Appendix

- A. Furnishing information
- B. Circularity of the cabin C. Windows vesus OLED screen
- D. Conclusion 1:1 scale model test
- E. Results VR while seated
- F. Results VR while standing
- G. Fuselage structure
- H. Assignment

Appendix A Furnishing information

	Economy Class (KLM	Business Class (KLM	Category	Facilities
Feature	Cityhopper)	Cityhopper)		Business Class (J) and Economy Class (Y) seating. For
Seat Pitch	30-31 inches (76-79 cm)	32-33 inches (81-84 cm)		example type: Recaro SL3/10. 2-2 seating configuration (no middle seats) in both
Seat Width	17-18 inches (43-46 cm)	Wider, typically 19-20 inches (48-50 cm)	Cabin Lavout	classes. Seat pitch (legroom) economy class 76-79 cm (30-31 inch) Seat pitch in business class 84 cm (33 inch)
	Minimal recline (6-8	Enhanced recline for	In-Flight Services	Food and baverage services
Seat Recline	degrees)	better comfort		Personal electronic devices can be used on board.
Weight	Approx. 8 kg per seat	Heavier due to more padding and features	- · · · · · · · · · · · · · · · · · · ·	Limited in-flight entertainment (IFE) options, typically no seat-back screens on regional jets.
Materials &	Slimline design,	Premium materials, more	Entertainment Options	USB- connection
Comfort	ergonomic padding	padding	Galley	Facilities at the front of the aircraft: such as refrigerators, ovens, storage spaces, preparation area
	USB charging ports, seatback pockets, tray	USB ports, more storage,	Restrooms	Two accessible restrooms located at the front and rear of the cabin.
In-Seat Amenities	table	larger tray table		Flight assistence preparing your meals and safety
	No built-in screens (use	No screens, use personal	Cabin Crew	instructions
Entertainment	personal devices)	devices	Wi-Fi	Some aircraft may offer in-flight Wi-Fi.
Seat Configuration	2-2 layout (no middle seats)	2-2 layout (no middle seats)	Luggage	Allowance for hand luggage (typically one piece, plus a personal item). Checked baggage policies depend on the fare type

	Class	Weight	Traytable	IFE	Recline	Headrest
Recaro, SL3710	Economy, Short Haul	8 kg	Yes	No	Fixed at 15°	No
Recaro, BL 3710	Economy, Short Haul	10 kg	Yes	Optional	Yes	Yes
Recaro, CL3710	Economy, Long Haul	12 kg	Yes	Yes	Yes	Yes
Recaro, BL 3530	Economy, Short Haul	10 kg	Yes	Optional	Yes	Yes
Expliseat, TiSeat	Economy, Short Haul	4 kg	Yes	No	Yes	No
Geven, SuperEco	Economy, Short Haul	7.9 kg	Yes	No	No	No

Appendix B Circularity of the cabin

Airplane graveyard (Dearden, 2015)

Zero emission vision

Lifetime and End-Of-Life

Many aircraft become obsolete after a limited number of years in operation, with no comprehensive solution currently available to address their end-of-life (EOL) phase. As a result, planes that aren't used anymore are often abandoned in desert storage facilities. This highlights the lack of a structured EOL strategy within the aviation industry. This approach neglects the potential for circularity and sustainability in handling retired aircraft.

The cabin interior also faces sustainability challenges. Unlike the airframe, cabins are rarely fully dismantled at the end of their lifecycle. Instead, they are frequently replaced, with retrofits typically done every 5–7 years, as noted by Della Vecchia et al. (2022). This replacement cycle is short compared to the timelines for other aircraft updates.

So, the master thesis of Hafidzun Alim (2024) tells us that it is important to add material passports to the aircraft cabin to enhance the sustainability of EOL management, These tools provide detailed documentation of the materials used in aircraft cabins, aiding dismantlers in making informed decisions and supporting circular practices. By adopting such approaches, the aerospace industry can transition towards more sustainable EOL practices, reducing waste and promoting circularity.

Lightweight vs. circularity

In aircraft cabin design, achieving a balance between lightweight construction and circularity presents a significant challenge. Lightweight materials (such as composites) are prioritised to reduce fuel consumption and emissions during operation. However, these materials often lack recyclability, complicating end-of-life (EOL) management and limiting their contribution to circularity. On the other hand, circular materials, which are easier to dismantle and recycle, may increase the overall weight of the cabin, potentially undermining fuel efficiency.

- Lack of a structured EOL strategy within the aviation industry
- EOL management

• Add material passports to the aircraft cabin (seats) to enhance the sustainability of

Appendix C Windows vesus OLED screen

Windows versus OLED screens

Replacing windows with OLED screens in an aircraft, such as the E190 cityhopper, offers significant weight reduction benefits for the fuselage.

Eliminating windows reduces the weight to direct saving of 392 kg: making the fuselage nearly 20% lighter, according to the study of Moruzzi and Bagassi (2020). Additionally, this initial reduction triggers a snowball effect, where every kilogram saved during the preliminary design phase leads to approximately 1.25 kilograms saved in the final project. This results in a total weight reduction of 492 kg for the E190 (Cittyhopper). Such savings not only improve fuel efficiency but also enable airlines to optimize payload capacity or range. The use of OLED screens further enhances passenger experience by providing customisable displays, that can take away electronics in the seats, for example.

Current aircraft window (The Science Behind Aircraft Cabin Windows, n.d.)

The future of aircraft cabin displays (Devon et al., 2024)

Appendix D Conclusion 1:1 scale model test

Step 1: Boarding

Action	Frequency	Descript
Place luggage next to yourself	7 times	Place the your neig
Place luggage in front of yourself.	0 times	Place the
Place luggage underneath yourself.	1 time	Place the
Place luggage on the seat next to yourself.	1 time	Place the
Hold the luggage in your hand.	1 time	Hold the

Action	Frequency	Description
Unfold	8 times	Unfold to op
Slide	1 time	Slide the fla compartme
Remove the entire flap	1 time	Take out the

Step 3: Disembarking

Action	Frequency	Description
Place luggage next to you	7 times	Put the luggage beside You make use of the sp
Place luggage between your legs	2 times	Position the luggage b compartment.
Sit on the other seat	1 time	Move and sit on the ot compartment.

Action	Frequency	Description
Unfold	1 time	Unfold to open t
Slide	9 times	Slide the flap to compartment.
Remove the entire flap	0 times	Take out the ent

tion

ne luggage beside you, in the place of ghbour.

e luggage in front of you.

e luggage under your seat.

e suitcase on the seat next to you.

e luggage in your hand.

pen the compartment.

ap to place the luggage in the ent.

ne entire flap to place the luggage.

le your seat, before disembarking. space of your neighbor.

between your legs while closing the

ther seat while closing the

the compartment.

take the luggage out the

tire flap to take out the luggage.

Step 2: Action during the flight

Action

Luggage on to open

Luggage in compartmen open

Luggage between leg open

Luggage on floor to open

Action

Unfold

Slide

Remove the

	Frequency	Description
lap	5 times	Open the luggage while it is placed on your lap.
nt to	1 time	Open the luggage without removing it from the compartment.
js to	2 times	Open the luggage while it is placed between your legs.
the n.	2 times	Open the luggage while it is placed on the floor, on the place where the compartment is located.

	Frequency	Description
	2 times	Unfold to open the compartment.
	8 times	Slide the flap to place the luggage in the compartment.
ne entire flap	0 times	Take out the entire flap to grab the luggage.

je.		

Appendix E Results VR while seated

60 cm 30,0%

40 cm

10,0%

100 cm 10,0%

60 cm 30,0%

40 cm 10,0%

100 cm 20,0%

Totaal van V1 Estimate the headroom above you in centimetres.

Headroom V1

Totaal van V2 Estimate the headroom above you in centimetres.

Headroom V2

Totaal van V3 Estimate the headroom above you in centimetres.

Totaal van V2 Estimate the legroom you have in centimetres.

Legroom V2

40 cm 40,0%

60 cm 10,0%

Legroom V3

100 cm 20,0%

60-70 cm 10,0%

120 cm 10,0%

100 cm 30,0%

60-70 cm 10,0%

120 cm 10,0%

50 cm 30,0%

40 cm 20,0%

Appendix F Results VR while standing

Totaal van V1 Estimate the headroom above you in centimetres.

Headroom V1

Totaal van V3 Estimate the headroom above you in centimetres.

Headroom V3

Totaal van V2 Estimate the headroom above you in centimetres.

Headroom V2

Appendix G Fuselage structure

FIGURE 6.13: Length beams (option 1)

FIGURE 6.15: Struts/stanction (option 3)

Appendix H Assignment

IDE Master Graduation Project

Project team, procedural checks and Personal Project Brief

In this document the agreements made between student and supervisory team about the student's IDE Master Graduation Project are set out. This document may also include involvement of an external client, however does not cover any legal matters student and client (might) agree upon. Next to that, this document facilitates the required procedural checks:

- Student defines the team, what the student is going to do/deliver and how that will come about
 Chair of the supervisory team signs, to formally approve the project's setup / Project brief
- SSC E&SA (Shared Service Centre, Education & Student Affairs) report on the student's registration and study progress
- IDE's Board of Examiners confirms the proposed supervisory team on their eligibility, and whether the student is allowed to
- start the Graduation Project

DESIG FOR C

Famil	ly name 🛛	an Duivenboden	7437	IDE master(s)	IPD
	Initials	.w.		2 nd non-IDE master	
Give	n name	osca		Individual programme	
Student i	number 4	659775		(date of approval) Medision	
				inconsign.	
IPERVI I in he r	SORY TE required i	AM nformation of superviso	ory team members. If a	HPM	or is ad
JPERVI I in he r Chair	SORY TE required i Erik Tem	AM nformation of superviso pelman	ory team members. If a	HPM applicable, company mento Materials manufacturing	or is ad
JPERVI I in he r Chair mentor	SORY TE required i Erik Tem Gerbera	AM nformation of superviso pelman Vledder	ory team members. If a dept./section dept./section	HPM applicable, company mento Materials manufacturing Emerging materials	or is ad
JPERVI I in he r Chair mentor mentor	SORY TE required in Erik Tem Gerbera	AM nformation of superviso pelman Vledder osen Jacobson	ory team members. If a dept./section dept./section	HPM applicable, company mento Materials manufacturing Emerging materials	or is ad
JPERVI I in he r Chair mentor mentor client:	SORY TE required in Erik Tem Gerbera Daniel Ro Elysian	AM nformation of superviso pelman Vledder osen Jacobson	ory team members. If a dept./section dept./section	HPM applicable, company mento Materials manufacturing Emerging materials	or is ad

APPROVAL OF CHAIR on PROJECT PROPOSAL / PROJECT BRIEF -> to be filled in by the Chair of the supervisory team

Sign for approval (Chair)	

Affairs) sht mee	, atter ap ting.	proval of the project brief by	y the chair.	FOR OUR
*	YES	all 1st year master courses par	ssed	Personal Pr
	NO	missing 1 st year courses		
iments:				Name student Tosca van Duivenboo
				PROJECT TITLE, INTRODUCTION, PROBLE Complete all fields, keep information clear, s
		Robin den Braber	Digitaal ondertekend door Robin den Braber Datum: 2024.10.18 12:37:16 +02'00'	Aircraft interior for Elysian E Project title
	5	Signature		Please state the title of your graduation pro remainder of this document allows you to a
∕I -> to ents:	be check	ed and filled in by IDE's Boar	rd of Examiners	Introduction Describe the context of your project here; N and what interests are at stake? Describe t interests. (max 250 words)
ents:				Approximately 50% of all flights are shor flights could significantly reduce aviation of covering all these short-range routes a distances of up to 800 kiometres.
				In Elysians aircraft, the batteries are place provides more flexibility to explore new boarding. Additionally, it allows for a new
		Monique von Morgen	Digitally signed by Monique von Morgan Date: 2024.10.23 10:53:34 +02'00'	Thereby, the mission of Elysian is to creat comply with a sustainable life cycle. The new experience by flying with an electric aircraft. According to a study by Airbus, the Figure 2a ("Airbus Global Market Forecast an aircraft boneyard in America (Dearder being contributed by aircraft seats (Hafic
	9	Signature		importance of integrating CLSC (closed-le

→ space available for images / figures on next page

roject Brief – IDE Master Graduation Project

den

Student number 4,659,775

EM DEFINITION and ASSIGNMENT specific and concise

E9X

roject (above). Keep the title compact and simple. Do not use abbreviations. The define and clarify your graduation project.

What is the domain in which your project takes place? Who are the main stakeholders the opportunities (and limitations) in this domain to better serve the stakeholder

rt-range flights under 650 miles (Elysian Aircraft, 2023). Electrifying these shorter n's carbon footprint. Elysian is developing an electrical aircraft (see figure 1) capable and aims to revolutionize an electrical flying experience for 90 passengers over

ced in the wings, which opens up the opportunity to rethink the seating layout. This seating arrangements that can enhance user comfort during the flight or during w look at the lightweight materials and structures of the standard seat.

ate a 'zero emission' aircraft. This means that the interior of the new aircaft must e future passenger must be aware of their transportation choices and will undergo a ical aircraft. This means attention must be given to the end-of-life phase of the the number of aircraft built in the coming years will nearly double, as shown in ast 2023," 2023). Additionally, many airplanes will end up in landfills (see Figure 2b, en, 2015b)). Currently, 47% of cabin products remain unrecycled, with 25% of that idzun Alim, 2024). This highlights the need for improved circular practices and the loop supply chain) in the aerospace sector.

Appendix H Assignment

introduction (continued): space for images

image / figure 1 Elysian aircraft exterior

image / figure 2 2a) Number of aircrafts in the future by Airbus 2b) Boneyard of aircrafts in America.

Personal Project Brief – IDE Master Graduation Project

Problem Definition

What problem do you want to solve in the context described in the introduction, and within the available time frame of 100 working days? (= Master Graduation Project of 30 EC). What opportunities do you see to create added value for the described stakeholders? Substantiate your choice. (max 200 words)

The challenge lies in optimizing the seating for Elysians new aircraft to align with a vision of sustainable aviation. Currently, airplane seats are not as environmentally friendly as they could be, due to the use of materials such as foam, textile, and metal frames. To achieve a future oriented design, the new interior must:

- Improve the environmental impact and durability by using sustainable materials and new structures. It will ensure longer lifespan and easier disassembly for reuse at the end of its lifecycle.

- Meet the specific seating layout requirements of Elysians new airplane design (E9X). - Create an aesthetic and functional experience that aligns with the expectations of future passengers, reflecting the look and feel of air travel in 2033.

- Improve the ergonomics of the passenger during the flight.

Assignment

This is the most important part of the project brief because it will give a clear direction of what you are heading for. Formulate an assignment to yourself regarding what you expect to deliver as result at the end of your project. (1 sentence) As you graduate as an industrial design engineer, your assignment will start with a verb (Design/Investigate/Validate/Create), and you may use the green text format:

Create a seating prototype to optimize the layout of the aircraft, the sustainaibility and the experience of the future user of the electrical aircraft (Elysian EX9).

Then explain your project approach to carrying out your graduation project and what research and design methods you plan to use to generate your design solution (max 150 words)

This project follows the double diamond approach, consisting of four phases: discover, define, develop, and deliver. Throughout this method, I will need to push myself to set goals in order to achieve the final objective and keep and to monitor the process. I added the phases preparation and design in the planning, because the that will be the core of the project.

The project will end with the creation of a physical (or digital) seating product for the Elysian aircraft.

To create a applicable seating, it is necessary that the product (and expierence) will be tested during the proces by the ergonomics or the experience of the user in the future.

TUDelft

Project planning and key moments

To make visible how you plan to spend your time, you must make a planning for the full project. You are advised to use a Gantt chart format to show the different phases of your project, deliverables you have in mind, meetings and in-between deadlines. Keep in mind that all activities should fit within the given run time of 100 working days. Your planning should include a kick-off meeting, mid-term evaluation meeting, green light meeting and graduation ceremony. Please indicate periods of part-time activities and/or periods of not spending time on your graduation project, if any (for instance because of holidays or parallel course activities).

Make sure to attach the full plan to this project brief. The four key moment dates must be filled in below

Motivation and personal ambitions

Explain why you wish to start this project, what competencies you want to prove or develop (e.g. competencies acquired in your MSc programme, electives, extra-curricular activities or other).

Optionally, describe whether you have some personal learning ambitions which you explicitly want to address in this project, on top of the learning objectives of the Graduation Project itself. You might think of e.g. acquiring in depth knowledge on a specific subject, broadening your competencies or experimenting with a specific tool or methodology. Personal learning ambitions are limited to a maximum number of five. (200 words max)

Decisiveness: I really have to break down my larger goals into smaller (weekly or monthly) goals. By breaking down larger goals into smaller, more manageable tasks, in collaboration with my coaches, It can help me understanding how each step will contribute to my ultimate objective.

Academic writing: I find it challenging to write academically, and to structure a clear report without using too much words or information. How can I ensure my project remains scientific? What (validation) tests should I conduct? I need to stay focused on working methodically.

Hard skills: As an IPD student, I want to further develop my hard skills during this phase, particularly in elaborating, visualizing, or conceptualizing ideas. Think about 3D modelling or using 3D scanning to get test results for ergonomic or material testresults.

024	In exceptional cases (part of) the Gra Project may need to be scheduled pa Indicate here if such applies to your p	nduation Irt-time. project
	Part of project scheduled part-time	
2024	For how many project weeks	21
0025	Number of project days per week	5,0
2025	Comments:	
2025		