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Abstract—In this paper, we propose an Elevation-Radial
scanned Synthetic Aperture Radar (E-RadSAR) for forward-
looking ground penetrating radar (GPR) imaging. The E-
RadSAR exploits the advantages of both RadSAR and Elevation-
Circular SAR (E-CSAR) by utilizing the SAR technique in
the cross- and down-range directions for signal acquisition. It
could be implemented with fewer antennas compared to the
RadSAR but provides higher spatial resolutions than that of
E-CSAR. These features make it very attractive for space-
and/or cost-constrained imaging applications, for instance, the
GPR systems used for tunnel boring machines (TBM). However,
the E-RadSAR synthesizes a three-dimensional (3-D) array by
taking measurements in a volume, which makes the traditional
sampling criterion no longer applicable for its sampling strategy
design. To tackle 3-D (synthetic) array sampling/design, we
formulate it as a sensor selection problem and suggest an efficient
selection algorithm, i.e., modified clustered FrameSense (modified
CFS). Then it is used for 3-D array sampling design. The
imaging performances of the resultant near-optimal 3-D arrays
are demonstrated through numerical simulations.

Index Terms—Ground penetrating radar, three-dimensional (3-
D) synthetic array, forward-looking imaging, sampling design.

I. INTRODUCTION

Ground penetrating radar (GPR) has been extensively used
for subsurface survey, landmine detection, archaeological in-
vestigation, hydrogeological studies, to list a few [1]. Recently,
a new application scenario for GPR systems is to predict
the potential hazard in front of a tunnel boring machine
(TBM) during tunnel construction, which is the motivation
of the research presented in this paper. For the GPR systems
used for TBMs, antennas are installed on their cutter-heads.
With the rotation of the cutter-heads, GPR antennas acquire
signals at different spatial positions, which naturally leads
to a synthetic circular aperture for three-dimensional (3-D)
imaging. Specifically, if a linear antenna array is used, a Radial
scanned SAR (RadSAR) can be formed [2]. However, due
to some space constraints for GPR antenna installation, the
number of applicable antennas should be as few as possible.

In literature, circular SAR (CSAR) is the simplest synthetic
circular aperture, which can be implemented by using only one
antenna [3]. Although it provides three-dimensional imaging
capability, the resultant down-range resolution is very low. By
further exploiting SAR technique along the down-range di-
rection (i.e., different elevations), Elevation-CSAR (E-CSAR)
improves its down-range resolution compared to the CSAR.
Although the down-range resolution achieved by E-CSAR is

still lower than that obtained by the RadSAR where more
antennas are needed, it indicates that exploiting SAR technique
along the down-range direction could be a possible way to
reduce the number of antennas needed by the imaging system.

As a TBM not only rotates its cutter-head but also moves
forward during the tunnel excavation, it provides the op-
portunity to implement SAR technique in both cross- and
down-range directions. Considering this feature, we proposed
an Elevation-RadSAR (E-RadSAR) for forward-looking GPR
imaging. The E-RadSAR exploits the advantages of both the
RadSAR and E-CSAR with attempts to reduce the number
of antennas needed but cause little degradation of the spatial
resolutions.

To determine the number of antennas needed by the E-
RadSAR and the corresponding sampling scheme, it involves
a sampling design problem. As the E-RadSAR takes spatial
samples in a 3-D volume instead of a plane/surface, it makes
the Nyquist sampling criterion and the related sampling design
approach no longer applicable. To tackle the 3-D spatial
sampling problem, we formulated it as a sensor/observation
selection problem and two selection algorithms, i.e., clus-
tered FrameSense (CFS) and clustered maximum projection
onto minimum eigenspace (CMPME), have been suggested
[4]. Both algorithms aim at selecting a certain amount of
samples from a candidate set for sampling design but with
different selection optimization criteria. CMPME sequentially
chooses the samples whose observation vectors brings the most
complementary information relative to those associated with
the selected samples while CFS gradually eliminates from
the candidate set the samples that bring the largest ”frame
potential” (a metric of correlation among observation vectors)
to the observation matrix. Although CMPME is an efficient
selection algorithm and also provides better selection results,
it is slightly computationally heavier than CFS where only
inner product operations are involved. By minimizing the
frame potential of an observation matrix, CFS can only get the
optimal selection when all the candidate observation vectors
have equal `2-norms. However, due to the propagation spread-
ing loss of electromagnetic waves and attenuation effects of
soil, the observation vectors of GPR measurements apparently
have different `2-norms; thus, the optimality of the selection
results of CFS could be degraded. To take advantage of high
efficiency of CFS and improve the selection performance in
such cases, we propose a modified CFS selection algorithm by
considering the distribution of the `2-norms of the candidate
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observation vectors. Based on the distribution of `2-norm, the
modified CFS eliminates the observation vectors with extreme
(i.e., maximum/minimum) `2-norms at the beginning of the
selection. Through this operation, the norms of the remaining
observation vectors have a more concentrate distribution and
then the optimality of the selection results is improved.

The rest of this paper is organized as follows. In section
II, the signal model for linear inversion is briefly reviewed.
Then, the modified CFS algorithm is presented in section III.
After that, some numerical simulations for GPR imaging are
performed to show the imaging performance of the selected
samples with the proposed selection algorithms. Finally, some
conclusions are drawn in section V.

II. SIGNAL MODEL

Assuming the Born approximation is applicable to scenarios
under investigation, the scattering process of GPR signals can
be modeled as a linear system [5]

y = Ax+ n (1)

where y ∈ CN denotes the vector of the scattered signal
measurements, x ∈ Cn is the vector of scattering coefficients
of the scene which is divided into n cells, and n ∈ Cn

represents the vector of measurement errors and noise. A ∈
CN×n is the observation matrix constructed as rows by the
observation vectors related to each measurement. Each entry
of A describes the propagation process of EM waves from
a transmitting antenna to a scatterer and then to a receiving
antenna through Green’s functions.

Equation (1) gives a general model for linear inversion of
GPR data. According to (1), N measurements are needed
to fully retrieve the scattering properties of scatterers, which
could be determined by using sampling theorem based on the
resolution requirement and is usually a very large number.
However, due to some constraints (e.g., cost, acquisition time,
system complexity), it is impractical or impossible to get all
N measurements. For instance, GPR antenna systems have
a very tight constraint on the number of applicable antennas,
which makes that only a certain number of measurements (i.e.,
fewer than N ) can be acquired. Moreover, for E-RadSAR, how
to properly take these spatial samples for 3-D high-quality
imaging is also a big challenge. To tackle these problems, we
convert the sampling problem as a sensor selection problem
[4], [5].

Assume only a relatively smaller number of measurements
(say, L) can be acquired and the N measurements are the can-
didate samples. Then taking L measurements for the practical
system becomes selecting L samples from the N candidates.
Denote the L selected samples as L = {s1, s2, · · · , sL}, the
N candidate samples as N = {1, 2, · · · , N} and L ⊂ N .
Extracting the equations related to the selected measurements
from (1) and putting them together, we get

yL = ALx+ nL (2)

where yL ∈ CL is a vector of L selected samples and
ALCL×n is an observation matrix formed by their associated

observation vectors. nL ∈ CL is assumed to be a zero-mean
circular Gaussian distribution with variance of σ2, and denotes
noise and the measurement errors. Note that the number of
selected samples is larger than n, i.e., L > n, although it is
smaller than N .

Based on the measurements in (2), a minimum variance
unbiased estimation of x obtained via least squares is given
by

x̂ = A†LyL (3)

where A†L = (AH
LAL)

−1AH
L denotes the pseudo-inverse of

AL. So one can see that the estimation performance of x̂
is determined by the observation matrix, which is typically
evaluated through some metrics, such as mean square error
(MSE), worst case error variance (WCEV) and condition
number.

As each antenna of the E-RadSAR system takes a number
of spatial samples, it means selecting one antennas results in
choosing a group of observation matrix. So it leads to a vector
measurement selection problem [6].

III. MODIFIED CLUSTERED FRAMESENSE

In principle, the vector measurement selection problem
related to the sampling design of E-RadSAR can be tackled
with many selection algorithms, for instance, convex relaxed
optimization, Clustered sequential backward selection (CSBS),
CMPME and CFS. Among these algorithms, CFS is the
most efficient one. However, it only obtains optimal selection
results for observation vectors with equal norms. To improve
its selection performance when the observation vectors have
nonuniform norms, we suggest a screening scheme based on
the distribution of the magnitudes of candidate observation
vectors at the beginning stage of CFS so as to optimize the
selection results, which is termed as modified CFS.

The modified CFS uses the same cost function as the CFS
to gradually eliminate the samples, namely, by minimizing
the frame potential of the observation matrix. The major
difference is that a screening scheme is introduced before
starting the iterative selection procedure. Specifically, for a set
of candidate observation vectors with nonuniform norms, we
first investigate their norm distribution. Based on the histogram
of their `2-norms, those with the extremely small and big
norms are eliminated first. This operation, to some extent,
makes the remaining candidates with a homogenized norms,
thus alleviating the influence of magnitudes of the observation
vectors in the selection results. After that, the same iterative
selection operations as the traditional CFS are performed [5].
For the sake of conciseness, we omit the details here.

IV. NUMERICAL SIMULATIONS

In this section, a numerical simulation is carried out to
optimize a spatial sampling scheme of UWB E-RadSAR for
GPR imaging.

GPR synthetic data were generated with the gprMax soft-
ware by using the Finite Difference Time domain solver
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(a) (b)

Fig. 1: The setup for GPR simulation: (a) the 3-D geometrical
configuration, and (b) its top view along the positive y-
direction.
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Fig. 2: Histogram of the magnitudes of candidate observation
vectors.

(FDTD) [7]. The geometrical setup for the GPR simulation
is shown in Fig. 1. In the simulation, an “L”-shaped object
formed by two dielectric cylinders of radius 0.1 m was used
as targets. The cylinder placed parallel to the z-axis is 0.8m
in length while the length of the other one is 0.6m. The
“L”-shaped object was buried in a homogeneous background
soil. The permittivity of the background soil was 9.0 and the
conductivity was 0.01 S/m and the corresponding scattering
properties of the cylinders were 5.0 and 0.05 S/m, respectively.
The GPR antennas collected the EM signals over a series of
concentric circles with the radius ranging from 0.15 to 0.5m
with steps of 5 cm on the ground surface. The azimuthal sam-
pling interval is 3◦. Thus, these spatial samples equivalently
form a circular aperture array on the ground surface. At each
spatial sampling position, the antenna axis was parallel to the
radial direction. To emulate the advancement of a TBM during
the tunnel excavation, signal measurements were taken at three
different elevations with the depths of 0.5m, 0.4m and 0.3m
relative to the imaging volume of interest below the ground
surface. If we take the closest elevation of signal acquisition
as the xoz plane, the imaging volume can be defined as a
cuboid of [−0.4, 0.4] × [0.1, 0.5] × [−0.5, 0.5]m. The Ricker

(a)

(b)

(c)

Fig. 3: spatial sampling selection for E-RadSAR system. (a)
shows the distribution of candidate samples of three selected
antennas, (b) shows the samples selected with CFS, and (c)
gives the samples selected with modified CFS.

wavelet of 900 MHz was used as the exciting signal.
Based on the aforementioned sampling scheme, we acquire

2880 (i.e., 8×120×3) spatial samples in total, which is a set
of relatively dense spatial measurements and contains massive
redundancy. To fully taking measurements over these spatial
samples, eight antennas are needed. However, as indicated in
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(a) (b)

(c) (d)

Fig. 4: Image results reconstructed with the spatial samples
selected with the two approaches: (a) and (b) CFS; (c) and (d)
modified CFS.

section I, this is unacceptable or impractical for some cases
with tight constraint on the space occupied by antennas, for
instance, GPR systems used for TBMs. So to design the
sampling criterion in such cases, we use the aforementioned
dense spatial samples as a candidate set and then select a
subset of it to get a near-optimal sampling criterion for the
E-RadSAR imaging system. As we consider the case with the
tight constraint on the number of applicable antennas here,
a few of antennas from all the candidates should be firstly
selected for the E-RadSAR system. Based on the dimensions
of the imaging volume and discretized cells as well as the
number of samples acquired by each antennas, it can be
determined that at least two antennas are needed for the E-
RadSAR system in this example. Then, considering some
redundancy, we firstly select three antennas from the eight
possible ones by using the CFS. One can see that the outmost
three antennas within the circular aperture were selected.
Fig. 3(a) shows all the spatial samples that can be acquired by
the three selected antennas, which forms a candidate set for
further selection of spatial samples for each antenna.

After selecting the applicable antennas, the second step is
to determine the sampling scheme for each antenna during
the E-RadSAR operation. Fig. 2 shows the histogram of
the candidate observation vectors related to all the possible
measurement of the three selected antennas. Based on this
histogram, we firstly eliminate 5% of the candidates with the
extreme norms. Then the traditional CFS and modified CFS
are used to design the spatial sampling scheme for the three
antennas. The distributions of the spatial samples chosen by
CFS and modified CFS are shown in Fig. 3(b) and (c). One can
see that the traditional CFS tends to select the samples that are

further away from the illuminated volume while the modified
CFS selects more samples which are closer to the imaging
scene. Due to the different distributions of the spatial samples,
images with different focusing performance are reconstructed.
For comparison, the reconstructed 3-D images as well as
their top-views are shown in Fig. 4. It can be seen that the
image with the samples selected by modified CFS has smaller
artifacts surrounding the reconstructed “L” shaped object. But
a slight distortion is also noticed in Fig 4(d). This is caused by
the spatial weighting effects of the antenna radiation patterns.
Nevertheless, in terms of the sharpness of the focused image,
the modified CFS overperforms the traditional one.

V. CONCLUSION

In this paper, we investigate the 3-D GPR imaging with
the near-optimal 3-D synthetic arrays, i.e., E-RadSAR. To
tackle the related sampling design problem, we convert it to a
sensor selection problem and a modified CFS is proposed for
near-optimal sensor/observation selection. The modified CFS
takes advantage of high efficiency of the traditional CFS but
also introduces a screening scheme to improve the optimality
of the selection results. The effectiveness of this screening
scheme has been demonstrated through numerical simulation
and the improvement of the imaging performance of the spatial
samples selected with modified CFS is observed in contrast to
that obtained with CFS.
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