faster than the reference power function while it also manages
to retain the optimum.

74 10. 2D Results

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

250

300

350

400

450

500

550

600

650

700

T
im

e
 [
m

s
]

Data point

Mean time

(a) f (t) = at 3 +bt 2 + ct +d

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

250

300

350

400

450

500

550

600

650

700

T
im

e
 [
m

s
]

Data point

Mean time

(b) f (t) = aebt + c

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

250

300

350

400

450

500

550

600

650

700

T
im

e
 [
m

s
]

Data point

Mean time

(c) f (t) = A sin
(
ω

(
t −φ))+K

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

250

300

350

400

450

500

550

600

650

700

T
im

e
 [
m

s
]

Data point

Mean time

(d) f (t) = a +b ln(t)

Figure 10.3: An overview of the average CPU-time required to find the Fourier coefficients that shape the trajectory to Jupiter.

-3 -2 -1 0 1 2 3 4 5

X [AU]

-3

-2

-1

0

1

2

3

4

5

Y
 [
A

U
]

Figure 10.4: The trajectories to Dionysus computed with four different initialisation functions that were applied to generate an a priori
estimate of the r - and θ-components. All four functions generated a nearly identical trajectory.

10.1. Using a Different Initialisation Function 75

Table 10.4: An overview of the time required to compute the coefficients of the initialisation function and the actual Fourier coefficients
for a triple-revolution trajectory to Dionysus.

Function
Initialisation

time [µs]
Solver

time [ms]

Power 20.3 278.4
Exponential 14.6 159.8
Sinusoidal 21.9 209.3
Logarithmic 14.5 273.9

The initialisation time graphs in Figure 10.5 again show nothing astounding, as the same explanation as for
Jupiter applies: in such a short time span it is barely impossible to initiate large and complex processes for a
computer.

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
]

Data point

Mean time

(a) f (t) = at 3 +bt 2 + ct +d

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

0

5

10

15

20

25

30

35

40

45

50
T

im
e
 [

s
]

Data point

Mean time

(b) f (t) = aebt + c

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
]

Data point

Mean time

(c) f (t) = A sin
(
ω

(
t −φ))+K

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
]

Data point

Mean time

(d) f (t) = a +b ln(t)

Figure 10.5: An overview of the average CPU-time required to find the coefficients of the initialisation function for a trajectory to
Dionysus.

The convergence time of the Fourier coefficient solver in Figure 10.6 shows one clear exception: the expo-
nential function in Figure 10.6b has a significantly better converging time than the other three techniques.

76 10. 2D Results

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

100

150

200

250

300

350

400

450

500

T
im

e
 [
m

s
]

Data point

Mean time

(a) f (t) = at 3 +bt 2 + ct +d

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

100

150

200

250

300

350

400

450

500

T
im

e
 [
m

s
]

Data point

Mean time

(b) f (t) = aebt + c

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

100

150

200

250

300

350

400

450

500

T
im

e
 [
m

s
]

Data point

Mean time

(c) f (t) = A sin
(
ω

(
t −φ))+K

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

100

150

200

250

300

350

400

450

500

T
im

e
 [
m

s
]

Data point

Mean time

(d) f (t) = a +b ln(t)

Figure 10.6: An overview of the average CPU-time required to find the Fourier coefficients that shape the trajectory to Dionysus.

10.2. Using a Tailored Initialisation Function
As a second experiment, it has been investigated if the convergence speed of the algorithm can be increased if
tailored initialisation functions are used to approximate the Fourier coefficients. Based on Figures 9.4 and 9.6,
the radial components are still modelled by a power function, but the transfer angle usually has the shape of
a logarithmic function. The results from this analysis are displayed in Table 10.5. For the test case targeting
Jupiter a feasible solution has been found, but it shows a higher ∆V than was shown in Section 10.1. The test
trajectory to Dionysus did not yield a feasible solution, as a∆V of nearly 100 km/s is not attainable. Therefore
it has been decided to omit the initialisation and solver convergence time analysis, as there is no point in
measuring the computation time of an invalid solution.

Table 10.5: The outcome and convergence time of the solver when the a priori values are computed by approximating r by a polynomial
function and θ by a logarithmic function.

Function Component Function ∆V [km/s]
Initialisation

time [µs]
Solver

time [ms]

Jupiter radial Power
19.0 19.6 331.1

transverse Logarithmic

Dionysus radial Power
99.60 - -

transverse Logarithmic

10.2. Using a Tailored Initialisation Function 77

The two trajectories are shown in Figure 10.7. The trajectory to Jupiter (Figure 10.7a) hardly differs from the
one in Figure 10.1, but some more thrust must have been applied in order to end up at a ∆V which is 1 km/s
higher than the known best value of Table 10.1.

The transfer orbit to Dionysus (Figure 10.7b) however immediately explains the high ∆V values. The tra-
jectory contains two large kinks during which much more thrust is required to suddenly move into a direction
other than the expected circular path, which leads to the high ∆V value.

-6 -4 -2 0 2 4 6

X [AU]

-6

-4

-2

0

2

4

6

Y
 [
A

U
]

(a) The trajectory to Jupiter where r is approximated by a power
function and θ by a logarithmic function.

-2 -1 0 1 2 3

X [AU]

-2

-1

0

1

2

3

4

5

Y
 [
A

U
]

(b) The trajectory to Dionysus where r is approximated by a power
function and θ by a logarithmic function.

Figure 10.7: The trajectories to Jupiter (left) and Dionysus (right) where r and θ both have been approximated by a different function.

The time examination of the trajectory to Jupiter is depicted in Figure 10.8b. Note that this figure has been
corrected for its high number of outliers. The original uncorrected figure can be observed in Appendix G.
When Figure 10.8b is compared to the initialisation and solver convergence time in Figures 10.2 and 10.3 it is
easily concluded that the method is not capable of surpassing the results from the first experiment. It is both
slower regarding initialisation and convergence speed. Besides, the achieved ∆V value is not more beneficial
either.

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

0

20

40

60

80

100

120

T
im

e
 [

s
]

Data point

Mean time

(a) The average CPU-time required to solve for the coefficients of
the initialisation function.

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

250

300

350

400

450

500

550

600

650

700

T
im

e
 [
m

s
]

Data point

Mean time

(b) The average CPU-time required to solve for the Fourier
coefficients.

Figure 10.8: The initialisation time (left) and the solver convergence time (right) of the trajectory to Jupiter that uses a polynomial
function to approximate r , while a logarithmic function has been used to estimate θ.

78 10. 2D Results

10.3. Conclusion
The previously elaborated data leads to the conclusion that there exists an initialisation function that gener-
ates better a priori values for the two-dimensional version of the finite Fourier series method such that the
correct solution is found in less time than the conventional way by Taheri and Abdelkhalik [21]. For both the
trajectory to Jupiter and Dionysus it is the exponential function that is the fastest. A transfer orbit to Jupiter
is computed 7.9% faster, while the trajectory to Dionysus is computed 42.6% faster.

11
3D Results

The results of the three-dimensional analysis as introduced in Section 9.4 are presented here. The three trajec-
tory case studies are found in Sections 11.1 to 11.3. After that, an interpretation of the impact of the different
initialisation functions on the behaviour of the Fourier coefficients in particular is given in Section 11.4. The
chapter is concluded with an explanation on the effects of a multi-start approach in Section 11.5. It should
be noted that the input and reference parameters of the trajectories to Jupiter and Dionysus can be found in
Tables 9.1 and 9.3, and Tables 9.4 and 9.6 respectively.

Note that the multi-start procedure is only activated if the first solution obtained from the initial guess is
infeasible. A maximum of 15 runs will be done. The multi-start values that are mentioned in the tables below
indicate the best solution obtained from those 15 runs. However, in case the initial guess that is generated by
the initialisation function provides a feasible solution, the cell is left empty.

11.1. Using an Alternative Initialisation Function (r and θ Only)
To recap Section 9.4, the first case comprises of using alternative initialisation functions for the Fourier coef-
ficients that describe the behaviour of r and θ, while the Fourier coefficients for the z coordinate are set equal
to zero. First the results from the trajectory to Jupiter will be presented, after which the Dionysus test case is
described.

11.1.1. Jupiter
Table 11.1 contains the results of the four different initialisation function runs. The trajectory that has been
generated with a power function approximation serves as a reference. From the table it becomes clear that it
is only the exponential approximation that initialises the solver such that it finds a feasible solution.

Table 11.1: The outcome of the solver when the a priori coefficients are computed by different functions that were applied to the r - and
θ-components for a trajectory to Jupiter.

Function ∆V [km/s]
Best Multi-start
∆V [km/s]

Power 16.74 -
Exponential 18.59 -
Sinusoidal 127.64 155.62

Logarithmic 206.92 8446.36

The trajectories corresponding to the solutions from Table 11.1 are shown in Figure 11.1. The reference tra-
jectory can be seen in Figure 11.1a in the top left corner. Observing the four figures, some interesting remarks
can be made.

The second best result, generated by an exponential initialisation function, depicted in Figure 11.1b shows
a very similar trajectory as in Figure 11.1a. The slight ∆V difference of about 2 km/s can be explained by the
slight overshoot of Jupiter’s orbit and the stronger inclination change at the start of the transfer. The overshoot

79

80 11. 3D Results

has to be corrected for at the end, hence built-up speed is killed and an inclination change is more efficient
when it is done at a larger distance, as the orbital speed will be lower.

Furthermore, the sinusoidal and logarithmic functions are not capable of producing a feasible trajectory
solution. This is especially surprising for the sinusoidal case, as a Fourier series actually consists of a summa-
tion of this type of functions. The exceptionally high ∆V values are explained by the steep movement in the
negative z-direction, after which all velocity needs to be directed the exact opposite way.

(a) f (τ) = aτ3 +bτ2 + cτ+d (b) f (τ) = aebτ+ c

(c) f (τ) = A sin
(
ω

(
τ−φ))+K (d) f (τ) = a +b ln(τ)

Figure 11.1: The trajectories to Jupiter computed with four different initialisation functions that were applied to generate an a priori
estimate of the r - and θ-components.

11.1.2. Dionysus
The results of the different initialisation strategies for a more complex transfer orbit due to its higher incli-
nation and eccentricity are shown in Table 11.2. In contrast to the trajectory to Jupiter, it is only the original
power initialisation function that provides a feasible solution. The other three functions are not able to guide
the solver towards a reasonable solution. Even with a multi-start procedure to increase the chances of finding
this solution, it fails to converge. Especially the logarithmic trajectory approximation has a strong tendency
to blow up.

The actual trajectories that correspond to the solutions presented in Table 11.2 are depicted in Figure 11.2.
Again, the reference trajectory that was generated with a power function approximation is shown in the top
left corner of the figure (Figure 11.2a). A quick look at the three other trajectory solutions explains the peculiar
∆V results.

11.2. Using a Different Initialisation Function (r , θ and z) 81

Table 11.2: The outcome of the solver when the a priori coefficients are computed by different functions that were applied to the r - and
θ-components for a trajectory to Dionysus.

Function ∆V [km/s]
Best Multi-start
∆V [km/s]

Power 24.05 -
Exponential 124.49 1140.52
Sinusoidal 169.04 1800.64

Logarithmic 2158.88 1.0876×106

The exponential and sinusoidal approximation in Figures 11.2b and 11.2c stay within the radial distance
bounds in the x y-plane, but tend to overshoot in the axial direction. Moreover, both trajectories show the
same pattern of flying into the opposite direction at departure, which asks for large quantities of ∆V to do
so and later on in the trajectory, they contain another sudden change of direction adding up to the total ∆V
budget.

Finally, the logarithmic approximation in Figure 11.2d provides the least useful, but most spectacular
result. Its spatial path contains multiple changes in direction, it severely exceeds the radial distance as mea-
sured from the Sun in the x y-plane and it has a tendency for diving down nearly 15 AU. The fact that the time
of flight for all four trajectories is the same explains why a significantly higher overall velocity is needed to
actually fly such extreme distances. The combination with the many, sudden directional changes leads to a
total ∆V of 2158.88 km/s.

11.2. Using a Different Initialisation Function (r , θ and z)
For the second case set-up, a closer look is taken at the Achilles’ heel of most shape-based methods: the 3D
component, which is in this case represented by the z-coordinate due to the choice for the cylindrical coordi-
nate system. In this study case, it is not only the r - and θ-coordinate that are initialised by a different function
other than a polynomial, but also the z-component. In the original method by Taheri and Abdelkhalik [22]
this is always set to zero. First, the results for the transfer trajectory to Jupiter will be explained, after which
the results for Dionysus are presented.

11.2.1. Jupiter
Just as for the previous case explained in Section 11.1, it is again the original power function and the ex-
ponential function approximation that allow the solver to converge to a feasible solution, as can be seen in
Table 11.3. However, if these two results are compared to Table 11.1, it stands out that even these first two
runs are not the same as in the original definition of the finite Fourier series method. This proves that this
initialisation method too is very sensitive to a priori information when it comes to the three-dimensional
component. It goes without saying that the sinusoidal and logarithmic initialisation functions yield a worth-
less outcome.

Table 11.3: The outcome of the solver when the a priori coefficients are computed by different functions that were applied to the r -, θ
and z-components for a trajectory to Jupiter.

Function ∆V [km/s]
Best Multi-start
∆V [km/s]

Power 19.29 -
Exponential 23.69 -
Sinusoidal 141.24 182.29

Logarithmic 424.31 21657.2

The four orbits are shown in Figure 11.3. The difference in the required ∆V for the power and exponential
function (Figures 11.3a and 11.3b) can be attributed to the strong tendency of the exponential approximation
to increase the inclination of the transfer orbit at a very early point along the path, which could be seen in
Section 11.1 as well. If this would be done at larger distance from the Sun, the orbital speed is lower, hence
the amount of ∆V to do such an inclination change is less.

82 11. 3D Results

(a) f (τ) = aτ3 +bτ2 + cτ+d (b) f (τ) = aebτ+ c

(c) f (τ) = A sin
(
ω

(
τ−φ))+K (d) f (τ) = a +b ln(τ)

Figure 11.2: The trajectories to Dionysus computed with four different initialisation functions that were applied to generate an a priori
estimate of the r - and θ-components.

The sinusoidal and logarithmic trajectories in Figures 11.3c and 11.3d obviously explain the high ∆V values.
A steep downward movement and (multiple) abrupt changes in direction result in infeasible ∆V values of
141.24 and 424.31 km/s, respectively.

11.2.2. Dionysus
When the same procedure is applied to the asteroid Dionysus, not a single feasible trajectory is found. The
outcome of the extended initialisation analysis for the three-dimensional component is displayed in Ta-
ble 11.4. Besides the fact that all functions fail to converge to an appropriate solution, another interesting
observation is made in terms of the best performer. It is not expected that the exponential approximation
manages to find a lower total ∆V than the power series, which provided the best solution in all previously
described cases.

In Figure 11.4 the most improbable transfer orbits are shown. All four show an interesting shape, but
unfortunately all of them are impossible to fly, rendering them infeasible.

11.3. Tailored Initialisation Functions
The final study case makes use of the most appropriate initialisation function depending on the natural be-
haviour of the three position coordinates. This entails that for the initial guess of the coefficients for each
trajectory coordinate a different function can be applied. Furthermore, due to the highly-sensitive behaviour
of the z-component, this initialisation set-up is also used to only approximate r and θ, whilst z is set equal

11.3. Tailored Initialisation Functions 83

(a) f (τ) = aτ3 +bτ2 + cτ+d (b) f (τ) = aebτ+ c

(c) f (τ) = A sin
(
ω

(
τ−φ))+K (d) f (τ) = a +b ln(τ)

Figure 11.3: The trajectories to Jupiter computed with four different initialisation functions that were applied to generate an a priori
estimate of the r -, θ and z-components.

Table 11.4: The outcome of the solver when the a priori coefficients are computed by different functions that were applied to the r -, θ
and z-components for a trajectory to Dionysus.

Function ∆V [km/s]
Best Multi-start
∆V [km/s]

Power 134.73 12362.4
Exponential 125.52 692.31
Sinusoidal 144.64 30142.2

Logarithmic 1806.83 1.1085×106

to zero. The results for the transfer orbit to Jupiter will be demonstrated first, after which the transfer orbit to
Dionysus are presented.

11.3.1. Jupiter
Looking back at the pre-processing process described in Section 9.3.1, it was decided that the following three
functions would be used for the different components: a power function (r), a logarithmic function (θ) and
finally a sinusoidal function (z). This choice was based on Figure 9.4, which has been generated with the data
from the reference case in Table 9.3.

84 11. 3D Results

(a) f (τ) = aτ3 +bτ2 + cτ+d (b) f (τ) = aebτ+ c

(c) f (τ) = A sin
(
ω

(
τ−φ))+K (d) f (τ) = a +b ln(τ)

Figure 11.4: The trajectories to Dionysus computed with four different initialisation functions that were applied to generate an a priori
estimate of the r -, θ and z-components.

Despite the more accurate tailoring of the initialisation functions to the actual behaviour of the three compo-
nents, the solver does not converge to a feasible result. Purely based on the ∆V values in Table 11.5, it can be
said that the original approach of leaving the approximation in the z-direction untouched does yield a better
outcome. However, this is only relative to the other outcome in the row below, because both results are too
far off.

Table 11.5: The outcome of the solver when the a priori coefficients are computed by different functions that were applied to the r -, θ
and z-components for a trajectory to Jupiter.

Coordinate Function ∆V [km/s]
Best Multi-start
∆V [km/s]

Radius Power
126.44 457.58Transfer angle Logarithmic

Axial distance -

Radius Power
135.02 385.40Transfer angle Logarithmic

Axial distance Sinusoidal

11.3. Tailored Initialisation Functions 85

There is no doubt that the computed trajectories in Figure 11.5 are off. Yet, they seem to show other flaws
than the odd creations in Figures 11.1 and 11.3. The transfer orbit that is based on two initialisation functions
(Figure 11.5a) does have a semi-smooth shape. It shows four kinks, but at these points the trajectory does
not change its direction in the completely opposite direction. It is rather deviating its course in an inefficient
manner. Also, in terms of movement in the z-direction, it remains within the appropriate range. Nonetheless,
it is prone to seriously overshoot and undershoot the target trajectory, again lacking efficiency.

On the other hand, the trajectory that was approximated by three different initialisation functions (Fig-
ure 11.5b) shows the same behaviour that was often encountered when too few discretisation points have
been used, such as in the two-dimensional version as shown in Section 7.2. The early peak in the trajectory
shape can also be observed at the end of the trajectories in Figure 7.7.

(a) The trajectory to Jupiter where r is approximated by a power
function, θ by a logarithmic function and where z is set to zero.

(b) The trajectory to Jupiter where r is approximated by a power
function, θ by a logarithmic function and where z is approximated

by a sinusoidal function.

Figure 11.5: The trajectories to Jupiter computed with different initialisation functions per Fourier series.

11.3.2. Dionysus
Just as with Jupiter, it was decided that the following three functions would be used for the different compo-
nents: a power function (r), a logarithmic function (θ) and finally a sinusoidal function (z). This choice was
based on Figure 9.6, which has been generated with the data from the reference case in Table 9.6.

Table 11.6: The outcome of the solver when the a priori coefficients are computed by different functions that were applied to the r -, θ
and z-components for a trajectory to Dionysus.

Coordinate Function ∆V [km/s]
Best Multi-start
∆V [km/s]

Radius Power
167.13 2996.02Transfer angle Logarithmic

Axial distance -

Radius Power
170.28 2996.02Transfer angle Logarithmic

Axial distance Sinusoidal

Where the finite Fourier series were able to generate a spiralling orbit to reach Jupiter, it is not capable of
doing so when computing a trajectory to Dionysus. In Figure 11.6 it can be seen that both trajectories have
a similar shape and show identical behaviour: both orbits have a strong tendency to move in the negative
z-direction up to approximately 10 AU and they start by thrusting against the direction of motion, which is
extremely inefficient in terms of ∆V.

86 11. 3D Results

(a) The trajectory to Dionysus where r is approximated by a power
function, θ by a logarithmic function and where z is set to zero.

(b) The trajectory to Dionysus where r is approximated by a power
function, θ by a logarithmic function and where z is approximated

by a sinusoidal function.

Figure 11.6: The trajectories to Dionysus computed with different initialisation functions per Fourier series.

11.4. Coefficient Analysis
Even though a set of Fourier series can be used to capture a low-thrust transfer orbit, the eventual coefficients
that determine the shape of this trajectory have no physical meaning. Nonetheless, they do hold valuable
information in terms of feasibility and robustness. The coefficient values from the trajectory to Jupiter in
Section 11.1 are shown in Figure 11.7 and the ones from the trajectory to Dionysus are shown in Figure 11.8.
Note that the first two terms of each cosine or sine series are not included, as these are incorporated by F
(recall Equation (4.30a)) and fully determined by the boundary conditions of the trajectory design problem.

The three colours represent the initial guesses and the final coefficient solution. The green line denotes
the reference solution (i.e. the trajectory to Jupiter or Dionysus that has been generated with a power func-
tion approximation), while the red line depicts the solution the solver ultimately converged to. The blue line
shows the initial guess that has been obtained by means of one of the new initialisation functions.

The first observation that stands out from the four graphs is the dominance of the a0, c0 and e0 terms. For
each different initialisation approach, it is a0, c0 and e0 that shows the highest absolute value in the radial,
transverse and axial direction, respectively. This is the very first Fourier term of each component and it is the
only term that is not affected by the total number of Fourier terms (recall Equation (4.30b)).

A second look at the figure shows that the reference solution in Figure 11.7a has the smoothest shape
of all four. Apart from the aforementioned very first coefficients, the average coefficient value lies around
zero. Figures 11.7b to 11.7d show different behaviour. Especially the sinusoidal approximation seems to have
a rather random coefficient assignment. It seems as if the coefficients after c0 need to correct for the large
overshoot it demonstrates. The logarithmic function exhibits similar irregular behaviour, but the root-cause
of its failure is likely to be the magnitude of the coefficients. The maximum coefficient in Figure 11.7a is only
14.64, whereas the first logarithmic estimate already skyrockets to nearly 700.

The third finding involves the eventual value of the Fourier coefficient that represent the axial position.
The two feasible solutions (i.e. Figures 11.7a and 11.7b), show the same e and f coefficients. They are all close
to zero and as discussed before, the e0 has the largest absolute value. This is however not the case for the two
infeasible trajectories (i.e. Figures 11.7c and 11.7d). In both these figures, a significant increase in the value
of e0 can be seen. Secondly, the e4 coefficient has a higher weight as well. It is known that the finite Fourier
series is highly sensitive when it comes to the three-dimensional component. Therefore, Figure 11.7 seems to
explain why a power and exponential function approximation manage to generate a proper trajectory solu-
tion, while a sinusoidal and logarithmic function estimate fail to let the solver converge to a feasible solution:
the coefficient values in the z-direction are too high.

The Fourier coefficients that are used to capture the trajectory to the asteroid Dionysus in Figure 11.8 show an
entirely different pattern compared to Figure 11.7. Overall, the same observations regarding the effect of a0,

11.5. Multi-start Analysis 87

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

-2

0

2

4

6

8

10

12

14

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(a) f (τ) = aτ3 +bτ2 + cτ+d

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

-2

0

2

4

6

8

10

12

14

16

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(b) f (τ) = aebτ+ c

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

-80

-60

-40

-20

0

20

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(c) f (τ) = A sin
(
ω

(
τ−φ))+K

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

0

100

200

300

400

500

600
C

o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

e
0

e
3

e
4

f
3

f
4

-40

-20

0

20

40

(d) f (τ) = a +b ln(τ)

Figure 11.7: The newly obtained Fourier coefficients and their (original) initial guess for a trajectory to Jupiter. Following the outline of
case I, the mentioned function that serves as a subtitle is only used to approximate r and θ. The z coefficients are set equal to zero.

c0 and e0, the smoothness of the figure and the sensitivity in the z-direction can be made. However, the scale
is much higher and the reference case in Figure 11.8a stands out. The behaviour of the Fourier coefficients of
all other three-dimensional simulations can be found in Appendix E

11.5. Multi-start Analysis
The multi-start approach had to be activated 15 times, which is rather often, as only 20 trajectories solutions
had to be found. The five trajectory problems that did yield a feasible result the first run only consisted
of solutions that were initialised by a power or an exponential function. In Figure 11.9 an overview of the ∆V
outcomes of the failed 15 trajectories have been plotted. The title of each sub-figure contains three identifiers:
the first one indicates the test object (Jupiter or Dionysus), the second one describes the case type (I, II or III)
and the final one contains information about the used initialisation function (power, exponential, sinusoidal
or logarithmic). Note that each figure contains the outcome of all 15 multi-start runs.

All graphs in Figure 11.9 show fairly random behaviour and more importantly: none of the multi-starts
resulted in a feasible solution. Also, there has not been a single case where the multi-start approach managed
to yield a better result than the regular initialisation function, so without the random component.

Even though it might look like the solving process is converging to a minimum, which is especially visible
in Figures 11.9d and 11.9h, but also, to a lesser extent, in Figures 11.9a to 11.9c, 11.9e, 11.9g, 11.9k, 11.9n
and 11.9o., this is purely coincidental. The solver has no memory concerning previously generated runs, so

88 11. 3D Results

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

f
8

Coefficient

0

5

10

15

20
C

o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(a) f (τ) = aτ3 +bτ2 + cτ+d

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

Coefficient

-250

-200

-150

-100

-50

0

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(b) f (τ) = aebτ+ c

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

Coefficient

-200

-150

-100

-50

0

50

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(c) f (τ) = A sin
(
ω

(
τ−φ))+K

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

Coefficient

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(d) f (τ) = a +b ln(τ)

Figure 11.8: The newly obtained Fourier coefficients and their (original) initial guess for a trajectory to Dionysus. Following the outline
of case I, the mentioned function that serves as a subtitle is only used to approximate r and θ. The z coefficients are set equal to zero.

the result from run n is completely independent of the result from run n−1. Hence, the newly obtained initial
guesses are just within the same region which leads to the same solution.

11.5. Multi-start Analysis 89

0 5 10 15

Multistart attempt [-]

0

1000

2000

3000

4000

5000

6000

V
 [
k
m

/s
]

(a) Jupiter - Case I - Sinusoidal

0 5 10 15

Multistart attempt [-]

0.5

1

1.5

2

2.5

3

3.5

V
 [
k
m

/s
]

10
4

(b) Jupiter - Case I - Logarithmic

0 5 10 15

Multistart attempt [-]

0

500

1000

1500

2000

2500

V
 [
k
m

/s
]

(c) Jupiter - Case II - Sinusoidal

0 5 10 15

Multistart attempt [-]

2

2.5

3

3.5

4

4.5

V
 [
k
m

/s
]

10
4

(d) Jupiter - Case II - Logarithmic

0 5 10 15

Multistart attempt [-]

0

1000

2000

3000

4000

5000

6000

V
 [
k
m

/s
]

(e) Jupiter - Case III - Polynomial &
Logarithmic

0 5 10 15

Multistart attempt [-]

380

400

420

440

460

480

500

V
 [
k
m

/s
]

(f) Jupiter - Case III - Polynomial &
Logarithmic & Sinusoidal

0 5 10 15

Multistart attempt [-]

1000

2000

3000

4000

5000

6000

V
 [
k
m

/s
]

(g) Dionysus - Case I - Exponential

0 5 10 15

Multistart attempt [-]

1000

2000

3000

4000

5000

6000

V
 [
k
m

/s
]

(h) Dionysus - Case I - Sinusoidal

0 5 10 15

Multistart attempt [-]

1

2

3

4

5

6

7
V

 [
k
m

/s
]

10
6

(i) Dionysus - Case I - Logarithmic

0 5 10 15

Multistart attempt [-]

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

V
 [

k
m

/s
]

10
4

(j) Dionysus - Case II - Power

0 5 10 15

Multistart attempt [-]

500

1000

1500

2000

2500

3000

3500

V
 [
k
m

/s
]

(k) Dionysus - Case II - Exponential

0 5 10 15

Multistart attempt [-]

3

3.5

4

4.5

5

5.5

6

V
 [

k
m

/s
]

10
4

(l) Dionysus - Case II - Sinusoidal

0 5 10 15

Multistart attempt [-]

0

2

4

6

8

10

V
 [
k
m

/s
]

10
6

(m) Dionysus - Case II - Logarithmic

0 5 10 15

Multistart attempt [-]

0

0.5

1

1.5

2

2.5

3

3.5

V
 [
k
m

/s
]

10
4

(n) Dionysus - Case III - Polynomial &
Logarithmic

0 5 10 15

Multistart attempt [-]

0

0.5

1

1.5

2

2.5

3

3.5

V
 [
k
m

/s
]

10
4

(o) Dionysus - Case III - Polynomial &
Logarithmic & Sinusoidal

Figure 11.9: An overview of the outcome of the 15 multi-start analyses.

12
Conclusions and Recommendations

This final chapter will recapitulate all findings that were uncovered during the implementation, testing and
investigation of the finite Fourier series method in Section 12.1. Furthermore, three recommendations are
given that might spark interest for future research on this topic in Section 12.2.

12.1. Conclusions
The focus of this thesis was twofold: it covers the implementation of the finite Fourier series method into
TUDAT (Technical University of Delft Astrodynamics Toolbox), and it should aim at finding a better initiali-
sation strategy in order to reduce the convergence time of the algorithm. Therefore this conclusion section is
divided into three parts. First the discoveries from the implementation phase are presented, followed by the
insights obtained from the two-dimensional and three-dimensional attempts of incorporating a new initiali-
sation strategy.

12.1.1. Implementation
The finite Fourier series method by Taheri and Abdelkhalik [21, 22] has proven to be a powerful method when
designing low-thrust propulsion orbits. The trajectory is divided into n discretisation points which the equa-
tions of motion are evaluated at. By a substitution of a finite Fourier series for r , θ and z, a system of n
equations can be said up, which is solved by the Nelder-Mead algorithm to obtain the Fourier coefficients
that will eventually shape the trajectory. The equations of motion are kept as simple as possible as it only
includes the gravity of the central body and the thrust force, thus neglecting any other perturbation source.
Especially its included ability to activate a thrust constraint results in more realistic trajectory solutions com-
pared to other shape-based methods.

The implementation of the method turned out to be more complex than anticipated. This is largely due
to ambiguities in the work by Taheri and Abdelkhalik [21, 22]. These ambiguities were found in terms of
the generation of the a priori coefficient values, the definition of the decision vector, the performance of the
unconstrained finite Fourier series, the two-dimensional results and the interpretation of the reference frame.

For this reason, the matrix system that provides the initial guess had to be redefined. Taheri and Ab-
delkhalik [21] claim that the system is solved by inverting a non-square matrix. Because this is impossible,
the respective matrix has been reformulated such that it is a square one.

Furthermore, the decision vector that is to be altered by the Nelder-Mead solving algorithm was not clearly
specified. After testing several implementations, it was found that the approach that does not include the
first eight coefficients in the solving process, but rather expresses them as a function of the other coefficients,
worked best.

Additionally, it turned out that the unconstrained finite Fourier series fails to converge to a feasible solu-
tion. This problem was overcome by adding additional constraints to the transfer angle that specify that the
angle at discretisation point n should always be larger than the angle at discretisation point (n−1), enforcing
a continuous trajectory.

On top of that, it is not entirely clear with which settings Taheri and Abdelkhalik [21] obtained their results.
Nowhere in the paper numerical results are presented. Everything is graphical, which makes it harder to

91

92 12. Conclusions and Recommendations

validate the implementation. Also, for a certain number of discretisation points, the solver was not able to
converge to a feasible solution. To overcome this problem, a multi-start procedure has been implemented,
which entails that 15 different decision vectors are generated in the solution space that might just push the
solver into the right direction. These multi-start decision vectors are based on a normal distribution obtained
from the first initial guess.

Ultimately, when extracting the position of the departure and arrival bodies from TUDAT, the state vectors
are defined in the ecliptic reference frame. When a trajectory is computed, a discrepancy was found between
the position of the target body and the endpoint of the transfer orbit at t = TOF. After some more research
it turned out that Taheri and Abdelkhalik [21, 22] always normalise their variables such that a transfer angle
value of 0° corresponds to a point on the positive x-axis. This has not been mentioned in their work, but it
has been solved by adding the angle between the vernal equinox and the departure body at the start of the
trajectory.

Two implementation road maps have been set-up to clearly distinguish how the different steps in the com-
putation process are structured in TUDAT, both for the two-dimensional form and the three-dimensional
form. The performance of the finite Fourier series method has been validated against previously conducted
research that used the method to compute interplanetary transfer orbits and the results appeared to be vir-
tually identical when the tolerances were set to 1×10−9.

It has been discovered that next to the orbital parameters of the departure and target bodies, the outcome of a
trajectory design problem is also largely dependent on the number of Fourier series that are used in all three
dimensions (i.e. nr , nθ and nz). There is a strong correlation between the number of coefficients and the
required ∆V: the more coefficients, the higher the calculated ∆V. The coefficients for the radial component
nr and the transverse component nθ show the same pattern, but the increase in ∆V is significantly more for
the number of coefficients that capture the axial component (nz). It could therefore be said that the finite
Fourier series method is more sensitive in three dimensions, than in two dimensions.

12.1.2. 2D Initialisation
In the search of a better suited initialisation function, four different function types have been analysed: a
power function, an exponential function, a trigonometric function and a logarithmic function. When they
are applied to estimate both the radial distance and the transfer angle, all four functions manage to generate
feasible solutions for which the obtained∆V are constant at 22.46 km/s for the test case to the asteroid Diony-
sus, while the outcomes to the planet Jupiter show an average of 18.22 km/s with a spread of only 0.085 km/s.

Of these four initialisation functions it is the exponential function that provides the best a priori results, as
it significantly decreases the convergence time of the solver. In order to measure the computation time, the
average time of 1000 runs has been taken to minimise the noise that is generated by background processes
running on the computer. Whereas the solver requires 312.0 and 278.4 ms with the regular initialisation func-
tion to compute a trajectory to Jupiter and Dionysus, it only requires 287.2 and 159.8 ms to do so when an
exponential function is used. This is an improvement of 7.9 and 42.6% respectively.

Besides the main solver convergence time, the time to compute all the coefficients of the initialisation func-
tions from the boundary conditions has been assessed in the same way. However, the order of magnitude
of this time is only µs. In combination with the very small differences in initialisation time between the four
functions, this effect has been deemed negligible.

In case the initialisation function is chosen such that it best fits the natural behaviour of the components, the
radial distance r is best approximated by a power function, while the transfer angle θ is best approximated by
a logarithmic function. With this set-up, a trajectory to Jupiter was successfully computed, but with 19.0 km/s
it requires a higher ∆V than the aforementioned case. It also takes longer (337.6 ms) to find this result. For
Dionysus no feasible trajectory could be found.

12.1.3. 3D Initialisation
In three dimensions the same experiments as in two dimensions have been done, but when is referred to the
regular solution, the axial coordinates are not estimated by a function, but they are just set equal to zero.

12.2. Recommendations 93

When all three components are modelled by the same initialisation function, it is only the exponential func-
tion that finds a feasible trajectory to Jupiter, but instead of the nominal value of 16.7 km/s, it finds a ∆V of
18.6 km/s. None of the functions captures a feasible trajectory to Dionysus, even though a multi-start proce-
dure was used that generates 15 starting points, based on the outcome of the initialisation function.

The tailored-function approach is identical to the two-dimensional case, except for the presence of the axial
component, which is now approximated by a sinusoidal function. This strategy too does not yield any feasi-
ble result for any of the target bodies, even if the z-coefficients are not approximated and initially set to zero.
Just as in the previous case, the multi-start approach did not lead to any feasible results either.

In general, it has been found that the finite Fourier series method is extremely sensitive regarding a priori
values for the axial coordinate. If the results from the trajectories to Jupiter and Dionysus from the first case,
during which all a priori z-coefficients are set to zero, are compared to the case where they are estimated
by an actual initialisation function, much higher ∆V values and even more unrealistic trajectory shapes are
obtained.

Main Conclusion
All of the above mentioned findings result in the conclusion that the use of a proper initialisation function
can significantly boost the effectiveness of the finite Fourier series method. However, it should be noted that
a clear distinction between the two-dimensional and three-dimensional version needs to be made. In two
dimensions it can be said that an exponential initialisation function is capable of finding the correct solution
in significantly less time. However, in three dimensions no improved initialisation strategy could be found,
neither in terms of convergence time nor in stability.

12.2. Recommendations
Based on the generated results for the three-dimensional case, it can be concluded that the currently used
optimiser, i.e. Nelder-Mead Simplex Method, is strongly influenced by the a priori information. With four
different initialisation functions it could find four different ∆V values. Therefore it is recommended to look
into the solving process and the solving technique in particular to make it more robust.

With the current set of initialisation functions, the results are especially effective in two dimensions. In the
past, Vroom [25] designed an entirely new function that is used in combination with the spherical shaping
method, where it could successfully generate trajectories to targets at an inclination that is above average.
However, the computed ∆V did not correspond to these trajectories. Still, it might provide a better initialisa-
tion function to be used with the three-dimensional finite Fourier series method.

Just as Taheri and Abdelkhalik [22], in this thesis the recommended number of Fourier terms to model a
trajectory is based on trial and error. It has been shown that the number of Fourier coefficients greatly de-
termines the outcome. Hence it is recommended to study this effect to a second degree in order to come up
with clear propositions on the number of terms per trajectory design problem.

Bibliography

[1] Detlef Amberg. Fitting a Damped Sine Wave. URL https://www.dsprelated.com/showarticle/
795.php. Accessed on: 01-05-2020.

[2] Derek Bingham. Schwefel function, February 2020. URL https://www.sfu.ca/~ssurjano/schwef.
html. Accessed on: 03-02-2020.

[3] J. L. Ortiz et al. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation.
Nature, 550(7675):219–223, Oct 2017. doi: 10.1038/nature24051.

[4] B.H. Foing, G.D. Racca, A. Marini, E. Evrard, L. Stagnaro, M. Almeida, D. Koschny, D. Frew, J. Zender,
J. Heather, M. Grande, J. Huovelin, H.U. Keller, A. Nathues, J.L. Josset, A. Malkki, W. Schmidt, G. Noci,
R. Birkl, L. Iess, Z. Sodnik, and P. McManamon. SMART-1 mission to the Moon: Status, first results and
goals. Advances in Space Research, 37(1):6–13, January 2006. doi: 10.1016/j.asr.2005.12.016.

[5] D. J. Gondelach and R. Noomen. Hodographic-Shaping Method for Low-Thrust Interplanetary Trajec-
tory Design. Journal of Spacecraft and Rockets, 52(3):728–738, May 2015. doi: 10.2514/1.a32991.

[6] David J. Gondelach. A Hodographic-Shaping Method for Low-Thrust Trajectory Design. MSc Thesis,
Delft University of Technology, July 2012.

[7] Craig A. Kluever and Steven R. Oleson. Direct Approach for Computing Near-Optimal Low-Thrust Earth-
Orbit Transfers. Journal of Spacecraft and Rockets, 35(4):509–515, July 1998. doi: 10.2514/2.3360.

[8] Christophe Koppel, Claudio Bruno, Dominique Valentian, Paul Latham, Dave Fearn, and David NICOL-
INI. Preliminary Comparison Between Nuclear-Electric and Solar-Electric Propulsion Systems for Fu-
ture Interplanetary Missions. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
American Institute of Aeronautics and Astronautics, Jul 2003. doi: 10.2514/6.2003-4689.

[9] NASA’s Jet Propulsion Laboratory. Jet Propulsion Laboratory Small-Body Database Browser: 136108
Haumea (2003 EL61), . URL https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=136108. Accessed on: 25-
08-2018.

[10] NASA’s Jet Propulsion Laboratory. Jet Propulsion Laboratory Keplerian Elements for Approximate Po-
sitions of the Major Planets, . URL https://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf. Ac-
cessed on: 12-05-2020.

[11] Sjoerd Molenaar. Development of an Improved Spherical Shaping Method for High-Inclination Trajec-
tories. MSc Thesis, Delft University of Technology, August 2009.

[12] D. M. Novak and M. Vasile. Improved Shaping Approach to the Preliminary Design of Low-Thrust Trajec-
tories. Journal of Guidance, Control, and Dynamics, 34(1):128–147, January 2011. doi: 10.2514/1.50434.

[13] Masataka Okutsu, Chit Hong Yam, and James Longuski. Low-Thrust Trajectories to Jupiter via Grav-
ity Assists from Venus, Earth, and Mars. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit.
American Institute of Aeronautics and Astronautics, Aug 2006. doi: 10.2514/6.2006-6745.

[14] Anastassios E. Petropoulos and James M. Longuski. A Shape-Based Algorithm for Automated Design
of Low-Thrust, Gravity-Assist Trajectories. Journal of Spacecraft and Rockets, 41(5):787–796, September
2004. doi: 10.2514/1.13095.

[15] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes - The
Art of Scientific Computing. Cambridge University Press, New York City, New York, USA, 3r d edition,
September 2007. ISBN 9780521880688.

95

https://www.dsprelated.com/showarticle/795.php
https://www.dsprelated.com/showarticle/795.php
https://www.dsprelated.com/showarticle/795.php
https://www.sfu.ca/~ssurjano/schwef.html
https://www.sfu.ca/~ssurjano/schwef.html
https://www.sfu.ca/~ssurjano/schwef.html
http://www.nature.com/doifinder/10.1038/nature24051
https://doi.org/10.1016/j.asr.2005.12.016
https://doi.org/10.1016/j.asr.2005.12.016
http://dx.doi.org/10.2514/1.A32991
http://dx.doi.org/10.2514/1.A32991
https://repository.tudelft.nl/islandora/object/uuid%3A6a4f1673-88b1-4823-b2ef-9d864c84ab11?collection=education
http://dx.doi.org/10.2514/2.3360
http://dx.doi.org/10.2514/2.3360
http://dx.doi.org/10.2514/6.2003-4689
http://dx.doi.org/10.2514/6.2003-4689
https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=136108
https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=136108
https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=136108
https://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf
https://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf
https://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf
https://repository.tudelft.nl/islandora/object/uuid%3A8d44eef0-1da0-47fa-b44e-cad4ab3e6a46?collection=education
https://repository.tudelft.nl/islandora/object/uuid%3A8d44eef0-1da0-47fa-b44e-cad4ab3e6a46?collection=education
http://dx.doi.org/10.2514/1.50434
http://dx.doi.org/10.2514/1.50434
https://doi.org/10.2514/6.2006-6745
https://doi.org/10.2514/6.2006-6745
http://dx.doi.org/10.2514/1.13095
http://dx.doi.org/10.2514/1.13095
http://www.cambridge.org/nl/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition?format=HB&utm_source=shortlink&utm_medium=shortlink&utm_campaign=numericalrecipes
http://www.cambridge.org/nl/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition?format=HB&utm_source=shortlink&utm_medium=shortlink&utm_campaign=numericalrecipes

96 Bibliography

[16] Marc D. Rayman and Steven N. Williams. Design of the First Interplanetary Solar Electric Propulsion
Mission. Journal of Spacecraft and Rockets, 39(4):589–595, July 2002. doi: 10.2514/2.3848.

[17] Tineke G.R. Roegiers. Application of the Spherical Shaping Method to a Low-Thrust Multiple Asteroid
Rendezvous Mission: Implementation, Limitations and Solutions. MSc Thesis, Delft University of Tech-
nology, August 2014.

[18] Diogo Sanchez, Antonio F. Prado, Alexander Sukhanov, and Tadashi Yokoyama. Optimal Transfer Tra-
jectories to the Haumea System. In SpaceOps 2014 Conference. American Institute of Aeronautics and
Astronautics, May 2014. doi: 10.2514/6.2014-1639.

[19] Ernst Stuhlinger. Electric space propulsion systems. Space Science Reviews, 7(5-6):795–847, Dec 1967.
doi: 10.1007/bf00542896.

[20] Ehsan Taheri. Rapid Space Trajectory Generation Using a Fourier Series Shape-Based Approach. PhD
Thesis, Michigan Technological University, 2014.

[21] Ehsan Taheri and Ossama Abdelkhalik. Shape-Based Approximation of Constrained Low-Thrust Space
Trajectories Using Fourier Series. Journal of Spacecraft and Rockets, 49(3):535–545, May 2012. doi: 10.
2514/1.a32099.

[22] Ehsan Taheri and Ossama Abdelkhalik. Initial three-dimensional low-thrust trajectory design. Advances
in Space Research, 57(3):889–903, February 2016. doi: 10.1016/j.asr.2015.11.034.

[23] Ehsan Taheri, Ilya Kolmanovsky, and Ella Atkins. Shaping low-thrust trajectories with thrust-handling
feature. Advances in Space Research, 61(3):879–890, February 2018. doi: 10.1016/j.asr.2017.11.006.

[24] J. Vlassenbroeck and R. Van Dooren. A Chebyshev technique for solving nonlinear optimal control prob-
lems. IEEE Transactions on Automatic Control, 33(4):333–340, Apr 1988. doi: 10.1109/9.192187.

[25] Aram Vroom. Development of an Improved Spherical Shaping Method for High-Inclination Trajectories.
MSc Thesis, Delft University of Technology, August 2017.

[26] Karel F. Wakker. Fundamentals of Astrodynamics. Delft University of Technology, Delft, the Netherlands,
1st edition, January 2015. ISBN 978-94-6186-419-2.

[27] Bradley Wall. Shape-Based Approximation Method for Low-Thrust Trajectory Optimization. In AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, Honolulu, HA, USA, August 2008. American Institute
of Aeronautics and Astronautics. doi: 10.2514/6.2008-6616.

[28] Bradley J. Wall and Bruce A. Conway. Shape-Based Approach to Low-Thrust Rendezvous Trajectory De-
sign. Journal of Guidance, Control, and Dynamics, 32(1):95–101, January 2009. doi: 10.2514/1.36848.

[29] Thomas Weise. Global Optimization Algorithms - Theory and Application -. self-published, 2nd edition,
June 2009.

[30] Barry T.C. Zandbergen. Aerospace Design & Systems Engineering Elements I Part: Spacecraft (bus) de-
sign and sizing. Technical report, Delft University of Technology, Faculty of Aerospace Engineering,
Delft, the Netherlands, August 2017.

[31] Kui Zeng, Yunhai Geng, Baolin Wu, and Chengqing Xie. A Novel Shape-Based Approximation Method for
Constrained Low-Thrust Trajectory Design. In AIAA/AAS Astrodynamics Specialist Conference. American
Institute of Aeronautics and Astronautics, September 2016. doi: 10.2514/6.2016-5637.

https://doi.org/10.2514/2.3848
https://doi.org/10.2514/2.3848
https://repository.tudelft.nl/islandora/object/uuid%3A9994980c-e1df-47a6-880a-3a226797e34a
https://repository.tudelft.nl/islandora/object/uuid%3A9994980c-e1df-47a6-880a-3a226797e34a
https://doi.org/10.2514/6.2014-1639
https://doi.org/10.2514/6.2014-1639
https://doi.org/10.1007/BF00542896
http://digitalcommons.mtu.edu/etds/834/
http://dx.doi.org/10.2514/1.A32099
http://dx.doi.org/10.2514/1.A32099
https://doi.org/10.1016/j.asr.2015.11.034
https://doi.org/10.1016/j.asr.2017.11.006
https://doi.org/10.1016/j.asr.2017.11.006
https://doi.org/10.1109/9.192187
https://doi.org/10.1109/9.192187
https://repository.tudelft.nl/islandora/object/uuid%3A9416585f-1225-4a81-8c6c-00aae520bec4?collection=education
https://repository.tudelft.nl/islandora/object/uuid%3A3fc91471-8e47-4215-af43-718740e6694e?collection=research
http://dx.doi.org/10.2514/6.2008-6616
http://dx.doi.org/10.2514/1.36848
http://dx.doi.org/10.2514/1.36848
https://www.researchgate.net/profile/Mahboobeh_Ghasemi/post/Can_anyone_suggest_me_some_article_to_compare_some_optimization_algorithms_such_as_PSO_SA_FUZZY_GA_and_etc/attachment/59d6350c79197b8077992a72/AS:382691284406273@1468252120670/download/optimization.rar
https://doi.org/10.2514/6.2016-5637
https://doi.org/10.2514/6.2016-5637

A
Cubic Polynomial Coefficient Derivation

This appendix contains a more extensive derivation of the cubic polynomial coefficients that are used to
compute an initial guess for the Fourier coefficients. In Appendix A.1 the derivation of the two-dimensional
version is presented, followed by the derivation of the three-dimensional polynomial coefficients in Ap-
pendix A.2.

A.1. Real Time
The cubic polynomial that is used for the two-dimensional finite Fourier series implementation is described
by the real time t and it is given by the following equations:

rC P (t) = at 3 +bt 2 + ct +d (A.1a)

θC P (t) = et 3 + f t 2 + g t +h (A.1b)

If these two equations are being derived with respect to time t , the following is obtained:

ṙC P (t) = 3at 2 +2bt + c (A.2a)

θ̇C P (t) = 3et 2 +2 f t + g (A.2b)

The boundary conditions contain important data for the beginning and the end of the trajectory. The follow-
ing conditions hold:


r (t = 0) = ri = d

r (t = t f) = r f = at 3
f +bt 2

f + ct f +d

ṙ (t = 0) = ṙi = c

ṙ (t = t f) = ṙ f = 3at 2
f +2bt f + c

(A.3a)


θ(t = 0) = θi = h

θ(t = t f) = θ f = et 3
f + f t 2

f + g t f +h

θ̇(t = 0) = θ̇i = g

θ̇(t = t f) = θ̇ f = 3et 2
f +2 f t f + g

(A.3b)

If the terms in Equation (A.3) are substituted and rearranged, the separate coefficients can be found:

a = 2
(
ri − r f

)+ (
ṙi + ṙ f

)
t f

t 3
f

(A.4a)

97

98 A. Cubic Polynomial Coefficient Derivation

b =−3
(
ri − r f

)+ (
2ṙi + ṙ f

)
t f

t 2
f

(A.4b)

c = ṙi (A.4c)

d = ri (A.4d)

e = 2
(
θi −θ f

)+ (
θ̇i + θ̇ f

)
t f

t 3
f

(A.4e)

f =−3
(
θi −θ f

)+ (
2θ̇i + θ̇ f

)
t f

t 2
f

(A.4f)

g = θ̇i (A.4g)

h = θi (A.4h)

A.2. Scaled Time
The cubic polynomial that is used for the three-dimensional finite Fourier series implementation is described
by the scaled time τ and it is given by the following equations:

rC P (τ) = aτ3 +bτ2 + cτ+d (A.5a)

θC P (τ) = eτ3 + f τ2 + gτ+h (A.5b)

If these two equations are being derived with respect to time τ, the following is found:

ṙC P (τ) = 3aτ2 +2bτ+ c (A.6a)

θ̇C P (τ) = 3eτ2 +2 f τ+ g (A.6b)

Because the time is scaled, the boundary conditions are slightly different from the ones mentioned in Equa-
tions (A.3a) and (A.3b). The scaled time boundary conditions are:


r (τ= 0) = ri = d

r (τ= 1) = r f = aτ3 +bτ2 + cτ+d

r ′(τ= 0) = r ′
i = c

r ′(τ= 1) = r ′
f = 3aτ2 +2bτ+ c

(A.7a)


θ(τ= 0) = θi = h

θ(τ= 1) = θ f = eτ+ f τ2 + gτ+h

θ′(τ= 0) = θ′i = g

θ′(τ= 1) = θ′f = 3eτ2 +2 f τ+ g

(A.7b)

Rearranging and substituting the expressions in Equation (A.7) results in the following solution for the sepa-
rate terms:

a = r ′
f + r ′

i +2
(
ri − r f

)
(A.8)

A.2. Scaled Time 99

b = 3
(
r f − ri

)−2r ′
i − r ′

f (A.9)

c = r ′
i (A.10)

d = ri (A.11)

e = θ′f +θ′i +2
(
θi −θ f

)
(A.12)

f = 3
(
θ f −θi

)−2θ′i −θ′f (A.13)

g = θ′i (A.14)

h = θi (A.15)

B
Initial Coefficients Derivation

This appendix contains an overview of the derivation of the first eight Fourier coefficients that can directly
be obtained from the imposed boundary conditions. Note that this derivation holds for the two-dimensional
version of the finite Fourier series method.

For the sake of clarity, the Fourier series in their regular form are shown once again below.

r (t) = a0

2
+

{ nr∑
n=1

an cos
(nπ

T
t
)
+bn sin

(nπ

T
t
)}

(B.1a)

θ (t) = c0

2
+

{ nθ∑
n=1

cn cos
(nπ

T
t
)
+dn sin

(nπ

T
t
)}

(B.1b)

In order to derive the expressions in Equation (5.13), the derivatives of the Fourier series are needed, as
boundary conditions are imposed on them too. The derivatives of Equation (B.1) can be found in Equa-
tion (B.2).

ṙ (t) =
nr∑

n=1

{
−an

(nπ

T

)
sin

(nπ

T
t
)
+bn

(nπ

T

)
cos

(nπ

T
t
)}

(B.2a)

θ̇ (t) =
nθ∑

n=1

{
−cn

(nπ

T

)
sin

(nπ

T
t
)
+dn

(nπ

T

)
cos

(nπ

T
t
)}

(B.2b)

With the given boundary conditions as described in Chapter 5, Equations (B.1) and (B.2) can be rewritten as
follows by extracting the firs two terms from the summations:

r (t0 = 0) = ri = a0

2
+

nr∑
n=1

= a0

2
+a1 +a2 +

nr∑
n=3

{an} (B.3a)

θ (t0 = 0) = θi = c0

2
+

nθ∑
n=1

= c0

2
+ c1 + c2 +

nθ∑
n=3

{cn} (B.3b)

ṙ (t0 = 0) = ṙi = π

T
+

nr∑
n=1

{nbn} = π

T
(b1 +2b2)+ π

T

nr∑
n=3

{nbn} (B.3c)

θ̇ (t0 = 0) = θ̇i = π

T
+

nθ∑
n=1

{ndn} = π

T
(d1 +2d2)+ π

T

nθ∑
n=3

{ndn} (B.3d)

r
(
t f = T

)= r f =
a0

2
+

nr∑
n=1

{
(−1)n an

}= a0

2
−a1 +a2 +

nr∑
n=3

{
(−1)n an

}
(B.3e)

θ
(
t f = T

)= θ f =
c0

2
+

nθ∑
n=1

{
(−1)n cn

}= c0

2
− c1 + c2 +

nθ∑
n=3

{
(−1)n cn

}
(B.3f)

101

102 B. Initial Coefficients Derivation

ṙ
(
t f = T

)= ṙ f =
π

T

nr∑
n=1

{
(−1)n nbn

}= π

T
(2b2 −b1)+ π

T

nr∑
n=3

{
(−1)n nbn

}
(B.3g)

θ̇
(
t f = T

)= θ̇ f =
π

T

nθ∑
n=1

{
(−1)n ndn

}= π

T
(2d2 −d1)+ π

T

nθ∑
n=3

{
(−1)n ndn

}
(B.3h)

From the eight relations in Equation (B.3), four systems of equations can be set up, one for each of the coeffi-
cients an , bn , cn and dn :

{
a1 + a2 = ri − a0

2 − ∑nr
n=3 {an}

a2 − a1 = r f − a0
2 − ∑nr

n=3

{
(−1)n an

} (B.4a)

{
b1 + 2b2 = T

π ṙi − ∑nr
n=3 {nbn}

2b2 − b1 = T
π ṙ f − ∑nr

n=3

{
(−1)n bn

} (B.4b)

{
c1 + c2 = θi − c0

2 − ∑nθ
n=3 {cn}

c2 − c1 = θ f − c0
2 − ∑nθ

n=3

{
(−1)n cn

} (B.4c)

{
d1 + 2d2 = T

π θ̇i − ∑nθ
n=3 {ndn}

2d2 − d1 = T
π θ̇ f − ∑nθ

n=3

{
(−1)n dn

} (B.4d)

With the four systems in Equation (B.4), the final solutions for the initial eight coefficients can be computed:

a1 =
ri − r f

2
−

nr∑
n=3

an ; nr ≥ 3, n : odd (B.5a)

a2 =
ri + r f −a0

2
−

nr∑
n=4

an ; nr ≥ 4, n : even (B.5b)

b1 = T

2π

(
ṙi − ṙ f

)− nr∑
n=3

nbn ; nr ≥ 3, n : odd (B.5c)

b2 = T

4π

(
ṙi + ṙ f

)− 1

2

nr∑
n=4

nbn ; nr ≥ 4, n : even (B.5d)

c1 =
θi −θ f

2
−

nθ∑
n=3

cn ; nθ ≥ 3, n : odd (B.5e)

c2 =
θi +θ f − c0

2
−

nθ∑
n=4

cn ; nθ ≥ 4, n : even (B.5f)

d1 = T

2π

(
θ̇i − θ̇ f

)− nθ∑
n=3

ndn ; nθ ≥ 3, n : odd (B.5g)

d2 = T

4π

(
θ̇i + θ̇ f

)− 1

2

nθ∑
n=4

ndn ; nθ ≥ 4, n : even (B.5h)

C
3D Finite Fourier Series Derivations

This appendix contains an elaborate overview of the set-up of all terms in the equations for the three-dimensional
finite Fourier series method. First, the principle of the scaled time and the conversion between standard time
and scaled time is explained in Appendix C.1. In Appendix C.2, the newly adopted notation of the finite
Fourier series method is explicated.

C.1. Scaled Time
To understand the conversion from the standard time t , which runs from 0 to T , to the scaled time τ, which
runs from 0 to 1, a derivation is given below. Note that τ is defined as follows:

τ= t

T
(C.1)

The Fourier series for r is shown in Equation (C.2):

r (τ) = a0

2
+

{ nr∑
n=1

an cos(nπτ)+bn sin(nπτ)

}
(C.2)

Its derivative, r ′ with respect to τ is then given by Equation (C.3):

r ′ (τ) =
nr∑

n=1
{−annπsin(nπτ)+bnnπcos(nπτ)} (C.3)

The derivative of the Fourier series r with respect to t is found in Equation (C.4):

ṙ (t) =
nr∑

n=1

{
−an

(nπ

T

)
sin

(nπ

T
t
)
+bn

(nπ

T

)
cos

(nπ

T
t
)}

(C.4)

From Equations (C.3) and (C.4), it can be seen that the following relation holds:

r ′ (τ) = ṙ (t) ·T (C.5)

C.2. Rephrased Fourier Terms
The final equation that needs to be solved to obtain the unknown Fourier coefficients has the following shape:

[r]m×1 = [Ar]m×(2nr −3) [Xr](2nr −3)×1 + [Fr]m×1 (C.6)

[θ]m×1 = [Aθ]m×(2nθ−3) [Xθ](2nθ−3)×1 + [Fθ]m×1 (C.7)

[z]m×1 = [Az]m×(2nz−3) [Xz](2nz−3)×1 + [Fz]m×1 (C.8)

In which the [A] matrices contain the sine and cosine components of the Fourier series. The boundary condi-
tions are collected in the [F] vectors, the actual coordinates can be found in the [r], [θ] and [z] vectors, while

103

104 C. 3D Finite Fourier Series Derivations

the Fourier terms are defined in the [Xr], [Xθ] and [Xz] vectors.

So, instead of computing the first two coefficients of each Fourier terms as in the two-dimensional case, the
initial coefficients are all collected in one term: Fr , Fθ or Fz . They are a function of the boundary conditions
defined in each of the three directions. Equation (C.9) denotes the expressions that contain all the a priori
known information, together with their first and second derivatives with respect to the scaled time τ:

Fr = 1

2

(
ri − r f

)
cos(πτ)+ 1

2π

(
r ′

i − r ′
f

)
sin(πτ)+ 1

2

(
ri + r f

)
cos(2πτ)+ 1

4π

(
r ′

i + r ′
f

)
sin(2πτ) (C.9a)

F ′
r =−1

2

(
ri − r f

)
πsin(πτ)+ 1

2

(
r ′

i − r ′
f

)
cos(πτ)− (

ri + r f
)
πsin(2πτ)+ 1

2

(
r ′

i + r ′
f

)
cos(2πτ) (C.9b)

F ′′
r =−π

2

2

(
ri − r f

)
cos(πτ)− π

2

(
r ′

i − r ′
f

)
sin(πτ)−2π2 (

ri + r f
)

cos(2πτ)−π
(
r ′

i + r ′
f

)
sin(2πτ) (C.9c)

Fθ =
1

2

(
θi −θ f

)
cos(πτ)+ 1

2π

(
θ′i −θ′f

)
sin(πτ)+ 1

2

(
θi +θ f

)
cos(2πτ)+ 1

4π

(
θ′i +θ′f

)
sin(2πτ) (C.9d)

F ′
θ =−π

2

(
θi −θ f

)
sin(πτ)+ 1

2

(
θ′i −θ′f

)
cos(πτ)−π(

θi +θ f
)

sin(2πτ)+ 1

2

(
θ′i +θ′f

)
cos(2πτ) (C.9e)

F ′′
θ =−π

2

2

(
θi −θ f

)
cos(πτ)− π

2

(
θ′i −θ′f

)
sin(πτ)−2π2 (

θi +θ f
)

cos(2πτ)−π
(
θ′i +θ′f

)
sin(2πτ) (C.9f)

Fz = 1

2

(
zi − z f

)
cos(πτ)+ 1

2π

(
z ′

i − z ′
f

)
sin(πτ)+ 1

2

(
zi + z f

)
cos(2πτ)+ 1

4π

(
z ′

i + z ′
f

)
sin(2πτ) (C.9g)

F ′
z =−1

2

(
zi − z f

)
πsin(πτ)+ 1

2

(
z ′

i − z ′
f

)
cos(πτ)− (

zi + z f
)
πsin(2πτ)+ 1

2

(
z ′

i + z ′
f

)
cos(2πτ) (C.9h)

F ′′
z =−π

2

2

(
zi − z f

)
cos(πτ)− π

2

(
z ′

i − z ′
f

)
sin(πτ)−2π2 (

zi + z f
)

cos(2πτ)−π
(
z ′

i + z ′
f

)
sin(2πτ) (C.9i)

Eventually, the trajectory is divided into m segments, depending on the number of discretisation points.
Hence, in order to find the Fourier coefficients, Equation (C.9) needs to be evaluated at m points. These
values are then stored in a column vector, as can be seen in Equation (C.10):

Fr =
[

Fr (τ0) Fr (τ1) · · · Fr (τm)

]T

(C.10a)

F ′
r =

[
F ′

r (τ0) F ′
r (τ1) · · · F ′

r (τm)

]T

(C.10b)

F ′′
r =

[
F ′′

r (τ0) F ′′
r (τ1) · · · F ′′

r (τm)

]T

(C.10c)

Fθ =
[

Fθ(τ0) Fθ(τ1) · · · Fθ(τm)

]T

(C.10d)

C.2. Rephrased Fourier Terms 105

F ′
θ =

[
F ′
θ

(τ0) F ′
θ

(τ1) · · · F ′
θ

(τm)

]T

(C.10e)

F ′′
θ =

[
F ′′

r (τ0) F ′′
r (τ1) · · · F ′′

r (τm)

]T

(C.10f)

Fz =
[

Fr (τ0) Fr (τ1) · · · Fr (τm)

]T

(C.10g)

F ′
z =

[
F ′

r (τ0) F ′
r (τ1) · · · F ′

r (τm)

]T

(C.10h)

F ′′
z =

[
F ′′

r (τ0) F ′′
r (τ1) · · · F ′′

r (τm)

]T

(C.10i)

Now all [F] vectors are set up, the [A] matrices can be filled. The number of columns depends on the number
of Fourier series that are used to describe the transfer orbit according to (2nr −3), as the first two coefficients
of each sine and cosine term are already computed and stored in the [F] vector. The number of rows depends
on the number of discretisation points m that have been used. The [A] matrices and their derivatives for r
are shown in Equation (C.11):

Ar =


Ca0 (τm)

...

Ca0 (τ1)

Ca0 (τ0)

Ca3 (τm)

...

Ca3 (τ1)

Ca3 (τ0)

Cb3 (τm)

...

Cb3 (τ1)

Cb3 (τ0)

Ca4 (τm)

...

Ca4 (τ1)

Ca4 (τ0)

Cb4 (τm)

...

Cb4 (τ1)

Cb4 (τ0)

· · ·

...

· · ·

· · ·

Canr
(τm)

· · ·

Canr
(τ1)

Canr
(τ0)

Cbnr
(τm)

...

Cbnr
(τ1)

Cbnr
(τ0)


(C.11a)

A′
r =


C ′

a0
(τm)

...

C ′
a0

(τ1)

C ′
a0

(τ0)

C ′
a3

(τm)

...

C ′
a3

(τ1)

C ′
a3

(τ0)

C ′
b3

(τm)

...

C ′
b3

(τ1)

C ′
b3

(τ0)

C ′
a4

(τm)

...

C ′
a4

(τ1)

C ′
a4

(τ0)

C ′
b4

(τm)

...

C ′
b4

(τ1)

C ′
b4

(τ0)

· · ·

...

· · ·

· · ·

C ′
anr

(τm)

· · ·

C ′
anr

(τ1)

C ′
anr

(τ0)

C ′
bnr

(τm)

...

C ′
bnr

(τ1)

C ′
bnr

(τ0)


(C.11b)

A′′
r =


C ′′

a0
(τm)

...

C ′′
a0

(τ1)

C ′′
a0

(τ0)

C ′′
a3

(τm)

...

C ′′
a3

(τ1)

C ′′
a3

(τ0)

C ′′
b3

(τm)

...

C ′′
b3

(τ1)

C ′′
b3

(τ0)

C ′′
a4

(τm)

...

C ′′
a4

(τ1)

C ′′
a4

(τ0)

C ′′
b4

(τm)

...

C ′′
b4

(τ1)

C ′′
b4

(τ0)

· · ·

...

· · ·

· · ·

C ′′
anr

(τm)

· · ·

C ′′
anr

(τ1)

C ′′
anr

(τ0)

C ′′
bnr

(τm)

...

C ′′
bnr

(τ1)

C ′′
bnr

(τ0)


(C.11c)

The terms in Equation (C.11) and their derivatives are found in Equation (C.12):

Ca0 =
1

2
[1−cos(2πτ)] (C.12a)

Can =
{

cos(nπτ)−cos(πτ); when n is odd
cos(nπτ)−cos(2πτ); when n is even

(C.12b)

Cbn =
{

sin(nπτ)−n sin(πτ); when n is odd
sin(nπτ)− n

2 sin(2πτ); when n is even
(C.12c)

C ′
a0

=πsin(2πτ) (C.12d)

106 C. 3D Finite Fourier Series Derivations

C ′
an

=
{ −nπsin(nπτ)+πsin(πτ); when n is odd

−nπsin(nπτ)+2πsin(2πτ); when n is even
(C.12e)

C ′
bn

=
{

nπcos(nπτ)−nπcos(πτ); when n is odd
nπcos(nπτ)−nπcos(2πτ); when n is even

(C.12f)

C ′′
a0

= 2π2 cos(2πτ) (C.12g)

C ′′
an

=
{ −(nπ)2 cos(nπτ)+π2 cos(πτ); when n is odd

−(nπ)2 cos(nπτ)+4π2 cos(2πτ); when n is even
(C.12h)

C ′′
bn

=
{ −(nπ)2 sin(nπτ)+nπ2 sin(πτ); when n is odd

−(nπ)2 sin(nπτ)+2nπ2 sin(2πτ); when n is even
(C.12i)

To fill the [A] matrices for θ, the same procedure applies as for r :

Aθ =


Cc0 (τm)

...

Cc0 (τ1)

Cc0 (τ0)

Cc3 (τm)

...

Cc3 (τ1)

Cc3 (τ0)

Cd3 (τm)

...

Cd3 (τ1)

Cd3 (τ0)

Cc4 (τm)

...

Cc4 (τ1)

Cc4 (τ0)

Cd4 (τm)

...

Cd4 (τ1)

Cd4 (τ0)

· · ·

...

· · ·

· · ·

Ccnθ
(τm)

· · ·

Ccnθ
(τ1)

Ccnθ
(τ0)

Cdnθ
(τm)

...

Cdnθ
(τ1)

Cdnθ
(τ0)


(C.13a)

A′
θ =


C ′

c0
(τm)

...

C ′
c0

(τ1)

C ′
c0

(τ0)

C ′
c3

(τm)

...

C ′
c3

(τ1)

C ′
c3

(τ0)

C ′
d3

(τm)

...

C ′
d3

(τ1)

C ′
d3

(τ0)

C ′
c4

(τm)

...

C ′
c4

(τ1)

C ′
c4

(τ0)

C ′
d4

(τm)

...

C ′
d4

(τ1)

C ′
d4

(τ0)

· · ·

...

· · ·

· · ·

C ′
cnr

(τm)

· · ·

C ′
cnr

(τ1)

C ′
cnr

(τ0)

C ′
dnr

(τm)

...

C ′
dnr

(τ1)

C ′
dnr

(τ0)


(C.13b)

A′′
θ =


C ′′

c0
(τm)

...

C ′′
c0

(τ1)

C ′′
c0

(τ0)

C ′′
c3

(τm)

...

C ′′
c3

(τ1)

C ′′
c3

(τ0)

C ′′
d3

(τm)

...

C ′′
d3

(τ1)

C ′′
d3

(τ0)

C ′′
c4

(τm)

...

C ′′
c4

(τ1)

C ′′
c4

(τ0)

C ′′
d4

(τm)

...

C ′′
d4

(τ1)

C ′′
d4

(τ0)

· · ·

...

· · ·

· · ·

C ′′
cnr

(τm)

· · ·

C ′′
cnr

(τ1)

C ′′
cnr

(τ0)

C ′′
dnr

(τm)

...

C ′′
dnr

(τ1)

C ′′
dnr

(τ0)


(C.13c)

which are built up from the following equations:

Cc0 =
1

2
[1−cos(2πτ)] (C.14a)

Ccn =
{

cos(nπτ)−cos(πτ); when n is odd
cos(nπτ)−cos(2πτ); when n is even

(C.14b)

Cdn =
{

sin(nπτ)−n sin(πτ); when n is odd
sin(nπτ)− n

2 sin(2πτ); when n is even
(C.14c)

C ′
c0
=πsin(2πτ) (C.14d)

C ′
cn

=
{ −nπsin(nπτ)+πsin(πτ); when n is odd

−nπsin(nπτ)+2πsin(2πτ); when n is even
(C.14e)

C.2. Rephrased Fourier Terms 107

C ′
dn

=
{

nπcos(nπτ)−nπcos(πτ); when n is odd
nπcos(nπτ)−nπcos(2πτ); when n is even

(C.14f)

C ′′
c0
= 2π2 cos(2πτ) (C.14g)

C ′′
cn

=
{ −(nπ)2 cos(nπτ)+π2 cos(πτ); when n is odd

−(nπ)2 cos(nπτ)+4π2 cos(2πτ); when n is even
(C.14h)

C ′′
dn

=
{ −(nπ)2 sin(nπτ)+nπ2 sin(πτ); when n is odd

−(nπ)2 sin(nπτ)+2nπ2 sin(2πτ); when n is even
(C.14i)

To fill the [A] matrices for z, again, the same procedure applies as for r :

Az =


Ce0 (τm)

...

Ce0 (τ1)

Ce0 (τ0)

Ce3 (τm)

...

Ce3 (τ1)

Ce3 (τ0)

C f3 (τm)

...

C f3 (τ1)

C f3 (τ0)

Ce4 (τm)

...

Ce4 (τ1)

Ce4 (τ0)

C f4 (τm)

...

C f4 (τ1)

C f4 (τ0)

· · ·

...

· · ·

· · ·

Cenr
(τm)

· · ·

Cenr
(τ1)

Cenr
(τ0)

C fnr
(τm)

...

C fnr
(τ1)

C fnr
(τ0)


(C.15a)

A′
z =


C ′

e0
(τm)

...

C ′
e0

(τ1)

C ′
e0

(τ0)

C ′
e3

(τm)

...

C ′
e3

(τ1)

C ′
e3

(τ0)

C ′
f3

(τm)

...

C ′
f3

(τ1)

C ′
f3

(τ0)

C ′
e4

(τm)

...

C ′
e4

(τ1)

C ′
e4

(τ0)

C ′
f4

(τm)

...

C ′
f4

(τ1)

C ′
f4

(τ0)

· · ·

...

· · ·

· · ·

C ′
enz

(τm)

· · ·

C ′
enz

(τ1)

C ′
enz

(τ0)

C ′
fnz

(τm)

...

C ′
fnz

(τ1)

C ′
fnz

(τ0)


(C.15b)

A′′
z =


C ′′

e0
(τm)

...

C ′′
e0

(τ1)

C ′′
e0

(τ0)

C ′′
e3

(τm)

...

C ′′
e3

(τ1)

C ′′
e3

(τ0)

C ′′
f3

(τm)

...

C ′′
f3

(τ1)

C ′′
f3

(τ0)

C ′′
e4

(τm)

...

C ′′
e4

(τ1)

C ′′
e4

(τ0)

C ′′
f4

(τm)

...

C ′′
f4

(τ1)

C ′′
f4

(τ0)

· · ·

...

· · ·

· · ·

C ′′
enz

(τm)

· · ·

C ′′
enz

(τ1)

C ′′
enr

(τ0)

C ′′
fnz

(τm)

...

C ′′
fnz

(τ1)

C ′′
fnz

(τ0)


(C.15c)

in which the C terms are defined according to:

Ce0 =
1

2
[1−cos(2πτ)] (C.16a)

Cen =
{

cos(nπτ)−cos(πτ); when n is odd
cos(nπτ)−cos(2πτ); when n is even

(C.16b)

C fn =
{

sin(nπτ)−n sin(πτ); when n is odd
sin(nπτ)− n

2 sin(2πτ); when n is even
(C.16c)

C ′
e0
=πsin(2πτ) (C.16d)

C ′
en

=
{ −nπsin(nπτ)+πsin(πτ); when n is odd

−nπsin(nπτ)+2πsin(2πτ); when n is even
(C.16e)

C ′
fn
=

{
nπcos(nπτ)−nπcos(πτ); when n is odd
nπcos(nπτ)−nπcos(2πτ); when n is even

(C.16f)

C ′′
e0
= 2π2 cos(2πτ) (C.16g)

108 C. 3D Finite Fourier Series Derivations

C ′′
en

=
{ −(nπ)2 cos(nπτ)+π2 cos(πτ); when n is odd

−(nπ)2 cos(nπτ)+4π2 cos(2πτ); when n is even
(C.16h)

C ′′
fn
=

{ −(nπ)2 sin(nπτ)+nπ2 sin(πτ); when n is odd
−(nπ)2 sin(nπτ)+2nπ2 sin(2πτ); when n is even

(C.16i)

D
Implementation Issues

This appendix serves as a succinct overview of all encountered hurdles as an aid for possible future students
and because it has led to a significant delay during the implementation of the methods. It will contain an
enumeration of all discrepancies, unknowns and vague definitions that have been encountered during the
implementation of the two-dimensional and the three-dimensional finite Fourier series described in the pub-
lications by Taheri and Abdelkhalik [21, 22]. Issues have been encountered regarding the computation of the
initial guess, the definition of the decision vector, discrepancies involving the unconstrained finite Fourier se-
ries, in the validation, the solving procedure and the reference frame, which can be found in Appendices D.1
to D.6, respectively. It should be noted that everything that is mentioned in this chapter has already been
stated in the main body of this document, mainly in Section 4.3 and chapters 7 and 8.

D.1. Initial Guess Calculation
The initial guess for the solving algorithm for both r and θ is found by a cubic polynomial approximation:

rC P (t) = at 3 +bt 2 + ct +d (D.1a)

θC P (t) = et 3 + f t 2 + g t +h (D.1b)

In this equation, the eight boundary conditions will be used to compute the value of the eight polynomial
coefficients. With the Fourier expressions, as seen in Equation (D.2), Taheri and Abdelkhalik claim that a
linear system of the form Ax = B can be set up, in which the Fourier coefficient vector x (Equation (D.4)) is
found by left-multiplying both sides with A−1.

r (t) = a0

2
+

{ nr∑
n=1

an cos
(nπ

T
t
)
+bn sin

(nπ

T
t
)}

(D.2a)

θ (t) = c0

2
+

{ nθ∑
n=1

cn cos
(nπ

T
t
)
+dn sin

(nπ

T
t
)}

(D.2b)

In this expression, the trigonometric terms from Equation (D.2a) are collected in A, which leads to Equa-
tion (D.3). The size of this matrix then partly depends on the discretisation of the time and the number of
Fourier terms nr . The number of columns is set by nr and is equal to (2 x nr + 1) in order to include the con-
stant 1

2 term together with nr cosine terms representing the an coefficients, and nr sine terms representing
the bn coefficients. On the other hand, the number of rows depends on the time discretisation and it is at this
point where Taheri and Abdelkhalik went wrong.

Taheri and Abdelkhalik [21] state that the time should be discretised by nr points, which indicates that
matrix A becomes a nr x (2nr + 1) matrix. This is not a square matrix, so it is impossible to solve the Ax = B
by just left-multiplying both sides with A−1. To overcome this complication, two methods can be applied:
either the system needs to be solved by means of finding the least-squares solution, or the dimensions of
matrix A should be altered such that it actually becomes a square matrix. It has been decided to go with

109

110 D. Implementation Issues

the latter option. Instead of discretising the total flight time by nr , it is simply divided into (2nr +1) points.
Equations (D.3) to (D.5) below show the correct definitions and sizes of the matrices. Note that in this case ti

represents the (2nr +1)th timestep.

A =

 1
2

...

1
2

1
2

cos
(
π
T ti

)
...

cos
(
π
T t1

)cos
(
π
T t0

)

cos
(2π

T ti
)

...

cos
(2π

T t1
)cos

(2π
T t0

)

· · ·

...

· · ·

· · ·

cos
(nrπ

T ti
)

...

cos
(nrπ

T t1
)cos

(nrπ
T t0

)

sin
(
π
T ti

)
...

sin
(
π
T t1

)sin
(
π
T t0

)

sin
(2π

T ti
)

...

sin
(2π

T t1
)sin

(2π
T t0

)

· · ·

...

· · ·

· · ·

sin
(nrπ

T ti
)

...

sin
(nrπ

T t1
)sin

(nrπ
T t0

)
(D.3)

x =
[

a0 a1 a2 · · · anr · · · b1 b2 · · · bnr

]T

(D.4)

B =
[

rC P (t0) rC P (t1) · · · rC P (ti)

]T

(D.5)

D.2. Decision Vector Definition
Before the right implementation method as described in Chapter 5 was found, another approach had been
taken, as Taheri and Abdelkhalik are not entirely clear about their approach. In their paper it is written that
the first two coefficients of each sine and cosine term in the Fourier series (i.e. a1, a2, b1, b2, c1, c2, d1 and
d2) can be written as a function of the boundary conditions and the other Fourier coefficients (in case nr

or nθ) is larger than two [21]. Especially the latter statement made it seem more straightforward to simply
include all Fourier terms in the decision vector. Following this method, the decision vector was defined as in
Equation (D.6) below:

x =
[

a0 a1 a2 · · · anr b1 b2 · · · bnr c0 c1 c2 · · · cnθ d1 d2 · · · dnθ

]
(D.6)

To ensure that the first eight coefficients take on the right values, equality constraints have been applied to
them, effectively fixing them on the designated value according to the boundary conditions. This did result
in a solution, but it was not a feasible one. The trajectory matched the boundary conditions, but its shape
and the corresponding thrust profile led to a total∆V of more than 150 km/s for a single-revolution trajectory
from Earth to Mars.

To resolve this problem more constraints have been applied. For a trajectory to the outer Solar System it
can be said that both the radius r and the transfer angle θ can only increase. Therefore, it has first been tried
with only constraints on r . This led to some sudden directional changes at the end creating a zigzag-pattern
that caused the ∆V to go up to about 540 km/s. To correct for this, the constraints on θ were activated as well
and finally a correct and feasible trajectory shape was found that only required a ∆V of 6.08 km/s. However,
its thrust profile did not match the results obtained by Taheri and Abdelkhalik [21] at all and thus the thrust
constraint was turned on too. It did not have a positive outcome, as the best solution still did not resemble
the comparison case.

For that reason, it has been decided to redefine the decision vector and exclude the first eight coefficients
from the solving process. With this new approach, the decision vector is denoted by Equation (D.7):

x =
[

a0 a3 a4 · · · anr b3 b4 · · · bnr c0 c3 c4 · · · cnθ d3 d4 · · · dnθ

]
(D.7)

This interpretation does not require the implementation of any constraints and is capable of reproducing the
same results as were obtained by Taheri and Abdelkhalik [21].

D.3. 2D Unconstrained Finite Fourier Series 111

D.3. 2D Unconstrained Finite Fourier Series
When the first test run with the unconstrained finite Fourier series method was done, some peculiar be-
haviour was observed. The trajectory to Mars has been set up with the exact same settings as in Section 8.1,
but this time the thrust acceleration was not limited. The trajectory solution that was obtained is plotted in
Figure D.1.

-1.5 -1 -0.5 0 0.5 1 1.5

X [AU]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 [
A

U
]

Figure D.1: The result of the first run obtained with the unconstrained finite Fourier series.

The required ∆V for this trajectory is a whopping 125.5 km/s, which is far beyond the nominal value of about
5.6 km/s to 5.8 km/s. The reason why it is so high can be attributed to the sudden change in direction near
the end of the trajectory. This directional change requires the spacecraft to kill all its velocity and move into
the opposite direction, rendering the solution infeasible.

The problem has been solved by adding additional constraints on the transfer angle. It is prescribed that
the transfer angle at DP n should always be larger than the transfer angle at DP (n−1), ensuring an orbit shape
that always continues in the same direction. This also means that the name unconstrained finite Fourier series
only refers to the absence of the thrust constraint. The total number of constraints on the transfer angle
depends on the number of discretisation points and can be described as (#DP −1).

D.4. Validation
The results Taheri and Abdelkhalik [21] show in their paper is based on the following input parameters:

Table D.1: Input parameters and boundary conditions for the trajectory from Earth to Mars [21].

Boundary
Conditions

Input
Parameters

ri 1 DU Nrev 1
θi 0 rad nr 2
rf 1.5234 DU nθ 5
θf 9.831 rad Tamax 0.02 DU/TU2

ṙi 0 DU/TU # DP 22
θ̇i 1 rad/TU TOF 13.447 TU
ṙf 0 DU/TU
θ̇f 0.5318 rad/TU

The graphical results of their interplanetary rendez-vous case are shown in Figure D.2. It contains a figure of
the constrained and unconstrained trajectories, as well as their corresponding thrust profiles.

112 D. Implementation Issues

(a) The trajectory from Earth to Mars. (b) The thrust profile for the trajectory from Earth to Mars.

Figure D.2: The trajectory from Earth to Mars and the corresponding thrust profile, based on the data from Table 7.2 [21].

The paper by Taheri and Abdelkhalik [21] does not provide any information on the value of the coefficients
that produce this trajectory, therefore the coefficient that the author of this thesis found are enclosed in Ta-
ble D.2.

Table D.2: The coefficients that are used to compute the trajectories in Figure D.2a.

a0 a1 a2 b1 b2 c0 c1 c2 c3 c4 c5 d1 d2 d3 d4 d5

Unconstrained 2.53 -0.26 0 0 0 10.3 -5.56 -0.28 0.67 0.05 -0.03 0.6 2 0.15 -0.18 -0.01
Constrained 2.53 -0.26 0 0 0 9.9 -5.56 -0.03 0.67 0 -0.03 0.96 2 0.01 -0.18 0

D.5. Solving Process
Taheri and Abdelkhalik [21] do not state the exact number of discretisation points that have been used to
compute both trajectories, but only claim that at least 15 discretisation points are required to capture the
topologies of the trajectory and that after 80 discretisation points no significant improvements are made.
When the provided reference case as in Table D.1 is executed, it neatly matches Figure D.2, but if a run over
the entire range of DPs is done, the obtained ∆V values show the following pattern as in Figure D.3.

This figure clearly indicates that at some discretisation points the solver does not converge to the right solu-
tion. Hence this means that it remains unclear whether this is inherent to the method, or due to the imple-
mentation as described in Chapter 5. This phenomenon was eventually resolved by implementing a Monte
Carlo component in the simulation and performing a multi-start with 15 different decision vectors which
were based on a normal distribution of the first initial guess. The results of this multi-start is shown in Fig-
ure D.4. Note that the range has been significantly increased to clearly show the asymptotic behaviour.

D.6. Reference Frame
The second step in setting up a finite Fourier series trajectory model is to define the boundary conditions.
The following equation is given in order to compute the transfer angle θ f at the position of the arrival body
(explaining the subscript f) as a function of the number of revolutions Nrev [21]:

θ f = θ0 +Nrev ·2π (D.8)

in which θ0 represents the initial angle between the departure body at the start (t = 0) and the arrival body at
the end (t = T), measured counter-clockwise. This is nicely illustrated by Figure D.5.

D.6. Reference Frame 113

10 20 30 40 50 60 70 80

Number of DPs [-]

0

20

40

60

80

100

120

V
 [
k
m

/s
]

Figure D.3: Excessively high ∆V values are found for some random discretisation points.

0 50 100 150 200 250 300 350 400 450 500

Number of DPs [-]

5.65

5.66

5.67

5.68

5.69

5.7

5.71

V
 [
k
m

/s
]

Figure D.4: After the multi-start feature has been implemented, the ∆V behaves as it should for an increasing number of discretisation
points.

Taheri and Abdelkhalik [21] however do not mention that the transfer angle is always normalised in such a
way that the positive x-axis always serves as the datum line from which θ is measured. This causes problems
when the SPICE libraries are used to obtain the state vectors of celestial bodies with respect to the ecliptic
reference frame, as this normalisation is not accounted for.

In order to solve it, two things can be done: either the state vector is corrected for this normalisation, or
Equation (D.8) is slightly altered. The approach that has been followed in this thesis and thus in the imple-
mentation as explained in Chapters 5 and 6 is the latter one, in which the initial transfer angle θi is added,
resulting in Equation (D.9).

θ f = θ0 +Nrev ·2π+θi (D.9)

114 D. Implementation Issues

Figure D.5: A graphical representation explaining how the initial angle θ0 between the departure body at t = 0 and the arrival body at
t = T is found.

E
Fourier Coefficients

As an addition to Section 11.4, the figures that have not been discussed separately are included below as well.
Figures E.1 and E.3 show the results of the trajectory to Jupiter and Dionysus respectively while the settings
for case II have been applied: the coefficients for r , θ and z are all estimated by the initialisation function that
can be read in the title of the subfigures.

Furthermore, Figures E.2 and E.4 contain the outcome of the trajectory solutions to Jupiter and Dionysus
respectively while the settings for case III have been applied: the coefficients for r and θ are estimated by the
functions that are written in the title of the subfigures and the coefficients for z are set equal to zero (left), or
the coefficients for both r , θ and z are approximated by the initialisation function in the title of the subfigures
(right).

115

116 E. Fourier Coefficients

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

-40

-30

-20

-10

0

10
C

o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(a) f (τ) = aτ3 +bτ2 + cτ+d

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

-40

-30

-20

-10

0

10

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(b) f (τ) = aebτ+ c

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

-80

-60

-40

-20

0

20

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(c) f (τ) = A sin
(
ω

(
τ−φ))+K

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

0

100

200

300

400

500

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(d) f (τ) = a +b ln(τ)

Figure E.1: The newly obtained Fourier coefficients and their (original) initial guess for a trajectory to Jupiter. Following the outline of
case II the mentioned function that serves as a subtitle is used to approximate both r , θ and z.

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

-20

0

20

40

60

80

100

120

140

160

180

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(a) The Fourier coefficients where r is approximated by a power
function and θ by a logarithmic function, while z is set to zero.

a
0

a
3

a
4

a
5

a
6

b
3

b
4

b
5

b
6

c
0

c
3

c
4

c
5

c
6

d
3

d
4

d
5

d
6

e
0

e
3

e
4

f
3

f
4

Coefficient

0

50

100

150

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(b) The Fourier coefficients where r is approximated by a power
function and θ by a logarithmic function, while z is approximated

by a sinusoidal function.

Figure E.2: The newly obtained Fourier coefficients and their (original) initial guess for a trajectory to Jupiter.

117

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

Coefficient

-10000

-8000

-6000

-4000

-2000

0

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(a) f (τ) = aτ3 +bτ2 + cτ+d

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

Coefficient

-250

-200

-150

-100

-50

0

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(b) f (τ) = aebτ+ c

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

Coefficient

-10000

-8000

-6000

-4000

-2000

0

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(c) f (τ) = A sin
(
ω

(
τ−φ))+K

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

Coefficient

-15000

-10000

-5000

0

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(d) f (τ) = a +b ln(τ)

Figure E.3: The newly obtained Fourier coefficients and their (original) initial guess for a trajectory to Dionysus. Following the outline of
case II the mentioned function that serves as a subtitle is used to approximate both r , θ and z.

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

Coefficient

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

100

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(a) The Fourier coefficients where r is approximated by a power
function and θ by a logarithmic function, while z is set to zero.

a
0
a

3
a

4
a

5
a

6
b

3
b

4
b

5
b

6
c

0
c

3
c

4
c

5
c

6
d

3
d

4
d

5
d

6
e

0
e

3
e

4
e

5
e

6
e

7
e

8
f
3

f
4

f
5

f
6

f
7

Coefficient

-10000

-8000

-6000

-4000

-2000

0

C
o
e
ff
ic

ie
n
t
v
a
lu

e
 [
-]

Original initial guess

Coefficient solution

New initial guess

(b) The Fourier coefficients where r is approximated by a power
function and θ by a logarithmic function, while z is approximated

by a sinusoidal function.

Figure E.4: The newly obtained Fourier coefficients and their (original) initial guess for a trajectory to Dionysus.

F
Background Information on Shape-Based

Methods

The methods are arranged chronologically with respect to the year of the first publication, starting with the
exponential sinusoid in Appendix F.1, followed by the inverse polynomial in Appendix F.2 and the spherical
shaping method in Appendix F.3. At last, the hodographic shaping method is worked out in Appendix F.4,
after which the finite polynomial method is elaborated upon in Appendix F.5.

F.1. Exponential Sinusoid
The exponential sinusoid (exposin in short) is the very first revolutionary method to be used for low-thrust
trajectory design. It is designed by Petropoulos and Longuski [14] and requires the equation of motion as
given in Equation (2.1) to be rewritten in polar coordinates, which results in Equation (2.2) and is here stated
for the sake of clarity: {

r̈ − r θ̇2 + µ

r 2 = Ta sinα

2ṙ θ̇+ r θ̈ = Ta cosα
(F.1)

The exponential sinusoid is then described as follows:

r = k0e(k1 sin(k2θ+φ)) (F.2)

In here, k0, k1, k2 and φ are constants. k0 Represents a scaling factor. k1 Is the dynamic range parameter that
influences the ratio of the apoapsis distance to the periapsis distance. The winding parameter k2 is a measure
for the number of revolutions the trajectory will cover. This effect is depicted in Figure F.1. The phase angle φ
determines the orientation of the spiral in the plane. The method makes use of tangential thrust. This means
that the thrust vector is always pointing in the direction of the velocity vector or against it.

Figure F.1: The effects of the winding parameter k2 [14]. In the left spiral k2 = 2/3, while at the right spiral it is equal to 2/11.

By inserting the shape function of Equation (F.2) into the polar equations of motion in Equation (F.1) and
rewriting it, an analytic relation for the angular rate θ̇ is found.

119

120 F. Background Information on Shape-Based Methods

θ̇2 =
(µ

r 3

) 1

tan2
(
γ
)+k1k2

2 sin
(
k2θ+φ

)+1
(F.3)

Finally, the thrust angle α is defined in Equation (F.4). Tangential thrust is chosen, because it is the simplest
analytic case and results in an attractive decoupling of the angular velocity and acceleration. With tangential
thrust, the thrust angle α is equal to the flight path angle γ. In case retrograde thrust is applied, the thrust
vector is pointing in the exact opposite direction. A value of n equal to 0 therefore represents prograde thrust,
while the spacecraft experiences retrograde thrust in case n is equal to 1.

α= γ+nπ (F.4)

The time of flight (TOF) for this method can be found by integrating the inverse of the radial velocity from 0
to the final angle θ f , as seen in Equation (F.5) [6]. Any possible out-of-plane motion is not taken into account
for the TOF calculation.

TOF =
∫ t f

0
dt =

∫ θ f

0

dt

dθ
dθ (F.5)

The total∆V that is required to fly the mission can be computed from the integration of the thrust acceleration
Ta , as defined in Equation (2.2), over the transfer angle [6].

∆V =
∫ t f

0
Ta dt =

∫ θ f

0

Ta

θ̇
dθ (F.6)

3D Motion
For modelling three-dimensional motion, the exposin uses an additional thrust acceleration fh , which acts
perpendicular to the angular momentum vector of the spacecraft. It is defined as follows:

fh = µ

r 2

[
a0P +b0

rmi n

r

]
(F.7)

in which a0P and b0 are constants and rmi n is the periapsis radius of the trajectory. The scaling of the equa-
tion with 1

r 2 is done such that fh is adjusted according to the degradation of received solar power. The fh

component is shaped such that it matches the three-dimensional position at final time.

Discussion
The exponential sinusoid is a very simple and fast shape-based method with only four shape parameters that
can also be combined with gravity assists. As this is one of the very first shape-based methods, it has been
revolutionary in the field of preliminary trajectory design.

Nonetheless, it lacks in terms of efficiency and the ability of generating feasible trajectories, because it
does not have a boundary condition set on its velocity, which thus has to be obtained through iterations, and
its thrust profile can only be acquired a posteriori, which could yield excessively higher thrust levels than that
are currently technologically feasible. Also, a three-dimensional trajectory is only approximated.

Pro:
• It quickly describes the trajectory with four shape parameters.
• It can be combined with gravity assists.

Con:
• The out-of-plane motion is only approximated.
• Only tangential thrust can be applied.
• It does not have any boundary conditions on velocity.
• The thrust profile is determined a posteriori.

F.2. Inverse Polynomial
When designing a new shape-based method, Wall and Conway [28] tried to extend Petropoulos’ exposin with
two additional free parameters. Unfortunately, this did not work out, so then a curve-fitting algorithm was

F.2. Inverse Polynomial 121

applied to a known trajectory. From here it was found that the orbit was best represented by a fifth or sixth-
order inverse polynomial (IP):

r (θ) = 1

a +bθ+ cθ2 +dθ3 +eθ4 + f θ5 + gθ6 (F.8)

Depending on whether the transfer time will be specified or not, a sixth or fifth-order polynomial will be used,
respectively. For this method it is important to find the values of the constants a, b, c, d , e, f , and g . In the
following explanation, first the solution of the fifth-order polynomial will be explained.

As the inverse polynomial method defines the thrust in the same way as the previously discussed exposin
method, Equation (F.4) applies as well. The constraints for the initial and final flight path angle need to be
defined. To do this, the time derivative of Equation (F.8) needs to be found. With this derivative, the flight
path angle γ is given by the following expression (recall Figure 2.4):

tan
(
γ
)= ṙ

r θ̇
=−r · (b +2cθ+3dθ2 +4eθ3 +5 f θ4) (F.9)

Filling in the boundary conditions for the start and the end point of the trajectory, i.e. θ0 = 0 and θ f = θ f , the
two flight path angle constraints can be determined, leading to:

tan
(
γ1

)=−r1 ·b (F.10a)

tan
(
γ2

)=−r2 ·
(
b +2cθ f +3dθ2

f +4eθ3
f +5 f θ4

f

)
(F.10b)

To find the other polynomial coefficients, Equation (F.8) is to be plugged into the equations of motion in
Equation (2.2). If then the assumption for the thrust direction as described in Equation (F.4) is implemented,
the expression can be rewritten for θ̇:

θ̇2 = µ

r 4

1[
(1/r)+2c +6dθ+12eθ2 +20 f θ3

] (F.11)

Whereas Equations (F.10a) and (F.10b) guarantee that the velocity direction (i.e. the flight path angle) of the
spacecraft matches the initial and final orbits, Equation (F.11) ensures that the velocity magnitude is correct
as well.

The first three coefficients a, b an c can be obtained by filling in the initial conditions in the previously found
equations. The other three, i.e. d , e and f , can be found by feeding the terminal BCs into those equations and
then solving a linear system of equations.

When all coefficients are known, the TOF can be computed by integrating Equation (F.11) over the total trans-
fer angle, which Wall and Conway [28] did by means of a root-finding algorithm. This time can however not
be used to calculate the position of the target body at r2, as it is not constrained. Therefore, it is recommended
to use the fifth-order polynomial in case of time-free problems, as the point of rendez-vous is not fixed here,
hence θ f is free. However, in case it is desired to specify the transfer time, the sixth-order inverse polynomial
must be used. For this version of the shape function, the coefficients a, b and c are still computed in the same
way. The new transfer time constraint will be represented by parameter d , for it has the smallest sensitivity to
change in transfer time, which is beneficial to root-finding algorithms. The other four coefficients are again
determined by solving a linear system of equations.

It is important to note that the expression for θ̇ in Equation (F.11) changes slightly by adding the g coefficient:

θ̇2 = µ

r 4

1[
(1/r)+2c +6dθ+12eθ2 +20 f θ3 +30gθ4

] (F.12)

To find coefficient d , this equation is integrated over the total transfer angle θ f and equated to the required
TOF. With a root-finding algorithm the required value for d can be determined, such that the inverse polyno-
mial shape function complies with the constraint on the transfer time.

122 F. Background Information on Shape-Based Methods

To eventually determine the thrust acceleration Ta as defined by Equation (2.2), the only unknown variable
in this equation is the second derivative of θ. This is simply determined by taking the derivative of Equa-
tion (F.12) (or Equation (F.11) in case of a fifth-order polynomial). Plugging this in the EoM results in the
following expression for the thrust acceleration:

Ta =− µ

2r 3 cos
(
γ
) 6d +24eθ+60 f θ2 +120gθ3 − (

tan
(
γ
)

/r
)[

(1/r)+2c +6dθ+12eθ2 +20 f θ3 +30gθ4
]2 (F.13)

Finally, the total velocity increment for the entire trajectory is found by:

∆V =
∫ θ f

0

Ta (θ)

θ̇ (θ)
dθ (F.14)

which is an interesting result, as the exhaust velocity does not seem to influence the required ∆V . It is purely
based on the shaping function.

3D Motion
In the extension of the inverse polynomial method to three-dimensional space, Wall [27] simply added a
third component to the polar equations of motion, transforming them to a cylindrical coordinate system, as
specified by Equation (2.3). This shaping function of the third dimension is a polynomial too:

z (θ) = az +bzθ+ czθ
q−1 +dzθ

q (F.15)

in which az , bz , cz and dz are the polynomial coefficients, while q denotes the highest order of the polyno-
mial. With the initial and final positions and velocities in the z-direction, the four coefficients can be solved.
At the initial position, θ is equal to zero, which means the coefficients az and bz can be determined directly.
The other two coefficients are found by solving another matrix equation.
Once these coefficients are known, the thrust acceleration component in the z-direction, Taz can be deter-
mined from the third equation in Equation (2.3), which results in:

Taz =
µ

r 3 z − [
cz

(
q −1

)(
q −2

)
θq−3 +dz q

(
q −1

)
θq−2] θ̇2 + [

bz + cz
(
q −1

)
θq−2 +dz qθq−1] θ̈ (F.16)

The total thrust acceleration is then found by the norm of the in-plane thrust acceleration Tarθ and the out-
of-plane thrust acceleration Taz :

Ta =
√

T 2
arθ

+T 2
az

(F.17)

Discussion
The main purpose of the sixth-order inverse polynomial is its applicability to rendez-vous problems in fixed
time. It has however been shown that it is effective in computing interception trajectories and orbit transfers
as well. The fifth-degree variant can be used for these same problems in case the transfer time is not specified.
It also demonstrated to work well with a genetic algorithm (GA).

Furthermore, in case of a rendez-vous trajectory, the inverse polynomial method proved to be able to
successfully create near-optimal trajectories. In the first run of an asteroid rendez-vous problem Wall and
Conway [28] optimised for spacecraft mass. When this shape-based solution was later on used as an initial
guess for a more accurate solver, the final mass only differed by a few percent [28].

With the extension of the method into the third dimension, a wider spectrum of trajectories can be com-
puted. Wall [27] however mentions that this approach is rather limited, as it can only handle inclinations of
up to 15°. Up to a plane change of this degree, the assumption that z is small relative to r holds, which still
means that missions towards most celestial objects can be designed properly. As soon as higher inclinations
are to be achieved, the method becomes too inaccurate.

Pro:
• It is simple to use.
• It is applicable to rendez-vous and interception trajectories, and orbit raising problems.

F.3. Spherical Shaping Method 123

• It works well with a genetic algorithm optimiser.

Con:
• Its 3D performance is below average.
• The thrust profile is fully determined by the BCs.
• The TOF is found iteratively.

F.3. Spherical Shaping Method
After the exposin and the inverse polynomial, it were Novak and Vasile [12] who came up with an even more
advanced method: the spherical shaping method. This method is based on a three-dimensional descrip-
tion of the state of the spacecraft in spherical coordinates. The spherical shaping method differs from the
others that have been described in this chapter so far, as the parameters that describe the trajectory are not
parametrised by time t , but by the azimuthal angle θ. This gives the following state vector with r = R (θ), t =
T (θ) and φ =Φ (θ):

x̃ =
[

r t φ dR
dθ

dT
dθ

dΦ
dθ

]T

(F.18)

The assumed shapes are defined with the three formulas for R (θ), T (θ) and Φ (θ). The coefficients in those
functions will be dependent on the boundary conditions of the trajectory, i.e. position and velocity. The
convenience of these functions is that they can be solved analytically, resulting in the thrust profile, the ∆V-
budget and the spacecraft mass, all of which are crucial design parameters.

To analyse the motion directly, Equation (2.1) needs to be rewritten to account for the parametrisation by θ.
Substituting the newly parametrised equations of motion in Equation (2.1) results in:

θ̇2r′′+ θ̈r′ =−µ r

r 3 +u (F.19)

in which u corresponds to the thrust acceleration vector Ta, which is defined as the total thrust T divided by
the spacecraft mass m. It should also be noted that the prime notation indicates the derivative with respect
to θ.

The trajectory shape is defined through shaping functions that specify the radial distance R and the elevation
angle Φ. The only conditions that must hold, is that R can only be positive, and Φ should remain on the in-
terval

[−π
2 , π2

]
.

Both Novak and Vasile [12] and Roegiers [17] suggest that the following two functions are to be used as shaping
functions. The radius is shaped through an inverse polynomial, while the elevation angle is a polynomial
equation. These equations were chosen as the boundary conditions on the position and velocity can be
obtained analytically.R (θ) = 1

a0 +a1θ+a2θ2 + (a3 +a4θ)cos(θ)+ (a5 +a6θ)sin(θ)
Φ (θ) = (b0 +b1θ)cos(θ)+ (b2 +b3)sin(θ)

(F.20)

These functions are however not strictly bounded to the spherical shaping method, which makes it rather a
shape-based framework than a method. In his MSc thesis, Vroom [25] proposed another shaping function
for the elevation angle, because the three-dimensional performance of the method could be improved. His
shaping function is shown below in Equation (F.21):

Φ (θ) =
√

1+(
a0ea1θ+a2+a3ea4θ+a5

)
1+(

a0ea1θ+a2+a3ea4θ+a5
)

cos2(p0θ
p1+p2θ+p3)

cos
(
p0θ

p1 +p2θ+p3
)(

b0 +b1θ+b2θ
2
)+ c (F.21)

This new shaping function contains already 13 coefficients. Ten of them can be covered by the boundary
conditions, but the others will have to be found by means of an optimisation process, and thus it will be more
computationally intensive.

124 F. Background Information on Shape-Based Methods

The only shape function that is yet to be determined is T (θ). Novak and Vasile [12] defined the expression for
T through its derivative:

T ′ =
√

D (θ)R (θ)2

µ
(F.22)

In here, D (θ) is the time equation scalar function. An interesting property of D is that it is not dependent on
the reference frame. It solely depends on the shape of the trajectory. As Equation (F.22) is a root function, real
values are only found for T ′ in case D is positive, meaning the curvature is towards the central body. Figure F.2
shows the effects of the curvature on the flown trajectory.

Figure F.2: A graphical depiction of the curvature depending on the time equation scalar function D [17].

When the normal component of the thrust acceleration is substituted by the radius vector r, expressed in
spherical coordinates, as seen in Equation (2.6), the following formula can be used for D (θ):

D =−r ′′+2
r ′2

r
+ r ′φ′φ

′′− sin
(
φ

)
cos

(
φ

)
φ′2 +cos2

(
φ

) + r
(
φ′2 +cos2 (

φ
))

(F.23)

The velocity and acceleration vector can be computed, as well as the control acceleration to find the necessary
∆V and the final mass of the spacecraft. The total ∆V is calculated according to:

∆V =
∫ t f

0
u dt =

∫ θ f

θ0

u

∣∣∣∣ dt

dθ

∣∣∣∣ dθ =
∫ θ f

0
u |T (θ)| dθ (F.24)

while the total time of flight is found by:

T OF =
∫ t f

0
dt =

∫ θ f

0
|T (θ)| dθ (F.25)

Discussion
The spherical shaping method designed by Novak and Vasile [12] can be used in three dimensions and returns
much better results with respect to inclined orbits than the average shape-based method. With the improve-
ments made by Roegiers [17] and Vroom [25] quite some more research has been done on this method which
led to an improvement from a maximum achievable inclination of 50° up to 70°.

This immediately leads to another asset of the method: it can be used with various shaping functions.
The spherical shaping method could be regarded as a shape-based framework, rather than a method, which
offers a large amount of freedom compared to the previously discussed shape-based methods.

The first major drawback is found in the TOF constraint. This cannot be computed analytically and has to be
determined through an iterative process, which reduces the speed advantage shape-based methods usually
have over regular trajectory design tools.

Moreover, the improvement for inclined orbits came together with a decline in the quality of the com-
puted ∆Vs, as these did not yield correct results.

F.4. Hodographic Shaping Method 125

Finally, the method is not capable of having a thrust constraint implemented in the shaping functions,
which translates to many trajectories that are unfortunately not feasible, due to limitations in achievable en-
gine technology.

Pro:
• It performs relatively well in case of three-dimensional orbits.
• It can be used with various shaping functions.

Con:
• In case more than ten coefficients are used for the shaping functions, the TOF constraint needs to be

satisfied by an iterative process.
• With the new shaping function for the elevation angle by Vroom [25], the calculated ∆V are off.
• The thrust is found a posteriori and cannot be constrained beforehand.

F.4. Hodographic Shaping Method
Another method which TU Delft significantly contributed to is the hodographic shaping method by Gondelach
[6]. In fact, it was designed at TU Delft. It uses a different approach than all other methods that are discussed
in this chapter. Often it is the radius or the polar angle of the trajectory that is shaped, but this does not hold
for the hodographic shaping method. In this method the perspective has been shifted to the velocity do-
main, hence the shaping functions shape the velocity of the transfer trajectory. The name arises from velocity
hodographs, as seen in Figure F.3. The path in the velocity domain can be integrated over time to obtain a
path in the spatial domain.

Figure F.3: A transfer trajectory with its corresponding velocity hodograph [5].

The method has the capabilities to work in three dimensions and thus it uses the cylindrical coordinate sys-
tem, as specified in Equation (2.3). The hodographs also allow for two approaches to be taken: time- or polar
angle-driven. First the time-driven case will be explained, followed by the polar angle-driven elaboration.

In the time-driven case, the three velocity components in the radial direction (Vr), the transverse direction
(Vθ) and the axial direction (Vz) are shaped as a function of t . The radial and axial distances are then found
by analytically integrating their corresponding velocity functions according to:

r (t) = r0 +
∫ t

0
Vr dt (F.26a)

z (t) = z0 +
∫ t

0
Vz dt (F.26b)

126 F. Background Information on Shape-Based Methods

The polar angle θ is extracted by the integration of the angular velocity:

θ (t) = θ0 +
∫ t

0
θ̇ dt = θ0 +

∫ t

0

Vθ
r

dt (F.27)

The various thrust components can be computed by substituting the three velocity functions in Equation (2.3).
The total thrust acceleration is then given by:

Ta =
√

T 2
arθ

+T 2
az

(F.28)

Finally, the ∆V that is required for the trajectory to be flown is obtained by simply integrating the thrust over
the time of flight:

∆V =
∫ t f

0
Ta dt (F.29)

The base functions to describe the velocity can take various forms, as long as they are analytically solvable to
minimise the computational effort. In this way, trigonometric, polynomial or exponential terms can serve as
a base function, which implies that each velocity function can be described by a summation of base functions
vi (t), multiplied by their corresponding coefficient ci :

V (t) =
n∑

i=1
ci vi (t) (F.30)

where the minimum number of base functions is of course dependent on the number of boundary condi-
tions. As each velocity function will have to satisfy three boundary conditions, there are nine equations to be
solved. This leads to a matrix equation that finds expressions for the coefficients c1 through c3. This holds for
the radial and axial velocities. The transverse component is found in a slightly different but similar way, as
the polar angle θ is found by integrating the angular velocity θ̇.

Taking a closer look at the polar angle-driven method, many similarities with the spherical shaping method
described in Appendix F.3 have been found. Again, there will be a shaping function for the radius R (θ), a
shaping function for the z-component Z (θ), and ultimately there is the time evolution function T (θ). The
reason why there is not a function for θ itself, has to do with the fact that it is θ which is the independent
variable. Therefore, the time evolution function exists, which is basically the inverse of θ̇. The shaping func-
tions are shown below. Note the difference in notation with respect to the spherical shaping method, as these
functions below would correspond to R ′ (θ), T ′ (θ) and Z ′ (θ) for the spherical shaping method.

r ′ = dr

dθ
= R (θ)

t ′ = dt

dθ
= T (θ)

Z ′ = dz

dθ
= Z (θ) (F.31)

Just as for the position in r and z as specified by Equations (F.26a) and (F.26b) with the parametrisation by t ,
a similar approach is followed in the polar angle-driven case:

r (θ) = r0 +
∫ t

0
R (θ) dθ (F.32a)

z (θ) = z0 +
∫ t

0
Z (θ) dθ (F.32b)

The equations to compute the ∆V and the time of flight are exactly the same as for the spherical shaping
method, but they are stated here again for the sake of completeness:

∆V =
∫ t f

0
Ta dt =

∫ θ f

θ0

Ta

∣∣∣∣ dt

dθ

∣∣∣∣ dθ =
∫ θ f

0
Ta |T (θ)| dθ (F.33a)

F.5. Finite Polynomial 127

T OF =
∫ t f

0
dt =

∫ θ f

0
|T (θ)| dθ (F.33b)

To solve for the coefficients that accompany the base functions, exactly the same concept as for the time-
driven case can be used.

Discussion
Regarding computation speed, this shaping method is very promising. This has two reasons: the first one be-
ing the need of only solving nine boundary conditions, which is a low number compared to the other methods
discussed in this chapter. The second reason is in the process of dealing with the boundary conditions. Be-
cause they are solved immediately, i.e. without an iterative process, this saves time significantly. Besides, this
method does not have any problems when three-dimensional trajectories are to be computed.

The method however does not seem to cope well with multi-revolution trajectories. In case a trajectory
would contain more than two full revolutions, the hodographic shaping method is not able to generate good
trajectories anymore.

Pro:
• There are no iterative computations needed.
• The method works well in three dimensions.
• The thrust can be pointed in any direction.

Con:
• The performance decreases if the number of revolutions is larger than two.
• The method does not have a thrust magnitude constraint incorporated.

F.5. Finite Polynomial
One of the more recently developed methods is the finite polynomial method [31]. It is quite similar to the
inverse polynomial method explained in Appendix F.2. With this method, it is not one shape that is assumed,
but a batch of coefficients that assume an approximation of the trajectory. It can be used in three-dimensional
motion, is compatible with a thrust constraint and it uses a cylindrical coordinate system. The equations of
motion are defined as in Equation (2.3) and s is obtained by using the Pythagorean theorem on the mag-
nitude of the radius vector r and the axial distance vector z. The in-plane motion, i.e. in the x y−plane, is
approximated by r and θ which are both a function of time t :

{
r (t) = ar0 +ar1 t +ar2 t 2 +ar3 t 3 + . . .+arm t m (F.34a)

θ (t) = aθ0 +aθ1 t +aθ2 t 2 +aθ3 t 3 + . . .+ ...+aθn t n (F.34b)

In this parametrisation ar0 , ar1 up to arm and aθ0 , aθ1 up to aθn are the coefficients of the polynomial, which
can also be referred to as design parameters. They should be defined such that both m and n are always
larger than or equal to three. To rewrite the set of equations in Equation (2.3) in one single expression, some
substitutions need to be made, which finally result in:

r 2
(
µθ̇

s3 − θ̇3
)
+ r

(
θ̇r̈ − ṙ θ̈

)−2ṙ 2θ̇ = 0 (F.35)

To also describe the out-of-plane motion, a function for z is introduced as well:

z (θ) = az cos(θ)+bzθ+ czθ
q−1 +dzθ

q (F.36)

where q is a positive integer larger than three and the coefficients az , bz , cz and dz are computed from the
boundary conditions. The thrust accerlation Taz is obtained by substituting this equation in the third term of
Equation (2.3), resulting in:

Taz =
µ

s3 z + θ̈ [−az sin(θ)+bz +
(
q −1

)
czθ

q−2 +qdzθ
q−1]+

θ̇2 [−az cos(θ)+ (
q −1

)(
q −2

)
czθ

q−3 +q
(
q −1

)
dzθ

q−2] (F.37)

128 F. Background Information on Shape-Based Methods

The total thrust is then computed as the norm of the in-plane thrust acceleration Tarθ and the out-of-plane
thrust acceleration Taz according to:

Ta =
√

T 2
arθ

+T 2
az

(F.38)

When all required equations are known, the design parameters can be computed. To do so, the shape func-
tions for r , θ and z need to be substituted in Equation (F.35). The boundary conditions are used to compute
all unknown coefficients.

The initial design parameters can be found by using the fact that t0 = 0. This allows for the first four co-
efficients to be computed. The other coefficients are obtained by solving two linear systems of equations for
both r and θ, which are in the form of Ax = B . For the out-of-plane motion, i.e. in the z-direction, a similar
approach is followed.

To compute the other polynomial coefficients, Zeng et al. [31] propose to use the sequential quadratic pro-
gramming (SQP) approach. The solving procedure can thence be described as follows. First, a reference tra-
jectory is computed based on the eight initial and final boundary conditions from Equation (F.35). The next
step is to divide the total time of flight into a set number of discretisation points. Zeng et al. [31] state that
by trial and error, they found out that 12 points per revolution is a safe choice. With the previously obtained
reference trajectory the state parameters can be calculated at each discretisation point. The outcome should
be substituted in Equation (F.38), keeping the constraint into account. The newly acquired set of equations
can be solved by means of an SQP approach.

To start this process, an initial guess for the polynomial coefficients is used: the first four coefficients of r
and θ are found by approximating the entire trajectory by a cubic polynomial. If the equations that construct
the finite polynomial method are then equated to the outcome of the cubic polynomial approximation, an
initial guess for the finite polynomial can be found. All eight coefficients of the two cubic polynomials can be
computed from the boundary conditions. Once these are known, a simple linear system of the form Ax = B
can be set up, in which A contains the finite polynomial values, x contains the finite polynomial coefficients
and B contains the outcome of the cubic polynomial approximation. A more detailed explanation of this
procedure can be found in Section 4.3.

Discussion
As this method could be regarded as an improvement with respect to the inverse polynomial method de-
scribed in Appendix F.2, it is best to compare these two. First of all, Zeng et al. [31] have shown that their
method is more stable than the inverse polynomial. The method meets the boundary conditions well and
the thrust constraint is a big advantage. Moreover, inspecting the computation time the algorithm needs as
a whole and the magnitude of the required ∆V, it is again the finite polynomial that outperforms the inverse
polynomial: it takes less time to find the solution and the ∆V is closer to the optimal value.

Pro:
• It is an easy, quick and accurate method.
• It can handle a constraint on the maximum thrust acceleration.
• The number of free parameters is variable.

Con:
• The out-of-plane motion can only be analysed as long as the inclination does not exceed 15°.
• It can only make use of tangential thrust.

G
Uncorrected CPU-Time Measurements

This appendix contains the CPU-time measurements that underwent an outlier analysis, as their mean value
is too far off from the majority of the data points. In Figure G.1 the data from the two-dimensional case I
to Jupiter with a sinusoidal (Figure G.1a) and a logarithmic initialisation function (Figure G.1b) are shown.
The time analysis of the two-dimensional case II to Jupiter with a tailored initialisation function where r
is estimated by a power initialisation function and θ by a logarithmic initialisation function can be seen in
Figure G.2.

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

250

300

350

400

450

500

550

600

650

700

T
im

e
 [
m

s
]

Data point

Mean time

(a) f (τ) = A sin
(
ω

(
τ−φ))+K

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

250

300

350

400

450

500

550

600

650

700

T
im

e
 [
m

s
]

Data point

Mean time

(b) f (τ) = a +b ln(τ)

Figure G.1: An overview of the uncorrected average CPU-time required to find the Fourier coefficients that shape the trajectory to
Jupiter.

0 100 200 300 400 500 600 700 800 900 1000

Run [-]

250

300

350

400

450

500

550

600

650

700

T
im

e
 [
m

s
]

Data point

Mean time

Figure G.2: The uncorrected solver convergence time of the trajectory to Jupiter that uses a polynomial function to approximate r , while
a logarithmic function has been used to estimate θ.

129

	Preface
	Summary
	Nomenclature
	Introduction
	I Background
	Celestial Mechanics
	Reference Frame
	Coordinates and Orbital Elements
	Equations of Motion
	General Formulation
	Polar Coordinates
	Cylindrical Coordinates
	Spherical Coordinates

	Perturbations
	Thrust
	Third-Body Perturbations
	Radiation Pressure
	Gravity Field Perturbing Forces
	Aerodynamic Forces
	Electromagnetic Forces
	Relativistic Effects
	Summary

	Low-Thrust Propulsion
	Physical Principles
	Types of Low-Thrust Propulsion
	Low-Thrust Space Missions
	Modelling Low-Thrust Transfer Trajectories

	Shape-Based Methods
	Introduction
	Comparison
	Finite Fourier Series
	2D Finite Fourier Series
	3D Finite Fourier Series

	II Implementation
	2D Implementation
	Free Parameters
	Boundary Conditions
	Initial Guess
	Initial Coefficients
	Sine and Cosine Matrices
	Solving Procedure
	Thrust Constraint
	Trajectory Construction and Velocity Increment

	3D Implementation
	Free Parameters
	Boundary Conditions
	Initial Guess
	Initial Coefficients
	Sine and Cosine Matrices
	Solving Procedure
	Trajectory Construction and Velocity Increment

	Validation
	Solver Validation
	Nelder-Mead Simplex Method
	Schwefel Test Function

	Mars in 2D
	Mars in 3D
	Tempel-1 in 3D

	Model Development
	Alternative Decision Vector
	2D Unconstrained Finite Fourier Series
	Solver Tuning
	V Deviations
	Random Variables

	Reference Frame
	The Number of Fourier Coefficients

	III Initialisation
	Strategy
	Finding the Optimum
	Function Types
	Power Function
	Exponential Function
	Trigonometric Function
	Logarithmic Function
	Other Possible Function Types

	Test Objects
	Jupiter
	Dionysus
	Haumea

	Experimental Outline
	2D Test Set-Up
	3D Test Set-Up
	Time Assessment

	2D Results
	Using a Different Initialisation Function
	Jupiter
	Dionysus

	Using a Tailored Initialisation Function
	Conclusion

	3D Results
	Using an Alternative Initialisation Function (r and Only)
	Jupiter
	Dionysus

	Using a Different Initialisation Function (r, and z)
	Jupiter
	Dionysus

	Tailored Initialisation Functions
	Jupiter
	Dionysus

	Coefficient Analysis
	Multi-start Analysis

	Conclusions and Recommendations
	Conclusions
	Implementation
	2D Initialisation
	3D Initialisation

	Recommendations

	Bibliography
	Cubic Polynomial Coefficient Derivation
	Real Time
	Scaled Time

	Initial Coefficients Derivation
	3D Finite Fourier Series Derivations
	Scaled Time
	Rephrased Fourier Terms

	Implementation Issues
	Initial Guess Calculation
	Decision Vector Definition
	2D Unconstrained Finite Fourier Series
	Validation
	Solving Process
	Reference Frame

	Fourier Coefficients
	Background Information on Shape-Based Methods
	Exponential Sinusoid
	Inverse Polynomial
	Spherical Shaping Method
	Hodographic Shaping Method
	Finite Polynomial

	Uncorrected CPU-Time Measurements

