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ABSTRACT 
Parametric modelling allows quick generation of a large 
number of design alternatives. Ultimately, it can be 
combined with optimization algorithms for obtaining 
optimal performance-driven design. However, setup of 
design space for optimization is a very complex task 
requiring designer’s a priori knowledge and experience. 
Therefore, this paper focuses on the process that happens 
before the optimization. It proposes to use multivariate 
analysis algorithms for exploring and understanding the 
relations between various design parameters, after sampling 
the design space. Additionally, portrayal of geometry is 
introduced as an extension of conventional visualization 
methods, which accounts for evaluation of ill-defined design 
criteria by using designer’s expertise. The proposed method 
is computationally efficient and integrated into an 
environment familiar to architects. It relies on multivariate 
analysis algorithms together with database querying 
capabilities and an interactive dashboard developed for 
geometry portrayal. 
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1 INTRODUCTION 

The traditional design process relies on designer’s 
knowledge, experience and intuition, which help to 
determine an optimal solution to a design problem. However, 
in recent years project complexity has increased while 
challenges of performance evaluation have decreased due to 
emergence of computational tools and methods. Therefore, 
design process is no more expected to find safe solutions by 
performing the correct calculations in later stages of a design, 
but rather explore a wide range of potential options, to come 
to informed decisions at every design stage. Fortunately, the 
advance in big data handling and analysis technologies has 
made design studies easier, providing more information to a 
designer. 

Parametric modelling allows quick generation of a large 
number of design alternatives. Ultimately, it can be 
combined with optimization algorithms for obtaining 
optimal performance-driven design. This however, accounts 
mostly for numerical performance values, disregarding ill-
defined criteria like design aesthetics or contextual 
appropriateness. In contrast to conventional optimization 
processes, interactive evolutionary optimization has been 
proposed by various researches. An overview of human input 
in the optimization process is available in [14]. The more 
relevant to architectural optimization ParaGen tool [15], has 
shown the benefits of combining parametric modelling and 
interactive evolutionary optimization on a wide variety of 
design examples. Even more control and interaction in 
performance-focused design space exploration is given in 
[11]. 

However, as noted in [14], automated optimization 
procedures fail to take advantage of designer’s expertise, 
while in architectural design an important role should be 
given to the learning process of a designer, providing him 
with knowledge on the trade-offs between various 
disciplines (e.g. climate, structural design, etc.) and 
performance objectives. This problem has been partly 
tackled in [16] by utilizing statistical assessment of complex 
data for post-processing results. Furthermore, [8] has used k-
means clustering and Archetypal Analysis to derive general 
knowledge linking architectural features to design 
performance. In [10] a phi-array visualization system is 
introduced to analyse sub-optimal solution. 

However, the challenge of exploring design alternatives still 
lies in facilitating interpretation of numerous optimization 
results both in means of comprehensive geometry 
visualization and understanding separate design parameter 
influence on the performance values. The practicability of 
tools from architect’s point of view has also been addressed 
as an important issue [16]. 

This paper presents a design environment that integrates 
guidance-based support for exploration of the design space, 
combing efficiency, user-friendliness and flexibility. It uses 
multivariate analysis algorithms of ModeFRONTIER [9] 
optimization software in tandem with Grasshopper-based [3] 
geometry visualization dashboard. The proposed method can 
additionally be used to explore solutions after running an 
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optimisation; however, it primarily aims at supporting initial 
knowledge generation before defining the desired design 
space. 

The research is conducted in TU Delft, Faculty of 
Architecture with the help of ESTECO on using multivariate 
analysis algorithms. A case study (Jiangmen Sports Center, 
Jiangmen, China) is provided by South China University of 
Technology. 

2 EXPLORATION OF DESIGN ALTERNATIVES 

The interactive evolutionary optimization algorithms focus 
on including a designer’s preferences mostly within the 
optimization cycle in the phases of selection and breeding 
[15, 11, 1] or result in visualization after running an 
optimization process for investigating sub-optimal results 
[16, 10]. In contrast, this paper focuses on supporting the 
design space definition before running the optimization 
(Figure 1). 

The design space definition typically describes the following 
elements: set-up of a model, which usually contains the 
solver or the simulation for the evaluation of the chosen 

performance values (both defined numerically and ill 
defined); establishment of criteria, which must be 
minimized, maximized or constrained; selection of the 
parameters and their domains. It is a complex procedure 
requiring a priori knowledge and experience; however, it 
also has a great influence on the optimization results. On the 
one hand, a too limited design space can miss a large number 
of optimal or sub-optimal solutions; while on the other hand, 
a too broad design space may result into a number of 
redundant computations and extended optimization times. In 
addition, the relevance of the model set-up to the defined 
problem needs to be tested explicitly to ensure that the 
subsequent evaluation is able to lead the optimization 
towards a desired solution. 

The proposed framework for exploration of design 
alternatives can be seen in Figure 1. A parametric model is 
developed using Grasshopper plugin for Rhino [3]. Sampling 
of the design space is consigned to ModeFRONTIER 
optimization software [9]. The software allows sampling of 
the design space using such algorithms as Random 
Sequence, Sobol, Latin Hypercube, Monte Carlo, Cross-
Validation, etc. [9]. These methods eliminate subjective bias 
and allow a good sampling of the design space. The 
evaluation (or simulation) of the chosen samples can be 
performed in any desired software both through Grasshopper 
and ModeFRONTIER environments. 

An important requirement for setting up the exploration 
environment is to have a comprehensive and versatile 
representation of the results. A large number of design 
alternatives may be formed by numerous inputs, all yielding 
multiple performance values. They can form a result space, 
which is impossible to perceive through conventional data 
visualization methods like scatter plots or parallelograms. 
Similarly, such graphs as correlation or scatter matrices are 
able to summarize the interrelationships, without, however, 
providing a visualization, which would be intuitive enough 
to analyse the data. Distinct from the aforementioned 
methods, multivariate analysis algorithms such as Self 
Organizing Maps (SOM) and Hierarchical Clustering are 
more suitable for capturing interrelated effects within a broad 
design space. 

However, the above algorithms can only account for the 
numerically defined performance values, while the 
exploration of the design problem requires a portrayal of 
corresponding geometry. For instance, some certain design 
variables can have no influence on performance; however, 
they cannot be discarded from the optimization process due 
to their influence on aesthetics or similar design criteria. 

In order to address this problem, the chosen clusters or parts 
of SOM are visualized in a Grasshopper-based dashboard 
through a series of pictures, which correspond to the 
generated solutions. A PostgreSQL database [13] is used as 
an intermediary between the two software for efficient 

Figure 1. A framework for design alternative exploration 
performed before defining preferred design space for the 

following optimization. 
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organization and querying functionality, as well as 
preserving a backup of collected data. 

Use of the database also facilitates a selection of preferred 
design direction, which can be chosen using a Grasshopper-
based dashboard and fed as a new initialized population for 
an optimization algorithm. Alternatively, the design space 
can be redefined and re-explored repeating the previous steps 
until a commonly acceptable design direction is chosen. The 
possibility to re-explore previous definitions, as well as 
combinations of multiple design spaces or their parts, is also 
enabled by employing the database. 

3 MULTIVARIATE ANALYSIS ALGORITHMS IN 
MODEFRONTIER 

ModeFRONTIER, developed by ESTECO, includes a set of 
multivariate analysis algorithms, some of which are 
described hereafter. 

3.1 Self-Organizing Maps 
SOM is an unsupervised neural network algorithm that 
projects high dimensional data onto a two-dimensional map 
[5]. The projection preserves the topology of the data so that 
similar data items will be mapped to nearby locations on the 
map. This is particularly useful when analysing un-correlated 
multidimensional data – such as dependencies between 
numerous design parameters and multiple objectives. 
Moreover, the representation of SOM is generally 
summarizing all the dependencies in a 2D space, which is an 
intuitive visualization technique.  

SOM is a sheet-like neural network, with nodes arranged as 
a regular, usually two-dimensional grid (for an example, see 
Figure 7). Each node is directly associated with a weight 
vector. The items in the input dataset are assumed to be in 
vector format. If n is the dimension of the input space, then 
every node on the map grid holds an n-dimensional vector of 
weights. The basic principle is to adjust these weight vectors 
until the map represents “a picture” of the input data set. The 
objective is to achieve a configuration in which the 
distribution of the data is reflected and the most important 
metric relationships are preserved. Interest is in obtaining a 
correlation between the similarity of items in the dataset and 
the distance of their most alike representatives on the map. 
In other words, items that are similar in the input space 
should map to nearby nodes on the grid. 

The algorithm proceeds iteratively. In each training step, a 
data sample x from the input space is selected. The learning 
process is competitive, meaning that a winning unit c on the 
map is determined when its weight vector m is most similar 
to the input sample x. 

 || x - mc || = mini || x – mi || (1) 

The weight vector mc of the Best Matching Unit (BMU) is 
modified to match the sample x even closer. As an extension 
to standard competitive learning, the nodes surrounding the 
BMU are adapted as well. Their weight vectors mi are also 

“moved towards” the sample x. Nodes closer to the BMU 
will be more strongly adjusted than nodes further away. At 
the beginning of the learning process, the BMU will be 
modified very strongly and the neighbourhood is large. 
Towards the end, only very slight modifications take place 
and the neighbourhood includes little more than the BMU 
itself. This corresponds to “rough ordering” at the beginning 
of the training phase and “fine” tuning near the end. 

Since not only the winning node is tuned towards the input 
pattern but also the neighbouring nodes, it is probable that 
similar inputs in future training cycles will find their BMU 
weight vector at nearby nodes on the map. During the 
learning process, this leads to a spatial arrangement of the 
input patterns. The more similar two patterns are, the closer 
their BMUs are likely to be on the final map. It is often said, 
that SOM folds like an elastic net onto the “cloud” formed 
by the input data, as can be seen in Figure 3. SOM training 
ultimately results in a set of weight vectors, which resemble 
the input data. If one of the components of the weight vectors 
is reported on top of the grid, each node can be used to 
display the value of that component for its BMU (algorithm 
in Figure 2). 

3.2 Hierarchical Clustering 
Cluster analysis tries to identify homogeneous subgroups of 
samples in a dataset such that they both minimize within a 
group variation and maximize between group variations [4]. 
It can be used to gain insights into the distribution of data 

Figure 3. Different phases of SOM training. Three-dimensional 
input data are represented by empty dots. SOM is the elastic net, 

which folds to reflect the distribution of input data. 

Figure 2. Algorithm of SOM sequential training 
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within a set, observe characteristics unique to each cluster, 
and help identifying clusters of interest for further analysis. 
Graphs like parallelograms, scatter plots and 
multidimensional scaling algorithms facilitate visualisation 
of clusters for interpretation purposes. 

To perform hierarchical clustering the user must specify a 
linking method based on which clusters should be merged. It 
creates nested clusters, not mutually exclusive, where larger 
clusters in later stages of the agglomeration may contain 
smaller clusters created at the earlier stages. Different 
methods exist to merge pairs of clusters at each step, each of 
which will result in different cluster patterns: 

 Single Linkage: the distance between two clusters is the 
distance between their closest points. 

 Complete Linkage: the distance between two clusters is 
given by the distance between their two furthest points. 

 Average Linkage: the distance between two clusters 
corresponds to the mean distance between all possible 
inter-cluster pairs. 

 Centroid Linkage: the distance between two clusters is the 
distance between cluster centroids (mean point calculated 
between all cluster members over all the variables of the 
data set. 

 Ward’s method: the distance between two clusters is 
computed as the increase in the sum of squares of the 
deviations from the centroid after merging two clusters 
into a single one. Ward’s method minimizes the sum of 
squares of any pair of clusters to be formed at a given step. 

The results of a hierarchical clustering can be represented by 
a tree chart called dendrogram, in which the dissimilarity 
between two samples can be read from the height at which 
they join a single group. Cutting the dendrogram at a specific 
height will produce a clustering with a selected level of 

resolution (Figure 4). The cutting level of the dendrogram is 
a critical choice: if it is too low, a trivial clustering will be 
obtained of a „one to one” kind where the number of clusters 
is almost equal to the number of observations. If the cutting 
level is too high, the “true” cluster structure of a dataset can 
get over-smoothed.  

A good rule of thumb on where to cut the dendrogram is to 
look at the largest gap between two successive groupings. 
Such large gaps stand for good clustering, mainly because 
adding one more cluster decreases the quality of the global 
clustering structure, so cutting before such steep decrease 
occurs is desirable [7]. 

4 GRASSHOPPER-BASED GEOMETRY 
VISUALIZATION DASHBOARD 

The dashboard has been developed at TU Delft. It is mainly 
an extension to the previously described multivariate 
analysis algorithms, which serves as a tool to visualize 
design alternatives in tandem with the performed analysis. It 
aims to provide a designer with insight into the relationship 
between the generated geometry and corresponding 
performance, as well as facilitate the directing of design 
space towards solutions that both satisfy architectural and 
performance-based criteria. 

The communication between multivariate analysis 
performed in ModeFRONTIER and the dashboard is 
established using PostgreSQL database as an intermediary. 
The database contains all evaluated design alternatives, 
including their input parameters, performance values and any 
additional intermediate information, which may be required 
by the designer, even if  not part of the defined performance 
values. The solutions are later enhanced with analysis results, 
indicating the cluster they belong to, Pareto frontier 
solutions, feasibility information, etc. 

4.1 Dashboard functionality 
The developed proof of concept of the dashboard includes 
but is not limited to the following functionalities. All 
functions are embedded as customized Grasshopper 
components scripted in Python programming language. 
Image visualization on canvas is enabled by Embryo plugin 
[2]. 

Visualizing typical solutions of SOM 
The typical representation of SOM components facilitates 
understanding of relationships and correlations between all 
different values and is rather easy to interpret. However, the 
particularity about dealing with architectural design is that 
most input values are related to geometry; therefore, each 
hexagon in SOM can be visualized as a geometrical solution.  

Visualization / Exploration of clusters 
As mentioned previously, ModeFRONTIER allows various 
methods of clustering using the same input data. Moreover, 
clustering can be performed based on various criteria, e.g. 
clustering based on input parameters will result in having 
similar designs within one cluster, while clustering based on 

Figure 4. Dendrogram computed by Ward’s clustering on the case 
study dataset based on input perimeters. The pie chart in the 

corner represents cluster sizes. 
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performance values will allow to explore a range of designs 
which all yield similar results. Dashboard allows querying 
the solutions based on a chosen cluster as well as a 
combination of them. 

Additional functionalities 
A number of functionalities have been introduced in addition 
to multivariate analysis. 

One of them is exploring Pareto Frontier. Pareto Frontier is 
a set of solutions, which are not dominated by any of the 
performance variables. That means that for such set there are 
no such solutions, which would have better performance in 
one of the criteria without having a worse one in another. 
Dashboard allows choosing all the solutions that belong to 
the Pareto Frontier within the chosen set of solutions (e.g. all 
values, a single cluster, a combination of clusters, etc.) 

Another powerful functionality of the dashboard is its ability 
to filter the results based on multiple criteria. The criteria can 
be set based on the additional information (e.g. chosen 
cluster, Pareto Frontier, feasibility, etc.) as well as based on 
the desired range of input parameters or performance values, 
or any combination of those. 

4.2 Dashboard elements 
Every set of solutions retrieved from the database by the 
previously explained functions is portrayed on Grasshopper 

canvas as shown in Figure 5 together with a number of 
additional elements. 

Querying of design alternatives is performed by customized 
Grasshopper components based on the designer 
requirements, retrieving a set of ids (1), which are associated 
with geometry images. The images are recorded during the 
evaluation phase of design alternatives. Dashboard user may 
choose the size and type (perspective, front, back view, etc.) 
of images to visualize (2).  

Images can be sorted based on any chosen numerical criteria, 
ascending or descending and labelled with a chosen type of 
cluster (3). The dashboard also gives an overview of the 
number of solutions, which belong to the chosen set, as well 
as a number of Pareto Frontier solutions within a set (4). 

Images are visualized in sets of six (5) together with the 
label, which indicates the name of the cluster that the solution 
belongs to and whether it belongs to the Pareto Frontier. 

Additionally, two panels summarize the domains of input 
and performance variables of a chosen set in comparison to 
all the other solutions, i.e. they indicate the bounds of a 
chosen set within the explored design space (6).  

Figure 5. Example of Grasshopper-based dashboard for geometry visualization. 
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5 CASE STUDY  
The swimming pool of the Jiangmen Sports Centre is used to 
demonstrate how the support system works. The project is 
located in Guangzhou (China) and will be used for sport 
events on a national level. 

5.1 Design space 
The input parameter space is composed of 18 variables, 
including such geometrical parameters as roof curvature, 
skylight number and their dimensions, construction material 
properties, building rotation and presence of glazing. The 
given bounds of parameters are rather wide, aiming to avoid 
too limited design space at the first exploration. 

Four performance values have been set as objectives: 

 Maximizing of average UDI (Useful Daylight 
Illuminance) value; it stands for the percentage of daytime 
hours with an illuminance level falling between a 
minimum and maximum threshold set as comfortable, 
according to the program requirements during the opening 
hours of defined design period [12]. 

 Minimizing of the energy need (kWh/m2) in terms of 
cooling and heating, meaning the energy needed to be 
supplied to or extracted from a space in order to keep a 
comfortable thermal environment according to the 
building program, measured over a defined period. 

 Maximizing of energy production value; it is defined as the 
amount of electrical energy that can be produced by a roof 
surface if a certain percentage of it is covered with 
Photovoltaics. 

 Minimizing the area of roof surface results in a lower 
amount of materials needed for the construction of the 
envelope, meaning less embodied energy and lower 
construction costs. 

An ill-defined criterion is set for building aesthetics, which 
is decided using the expertise of a designer. 

Grasshopper plugins Honeybee and Ladybug [6] together 
with simple mathematical functions (e.g. surface area 
calculator) are used as external solvers for the evaluation of 
performance values. Design space sampling has been 
performed by ModeFRONTIER using Uniform Latin 
Hypercube algorithm with 340 alternative designs, out of 
which 334 were evaluated as feasible. 

5.2 Multivariate Analysis 
Two types of hierarchical clustering have been applied on all 
feasible solutions. Both types used Ward’s approach, since it 
was proven to provide clusters the most similar in size. One 
approach has clustered solutions based on input parameters 
with 17 to 46 solutions in each of the twelve clusters, while 
another one has been applied on performance values (Figure 
6) with 32 to 54 solutions in each of the eight clusters.  

SOM has been trained using the four performance values of 
all feasible solutions. Although the SOM is trained using 

only the objectives as training components, 
ModeFRONTIER also records the variation of other 
parameters as separate component maps. The resulting SOM 
hexagonal grids for each of the input parameters and design 
objectives can be seen in Figure 7. 

Every hexagon in a grid corresponds to a set of real or virtual 
solutions in a way the nearby hexagons are more similar than 
the distant ones. Every hexagon holds a single value for each 
of the parameters and objectives; therefore, it is possible to 
visualize every point on a grid using the proposed dashboard. 
It must be noted that the colours in hexagonal grids always 
correspond to the numerically normalised values rather than 
the actual range of parameters, i.e. even a Boolean value 
would be displayed as blue corresponding to False (or 0), red 
to True (or 1) and a gradient in between, which would rather 
display the fuzziness between the two. 

Figure 6. Every cluster is represented by its own Parallel Chart, 
helping to discover which variables determine the cluster structure 
as indicated by the internal and external similarity values. These 
charts represent visual means for assessing the compactness and 
the uniqueness of clusters. 
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5.3 Geometry Visualization 
Four types of geometry images have been recorded while 
running the evaluation of design alternatives: perspective, 
top, side and front view. All images contain text with the 
solution’s ID and both values of input parameters and 
performance. 

Additional images are generated for each of the grid cells of 
SOM in order to visualize chosen geometries quickly. 

5.4 Results 
After exploring the results of multivariate analysis combined 
with the geometry visualization on the dashboard, a number 
of conclusions were drawn about the relationships between 
the parameters and performance values. It has also facilitated 
modifying the initial broad design space could also be 
modified in such a way that it would lead the subsequent 
optimization towards the preferred direction. Part of these 
insights is presented hereafter. 

While browsing through the clusters based on specified input 
variables (Figure 6, top), it has been noted that cluster 1.3 
which can be characterized by small skylights, no facade 
glazing and non-expressive roof, results in poor aesthetical 
performance. The same can be noted about clusters 1.7 and 

1.9, which have bigger skylights. However, they display a 
box-like appeal not compliant with the initial concept of the 
building. By looking at the performance domains of these 
clusters, it is obvious that they are not falling into the range 
of the highest performance values. Therefore, such sets can 
be safely discarded. 

Clusters based on output variables (Figure 6, bottom) suggest 
that the most desired behaviour can be found in clusters 2.5 
and 2.6, where many designs with expressive roof curvature 
can be found that is also preferred by the designer. It can be 
noticed that only certain types of wall and roof materials fall 
within these clusters, however, since they are mostly not 
influencing building aesthetics (with some exceptions), they 
can be chosen purely based on numerically expressed 
performance values. Clusters 2.3 and 2.4, which both have 
very poor performance, suggest that a combination of small 
skylights and glazed facade, as well as big skylights 
concentrated close to each other, results into poor 
performance and should be avoided in future designs. 

SOM components chart (Figure 7) very clearly demonstrates 
that surface area and energy production are contradicting 
values, which have high correlation with overhang length 
and width. Since designers’ preference is to have as large 
overhang as possible, it is suggested that the value can 
simply be decided in a way that it somewhat satisfies both of 
the criteria, especially taking into account designer‘s 
opinion. Even though it is expected that overhang size should 
influence energy need for cooling and heating and UDI, 
because it protects the facades from direct solar radiation, it 
is obvious that in this case there is almost no influence on 
these objectives, therefore the parameters can be kept stable 
for further optimization. 

Furthermore, while analysing all of the available chart and 
the dashboard, it has been noticed that only some certain 
configurations of roof curvature values result in both 
aesthetically appealing and well-performing designs. Since 
these combinations of curvature values are not bounded 
within a single domain, varying constraints can be set to 
capture the preferred design direction. For example, if values 
„roof1“ and „roof2“ are similar, values „roof3“ and „roof4“ 
should be as high as possible; if there is a high difference 
between value „roof1“ and „roof2“, then „roof3“ and roof4“ 
should stay the same. It is also important that the difference 
between „roof1“ and „roof3“ is not bigger than the one 
between „roof2“ and „roof4“. 

All the mentioned insights have been used to adjust the initial 
design space before running an optimization process. 
Additionally, a number of important dependencies have been 
noted which value may exceed the specificities of a 
particular project. 

6 DISCUSSION AND FUTURE WORK 
The developed proposal is work in progress; therefore, many 
more tests need to be performed, including more case studies 

Figure 7. The chart shows how input parameters and performance 
values are distributed on the SOM hexagonal grid for the 
described case study. Similar component maps are placed in 
adjacent positions in order to spot correlations. The 4 rectangles at 
the bottom refer to the design objectives (as described in section 
5.1), blue color corresponding to low numerical values, red – high 
numerical values and gradient colors referring to the in-between 
space. 
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with varying disciplines and multiple objectives, different 
sampling algorithms and a number of design alternatives. 
The work should also be validated towards its benefits for 
the optimization results compared to results obtained while 
using only human expertise for setting up the design space.  

Currently, the method is designed for the Rhino/Grasshopper 
environment, but may also be implemented in other 
environments, such as Revit/Dynamo.  

Considering the multivariate analysis, the drawback of 
clustering is that it does not provide clear insights into the 
correlations. On the contrary, the drawback of SOM is the 
visualisation of geometries, since in case there are 100 
hexagons, 100 geometries need to be visualized, 
overburdening the gain of insights. A good solution for these 
problems seems to be clustering performed on SOM. When 
SOM is trained based on outputs, clustering can be based on 
inputs that allow grouping similar geometries and exploring 
the relationships between them all at once. 

7 CONCLUSIONS 
This paper has presented an interactive environment that 
integrates guidance-based support for exploration of the 
design space. The proposed method is computationally 
efficient and integrated into an environment familiar to 
architects. It relies on algorithms available in 
ModeFRONTIER software together with database querying 
capabilities available in PostgreSQL and a developed 
dashboard, which uses the Grasshopper interface. 

The proposed method has demonstrated that it is able to 
support the exploration of design space and facilitate its 
definition in order to lead the design towards the preferred 
direction. At the current stage of the method’s development, 
it is possible to tell which design variables can be discarded 
and which parameter domains need to be limited, 
considering both numerical and ill-defined performance 
values. In addition, the method provides insights about 
introducing varying constraints or their combinations. 

Finally, a designer is provided with additional knowledge 
about dependencies between design variables and their 
combinations, which yield particular performance values. 
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