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Abstract

Urban physics is a multi-scale and interdisciplinary field, that combines science and engineering for the
study of physical processes in urban areas. Computational Fluid Dynamics (CFD) is considered a pow-
erful tool for the study of these processes. In the context of microscale phenomena these processes refer
to the transfer of heat and mass in the indoor and outdoor urban environment, and can be observed up
to ≈1km above the surface of the Earth. Their development takes place inside the Atmospheric Bound-
ary Layer (ABL), which for the case of urban areas is referred to as the Urban Boundary Layer (UBL),
and is formed due to the interactions between the surface obstacles and the wind flows. In CFD simula-
tions the surface of the Earth and the encountered obstacles are represented with the use of 3D models,
as well as estimated values that are used to implicitly represent their roughness. In this thesis the aim is
to investigate relevant to CFD parameters that could be used as 3D model semantics. For this purpose,
a list of parameters was identified. From this list roughness length was selected and a methodology was
developed for the assignment of roughness values for the open-source software OpenFOAM. The de-
veloped methodology that was built using built-in functions of OpenFOAM, is based on an octree data
structure that is used to store the input triangulated model in obj format. The roughness length landuse
names are stored in an mtl file that complements the input obj and the roughness length values are spec-
ified as a user defined parameter using the landuse names. The process is semi-automated and it entails
the assignment of non-uniform roughness at the bottom of the computational domain. Additionally, a
methodology to assign non-uniform roughness at the inlet of the domain was developed. The results
showed that the assignment of non-uniform roughness at the bottom of the domain was successful for
cases of flat terrain, however, under the restriction that the input geometry model abided by certain
geometry guidelines, such as no self-intersections, no gaps. For the case of non-uniform roughness at
the inlet the process also produced satisfactory results in terms of the assignment process, however
the impact of multiple roughness values at the inlet on the calculated flow parameters requires further
investigation.
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1 Introduction

The past decades urban physics has become a focus area of increasing importance since its many appli-
cations can contribute to a better understanding of global scale challenges that urban areas face. Exam-
ples of such challenges, which are closely related to increasing urbanization, are climate change, energy
consumption, pollution, transportation etc. [Blocken, 2015]. As a multi-scale and interdisciplinary field,
urban physics combine science and engineering for the study of physical processes in urban areas. These
physical processes mainly refer to the transfer of heat and mass in the outdoor and indoor urban envi-
ronment, as well as its interactions with humans, vegetation and materials [Blocken, 2015].

As an applied discipline it requires the collection of data. The type of data required depends on the na-
ture (i.e. objective, scale) of the phenomenon under study. They can be ancillary data used to calculate
conditions, represent parts of the urban environment that influence the flow [Jie et al., 2014] or they can
be directly related to the calculation of the flow parameters [Back et al., 2021]. The former are either field
measurements, reference-based or derived using Geographical Information System (GIS) methodolo-
gies [Jie et al., 2014], while the latter are collected in the field or in laboratories (eg wind-tunnel testing)
or they can be the product of numerical methods such as Computational Fluid Dynamics (CFD) [Back
et al., 2021]. In reality, although meteorological phenomena are observed and studied in different spatial
and temporal scales, they are also connected through space and time [Oke, 1978]. Therefore, studies in
the field usually employ a mixture of the aforementioned methods [Toparlar et al., 2017].

In the context of urban physics, CFD simulations are usually implemented for the study of phenomena
that belong to microscale meteorology, which entails interactions between the wind in the lower part of
the Atmospheric Boundary Layer (ABL) and the surface of the Earth [Blocken, 2014]. For urban areas
ABL is referred to as UBL. It is formed due to the surface obstacles that wind flows encounter as they
move over a surface, such as natural morphology, vegetation and man-made structures (Chapter 1.1 in
[Stull, 1988]). In micro-scale CFD simulations terrain and surface mounted obstacles can be represented
explicitly or implicitly in the computational domain [Franke and Baklanov, 2007].

When an object is represented explicitly its actual geometry is used and it should be larger than the com-
putational domain mesh cell size. Requirement for the geometry is that it is represented by a watertight
3D model [Blocken, 2015]. Structures in the area of interest are always represented explicitly. On the
other hand, an implicit representation refers to objects (buildings, trees, bridges etc.) or ground surfaces
located further away from the area of interest or cases of 2D rough surfaces in the area of interest that
influence the flow [Blocken, 2015]. An implicit representation is expressed using a surface roughness
value. Apart from the morphological characteristics of urban surfaces there are other surface properties
that have an important role in the formulation of the flow and influence transport processes that take
place in the UBL [Grimmond and Souch, 1994].

Therefore, in this thesis, the focus will be on the coupling of GIS and CFD, and in particular, on identifying
relevant surface parameters that could be used as semantics for the input 3D model. For this purpose
an application for the assignment of roughness length (z0) values using as input an enhanced 3D model
is implemented for the open source software OpenFOAM. Figure 1.1 shows an overview of OpenFOAM

structure. Among the identified potential parameters, roughness length was selected since roughness
in the lower part of the UBL has a significant influence on the flow [Stull, 1988], facilitating the process
of evaluating the results of the application.

For the testing of the application two cases were used, an ideal case and one corresponding to an actual
location, part of the TU Delft Campus.
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1 Introduction

Figure 1.1: Overview of OpenFOAM structure [Greenshields, 2019].

1.1 Objectives and research questions

The main objective of this study is to examine the potential benefits of using roughness length as an
added semantic to the input 3D model of a CFD simulation. For this purpose, a prototype application
for the open-source software OpenFOAM was built. In CFD, roughness length is specified as part of the
wall function modelling during the pre-processing step of the simulation. Currently assigning multiple
roughness values in OpenFOAM can be a time consuming process, requiring the generation of separate ge-
ometries for each surface type. Furthermore, the assignment of multiple roughness values in OpenFOAM

is only currently implemented for patches located at the bottom boundary of the domain.

A second objective for this study is to identify potential parameters that could be used as added seman-
tics for input 3D models in CFD simulation for the urban environment.

The main objective of this project can be summarised in the following research question:

How can non-uniform roughness length be integrated in a CFD software like OpenFOAM through the use of 3D
model semantics?

In order to answer the main question of this project the following relevant sub-questions are formu-
lated:

- To what extent can the integration be automated?

- How does the modified assignment process of roughness length at the bottom of the domain
influences the process and results of the simulation?

- How does the modified assignment process for non-uniform roughness length at the inlet of the
domain influences the process and results of the simulation?

- Which other relevant to CFD parameters could be used as 3D model semantics with the built ap-
plication?

1.2 Research scope

The scope of this thesis is determined based on the following:

- The parameters presented as potential 3D model semantics were selected based on a non exhaus-
tive literature review.

- The only parameter tested with the application is roughness length. For the incorporation of other
parameters further development of the application and research is required.

- The proposed methodology is only tested with flat surface models. However, it is developed to
allow for the assignment of semantics to 3D models.

- The implementation is limited to accept surface models in Wavefront object (obj) file format.

- The application was built for cases with rectangular computational domain.
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1.3 Thesis Outline

- There is no geometric validation included in the current implementation. 3D models used with
the application are considered to be watertight, with no overlapping surfaces.

- Cases of simulations that fall outside the field of urban physics will not be tested, but they could
potentially benefit from the open source developments of this study.

1.3 Thesis Outline

In this introductory chapter of the thesis the motivation and main objectives of the research were out-
lined. The content of the consecutive chapters is structured as follows:

Chapter 2 provides an overview of concepts related to urban physics and CFD simulations relevant
to this study. This includes the selected parameters that were considered to have potential as 3D
model semantics. In addition, related work regarding the assignment of non-uniform roughness is
presented. Lastly, theoretical background required for the understanding of the selected method-
ology is presented.

Chapter 3 presents the methodology followed for the development of the application along with ex-
planation on the design choices and evaluation methods.

Chapter 4 includes detailed presentation of the datasets used and the configuration of the cases selected
for the testing of the application.

Chapter 5 provides implementation details regarding the classes, functions and tools.

Chapter 6 presents and discusses the application and simulation results.

Chapter 7 answers the research questions of this study and provides recommendations for future work.

3





2 Theoretical background and related work

In this chapter concepts from the fields of urban physics and geomatics that are relevant to the topic
of this thesis are presented, as well as related studies. Firstly, an overview of concepts from urban
physics is presented based on the main characteristics of the UBL. In the second part, Section 2.2, key
concepts relevant to CFD simulations are presented. In the third part, Section 2.3, the interaction of GIS
and CFD is presented through the identification of fields that GIS has the potential to provide support and
complement the process of a CFD simulation. The last sections, are dedicated to the analysis of methods
and concepts relevant to the application presented in Chapter 3.

2.1 Concepts from urban physics

Urban physics mainly refers to the study of physical processes that take place in the lower part of the at-
mosphere (i.e. troposphere, approximately 10km). The effects and influence of the urban environment,
however, can be observed in much larger temporal and spatial scales [Blocken, 2015]. As shown in Fig-
ure 2.1 based on their horizontal spatial extent meteorological phenomena can be divided in three main
categories: macroscale, mesoscale and microscale phenomena [Blocken, 2015]. The scales as displayed

Figure 2.1: Spatial(horizontal) and temporal scales of phenomena in urban physics (as updated
by [Schlünzen et al., 2011]) found in [Blocken, 2015].

in Figure 2.1 are indicative, as there is a debate regarding their extents [Oke, 1978]. This is a result of
the fact that in reality atmospheric phenomena can not be so clearly distinguished as they are part of a
continuum [Oke, 1978].

Common denominator for meteorological phenomena, in the context of urban physics, is the influence
of the urban environment, which depending on the studied phenomenon and the employed analysis
tool, it can be explicitly or implicitly represented. In the context of this thesis, the focus will be on CFD
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2 Theoretical background and related work

studies. Relevant to CFD are the spatial scales with horizontal extent that can reach up to 2km (Fig-
ure 2.2). This is based on the study of phenomena that in meteorological terms happen in the microscale
and in spatial terms are influenced by the building scale [Blocken, 2015]. Furthermore, it should be
noted that micro-scale studies require explicit representation of geometries in contrast to meso-scale
studies where the morphological aspects are parametrised in the majority of cases, mainly due to the
much larger spatial scales (Figure 2.3). In the micro-scale, the physical processes under study entail the
transfer of heat and mass in the indoor and outdoor urban environment, as well as the interaction of
fluids with humans, nature and man-made structures [Blocken, 2015].

Figure 2.2: Horizontal spatial scales and respective analysis tools for the study of urban physics
[Blocken, 2015].

The domain in which urban physics in the micro-scale are applied and studied is the ABL [Oke, 1978].
The ABL is the part of the atmosphere where the majority of human activities take place. The nature of
the ABL is influenced by the morphology and characteristics of the Earth’s surface. This means that in the
case of urban areas the complexity of their morphology and the diversity of their elements differentiate
them from the case of rural areas [Piringer et al., 2002]. For urban areas the ABL can be referred to as the
UBL [Lateb et al., 2016].

2.1.1 Urban Boundary Layer

Based on the detailed presentation found in Boundary Layer Meteorology by Stull [1988], an overview
of the ABL is firstly provided. The ABL is the Boundary Layer (BL) that is formed as a response to the
interaction of the Earth’s surface with the lower part of the atmosphere. This interaction can be better
described via transport processes that transfer heat and mass, mainly caused by surface forcings. These
surface forcings include heat transfer, transpiration, evaporation, frictional drag, pollutant emissions
and terrain obstacles. Catalysts in these processes are the ground’s diurnal temperature variations (i.e.
due to the absorption of solar radiation), terrain morphology and manmade structures. The determi-
nant factor in the formation of the ABL and one of the main factors that differentiate the ABL from free
atmosphere is that alterations in air flows and its physical properties can be observed in a timescale
of one hour or less. The height at which these alterations can be observed varies from a few hundred
meters up to 3 km, after which free atmosphere begins. Although the surface can influence indirectly
the whole of the troposphere, the alterations are much slower [Stull, 1988].

Generally the way transport processes develop can be described by mean wind, waves and turbulence,
although in reality wind flows are not so clearly distinguished motions [Stull, 1988]. Inherently the ABL
is turbulent, since the occurrence of turbulent air flows is triggered by the surface forcings, which are
also an intrinsic part of the ABL [Oke, 1978]. In the case of turbulence its random and complex nature
makes turbulence one of the most difficult concepts to define and study. This is evident in the vertical
spatial scales shown in Figure 2.3. In particular, highly turbulent flows are observed within the Urban
Canopy Layer (UCL), which can be attributed to the proximity of that part of the atmosphere to the
surface roughness elements.

Based on the above it could be derived that the nature of the UBL is highly dependent on the morphology
and characteristics of the built environment. Due to the different surface properties and morphology,
different types of surfaces and obstacles participate in the exchange of energy and transport processes
in different ways [Grimmond and Souch, 1994]. These properties are a combination of material (e.g.
reflectivity, absorptivity, emissivity, texture etc.) and morphological characterstics (e.g. composition of
rough elements, spatial extent, building clusters) [Oke, 1978].
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2.1 Concepts from urban physics

Figure 2.3: Vertical spatial scales of the UBL [Blocken, 2015].

2.1.2 Geometrical properties of obstacles in the UBL

The morphological variances encountered in the surface of the ABL are referred to as roughness and they
are one of the main sources of three-dimensional alterations (e.g. turbulence) in the UBL [Oke, 1978]. In
particular, in the absence of temperature stratification (e.g. neutral ABL, no strong thermal effects) the
depth of the surface frictional influence is dependant on the surface roughness (Figure 2.4). It can be
derived that the depth of the urban ABL increases with increasing roughness [Oke, 1978].

Figure 2.4: Effect of surface roughness on the mean wind speed profile, zg denotes the depth of the
boundary layer above which mean wind speed is constant with height (Davenport,1965 in [Oke,
1978]).

The urban fabric is comprised of variable roughness elements, heights, densities, canyon like geometries
and types of surfaces, both natural and manmade [Piringer et al., 2007]. In numerical simulations the
representation of those features can be done explicitly through the use of actual geometries or implicitly
with the use of representative estimated values [Blocken, 2015]. The chosen representation depends on
the selected tool which in turn is dictated by the scale of the phenomenon under study. In the list that
follows some of the available approaches for the implicit representation of the morphology of the urban
environment are presented:

- Roughness length (z0) [m]: It is the height above the surface of the Earth at which the mean loga-
rithmic wind profile extrapolates to zero [Oke, 1978]. It is used to represent the impact of rough-
ness elements and surfaces on the wind [Oke, 1978], with estimated values that can incorporate
both the morphological and aerodynamic nature of obstacles and surfaces [Zhou et al., 2006]. The
nature of roughness length was investigated by Zhang et al. [2012], who examined the interaction
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of z0 of vegetated surfaces and near-surface flows and argued that for the case of flexible rough-
ness elements it should be treated as a dynamic parameter rather than as a solely geometric one. It
can be used to represent both homogeneous and inhomogeneous surfaces [Zhou et al., 2006]. Es-
timations for inhomogeneous surfaces are commonly used in meso-scale studies [Wiernga, 1993],
where obstacles and surfaces need to be parametrised due to the large extent of the study ar-
eas [Blocken, 2015]. In micro-scale numerical studies, roughness length is used to represent sur-
faces and obstacles in the upstream and downstream areas of the computational domain, as well
as surfaces in the area of interest (central part of the domain as shown in Figure 2.5), for which
there is no explicit geometry representation [Blocken, 2015].

Figure 2.5: Example of computational domain representation [Blocken, 2015].

In Ricci et al. [2020] among other parameters the impact of surface roughness height1 (ks) on the
prediction of wind flows in urban areas was investigated. According to the study, which was
conducted as part of a wider research regarding the uncertainties of numerical simulations, it was
found that the differences in surface roughness had a more significant impact on the results in the
upstream and downstream regions near the bottom of the computational domain. In addition it
is suggested that the choice of roughness can have a larger influence in urban environments with
open areas, as opposed to high density urban areas where the local forcing effects caused by the
presence of the buildings overshadows any other effects.

There are three approaches based on which the roughness length values can be determined:

1. Reference-based: For this approach the values are selected through comparison between data
depicting surface cover/use (e.g. site photos, maps), morphology (e.g. height, density of ele-
ments) and published tabulated values [Kent et al., 2017]. A well known and commonly used
list of roughness length values is the updated Davenport classification for homogeneous sur-
faces as updated and published by Wieringa [1992] [Blocken, 2015].

These estimated values for roughness length are based on experiments and observations and
there are a number of factors that should considered The selection of appropriate values is
a for inhomogeneous surfaces is a difficult task, since for actual cases characteristics such as
elevation, spatial density and the shape of the roughness elements are not unique [Kondo
and Yamazawa, 1986].

2. Anemometric: This approach entails the use of sensors placed at appropriately selected loca-
tions [Kent et al., 2017].

3. Morphometric: This approach includes the calculation of indexes, that represent character-
istics of the urban environment that have an impact on the flow regimes [Kent et al., 2017].
Examples of these indexes are the Average roughness element height (Hav), the Maximum

1Equivalent sand-grain roughness given by ks = 9.793z0/Cs based on Blocken et al. [2007b,a]
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2.1 Concepts from urban physics

roughness element height (Hmax), the Plan area index (Ap), the Total area under considera-
tion (A f ), the Frontal area index (λ f ) [Kent et al., 2017].

The anemometric and morphometric methods can account for the morphology of the studied area
as well as meteorological conditions (e.g. wind direction, speed etc.) [Kent et al., 2017].

In CFD simulations roughness length is specified through wall functions (further explained in ??)
applied at the bottom and inlet boundaries of the computational domain [Blocken et al., 2007b].
In particular for the case of the inlet (i.e.the boundary through which the flow enters the domain),
roughness length represents the roughness of the area upstream, located outside the computa-
tional domain [Blocken et al., 2007b].

- Leaf Area Density (LAD) [m−1] and Leaf Area Index (LAI) [-]: Both indicators are used to describe
the effect of trees on the wind flow. LAD is leaf area per unit volume of space and LAI is the inte-
gration of the LAD over height [Deininger et al., 2020]. In contrast to LAD, LAI can be used more
effectively to specify different types of trees [Segersson, 2017].

Deininger et al. [2020] implemented two approaches for the modelling of vegetation in a CFD sim-
ulation. In the first approach an explicit representation of trees was used using solid geometries,
while in the second vegetation was modelled implicitly with the use of a canopy model. The latter
approach included adding source terms to the Reynolds Averaged Navier Stokes equations (RANS)
equations that represented the vegetation induced resistance of the flow. For this LAD and LAI were
used. The height and locations of the vegetated areas were derived from point cloud and landuse
data respectively. In comparison to the first approach, the second provided more realistic results.
Furthermore, Segersson [2017] developed a workflow that allows the application of non-uniform
LAI to a computational domain bottom patch for a CFD simulation using OpenFOAM. Similarly to the
previous study the varying height of the tree canopy is stored in a raster file.

2.1.3 Material properties of surfaces in the UBL

Urban areas are characterised by complex morphologies comprised by both artificial and natural sur-
faces, with the former being the predominant one [Grimmond and Souch, 1994]. The artificial surfaces
have a distinctive influence on the local atmosphere due to the their mechanical, radiative, thermal [Back
et al., 2021] and hydraulic properties [Grimmond and Souch, 1994]. In this section some of the prop-
erties of surfaces encountered in the urban environment are listed, along with a short description. The
purpose of this section is to provide options of relevant to urban physics parameters, with the potential
to be used as 3D model semantics. The potential parameters are listed as follows:

1. Radiative properties: Refer to the radiation emitted, transmitted or absorbed by the surface of a
given material, given an incident wavelength and temperature [Oke, 1978].

- Albedo (α): Determines the absorptivity of a surface. 0 corresponds to perfect absorption
while 1 indicates a perfect reflector [Oke, 1978]. According to a study implemented by Back
et al. [2021] for a city in Austria it was found that surfaces with high-albedo values can con-
tribute to the reduction of the land surface temperature and at the same time have a negative
impact for thermal comfort.

- Emissivity (ϵ): Is the ratio of the radiation emitted by a material to that emitted by a black-
body (perfect emitter) at the same temperature [Oke, 1978].

2. Thermal properties:

- Thermal conductivity: used to measure the ability of a material to conduct heat [Oke, 1978].

- Thermal admittance: quantifies the ability of a surface to absorb and release heat from/to
space over time [Oke, 1978]. It is used to describe building materials, and it is usually used
for studies of the indoor environment [Shaik and Babu, 2015].

3. Other descriptive characteristics:
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- Colour: Darker coloured surface materials can contribute to the absorption of radiation [Back
et al., 2021].

2.2 CFD simulations

CFD simulations provide a numerical solution to the selected set of, usually, partial-differential equa-
tions, according to the selected discretization scheme [Jayanti, 2018a]. The values of the flow variables
are computed inside the defined boundaries of the computational domain, at discrete point locations.
The determined locations are the product of the mesh generation process [Jayanti, 2018a].

The boundaries of the computational domain define its extents and are namely the inlet, outlet, sides,
top and bottom. The wind enters the domain through the inlet and leaves through the outlet boundary.
In urban CFD simulations for the outdoor environment, the buildings are represented explicitly with
the use of a 3D model. The air around the model is decomposed into smaller units through the mesh
generation. An example of a computational domain is shown in Figure 2.6.

Figure 2.6: Example of computational domain with outlined boundaries [Blocken et al., 2007b].

CFD is widely used for the study of wind flows in the lower part of the in the UBL [Toja-Silva et al.,
2018; Toparlar et al., 2017]. Other approaches include full-scale field measurements and wind tunnel
testing [Lateb et al., 2016]. Compared to the latter two methods CFD is in most cases considered more
efficient in terms of cost and time. Furthermore, field measurements and wind tunnel testing provide
point measurements at a limited number of locations, while CFD generates full-scale flow approxima-
tions [Montazeri and Blocken, 2013]. In addition, CFD allows the possibility to test different scenar-
ios [Toparlar et al., 2017]. Furthermore, field measurements are performed in real weather conditions
and as such can not be replicated, while in reduced-scale modelling testing is done under controlled con-
ditions, however, there are often limitations regarding the similarity of the scaled model [Lateb et al.,
2016]. On the other hand, in CFD there is uncertainty regarding the accuracy of the results. The main
sources of errors and uncertainties can be attributed to the assumptions and approximations made in the
formulation of the selected mathematical models or they are of numerical natures [Franke and Baklanov,
2007]. For this reason, in CFD it is critical for researchers to verify and validate their results [Toparlar
et al., 2017]. This is usually done through verification of the selected models, sensitivity analysis and
comparison with experimental data [Lateb et al., 2016].

2.2.1 Mesh generation

The mesh generation process is a time-consuming process of fundamental importance to the verification
and validation process of a CFD simulation [Blocken, 2015]. The added difficulty of the mesh generation
does not solely depend on creating a mesh that is independent of the numerical solution but also on
the fact that other factors need to be considered. For instance, the requirement of the first cells center to
be at a height above the intended roughness length value [Blocken, 2015]. The mesh generation entails
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the partition of the computational domain into a finite number of cells [Jayanti, 2018b]. The created
grid can be 1D, 2D or 3D, structured or unstructured. A structured grid is comprised by topologically
rectangular (2D) (Figure 2.7) or cubical (3D) cells of linear or curvilinear lines, while for an unstructured
grid the cells are arbitrarily shaped [Jayanti, 2018b].

Figure 2.7: Examples of structured grids [Jayanti, 2018a].

Figure 2.8: Examples of unstructured grids [Jayanti, 2018a].

Unstructured grids are required for the fitting of complex geometries since they can simulate with more
detail the physical space than structured ones [Jayanti, 2018a]. Furthermore, the mesh can adapt bet-
ter to implemented refinements. However, indexing and connectivities between the cells are not as
straightforward as for the case of structured grids [Jayanti, 2018a].

2.2.2 Flow modelling

Given the complex turbulent nature of the ABL, analytical solutions to initial equations is only possible
under restricted and limited conditions. Instead approximations are made, through averaging meth-
ods and simplifications. Some of the available numerical approaches/models for the solution of the
discretised equations are listed below:

- RANS: Solves the Navier-Stokes equations following the Reynolds time-averaged approach. It
provides information for the mean wind flow while turbulence is resolved according to a relevant
turbulence model [Franke and Baklanov, 2007].

- Large Eddy Simulation (LES): The large scale eddies are resolved while smaller scale turbulence
is filtered and modelled separately [Toja-Silva et al., 2018]. In this case, the Navier-Stokes are av-
eraged in space, and a turbulence model is required [Franke and Baklanov, 2007]. According to
a review of Toparlar et al. [2017] LES simulations produced higher accuracy results, when com-
pared to field measurements, than RANS simulations. However, it is a more time consuming and
computationally expensive approach [Ricci et al., 2020].

- Direct Numerical Simulations (DNS): This provides a direct solution to the selected flow fields.
However, due to the very large scales that need to be resolved, it is currently performed only for
low-Reynolds numbers [Franke and Baklanov, 2007].

Incompressible steady RANS have been used extensively for the study of urban flows [Blocken, 2015].
Averaging of the Navier-Stokes equations means decomposing the equations into a mean and a fluctuat-
ing part. The latter represents the turbulent part of the flow. The way that the turbulent part is modelled
in order to arrive to a solution is referred to as the closure problem. Extensively used for the modelling
of turbulence is the two equation standard k - ϵ model (k: kinetic energy and ϵ: dissipation rate) [Ricci
et al., 2020]. It is considered a robust [Ricci et al., 2020], reduced computational cost technique. As such
it was selected as for the simulation performed in the present study.

11



2 Theoretical background and related work

2.3 Coupling GIS and CFD simulations for the urban environment

The importance of the role of spatial data and GIS technologies has been acknowledged by many practi-
tioners in the CFD community [Jie et al., 2014; Shouzhi et al., 2018; Wong et al., 2007]. However, there are
still steps to be made for advancements in the coupling of the two fields [Deininger et al., 2020]. In this
context, several efforts have been made to provide support for CFD through the integration of GIS tools
and methodologies in their workflow from researches of both fields [Jie et al., 2014; Shouzhi et al., 2018;
Deininger et al., 2020; Back et al., 2021; Wong et al., 2007].

Willenborg et al. [2016] proposed a CityGML-based approach for mesh generation along with the en-
hancement of 3D models with CFD related parameters. The implemented workflow included the gen-
eration of voxels using the PostGIS functionality of the 3DCityDB spatial database. In the same context
Deininger et al. [2020] built an interactive Smart City platform with response time measurements along
with an optimised workflow for the generation of ready to use models for CFD simulations. In the pro-
posed workflow, CityGML, Digital Terrain Models, pointclouds, landuse and vegetation data were used
as input of the preparation of the input 3D model.

Shouzhi et al. [2018] used spatial datasets and GIS operations to extract spatial patterns and classify the
urban areas based on selected attributes like building height, and density, with the aim of generating
an appropriate input for CFD simulations. The results were used for the improvement of ventilation in
the city of Changchun. Grimmond and Souch [1994] proposed the creation of a georeferenced database
that would include spatial data of different resolutions based on a GIS methodology for the identification
of urban spatial parameters. The data would be used in along with meteorological parameters for the
study of phenomena at the regional, neighborhood level as well as microscale phenomena. Based on the
above literature review four are the identified areas for the coupling of the two principles: 1) generation
of 3D models to be used as input for CFD simulations, 2) Mesh generation for CFD, 3) Creation of spatial
databases, 4) Semantic 3D models for CFD.

2.4 Specification of nonuniform roughness length

In OpenFOAM the specification of the z0 is done in the nut (i.e. turbulent viscosity) dictionary file through
the nutkAtmRoughWallFunction boundary condition,. This is required for each patch belonging to the
bottom boundary of the computational domain that needs to be represented with a roughness value.
In nutkAtmRoughWallFunction class z0 is defined as a scalarField. This means that the application of
more than one values for z0 would require a separate dictionary entry for each value of z0, along with
a specification of the geometry for each entry. However, this process is time consuming, especially for
complex geometries, and requires the generation of multiple geometry files.

Segersson [2017], in a proposed tutorial guide, suggests the specification of multiple z0 values based
on the fvOptions functionality of OpenFOAM. The fvOptions provides a framework which allows for
the creation of new source terms, without changing the source code of the software. It is accessed
and controlled through the fvOptionsDict, where the parameters are set. For his implementation he
created a library containing new classes and functions, which were incorporated to OpenFOAM through
the fvOptions. The z0 values are either specified through a separate raster file which is imported to
OpenFOAM or specified manually for each patch. The patches need to be defined explicitly through the
OpenFOAM utilities topoSet and createPatch. The assignment of the non-uniform roughness length val-
ues is done through the implemented Raster class. It is performed by transforming/translating the
input raster file, where the roughness length values are stored, to fit the generated mesh, and allow for
the assignment of the values. Both of the aforementioned implementations require the explicit speci-
fication of the patches’ geometries, which can be a time consuming and cost inefficient process. The
methodology proposed in this study, aims to overcome this issue by using a semantically enhanced sur-
face model. This way the geometries can be combined in one file, which will correspond to one patch in
the bottom boundary of the computational domain.

Finally, Azevedo [2013] created an application for the modelling of terrain roughness. The implemen-
tation is automated and allows the user to choose among three modelling options for z0:
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1. Uniform aerodynamic roughness length over all terrain surface,

2. Variable as a function of topography characteristic values. The function is user defined and models
roughness as a ground height dependent variable. Ground height is calculated as the average
elevation of the four points that define a face in the mesh grid generated by blockMesh.

3. Based on real site data in the format of xyz0. The input file is manipulated to fit the ground patch
of the computational domain. Then z0 is assigned as the average z0 of the four points of each face.

Both options 2 and 3 require the generation of a separate file write z0. This file specifies the patches, i.e.
the geometries of the ground surface where the roughness will be assigned to. As a final step in both
cases the assigned z0 values are written in the nut file. For this options z0 is treated as a nonuniform

scalarField. The option of writing the input roughness length values as a non-uniform field, was also
incorporated in the proposed methodology (Chapter 3).

2.5 Octree data structure

An octree is an hierarchical data structure considered as an extension of quadtree for the representation
of 3D space [Samet, 1990]. It is a popular method for the storage of data [Samet, 1990], collision detec-
tion, identifying spatial relations between objects, mesh generation, image processing [Madeira et al.,
2011]. It is used in areas like robotics, computer graphics, cartography, gaming architectures [Samet,
1990] to name a few. It is built based on recursive decomposition of 3D space [Madeira et al., 2011] and
its main components are:

• The root node in an octree, used to represent the entirety of the stored data,

• The leaf nodes, for which no further partition of space is required and,

• The internal nodes, which are non-leaf nodes has eight children or octants nodes [Samet, 1990].

Figure 2.9 shows an example of an octree graph and how it relates to the decomposition of 3D space.

Figure 2.9: Octree of depth 2 visualisation [Su et al., 2016].

One of the advantages of an octree data structure is that it enables fast and efficient searches for iden-
tifying spatial relations [Madeira et al., 2011]. The application presented in this thesis is based on this
advantage of the octree by using the hierarchical indexed octree implementation of OpenFOAM. Drawback
of using this implementation is the dependency of the nearest neighbour search upon a user defined dis-
tance that is used as a threshold throughout the search.
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3 Methodology

In this chapter the methodology followed for this thesis is presented. Firstly, a diagram of the workflow
is provided. Thereafter the working steps are grouped and addressed in terms of application design,
limitations and requirements of the application and the selected assessment methods. Further analysis
and implementation details of the proposed methodology are presented in Chapter 5.

Figure 3.1: Overview of the methodology.

3.1 Application design

The purpose of the application is the assignment of roughness length values to the computational do-
main bottom boundary grid cells based on a ground surface model of varying roughness. The need
for such an application was based on the process of assigning roughness values in the CFD software
OpenFOAM. Roughness length (z0) is a user defined parameter and it is used to implicitly represent the
roughness of a surface (Chapter 2). The urban environment is comprised of mixed and variant surfaces.
Depending on the case, this can translate to a need for multiple surface geometries and each surface
should be represented as a watertight model. In Figure 3.2 the specification for roughness length is
shown for the configuration file of turbulent ϵ, for the case of multiple input geometries (Figure 3.2a)
and for the case of a unified geometry (Figure 3.2b). The aim of the built application is to investigate
the potential benefits of using a surface model that would represent the ground in one file. The use
of a unified geometry file for the terrain implies also that any parameter (such as roughness length)
corresponding to a particular surface should also correspond to that particular surface in the unified
model. Based on this, the design of the application is driven by the need to create a framework with the
potential of being further developed to incorporate other CFD parameters, with a similar requirement
for correspondence to the input surface model. Additional to the main function of the application was
also to investigate the possibility of applying a non-uniform roughness at the inlet of the computational
domain (-setZ0Inlet), since it is currently not implemented.
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(a) Case for multiple input geometries. (b) Case for one input geometry.

Figure 3.2: Examples of the user defined dictionary file for ϵ.
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3.1 Application design

The decision to work with OpenFOAM to perform the simulations and by extent for building the applica-
tion was based on two main criteria. Firstly, it is a free, open source software (as established in 2004)
and secondly, it has been widely used for research and engineering from academic and commercial or-
ganisations. As a free and open source software it supports the use, reuse, modification and distribution
of its code by anyone anywhere for all intended purposes1 under the General Public License (GPL). The
GNU GPL ensures that these permissions will be guaranteed in the distribution and redistribution of any
implementation based on OpenFOAM2 (”copyleft”).

The main steps that were made in order to design the application are listed below:

• Selection of the input/output in format.

• Selection of the application environment, i.e. whether it would be implemented inside the envi-
ronment of OpenFOAM or outside and later integrated.

• Selection of the code structure and main algorithm for the assignment of roughness length values
to the bottom boundary grid cells.

• Identifying parameters that needed to be user defined.

3.1.1 Input/output

The input for the main functionalities of the applications is a terrain surface model and the face centers
of the corresponding ground patch. The surface model is a file generated outside OpenFOAM, while the
designated patch face centers are a product of the mesh generation process. The choice of the face
centers was based on two main criteria. Firstly, it was in accordance with the nature of the roughness
length parameter as surface characteristic and secondly, it simplified the assignment process. For the
input surface model, the file format was dictated from the available compatible options that are offered
by OpenFOAM. Specifically, OpenFOAM allows as input formats3 the following:

• Stereolithography ASCII (stl)

• Stereolithography binary (stlb)

• Wavefront object (obj)

• Legacy Visualisation Toolkit (vtk)

• OpenFOAM triangulated format (ftr)

• Inivis AC3D (ac)

• TenGen surface mesh format (smesh)

• Triangle format (tri)

• OpenDX format (dx)

From the above listed options the stl and obj formats were considered as input for the surface geometry.
They both are widely used open formats allowing for easy exchange between programs. Additionally
to the input geometry format, the way the roughness values would be retrieved needed to be specified.
The choice of roughness values can be based on visual inspection of landcover data. In most cases these
data are available through aerial images [Kent et al., 2017]. Other cases, such as for the Netherlands,
they can be derived from available landuse datasets (Basisregistratie Grootschalige Topografie (BGT),
Basisregistraties Adressen en Gebouwen (BAG)). Although, these options would be useful additions for
further developing the application, for both aforementioned cases, combining the geometry with the
added semantics requires intermediate operations, and possible transformations to the input geometry,
so that each surface type is accurately represented. The current implementation considered that the
input surfaces were already accurately represented so the focus was on building a workflow for the

1http://www.gnu.org/philosophy/free-sw.html
2http://www.gnu.org/licenses/gpl-3.0.html
3https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-snappyhexmesh-geometry.html
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3 Methodology

assignment of the roughness length parameter. Based on the above, the idea was to combine the ge-
ometries into one file and then find a way to use the roughness values as added semantics to the unified
surface model. Between the two accepted formats, currently, there is no available option for stl files to
carry additional information. On the other hand, obj files with the use of Wavefront Material Template
Library (mtl) files allow for adding semantics to the triangulation. Usually mtl files are used for the as-
signment of metadata regarding the visualisation of the file. However, in our case, instead of colour and
illumination information the values of roughness length were used. An example, of the correspondence
between an obj and an mtl file is shown in Figure 3.3.

(a) obj with mtl refer-
ence.

(b) mtl struc-
ture.

Figure 3.3: Example of combining obj and mtl file.

The decision regarding the output of the application was based on roughness length being a user defined
parameter. As part of the wallFunction modelling roughness length had to be written to a dictionary file
in the folder where all the boundary conditions and initial values are located. For the existing process of
assigning the roughness, one value per surface type is assigned. However, for our case multiple values
for roughness had to be specified for one surface. For this reason, the output of the application generates
a list of z0 values and writes it to the appointed by the user location inside the boundary condition as a
nonuniform List<scalar>, which is an OpenFOAM defined type. Every entry on the list corresponds to
a cell in the bottom boundary of the computational domain, and is based on the indexing given to every
cell after the mesh generation process is complete. For this reason, the sequence of the entries in the list
is unique for every case and dependent on the generated mesh. This is due to complex connectivities in
unstructured grids and non-uniformly refined grids, which are essential for CFD simulations (Chapter 2).
The generation of the mesh is considered to be done using the OpenFOAM meshing tools: blockMesh
for the background mesh and snappyHexMesh for the surface refinement and snapping process.

3.1.2 Implementation environment

For the implementation environment of the application two options where considered: 1) a Python
implementation (can be found in https://github.com/cfratz/set_nonUniform_z0), based on an r-
tree data structure was implemented, using external libraries and 2) a C++ implementation, using the
built-in functions and classes of OpenFOAM. Determinant factors in the selection was the possibility for
further development and the building of an application that would be user-friendly. The dependence
of the assignment process on the generated mesh posed a hurdle in the implementation of the Python
application, since mesh data still needed to be exported from OpenFOAM and vice versa. This would have
meant that in case of multiple parameters (other than roughness length), this process would have to be
repeated, adding a strain to the use of the application. Although both options were implemented, the
OpenFOAM C++ implementation was selected to facilitate further development, as well as, the overall use
of the application. On the other hand, a difficulty of the chosen implementation was that the source
code of OpenFOAM is highly templated4. This made the assessment of the overall performance of the

4https://www.cplusplus.com/doc/oldtutorial/templates/
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application a complicated task, since it required an in-depth understanding of the classes and function
calls that were running in the background.

3.1.3 Code structure

The main body of the application is built around a list of available options, which are specified through
user commands on the Linux shell. It is based on foamDictionary5, an application of OpenFOAM for the
manipulation of dictionaries. This allowed for accessing the user input specifications and also writing
the output to the user-specified dictionary file in the boundary conditions. The current available options
are listed below:

- entry: name of entry in the specified file location.

- setZ0Ground <patch name>: assigns roughness length to the specified patch.

- setZ0Inlet <patch name>: assigns roughness length to the inlet of the domain.

- writeZ0: writes out to a txt file the list of roughness length values.

- writeCoords: writes out to an xyz file the coordinates of the cell centers of the designated for
assignment computational domain boundary.

- exportToVtk: writes out to a vtk file the designated patch mesh information along with their
corresponding roughness length as an attribute.

- setZ0NoGeom < z0 value>: assigns roughness length, based on the input geometry, to a patch for
which the specified geometry is not included in the mesh generation. In this case, the patch is
generated with the blockMesh utility. The specified < z0 value > is taken into account when no
correspondence is found between the input geometry and the patch face centers. For the case that
the input geometry covers the entire extent of the patch the <z0 value> should be specified to 0.

- setParams: assigns all related to turbulence model variables that are dependent on the roughness
length by assigning the corresponding values to all relevant parts of the mesh.

- help: get the list of available options with their description.

Options -writeZ0, -writeCoords and exportToVtk can be specified if one of the -setZ0Ground or
-setZ0Inlet have been selected first. Option exportToVtk can be also specified for option setParams,
for the case of which the corresponding inlet turbulence parameters are written to vtk. Pre-requisites
for the shell specification is the name of the application, the file location and the name of the roughness
length parameter, which may or may not exist as an entry in the specified dictionary file. The depen-
dence of the application on the generated mesh restricts the application to be called within the case
study folder. An example of a shell command is shown in Figure 3.4.

Figure 3.4: Shell specification for setting the roughness length parameter with option -setZ0Ground.

After the application is called there are three main steps that are followed for both -setZ0Ground and
-setZ0Inlet options. Firstly, the correspondence between the input geometry file (obj) and the file with
the added semantics (mtl) is checked. Secondly, based on the mtl information included in the obj file
each triangle is assigned a roughness value and lastly an instance of the mesh is created. The instance
corresponds to the last available time step of the mesh generation process. The latter is done in order to
allow access to the mesh data.

5https://cpp.openfoam.org/v7/foamDictionary_8C.html
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3.1.4 Option -setZ0Ground

The process of the assignment of roughness length is resolved based on an octree radius search (Chap-
ter 2). The main data needed for the search are the face centers of the specified boundary patch, a surface
based octree data structure and a search radius. The radius search on the octree is done iteratively over
the list of face centers; when an overlap is found between the tested face center and a triangle, the cor-
responding to the triangle roughness value is written to the list of z0 values. The algorithm described
above is shown in pseudocode Algorithm 3.1. The algorithm is implemented with the use of OpenFOAM
built-in classes and functions (Chapter 5). The input z0val (line 11 in Algorithm 3.1) refers to the value
that is specified by the user when option -setZ0NoGeom is selected. If the option is not selected then
z0val is set to 0.

Algorithm 3.1: ROUGHNESS LENGTH ASSIGNMENT (C f , tree, triz0, nearDist, z0val)
Input: A patch face centers C f , surface based octree tree, triangles’roughness length values

triZ0, a distance used in the search nearDist, a roughness length value z0val
Output: Face centers’ assigned roughness length values z0, number of unassigned face centers

nMissed

1 nMissed← 0 ;
2 nearDistSqr ← 0.25 ∗magSqr(nearDist, nearDist, nearDist) ;
3 hitPoints← get nearest point in tree for all C f using nearDistSqr ;
4 for f acei ∈ C f do
5 pt← facei;
6 if a hit is found and mag(hitPoints f acei − pt) < nearDistSqr then
7 triIndex ← get the index of the overlapping triangle, for which pt is inside ;
8 z0 f acei ← triZ0triIndex ;
9 else

10 if z0val ̸= 0 then
11 z0 f acei ← z0val ;
12 else
13 nMissed← increment by 1 ;

14 return nMissed ;

The search, as mentioned above, is based on a user-defined seed distance. The value of the distance that
is actually used in the search is given by6:

nearDistSqr = 0.25 ∗ (nearDist2 + nearDist2 + nearDist2) (3.1)

where nearDist is the user-defined scalar value for the seed distance. A suggested value for the input
distance is 0.5, however indicative. As such, it might be the case that the user is required to test several
values until all face centers are assigned. The user is notified regarding the number of missed points
from the on screen output after running the application. If the number is not 0 then the user is required
to change the value of the seed distance. For the case of a flat terrain, the tested cases showed that once
an appropriate value is found, then any increase in the seed distance value will not affect the result,
neither in terms of the roughness assignment nor in terms of number of missed points. Nevertheless,
further testing is needed, both for cases of flat surfaces and for cases of variant height. The plot in
Figure 3.5 shows the relation between different values for the seed distance and the number of missed
points for the ’complex’ case, used in the testing of the application. The result is also illustrated in
Figures 3.6a and 3.6b for a distance of 0.1 m and 1,000,000 m respectively.

The search in the octree is implemented by findNearest, an OpenFOAM function, part of the indexedOctree
class. The input octree7 is built with the restrictions that each tree leaf can not contain more than 10

6https://cpp.openfoam.org/v7/triSurfaceSearch_8C_source.html at line 311
7https://cpp.openfoam.org/v7/triSurfaceSearch/_8C/_source.html#l00198 at lines 232-236
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Figure 3.5: Plot of the number of missed points for different seed distances for a case of flat terrain.

shapes with each triangle allowed to be referenced by maximum three leaves. The latter restriction is
applied to avoid duplicate references. The processes that are performed in the background when the
findNearest function is called are shown in pseudocode in Algorithm 3.2. Starting from the topnode
(i.e. node with index 0) of the tree, its sub-nodes are ordered with the first octant being the one contain-
ing the specified face center. Then the ordered octants are tested iteratively. If an octant is an internal
node and its bounding box overlaps the input face center then function findNearest is called again, but
this time starting from the found overlapping internal node. This process continues until an octant that
is a tree leaf is found. If the octant’s bounding box overlaps the face center then the triangles contained
in the tested leaf are checked iteratively. The test is successful if the checked triangle contains the input
face center and their squared distance (distSqr) is smaller than nearDistSqr ( line 19 in Algorithm 3.2).
If the latter is true then the nearDistSqr is updated with the value of distSqr. This ensures that only
if a triangle is found to be closer than the lastly updated nearDistSqr will pass the test. This can also
explain why, at least for a flat terrain, after a certain value is found any increase in the seed distance
does not alter the resulting assignment of the roughness values.

In order to calculate the distance between the input face center and the tested triangle OpenFOAM firstly
identifies the location of the face center in relation to the triangle. Although this part is not incorporated
in the pseudocode of Algorithm 3.2, it is important to provide a description of the processes involved
in order to better understand and assess the results of the assignment process. The OpenFOAM function
called for this, is nearestPointClassify and it classifies the orthogonal projection of the input sample
point (in our case a face center) based on the Voronoi feature regions of the tested triangle. The output is
the orthogonal projection point, a boolean value of the result and the type of the region. The investigated
regions are the triangle’s vertices, edges and face. The algorithm is adapted from [Ericson, 2004] (p.
136-142). As mentioned above, only if the point is found inside the triangle’s face region the test is
considered successful. For the case of a flat terrain this means that the orthogonal projection is the point
itself, which is also validated from the results of the application testing.

Algorithm 3.3 demonstrates in pseudocode the function called in lines 10 and 15 of Algorithm 3.2. It is
used to test if there is an intersection between a sphere around the input point and the bounding box
of the specified node. The square root of nearDistSqr is the radius of the sphere. In the algorithm the
distance between an octant’s bounding box corner points and the input face center is calculated for each
direction (i.e. x, y and z) and checked against the provided nearDistSqr. An octant is filtered out if the
sum of the squared distances is outside or intersects the sphere (line 10 in Algorithm 3.3). Based on the
comparison needed for the filtering of octants the choice of a squared vectorised distance instead of the
input seed distance can also be justified. The testing is limited to the algorithm as shown in pseudocode
in Algorithm 3.1.
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(a) Seed distance: 0.1 m

(b) Seed distance: 1,000,000 m

Figure 3.6: Screenshots of the ’complex’ case vtk files illustrating the roughness assignment for a seed
distance of 0.1 (3.6a) and 1 million (3.6b). Missed points are in red colour.
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Algorithm 3.2: FIND NEAREST (C f i, tree, startDistSqr)
Input: A patch face center C f i, surface based octree tree, a start distance used in the search

startDistSqr
Output: boolean variable hit, the triangle index for which C f i is inside triIndex, the nearest

found point hitPoint

1 hitPoint← (0, 0, 0) ;
2 nearDistSqr ← startDistSqr ;
3 triIndex ← −1 ;
4 nodeI ← 0, 0 is the topNode of the tree ;
5 searchOrder ← sort octants of nodeI with first being the one containing the C f i ;
6 for i← 0 to 8 do
7 octant← searchOrderi ;
8 if octant is a tree node then
9 subNodeBbox ← get the octant bounding box ;

10 if subNodeBbox overlaps C f i then
11 nodeI ← get index of internal node that represents octant ;
12 go back to the beginning of the algorithm and start with updated nodeI until a nodeI

is the last node of a branch ;

13 else if octant is a tree leaf then
14 Lea f Bbox ← get octant bounding box ;
15 if Lea f Bbox overlaps C f i then
16 for triangle ∈ octant do
17 distSqr ← get distance of nearest point of triangle to C f i;
18 hit← True or False ;
19 if distSqr < nearDistSqr then
20 hitPoint← get nearest Point coordinates ;
21 nearDistSqr ← distSqr ;
22 triIndex ← get triangle index ;

Algorithm 3.3: OVERLAPS (Bbox, C f i, startDistSqr)
Input: A patch face center C f i, bounding box of an internal node or leaf Bbox, a distance used

as radius around input point nearDistSqr
Output: Boolean value

1 distSqr ← 0 ;
2 for dir ← 0 to 3 do
3 d0← Bboxmindir − C f idir ;
4 d1← Bboxmaxdir − C f idir ;
5 if d0 > 0 ̸= d1 > 0 then

// C f i inside both extrema ;

6 else if mag(d0) < mag(d1) then
7 distSqr ← + sqr(d0) ;

8 else
9 distSqr ← + sqr(d1) ;

10 if distSqr > nearDistSqr then
11 return False ;

12 return True ;
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3.1.5 Option -setZ0Inlet

Option -setZ0Inlet follows a different process for the assignment of roughness length to the inlet. This
differentiation is due to the underlying meaning of the roughness length. For the case of the inlet the
roughness value represents the roughness elements that influence the inflow but are located outside
of the computational domain. Additionally, it is assumed that the same landuses neighbouring, the
inlet, inside the domain are the same as the ones neighbouring the inlet on the outside of the domain.
The experiments showed that this option can be implemented, but, depending on the case, not without
uncertainty. The reason for this, are the limitations related to the assignment process of values in non-
uniformly refined grids. Specifically, different levels of refinement do not allow for a uniformly treated
assignment. An example of such a case is provided in Figure 3.7.

Figure 3.7: Example of misassigned roughness values for an inlet boundary. The different colours indi-
cate two different roughness length values.

A cell that is split in smaller other cells meets neighbour cells with a different level of refinement, lower
or higher, and thus imposing the need to make a choice. This implies uncertainty in the creation of a
precise representation. However, the accuracy of the simulation results might not be affected even if the
assignment process is not precise. This matter will be further addressed later on. For the assignment of
the roughness length values to the inlet patch the first step of the process includes finding the shared
cells between the inlet patch and the neighbouring ground patches. When a shared cell is found then
the ground cell’s roughness is assigned to the corresponding inlet cell. This implies that the roughness
length should be configured for all ground patches before the -setZ0Inlet option is called. The pro-
cess is concluded when all inlet’s first row cells are assigned a value. The second step is to identify
changes in the roughness length values and mark them as checkpoints (Algorithm 3.4). These changes
are represented by the corresponding inlet first row faces’ indices, although they need to be sorted first
according to their span wise coordinate (line 2 in Algorithm 3.4). This is required because the indexing of
the patches’ face centers does not follow a spatial sequence. This means that a cell with an index placing
it at the end of the first row can actually be located at the beginning of the row. This happens as a result
of the refinement process. The spanwise coordinate refers to the direction perpendicular to the inflow
(streamwise) direction. It is retrieved through the user defined parameter for the flow direction.

In Algorithm 3.5 the assignment of coordinates to every checkpoint is shown. Although, as for option
-setZ0Ground, the assignment is based on the face centers of the boundary patches, for the checkpoints’
coordinates the maximum and minimum span wise coordinates of the faces’ boundaries are used. This
is done to create thresholds between the checkpoint coordinates that will minimize the errors in the
assignment process. These errors refer, as mentioned above, to the limitations created by the levels of
refinement and encountered for face centers with spanwise coordinate close to the thresholds’ limits.

The final step is the assignment of roughness length to the rest of the inlet faces based on a comparison of
the spanwise coordinate of face centers with the checkpoints’coordinates (Algorithm 3.6). Lines 6 and 11
in Algorithm 3.5 and Algorithm 3.6 respectively, refer to a case where the first row’s last face is also a
checkpoint. Option -setParams is complementary to option -setZ0Inlet. It allows the calculation
and assignment of initial values for the turbulence parameters (e.g. kinetic turbulent energy, turbulent
kinetic ϵ) to the inlet. The option can only be called if option -setZ0Inlet is specified first. It is needed
because these parameters are dependent on the values of roughness length at the inlet and due to the
fact that every patch required specified treatment.
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Algorithm 3.4: CHECKPOINTS ( f irstRow, spanDir, z0)
Input: An inlet first row faces f irstRow, spanwise component face centers C f span, roughness

length values z0
Output: First row z0 identified changes as inlet’s faces checkPoints

1 checkPoints0 ← 0 ;
2 f irstRow sort ascending according to C f span ;
3 for f acei ∈ f irstRow do
4 if f acei ̸= 0 then
5 previous← get last checkPoint ;
6 if z0previous ̸= z0 f acei then
7 append f acei to checkPoints ;

8 if checkPoints > 1 and last checkPoint ̸= last face of f irstRow then
9 append f acei to checkPoints ;

Algorithm 3.5: CHECKPOINTS COORDS (checkPoints, mesh, z0)
Input: checkPoints, inlet’s mesh mesh, roughness length values z0
Output: checkPoints coordinates checkCoords

1 for f acei ∈ checkPoints do
2 access mesh and get facei nodes’ spanCoords ;
3 maxCoord←max spanCoords ;
4 minCoord←min spanCoords ;
5 if f acei = last face of checkPoints then
6 if z0 f acei ̸= z0last f acei then
7 append minCoord to checkCoords ;
8 append maxCoord to checkCoords ;
9 else

10 append maxCoord to checkCoords

11 else
12 append minCoord to checkCoords

Algorithm 3.6: PARAMETER ASSIGNMENT (checkPoints, checkCoords, C f Coords, z0)
Input: checkPoints, checkpoints’ coordinates checkCoords, spanwise component of a patch face

centers C f span, roughness length values z0
Output: patch parameter patchParam

1 s← get number of checkPoints;
2 s1← get number of checkCoords;
3 for f acei ∈ patchFaces do
4 coordi← C f span f acei ;
5 for i← 1 to s do
6 previousFacei← checkPointsi−1 ;
7 previousCoord← checkCoordsi−1 ;
8 nextCoord← checkCoordsi;
9 if coordi > previousCoord and coordi <= nextCoord then

10 patchParam f acei ← z0previousFacei ;

11 if f acei = last patch facei and s < s1 then
12 patchParam f acei ← get last checkPoint z0 ;
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3.1.6 User-defined parameters

As mentioned in Section 3.1.3, upon calling the application the user needs to specify the location where
the roughness length list will be written, the name of the roughness length entry that will be added to
the designated configuration file and the name of the patch for which the assignment will be imple-
mented. Additionally, to those information, the application requires some extra specifications. These
specifications already exist in the case configuration files, however scattered. For the purpose of facili-
tating the implementation, an additional configuration file is required for running the application. The
file follows the dictionary structure, similar to most of the configuration files in OpenFOAM and is located
in the case’s constant folder. The included required parameters are listed below:

Required for both options -setZ0Ground and -setZ0Inlet:

- inputFile: the surface geometry file(obj) that corresponds to the specified patch. It is required that
the file is the same as the one used during the mesh generation with snappyHexMesh.

- inputMtl: the mtl file that carries the additional semantics of the input surface model.

- z0 values: the landcover categories with the corresponding roughness length values. This list is
required because the mtl file carries only the landover names, the z0 values are not included in the
semantics file.

Required only for option -setZ0Ground:

- nearDist: the seed distance used in for the search in the surface based octree.

Required only for option -setZ0Inlet:

- flowDir: It is the direction of the inflow, and it can be symbolised with one of the following ways:
(1 0 0): x direction, (0 1 0): y direction and (0 0 1): z direction. It is used for checking if the specified
by the user patch is the inlet, and to identify the span wise coordinates.

Required only for option -setParams:

- Params Inlet: the parameters needed for the calculation of initial values required by the input
turbulence model. The current implementation includes the calculations based on the k-ϵ model
as adapted for roughness length.

The structure and essential additional user-defined parameters are displayed in Figure 3.8.
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Figure 3.8: Configuration file for user-defined parameters.

3.2 Limitations and Requirements

The main limitations and requirements are derived based on three factors: a) the chosen method for the
assignment process, b) the nature of the simulation’s grid and c) the chosen models for the simulation
of the flow. The limitations and requirements are further explained below based on selected options:

1. -setZ0Ground: For this option the radius search in an octree is employed. For this method the
triangulated surface model is stored in an octree data structure, which is used to find overlaps
between the triangles and the face centers of the user specified ground patch. In order for the
method to produce valid results it is required that the input geometry is a watertight model with
no overlaps or gaps. Examples of a case where this requirement is evident are shown in Figure 3.9.
Furthermore, the surface model should have no duplicate vertices, which is an additional geome-
try requirement, without which the construction of the octree, as implemented by OpenFOAM, is not
possible. In the current implementation there is no overlap check or treatment. Lastly, limitation
of this option is the need to test different values for the input search distance until no face centers
are left unassigned.

2. Option -setZ0NoGeom: This option can only be applied after option -setZ0Ground is firstly speci-
fied since they both include the same assignment process. The difference between the two options
is that for option -setZ0NoGeom, the input surface model covers only part of the specified ground
patch extent. This implies that the mesh faces are not generated based on the input surface model,
and as a result, it can be the case where faces are intersected by the input surface geometries, in
contrast to option-setZ0Ground where it is ensured that there is no intersection. For cases where
intersections occur, there is loss of precision in the assignment process. Depending on the case this
could also mean loss of accuracy in the simulation results. Similarly to option -setZ0Ground it
might be the case that the input search distance needs refining until a roughness value is assigned
to all face centers.
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(a) No overlapping ge-
ometry.

(b) Overlapping geome-
try.

Figure 3.9: Comparison between a triangulated surface without overlaps (a) and a surface with overlap-
ping triangles (b) (surface: grey, triangles of surface: blue, overlapping surface triangles: green).

3. Option -setZ0Inlet: The assignment of roughness length is based on identified changes of rough-
ness length values of the inlet patch, in the span wise direction. The changes are identified based
on the roughness value of the inlet’s first cells’ face centers. For this, it is required that all rough-
ness values for the ground patches should already be specified. As mentioned in the previous
sections and displayed in Figure 3.7, the process generates uncertain results. This is a limitation
imposed by the generated grid, and in order to overcome it, it would require either an adjusted
mesh generation process or alterations to surface geometry to match the generated grid. Due to
this limitation the -setZ0Inlet is tested only on an ideal case.

4. Option -setParams: It is implemented for the assignment of calculated parameters related to the
selected turbulence model by employing the same assignment process as option -setZ0Inlet. In
particular, the application is implemented for the k-ϵ turbulence model as adapted for roughness
length (Section 4.2.1 in Chapter 4). This limits the use of option -setParams for specific flow
conditions. Additionally, the results of this option carry similar uncertainty for the same reason as
previously mentioned for option -setZ0Inlet. The names of the generated variables for the inlet
patch are written to file as ”parameter name” + ”name”.

For option -setParams the need for generating values for multiple parameters in combination with
specifying only one file location upon calling the application restricts the writing out of these parameters
to the specified location. This formulates also the way the user will organise the configuration files in the
0 folder. In particular, since all parameters are written out in one dictionary file (user defined location),
this file is required to be included in all relevant files, and the overlapping entry values referenced. This
is done by using the symbol ”$” and the variable name.

3.3 Quality control

The assessment of the application focused on the two main options that dealt with the assignment
of non-uniform roughness length. The first step was the selection of the cases that the application
would be applied and later evaluated. The testing was intended mainly for options -setZ0Ground

and -setZ0Inlet. For this purpose, as mentioned in the previous section, two cases were selected, a
simple ideal case and a more complex one that corresponds to a real location (Chapter 4). The simple
case was created for preliminary testing of the application and the more complex one to allow for fur-
ther evaluation. The choice was made based on the level of complexity of their underlying geometries.
For the assessment of option -setZ0Ground for each of these cases two simulations were performed and
compared. One simulation with the original geometry files that represented the different landcovers
with separate files, which was used as reference, and one with a unified landcover geometry that con-
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tained all landcover categories. Similar cases but with slightly modified geometries were used for the
assessment of option -setZ0Inlet. However, for this option there were no reference data to compare.

The main assessment approach, for option -setZ0Ground, included comparing the roughness length
values and the simulation results of the original case (separate geometries) and the case for which the
application was applied (unified geometry). For this the following factors were examined:

1. The divergence in the simulation results. The desired outcome would be for the two cases to
generate results with negligible differences. As indicator to determine the similarity of the flow,
the stream wise and vertical velocities values at selected points were used. The accuracy of the
assessment depended on the configuration of the point locations. Two were the main criteria used
to determine the point locations: selection of sparse enough locations to ensure that the study area
was covered to its extents and diversity of the locations in terms of the underlying surface type
as well as proximity to buildings. In addition, difference maps were generated between the two
cases in terms of the computed Umagnitude, as well as contour maps. This was done for a better
inspection of the effect of the assigned roughness length values on the simulation results.

2. The number/percentage of cells per landuse. For this the number of cells per patch was consid-
ered, as produced by the mesh generation process, in combination with the number of assigned
roughness values per landuse. This comparison was made under a certain level of uncertainty
since the number of cells per landuse is also dependent on the mesh generation process. Nev-
ertheless, the differences between the geometries of the two cases were minor, so the generated
mesh of the modified case was expected to have negligible deviations from the original case.

3. The effect of using a simplified geometry in the mesh generation process. Although the changes
to the geometry used in the modified case were minor, it was considered important to take into
account their effect in the mesh generation process. This was examined through a comparative
analysis between the two cases in terms of the number of cells per refinement level, the number
of faces per wall patch, the max skewness8, the number of skew faces and the computation time
required for the completion of the mesh generation process.

For both options -setZ0Ground and -setZ0Inlet the assignment of the roughness length values was
evaluated through visual inspection of the generated result with the use of a vtk files. This was employed
for the former option with the purpose of identifying large scale differences between the two cases, while
for the latter it was used as the main assessment method of the assignment result. Finally, for option
-setZ0Inlet the simulation results were compared against cases for which the option was not applied
to verify that the proposed methodology influenced the calculation of the flow parameters. This is done
based on the comparison at selected probe locations.

8https://openfoamwiki.net/index.php/CheckMesh
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4 Data, case pre-processing and testing

Two cases were selected for the assessment of the developed methodology. The underlying geome-
tries were modified to allow for the main functionality of the application to be tested. In this chapter
details regarding the surface models used and the set up of all used cases are presented. Specifically,
in Section 4.1 the surface models used for the original (using separate geometries) cases simple and
complex are shown, while in Section 4.2 details regarding the configuration of all cases are presented
and explained. In Section 4.3 the testing configuration of the cases, as presented in the aforementioned
sections, is presented.

4.1 Datasets

The original cases were used as reference for the assessment of the proposed methodology results. The
test cases were built based on modifications of the original cases’ geometries. The simple case is an ideal
case and was generated in the context of this study in Python, whereas the complex case corresponds
to a real location, and were used in the published research of Garcı́a-Sánchez et al. [2021]. The complex
case depicts part of the TU Delft Campus (Figure 4.2). The simple case, using the separate geometries
as described in this section will be referred to as s 0, while the complex case as c 0. Table 4.1 shows the
details of the aforementioned geometries.

Case File Faces Vertices

s 0

terrain.obj 2 4
green1.obj 2 4
water.obj 2 4

green2.obj 2 4

c 0
green.obj 24468 20050
water.obj 9495 6127

buildings.stl 42360 21323

Table 4.1: Details of the triangulated terrain models used in the original cases.

The surface model for the c 0 case was initially in stl format, and later the geometries corresponding
to the green and water surfaces were transformed to obj, in order to accommodate the requirements of
the proposed methodology. The stl files were generated with 3dfier, a 3D reconstruction software, that
generates semantically enhanced 3D models [Ledoux et al., 2021]. The geometries were reconstructed
based on a 2D topographic dataset, containing the footprints of the geometries and a point cloud from
which the height information were extracted. The surface models used in the simulations of the s 0 and
c 0 cases are shown in Figures 4.1 and 4.3.
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4 Data, case pre-processing and testing

Figure 4.1: s 0 case surface model (’brown’: terrain, ’green’: vegetation, and ’blue’: water).

Figure 4.2: Study area for c 0 case in the TU Delft Campus.
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Figure 4.3: c 0 case surface model (’red’: buildings, ’green’: vegetation, and ’blue’: water).

As demonstrated, the geometry of the complex case is comprised by a much larger number of triangles
and the surfaces of the different landcover categories are blended together irregularly, whereas for the
simple case the surfaces’ geometry configuration is regular and comprised of a small number of large
triangles. It should be noted that for the complex case the geometry contains areas where the landcovers
have overlaps. The found overlapping areas are shown in Figure 4.4.

Figure 4.4: Overlaps between the geometries for ’Green’(triangles are represented by their centers in
red) and ’Water’(triangulated surface in light blue) landcovers for the complex case.

Although, 3dfier generates watertight 3D models by accounting for self-intersections and gaps, the
cause of the observed overlaps could be the fact that the initial stl files were generated separately.
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4.2 Cases pre-processing

In this section the implemented steps for the preparation of the used cases are presented. For the c 0 case
the mesh generation, solver and turbulence schemes’ parameters were based on Garcı́a-Sánchez et al.
[2021]. With the exception of the post-processing step, only minor customisations were implemented
for the rest of the configuration files, in order to adjust the set up for the application testing. The config-
uration files for the cases presented in this section can be viewed in https://github.com/cfratz/set_

nonUniform_z0.

4.2.1 Case configuration

For the configuration of both the simple and complex cases the steps listed below were implemented:

Geometry preparation

This included the generation of the s 0 case geometry and for both the s 0 and the c 0 cases, unifying the
terrain geometries into one obj file, for each case. The cases with the unified model will be referred to as
s 1 and c 1 respectively. Additionally, slightly modified versions of the aforementioned unified surface
models were generated in order to accommodate the case of non-uniform roughness at the inlet (namely
s 2 and c 2). In particular for the c 2 case with non-uniform inlet, two surface models were used for the
ground. One to represent the water and green landuses, similar to the c 1 case, and one to represent
the terrain neighbouring the inlet of the domain. The aforementioned underlying surface models used
for testing the application are shown in Figures 4.5 and 4.6. Details of all the used surface models are
shown in Table 4.2, which also includes part of the information displayed in Table 4.1. For the c 2 case
the used surface models cover only part of the extent of the ’Terrain’ patch, as shown in Figure 4.6b.
An analytical overview of all cases along with their corresponding roughness length values is shown in
Table 4.3 .

Case Faces Vertices Patch name Landcovers

s 0

2 4 terrain 1
2 4 green1 1
2 4 water 1
2 4 green2 1

s 1 8 10 terrain 3
s 2 11 12 terrain 3

c 0
24468 20050 Green 1

9495 6127 Water 1
42360 21323 Buildings 1

c 1 33963 26049 WaterGreen 2
42360 21323 Buildings 1

c 1 1 33963 26049 WaterGreen 2
42360 21323 Buildings 1

c 2
4 6 Terrain 2

33963 26049 WaterGreen 2
42360 21323 Buildings 1

Table 4.2: Details of all triangulated terrain models used in the test cases.

Case c 1 1 (Table 4.2) is the same in all respects with case c 1. The only difference is that in the obj

file used for this case the landuses are flipped and the triangles corresponding to the water surfaces are
written first. The reason for creating this case is that it was observed that when this alteration in the
obj file was implemented, the octree based assignment of option setZ0Ground assigned correctly the
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4.2 Cases pre-processing

roughness length in the areas where overlaps between the vegetation and water surfaces were present
(Figure 4.4). This is further illustrated in Section 6.2 of Chapter 6.

(a) s 1 (b) s 2 for non-uniform inlet

Figure 4.5: Unified terrain surface models for the simple cases.

(a) c 1 (b) c 2 for non-uniform inlet

Figure 4.6: Unified terrain surface models used for the complex cases.

Configuration of the mesh generation parameters

For the generation of the meshes the OpenFOAM blockMesh and snappyHexMesh utilities were used. The
former for the generation of the background mesh and the latter for the generation of the final grid.
From here on after we will elaborate more on the details of the mesh of the simple cases, while for the
complex cases only necessary details will be provided, since it is a verified case. For the simple cases
the used domain is ’empty’, it contains no buildings, trees or smaller structures. For this reason the
mesh is designed based on a uniform treatment principal in the x and y directions. However, in the z
direction higher refinement was imposed close to the bottom of the domain with a gradual transition to
lower refined cells towards the top of the domain. This was done to ensure that near walls, where tur-
bulence has a greater effect, changes in the calculated flow parameters are approximated as accurately
as possible and that no ’jumps’ occur in the calculated profiles.

For the design of the mesh it was ensured that the first cells’ center was higher than the maximum
roughness length value. The selected dimensions for the computational domain of the ’simple’ case are:
length(x) = 969 m, width(y) = 870 m and height(z) = 210 m. The background mesh was based on one
block refinement with an applied total expansion ratio = zlastCell/z f irstCell of 4 in the z direction. For the
final grid two refinement boxes were used with the same width and length as the computational domain
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and with a 5m and 35m height respectively. For the 5m box a refinement of level 2 was implemented,
while for the 35m box a refinement level of 1. The patches that intersected the surface models were
refined based on a level 3 refinement. It should be noted that this is an ideal case and so the aim of
the mesh generation was to ensure that the simulation results converge and are independent of the
generated mesh.

In contrast to the simple cases, the complex ones have an area of interest, and it contains buildings and
intricate configurations of water, green and terrain surfaces. As such, the computational domain dimen-
sions follow the COST732 guidelines. Based on these guidelines additional space between the model
(area of interest) and the domain boundaries is added. Based on the above the domain dimensions are:
length (y) ≈ 2,705m, width (x) ≈ 1,848m and height (z) ≈ 586m. For the generation of the background
mesh 27 blocks were used with different expansion ratios. For the final grid a top view of the applied
refinement boxes for the complex case is graphically presented in Figure 4.7.

Figure 4.7: Illustration of the refinement boxes used in the complex cases. Boxes 1-3: refined to level
3,2,1 respectively, Box 4: refined to level 4, area of interest is in grey.

Choosing an appropriate solver and turbulence model

Both the simple and the complex cases are simulations in the urban ABL with steady state incompressible
turbulent flow. For this type of simulations the steady RANS set of equations was chosen as the most
efficient method for the numerical approximation of the Navier-Stokes equations (Chapter 2). Based on
the above the OpenFOAM ’simpleFoam’ solver was selected along with the k - ϵ turbulence model. For the
numerical divergence a bounded Gauss linearUpwind limited scheme was selected for velocity and
for the turbulence parameters (i.e. k and epsilon) a bounded limitedLinear 1 scheme was used, along
with a limited Gauss linear 1 interpolation gradient scheme.

Setting up boundary and initial conditions

This part refers to the set up of the initial estimated values for velocity, kinetic energy, dissipation rate,
kinematic viscosity and pressure at the boundaries of the computational domain. The values were
estimated in accordance to the chosen schemes indicated previously for the simulation of the ABL. At
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the inlet the most often used vertical profiles for mean velocity and turbulence properties following the
k - ϵ model are based on the Richards and Hoxey [1993] set of equations. The used equations for mean
velocity, k and epsilon are shown below:

U =
u∗

κ
ln(

z + z0

z0
) (4.2)

k =
u2
∗√
Cµ

(4.3)

ϵ =
u3
∗

κ(z + z0)
(4.4)

where z is the height at which the mean wind speed is measured, κ is the von Karman constant: 0.41,
u∗ is the friction velocity and Cµ a model constant:0.09 of the k-epsilon turbulence model. Solving
Equation 4.2 with mean velocity equal to 10 m/s for the simple cases and equal to 4.97 m/s for the
complex cases the friction velocity was derived and used in Equations 4.3 and 4.4 to estimate the initial
values for the k and ϵ turbulence parameters.

The value for z0 at the inlet is the roughness of the surface neighbouring the inlet of the domain, assumed
equal to the one of the upstream terrain outside the computational domain. For the s 2 and c 2 cases,
for which more than one surfaces with different roughness length values are neighbouring the inlet,
the values for U∗, k and epsilon are calculated as described in Section 3.1.5 of Chapter 3 based on the
aerodynamic roughness (z0). The assigned roughness values per boundary patch for all used cases
are shown in Table 4.3. In the table cases s 2 1 and c 2 1 are cases using one roughness length at the
inlet, although the neighbouring ground inside the domain has varied roughness. These cases were
used for comparison with the cases with non-uniform roughness at the inlet (i.e. s 2 and c 2). This
was considered important for the purpose of demonstrating the effect of the proposed methodology for
non-uniform inlet on the computed flow parameters.

The roughness length parameter is used, as an input parameter, in all patches at the bottom boundary,
for the calculation of the turbulent viscosity (i.e. nut), and in the inlet boundary for the estimation
of the initial values for velocity, k and epsilon. Additionally, it is used at the bottom patches for the
epsilon, for which the representation of the geometry is provided implicitly [Blocken et al., 2007b]. This
was possible after a modification of OpenFOAM’s epsilonWallFunction. The modified version, named as
epsilonz0WallFunction, is based on Parente et al. [2011] adjustment of the k-espilon turbulence model
for the aerodynamic roughness length(z0) parameter. The selected boundary patch types are shown in
Table 4.4.

Setting up the post-processing tools and schemes for the presentation and analysis of the
simulation results

For both cases values at selected locations were plotted in order to check and compare the convergence
of the simulations between the s 0 - s 1 and c 0 - c 1 cases. In Figure 4.8 and Figure 4.9 the probe
configurations for the simple and the complex case are shown respectively. Furthermore slices at 2m
height were extracted to illustrate and compare the flow parameters fields. For the s 0 case sample
points along a vertical line (930m-965m) at the probe locations (Figure 4.8) were selected, in order to
check the vertical profiles of the flow parameters. The latter was used to check the effect of the generated
mesh to the velocity profile and the near wall behaviour of the flow. The profiles are shown in Figure 4.13
in Section 4.2.2.
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Case Patch name Landcovers z0

s 0

terrain 1 0.05
green1 1 0.03
water 1 0.0002

green2 1 0.03
inlet - 0.05

s 1 terrain 3 [0.05, 0.03, 0.0002]
inlet - 0.05

s 2 terrain 3 [0.05, 0.03, 0.0002]
inlet - [0.05, 0.03]

s 2 1 terrain 3 [0.05, 0.03, 0.0002]
inlet - 0.05

c 0

Green 1 0.03
Water 1 0.0002

Terrain 1 0.5
y0 - 0.5

c 1
WaterGreen 2 [0.03, 0.0002]

Terrain 1 0.5
y0 - 0.5

c 1 1
WaterGreen 2 [0.03, 0.0002]

Terrain 1 0.5
y0 - 0.5

c 2
WaterGreen 2 [0.03, 0.0002]

Terrain 3 [0.5, 0.03, 0.0002]
y0 - [0.03, 0.0002]

c 2 1
WaterGreen 2 [0.03, 0.0002]

Terrain 3 [0.5, 0.03, 0.0002]
y0 - 0.03

Table 4.3: Assigned roughness length (z0) values per patch.

inlet outlet bottom top and sides
U[m/s] atmBoundaryLayerInletVelocity zeroGradient uniformFixedValue symmetry

epsilon[m2/s3] atmBoundaryLayerInletEpsilon zeroGradient epsilonz0WallFunction symmetry

k[m2/s2] atmBoundaryLayerInletK zeroGradient kqRWallFunction symmetry

nut[m2/s] calculated calculated nutkAtmRoughWallFunction symmetry

p[Pa] zeroGradient uniformFixedValue zeroGradient symmetry

Table 4.4: Boundary conditions set-up. The types used for the bottom boundary of the domain re-
fer to all relevant patches that represent ground surfaces, for all other surfaces (i.e. buildings), the
epsilonWallFunction is used.

Figure 4.8: Probe configuration for s 0 and s 1 cases.
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Figure 4.9: Probe configuration for c 0 and c 1 cases.

4.2.2 Simple case grid independence study

For the simple case in particular, a grid independence study was also performed. This was based on case
s 0 and the selected grid was used in all simple cases. The grid independence study is a required step
in the preparation stage of a CFD simulation for two reasons. Firstly, it ensures that the generated grid
will not influence the resulting calculated flow parameters and secondly, it can provide the possibility
of a more time efficient grid solution (i.e. a coarser grid) without a significant loss of accuracy in the
results. A grid independence study entails the generation of at least three simulations with gradually
finer grids. In order for the study to be successful the simulation results should gradually converge at
lower values for the finer grids without significant differences. This ensures that the use of an even finer
grid would not produce different results. Although the aforementioned steps are necessary for grid
independence study, there are additional indicators that need to be computed in order for the study to
be complete. For our case four different grids were generated (Table 4.5). The finer grids were generated
by multiplying the background mesh resolution by a factor of 1.4.

Grid XxYxZ(ncells) Total ncells Simulation duration(h)
coarse 87x79x20 137.460 2

medium 122x111x28 379.176 3
fine 171x156x39 1.040.364 8
finer 240x219x55 2.890.800 19

Table 4.5: Details of simulations for grid independence.
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(a) Coarse grid. (b) Medium grid.

(c) Fine grid. (d) Finer grid.

Figure 4.10: Screenshots of the s 0 case grids included in the mesh independence study.

Figures 4.11 and 4.12 show the convergence values for the streamwise velocity (Ux) component and
the vertical velocity (Uz) respectively at four selected probe locations for all grids. The Uz convergence
values are almost identical for all grids at the four probe locations. For the streamwise velocity the con-
vergence values for the medium, fine and finer grids have differences smaller than 10−1m/s (Table 4.6),
which is significantly close to conclude that grid independence is achieved. The negative values for
diff f ine− f iner shown in Table 4.6 are due to the finer simulation needing additional time to fully con-
verge, however still negligible. From the tested grids the medium grid was selected as it fulfilled both
the independence and the time efficiency criterion.

Probes diffmedium− f ine diffmedium− f iner diff f ine− f iner
1 0.027 0.032 0.005
2 0.019 0.019 0.000
3 0.013 0.008 -0.005
4 0.007 0.003 -0.003

Table 4.6: Differences for Ux between the medium, fine and finer grids at selected point locations.
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Figure 4.11: Convergence for Ux at four selected probe locations.

Figure 4.12: Convergence for Uz at four selected probe locations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.13: Vertical profiles(930m-960m) for Ux, epsilon and k at four locations.
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4.3 Testing

In this section the cases uses for the testing of the options included in the proposed methodology are
presented. Table 4.7 shows the implemented option/s for every case.

Cases -setZ0Ground -setZ0Inlet -setZ0NoGeom

s 1 x
s 2 x x

s 2 1 x
c 1 x

c 1 1 x
c 2 x x x

c 2 1 x x

Table 4.7: Correspondence between the application options and the tested cases.

As displayed in Table 4.7, c 2 is the only case used for the testing of option -setZ0NoGeom. The reason
for this, is that the additional geometry was only used for the assignment of roughness and it was not
included in the mesh generation of the designated patch.
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In this chapter details of the implementation are presented. In Section 5.1 a brief description of OpenFOAM’s
case structure is provided, while the next sections focus more on the selected tools and functionality
used in the application. Specifically, in Section 5.3 a description of the selected OpenFOAM classes is
given along with their use in the code. Additionally, in Section 5.4 the functions built for application
are explained. Lastly, in Section 5.5 the list of used libraries, software and programming languages is
presented. The code and application configuration files can be found in https://github.com/cfratz/

set_nonUniform_z0.

5.1 Case structure

OpenFOAM is a software predominantly created for the use in CFD simulations. It provides functionality
that ranges for all steps of a CFD simulation (i.e. preprocessing, solver, postprocessing). It is based on C
I/O objects, types, loops, while deriving object-oriented features from C++ as well. In accordance to the
functionality it provides its source code utilises a highly templated language to reduce code repeatence
and provide the basis for further developmnent. Memory manipulation and access OpenFOAM maintains
an object registry of entities. The top level of the objectRegistry is Time, and represents the various time
steps in a simulation. Time steps are mainly handled by runTime. This also explains the naming of the
case folders. A typical case structure consists the following folders:

• 0, for the set-up of the boundary conditions.

• constant, where the surface models, the background mesh information (i.e. polyMesh, it could
also the final mesh depending on the case) are stored, as well as the dictionaries for the turbulence
model and transport properties are located. For our cases only these dictionaries were required,
however, for a different selected physical model more dictionaries might be needed.

• system, where instructions on how the case is ran, the selected source terms’ discretisation schemes
and how the discretised linear equations are solved are located. Additionally, it contains the set-
up for the selected utilities (e.g. related to the mesh, decomposition of the mesh for running in
parallel, the postProcessing etc).

In Figure 5.1 the folders generated after the simulation is completed are shown. Folders 1, 2 are the
result of the mesh generation process while folder 3002 contains the results of the last time step of the
simulation. In the postProcessing folder all the results of the post-processing tools as specified in the
system directory are stored.

Figure 5.1: ’complex’ case folder structure.
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5.2 Integration in OpenFOAM

The application is easily compiled1 within OpenFOAM with wmake an OpenFOAM compilation script based
on make. The structure of the application directory is shown in Figure 5.2.

Figure 5.2: Structure of application directory.

Libraries and header files used in the source code of the application are included in the options file.
All executable(i.e..C) files related to the application that need to be compiled are specified in the files

file. For personal applications, such as the one created in this thesis, when compiled, the application
is written into the specified local directory for custom applications. The compiler can locate this direc-
tory from anywhere in the OpenFOAM environment by storing the path under the environment variable
FOAM USER APPBIN.

5.3 Classes

The code was based on the use of OpenFOAMv7 classes and their derived functionality. Details and in-
formation provided in this section are based on OpenFOAM’s C++ Source Code Guide found at https:
//cpp.openfoam.org/v7/. In order to be able to access the selected classes and functions the following
header files were included:

#include "fvCFD.H": contains multiple #include statements of header files related to finite vol-
ume tools. From these, necessary for the application are the definitions related to the argList

class, the Time class, the fvMesh class and the IOdictionary and IOobject classes.

#include "triSurfaceSearch": includes necessary definitions for the use of the triSurfaceSearch
class. Through this class the octree based search in a surface of OpenFOAM’s type triSurface is en-
abled.

#include "setRootCase.H": checks the validity of the user defined options and extracts the com-
mand line arguments and stores them under the variable args of type argList. The command
line arguments are passed as argc, argv to the main() function of the application, with argv[0]

being the name of the program (i.e. setZ0).

#include "createTime.H": instantiates the time class and enables access to the available time
steps of the case to which the application is applied.

In contrast with the first two definition files, that are declared in the beginning of the code, the #include
statements for the "setRootCase.H" and "createTime.H" files are placed inside the main function.
The reason for this is that they are directly linked to the arguments provided by the main() function. A
list of OpenFOAM’s selected classes is presented below:

- argList: extracts the command line arguments and options. Based on this class the command line
arguments are checked, read and stored.

1https://cfd.direct/openfoam/user-guide/v7-compiling-applications/#x10-710003.2

46

https://cpp.openfoam.org/v7/
https://cpp.openfoam.org/v7/
https://cfd.direct/openfoam/user-guide/v7-compiling-applications/#x10-710003.2


5.4 Functions

- fvMesh: it contains all the geometric and topological information of the generated mesh, that
are needed for the finite volume discretisation. For the application an instance of the fvMesh is
created based on the last available time step (directory 2) as generated after the completion of
snappyHexMesh utility. Through this class it was possible to access the boundary and internal
mesh as well as patch information of the final grid.

- IOdictionary: it is a class derived from dictionary and IOobject to allow Input/Output func-
tionality through the objectRegistry.

- IOobject: through this class the attributes of an object that is supported with implicit objectRegistry
management are defined. It is used as input to generate an instance of the fvMesh as well as for
the instantiation of the setZ0Dict dictionary file.

- triSurface: It provides a description for triangulated surfaces in OpenFOAM. All input surface
models provided by the user are converted to triSurface. The instances of the class in the code
are generated based on the input .obj files. A triSurface is described by its faces, points and
patches (different from the mesh generated patches).

- pointIndexHit: describes the relation between a face and a point. In the application it is used
to describe the interaction between the face centers and the triangles stored in the octree. The
interaction in the code is described based on the following member functions:

hit(): returns True if a hit is successful,

index(): returns the index of the nearest found triangle to the tested face center,

hitPoint(): returns the hit point.

- triSurfaceSearch: It is a support class for the triSurface. It provides functions for the construc-
tion of a triSurface based octree as well as octree based operations and searches. From the avail-
able functions the void findNearest(const pointField& samples, scalarField& nearDistSqr,

List<pointIndexHit>& info) is called using as samples the mesh face centers corresponding
to the input geometry. This function creates the octree using the indexedOctree template class
and calls function indexedOctree<treeDataTriSurface>::findNearest, based on which over-
laps between the sample points and the triSurface faces are found. The treeDataTriSurface2 is
an alias class defined based on the treeDataPrimitivePatch template class of type triSurface.

- indexedOctree: It is a base class that provides functionality for the generation, manipulation
and analysis for octree data structures. It is templated to address different types of input to be
converted into octree data structures.

5.4 Functions

In this section a description of the functions included in the application code is presented, based on their
usage. The first group of functions are functions of the same declaration used in OpenFOAM v7 utility
foamDictionary3. The available functions are listed below:

Functions responsible for accessing the user-specified dictionary and checking and extracting the command-
line argument from option entry :

– readDict: reads the user-specified dictionary file, ensuring that the file is written in the dic-
tionary’s specified format(i.e. ASCII or binary).

– scope: converts the user-specified entry to a syntax using ’.’, in case the specification included
a semicolon instead.

– dictAndKeyword: in case the entry is located inside a subdictionary, the keyword and the sub
dictionary are stored separately.

2https://cpp.openfoam.org/v9/treeDataTriSurface_8H_source.html at line 48
3https://cpp.openfoam.org/v7/foamDictionary_8C_source.html lines 131-237
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5 Implementation and tools

– lookupScopedDict: checks that specified entry exists.

Functions responsible for performing checks in the input .mtl and .obj files as well as the user-specified
target patch/es:

– checkMtl: checks the correspondence between the landcovers included in the .mtl file and
the ones specified in the setZ0Dict file.

– z0ToTriangle: checks that the included landcovers in the .obj file exist in the setZ0Dict

and assigns the specified z0 value to the triangles.

– checkPatch: checks depending on the selected option whether the specified patch is the inlet
or a ground patch.

Functions responsible for the assignment of non-uniform roughness length(z0) to the designated patches:

– assignZ0: takes care of the assignment of roughness length for option -setZ0Ground to the
specified patch face centers based on found overlaps between the face centers and the surface
triangles.

– assignParam: takes care of the assignment of roughness length for option -setZ0Inlet to the
inlet face centers.

– calculateParams: calculates the turbulence parameters and generates a list for every input
patch.

5.5 Tools

The application is built using C/C++ programming languages along with the in-built functionality of
OpenFOAM v7 on Ubuntu18.04.5 in Windows 10. The same version of OpenFOAM was used for the testing
of the application as well as running the selected cases. Handling the running of the cases was done
using the provided bash shell. The generation of the .obj files for the ’simple’ case was done in Python
for the original case using the startinpy4 library, a library the implements a robust Delaunay trian-
gulation, mainly suitable for the modelling of terrains. For the ’complex’ case the original geometries
were, as mentioned in Section 4.1 in Chapter 4, supplied in .stl format. The conversion of the .stl

files to .obj format was done in the software MeshLab 2021.10[Cignoni et al., 2008]. MeshLab was also
used for combining the original cases’ .obj files for both the ’simple’ and ’complex’ cases. For this the
Flatten Visible Layers option was used ensuring that all duplicate vertices unreferenced vertices
were deleted.

For the generation of plots and the visualisation of the results the following Python libraries were
used:

- matplotlib: a 2D visualisation toolkit [Hunter, 2007].

- seaborn: a visualisation toolkit providing refined versions of matplotlib ’s statistical graphics
using a a simpler interface [Waskom, 2021].

- pyVista: a toolkit specialised in the handling and visualisation of vtk files [Sullivan and Kaszynski,
2019]. It was used for the generation of the resulting contour maps and vtk comparisons and
visualisations.

All probe plots were created with gnuplot5, a command-line program for 2D and 3D plots, providing
user-customisation through its built-in scripting language. Although, gnuplot is incorporated in the
package of OpenFOAM, due to incompatibility issues with Windows, it was accessed directly. Lastly,
part of the geometry visualisations presented in Chapters 3 and 4 were generated in the software
Paraview6.

4https://github.com/hugoledoux/startinpy/
5http://www.gnuplot.info/
6https://www.paraview.org/
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6 Results and analysis

In this chapter the results of the simulations as well as of the application are presented. In Section 6.1 a
comparative analysis of the generated grids between cases s 0 - s 1 and c 0 - c 1 is presented, in order
to investigate the effect of the geometry modifications on the generated meshes. In Sections 6.2 and 6.3
the results of options setZ0Ground and setZ0Inlet are presented.

6.1 Grid similarity between the use cases

In this section the results of the mesh generation process for the original (separate) and the modified
(unified) geometries are shown for each of the simple (s 0, s 1) and complex (c 0, c 1) cases. This is done
based on the differences between the original and the modified case in terms of the number of cells
per refinement level (Table 6.2) and the number of faces per boundary patch (Table 6.3). Furthermore,
selected characteristics of the meshes are compared (Table 6.1).

This step is essential to support the analysis of the results of option -setZ0Ground, but also to investigate
the effect of the modified geometry in the mesh generation and the simulation results. It is important to
mention that the modified geometries were a product of combined obj files and only duplicate points
were removed during the process (Section 4.2 in Chapter 4), so only minor changes were made. This
makes the use of these indicators relevant, even though they do not provide information regarding the
spatial distribution of the differences.

Characteristic Simple cases Complex cases
s 0 s 1 c 0 c 1 Diffc 0-c 1

Max skewness ≈ 0.33 ≈ 0.33 ≈ 13.66 ≈ 13.66 0
Skew nfaces 0 0 301 306 -5

nCells(type:hexahedra) 3,507,378 3,507,378 15,031,780 15,031,775 5
nCells(type:prisms) 0 0 87,745 87,767 -22

nCells(type:tet wedges) 0 0 251 254 -3
nCells(type:polyhedra) 284,382 284,382 681,315 681,263 52

Table 6.1: Mesh characteristics for the simple and complex cases generated from the OpenFOAM utility
checkMesh.

In Table 6.1 the selected characteristics of the meshes are presented. The selection was based on the
features for which the c 1 case deviated from the c 0. For the simple cases all displayed characteristics
of the mesh are the same. On the other hand, for the complex ones differences are observed in the
number of cells per used cell type, as well as in the number of found skew faces. The latter deviation
is only 5 skew faces and in combination with the fact that ’Max skewness’ is the same for both cases, it
is considered negligible. Regarding the differences in the types of cells, the majority of the deviations
concentrate in the ’prisms’, in favour of the ’modified’ case (22), and in the ’polyhedra’ in favour of
the ’original’ case(52). For the ’polyhedra’ specifically the bulk of the differences is shared between
’polyhedra’ of 6, 9 and 12 faces. Based on the aforementioned observations, it is difficult to conclude
whether the grid of the c 1 case is simpler from the one generated for the c 0 case. For this reason, their
effect will be further assessed through the simulation results, which are presented in the next sections.

In tables 6.2 and 6.3 the deviations in terms of number of cells and faces are shown respectively. For the
simple cases, as for the mesh characteristics, all chosen indicators are the same. This was anticipated

49



6 Results and analysis

since the refinement at the higher level is uniform through out the extent of the domain and the geome-
tries are not blended. On the other hand for the complex cases there are differences, with the c 0 case
being the one with the additional cells and faces. More specifically, the differences in terms of cells are
mainly concentrated at the higher refinement level(level 5), as shown in Table 6.2, and in terms of num-
ber of faces, in the boundary patches that represent the ’Buildings’, ’Green’ and ’Water’ surfaces. For
the ’Green’ and ’Water’ surfaces this was expected since they are the ones whose geometry was altered.
The accounted differences in the ’Buildings’ patch, whose used geometry was not altered, are possibly
a consequence of this modification. It should be noted that the total difference between the number of
cells and faces, respectively, can be explained by the use of different types of cells in the mesh. For both
the simple and complex cases execution time for the generation of the mesh was the same regardless of
the geometry used.

XXXXXXXXXXRef level
nCells Simple cases Complex cases

s 0 s 1 c 0 c 1 Diffc 0-c 1
0 270,840 270,840 23,628 23,628 0
1 704,184 704,184 186,624 186,624 0
2 1,083,360 1,083,360 1,539,577 1,539,577 0
3 1,733,376 1,733,376 8,280,903 8,280,904 -1
4 - - 4,543,981 4,543,976 5
5 - - 1,226,378 1,226,350 28

Total 3,791,760 3,791,760 15,801,091 15,801,059 32

Table 6.2: Number of cells per refinement level for the simple and complex cases as generated from the
OpenFOAM utility checkMesh.

XXXXXXXXXXPatch
nFaces Simple cases Complex cases

s 0 s 1 c 0 c 1 Diffc 0-c 1
Green1 216,672 - - -
Green2 216,672 - - -
Terrain 216,672 995,944 995,942 2
Water 216,672

866,688

20,926
Green - - 69,473 90,380 19

Buildings - - 481,005 480,986 19
Top 13,542 13,542 4,212 4,212 0
Inlet 9,102 9,102 6,480 6,480 0

Outlet 9,102 9,102 6,480 6,480 0
Sides(symmetric) 20,008 20,008 18,720 18,720 0

Total 918,442 918,442 1,603,240 1,603,200 40

Table 6.3: Number of faces per boundary patch for the simple and complex cases as generated from the
OpenFOAM utility checkMesh.

In order to be able to have a better understanding of whether these differences are low we calculated
their percentage on the total number of their corresponding category for the original case, which in all
instances had the larger number of cells and faces. The calculation was done as shown below:

di f fnCells5 =
di f f5

nCellsc 05

≈ 0.002% (6.5)

di f fnFacesGWB =
di f fGWB

nFacesc 0GWB

≈ 0.007% (6.6)
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As shown by the calculated percentages, the numbers are significantly small. This also means that
any misassignment in the roughness length resulting from these differences will most likely have a
negligible effect in the simulation of the flow. For this reason it is not considered important to find the
spatial distributions of the deviations. Instead, we will verify our conclusion based on the comparison
of the simulation results as presented in the next section. Based on the above, the differences between
the meshes of the s 0 - s 1 and the c 0 - c 1 cases are not significant and thus the meshes are regarded
as similar. In particular for the complex cases, however, if the observed differences are found to be a
probable cause for deviations also in the calculation of the flow parameters further investigation into
their location would be required.

6.2 Option -setZ0Ground

In this section the results of option -setZ0Ground are presented, through comparison of cases s 0 - s 1
and c 0 - c 1. The comparison is performed in terms of the assigned number of the roughness length
values per landcover and the calculated flow parameters. In Figure 6.1 a bar plot of the number of
roughness length values per landcover is shown for the simple cases. The assigned number of roughness
values is the same for both cases, which can also be observed in the illustration of Figure 6.2.

Figure 6.1: Plot of the occurrences of assigned z0 values per landcover for the simple cases.

Figure 6.2: Illustration of the assigned roughness length for case s 1.
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Additionally, the convergence values for Ux and Uz at the four selected probe locations (Figures 6.3 and
6.4) present no deviations between the s 0 and s 1 cases.

Figure 6.3: Ux at four probe locations.

Figure 6.4: Uz at four probe locations.

The presented results for the simple case show that the process of assigning roughness length did not
affect the simulation results, but also that the implemented modification in the geometry, as shown in
the previous section, did not have any effect in the mesh generation process. In this sense, the use of the
application for a case such as this can only contribute in facilitating the process of setting up the case,
since the user is required to provide less parameters, and thus it can improve time efficiency.

As mentioned in Chapter 3 overlaps in the input geometry can compromise the accuracy of the assign-
ment process as implemented in the built application. In particular, this is the case for the geometry used
in the complex cases ( Section 4.1 in Chapter 4). For this reason, the assignment in the found regions,
where overlaps occur between the different landcovers, is expected to fail. In order to verify this, case
c 1 1 is used. For this additional case, the assignment process is not hindered by the accounted overlaps.
A description of the details regarding the geometry used for this case are provide in Section 4.2.1. How-
ever, it should be noted that the implemented alterations were customised specifically for the complex
case, and thus can not be generalised. The results of the three cases are illustrated in Figures 6.5 and 6.6
and quantified in the bar plot of Figure 6.7.
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Figure 6.5: Illustration of the assigned roughness length values for the c 0 case.

(a) c 1. (b) c 1 1.

Figure 6.6: Illustrations of the assigned roughness length as generated from option -setZ0Ground. The
red boxes signify the areas with observed differences.
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Figure 6.7: Plot of the occurrences of assigned z0 values per category for the complex case.

As shown in the bar plot although the assigned number of values per category are different between
the c 0 and the c 1 1 case, the corresponding percentages are almost identical. On the other hand, for
the c 1 case the effect of the overlapping surfaces is evident. Specifically, it displays a much higher
percentage of assigned values in the ’Green’ landcover and subsequently a much lower one for the
’Water’. The differences correspond to ≈ 3,286 more faces in the ’Green’ landcover and ≈ 3,305 in the
’Water’ landcover when compared to the c 0 case assigned values. The approximation is used here
since there is a geometry difference of 19 faces (Section 6.1), which is impossible to locate, nevertheless
negligible. The correspondence between the differences and the regions with overlaps per landcover
can also be observed through visual inspection of Figure 6.8. This validates the original assumption that
the regions with overlaps hindered the assignment process of the application.

(a) Water (b) Vegetation

Figure 6.8: Differences per landcover based on the assigned roughness values between the c 0 and c 1
cases.
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In Figures 6.9 and 6.10 the convergence values for the three cases are presented, as generated for fifty
one probes at 2m height above ground. For both Uy and Uz all three cases converge at the same values.

Figure 6.9: Uy at fifty one probe locations at height 2m.

Figure 6.10: Uz at fifty one probe locations at height 2m.

However, in the presented probe locations the regions with overlapping geometries were not included.
The generated values for ten selected locations in the overlapping regions for the two velocities are
shown in Figures 6.11 and 6.12 respectively. Although case c 1 1 converges at the same values as c 0,
the results for c 1 present deviations up to 10−1 for Uy. Differences are also present in the Uz velocity
component, but are smaller.
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Figure 6.11: Uy at ten probe locations with different roughness length at height 2m.

Figure 6.12: Uz at ten probe locations with different roughness length at height 2m.
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Illustrations of the differences between the c 0 and the c 1, c 1 1 cases are shown in Figure 6.13, for the
c 1 (6.13a and the c 1 1 6.13b case respectively. It should be noted that the graphs as well as the numbers
depicted in Table 6.4 are derived based on proximity between the grid vertices of the c 0 and the c 1,
c 1 1 cases, since the grids are similar but not exactly the same. The vertices of the grids were used,
since it was not possible to use the face centers in this situation. The generated graphs confirm that
the c 1 case only deviated from the original in the regions where overlaps between the geometry of the
two landcovers were present. The absence of colours corresponding to values larger than (≈0.45) for
the c 1 case and larger than (≈0.15) for the c 1 1 one, is due to the smaller number of points for those
intervals. As shown in Table 6.4 the majority of the points for both c 1, c 1 1 cases have differences that
lie between [0, 0.05], which is considered negligible. However, the c 1 case has a total of 1823 points
with differences between 0.05 and 0.45, while the c 1 1 case has only 80 points with values in the same
range. For both cases, differences larger than 0.45 correspond to only three points. This is the reason
why some of the colours in the used colourbars are not visible in the difference maps.

(a) c 1 (b) c 1 1

Figure 6.13: Differences between the c 0 and c 1 case for Umagnitude based on a 2D slice at 2m height
above ground.

Umag diff ranges c 0-c 1 c 0-c 1 1
[0, 0.05] 1,070,253 1,071,993
(0.05, 0.1] 892 31
(0.1, 0.15] 428 7
(0.15, 0.2] 226 5
(0.2, 0.25] 129 1
(0.25, 0.3] 80 2
(0.3, 0.45] 35 4
(0.45, 0.59] 2 2

Table 6.4: Number of points per Umagnitude difference interval.
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The contour maps shown in Figures 6.14, 6.15 and 6.17 display Umagnitude in contours for the three cases
using a step of 0.375 [m/s]. From visual inspection the three cases are similar, although deviations can
be observed with a closer look in Figures 6.15a and 6.17b in the overlapping regions (Figure 6.16).

Figure 6.14: Contour map with contours per 0.375 [m/s] for Umagnitude for the c 0 case, using a 2D slice
at 2m height above ground.

(a) c 1 (b) c 1 1

Figure 6.15: Contour maps with contours per 0.375 [m/s] for Umagnitude, using a 2D slice at 2m height
above ground.

Based on the above observations we can conclude that the result of the assignment process of -setZ0Ground
is close enough to the c 0 case result, under the restriction that there are no overlaps in the geometry.
Regarding the effect of the geometry modifications in the simulation results, it can be assumed that the
deviations observed in the c 1 1 case can be attributed to the mesh differences analysed in Section 6.1.
Although, as shown in Table 6.4 and illustrated in Figure 6.13b they are smaller than 0.05 in their major-
ity.
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(a) c 0 (b) c 1 (c) c 1 1

Figure 6.16: Screenshots of a zoomed area in the contour maps of Figure 6.15 with observed differences.

(a) c 0 (b) c 1 (c) c 1 1

Figure 6.17: Contour maps with contours per 0.375 [m/s] for Umagnitude, using a 2D slice at 2m height
above ground.
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6.3 Option -setZ0Inlet

In this section the results for option -setZ0Inlet are presented. Figures 6.18 and 6.20 are illustrations
of the assigned roughness length values to the ground and inlet patches for the s 2 and c 2 cases re-
spectively. The assessment of the assignment process was based on a comparison of the results with
the input obj files and the mesh of the domain through visual inspection. In particular, Figures 6.19b
and 6.21b display the mesh wireframe of the inlet and bottom boundary along with the edges of the
triangulated geometries. Since the assigned inlet values are within the corresponding boundaries of the
two geometries the result is considered successful for both cases. It should be noted that in order to
avoid having misassigned values, the location of the splitting edge between the two ground geometries
neighbouring the inlet boundary was explicitly selected.

(a) z0 ground (b) z0 inlet

Figure 6.18: z0 values for the s 2 case with non-uniform roughness at the inlet (z0: 0.05 (terrain), 0.03
(vegetation)).

(a) (b)

Figure 6.19: Screenshots of the s 2 case domain inlet and bottom boundaries. 6.19b displays a zoomed
view of the separation line between the two geometries. The lines in ’white’ are the edges of the
triangulated geometries, while in ’blue’ the wireframe of the meshed boundaries.
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(a) z0 ground (b) z0 inlet

Figure 6.20: z0 values for c 2 case with non-uniform inlet (z0: 0.03 (vegetation), 0.0002 (water)).

(a) (b)

Figure 6.21: Screenshots of the c 2 case domain inlet and bottom boundaries. 6.21b displays a zoomed
view of the separation line between the two geometries. The lines in ’white’ are the edges of the
triangulated geometries, while in ’blue’ the wireframe of the meshed boundaries.
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Since there was no reference case for the testing of option -setZ0Inlet, in order to assess the impact
of having a non-uniform inlet on the simulation results we plotted the convergence values at selected
point locations, five for the s 2 case and two for the c 2 case. For this the two cases were compared
against cases s 2 1 and c 2 1 respectively. These cases have the same patch configuration and roughness
length at the ground but use a uniform z0 at the inlet. Probes 1 and 2 for both cases are located close to
the inlet within the boundaries of its ground neighbouring patches.

As shown in Figures 6.22a and 6.22b for the simple cases there are differences in the calculated velocity
values with a maximum difference equal to ≈ 0.1 at Probe 2 for both Ux and Uz, which can not be con-
sidered negligible. In addition for cases c 2 and c 2 1 as shown in Figure 6.23a there are large differences
for both Ux and Uz at Probe 1 where the inlet z0 is different. Probe 2 has the same values since the inlet
z0 of case c 2 coincides with the one of c 2 1.

(a) (b)

Figure 6.22: s 2, s 2 1 cases comparison based on convergence values for Ux and Uz.

(a) (b)

Figure 6.23: c 2 and c 2 1 cases comparison based on convergence values for Ux, Uz.
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In this section the research objectives stated in Chapter 1 are addressed. In Section 7.1 answers to the
formulated research questions are provided, while in Section 7.2 the limitations and contributions of the
study are discussed. Lastly, in Section 7.3 recommendations for future work are provided.

7.1 Research Objectives

In order to answer the main research question of this study:

How can non-uniform roughness length be integrated in a CFD software like OpenFOAM through the use of 3D
model semantics?

A list of sub-questions was formed. Based on the chosen methodology and results of this study we will
provide answers to these questions.

Q1: To what extent can the integration be automated?

In the current implementation of OpenFOAM roughness length is specified manually, for every gen-
erated patch belonging at the bottom of the computational domain. The patches are generated
based on the selected OpenFOAM meshing utility. However, due to the diversity of the landuses
encountered in the urban environment and depending on the case study it might be required for
the user needs to specify multiple patches and thus manually assign the corresponding roughness
length values. This implies two issues. Firstly, a geometry for a every patch has to be generated
and secondly, separate entries for every patch have to be specified in the boundary conditions.
The created methodology aimed at addressing these two issues in an automatic way through the
built application. Based on the available data formats for 3D triangulated geometries accepted
by the software the obj file was selected as the only identified file to allow for the enhancement
of spatial data in a straightforward way. In the file all geometries of different landuses were in-
corporated along with their roughness length values stored in an mtl file. The application then
assigns the roughness length values as a non-uniform field to the specified patch and writes it to
the corresponding boundary conditions folder. However, the process is not fully automated since
an external dictionary is still required for the specification of a number of parameters required
by the application. Furthermore, in order for the process to assign all the values to the specified
patch, there might be a need to test several values for the input parameter nearDist. Option
-setZ0Inlet is also not fully automated since the user needs to explicitly select the separation
point of the geometries so that there are not misassigned cells.

Q2: How does the modified assignment process of roughness length at the bottom of the domain influences the
process and results of the simulation?

Based on the selected case studies and provided that the input geometry contains no overlaps or
gaps the use of a unified geometry file instead of multiple separate files did not seem to have
an impact on the mesh generation process, nor have a significant effect on the simulation results.
Although deviations were detected both in the mesh composition but also in the calculated flow
parameters they were considered negligible.
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Q3: How does the modified assignment process for non-uniform roughness length at the inlet of the domain
influences the process and results of the simulation?

The option responsible for the assignment of roughness length at the inlet is -setZ0Inlet. The
choice of the geometries location can affect the assignment process of the roughness length at the
inlet and as a result, the calculation of the flow parameters. For this reason, the geometries should
be tailored to the case study. Assigning a non-uniform roughness length at the inlet requires
also adjusting the calculation of the turbulence profile at the inlet. The application with option
-setParams takes care of the calculation of the initial turbulence values based on the standard
k-ϵ parameters and writes them to the user-specified dictionary file in the boundary conditions
folder. Regarding the results of the simulations we observed, based on the two cases used for the
testing of the application, deviations between cases with uniform and non-uniform roughness at
the inlet. However, this result was only used as an indication that the suggested methodology had
an impact on the calculation of the flow parameters, it is not a qualitative assessment of how a non-
uniform roughness length assigned at the inlet influences the flow. For this further investigation
is required.

Q4: Which other relevant to CFD parameters could be used as 3D model semantics with the built application?

Six parameters were selected with the potential to be used as 3D model semantics:

- LAI/LAD: for the representation of trees and the different types of tree species [Deininger
et al., 2020].

Parameters related to surface properties as found in Oke [1978]:

- Albedo: to represent the absorptivity of a surface,

- Emissivity: to represent the emitting capability of a surface at a certain temperature,

- Thermal conductivity: used to represent the ability of a material to conduct heat,

- Thermal admittance: used to describe the ability of a surface to absorb and release heat,

- Colour: it is a descriptive characteristic of a surface and it was selected for affecting the
radiative properties of a surface [Back et al., 2021].

7.2 Discussion

Provided the main objective of this thesis we aimed at creating a methodology that would allow the
assignment of non-uniform roughness length automatically, through the use of 3D model semantics.
Although, the implementation for the case of option -setZ0Ground is meant to accommodate 3D spatial
data, the testing was done based on models that represented flat surfaces. Furthermore, the assignment
requires the user to find the optimal value for the search in the octree. Since it was only tested for
flat surfaces, the process of defining a suitable value might be a strain for the implementation in the
case of input with variable height. In addition, the implementation finds overlaps between the input
bottom patch face centers and the triangles of the input geometry based on an octree data structure. This
implies that overlapping triangles of different landuses within the input obj file will lead to misassigned
roughness length values. This was also the case with our results. However despite the fact that the
input geometry had overlaps with OpenFOAM’s current manual specification of the roughness length,
using separate geometries, the same issue was not encountered. This was probably due to the fact that
in this case the geometries were meshed separately and any potential overlaps were treated. However,
the result was not the same when using the unified geometry.

For option -setZ0Inlet the correct assignment of the values depends on the selection of the boundary
edges of the input ground geometries neighbouring the inlet. The need for this arises from the mesh ver-
tical refinement, and it was not possible to overcome. For the tested cases the assignment was successful
and there were deviations in the velocity between cases with uniform and non-uniform inlet roughness.
However, a more comprehensive assessment regarding the impact of a non-uniform roughness at the
inlet on the flow parameters is required.
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7.3 Future work and recommendations

- For option -setZ0Ground further testing is required with 3D surfaces, so that the methodology can
be further evaluated and the effect of the nearDist parameter better understood.

- The dependency of the current implementation on the nearDist parameter could be overcome by
using alternative data structures. This would allow for the current implementation to be further
automated.

- The option could be further improved by integrating other formats for the input semantics. The
methodology presented by [Segersson, 2017] for the storage of non-uniform roughness length in a
raster file could be used as reference.

- Further analysis is required regarding the parameters that were proposed to be used as 3D model
semantics.

- For option -setZ0Inlet further testing is required to assess the impact of possible misassigned
values on the simulation results, as well as the impact of non-uniform roughness at the inlet on
the calculated flow parameters. The methodology for this option could be further improved by
considering a non-uniform roughness at the inlet that is not dependant on the ground roughness
inside the domain.
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A Reproducibility self-assessment

A.1 Marks for each of the criteria

Figure A.1: Reproducibility criteria to be assessed [Nüst et al., 2018].

Criteria Score
Input data 1
Preprocessing 1
Methods 2
Computational environment 3
Results 1

Table A.1: The self-assigned grading for the reproducibility criteria presented in Figure A.1.

A.2 Self-reflection

The input data used in this study are available on the GitHub channel. For the TU Delft Campus case
only the c 0 was used in the published work of Garcı́a-Sánchez et al. [2021], all other sub-cases were
modified and are available on the GitHub channel. There is a detailed explanation of the preprocess-
ing steps documented in this study. The source code of the employed methodology is available on the
GitHub channel. The prototype application was build using OpenFOAM functionality, an open-source
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software, which allows the open use, re-use and redistribution of the code. The results are well docu-
mented in the report, however due to their large size, it was not possible to upload them on GitHub.
However, they can be reproduced following the steps presented in the current study.
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Parente, A., Gorlé, C., Beeck, J., and Benocci, C. (2011). Improved k–ϵ model and wall function formu-
lation for the RANS simulation of ABL flows. Journal of Wind Engineering and Industrial Aerodynamics,
99:267–278.

Piringer, M., Grimmond, C. S. B., Joffre, S. M., Mestayer, P., Middleton, D. R., Rotach, M. W., Baklanov,
A., De Ridder, K., Ferreira, J., Guilloteau, E., Karppinen, A., Martilli, A., Masson, V., and Tombrou,
M. (2002). Investigating the Surface Energy Balance in Urban Areas – Recent Advances and Future
Needs. Water, Air and Soil Pollution: Focus, 2(5):1–16.

Piringer, M., Joffre, S., Baklanov, A., Christen, A., Deserti, M., De Ridder, K., Emeis, S., Mestayer, P.,
Tombrou, M., Middleton, D., Baumann-Stanzer, K., Dandou, A., Karppinen, A., and Burzynski, J.
(2007). The surface energy balance and the mixing height in urban areas - activities and recommen-
dations of cost-action 715. Boundary-Layer Meteorology, 124:3–24.

Ricci, A., Kalkman, I., Blocken, B., Burlando, M., and Repetto, M. P. (2020). Impact of turbulence models
and roughness height in 3D steady RANS simulations of wind flow in an urban environment. Building
and Environment, 171:106617.

Richards, P. J. and Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engi-
neering models using the k-ϵ turbulence model. Journal of Wind Engineering and Industrial Aerodynam-
ics, 46-47:145–153.

Samet, H. (1990). The Design and Analysis of Spatial Data Structures. Addison-Wesley.

Schlünzen, K. H., Grawe, D., Bohnenstengel, S. I., Schlüter, I., and Koppmann, R. (2011). Joint modelling
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