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Abstract: We consider optimal scheduling of track maintenance activities for a railway network
divided into sections. The goal is to find an optimal time schedule for the maintenance activities
and optimal routes for the maintenance crew (including all necessary equipment and technicians)
that minimize the total setup costs and the travel costs over the whole planning horizon. The
maintenance time budget, which can be the same, different, or flexible for each period, and
the minimum time to maintain a section are also taken into account. We recast the track
maintenance scheduling problem with three different settings as three variants of the Capacitated
Arc Routing Problem with Fixed cost (CARPF), which are solved by transforming them into
three node routing problems. The proposed approach is demonstrated using a case study of a
part of the Dutch regional network.
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1. INTRODUCTION

Maintenance is essential for the reliability, availability, and
safety of railway networks. We focus on track mainte-
nance activities. One typical example is grinding, which
is applied to a rail surface defect called squats (Jamshidi
et al., 2017). Due to the high cost of track maintenance
activities, and the limited resources regarding machinery,
technicians, and available track possession time for main-
tenance (usually less than 10 hours for one maintenance
activity), cost-efficient scheduling of maintenance activ-
ities is of great concern for railway infrastructure man-
agers. The track maintenance scheduling problem is usu-
ally formulated as a Mixed Integer Linear Programming
(MILP) problem. Some papers (Wen et al., 2016; Higgins
et al., 1999; Budai et al., 2006) focus on maintenance
scheduling for one single track, e.g. , the MILP model
developed in (Wen et al., 2016) for the optimal scheduling
of condition-based tamping for a Danish railway corridor,
considering several technical and economic factors like
track quality and train speed limit. Optimal scheduling
of different routine maintenance activities to minimize
traffic disruption and maintenance completion time for a
single railway line is formulated as an integer programming
problem in (Higgins et al., 1999). A similar problem is
addressed in (Budai et al., 2006), which formulates a MILP
problem to schedule both routine maintenance activities
and projects like grinding to minimize track possession
cost and maintenance cost. A maintenance crew contains
all the necessary equipment (e.g. grinding machine) and
technicians for one specific maintenance activities. The

⋆ This work is sponsored by the NWO/ProRail project “Multi-party
risk management and key performance indicator design at the whole
system level (PYRAMIDS)”, project 438-12-300, which is partly
financed by the Netherlands Organization for Scientific Research
(NWO).

Vehicle Routing Problem (VRP) (Dantzig and Ramser,
1959) is the most popular approach for optimal scheduling
and routing of track maintenance activities for a railway
network. In Heinicke et al. (2015), the optimal scheduling
of maintenance tasks with different priorities for a railway
network is formulated as a VRP with customer costs. The
optimal clustering of track maintenance jobs into major
projects is formulated as a VRP in Peng and Ouyang
(2014) to minimize the total duration of all projects. An-
other popular approach for maintenance scheduling and
routing is the time-space network model. A time-space
network model with side constraints is developed in Peng
and Ouyang (2012) for the optimal scheduling and routing
of major track maintenance projects like rail replacement.
The time-space network formulation and a VRP-based
formulation are applied to rail maintenance scheduling in
Gorman and Kanet (2010), with a discussion on their rel-
ative merits. Other approaches include the mixed integer
programming formulation based on network flow proposed
in Boland et al. (2013) to schedule a variety of mainte-
nance tasks, and the mixed integer nonlinear programming
problem formulated in Zhang et al. (2013) to minimize the
total travelling costs, maintenance costs, as well as costs
associated with condition deterioration.
This paper contributes to the state-of-the-art in the follow-
ing ways. Unlike other VRP-based approaches, we model
the track maintenance scheduling problem as a Capaci-
tated Arc Routing Problem with Fixed cost (CARPF).
Three settings, namely, homogeneous, heterogeneous, and
flexible time periods are considered. In particular, the
flexible maintenance time periods setting allows the main-
tenance contractor to minimize total maintenance costs
within the planning horizon, including travel costs, setup
costs, and overtime penalties. The three variants of the
CARPF are transformed into node routing problems and
solved by compact MILP formulations using 2-index bi-
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nary variables.

2. PROBLEM DESCRIPTION

We consider optimal scheduling of one type of track
maintenance activities (e.g. grinding or tamping) for a
railway network divided into multiple sections. A section
is defined as the track 1 between two major stations 2 .
A Key Performance Indicator (KPI), which is obtained
by considering a broad set of measurements from various
sources, is defined for each section to represent its health
condition. Whether a section is to be maintained within
the given finite planning horizon, which is usually equal to
the maintenance cycle (e.g. six months) is determined by
the value of its KPI. In practice, a maintenance threshold
is usually applied to maintenance decision making, and
sections with a KPI exceeding this threshold must be
maintained within the planning horizon. An estimated
minimum maintenance time, which is obtained empirically,
is also assigned to each section that requires maintenance.
We define a maintenance operation as a tour of the main-
tenance crew. A tour must start and end at a maintenance
base, where the machine can be stored. The length of one
maintenance time period is defined as the smallest time
unit a maintenance operation is planned. This ensures that
at most one operation can be performed per maintenance
time period. A fixed setup cost, including the machin-
ery, personnel, etc., is associated with each maintenance
operation. This setup cost incentivizes the maintenance
agent to cover the sections that requires maintenance in
as few operations as possible. A maintenance time budget
(usually less than 10 hours), which specifies the maximum
track possession time available for maintenance, is defined
for each period.
The track maintenance scheduling problem can then be
defined as finding the optimal schedule for maintenance
operations, and the optimal routes for the maintenance
crews, that minimize the total setup costs and travel costs
over the entire planning horizon, guaranteeing that all
the sections that needed to be maintained are treated
by exactly one operation, and the total track possession
time for each maintenance operation does not exceed the
maintenance time budget for that period. Furthermore, we
consider the following three settings:

• Setting 1 (homogeneous maintenance time periods):
the maintenance time budget and setup cost are
the same for each maintenance time period in the
planning horizon;

• Setting 2 (heterogeneous maintenance time periods):
maintenance time budgets for different time periods
in the planning horizon are in general different;

• Setting 3 (flexible maintenance time periods): in ad-
dition to the given maintenance time budgets, addi-
tional track possession time can be required for each
period with a fine per extra hour.

3. ARC ROUTING PROBLEM

In this section we formulate the maintenance scheduling
and routing problem described in Section 2 as an undi-
1 In this paper, we consider only single track line.
2 A major station is either a start/end station or a transfer station.

rected Capacitated Arc Routing Problem with Fixed cost
(CARPF), which consists of the following elements:

• a connected undirected graph G = (V , E);
• a cost matrix C defining the travel cost associated
with each edge {i, j} ∈ E ;

• a subset of required edges R ⊆ E ;
• a fleet T of vehicles;
• a depot node (denoted by 0);
• a fixed setup cost cSetup,t for each vehicle t ∈ T ;
• a demand qij for each required edge {i, j} ∈ R;
• and a capacity Qt associated with each vehicle t ∈ T .

The undirected CARPF can then be defined as finding
the optimal set of routes of the fleet starting and ending
at the depot, minimizing the total travel costs and setup
costs, and guaranteeing that each required edge is serviced
exactly once, and the demand of each required edge is
satisfied without exceeding the capacity of the vehicle
visiting it.
In this paper, we map the physical railway network into
the virtual graph G, in which the node set V contains all
the major stations, and the edge set E contains all the
railway sections. The maintenance base is mapped to the
depot node 0. The sections to be maintained within the
planning horizon correspond to the required edges in R.
Furthermore, we consider each maintenance time period
in the planning horizon as a virtual vehicle, and the set of
maintenance time periods is mapped to the set of vehicles
T . The capacity Qt for each vehicle, i.e. the maximum
quantity of goods the vehicle can handle, is interpreted
as the maintenance time budget of period t, while the
demand of each required edge, i.e. the minimum quantity
of goods that must be delivered to the edge, refers to the
minimum maintenance time for the corresponding section.
The setup cost of a vehicle is equivalent to the setup cost
of a maintenance operation in the corresponding period.
Finally, the three settings of the maintenance scheduling
problem result in three variants of the CARPF, namely,
the homogeneous CARPF for Setting 1, the heterogeneous
CARPF for Setting 2, and the CARPF with flexible vehicle
capacity for Setting 3.

4. NODE ROUTING PROBLEM

4.1 Arc-to-Node Transformation

Several arc-to-node transformations have been proposed
in literature, resulting in a node routing instance with
3|R| customer nodes. Recently a compact transformation
is proposed in Foulds et al. (2015), which results in only
|R| customer nodes. However, this transformation is equiv-
alent only when the resulting node routing problem is
solved by a specific branch-and-price process (Barnhart
et al., 1998). We adopt the transformation proposed in
Baldacci and Maniezzo (2006), which uses both endpoints
of the required edges to create a node routing instance
with 2|R| customer nodes. The resulting node routing
problem can be solved directly by state-of-the-art MILP
solvers like CPLEX or Gurobi. Here we briefly sketch the
transformation from Baldacci and Maniezzo (2006).

Let the undirected complete graph Ĝ = (V̂ , Ê) denote

the transformed graph, where the node set V̂ contains the

2018 IFAC CTS
June 6-8, 2018. Savona, Italy

387



 Zhou Su  et al. / IFAC PapersOnLine 51-9 (2018) 386–391 387

nary variables.

2. PROBLEM DESCRIPTION

We consider optimal scheduling of one type of track
maintenance activities (e.g. grinding or tamping) for a
railway network divided into multiple sections. A section
is defined as the track 1 between two major stations 2 .
A Key Performance Indicator (KPI), which is obtained
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sources, is defined for each section to represent its health
condition. Whether a section is to be maintained within
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the value of its KPI. In practice, a maintenance threshold
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sections with a KPI exceeding this threshold must be
maintained within the planning horizon. An estimated
minimum maintenance time, which is obtained empirically,
is also assigned to each section that requires maintenance.
We define a maintenance operation as a tour of the main-
tenance crew. A tour must start and end at a maintenance
base, where the machine can be stored. The length of one
maintenance time period is defined as the smallest time
unit a maintenance operation is planned. This ensures that
at most one operation can be performed per maintenance
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ery, personnel, etc., is associated with each maintenance
operation. This setup cost incentivizes the maintenance
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as few operations as possible. A maintenance time budget
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track possession time available for maintenance, is defined
for each period.
The track maintenance scheduling problem can then be
defined as finding the optimal schedule for maintenance
operations, and the optimal routes for the maintenance
crews, that minimize the total setup costs and travel costs
over the entire planning horizon, guaranteeing that all
the sections that needed to be maintained are treated
by exactly one operation, and the total track possession
time for each maintenance operation does not exceed the
maintenance time budget for that period. Furthermore, we
consider the following three settings:

• Setting 1 (homogeneous maintenance time periods):
the maintenance time budget and setup cost are
the same for each maintenance time period in the
planning horizon;

• Setting 2 (heterogeneous maintenance time periods):
maintenance time budgets for different time periods
in the planning horizon are in general different;

• Setting 3 (flexible maintenance time periods): in ad-
dition to the given maintenance time budgets, addi-
tional track possession time can be required for each
period with a fine per extra hour.

3. ARC ROUTING PROBLEM

In this section we formulate the maintenance scheduling
and routing problem described in Section 2 as an undi-
1 In this paper, we consider only single track line.
2 A major station is either a start/end station or a transfer station.

rected Capacitated Arc Routing Problem with Fixed cost
(CARPF), which consists of the following elements:

• a connected undirected graph G = (V , E);
• a cost matrix C defining the travel cost associated
with each edge {i, j} ∈ E ;

• a subset of required edges R ⊆ E ;
• a fleet T of vehicles;
• a depot node (denoted by 0);
• a fixed setup cost cSetup,t for each vehicle t ∈ T ;
• a demand qij for each required edge {i, j} ∈ R;
• and a capacity Qt associated with each vehicle t ∈ T .

The undirected CARPF can then be defined as finding
the optimal set of routes of the fleet starting and ending
at the depot, minimizing the total travel costs and setup
costs, and guaranteeing that each required edge is serviced
exactly once, and the demand of each required edge is
satisfied without exceeding the capacity of the vehicle
visiting it.
In this paper, we map the physical railway network into
the virtual graph G, in which the node set V contains all
the major stations, and the edge set E contains all the
railway sections. The maintenance base is mapped to the
depot node 0. The sections to be maintained within the
planning horizon correspond to the required edges in R.
Furthermore, we consider each maintenance time period
in the planning horizon as a virtual vehicle, and the set of
maintenance time periods is mapped to the set of vehicles
T . The capacity Qt for each vehicle, i.e. the maximum
quantity of goods the vehicle can handle, is interpreted
as the maintenance time budget of period t, while the
demand of each required edge, i.e. the minimum quantity
of goods that must be delivered to the edge, refers to the
minimum maintenance time for the corresponding section.
The setup cost of a vehicle is equivalent to the setup cost
of a maintenance operation in the corresponding period.
Finally, the three settings of the maintenance scheduling
problem result in three variants of the CARPF, namely,
the homogeneous CARPF for Setting 1, the heterogeneous
CARPF for Setting 2, and the CARPF with flexible vehicle
capacity for Setting 3.

4. NODE ROUTING PROBLEM

4.1 Arc-to-Node Transformation

Several arc-to-node transformations have been proposed
in literature, resulting in a node routing instance with
3|R| customer nodes. Recently a compact transformation
is proposed in Foulds et al. (2015), which results in only
|R| customer nodes. However, this transformation is equiv-
alent only when the resulting node routing problem is
solved by a specific branch-and-price process (Barnhart
et al., 1998). We adopt the transformation proposed in
Baldacci and Maniezzo (2006), which uses both endpoints
of the required edges to create a node routing instance
with 2|R| customer nodes. The resulting node routing
problem can be solved directly by state-of-the-art MILP
solvers like CPLEX or Gurobi. Here we briefly sketch the
transformation from Baldacci and Maniezzo (2006).

Let the undirected complete graph Ĝ = (V̂ , Ê) denote

the transformed graph, where the node set V̂ contains the
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depot 0 in the original graph, and 2|R| customers corre-
sponding to the endpoints of the required edges in G. In
particular, for each {i, j} ∈ R, we denote the transformed
customer nodes sij and sji as the endpoints on the i and
j side of the original required edge, respectively 3 . Let
Ĉ and R̂ denote the set of customers and required edges
in the transformed graph, respectively. In particular, a
required edge {sij , sji} ∈ R̂ corresponds to a required
edge {i, j} ∈ R. The demand of a required arc in the
original graph is equally divided between its two endpoints
in the new graph, i.e.

q̂sij = q̂sji =
1

2
qij ∀{sij , sji} ∈ R̂. (1)

The cost of each edge {sij , skl} ∈ Ê is defined as:

ĉsijskl
=















−fUB if{sij , skl} ∈ R̂

dist(0, k) + 0.5 · ckl if sij = 0
dist(i, k) + 0.5 · cij

+0.5 · ckl
otherwise,

(2)

where the upper bound fUB is the objective function value
of a feasible solution of the original arc routing problem,
and dist(i, j) represents the shortest path distance be-
tween node i and j in the original graph. The upper bound
fUB causes inconvenience in the numerical implementation
as a feasible solution of the original arc routing problem
is needed before the transformation. As suggested in Bal-
dacci and Maniezzo (2006), we replace −fUB in (2) with
0, and add the following constraints:

xij = 1 ∀{i, j} ∈ R̂ (3)

to the resulting node routing problem.

4.2 Homogeneous Capacitated Vehicle Routing Problem
with Fixed Cost

In this section, we present the MILP formulation of the
homogeneous Capacitated Vehicle Routing Problem with
Fixed cost (CVRPF), the node-routing counterpart of the
homogeneous CARPF corresponding to Setting 1 of the
track maintenance scheduling problem. In CVRPF, |T |
homogeneous vehicles are available at the single depot 0.
Let Q and cSetup denote the capacity and fixed setup cost
of each vehicle, respectively. First we define

xij =

�

1 if node j is visited directly after node i;

0 otherwise
(4)

for each {i, j} ∈ Ê in the transformed graph.
We define the continuous variable ui as the node potential
in the Miller-Tucker-Zemlin (MTZ) subtour elimination

constraints (Miller et al., 1960) for each customer i ∈ Ĉ.
The node potential ui can be interpreted as the mainte-
nance time spent after leaving customer i. The CVRPF
can then be formulated as an MILP problem:

min
�

{i, j}∈Ê

ĉijxij +
�

j∈Ĉ

cSetupx0j (5)

subject to
�

j∈V̂

xij =
�

j∈V̂

xji = 1 ∀i ∈ Ĉ (6)

3 This is equivalent to defining a customer as a job performed on a
required edge {i, j} ∈ R from one direction (i to j or j to i), as done
in Peng and Ouyang (2014).

�

i∈V̂

xi0 =
�

j∈V̂

x0j ≤ |T | (7)

ui − uj +Qxij + (Q− q̂i − q̂j)xji ≤ Q− q̂i (8)

∀i, j ∈ Ĉ, i �= j

xij ∈ {0, 1} ∀i, j ∈ V̂ (9)

q̂i ≤ ui ≤ Q ∀i ∈ Ĉ (10)

The first term in the objective function (5) corresponds to
the total travel costs, while the second term computes the
total setup costs of all the routes. Constraints (6) and (7)
are degree constraints for customers and depots, respec-
tively. A strengthened formulation of MTZ (Desrochers
and Laporte, 1991) is used for subtour elimination con-
straints (8), which also ensure the satisfaction of each cus-
tomer’s demand. Finally, constraints (9) are the integrality
constraints for the binary variable, and constraints (10) are
bounds for the continuous node potential variable.

4.3 Heterogeneous Capacitated Vehicle Routing Problem

In this section, we present the MILP formulation of the
Heterogeneous Capacitated Vehicle Routing Problem with
Fixed cost (HCVRPF), the node-routing counterpart of
the Heterogeneous CARPF corresponding to Setting 2 of
the track maintenance scheduling problem. In HCVRPF,
the types of |T | vehicles are in general different. Let D
denote the set of vehicle types, and we have |D| ≤ |T |. The
capacity and setup cost of a type d vehicle are denoted by
Qd and cSetup,d, respectively. Let md denote the number
of vehicles of type d. Furthermore, we consider each type
d ∈ D as a virtual depot that stores only vehicles of
type d. The original depot 0 is then replaced by |D|
duplicates of virtual depots, resulting in a new complete
graph G̃ = (Ṽ , Ẽ), where the new node set Ṽ = D ∪ Ĉ
contains all the virtual depots and the customers of the
node routing instance. A new cost matrix C̃ is also defined,
where the travel cost between any two customers or any
customer and a depot remains the same in as in Ĉ, and
the travel costs between depots are 0. In addition to the
binary variable xij defined in (4), we define another set of
binary variables

zid =







1 if customer i is visited by a vehicle

from depot d

0 otherwise

(11)

as selection variables to associate each customer i ∈ Ĉ with
some depot d ∈ D.
The node potential variable ui for the MTZ subtour
elimination constraints is defined the same way as in
Section 4.2. Since a virtual depot only stores one type of
vehicle, a route starting from one depot must end at the
same depot. Additional cycle imposement constraints are
needed to ensure that each resulting route starts and ends
at one depot. In this paper, we use the node current-based
cycle imposement constraints (Burger et al., 2017), which
were originally designed for fixed-destination multi-depot
travelling salesman problems, and define the continuous
decision variable ki as the node current variable for each
node i ∈ Ṽ . Finally, the MILP formulation of the HCVRP
can be written as:

min
�

{i, j}∈Ẽ

c̃ijxij +
�

d∈D

�

j∈Ṽ

cSetup,dxdj (12)
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subject to
∑

j∈Ṽ

xij =
∑

j∈Ṽ

xji = 1 ∀i ∈ Ĉ (13)

∑

i∈Ṽ

xid =
∑

j∈Ṽ

xdj ≤ md ∀d ∈ D (14)

zid − zjd ≤ 1− xij − xji (15)

zjd − zid ≤ 1− xij − xji (16)

∀d ∈ D, i, j ∈ Ĉ, i �= j

xdj + xjd − zjd ≤ 0 ∀d ∈ D, j ∈ Ĉ (17)

ui − uj +Qxij + (Q − q̂i − q̂j)xji ≤ Q− q̂i (18)

∀i, j ∈ Ĉ, i �= j

kd = d ∀d ∈ D (19)

ki − kj ≤ (|D| − 1)(1− xij) (20)

kj − ki ≤ (|D| − 1)(1− xij) (21)

∀i, j ∈ Ṽ , i �= j

xij ∈ {0, 1} ∀i, j ∈ V̂ (22)

zid ∈ {0, 1} ∀i ∈ Ĉ, ∀d ∈ D (23)

q̂i ≤ ui ≤
∑

d∈D

Qdzid ∀i ∈ Ĉ (24)

1 ≤ ki ≤ |D| ∀i ∈ Ṽ (25)

Similar to the homogeneous CVRPF, the first term in
the objective function (12) corresponds to the total travel
costs, while the second term computes the total setup
costs of all the maintenance operations from all the virtual
depots. Constraints (13) and (14) are degree constraints
for customers and depots, respectively. Constraints (15)
and (16) together ensure that any two customers precede
or succeed each other are visited by the same type of
vehicle. Constraints (17) guarantee that a customer first
or last visited by a vehicle from a depot is associated with
the same depot. The subtour elimination constraints (18)
are the same as (8), except that Q = maxd∈D Qd is an
upper bound of a vehicle’s capacity, instead of the capacity
of each homogeneous vehicle. Constraints (19)-(21) are
the cycle imposement constraints based on node current
Burger et al. (2017). Each depot node is assigned with
a unique node current by constraints (19). Constraints
(20) and (21) together ensure that the same node current
value propagates along a path, just like the current in
an electrical circuit. Finally, constraints (22) and (23) are
the integrality constraints for the binary variables, and
constraints (24) and (25) are bounds for the continuous
node potential and node current variables, respectively.
Note that unlike homogeneous VRP, in (24) the upper
bound of the node potential of a customer is adjusted to
the capacity of the vehicle that visits it.

4.4 Capacitated Vehicle Routing Problem with Flexible
Capacity

In this section, we present the MILP formulation of the Ca-
pacitated Vehicle Routing Problem with Flexible Capacity
(CVRPFC), the node-routing counterpart of the CARPF
with flexible vehicle capacity corresponding to Setting 3
of the track maintenance scheduling problem. The only
difference between the CVRPFC and the HCVRPF in
Section 4.3 is that the capacity of each vehicle is no longer

a fixed parameter, but a continuous decision variable.
Similar to the HCVRPF, we also introduce a virtual depot
for each vehicle type and create an extended transformed
graph G̃ to incorporate the virtual depots. Note that since
every vehicle can have a distinctive type in the CVRPFC,
we have D = T and md = 1 for any d. Similarly, denote
Qd ∈ [Q, Q] as the capacity and cSetup,d as the setup
cost of vehicle d. Different setup costs are assigned to
different vehicles, and the following affine function is used
to compute the setup cost of each vehicle from its capacity:

cSetup,d = v(Qd −Q) + cSetup (26)

where v is positive parameter. In practice, v can be inter-
preted as the hourly fine that must be paid by the mainte-
nance contractor for additional track possession time over
the given maintenance time budget, while Q and cSetup
correspond to the length and setup cost of the existing
maintenance time budget, respectively.
The optimization problem of the CVRPFC is the same
as that of the HVRPF (12)-(25). However, since Qd is a
decision variable in the CVRPFC, the upper bound of the
node potential in (24) becomes nonlinear. Moreover, sub-
stituting (26) into (12) we obtain the following objective
for the CVRPFC:

min
∑

{i, j}∈Ẽ

c̃ijxij

+
∑

d∈D

∑

j∈Ṽ

vQdxdj + (cSetup − vQ)xdj (27)

which gives rises to another nonlinear term Qdxdj . To
eliminate these nonlinear terms, we apply the procedure
described in Bemporad and Morari (1999) and introduce
the following continuous variables:

yid = zidQd, fdj = xdjQd (28)

∀d ∈ D, i ∈ Ĉ, j ∈ Ṽ.

The nonlinear variables are equivalent to the following
linear constraints Bemporad and Morari (1999):

yid ≤ Qzid, fdj ≤ Qxdj (29)

yid ≥ Qzid, fdj ≥ Qxdj (30)

yid ≤ Qd −Q(1 − zid), fdj ≤ Qd −Q(1− xdj) (31)

yid ≥ Qd −Q(1 − zid), fdj ≥ Qd −Q(1− xdj) (32)

∀d ∈ D, i ∈ Ĉ, j ∈ Ṽ.

The CVRPFC can then be expressed as:

min
∑

{i, j}∈Ẽ

c̃ijxij +
∑

d∈D

∑

j∈Ṽ

vfdj + (cSetup − vQ)xdj (33)

subject to

q̂i ≤ ui ≤
∑

d∈D

yid ∀i ∈ Ĉ (34)

and constraints (13)-(23), (25), (29)-(32),

which is now a MILP.

5. CASE STUDY

5.1 Settings

We consider optimal scheduling of grinding, a typical track
maintenance activity to treat a typical rolling contact
fatigue called a squat. In practice, a cyclic preventive
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subject to
∑

j∈Ṽ

xij =
∑

j∈Ṽ

xji = 1 ∀i ∈ Ĉ (13)

∑

i∈Ṽ

xid =
∑

j∈Ṽ

xdj ≤ md ∀d ∈ D (14)

zid − zjd ≤ 1− xij − xji (15)

zjd − zid ≤ 1− xij − xji (16)

∀d ∈ D, i, j ∈ Ĉ, i �= j

xdj + xjd − zjd ≤ 0 ∀d ∈ D, j ∈ Ĉ (17)

ui − uj +Qxij + (Q − q̂i − q̂j)xji ≤ Q− q̂i (18)

∀i, j ∈ Ĉ, i �= j

kd = d ∀d ∈ D (19)

ki − kj ≤ (|D| − 1)(1− xij) (20)

kj − ki ≤ (|D| − 1)(1− xij) (21)

∀i, j ∈ Ṽ , i �= j

xij ∈ {0, 1} ∀i, j ∈ V̂ (22)

zid ∈ {0, 1} ∀i ∈ Ĉ, ∀d ∈ D (23)

q̂i ≤ ui ≤
∑

d∈D

Qdzid ∀i ∈ Ĉ (24)

1 ≤ ki ≤ |D| ∀i ∈ Ṽ (25)

Similar to the homogeneous CVRPF, the first term in
the objective function (12) corresponds to the total travel
costs, while the second term computes the total setup
costs of all the maintenance operations from all the virtual
depots. Constraints (13) and (14) are degree constraints
for customers and depots, respectively. Constraints (15)
and (16) together ensure that any two customers precede
or succeed each other are visited by the same type of
vehicle. Constraints (17) guarantee that a customer first
or last visited by a vehicle from a depot is associated with
the same depot. The subtour elimination constraints (18)
are the same as (8), except that Q = maxd∈D Qd is an
upper bound of a vehicle’s capacity, instead of the capacity
of each homogeneous vehicle. Constraints (19)-(21) are
the cycle imposement constraints based on node current
Burger et al. (2017). Each depot node is assigned with
a unique node current by constraints (19). Constraints
(20) and (21) together ensure that the same node current
value propagates along a path, just like the current in
an electrical circuit. Finally, constraints (22) and (23) are
the integrality constraints for the binary variables, and
constraints (24) and (25) are bounds for the continuous
node potential and node current variables, respectively.
Note that unlike homogeneous VRP, in (24) the upper
bound of the node potential of a customer is adjusted to
the capacity of the vehicle that visits it.

4.4 Capacitated Vehicle Routing Problem with Flexible
Capacity

In this section, we present the MILP formulation of the Ca-
pacitated Vehicle Routing Problem with Flexible Capacity
(CVRPFC), the node-routing counterpart of the CARPF
with flexible vehicle capacity corresponding to Setting 3
of the track maintenance scheduling problem. The only
difference between the CVRPFC and the HCVRPF in
Section 4.3 is that the capacity of each vehicle is no longer

a fixed parameter, but a continuous decision variable.
Similar to the HCVRPF, we also introduce a virtual depot
for each vehicle type and create an extended transformed
graph G̃ to incorporate the virtual depots. Note that since
every vehicle can have a distinctive type in the CVRPFC,
we have D = T and md = 1 for any d. Similarly, denote
Qd ∈ [Q, Q] as the capacity and cSetup,d as the setup
cost of vehicle d. Different setup costs are assigned to
different vehicles, and the following affine function is used
to compute the setup cost of each vehicle from its capacity:

cSetup,d = v(Qd −Q) + cSetup (26)

where v is positive parameter. In practice, v can be inter-
preted as the hourly fine that must be paid by the mainte-
nance contractor for additional track possession time over
the given maintenance time budget, while Q and cSetup
correspond to the length and setup cost of the existing
maintenance time budget, respectively.
The optimization problem of the CVRPFC is the same
as that of the HVRPF (12)-(25). However, since Qd is a
decision variable in the CVRPFC, the upper bound of the
node potential in (24) becomes nonlinear. Moreover, sub-
stituting (26) into (12) we obtain the following objective
for the CVRPFC:

min
∑

{i, j}∈Ẽ

c̃ijxij

+
∑

d∈D

∑

j∈Ṽ

vQdxdj + (cSetup − vQ)xdj (27)

which gives rises to another nonlinear term Qdxdj . To
eliminate these nonlinear terms, we apply the procedure
described in Bemporad and Morari (1999) and introduce
the following continuous variables:

yid = zidQd, fdj = xdjQd (28)

∀d ∈ D, i ∈ Ĉ, j ∈ Ṽ.

The nonlinear variables are equivalent to the following
linear constraints Bemporad and Morari (1999):

yid ≤ Qzid, fdj ≤ Qxdj (29)

yid ≥ Qzid, fdj ≥ Qxdj (30)

yid ≤ Qd −Q(1 − zid), fdj ≤ Qd −Q(1− xdj) (31)

yid ≥ Qd −Q(1 − zid), fdj ≥ Qd −Q(1− xdj) (32)

∀d ∈ D, i ∈ Ĉ, j ∈ Ṽ.

The CVRPFC can then be expressed as:

min
∑

{i, j}∈Ẽ

c̃ijxij +
∑

d∈D

∑

j∈Ṽ

vfdj + (cSetup − vQ)xdj (33)

subject to

q̂i ≤ ui ≤
∑

d∈D

yid ∀i ∈ Ĉ (34)

and constraints (13)-(23), (25), (29)-(32),

which is now a MILP.

5. CASE STUDY

5.1 Settings

We consider optimal scheduling of grinding, a typical track
maintenance activity to treat a typical rolling contact
fatigue called a squat. In practice, a cyclic preventive
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Table 1. Capacities and setup costs of mainte-
nance time periods for the three settings of the

maintenance scheduling problem.

Setting Capacity (h)
Setup Cost

(ke )

1 7 110

2
8 for 2 long periods,
6 for 4 short periods

120 for a long period,
100 for a short period

3 Q = 6, Q = 10 v = 10, cSetup = 100
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Fig. 1. Representation of a part of the Dutch railway
network including Randstad Zuid and the middle-
south region. The sections that must be maintained
within the planning horizon are marked by thick
lines. The length (rounded to kilometers) and the
minimum maintenance time (in hours) estimated by
expert judgments, of each section are also provided.

grinding strategy is used in the treatment of squats in
the Dutch railway network. A rail inspection is performed
every six months, and the sections to be ground within
the next six months are selected according to their KPI
values updated by the latest measurements. We set the
planning horizon to six months, which corresponds to
the current inspection/maintenance cycle. At most one
grinding operation can be performed every month, so one
period equals to one month. The capacities and setup costs
of each period for the 3 settings in Section 2 are given in
Table 1.

The part of the Dutch railway network considered in
the case study is shown in Figure 1. The travel cost of
each edge is defined as the length (in kilometers) of the
corresponding section. The required edges (marked by
thick lines in Figure 1) are {1, 3}, {2, 4}, {5, 6}, {5, 7},
and {9, 10}. As stated in Section 3, the demand of each
required edge is defined as the minimum maintenance time
(in hours), while the demand of an unrequired edge is set
to 0.
The proposed approach is implemented in Matlab R2016b,
on a desktop computer with an Intel Xeon E5-1620 eight-
core CPU and 64 GB of RAM. We use CPLEX 12.5 as the
MILP solver.

5.2 Results and Discussion

The resulting optimal routes and node potentials of the
three node routing problems for the three settings are
provided in Table 2, where the transformed nodes are rep-

Table 2. Solutions of the CVRP (Setting 1),
the HCVRP (Setting 2), and the CVRPFC

(Setting 3).

Setting Period Route
Node

Potential

1 0, s31, s13, s24, s42, 0 1.5, 3, 5, 7
1 2 0, s65, s56, s57, s75, 0 0.5, 1, 3.5, 6

3 0, s910, s109, 0 2.5, 5

Long 0, s42, s24, s13, s31, 0 2, 4, 5.5, 7
2 Short 0, s65, s56, s57, s75, 0 0.5, 1, 3.5, 6

Short 0, s109, s910, 0 2.5, 5

3 Q1 = 8
0, s65, s56, s31,
s13, s24, s42, 0

0.5, 1, 2.5, 4, 6, 8

Q4 = 10 0, s57, s75, s910, s109, 0 2.5, 5, 7.5, 10

resented in the same way as in Section 4.1. In particular,
the node potential of the last visited customer of a route
represents the total track possession time spent for the
corresponding maintenance operation. As shown in Table
2, the maintenance operations in Period 2 and 3 of Setting
1, as well as the long period and the first short period of
Setting 2 do not use all their corresponding maintenance
time budgets, leading to a waste of track possession time.
Instead of three operations, only two operations are needed
in Setting 3 to service all the five sections that needed to be
maintained, saving setup costs. Moreover, because of the
flexible maintenance time budgets/vehicle capacity, there
is no waste of track possession time in the solution of the
CVRPFC.
The solutions of the node routing problems are trans-
formed back to the solutions of the corresponding arc
routing problems in Table 3 for easier interpretation. The
path between any two transformed customers sij and skl or
a customer sij and the depot is the shortest path between
node i and k or i and 0. The maintenance time spent on
a required edge {i, j} ∈ R equals to the node potential of
sji minus the node potential of the last visited customer
of the preceding required edge, or minus 0, if there is no
preceding required edge.
The performance and computational effort of the node
routing problems of the three settings are presented in
Table 4. The total maintenance costs (indicated by the
objective function value) of Setting 3 are significantly lower
than those of Setting 1 and 2, where the maintenance time
budget is fixed for each time period. However, Setting 3 is
also the most computationally demanding one, as a more
difficult variant of the CVRPF must be solved.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the optimal scheduling
of track maintenance activities for a railway network. We
have recast three main settings, namely, homogeneous,
heterogeneous, and flexible maintenance time periods,
of the track maintenance scheduling problem as three
variants of the capacitated arc routing problem with fixed
cost, which are solved by transforming them into three
node routing problems. Simulation results of the case
study of a part of the Dutch railway network show that
flexible maintenance time budgets leads to lower total
maintenance costs, including the travel costs and setup
costs, taking into account the penalties associated with
additional track possession time.
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Table 3. Solutions of the three arc routing
problem instances. The required edges are

marked in bold in the resulting routes.

Setting Period Route
Maintenance
Time (h)

1
{0, 6}, {6, 5}, {5, 3},
{3, 1}, {1, 2},{2, 4},

{4, 6}, {6, 0}
3, 4

1 2
{0, 6}, {6, 5}, {5, 7},
{7, 5}, {5, 6}, {6, 0}

1, 5

3
{0, 6}, {6, 8}, {8, 9},

{9, 10},{10, 9}, {9, 8},
{8, 6}, {6, 0}

5

Long
{0, 6}, {6, 4}, {4, 2},
{2, 1}, {1, 3}, {3, 5},

{5, 6}, {6, 0}
4, 3

2 Short
{0, 6}, {6, 5}, {5, 7},
{7, 5}, {5, 6}, {6, 0}

1, 5

Short
{0, 6}, {6, 8}, {8, 9},

{9, 10}, {10, 9}, {9, 8},
{8, 6}, {6, 0}

5

3 Q1 = 8
{0, 6}, {6, 5}, {5, 3},
{3, 1}, {1, 2}, {2, 4},

{4, 6}, {6, 0}
1, 3, 4

Q4 = 10

{0, 6}, {6, 5}, {5, 7},
{7, 5}, {5, 6}, {6, 8},

{8, 9} , {9, 10},{10, 9},
{9, 8}, {8, 6}, {6, 0}

5, 5

Table 4. Objective function value and mean
CPU time (obtained from five consecutive

runs) of the three settings.

Setting Setup cost Travel cost
Mean

CPU time (s)

1 330 273 0.046

2 320 273 0.113

3 260 271 6.2529

In the future, we would like to test the proposed approach
by conducting computational experiments on an extensive
test bench to find the size limit of test instances that can
be solved by state-of-the-art MILP solvers like CPLEX. It
is also worthwhile to develop dedicated exact methods for
the arc routing problems resulting from the three settings
of the maintenance scheduling problem. Furthermore, the
proposed static crew scheduling problem can be extended
to dynamic crew scheduling problem with time-dependent
maintenance costs related to train dispatching. Finally,
negative impact to normal train operation should also be
incorporated in the maintenance crew scheduling problem.
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Table 3. Solutions of the three arc routing
problem instances. The required edges are

marked in bold in the resulting routes.

Setting Period Route
Maintenance
Time (h)

1
{0, 6}, {6, 5}, {5, 3},
{3, 1}, {1, 2},{2, 4},

{4, 6}, {6, 0}
3, 4

1 2
{0, 6}, {6, 5}, {5, 7},
{7, 5}, {5, 6}, {6, 0}

1, 5

3
{0, 6}, {6, 8}, {8, 9},

{9, 10},{10, 9}, {9, 8},
{8, 6}, {6, 0}

5

Long
{0, 6}, {6, 4}, {4, 2},
{2, 1}, {1, 3}, {3, 5},

{5, 6}, {6, 0}
4, 3

2 Short
{0, 6}, {6, 5}, {5, 7},
{7, 5}, {5, 6}, {6, 0}

1, 5

Short
{0, 6}, {6, 8}, {8, 9},

{9, 10}, {10, 9}, {9, 8},
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3 Q1 = 8
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1, 3, 4

Q4 = 10

{0, 6}, {6, 5}, {5, 7},
{7, 5}, {5, 6}, {6, 8},

{8, 9} , {9, 10},{10, 9},
{9, 8}, {8, 6}, {6, 0}

5, 5

Table 4. Objective function value and mean
CPU time (obtained from five consecutive

runs) of the three settings.

Setting Setup cost Travel cost
Mean

CPU time (s)

1 330 273 0.046

2 320 273 0.113

3 260 271 6.2529

In the future, we would like to test the proposed approach
by conducting computational experiments on an extensive
test bench to find the size limit of test instances that can
be solved by state-of-the-art MILP solvers like CPLEX. It
is also worthwhile to develop dedicated exact methods for
the arc routing problems resulting from the three settings
of the maintenance scheduling problem. Furthermore, the
proposed static crew scheduling problem can be extended
to dynamic crew scheduling problem with time-dependent
maintenance costs related to train dispatching. Finally,
negative impact to normal train operation should also be
incorporated in the maintenance crew scheduling problem.
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