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Abstract
This era of science and technology has seen widespread use of composite materials for a variety of
applications ranging from the defense sector to the transport and construction sectors. Composites are
mainly comprised of fibres impregnated with a polymeric matrix and have a superior strength to weight
ratio as compared to traditional construction materials like concrete and steel. The strength of the fibres
is much larger than that of the matrix. Also, the fibres exhibits elastic brittle behaviour while the matrix
shows a nonlinear plastic behavior before damage occurs. Thus the overall response of the material
is subjective to which direction it is loaded. In reality a multitude of stresses act simultaneously on any
structure and it is quite challenging to develop a constitutive formulation for the composite material that
can predict the stresses in these mixed modes accurately.

This thesis aims at providing an improved constitutive formulation for the prediction of the material
behavior of unidirectional composites. The constitutive formulation builds up on the existing knowledge
of an isotropic invariant based yield function. The motive is to improve the performance of this consti­
tutive law for better predicting the behavior under combined stress states, particularly in the presence
of fibre stresses. Even thought the fibres behave completely elastic, the matrix surrounding the fibres
is much weaker and tends to deform inelastically. The moment at which the yield stresses are devel­
oped in the matrix is also dependant on the level of stress in the fibres. To capture this behavious, two
different yield criterion are formulated and testing in this project.

First an additive split of the stress tensor helps to separate the fibre and matrix stress components
along the fibre(‘1’) direction. The fibre stress is always elastic whilst the matrix stress component can
behave inelastic. This matrix stress component is taken into account in the new constitutive laws.
The first constitutive law is a modified version of the transversely isotropic invariant formulations as
proposed by Vogler et al. [28] and the second constitutive law is an anisotropic yield function proposed
by Tsai and Wu [25]. The invarants are reformulated with the matrix stress tensor while keeping the
same functional form as that of the transversely isotropic invariant formulation . Again, the split in stress
tensor is performed and used in association with the anisotropic yield function. The derivations of all
the constitutive relations is presented extensively in the third chapter.

Followed by the formulations is the calibration of both the constitutive laws using the hardening
curves derived from the micromodel simulations. The micromodel serves as the equivalent experi­
mental test setup for the mesomodels presented in this project. Calibration of the mesomodels is a
complex task in itself and the various trials were performed to determine the yield stress parameters
that calibrate the models. Having calibrated the models, both the mesomodels are subjected to basic
load cases and combined load cases. The MTIF model gives more consistent results than the TW
model, however TW model performs better in the combined stress state of longitudinal axial tension
and longitudinal in­plane shear.

Finally, the effect of the fibre stresses on the plastic behavior of the matrix is being captured but to
different extents in both the models. Neither of the models is able to match the micromodel results for
all simulations. The sensitivity of the yield stress parameters is brought to light and are the main cause
for the overestimating behavior of the TW model. Lastly, all the observations were concluded followed
by some recommendations for the future work.
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1
Introduction

This chapter contains general information on composite materials, their benefits and use cases.
It then addresses some of the difficulties which are faced in accurately modelling the physical
behaviour of these materials which leads to the motivation and aim of the project. The research
questions are defined and the methodology is explained with a short overview of the layout of
the report.
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2 1. Introduction

1.1. General Overview
Composite materials are a combination of two materials that are amalgamated to produce a new ma­
terial with enhanced properties. Fibre reinforced polymers (FRP) are the most widely used composites
that are made of fibres combined with a binder material. Usually, the fibres are glass or carbon fibres
and the binder material is a polymer(resin) matrix. Fibre mats, unidirectional or bidirectional fabrics and
fibre filaments are types of fibre reinforcements that are possible in FRP. Along with different types of
polymers, the possibilities of fibre reinforced composites are endless. The fibres have high stiffness,
high strength and behave mostly elastic with brittle failure. On the other hand, the polymer has rela­
tively weaker material properties with respect to the fibres and the response is mostly nonlinear. Thus
the composite exhibits the non uniform or anisotropic material behaviour.

A major advantage of FRP is that the material can be tailored and manufactured for each design.
In addition to their lightweight, high strength and good corrosion resistant properties, composites have
found wide applications in the automotive and aerospace industries with the construction industry slowly
catching on. Composites are used to make structural parts like aeroplane fuselages, parts of the
aeroplane wings and automotive chassis. In recent years, pedestrian bridges and lock gates have also
been made with composites. These designs are possible on the ability to predict the ultimate load and
residual strength of these structures. However, these designs can bemademore efficient with the ability
to better predict the physical response of the material, especially the failure mechanisms. Due to the
heterogeneous composition of the composite material, multiple failure mechanisms are possible. For
this, the stress states in the material for general loading conditions, boundary conditions and loading
histories need to be accurately predicted [28].

To study the stress states that determine the nature of the failure of mechanisms, the composition
of the material at different scales should be understood [8]. Laminates are comprising usually of unidi­
rectional(UD) plies laid in different orientations. The macroscale, which represents all the layers of the
material, is where the global structural geometry is defined. This is where the ultimate strength or the
ultimate bending moment capacity of the entire laminate is evaluated. Mesoscale is the intermediate
scale representing the material as homogeneous for an individual ply. Interply and intraply material
behaviour can be well represented at this scale. Lastly the microscale wherein the individual compo­
nents, the fibres and matrix, are represented individually. Microscopic failures affected by the position
of the fibres and the fibre­matrix interface can be studied here. A schematic of the different scales can
be seen in figure1.1.

Figure 1.1: A schematic of the different scales of observation for an orthotropic laminate

In order to quantify the anisotropic material behaviour of composites, constitutive laws are imple­
mented. The constitutive laws at microscale are fairly straightforward due to their limited input pa­
rameters as they are defined separately for the fibre and matrix. Microscopic models are often used in
multiscale modelling to imitate the behaviour of laminates. In multiscale modelling, a finite element(FE)
model is applied on both the macroscale and microscale. The stresses at the Gauss integration point
of the macroscale are used as the boundary conditions for the microscale FE model. This requires
the FE model to run twice in a simulation and is often referred as FE2. Although this method yields
accurate results, it comes with a very high computational cost which is not practical for engineering
applications. On the other hand, mesoscale constitutive laws assume an individual ply to be homo­
geneous and are computationally less demanding. Nevertheless, the mesoscale constitutive laws are
more complex as they have to capture all the microscopic phenomena and accurately represent them
as a homogeneous ply. The input parameters for mesoscale constitutive laws should be chosen such
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they are able to replicate all the trends of the microscopic material behaviour fairly accurately and at
the same time use a reasonable number of experimental tests to define them [17].

Among the various constitutive model that have been proposed over the years[18, 19, 25, 28], a
three dimensional transversely isotropic elastic­plastic constitutive law by Vogler et al. [28] for mesoscale
has shown promise. Another study by Van Der Meer [27] validated this model with the help of micro­
model simulations based on the constitutive laws proposed by Melro et al. [18]. This study revealed that
although the transversely isotropic constitutive law is able to predict the elasto­plastic behaviour under
individual stress states, it is unable to capture the influence of a combination of stress states under
multi­axial loading. It is thus quite interesting to explore the possibilities to incorporate the interaction
between the different stresses acting on the material.

This thesis focuses on using the knowledge of existing homogenized mesomodels to provide an
improved constitutive law that is able to capture the interactions between stresses under multi­axial
loading. The microscale models will be used as representative validation set for the mesomodel. The
work will include the formulation of the equations governing the plastic behaviour of the material along
with its numerical implementation. The results from this model will help us determine if the interaction
between the stresses is successfully captured by the newer implementation.

1.2. Motivation and Aim of the Research
1.2.1. Motivation
Multiscale modelling has gained popularity in it’s ability to predict the behaviour of composite materi­
als accurately, however they come at a high computational cost. An alternative to this is the use of
homogenization techniques that are able to reproduce the same physical effects for mesomodels. A
novel approach proposed by Vogler et al. [28] with an invariant based formulation of the yield func­
tion is able to express the effects of different stress states reasonably for mesomodels. The invariant
based formulation employs an invariant each for in­plane shear, transverse shear and uniaxial ten­
sion/compression and biaxial tension/compression stress states. As a result it is able to capture the
effects of these stress states, however a study by Van Der Meer [27] revealed that the influence due to
fibre direction stresses(𝜎11) on the other stress states is not taken into account. It can be seen from fig­
ure1.2 where it is observed that for various fibre direction stresses the onset of plasticity in the in­plane
shear stresses(𝜎12) is affected.

Figure 1.2: Shear stress­strain curve for combined longitudinal shear and longitudinal axial tension for
(𝜎11/𝜎12 ∈ [57, 29, 11, 6, 0]), [27]

These combination of stresses can be identified with the help of a simple beam example as shown in
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figure 1.3. The beam is comprised of unidirectional laminates for the top and bottom flanges of the beam
and is subjected to bending. The flanges predominantly carry the load in tension and compression but
due to the variation of these stresses along the depth of the member, in­plane shear stress is developed
at the interface between the plies of the laminate. Thus it is a realistic loading scenario and the effect
of fibre direction stresses on the onset of plasticity should be taken into account. The main motivation
of this project is to provide an improved constitutive model by incorporating the effect of fibre direction
stresses on matrix plasticity.

Figure 1.3: Stress distribution over the cross section of a composite beam subjected to bending

1.2.2. Aim of the Research
Laminated composites have different types of failure mechanisms as compared to traditional construc­
tion materials. Matrix cracking, delamination between plies and fibre ruptures are some of the common
failure modes that are observed in laminated composites. To accurately predict these failure modes,
it is crucial to understand the development of stresses not only near the failure surface but also in the
surrounding material. The mesoscale is chosen as it is possible to study the stress states in this scale
to evaluate the failure modes inside the material and the outside interface between plies. Since the
existing homogenized mesomodels in their current form are unable capture all the interactions between
different stress states, the failures cannot be accurately determined. Anisotropic yield criteria however,
have more flexibility to account for different behaviours in different directions but are limited as they are
difficult to calibrate for combined stress states. This thesis aims at improving an existing constitutive
law which is based on a transversely isotropic invariant based formulation and an anisotropic formula­
tion to better quantify the physical behaviour of the composite in multi stress state. The emphasis will
be on overcoming the shortcoming of the existing models while maintaining it’s simplicity. The scope of
this project is limited to the inelastic behaviour of unidirectional composites just before damage occurs.
The work will build upon the framework developed by Van Der Meer, for mesoscale modelling of UD
composites [27] to incorporate the effects of fibre direction stresses on the matrix plasticity.

Research Questions

1. How to incorporate the effect of fibre direction stress(𝜎11) on the evolution of plastic in­plane shear
stress(𝜎12) within the transversely isotropic invariant based yield criterion?

2. Would an anisotropic yield criterion be able to capture the effect of the fibre direction stresses(𝜎11)
on plastic behaviour of the matrix?

3. How sensitive is the anisotropic formulation to the calibration of the model?

1.3. Research Methodology
The methodology of this research can be divided into three parts, understanding the theoretical back­
ground, improving the constitutive model along with its numerical implementation and finally interpreting
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the results. At first a small study of the general concepts of plasticity was carried out to fully understand
the governing equations of plasticity. This exercise helped to gain insights into the implementations
of constitutive laws for composite materials, presented in the literature. After a thorough literature re­
view, the research questions were formulated. Improved formulations proposed by Van Der Meer in
the transversely isotropic framework were investigated. Another formulation with the anisotropic yield
function was also worked out. Then the numerical implementation of these governing equations of
plasticity with finite elements, was carried out with the help of C++ JemJive package. Two different
types of numerical models were analysed, first being the microscale model which in the scope of this
project, served as a test setup and the second model was the homogenized mesoscale model. The
micromodel results are assumed to be representative of the actual composite material behaviour and
also used for generating input for the homogenized mesoscale model. The major focus of this thesis
will be on the improved constitutive laws proposed and applied at mesoscale. Next the performance of
these yield criteria are evaluated with respect to the micromodel and presented. Lastly, the conclusions
of this study are summarized followed by recommendations for further improvement.

1.4. Thesis Outline
The structure of this report is aligned with the proposedmethodology. Chapter 2 presents the necessary
background information, which is an extensive literature review and a brief explanation of the general
theory of plasticity. The transversely isotropic formulation from literature is explained in detail to help
understand the working of that model. A newer formulation along with a new yield criterion is presented
in Chapter 3. This chapter also describes the numerical implementations of the newer formulations.
Chapter 4will explain the representative volume elements used for the finite element simulations of both
the microscale and mesoscale models. Chapter 5 presents the results of newer implementations on
the mesomodel which is compared with the micromodel results for different combined load cases. The
results will help us realise the impact of the newer implementation on the including the fibre direction
stresses on the matrix plasticity. Lastly, Chapter 6 will conclude the findings of this thesis and suggest
the recommendations for future research.





2
Background Information

This chapter aims to familiarize the reader with the general notations of plasticity and briefly
describe the theory of plasticity. A broad literature review which talks about the failures mech­
anisms of composites. Analytical techniques in correlations with their experimental setups
have been discussed. This helps to strengthen the research questions and leads to the main
formulations of this project.

7
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Before starting the main constitutive formulations, it is important to know what plasticity is and how
the constitutive relations are used to incorporate nonlinear material behaviour. The general theory
presented in this chapter addresses the theory of plasticity which helps understand how the plastic
nonlinearity in materials is formulated. In the second section of this chapter, the knowledge on consti­
tutive modelling is build up from the reviewed literature is presented. This will help lay the ground work
for the following chapters.

2.1. Theory
2.1.1. General Overview of Material behaviour
A material subjected to increasing load deforms linearly proportion to the load upto a certain limit after
which it deforms nonlinearly. This limit of linearly proportional deformations is know as elastic limit and
these deformations upto the elastic limit can be recovered upon removal of the load. The nonlinear
deformations are called inelastic or plastic deformations and cannot be recovered upon the removal
of loads. Materials that have sufficient capacity to show plastic deformations before failure are called
ductile materials where as materials that do not show any significant plastic deformations are called
brittle materials. Common metals like steel are ductile whereas materials like cement or concrete are
brittle.

The relationship that relates the elastic strains to the elastic stresses is known as Hooke’s law. The
amount of stress for unit strain in the material is known as the elastic modulus of that material. These
properties are different in different directions and vary between materials. In general, materials can
posses different properties in different directions depending on their composition. Such materials are
known as anisotropic materials and behaves differently in each direction. A case where the material
properties can be described completely along 3 orthogonal directions are known as orthotropic materi­
als. Another subset of orthotropic materials are isotropic materials, where the property of the material
is same along all three directions. Also a special case where the material property is same along only
two directions and differently along the third direction are called transversely isotropic materials. Met­
als are a good example of isotropic materials whereas UD fibre reinforced composites are examples
of transversely isotropic materials.

All the different properties pertaining to their respective directions are collected in the form of a
tensor. When computing the stresses from the strains this tensor is called the stiffness matrix. The
inverse of this matrix is called the compliance matrix and can be used to compute the strains from the
stresses. These tensors are what form the constitutive relationships for each material. This tensor
can be easily defined for elasticity, although, additional equations are required to define this tensor for
plasticity.

2.1.2. Governing Equations of Plasticity
Any problems in static mechanics is solved in a formal fashion with the help of kinematic equations,
constitutive equations and equilibrium equations. The kinematic equations relate the body displace­
ments to the internal strains in the material. The constitutive equations relate the internal strains to the
internal stresses. Finally the equilibrium equations are used to balance the internal forces(stresses) in
the body with the external forces(stresses) applied to the body. The constitutive equations in it’s most
general form can be seen in Eq.2.1 where 𝜎 is the second order stress tensor, 𝜀 is the second order
strain tensor and D is the fourth order tensor often called the stiffness matrix. For elastic loading, this
relation is linear(also known as Hooke’s law) but for plastic loading it is nonlinear. The stiffness matrix
is where the material nonlinearity is incorporated.

𝜎 = D𝜀 (2.1)

To define the correct stiffness matrix for accurately calculating the stresses under nonlinear plastic
loading, the theory of plasticity is followed. Plasticity can be represented by three major ingredients, a
yield criterion, a flow rule and the consistency conditions[1, 6, 23, 24]. Generally the yield criterion is a
scalar function of the stress tensor and a plastic internal variable. A general form of the yield function
can be seen in Eq.2.2 where 𝜅 is the plastic internal variable. The yield function represented in 3D
space, defines a yield surface that bounds the stress states that can exist in a material at any given
time. According to theory, a stress state cannot exist outside the yield surface, but it can still exist on
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the yield surface itself. The stress states inside the yield surface are elastic and the ones that exist on
the surface are plastic.

𝑓(𝜎, 𝜅) ≤ 0 (2.2)

The deformations are quantified by elastic strains and plastic strains as shown in Eq. 2.3. The
elastic strains are strains that can be recovered on unloading at any given time. The theory of plasticity
assumes the unloading to always follow Hooke’s Law(Eq.2.4) and thus these strains can be easily
determined. With the total strains known and computed elastic strains, it is possible to determine the
plastic strains (Fig.2.1). Nevertheless, this procedure is not as effortless as it seems. To correctly
determine the elastic strains, it is crucial to know the correct state of stress in the material at a given
time. When solving a problem of static mechanics, the stresses need to be computed from strains, as
a result there exists an implicit problem where the stresses are unknown.

𝜀 = 𝜀𝑒 + 𝜀𝑝 (2.3)

where, 𝜀𝑒 is elastic strains and 𝜀𝑝 are plastic strains

𝜎 = D𝑒𝜀𝑒 (2.4)

Figure 2.1: A plot of stress vs strain showing the elastic and plastic strains

A common technique used to solve this problem according to theory of plasticity is to assume a
functional form of the plastic strains. It states that the plastic strains can be determined as a product
of a plastic multiplier and a flow rule. The plastic multiplier (�̇�) is a scalar quantity, determines the
magnitude of the plastic strain and the flow rule (𝑚) is a tensor that dictates the plastic flow direction,
shown in Eq.2.5. Two types of flow rules exist, one is the associative flow rule wherein the flow rule is
defined to be the gradient to the yield function and non associative flow rule where the flow rule is the
gradient to a plastic potential function. The plastic potential function usually has a similar form as that
of the yield function and is chosen where the the associative flow rule does not hold good for predicting
the plastic phenomena.

𝜀𝑝 = �̇� ⋅ 𝑚 (2.5)

Lastly, the consistency conditions are obtained from the loading unloading conditions postulated by
Kuhn­Tucker which can be seen in Eq.2.6. These can be understood with the help of a simple example.
Clearly, if a stress point is elastic, it will satisfy 𝑓 ≤ 0 and the plastic multiplier is �̇� = 0. Subsequently, if
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a stress point is plastic, it has to lie on the yield surface thus satisfying 𝑓 = 0 and plastic strains �̇� > 0.
As a result, in both cases the product of 𝑓 and 𝛾 is equal to zero.

𝑓 ≤ 0 , �̇� ≥ 0 , 𝑓�̇� = 0 (2.6)

With a functional form of the yield function and flow rule, all the above elements can be combined to
derive a tangential stiffness matrix that gives the relation between the strains and stresses at each local
integration point. Once this stress strain relationship is known, the problem at global scale which is to
balance the sum of internal forces with the sum of external forces acting on the body can be solved.
In essence this sums up the underlying theory behind a non­linear finite element code dealing with
plasticity.

2.2. Literature Review
Fibre reinforced polymer composites have wide applications in aerospace, automobile and construction
industry, due to their lightweight, high stiffness and high strength. They are used to manufacture various
structural components and thus it is crucial to be able to determine the resistance capacity of these
structures. In order to determine the resistance capacity, we need to know the exact material behaviour.
Since FRP material are laminar and inhomogeneous, their material behaviour is very difficult to predict.
Various approaches to predict this material behaviour will be discussed in the following subsections.

2.2.1. Macroscale Failures
Composite laminates are heterogeneous materials that are made by stacking of multiple plies on each
other and bondedwith an adhesive. Due to the laminar nature of thematerial, the failure of the laminates
is complex and dependent on the failure of the ply and the interface between the plys. A variety of failure
modes like matrix cracking, delamination and fibre rupture are observed on ply level. To estimate these
failures, progressive failure modelling techniques have been proposed by Camanho et al. [3], Chang
and Chang [5], Hahn and Tsai [13], Liu and Tsai [15], Maimí et al. [17], Van Der Meer and Sluys [26].
The modelling procedure comprises of two main parts, first is the failure of a ply depending on the
stress state in it and second is a degradation condition that incorporates the impact of the ply failure
on the overall laminate properties.

For simplicity, the ply is considered as homogeneous and regarded to have linear behaviour along
the fibre direction(𝜎11) and nonlinear behaviour in the other directions. The origins for nonlinearity in a
ply are attributed to the nonlinear behaviour of the polymeric resins used to make them. To model the
failure of a ply, a stress­strain relationship is required. Two most commonly used relations are the ones
proposed by Tsai and Wu [25] and Hahn and Tsai [13]. They are admired due to their ease of imple­
mentation as they have limited inputs parameters that can be quantified with the help of experiments.
The nonlinear stress­strain relationship proposed by Hahn and Tsai [13] is shown in Eq.2.7.

𝛾12 =
1
𝐺12

𝜎12 + 𝛽𝜎312 (2.7)

where,

𝐺12 is the initial ply shear modulus
𝛽 is an experimentally defined constant

This criterion is adopted by Chang and Chang [5] and combined with property damage model where
the properties of the ply are degraded if they are damaged. Thesemodels combined will dictate how the
overall laminate will fail. Open circular hole specimens have been numerically modelled by Chang and
Chang [5] with this criterion and validated with experimental results to show its capability in predicting
the uniaxial strength of the laminates. Although, it can be seen from the equation 2.7, the failure of the
ply is associated with the shear capacity of the ply, which is not always true. In reality, other stresses
also have an impact on the failure of the ply. A modification of this criterion is presented in Camanho
et al. [2] which tries to incorporate the effect of transverse stress through a modified 𝛽 parameter. The
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modification suggests a new value of 𝛽+𝜎22/𝜒 instead of 𝛽 when 𝜎22 ≥ 0. Although this representation
is better, it is still not a general constitutive law [17].

𝐹𝑖𝜎𝑖 + 𝐹𝑖𝑗𝜎𝑖𝑗 = 1 (2.8)

where i,j = 1, 2 …6.
Another general model for defining the nonlinear stress strain behaviour of anisotropic materials is

given by Tsai and Wu [25]. Also known as the quadratic failure criterion, it comprised of two strength
tensors, 𝐹𝑖 and 𝐹𝑖𝑗 and two stress tensors 𝜎𝑖 and 𝜎𝑖𝑗 is shown in Eq.2.8. This is a scalar representation
is used by Hahn and Tsai [13] and Van Der Meer and Sluys [26] in their progressive damage models.
The approach taken by Hahn and Tsai [13] is more traditional where the yield criterion is used in tandem
with a degrading damage model to evaluate the capacity of the laminate. A general idea of ply­by­ply
progressive failure modelling followed in [13] can be seen in figure2.2. This study revealed that it is
possible to interpolate and extrapolate the strengths of combined stresses where data is not available
provided the input data is good. The ability to correctly determine the input parameters has an important
impact on determining the behaviour of the ply.

Figure 2.2: A flow chart of the progressive failure modeling of laminates [13]

A different use of the Tsai and Wu yield criterion can be found in the works of Van Der Meer and
Sluys [26] where a softening plasticity is applied on the yield surface to simulate the damage of a ply.
This is done by introducing linear isotropic softening which is the shrinking of the yield surface. The
uniaxial strength parameters are multiplied with a factor ℎ(𝜅), where 𝜅 is a state variable. The slightly
different form of the yield surface is presented in Eq. 2.9. Even though the model can capture different
sequentially occurring mechanisms, it encounters some problems in calibration. It concluded that this
is a trait of the homogenization of the constitutive models.

𝑓(𝜎, 𝜅) = 1
2𝜎 ⋅ 𝐹𝑖𝑗(𝜅) ⋅ 𝜎 + 𝐹𝑖(𝜅) ⋅ 𝜎 − 1 = 0 (2.9)

with

𝐹𝑖𝑗(𝜅) =
1

ℎ(𝜅)2𝐹𝑖𝑗 , 𝐹𝑖(𝜅) =
1
ℎ(𝜅)𝐹𝑖 (2.10)

It can inferred that the constitutive models used for a ply significantly affect the fidelity of the pro­
gressive damage models. Difficulty in calibration, ability to accurately determine the input parameters
and generality are some of the existing difficulties faced by existing constitutive models. Thus more
investigation is needed into how these ply constitutive models are formulated. We need to look further
as to what difficulties are associated with constitutive modelling and where they arise from.

2.2.2. Constitutive model for mesoscale
Intrinsic Material Properties of Polymer Matrix
Developing constitutive laws for composite plies is quite elaborate as the material is not homogeneous.
The matrix in it’s plane state is quite homogeneous but due to the presence of fibres in the matrix, the
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matrix behaviour is altered drastically. To get a general idea, the constitutive models proposed for plane
unreinforced resins are discussed briefly.

A study by Pae and Rhee [22] revealed that the response of the matrix is sensitive to the hydro­
static pressure on it. Keeping this in mind it is important to choose a yield criterion that is pressure
sensitive. Most common pressure sensitive yield criteria present in literature are the ones proposed
by Mohr­Coulomb and Drucker­Prager [6]. The works of Fiedler et al. [9] and Ghorbel [10] have used
the modified version of Mohr­Coulomb and Drucker­Prager yield criterion respectively to estimate the
response of the matrix. The modifications are done to transform the yield surface to an open parabolic
surface while still maintaining it’s pressure sensitive nature. The various failure surfaces are shown in
figure 2.3 where 𝜎1, 𝜎2 and 𝜎3 are the principal stress axis.

Figure 2.3: Failure surfaces in the principal stress space, coaxially with the hydrostatic axis
𝜎0(𝜎1 = 𝜎2 = 𝜎3). (a) Von Mises; (b) Tresca; (c) Drucker­Prager; (d) Modified

Drucker­Prager/Modified Mohr­Coulomb [9, 10]

A salient feature of pressure sensitive yield criteria is to differentiate the material response for tensile
and compressive pressures. The closed end of the parabolic yield criteria bounds the tensile stresses
in the matrix whilst the compressive stresses are unbounded. This is fine since the matrix has poor
capacity in tension as opposed to it’s capacity in compression.

A few cursory studies have shown that the modulus of the polymer starts to degrade with the in­
crease in temperature [7, 20, 29]. This occurs because the cross links in the polymer chains start
to disintegrate. The temperature at which the modulus starts to drop is known as glass transition
temperature(𝜃𝑔). A constitutive model developed by Dupaix and Boyce [7] shows that degradation is a
rate dependant process. Themodel showed good correlation with experimental results for polyethylene
terephthalate­glycol(PETG) at temperatures of glass transition(reference taken at 73°C) and above.
Although this phenomenon is important, we are more interested in the mechanical response of the
constitutive law which was not investigated in here.

Experimental Limitations
Constitutive equations are formulated to analyse the relationship between stresses and strains for a
given loading. Experimental setups subjected to similar loading conditions are needed to justify these
equations. The feasibility of the experimental test setups often decide the scope of the research. Hence
it is important to know the different types of experimental setups available for testing a particular loading
case. A paper by Olsson [21] reviews different methods for testing composite specimens subjected to
multi­axial in­plane loading and out of plane loading. Cruciform and tubular test specimens as shown
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in figure 2.4 and 2.5 are employed for biaxial loading scenarios. A tubular specimen is fixed on both
ends and biaxial load is applied with the combined action of twisting and tension or compression. The
tubular specimens needs to be internally pressurized to yield good results. In a cruciform specimen,
the end fixtures are either two actuators and two fixed ends or all four actuators. The biaxial stresses
are unevenly distributed when only two actuators are used whereas even stress distribution occurs in
the specimen with four actuators.

Figure 2.4: Tubular Specimen [21]

Figure 2.5: Cruciform Specimen [21]

Off­axis specimens and angle­ply specimens are two types of tests where the fibre direction is not
aligned with the direction of primary loading. Due to the deformation incompatibility at the loading
clamps, the fidelity of these tests are limited to a certain range of biaxial stress states. Out of plane
axial loading and bending tests are conducted to observe interlaminar stresses. The tests are more
straightforward however there is a need to employ thick plys to appropriately capture the interlaminar
stresses. In short, there are significant problems in determining the strength of composite laminates
in multi­axial loading. Also, the test setups are quite complicated and the specimens are expensive to
manufacture. A solution is to develop a multiaxial failure criteria based on the data available from the
existing test samples without the need for developing new experimental test setups[21].

Constitutive Models
Considering the various factors of intrinsic material properties and experimental limitations it is indeed
quite difficult to form a robust constitutive law for composites. Modified versions of existing yield func­
tions have been used in various studies [2, 5, 9, 10, 13, 17] but each with their own constrains. The
criterion by Hahn and Tsai [13] considers only the in­plane shear stresses(𝜎12) to define the yield sur­
face. Camanho et al. [2] andMaimí et al. [17] have tried to incorporate the effect of transverse directions
stresses(𝜎22) and transverse strains(𝜀22) respectively, in addition to in­plane shear. None of these ex­
plain the complete stress state of the material in their yield criteria. However, the yield criteria by Tsai
and Wu [25] and Vogler et al. [28] are two formulations that fully take into account the complete stress
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state.

Tsai­Wu Yield Criterion
One of the earliest proposed constitutivemodels for anisotropic materials was the one presented by Tsai
and Wu [25]. It is still popular for it’s operational simplicity as it utilizes two strength tensors(𝐹𝑖 and 𝐹𝑖𝑗)
along with the linear and quadratic presence of the stress tensor to form a scalar yield function(Eq.2.8).
The linear stress tensor(𝜎𝑖) contains all the individual stress states in a three dimensional space and
is a vector with 6 components. The quadratic stress tensor(𝜎𝑖𝑗) contains a combination of all the 6
individual stress states and forms a symmetric 6x6 matrix. The strength tensor 𝐹𝑖 along with 𝜎𝑖 takes
into account the effect of the individual stress states whereas the strength tensor 𝐹𝑖𝑗 along with 𝜎𝑖𝑗 takes
into account the interactions between these individual stress states on the yield criteria. An advantage
of this is that each interaction can be controlled with the respective strength tensor components. The
off­diagonal terms of the strength tensor 𝐹𝑖𝑗 are the parameters for interacting stresses.

𝐹𝑖𝑖𝐹𝑗𝑗 − 𝐹2𝑖𝑗 ≥ 0 (2.11)

Since the yield function is scalar, it is automatically invariant and the strength tensors should follow
rules of transformation. In addition, a stability condition(Eq. 2.11) is imposed to keep the yield surface
a closed ellipsoidal. The components of the strength tensors can be reduced by considering material
symmetries which results in the components of the strength tensor being either eliminated or depen­
dant on other strength quantities. Because of this flexibility, it is widely used for evaluating laminate
behaviour [13, 26]. Despite it’s simplicity, the calibration of the off­diagonal parameters of the strength
tensor is susceptible to the experimental results of combined stress states.

Transversely Isotropic Invariant Based Yield Criterion
The model formulated by Vogler et al. [28] is able to represent the nonlinear behaviour of the UD
composites under multiaxial loading. This is accomplished with a transversely isotropic invariant based
yield criterion along with a non associative flow rule. The yield function(see Eq.2.12) is comprised of
strength parameters 𝛼’s and invariants 𝐼 with each invariant identifying a particular stress state. The
effect of transverse shear, in­plane shear and biaxial loading are independently gauged by 𝐼1, 𝐼2 and
𝐼3 respectively for the yielding of the model. Due to the linear behaviours of fibres, the fibre direction
stresses(𝜎11) are kept out of the plasticity inducing stresses.

𝑓 (𝜎, ̄𝜀𝑝, 𝐴) = 𝛼1𝐼1 + 𝛼2𝐼2 + 𝛼3𝐼3 + 𝛼32𝐼32 − 1 ⩽ 0 (2.12)

with

𝛼3 = 𝛼𝑡3 𝛼32 = 𝛼𝑡32 if 𝐼3 > 0 and
𝛼3 = 𝛼𝑐3 𝛼32 = 𝛼𝑐32 if 𝐼3 ⩽ 0

(2.13)

In order to account for the asymmetrical response of the composite in positive pressure and negative
pressure, different 𝛼3 and 𝛼32 values are implemented. This results is a parabolic yield surface that
can be plotted uniquely in the invariant space shown in figure 2.6. One more crucial ingredient in this
model is the non associative flow rule as shown in equation 2.14, controls the direction of plastic flow.

𝑔(𝜎, 𝐴) = 𝛽1𝐼1 + 𝛽2𝐼2 + 𝛽3𝐼23 − 1 (2.14)
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Figure 2.6: Schematic representation of the yield surface in invariant space [28]

These constitutive formulations are implemented with the help of an Euler backward scheme to
calculate the plastic strains and stresses. The general form of the yield function and flow rule are
presented in Eq. 2.15 and Eq. 2.18 are implemented with the help of a UMAT subroutines in Abaqus.

𝑓(𝜎, ̄𝜀𝑝, 𝐴) = 1
2𝜎 ∶ 𝕂 ∶ 𝜎 + 𝕃 ∶ 𝜎 − 1 ⩽ 0 (2.15)

where,

𝕂 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 2𝛼32 +

1
2𝛼1 𝛼32 −

1
2𝛼1 0 0 0

0 2𝛼32 −
2
3𝛼1 𝛼32 +

1
2𝛼1 0 0 0

0 0 0 2𝛼2 0 0
0 0 0 0 2𝛼1 0
0 0 0 0 0 2𝛼2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.16)

and

𝕃 = { 0 𝛼3 𝛼3 0 0 0 }𝑇 (2.17)

𝑔(𝜎, 𝐴) = 1
2𝜎 ∶ 𝕄 ∶ 𝜎 − 1 (2.18)

where,

𝕄 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 1

2𝛽1 + 2𝛽32 −12𝛽1 + 2𝛽2𝑎 0 0 0
0 −12𝛽1 + 2𝛽32

1
2𝛽1 + 2𝛽32 0 0 0

0 0 0 2𝛽2 0 0
0 0 0 0 2𝛽1 0
0 0 0 0 0 2𝛽2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 1 −𝜈𝑝 0 0 0
0 −𝜈𝑝 1 0 0 0
0 0 0 2 (1 + 𝜈𝑝) 0 0
0 0 0 0 2 (1 + 𝜈𝑝) 0
0 0 0 0 0 2 (1 + 𝜈𝑝)

⎤
⎥
⎥
⎥
⎥
⎦

(2.19)

Even though it’s merits, this model fails to take into account the effect of fibre direction stresses on
the matrix plasticity as shown by Van Der Meer [27]. This can be seen with the help of figure 1.2 from
Chapter 1. The figure displays how the shear stresses in the matrix go into plasticity sooner for high
ratios of fibre stress to shear strain values. These observations are made by comparing the results
from this model to the results of a microscale model developed by Melro et al..



16 2. Background Information

2.2.3. Constitutive models for microscale
Over the years, microscale models have gained demand due to their higher accuracy in predicting
composite behaviours. In a typical micro model, the fibres and matrix are modelled independently
along with a fibre matrix interface. A number of studies have been performed with micromodels by
[4, 11, 18, 19]. Micro models are often used in multiscale modelling [8, 14] where the macroscale
model are linked to a micro model at each integration point. The strains at the macroscale integration
point are used as boundary conditions of the micromodel. Due to accurate prediction of the stress strain
relationship from the micromodel, the performance of the macromodel is improved. Another application
of the micromodel is to generate virtual test samples for mesomodel as is done in [27]. However, the
micromodels are computationally very heavy.

Φ(𝜎, 𝜎𝑐 , 𝜎𝑡) = 6𝐽2 + 2𝐼1 (𝜎𝑐 − 𝜎𝑡) − 2𝜎𝑐𝜎𝑡 (2.20)

𝑔 = 𝜎2vm + 𝛼𝑝2 (2.21)

The work of Melro et al. [18] is focused on the nonlinear epoxy matrix behaviour and interface be­
tween the fibres andmatrix. A thermodynamically consistent elasto­plastic damagemodel is developed
with cohesive elements to model the interface. Looking closely at the yield criterion(Eq. 2.20), the 𝐽2
invariant captures the effect of deviatoric stresses but in order to make the yield criterion a function of
pressure, the 𝐼1 invariant is added. Two internal variables of 𝜎𝑐 and 𝜎𝑡 are introduced to take into ac­
count the different behaviour of the matrix in compression and in tension. This results in a paraboloidal
yield surface in 3D stress space. These internal variables also incorporate hardening in the model
and with a non associative flow rule (Eq. 2.21), the overall inelastic behaviour of the epoxy matrix is
accurately predicted. Thus, this model provides a reliable source for validating analytical models and
serves as a virtual test setup.

2.3. Summary
From the above literature review, it can be said that the success of predicting the behaviour of laminates
relies heavily on the accuracy of the ply constitutive models [2, 5, 13, 15, 26]. These ply constitutive
models suffer from the intrinsic material properties of the matrix material which is sensitive to temper­
ature and pressure [7, 20, 22, 29]. Some constitutive models are limited due to lack of experimental
data [13, 25] whilst other models lack generality as they only consider few stresses to be responsible
for inelastic behaviour [2, 13, 17]. The constitutive laws proposed by Tsai and Wu [25], Vogler et al. [28]
are more general and consider the influence of all the stresses in the continua. Multiscale modelling
on the other hand has gained popularity and yields reliable results however the computational time for
such models is very high.

With the desire to have better analytical models to predict overall laminate behaviour, there is need
for better constitutive properties at ply level. Even though the multiscale modelling approaches have
good results, their cost of computation is very demanding so the need for homogenized ply models
still stand. The yield criterion proposed by Vogler et al. [28] and Tsai and Wu [25] show promise and
can be improved. Taking into account the difficulties in experimental setups [21], for the purpose of this
thesis, the results of the microscale model [18] will be considered representative of the actual composite
material behaviour.



3
Constitutive Formulations

This chapter contains all the constitutive formulations for deriving the nonlinear plastic rela­
tionship between strains and stresses. Two different yield functions are presented along with
their respective flow rules. Finally the consistent tangent operator for both cases is derived in
order to incorporate it into the numerical framework.

17
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For improving the nonlinear response of homogenized mesoscale models, a better constitutive law is
needed. The constitutive laws comprise mainly of the yield functions and the plastic potential function.
The yield function helps to determine if the material behaves elastic or plastic where as the plastic
potential function dictates the direction of plastic flow. This chapter will present the new formulations
that were developed in this thesis project.

First, the fibre and matrix stresses in the fibre direction(‘1’ direction in local coordinate frame) are
considered separately for the mesoscale models. Then an improved form of the transversely isotropic
invariant based yield function developed by Van Der Meer is explained in the first section. On the basis
of this framework, in the next section a yield function as proposed in Tsai and Wu [25] is used along
with an associative flow rule to determine the nonlinear response of the mesomodel.

3.1. Modified Transversely Isotropic Invariant Formulation
3.1.1. Stress Separation
Before beginning the new formulation of the constitutive equations for mesomodel, the yield function
proposed in the paper by Vogler et al. [28] is briefly explained. The yield function is as shown in Eq.
3.1, is comprised of three invariants, each representing a particular stress state. The simplified form
of the invariants in Eq. 3.2 shows that 𝐼1 describes the transverse shear stress, 𝐼2 the in­plane shear
stress and 𝐼3 the biaxial stress or pressure. The fibre direction stress 𝜎11 is left out from the invariants
and correspondingly the yield function. The flow rule is also comprised of the same invariants and thus
lacks the influence of fibre direction stress. As a result, the effect of fibre direction stress on matrix
plasticity is not captured as revealed in the study by Van Der Meer [27].

𝑓 (𝜎, ̄𝜀𝑝, 𝐴) = 𝛼1𝐼1 + 𝛼2𝐼2 + 𝛼3𝐼3 + 𝛼32𝐼32 − 1 ⩽ 0 (3.1)

with

𝐼1 =
1
4(𝜎22 − 𝜎33)

2 + 𝜎232
𝐼2 = 𝜎212 + 𝜎231
𝐼3 = 𝜎22 + 𝜎33

(3.2)

Since the fibres behave elastically, no plastic strains are possible in fibres themselves but the matrix
on the other hand can have plastic strains. This can be handled easily in micromodels, as the fibres
and matrix are modelled separately with their individual material properties. However, the mesomodel
is a homogenization of this microstructure and as a consequence can only take one averaged material
property. Hence it is tricky to incorporate separate effects simultaneously in one stress strain relation­
ship. Since the fibres only contribute to stresses in the fibre direction, a solution is to have separate
stress tensors for the fibre stresses and matrix stresses. This can be done with an additive split of the
stress tensor into the fibre stress tensor and matrix stress tensors as shown in Eq. 3.3 . As the matrix
shows plastic behaviour, only matrix stress tensor(𝜎𝑚) will be used for evaluating the plasticity in the
mesomodel.

Since the fibres only contribute to stress along the fibres, the fibres stress tensor only contains one
component which is 𝜎𝑓11 while the matrix stress tensor is fully populated with the 3D stress components.
For notational simplicity, the superscript of ’f’ and ’m’ are written only for 𝜎11 stress component among
all the other stress components.

𝜎 = 𝜎𝑓 + 𝜎𝑚 (3.3)

The separation of stresses will hold true in an idealistic case where the fibres are perfectly straight
and the matrix with voids of fibres behaves completely homogeneous. In real world this doesn’t hold
true as the fibres in a ply are not perfectly straight and may be intertwined with other fibres. This would
cause the fibre direction stress to have components in other directions as well. It is almost impossible
to determine the deviations of the fibres in an actual ply and thus compute these components in other
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directions. As the deviations and overlaps are also not modeled in the microscale model, we can move
forward with this additive split and avoid more complexity.

𝜎 = D𝑓𝜀 +D𝑚(𝜀 − 𝜀𝑝) (3.4)

where

D𝑓 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑓𝑓𝑖𝑏𝐷11 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

D𝑚 =

⎡
⎢
⎢
⎢
⎢
⎣

(1 − 𝑓𝑓𝑖𝑏)𝐷11 𝐷12 𝐷13 0 0 0
𝐷21 𝐷22 𝐷23 0 0 0
𝐷31 𝐷32 𝐷33 0 0 0
0 0 0 𝐷44 0 0
0 0 0 0 𝐷55 0
0 0 0 0 0 𝐷66

⎤
⎥
⎥
⎥
⎥
⎦

(3.5)

The basic stress strain relationship can now be described by Eq. 3.4 where D𝑓 contains the linear
elastic stiffness of the fibres in direction ‘1’ andD𝑚 contains the elaso­plastic stiffness of the matrix in all
directions as shown in Eq. 3.5. The population of components in the D𝑚 matrix comes from assuming
the matrix to be transversely isotropic with plane 2­3 being the isotropic plane. The plastic strains are
only included for the matrix stresses and avoided from the fibre stress. It should be noted that when
loaded in fibre direction, both the matrix and fibres carry the stress in parallel configuration. Thus both
the matrix and fibres will contribute to the stiffness in direction ‘1’ . Thus, a factor 𝑓𝑓𝑖𝑏 is introduced as
percentage of stiffness contributed by only the fibre modulus in direction ‘1’. The value of 𝑓𝑓𝑖𝑏 is defined
Eq. 3.6 where 𝐸𝑓 is the elastic modulus of fibres and 𝑉𝑓 is the fibre volume fraction in the specimen.

𝑓𝑓𝑖𝑏 =
𝐸𝑓𝑉𝑓
𝐷11

(3.6)

3.1.2. Modified yield function
In order to include plasticity only into the matrix via 𝜎𝑚, the yield criterion needs be changed into the
a function of 𝜎𝑚 instead of 𝜎. To do so, new invariants are derived from the knowledge of existing
invariants. The intent is to have the invariants capture the same stress states of transverse shear,
in­plane shear and the biaxial stress but with the inclusion of fibre direction stress 𝜎𝑚11. The hydrostatic
stresses are responsible for the expansion or contraction of the volumewhilst the deviatoric stresses are
responsible for distortions(or shearing) of the material volume. The 𝐽2 invariant is the second invariant
of the deviatoric stress tensor and serves as a good starting point. The 𝐽2 invariant of the matrix stress
tensor is given in Eq. 3.7 contains terms that describe the shear stresses in the matrix. Using the same
𝐼2 as Eq. 3.2, we constitute the in­plane shear stresses on the matrix with ̃𝐼2 (shown in Eq. 3.8). Since
both 𝐽2 and ̃𝐼2 are invariants, the subtraction of ̃𝐼2 from 𝐽2 will also be an invariant. This invariant ̃𝐼1
(shown in Eq. 3.9) contains terms for transverse shear and some additional shear terms. Lastly the
trace of 𝜎𝑚 gives the hydrostatic pressure on the matrix which is given by invariant ̃𝐼3 shown in Eq.
3.10.

𝐽𝑚2 = 1
6((𝜎

𝑚
11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎𝑚11)2) + 𝜎212 + 𝜎223 + 𝜎231 (3.7)

̃𝐼2 = 𝜎212 + 𝜎231 (3.8)

̃𝐼1 = 𝐽𝑚2 − ̃𝐼2 =
1
6((𝜎

𝑚
11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎𝑚11)2) + 𝜎223 (3.9)

̃𝐼3 = tr(𝜎𝑚) = 𝜎𝑚11 + 𝜎22 + 𝜎33 (3.10)
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Having defined the new invariants, the yield function (from Eq. 3.1) is modified with the new invari­
ants and is shown in Eq. 3.11. Each 𝛼 value in the yield function represents the respective strength
parameter for each stress state. Isotropic hardening is included in this model, through the 𝛼’s by mak­
ing them a function of the plastic internal variable. The norm of the plastic strains, called equivalent
plastic strain (𝜀𝑝eq) is the plastic internal variable used for this model. This is the same plastic internal
variable used in Vogler et al. [28], shown in Eq. 3.30. Similar to the original formulation, a distinction
in 𝛼3 and 𝛼32 values are made for tensile and compression hydrostatic stress state (Eq. 3.12). This
is done to take into account the fact that the matrix behaves differently in tension and compression
yielding.

𝑓 (𝜎𝑚 , ̄𝜀𝑝, 𝐴) = 𝛼1 ̃𝐼1 + 𝛼2 ̃𝐼2 + 𝛼3 ̃𝐼3 + 𝛼32 ̃𝐼23 − 1 ⩽ 0 (3.11)

with

𝛼3 = 𝛼𝑡3, 𝛼32 = 𝛼𝑡32 if 𝐼3 > 0 and
𝛼3 = 𝛼𝑐3 , 𝛼32 = 𝛼𝑐32 if 𝐼3 ⩽ 0

(3.12)

The yield function is written down using Voigt notation in a more general form as shown in Eq. 3.13.
This form is similar to the ones present in literature and will be followed for further derivations unless
mentioned otherwise. An observation can be made with 𝕂𝑚 in Eq. 3.14 against the 𝕂 in Eq. 2.16,
that the first row and column are populated with terms in 𝕂𝑚 as a component of fibre direction stress
is included into the yield function.

𝑓 = 1
2𝜎

𝑚 ⋅ 𝕂𝑚 ⋅ 𝜎𝑚 + 𝕃𝑚 ⋅ 𝜎𝑚 − 1 (3.13)

with

𝕂𝑚 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2𝛼32 +
2
3𝛼1 2𝛼32 −

1
3𝛼1 2𝛼32 −

1
3𝛼1 0 0 0

2𝛼32 −
1
3𝛼1 2𝛼32 +

2
3𝛼1 2𝛼32 −

1
3𝛼1 0 0 0

2𝛼32 −
1
3𝛼1 2𝛼32 −

1
3𝛼1 2𝛼32 +

2
3𝛼1 0 0 0

0 0 0 2𝛼2 0 0
0 0 0 0 2𝛼1 0
0 0 0 0 0 2𝛼2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.14)

and

𝕃𝑚 = { 𝛼3 𝛼3 𝛼3 0 0 0 }𝑇 (3.15)

3.1.3. Modified Flow Rule
Having modified the yield function, the next step is to have a flow rule that compliments it. The flow rule
essentially helps determine the direction of plastic flow. We know from Eq. 2.5 that the plastic strains
are defined with a plastic multiplier �̇� and 𝑚 the plastic flow direction. In theory, 𝑚 is defined as the
gradient to the plastic potential function in stress space Eq. 3.16. Thus, it is important to choose an
appropriate form for the plastic potential function 𝑔 for the flow rule to be compatible with the new yield
function.

𝑚 = 𝜕𝑔
𝜕𝜎 (3.16)

Usually the flow rule has the same form as that of the yield function as can be seen from equations
2.12 and 2.14. Using the same ideology, the flow rule in Eq. 2.14 is changed by replacing the old
invariants with the new invariants shown in Eq. 3.17. The modified flow rule presented in Eq. 3.17 is
shown in the more general representation in Eq. 3.18.

𝑔 (𝜎, 𝐴) = 𝛽1 ̃𝐼1 + 𝛽2 ̃𝐼2 + 𝛽32 ̃𝐼23 − 1 ⩽ 0 (3.17)
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or

𝑔 = 1
2𝜎

𝑚 ⋅ 𝕄𝑚 ⋅ 𝜎𝑚 − 1 (3.18)

where,

𝕄𝑚 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2𝛽32 +
2
3𝛽1 2𝛽32 −

1
3𝛽1 2𝛽32 −

1
3𝛽1 0 0 0

2𝛽32 −
1
3𝛽1 2𝛽32 +

2
3𝛽1 2𝛽32 −

1
3𝛽1 0 0 0

2𝛽32 −
1
3𝛽1 2𝛽32 −

1
3𝛽1 2𝛽32 +

2
3𝛽1 0 0 0

0 0 0 2𝛽2 0 0
0 0 0 0 2𝛽1 0
0 0 0 0 0 2𝛽2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.19)

The 𝛽 values are defined with a constant plastic Poisson ratio(𝜈𝑝) in the original paper [28]. The
following relations between the 𝛽 values are given as:

𝛽1 = 1 + 𝜈𝑝
𝛽2 = 𝛽1 = 1 + 𝜈𝑝

𝛽32 =
1 − 𝜈𝑝
4(1 + 𝜈𝑝)𝛽1

(3.20)

where 𝜈𝑝 is a constant defined as:

𝜈𝑝 = −𝜀
𝑝
33
𝜀𝑝22

(3.21)

Again it is observed that the first row and column of the 𝕄𝑚 is populated as opposed to 𝕄 from
Eq. 2.19. This is because plastic strains in ‘1’ (or fibre) direction were left out earlier and now being
considered in the new formulation. Having the terms in those places does complicate a few things
though, as now it won’t be correct to use a single constant 𝜈𝑝 to calculate the plastic strains in all
directions. With the material being isotropic in 2­3 plane and plasticity ignored in ‘1’ direction in earlier
implementation, a single Poisson ratio would suffice to account for the plastic strains. However, now
with the plasticity accounted for in 1 direction as well, different plastic Poisson’s ratios are required
as the plastic straining in 1 and 2 directions won’t be similar. Because 𝜈𝑝 is constant and thus the
entire𝕄𝑚 is constant, it would be possible to use different 𝜈𝑝 values for different directions for a better
estimate the plastic behaviour without violating the formulations. Thus the new proposed𝕄𝑚 matrix is
given in Eq. 3.22. The values of 𝜈𝑝12 and 𝜈𝑝23 are calculated from the micromodel results.

𝕄 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −𝜈𝑝12 −𝜈𝑝12 0 0 0
−𝜈𝑝12 1 −𝜈𝑝23 0 0 0
−𝜈𝑝12 −𝜈𝑝23 1 0 0 0
0 0 0 2 (1 + 𝜈𝑝12) 0 0
0 0 0 0 2 (1 + 𝜈𝑝23) 0
0 0 0 0 0 2 (1 + 𝜈𝑝12)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.22)

3.1.4. Return Mapping
With complete expressions for the yield function and flow rules, the nonlinear relationship between
the stresses and strains needs to be defined. Keeping in mind the incremental iterative procedure
employed in nonlinear finite elements solvers, the relations between incremental stress and incremental
strain needs to be defined. This is accomplished with a return mapping procedure where the stress
increment is assumed to be fully elastic and checked for the yielding. In case the yield criterion is
not satisfied, this indicates that the stress states is plastic and the stress point should exist only on
the yield surface. Consequently the stress point needs to be mapped back to the yield surface. One
way to do this is to compute the tangential stiffness matrix using the values at the beginning of the
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load step for stress and plastic internal variable. The other way is the Euler backward method which
computes the tangential stiffness matrix with the values for stress and plastic internal variable at the
end load step. However, at the beginning of the load step, the final stresses are unknown and hence
an iterative Newton­Raphson procedure needs to be employed to compute these values. The latter
and more robust method is used for this project.

A set of equations need to be derived in order to have all the ingredients for the return mapping
scheme. For simplicity in notations, the superscript 𝑚 is dropped. The are presented below:

The stress at a point in the matrix can be defined as:

𝜎 = 𝔻(𝜀 − 𝜀𝑝0 − Δ𝜀𝑝) (3.23)

where 𝔻 is the orthotropic elasticity tensor of the resin matrix. The 𝜀𝑝0 is the initial plastic strain at
the start of the load step and Δ𝜀𝑝 is the change in plastic strain in that load step. The change in plastic
step is defined as:

Δ𝜀𝑝 = Δ𝛾 ⋅m (3.24)

where, 𝑚 is the direction of the plastic flow as is derived from Eq. 3.16 which results in:

m = 𝕄𝜎 (3.25)

Substitution gives:

𝜎 = 𝔻(𝜀 − 𝜀𝑝0 ) − 𝔻Δ𝛾𝕄𝜎 (3.26)

The plastic strain at the start of the load step (𝜀𝑝0 ) is known from the converged solution of previous
load step. In displacement control, the total strain (𝜀) is also known for the load step, they are clubbed
together to form the trial stress as shown in Eq. 3.27.

𝜎𝑡𝑟𝑖𝑎𝑙 = 𝔻(𝜀 − 𝜀𝑝0 ) (3.27)

The stress update is then written as:

𝜎 = 𝜎𝑡𝑟𝑖𝑎𝑙 −𝔻Δ𝛾𝕄𝜎 (3.28)

Rearranging to get 𝜎 as a function of 𝜎𝑡𝑟𝑖𝑎𝑙

𝜎 = [𝐼 + Δ𝛾𝔻𝕄]−1 ⋅ 𝜎𝑡𝑟 ≡ 𝔽 ⋅ 𝜎𝑡𝑟 (3.29)

With this expression, 𝜎 is a function of a single unknown Δ𝛾. In the yield function, the invariants are
functions of 𝜎 whereas the 𝛼’s are functions of the equivalent strain rate ̇̄𝜀𝑝. The definition of equivalent
strain in Voigt notation is:

̇𝜀peq = √ ̇𝜀p ⋅ J ⋅ ̇𝜀p ≡ ‖ ̇𝜀p‖J (3.30)

with,

J = diag {12 ,
1
2 ,
1
2 ,
1
4 ,
1
4 ,
1
4} (3.31)

Note that the norm ‖ ̇𝜀p‖J is the Voigt notation equivalent of the original expression √
1
2 ̇𝜀
𝑝
𝑖𝑗 ̇𝜀

𝑝
𝑖𝑗 found

in original paper [28]. For the return mapping scheme, the finite incremental equivalent plastic strain
is:

Δ𝜀peq = Δ𝛾 ‖m‖J (3.32)
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With the above expression, the equivalent plastic strains is a function of Δ𝛾. The yield function is
also now a function of the single unknown Δ𝛾. With the value of Δ𝛾 we have all the elements required
to calculate the stress in the load step. The value for Δ𝛾 is calculated using a local Newton­Raphson
scheme which looks like:

Δ𝛾𝑘+1 = Δ𝛾𝑘 − [ 𝜕𝑓𝜕Δ𝛾 ]
−1
𝑓𝑘 (3.33)

where, 𝑘 is the local iteration counter for the local Newton­Raphson iternation. Keeping in mind that
when the material is in a plastic state, the stresses have to lie on the yield surface, satisfying 𝑓 = 0.
Here 𝑓𝑘 is the residual left from evaluating the yield function for the 𝑘𝑡ℎ internal variables during the
return map. The term 𝜕𝑓/𝜕Δ𝛾 is needed to interactively converge to a solution for Δ𝛾. As the yield
fuction 𝑓 is a function of 𝜎 and ̇𝜀p which are further functions of Δ𝛾, chain rule of differentiation is
applied. All the necessary derivations are presented below:

𝜕𝑓(Δ𝛾)
𝜕Δ𝛾 = 𝜕𝑓 (𝜎, 𝜀peq)

𝜕𝜎 ⋅ 𝜕𝜎𝜕Δ𝛾 +
𝜕𝑓 (𝜎, 𝜀peq)
𝜕𝜀peq

𝜕𝜀peq(Δ𝛾)
𝜕Δ𝛾 (3.34)

with

𝜕𝑓 (𝜎, 𝜀peq)
𝜕𝜎 = 𝕂 ⋅ 𝜎 + 𝕃 ≡ n𝑓 (3.35)

and

𝜕𝑓 (𝜎, 𝜀peq)
𝜕𝜀peq

= 1
2𝜎 ⋅

𝜕𝕂
𝜕𝜀peq

⋅ 𝜎 + 𝜕𝕃
𝜕𝜀peq

⋅ 𝜎 (3.36)

Note that 𝕂 and 𝕃 are comprised of 𝛼’s which are described by the hardening curve inputs. The
hardening curve inputs are the yield strengths of the resin matrix corresponding to 𝜀peq. Thus the deriva­
tives of 𝕂 and 𝕃 are directly dependent on 𝜀peq. Knowing that for a particular load step 𝜎𝑡𝑟 is constant,
differentiating Eq. 3.29 with respect to Δ𝛾 we get:

[𝕀 + Δ𝛾𝔻𝕄] 𝜕𝜎𝜕Δ𝛾 + 𝔻𝕄𝜎 = 0 (3.37)

or

𝜕𝜎
𝜕Δ𝛾 = −𝔽𝔻𝕄𝜎 (3.38)

Next the derivative of 𝜀peq with respect to Δ𝛾 is given by:

𝜕𝜀peq(Δ𝛾)
𝜕Δ𝛾 = 𝜕𝜀peq(𝜎, Δ𝛾)

𝜕Δ𝛾 + 𝜕𝜀
p
eq(𝜎, Δ𝛾)
𝜕𝜎 ⋅ 𝜕𝜎𝜕Δ𝛾 (3.39)

where,

𝜕𝜀peq(𝜎, Δ𝛾)
𝜕Δ𝛾 = ‖m‖𝐽 (3.40)

and

𝜕𝜀peq(𝜎, Δ𝛾)
𝜕𝜎 = Δ𝛾 J ⋅m‖m‖J

⋅ 𝕄 (3.41)
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3.1.5. Consistent Tangent Operator
The Euler backward method adopted in finding out the plastic stress for the corresponding plastic strain
for a finite loading step requires a local Newton­Raphson iteration scheme. This is quite similar to the
procedure employed to solve the global(structural) Newton­Raphson loop for a displacement control
problem. Linearization technique applied at global level can also be applied to the local level for better
convergence. For this the tangential relation for the stress rate and strain rate is derived. It start by
differentiating Eq. 3.23

𝜎𝑛 = 𝔻(𝜀𝑛 − 𝜀𝑝𝑛−1 − Δ𝛾𝑛m𝑛) ⇒ �̇�𝑛 = 𝔻( ̇𝜀𝑛 − �̇�𝑛m𝑛 − Δ𝛾ṁ𝑛) (3.42)

where 𝑛 indicates the load step. Leaving out the subscript 𝑛, we can expand:

ṁ = 𝕄�̇� (3.43)

Substitution gives

�̇�𝑛 = 𝔻( ̇𝜀𝑛 − �̇�𝑛m𝑛 − Δ𝛾𝕄�̇�) (3.44)

or

(𝕀 + Δ𝛾𝔻𝕄)�̇� = 𝔻 ( ̇𝜀 − �̇�m) ⇒ �̇� = 𝔽𝔻( ̇𝜀 − �̇�m) (3.45)

In order to derive an expression for �̇� we make use of the consistency condition which is:

̇𝑓 = 𝜕𝑓
𝜕𝜎 �̇� +

𝜕𝑓
𝜕𝜀peq

̇𝜀peq (3.46)

Most of the term in the above equation are known from Eq. 3.35 and 3.36 except ̇𝜀peq. The rate derivative
of the equivalent plastic strains is:

̇𝜀peq =
𝜕𝜀peq
𝜕Δ𝛾 �̇� +

𝜕𝜀peq
𝜕‖m‖𝐽

̇‖m‖𝐽 (3.47)

where

𝜕𝜀peq
𝜕Δ𝛾 = ‖m‖𝐽 (3.48)

and

𝜕𝜀peq
‖m‖𝐽

= Δ𝛾 (3.49)

Further, ̇‖m‖𝐽 is derived as:

̇‖m‖𝐽 =
𝜕 ‖m‖𝐽
𝜕m

𝜕m
𝜕𝜎 �̇� =

J ⋅m
‖m‖J

⋅ 𝕄�̇� (3.50)

It is important to note while following the chain rule for differentiation in Eq. 3.47, at first ‖m‖𝐽, depen­
dent on 𝜎, is considered constant and then for the next term, Δ𝛾 is considered constant. Substituting
equations 3.48, 3.49 and 3.50 in Eq. 3.47:

̇𝜀peq = ‖m‖𝐽 �̇� + Δ𝛾
J ⋅m
‖m‖J

⋅ 𝕄�̇� (3.51)

Making use of all the above derivatives and resubstituting them in the consistency condition Eq. 3.46

̇𝑓 = (n𝑓 +
𝜕𝑓 (𝜎, 𝜀peq)
𝜕𝜀peq

Δ𝛾 J ⋅m‖m‖J
⋅ 𝕄) �̇� + 𝜕𝑓

𝜕𝜀peq
‖m‖𝐽 �̇� (3.52)
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Equating ̇𝑓 = 0 to satisfy the consistency condition:

�̇� = 1
𝜂n𝑓�̇� (3.53)

where

n𝑓 = n𝑓 +
𝜕𝑓 (𝜎, 𝜀peq)
𝜕𝜀peq

Δ𝛾 J ⋅m‖m‖J
⋅ 𝕄 (3.54)

and

𝜂 = − 𝜕𝑓
𝜕𝜀peq

‖m‖𝐽 (3.55)

Now substituting the above equation in the original relationship between stress rate and strain rate (Eq.
3.45), we get:

�̇� = 𝔽𝔻( ̇𝜀 − 1𝜂m⊗ n𝑓�̇�) (3.56)

Reordering gives:

̇𝜀 = [ℍ−1 + 1𝜂m⊗ n𝑓] �̇� (3.57)

here ℍ = 𝔽𝔻. The above relation can be inverted with Sherman­Morrison formula to get the consistent
tangent as:

�̇� = [ℍ −
ℍ ⋅m⊗ n𝑓 ⋅ ℍ
𝜂 + n𝑓 ⋅ ℍ ⋅m

] ̇𝜀 (3.58)

3.2. Tsai Wu Yield Function
3.2.1. Context
Transverse isotropy by definition means that the properties of a material are same in one plane and
different in another. It makes sense to apply this to unidirectional composites where the behaviour is
different along the fibres and isotropic in directions perpendicular to the fibre direction (2­3 plane). Ap­
plying this ideology, the above constitutive relations have been formulated to account for the behaviour
of fibre stresses on the matrix plasticity. However looking closely at the 𝕂𝑚 matrix of the yield func­
tion in Eq. 3.14, we see that all yield stress parameters contributing to the axial stresses in all three
directions is the same. Even the yield stress parameters that account for the interaction between axial
stresses is the same. This is indicative more of isotropic behaviour and not favourable. Thus a new
yield function is needed where the effects of fibre direction stresses can be accounted for individually.

A popular yield function that can incorporate the effects all stresses in three dimension on plastic
behaviour of the material is the one proposed by Tsai and Wu [25]. For a three dimension special
orthotropic material, the yield function reads:

𝑓 =𝐹1𝜎1 + 𝐹2𝜎2 + 𝐹3𝜎3 + 𝐹11𝜎211 + 𝐹22𝜎222 + 𝐹33𝜎233+
2𝐹12𝜎11𝜎22 + 2𝐹23𝜎22𝜎33 + 2𝐹31𝜎33𝜎11 + 𝐹44𝜎244 + 𝐹55𝜎255 + 𝐹66𝜎266 = 1

(3.59)

The advantage here is that the yield stress parameters (𝐹𝑖 ’s and 𝐹𝑖𝑖 ’s) for each individual stress
state are accounted for independently. Even the interactions between axial stresses are separately
accounted for by 𝐹12, 𝐹23 and 𝐹31. This adds more flexibility to the model in tuning the effect of each
stress on the nonlinear response. However, this also increases the complexity as now there are more
yield stress parameters to configure the model and this might be a challenge. Since, it is desired to
account for the effect of fibre direction stresses separately, we will proceed with this yield function.
The additive split of the stress tensor for the homogenized mesomodel opens up the possibility for
interpreting the matrix behaviour separately. Moreover, the Tsai­Wu yield criterion can be applied to
the matrix independently. Thus the next subsection will present the necessary formulations for the
implementation of this new yield function.
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3.2.2. Yield Function
Before starting the new formulations, a few things need to be mentioned in order to be candid. First the
matrix is assumed to be transversely isotropic with 2­3 plane being the plane of isotropy. Second the
yield function is a function of the stress and the same plastic internal variable as previous formulations,
which is the equivalent plastic strain (𝜀peq). The yield stress parameters 𝐹𝑖 and 𝐹𝑖𝑗 take into account
isotropic hardening and are functions of the equivalent plastic strain (𝜀peq). Lastly, an associative flow
rule is assumed which defines the direction of plastic flow to be the gradient to the yield surface.

To begin the yield function is represented in a more general form as:

𝑓 = 1
2𝜎

𝑚 ⋅ ℙ ⋅ 𝜎𝑚 + p ⋅ 𝜎𝑚 − 1 (3.60)

where

ℙ =

⎡
⎢
⎢
⎢
⎢
⎣

𝑃11 𝑃12 𝑃12 0 0 0
𝑃12 𝑃22 𝑃23 0 0 0
𝑃12 𝑃23 𝑃22 0 0 0
0 0 0 𝑃44 0 0
0 0 0 0 𝑃55 0
0 0 0 0 0 𝑃44

⎤
⎥
⎥
⎥
⎥
⎦

(3.61)

and

p = { 𝑝1 𝑝2 𝑝2 0 0 0 }𝑇 (3.62)

where in

𝑃𝑖𝑖 = 2𝐹𝑖𝑖 , 𝑃12 = 2𝐹12, 𝑝1 = 𝐹1, 𝑝2 = 𝐹2 and so on … (3.63)

3.2.3. Return Mapping
The returnmapping procedure employed here is very close to the one followed previously. Nevertheless
the entire set of equations required for the return mapping procedure is presented below. For simplicity
in notation, the superscript 𝑚 is dropped.

The stress at a point in the matrix can be defined as:

𝜎 = 𝔻(𝜀 − 𝜀𝑝0 − Δ𝜀𝑝) (3.64)

where 𝔻 is the orthotropic elasticity tensor of the resin matrix. The 𝜀𝑝0 is the initial plastic strain at
the start of the load step and Δ𝜀𝑝 is the change in plastic strain in that load step. The change in plastic
step is defined as:

Δ𝜀𝑝 = Δ𝛾 ⋅ n𝑓 (3.65)

where, n𝑓 is the gradient to the yield surface and defines the direction of plastic flow for an associative
flow rule. It’s expressed as:

n𝑓 =
𝜕𝑓
𝜕𝜎 ≡ ℙ𝜎 + p (3.66)

Substitution of Eq. 3.65 in Eq. 3.64 gives:

𝜎 = 𝔻(𝜀 − 𝜀𝑝0 ) − 𝔻Δ𝛾n𝑓 (3.67)

The plastic strain at the start of the load step (𝜀𝑝0 ) is known from the converged solution of previous
load step. Since the total strain (𝜀) is also known for the load step, they are clubbed together to form
the trial stress as shown in Eq. 3.27.
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The stress update is then written as:

𝜎 = 𝜎𝑡𝑟𝑖𝑎𝑙 − Δ𝛾𝔻n𝑓 (3.68)

Note that in this calculations it is not possible to get 𝜎 only as a function of 𝜎𝑡𝑟𝑖𝑎𝑙. This is due to the
presence of the term p in the plastic flow. This does not impact the overall formulation but just changes
it slightly. Moving ahead, the equivalent plastic strain is written as:

̇𝜀peq = √ ̇𝜀p ⋅ J ⋅ ̇𝜀p ≡ ‖ ̇𝜀p‖J (3.69)

with, J same as in Eq 3.31. Using ‖⋅‖J norm, we write the incremental equivalent plastic strains as:

Δ𝜀peq = Δ𝛾 ‖n𝑓‖J (3.70)

For the local Newton­Raphson iteration, the term 𝜕𝑓/𝜕Δ𝛾 is needed. It is computed as:

𝜕𝑓(Δ𝛾)
𝜕Δ𝛾 = 𝜕𝑓 (𝜎, 𝜀peq)

𝜕𝜎 ⋅ 𝜕𝜎𝜕Δ𝛾 +
𝜕𝑓 (𝜎, 𝜀peq)
𝜕𝜀peq

𝜕𝜀peq(Δ𝛾)
𝜕Δ𝛾 (3.71)

with
𝜕𝑓 (𝜎, 𝜀peq)

𝜕𝜎 = ℙ ⋅ 𝜎 + p ≡ n𝑓 (3.72)

and
𝜕𝑓 (𝜎, 𝜀peq)
𝜕𝜀peq

= 1
2𝜎 ⋅

𝜕ℙ
𝜕𝜀peq

⋅ 𝜎 + 𝜕p
𝜕𝜀peq

⋅ 𝜎 (3.73)

Note that ℙ and p are composed of the strength parameters which are described by the hardening
curve inputs. The hardening curve inputs are the yield strengths of the resin matrix corresponding to
𝜀peq. Thus the derivatives of ℙ and p are directly dependent on 𝜀peq. Knowing that for a particular load
step 𝜎𝑡𝑟 is constant, differentiating Eq. 3.68 with respect to Δ𝛾 we get:

𝜕𝜎
𝜕Δ𝛾 = − [𝔻n𝑓 + Δ𝛾

𝜕n𝑓
𝜕𝜎

𝜕𝜎
𝜕Δ𝛾 ] (3.74)

where
𝜕n𝑓
𝜕𝜎 = ℙ (3.75)

Thus we can rewrite Eq. 3.74 as:

𝜕𝜎
𝜕Δ𝛾 [𝕀 + Δ𝛾𝔻ℙ] = −𝔻n𝑓 (3.76)

then
𝜕𝜎
𝜕Δ𝛾 = −𝔸𝔻n𝑓 (3.77)

where 𝔸 = [𝕀 + Δ𝛾𝔻ℙ]−1. Next the derivative of 𝜀peq with respect to Δ𝛾 is given by:
𝜕𝜀peq(Δ𝛾)
𝜕Δ𝛾 = 𝜕𝜀peq(𝜎, Δ𝛾)

𝜕Δ𝛾 + 𝜕𝜀
p
eq(𝜎, Δ𝛾)
𝜕𝜎 ⋅ 𝜕𝜎𝜕Δ𝛾 (3.78)

where,
𝜕𝜀peq(𝜎, Δ𝛾)

𝜕Δ𝛾 = ‖n𝑓‖𝐽 (3.79)

and
𝜕𝜀peq(𝜎, Δ𝛾)

𝜕𝜎 = Δ𝛾
J ⋅ n𝑓
‖n𝑓‖J

⋅ ℙ (3.80)
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3.2.4. Consistent Tangent Operator
In the same spirit as the previous calculations, the linearized continuum tangent operator for the lo­
cal Newton­Raphson scheme is determined. The consistent tangent operator performs better in the
iterative scheme employed in the finite element code and leads to faster convergence. For this the
tangential relation for the stress rate and strain rate is derived. It start by differentiating Eq. 3.64

𝜎𝑛 = 𝔻(𝜀𝑛 − 𝜀𝑝𝑛−1 − Δ𝛾𝑛n𝑓𝑛) ⇒ �̇�𝑛 = 𝔻( ̇𝜀𝑛 − �̇�𝑛n𝑓𝑛 − Δ𝛾ṅ𝑓𝑛) (3.81)

where 𝑛 indicates the load step. Leaving out the subscript 𝑛, we can expand:

ṅ𝑓 = ℙ�̇� + ℙ̇𝜎 + ṗ (3.82)

Care needs to be taken while deriving the above equations using chain rule. Looking at the term Δ𝛾ṅ𝑓𝑛
in Eq. 3.81, it is the rate of change of n𝑓 for constant Δ𝛾. Furthermore chain rule is again applied when
evaluating ṅ𝑓 which is shown in Eq. 3.82. Here, we are trying to find out the rate of change of ℙ and
p with respect to constant 𝜎. Now both 𝜎 and Δ𝛾 are constant and as a consequence ℙ̇ and ṗ will be
equal to zero. Thus the correct value for ṅ𝑓 is:

ṅ𝑓 = ℙ�̇� (3.83)

Substitution of Eq. 3.83 in Eq. 3.81 gives

�̇� = 𝔻 ( ̇𝜀 − �̇�n𝑓 − Δ𝛾ℙ�̇�) (3.84)

or

(𝕀 + Δ𝛾𝔻ℙ)�̇� = 𝔻( ̇𝜀 − �̇�n𝑓) ⇒ �̇� = 𝔸𝔻( ̇𝜀 − �̇�n𝑓) (3.85)

In order to derive an expression for �̇� we make use of the consistency condition which is:

̇𝑓 = 𝜕𝑓
𝜕𝜎 �̇� +

𝜕𝑓
𝜕𝜀peq

̇𝜀peq (3.86)

Most of the term in the above equation are known from Eq. 3.72 and 3.72 except ̇𝜀peq. The rate derivative
of the equivalent plastic strains is:

̇𝜀peq =
𝜕𝜀peq
𝜕Δ𝛾 �̇� +

𝜕𝜀peq
𝜕‖n𝑓‖𝐽

̇‖n𝑓‖𝐽 (3.87)

where

𝜕𝜀peq
𝜕Δ𝛾 = ‖n𝑓‖𝐽 (3.88)

and

𝜕𝜀peq
‖n𝑓‖𝐽

= Δ𝛾 (3.89)

Further, ̇‖n𝑓‖𝐽 is derived as:

̇‖n𝑓‖𝐽 =
𝜕 ‖n𝑓‖𝐽
𝜕n𝑓

𝜕n𝑓
𝜕𝜎 �̇� =

J ⋅ n𝑓
‖n𝑓‖J

⋅ ℙ�̇� (3.90)

It is important to note while following the chain rule for differentiation in Eq. 3.87, at first ‖n𝑓‖𝐽, depen­
dent on 𝜎, is considered constant and then for the next term, Δ𝛾 is considered constant. Substituting
equations 3.88, 3.89 and 3.90 in Eq. 3.87:

̇𝜀peq = ‖n𝑓‖𝐽 �̇� + Δ𝛾
J ⋅ n𝑓
‖n𝑓‖J

⋅ ℙ�̇� (3.91)
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Making use of all the above derivatives and resubstituting them in the consistency condition Eq. 3.86

̇𝑓 = (n𝑓 +
𝜕𝑓 (𝜎, 𝜀peq)
𝜕𝜀peq

Δ𝛾
J ⋅ n𝑓
‖n𝑓‖J

⋅ ℙ) �̇� + 𝜕𝑓
𝜕𝜀peq

‖n𝑓‖𝐽 �̇� (3.92)

Equating ̇𝑓 = 0 to satisfy the consistency condition:

�̇� = 1
𝜁n𝑓�̇� (3.93)

where

n𝑓 = n𝑓 +
𝜕𝑓 (𝜎, 𝜀peq)
𝜕𝜀peq

Δ𝛾
J ⋅ n𝑓
‖n𝑓‖J

⋅ ℙ (3.94)

and

𝜁 = − 𝜕𝑓
𝜕𝜀peq

‖n𝑓‖𝐽 (3.95)

Now substituting the above equation in the original relationship between stress rate and strain rate (Eq.
3.85), we get:

�̇� = 𝔸𝔻( ̇𝜀 − 1𝜁n𝑓⊗ n𝑓�̇�) (3.96)

Reordering gives:

̇𝜀 = [𝔹−1 + 1𝜁n𝑓⊗ n𝑓] �̇� (3.97)

here 𝔹 = 𝔸𝔻. The above relation can be inverted with Sherman­Morrison formula to get the consistent
tangent as:

�̇� = [𝔹 −
𝔹 ⋅ n𝑓⊗ n𝑓 ⋅ 𝔹
𝜁 + n𝑓 ⋅ 𝔹 ⋅ n𝑓

] ̇𝜀 (3.98)

3.3. Summary
This chapter presents two constitutive formulations based on two different yield functions. First the fibre
and matrix direction stresses are separated to give more flexibility to the mesomodel. The invariants
are reformulated and incorporated in a new yield function that has the same form as that proposed
by Vogler et al. [28]. Using the addititve split of the stress tensor, a new yield function as proposed
by Tsai and Wu [25] is tested. The complete equations necessary for the constitutive formulation are
presented which include the return mapping scheme and the derivation of the consistent tangent. Next
these formulations are implemented in the finite element code using the C++ JemJive[12] toolkit to
model the nonlinear behaviour of a unidirectional composite material.





4
Numerical Implementation

This chapter will describe the numerical implementation of the constitutive formulations pre­
sented in the earlier chapters. It contains the material specifications used in the finite element
simulations and explains the boundary conditions of the model. The derivation of the hard­
ening curves from the micromodel is presented. These hardening curves are further used to
calculate the yield stress parameters which serve as input for the mesoscale models. Lastly,
the iterative procedure of the return mapping algorithm is elaborated with the help of a flow
chart.

31
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The next step after the constitutive formulations is to implement it into the finite element framework.
This is done with the help of the C++ toolkit, JemJive, on representative volume element(RVE) of the
fibre reinforced ply. Two types of RVEs are modelled, one is the micromodel RVE in which the fibres
and matrix is modelled discretely and second the mesomodel RVE wherein the properties of fibres
and matrix are represented in a homogenized manner. The micromodel RVE is modelled using the
constitutive laws proposed by Melro et al. [18] with slight modifications made by Van Der Meer [27].
The mesomodel RVE is modelled using the constitutive formulations presented in Chapter 3. Both
RVEs are modelled as plain strain and with periodic boundary conditions to represent the response in
a continua.

4.1. Finite Element Model for Microscale
Composites are highly heterogeneous materials as the exact position each fibres in a ply is extremely
difficult to control during manufacturing. This is because there can be microscopic deviations in fibre
positions as the resin matrix sets during the curing process. Thus the cross section a ply can show
different fibre positions at different material points, which makes modelling of the ply for numerical
analysis quite a challenge. A common technique is to use the concept of a representative volume
element(RVE), that can encapsulate the entire physical behaviour of the composite for every material
point. In composite materials, a representative volume element is the smallest element size which can
be used to depict, in general, the entire composite material. For microscale, this is done by taking into
account an arbitrary distribution of fibres in a matrix continua as seen in figure 4.1.

Figure 4.1: Cross sectional view of the
microscale representative volume

element

Figure 4.2: Discretized view of the
microscale representative volume

element

4.1.1. Representative Volume Element
The existing micromodel framework used by Van Der Meer [27] is adopted for this project. The method
employed to distribute the fibres randomly in the RVE is done using the HADES simulation package.
Certain geometrical parameters are set for these simulations where the diameter of the circular fibres
is taken as 5𝜇𝑚 and minimum spacing between fibres as 0.2𝜇𝑚. A fixed number of fibres are randomly
distributed in a box so as to maintain the periodicity of the element. After the study presented in [27],
the RVE with 25 fibres and fibre volume fractions of 0.6 is assumed to be the representative set for
generating the input and validating the mesoscale models.

The fibres are modelled as linear elastic materials and the matrix is modelled as a homogeneous
isotropic material. The matrix shows isotropic hardening plasticity that is different for tension and com­
pression. The fibres and matrix are assigned material properties as presented in table 4.1 for the
micromodel RVE. Further this two dimensional template is discretized into three noded triangular ele­
ments using GMSH toolkit as shown in figure 4.2. In order to generate the three dimensional model,
the two dimensional mesh is extruded out of plane to form six noded wedge elements. Next, instead
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of modelling the entire ply, only a single RVE element is configured with periodic boundary conditions
to reduce the computational effort.

Properties Value
Fibres

Young’s Modulus(E) 76000 Mpa
Poisson’s Ratio(𝜈) 0.2

Matrix
Young’s Modulus(E) 3760 Mpa
Poisson’s Ratio(𝜈) 0.3

Plastic Poisson’s Ratio(𝜈𝑝) 0.39

Table 4.1: Material properties of the fibres and matrix for the micromodel

4.1.2. Periodic Boundary Conditions
A finite element problem in statics is essentially a boundary value problem wherein the forces and sup­
ports exist on the surface of the geometry. An element inside the body is surrounded by other elements
on all side, that share the same material properties. For validating constitutive laws in composites, it
would be sufficient to model just a single RVE as the behaviour of the RVE should be representative
for every material point in the body. In order to model a single RVE, the boundary conditions imposed
by surrounding material points(or RVEs) in a continua should be taken into account properly. This is
done with the help of periodic boundary conditions as shown in the figure 4.3.

Figure 4.3: Schematic of micromodel RVE with local coordinate axes and periodic boundary
conditions

To apply periodic boundary conditions, first the fibres are distributed in such a manner that the mesh
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is also periodic. This means that in case a fibre is intersected by the edges of the bounding box of the
matrix, the remaining area of the fibre is mirrored on the opposite edge of the box. The nodes on
opposite faces of the bounding box are considered as matching nodes and their degrees of freedom
are linearly constrained. According to the linear constraint, the difference between the displacements
of the matching nodes is equal to the relative displacement of a master node with respect to the origin.

u(Δ𝑥, 𝑦, 𝑧) = u(0, 𝑦, 𝑧) + u(Δ𝑥, 0, 0) − u(0, 0, 0)
u(𝑥, Δ𝑦, 𝑧) = u(𝑥, 0, 𝑧) + u(0, Δ𝑦, 0) − u(0, 0, 0)
u(𝑥, 𝑦, Δ𝑧) = u(𝑥, 𝑦, 0) + u(0, 0, Δ𝑧) − u(0, 0, 0)

(4.1)

where, u(0, 0, 0) is prescribed to zero to eliminate rigid translations and u(Δ𝑥, 0, 0), u(0, Δ𝑦, 0) and
u(0, 0, Δ𝑧) are three master corner nodes [27]. Displacements or forces are applied to these master
nodes to obtain averaged deformations and stresses from the RVE.

4.1.3. Generation of Hardening Curves
In the scope of this project, the micromodel RVE is assumed to be representative of the actual physical
behaviour of composites. Thus it is used as a substitute for extensive experimental setups to generate
input data for the mesoscale RVE. The micromodel RVE is used to run simulations of basic load cases
like axial tension/compression, biaxial tension/compression and pure shear along different axis. This is
done in order to obtain the stress strain curves for the respective load cases from which the hardening
curves for each stress state is extracted. The hardening curves serve as the required input for the
calibration of the constitutive model for mesoscale.

As thematerial starts to exhibit plastic behaviour, a change in the stiffness of thematerial is observed
along with plastic deformations. The point at which plastic deformations are observed, the stress at that
point is known as the yield stress. Due to the nonlinear nature of thematerial as the strains increase, the
yield stress also increases and this process is known as hardening. The stresses and strains for each
load cases are monitored in the micromodel simulations in order to generate the hardening curves.
Additionally, the strains on the unloaded faces are also extracted from the micromodel to obtain the
Poisson’s ratios. With all quantities derived, the hardening curves can be plotted with respect to the
norm of the plastic strains(𝜀peq).

Equivalent Plastic Strain
The equivalent plastic strain(𝜀peq) is a scalar quantity that helps to quantify the total amount of plastic
strain in the material. Hence it is also used as the plastic internal variable in the calculations of the

yield function. The formula adopted for the equivalent plastic strain in this project is √1
2𝜀
𝑝
𝑖𝑗𝜀

𝑝
𝑖𝑗. Two

different formulae emerge from this formula in order to calculate 𝜀peq from the derived quantities from
the micromodel simulations. For a uniaxial load test in direction ‘2’, the two formulae look as follows:

𝜀peq = √𝜀𝑝11 + 𝜀𝑝22 + 𝜀𝑝33 (4.2)

and

𝜀peq = √𝜀𝑝22(𝜈𝑝12 + 1 + 𝜈𝑝23) (4.3)

When calculating the plastic strains for different directions, first the initial elastic stiffness is deter­
mined. Using this elastic stiffness, the elastic strains for each load step are evaluated for the corre­
sponding stress level. Furthermore, these elastic strains are used to used to determine the respective
plastic strains (refer eq. 2.3). Since there are no stresses in the unloaded directions of the uniaxial
tests, it puzzling to distinguish the elastic and plastic strains in the unloaded directions. This is a prob­
lem only for the formula presented in eq. 4.2 and not for the formula in eq. 4.3. One possible way to
determine the elastic strains for the unloaded directions is by using the elastic Poisson’s ratios. With
the help of that, the plastic strains in the unloaded directions can be determined. Upon evaluating the
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equivalent plastic strains from both the formulae it is observed that both values do not match for the
initial loads steps when the material starts to behave plastic.

An investigation revealed that there were some numerical errors when calculating the plastic strains
in unloaded directions. The elastic strain in the loaded direction is multiplied by each of the elastic
Poisson’s ratio to obtain the elastic strains in unloaded directions respectively. For the initial plastic
loading steps, these calculated elastic strains are greater than the actual total strains observed in these
directions from the micromodel. This leads to incorrect estimation of plastic strains for those loading
steps and hence the mismatch between the two 𝜀peq values is observed.

On the other hand there is no need to calculate the elastic strain for the second formula of 𝜀peq
as shown in eq 4.3. With the help of plastic Poisson’s ratios, the uniform growth of plastic strains in
loaded and unloaded directions is calculated. Although the correctness of plastic Poisson’s ratios is
questionable as seen from Van Der Meer [27], it is the best estimate and will be used to evaluate 𝜀peq
and for defining the hardening curves.

Hardening Curves

After collecting the various stress strain inputs and calculating the equivalent plastic strains for the
various load tests, the hardening curves are defined. These are the plot of yield stress with respect
to the equivalent plastic strain for the different load cases. All the hardening curves obtained from the
micromodel simulations are presented below.

Figure 4.4: Hardening curve for uniaxial
tension in transverse (or ‘2’) direction

Figure 4.5: Hardening curve for uniaxial
compression in transverse (or ‘2’)

direction

The hardening curves for uniaxial tension and uniaxial compression are shown in figures 4.4 and
4.5 respectively. It can be seen that the stress hardens till about 0.012 𝜀peq after which it behaves close
to perfectly plastic for the uniaxial tension case. For the uniaxial compression case, the hardening is
more drastic till about 0.015 after which it is quite gradual till about 0.04 𝜀peq. Biaxial tension and biaxial
compression hardening curves are shown in figures 4.6 and 4.7. It can be seen that the biaxial tension
test shows hardening till about 0.012𝜀peq and close to perfect plasticity for the higher 𝜀peq values. On the
other hand the biaxial compression test shows a constant hardening behaviour till about 0.016𝜀peq after
which the model fails to converge to a solution.
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Figure 4.6: Hardening curve for biaxial
tension in transverse (or ‘2’ and ‘3’)

directions

Figure 4.7: Hardening curve for biaxial
compression in transverse (or ‘2’and ‘3’)

directions

The in­plane shear stresses and transverse shear stresses are shown in figures 4.8 and 4.9 respec­
tively. For both shear stresses, significant hardening is observed till 0.01𝜀peq after which both graphs
show close to perfect plastic behaviour.

Figure 4.8: Hardening curve for in­plane
shear stress

Figure 4.9: Hardening curve for
transverse shear stress

Most of the hardening curves derived above can be experimentally verified. For the next set of
hardening curves, that credibility might not hold, as we try to determine the yield stresses in fibre(or ‘1’)
direction but only in the matrix material. The fibres are placed along ‘1’ direction and behave elastic,
which means they will not show yielding. Thus the extraction of only the matrix stresses and not the
fibre stress from a test is only possible numerically at the moment.

When the material is loaded in ‘1’ direction, stresses are generated both in the fibres and matrix.
The fibres having more strength can take higher loads/stresses than the matrix. As the loads increase,
the stresses in both the fibres and the matrix increases. At some point the stresses in the matrix will
reach it’s yield stress and start to deform inelastically whilst at the same time the fibres will not show this
inelastic behaviour. The strength of the interface between the matrix and fibres also plays an important
role to determine the extent to which the matrix will deform plastically. In regions where the stresses
are most concentrated, either the interface between fibres and matrix will fail or the matrix matrix might
crack. This would result in redistribution of stresses and the fibres would end up taking more stresses
while there might be a relaxation of stresses in the matrix. Since this process is quite complex, a simpler
calculation is used to determine the stresses in the matrix.
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Figure 4.10: Hardening curve for the
matrix stress(𝜎𝑚11) in uniaxial tension

under fibre (or ‘1’) direction

Figure 4.11: Hardening curve for the
matrix stress(𝜎𝑚11) in uniaxial

compression under fibre (or ‘1’) direction

At first, the initial elastic stiffness of the fibres and matrix combined is observed from the initial loads
steps in the stress strain graphs. Next the elastic stiffness of only the fibres is calculated in accordance
with the fibre volume fraction(value 0.6) in the RVE. As the fibres only show elastic response, the
contribution of the stresses from the fibres is calculated from the total strains. On subtracting the total
stresses from the fibre stresses, the stresses in the matrix is derived. These stresses are then used
to plot the hardening curves presented in figures 4.10 and 4.11. It can be seen from those figures that
initially the matrix shows a hardening response after which it quickly shows a softening response. This
physically makes sense and thus will be used for further calculations.

4.2. Finite Element Model for Mesoscale
4.2.1. Representative Volume Element
Mesoscale constitutive laws can also be validatedwith the help of representative volume elements(RVE).
The main difference between the microscale RVE and mesoscale RVE is that in microscale, the fibres
and matrix are modelled discreetly with separate constitutive laws. In mesoscale, the entire element
is modelled with a single constitutive law that takes into account the composite material properties by
homogenization. Figure 4.12 helps visualize both the RVEs. Having monitored the heterogeneous
response of the micromodel in various directions, necessary material constant for a homogenized
mesoscale RVE can be determined.

Figure 4.12: Micromodel RVE and Mesomodel RVE

Since the material properties are not the same along all directions, an orthotropic material charac­
terization is required for the mesoscale RVE. A special case of orthotropy, which is transverse isotropy,
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is used. This means that the properties are same in the 2­3 plane of local coordinate system and differ­
ent in ‘1’ direction, along which the fibres are placed. The slope of the elastic branches from the stress
strain curves obtained from the simulations of the basic load cases serve as the Young’s moduli. By
monitoring the strains on the unloaded faces of the simulations, the Poisson’s ratios for the different
directions are calculated. All the orthotropic properties used for mesomodels is summed up in table
4.2.

Properties Value
Young’s Modulus(𝐸1) 45661 Mpa
Young’s Modulus(𝐸2) 13271 Mpa
Poisson’s Ratio(𝜈12) 0.23
Poisson’s Ratio(𝜈23) 0.31

Plastic Poisson’s Ratio(𝜈𝑝12) 0.2545
Plastic Poisson’s Ratio(𝜈𝑝23) 0.3088

𝑓𝑓𝑖𝑏 0.9726

Table 4.2: Orthotropic material properties for the mesomodel

4.3. Calibration of Yield Stress Parameters
Having defined the orthotropic properties, the next step is to calibrate the unknowns in the yield func­
tions for the mesoscale model. The unknowns in the yield functions are the 𝛼’s in eq 4.4 and the
𝐹𝑖 ’s and 𝐹𝑖𝑗 ’s in eq 4.5. The hardening curves derived from the above exercise are used to determine
these unknowns. The following paragraphs will explain how this is done for both the yield functions
respectively.

𝑓 (𝜎𝑚 , ̄𝜀𝑝, 𝐴) = 𝛼1 ̃𝐼1 + 𝛼2 ̃𝐼2 + 𝛼3 ̃𝐼3 + 𝛼32 ̃𝐼23 − 1 ⩽ 0 (4.4)

and

𝑓 =𝐹1𝜎1 + 𝐹2𝜎2 + 𝐹3𝜎3 + 𝐹11𝜎211 + 𝐹22𝜎222 + 𝐹33𝜎233+
2𝐹12𝜎11𝜎22 + 2𝐹23𝜎22𝜎33 + 2𝐹31𝜎33𝜎11 + 𝐹44𝜎244 + 𝐹55𝜎255 + 𝐹66𝜎266 = 1

(4.5)

4.3.1. MTIF Yield Function Calibrations
Calibrations of the yield function is done by matching the response of the mesomodel to the response
of the micromodel for the same stress state. With the elastic properties mentioned in table 4.2, the
elastic response of the mesomodel and micromodel are identical. In order for the plastic response of
mesomodel to match the plastic response of the micromodel, the yield stress parameters of the yield
function need to be determined. According to the theory of plasticity, the stresses in plastic regime need
to satisfy the yield function. This property is used to determine the yield stress parameters. Simple load
cases that were applied on the micromodel can be used to determine these parameters individually.

First, let’s consider the case of transverse shear(𝜎23), for which the corresponding yield stresses
from the hardening curve can be denoted with the symbol 𝑌𝑇𝑅. The stress tensor for this particular
stress state can be written as 𝜎𝑚 = [0, 0, 0, 0, 𝑌𝑡𝑟 , 0]

𝑇. Using this all the invariants are evaluated and
inserted into the yield function and we get the following equation.

𝑓 (𝜎𝑚 , ̄𝜀𝑝, 𝐴) = 𝛼1𝑌2𝑇𝑅 − 1 = 0 (4.6)

thus,

𝛼1 =
1
𝑌2𝑡𝑟

(4.7)

Similarly for in­plane shear which consider the hardening stresses as 𝑌𝐼𝑃, the 𝛼2 value is evaluated as
follows:

𝛼2 =
1
𝑌2𝐼𝑃

(4.8)
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Next, the uniaxial tension case is considered. Care needs to be taken for this case because of the
additive split of the stress tensor. When the material is loaded in transverse(‘2’) direction, there are no
stresses in other directions. In the material however, there are internal stresses present in the material
in fibre(‘1’) direction. The stresses in the fibres and the matrix are in equilibrium with each other in the
fibre(‘1’) direction. With the additive split, these stresses are accounted for separately and thus need to
be accounted for in the yield stress parameter characterization. For a uniaxial tension case, the stress
tensor look like 𝜎𝑚 = [𝜎𝑚𝑈𝑇 , 𝑌𝑈𝑇 , 0, 0, 0, 0]

𝑇
. As both 𝜎𝑚𝑈𝑇 and 𝑌𝑈𝑇 appear in the ̃𝐼1 and ̃𝐼3, evaluating the

yield function we get:

𝛼1 ̃𝐼1,𝑈𝑇 + 𝛼3 ̃𝐼3,𝑈𝑇 + 𝛼32 ̃𝐼23,𝑈𝑇 − 1 = 0 (4.9)

As there are 2 unknowns 𝛼3 and 𝛼32, and only one equation, one more equation is needed to solve
for the unknowns. The biaxial tension load case is used to generate the second equation with 𝜎𝑚 =
[𝜎𝑚𝐵𝑇 , 𝑌𝐵𝑇 , 𝑌𝐵𝑇 , 0, 0, 0]

𝑇
. From this the second equation is setup as:

𝛼1 ̃𝐼1,𝐵𝑇 + 𝛼3 ̃𝐼3,𝐵𝑇 + 𝛼32 ̃𝐼23,𝐵𝑇 − 1 = 0 (4.10)

Solving eqns 4.9 and 4.10 we get:

𝛼3 =
( ̃𝐼23,𝐵𝑇 − ̃𝐼23,𝑈𝑇 + ̃𝐼1,𝐵𝑇 ̃𝐼23,𝑈𝑇𝛼1 − ̃𝐼1,𝑈𝑇 ̃𝐼23,𝐵𝑇𝛼1)

̃𝐼3,𝑈𝑇( ̃𝐼23,𝐵𝑇 − ̃𝐼3,𝑈𝑇 ̃𝐼3,𝐵𝑇)
(4.11)

and

𝛼32 =
−( ̃𝐼3,𝐵𝑇 − ̃𝐼3,𝑈𝑇 + ̃𝐼1,𝐵𝑇 ̃𝐼3,𝑈𝑇𝛼1 − ̃𝐼1,𝑈𝑇 ̃𝐼3,𝐵𝑇𝛼1)

̃𝐼3,𝑈𝑇( ̃𝐼23,𝐵𝑇 − ̃𝐼3,𝑈𝑇 ̃𝐼3,𝐵𝑇)
(4.12)

4.3.2. Tsai Wu Yield Function Calibrations
The procedure for determining the yield stress parameters for this yield function is very similar to the
one presented above. Single load cases or a combination of load cases are used to determine the
various parameters. First, the pure shear load case of in­plane shear is evaluated as

𝐹44 =
1
𝑌2𝐼𝑃

(4.13)

Due to symmetry, 𝐹66 = 𝐹44 and next the pure transverse shear load case is evaluated as

𝐹55 =
1
𝑌2𝑇𝑅

(4.14)

For each uniaxial load case, there are two unknowns 𝐹𝑖 and 𝐹𝑖𝑖 that need to be determined. To solve
for these unknowns, the uniaxial tension and compression load cases are used to generate two sets
of variables for the corresponding unknowns. Uniaxial tension and compression load case for matrix
stresses(𝜎𝑚11) in fibre(‘1’) direction are presented below

𝐹1 = (
1
𝑌𝐹𝑇

− 1
𝑌𝐹𝐶

) (4.15)

and

𝐹11 =
1

𝑌𝐹𝑇𝑌𝐹𝐶
(4.16)

where 𝑌𝐹𝑇 and 𝑌𝐹𝐶 are the yield stresses of the matrix in the fibre direction.
As mentioned above, for the uniaxial transverse tension and compression case, there is an addi­

tional component of matrix stress(𝜎𝑚11) that needs to be accounted for in the evaluation of the yield
function. Solving the yield function with the available yield stress values, the following equation is
derived.

𝐹11𝜎211 + 𝐹22𝜎222 + 𝐹12𝜎11𝜎22 + 𝐹1𝜎11 + 𝐹2𝜎22 − 1 = 0 (4.17)

Note that for simplicity in notations, the superscript ‘m’ is dropped from the above equation. Since the
material is considered to be transversely isotropic, the response in ‘2’ direction will be identical to ‘3’
direction. Therefore only the calculations for the unkowns in directions ‘2’ are presented in this text.
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Trial 1
Two sets of variables are known from the tension and compression load cases, however, there are
three unknowns 𝐹2,𝐹22 and 𝐹12 which need to be solved. The term 𝐹12 takes into account the interaction
between the axial stresses in direction ‘1’ and ‘2’. So an additional biaxial load test with load applied
in ‘1’ and ‘2’ direction is simulated using the micromodel. This simulations was carried out for the
micromodel RVE that was extruded along the fibre direction for a total thickness of 0.001mm. The
hardening curves derived from this simulation for both the loaded faces is presented below.

Figure 4.13: Hardening curve for the
matrix stress(𝜎𝑚11) under biaxial tension
in fibre (or ‘1’) direction for t = 0.001mm

Figure 4.14: Hardening curve for the
matrix stress(𝜎22) under biaxial tension
in transverse (or ‘2’) direction for t =

0.001mm

From the above graph 4.13, it is observed that the matrix stress in fibre direction starts to soften
at relatively low equivalent plastic strains. This fits well with the physical understanding that under the
presence of tensile forces on the transverse face and fibre direction face, the matrix is subject to a high
tensile state and will cause high stress concentrations in thematrix fibre interface. That would cause the
redistribution of the stresses from the matrix to the fibres in direction ‘1’ sooner than that observed from
the uniaxial fibre direction tension case. Out of curiosity, the same biaxial tension test was carried out
again, but with the micromodel RVE extruded along the fibre direction for a total thickness of 0.0286mm.
Extruding to this length forms a perfect cubic three dimensional model to match the exact dimensions
of the mesomodel RVE. The results from this test are presented below.

Figure 4.15: Hardening curve for the
matrix stress(𝜎𝑚11) under biaxial tension
in fibre (or ‘1’) direction for t = 0.0286mm

Figure 4.16: Hardening curve for the
matrix stress(𝜎22) under biaxial tension
in transverse (or ‘2’) direction for t =

0.0286mm

It can be seen from the results of this simulation that the response of both the matrix stresses is
quite different from the model with thickness = 0.001mm. The softening of the matrix stresses in fibre
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direction is much more gradual (refer fig 4.15) and the matrix stresses in transverse direction are higher
than that observed from the previous simulation (refer fig 4.16). The cause for this might be the fact that
the model with thickness = 0.0286mm has more contact area at the fibre­matrix interface to redistribute
the stresses as opposed to the model with thickness = 0.001mm.

Using the two sets of knowns from the uniaxial tension and compression tests, another set is re­
quired to evaluated the unknowns 𝐹2,𝐹22 and 𝐹12. These unknowns are evaluated twice, first with the
third set of knowns taken from the biaxal tension test with model thickness = 0.001mm and next using
the third set of knowns from the model with thickness = 0.0286mm. Thus there are two sets of 𝐹2,𝐹22
and 𝐹12 values available. Using either of these as input of the mesomodel, it was found that neither of
these could provide for a converged solution for basic load cases. Consequently, this required for a
better calibration of these three unknown parameters.

Trial 2
Instead of relying on an additional test case, it is possible to evaluate 𝐹12 in terms of 𝐹11 and 𝐹22 using
the stability condition posed in the original paper Tsai and Wu [25]. The stability condition is stated in
equation 4.18. The stability condition ensures that the yield surface is convex and a closed paraboloid.

𝐹𝑖𝑖𝐹𝑗𝑗 − 𝐹2𝑖𝑗 ≥ 0 (4.18)

Consequently, 𝐹12 can be formulated as

𝐹12 = √𝐹11𝐹22 (4.19)

On substituting this value in equation 4.17

𝐹11𝜎211 + 𝐹22𝜎222 +√𝐹11𝐹22𝜎11𝜎22 + 𝐹1𝜎11 + 𝐹2𝜎22 − 1 = 0 (4.20)

With the presence of the square root term, this equation has two solution. Upon solving for the un­
knowns, it was observed that for a range of 𝜀peq values, the solution gave imaginary roots. This makes
it unfeasible to use as an input for the characterization of material properties.

Trial 3
Moving forward, numerous trials were performed with various assumptions to calibrate this yield func­
tion. Among the various trails performed, one particular solution was able to give converged solutions
for basic load cases and will be discussed in this subsection whilst the other assumption are summa­
rized in the following subsection.

An important thing to note about the yield stress parameters is that the functional form of these
are not restricted. This give some freedom in choosing an appropriate form for them based on prior
implementations in literature. Ideally, without the additive split of the stress tensor, the functional form
of 𝐹2 and 𝐹22 are very similar to the ones derived in equations 4.15 and 4.16 and are given below.

𝐹2 = (
1
𝑌𝑈𝑇

− 1
𝑌𝑈𝐶

) (4.21)

and

𝐹22 =
1

𝑌𝑈𝑇𝑌𝑈𝐶
(4.22)

where 𝑌𝑈𝑇 and 𝑌𝑈𝐶 are the yield stresses of the matrix in the transverse (‘2’) direction.
Predetermining the functional form of all the parameters leave little freedom for the proper calibration

of the model. Moreover, a balance needs to be achieved between choosing the functional forms and
freedom of calibration. After numerous trials, it is found that the assuming the functional form of 𝐹22 =
1/(𝑌𝑈𝑇𝑌𝑈𝐶) and solving for the corresponding 𝐹2 and 𝐹12 values gives converged results for basic load
cases for mesomodel.

From a physical standpoint, 𝐹22 parameter only controls the growth of the yield stress in the trans­
verse(‘2’) directions. Parameter 𝐹2 is responsible to differentiate the growth of the yield stress in tension
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and compression and lastly the 𝐹12 takes into account the combined effect of axial stress is fibre direc­
tion on the transverse direction. As both 𝐹2 and 𝐹12 aim to capture more complex non­linear effects, 𝐹22
on the other hand seems to be straightforward. Hence, only assuming the functional form of 𝐹22 and
leaving the other open for calibration, helps achieve a good balance when calibrating the model. The
values of the yield stress parameters obtained from this trial are the final values used in this project
and for the results presented in the following chapter.

Other trials
In addition to the trials mentioned above, numerous permutations, although not some might be trivial,
were considered before deciding upon the one mentioned in trial 3. Basic load cases are run with these
assumption to validate the model. These trials are summarized in the table below

Trial
No.

Assumptions Observations

1 𝐹2 = (1/𝑌𝑈𝑇 − 1/𝑌𝑈𝐶) No convergence was obtained for the pure in­plane shear load
case. The transverse axial load cases showed only linear re­
sponse in both tension and compression

2 𝐹2 = (1/𝑌𝑈𝑇 − 1/𝑌𝑈𝐶) and
𝐹22 = 1/(𝑌𝑈𝑇𝑌𝑈𝐶)

Converged solutions for pure in­plane shear load case was
obtained. The transverse axial load case in tension showed
largely overestimated nonlinear behaviour whilst the com­
pression load case showed just linear response

3 𝐹12 = 𝐹22 No convergence was obtained for the pure in­plane shear load
case. The transverse axial load cases showed only linear re­
sponse in both tension and compression

Table 4.3: Summary of other calibration trials

4.4. Return Mapping Algorithm
The equations derived in the previous chapter are executed in a C++ code to simulate the mesomodel
plastic behaviour. This section will explain how these equations are implemented and executed within
the code. Also the physical understanding behind that will be explained.

Figure 4.17: Graphical representation of the return mapping algorithm

The plastic response of the material can be understood graphically with the following figure 4.17.
First, the yield function is marked by 𝑓𝑛 = 0 and the stress point by 𝜎𝑛. When the load step is incre­
mented it is found that the stress is no more elastic and goes outside the yield surface. In order to
satisfy the theory of plasticity, the stress point must lie on the yield surface. Hence the stress needs
to be mapped backed to the yield surface. An additional challenge here is that isotropic hardening
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is used, which expands the yield function with the increase in stress. The process of mapping back
the stress point on the yield surface is done in an iterative manner and the procedure is called return
mapping.





5
Results

This chapter presents the results of the finite elements simulations using the two different
constitutive formulations. At first a validation of the models is performed to determine their
performance. This is done by running the basic load cases that were provided as input to the
model and comparing the results with the input. Next, the mesomodel is subject to a group of
combined stress states for different stress ratios. The results are compared with those from
the micromodel and discussed.

45
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This chapter will present and discuss the results obtained by implementing two different constitu­
tive models. The first constitutive law is the modified transversely isotropic invariant based formu­
lations(MTIF) and the next one is based on Tsai and Wu’s (TW) yield criterion. The results of these
models are compared with the results from the micromodel(Melro) which is considered as representa­
tive for this project.

5.1. Validation of Model
The validation of the mesomodels is performed in order to check if they are able to replicate the same
behaviour as micromodels for simple load cases. Since the mesomodel is calibrated using hardening
curves as input, which is generated from micromodels, it makes sense to observe how the models
perform for these simple load cases. As pure in­plane shear shear and pure transverse axial stress
are the more realistic loading scenarios where nonlinear behaviour is pronounced, they are chosen for
validation.

5.1.1. In­Plane Shear

Pure in­plane shear is obtained from the stresses on the top surface of the mesomodel RVE. The
respective in plane shear strains are derived from the relative displacement of the top surface with
respect to the bottom surface. The results for both MTIF and TW are shown below:

Figure 5.1: Stress strain curve for
in­plane shear stresses in MTIF

Mesomodel

Figure 5.2: Stress strain curve for
in­plane shear stresses in TW

Mesomodel

It can be seen from Fig. 5.1 that for MTIF mesomodel, the agreement with the input hardening
curve is quite good. The MTIF model is slightly more than the original curve with a mean difference
of about 0.35MPa. It can be said that plastic behaviour of in pure in­plane shear is captured well by
the MTIF model. On the other side, Fig. 5.2, the TW model is able to capture the plasticity well, but it
consistently overestimates the stress by a mean difference of 1.75Mpa as compared to the prescribed
hardening curve. Having conducted rigorous calibration for the TW model, this is the best fit for the
loading case and has been accepted for all the further simulations.

5.1.2. Compression Transverse Axial Stress

Transverse axial strain are applied on the mesomodel RVE in the direction perpendicular to the fibres.
The stresses are monitored on the surface pointing in direction ‘2’. The results are shown below:
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Figure 5.3: Stress strain curve for
transverse axial stress(compression) in

MTIF Mesomodel

Figure 5.4: Stress strain curve for
transverse axial stress(compression) in

TW Mesomodel

It can be seen from Fig. 5.3 that for MTIF mesomodel, the plastic stresses are slightly underesti­
mated by this model by about 2.37MPa. The reason for this can be traced to the additive split of the
stress tensor which takes into account the fibre direction stresses in fibres and matrix separately. When
the matrix is under transverse compression, due to Poisson’s ratio there is expansion in the fibre direc­
tion however the fibres restrict this expansion. As a result the fibres provide additional confinement to
the matrix. This confining effect is better predicted in the micromodel as compared to the mesomodel
thus the slight shift in values are observed here.

Figure 5.4 shows the compression transverse axial response of the TW mesomodel. The results
are largely overestimated with a mean difference of 35.26MPa and it even shows continued hardening
as opposed to perfectly plastic behaviour observed in the micromodel for the observed strains. The
calibration inaccuracy is more pronounced in this loading case than that observed in the case of pure
in­plane shear. In fact the yield stress parameters(𝐹2,𝐹22 and 𝐹12) relating to the calibration of this
particular stress state are the most crucial and have the most impact on the entire model.

5.1.3. Tension Transverse Axial Stress
Transverse axial strain are applied on the mesomodel RVE in the direction perpendicular to the fibres.
The stresses are monitored on the surface pointing in direction 2. The results are shown below:

Figure 5.5: Stress strain curve for trans­
verse axial stress(tension) in MTIFMeso­
model

Figure 5.6: Stress strain curve for trans­
verse axial stress(tension) in TW Meso­
model

It can be seen from Fig. 5.5 that for MTIF mesomodel, the plastic stresses are matching almost
perfectly for the tension case as opposed to compression. The relative mean difference between the
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plots is about 0.22MPa. It can be said that the interaction between the fibre direction stresses in matrix
and fibres is better captured by the mesomodel in tension.

Figure 5.6 shows the tension transverse axial response of the TW mesomodel. The results are
again largely overestimated by about 51 MPa on average, and it can be seen that response observed
is identical to the one observed in compression. There is a small shift in the tension response than
the one observed in TW model in compression. This is caused by the 𝐹2 yield stress parameter which
differentiates the response in tension and compression. Thus this parameter linearly shifts the nonlinear
stresses downwards for the tension in transverse direction.

5.2. Combined stress states
Having observed the behaviour of the models for single load cases, it is interesting to find how me­
somodels perform when subjected to a combination of stresses. This section will present the results
of the different models when subjected to a combination of stresses expected from realistic loading
scenarios.

5.2.1. Combined Axial Fibre Direction Stress and In­Plane Shear
Unidirectional laminates primarily carry loads through the fibres and in­plane shear stresses between
the plies. An example of this loading is explained in figure 1.3 and thus will be studied with the help of
the new mesomodels.

The mesomodels are subjected to multiple ratios of fibre direction stress(𝜎11) to in­plane shear
stress(𝜎12). The results for in­plane shear are plotted as the response in fibre direction is mainly domi­
nated by the fibres. For comparison again the Melro micromodel is used as a representative test setup
for checking the results.

Figure 5.7: Shear stress­strain curve for
combined longitudinal shear and
longitudinal axial tension for

(𝜎11/𝜎12 ∈ [0, 6, 11, 29, 57], from top to
bottom) in MTIF model

Figure 5.8: Shear stress­train curve for
combined longitudinal shear and
longitudinal axial tension for

(𝜎11/𝜎12 ∈ [0, 6, 11, 29, 57], from top to
bottom) in TW model

The results obtained from MTIF model are shown in Fig. 5.7. We can see that clearly the addition
of fibre direction stresses(𝜎𝑚11) has an effect on the in­plane shear stresses of the mesomodel. The
trends are not good enough and the onset of plasticity for the in­plane shear stresses is not captured.
For high fibre direction stresses, the matrix goes into plasticity sooner and as a result plastic in­plane
shear stresses are observed at relatively low strains. This effect is not captured by the MTIF model as
it uses the same yield stress parameters for all axial directions as observed from the matrix in equation
3.14. From hardening curves in chapter 4 it was observed that the yielding of the matrix in the fibre
direction is not identical to the yielding in transverse direction. Moreover, the stress­strain plots from
the MTIF model appear to be linearly scaled.

On the bright side, the TW model is able to capture the plastic behaviour of in­plane shear stresses
for high fibre direction stresses as seen in Fig. 5.8. This can be attributed to the fact that separate
yield stress parameters are used for fibre and transverse axial directions. Independently, the yield
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stresses in the matrix along fibre direction softens with the increase in fibre stress while the in­plane
yield stresses show hardening and tend to ideal plasticity. Thus in this combined load case, a mixed
behaviour should be observed which can be predicted well with this model. The performance is better
up to 𝜀12 = 0.02 for high fibre stresses after which even the TW model start to show a more significant
shift away from themicromodel results. For very low ratios of fibre stress, a subtle difference is observed
in the in­plane shear with the micromodel where as the TWmodel results almost overlap and are slightly
overestimated as observed in the validation case. This may be due to the inaccurate calibration of the
transverse component parameter.

5.2.2. CombinedAxial Fibre Direction Stress and TransverseAxial Direction Stress
The next most common observed stresses in a three dimensional continua is the simultaneous action of
two axial stresses. Since the composite behaviour is significantly different for the fibre and transverse
direction this combined stress state is explored.

Figure 5.9: Axial stress­strain curve for
combined longitudinal axial tension and

transverse axial tension for
(𝜎11/𝜎22 ∈ [11, 6, 0] from left to right) in

MTIF model

Figure 5.10: Axial stress­strain curve for
combined longitudinal axial tension and

transverse axial tension for
(𝜎11/𝜎22 ∈ [11, 6, 0] from left to right) in

TW model

As seen from Fig. 5.9 the transverse axial stress(𝜎22) in presence of fibre direction stress(𝜎11) is
almost a perfect match for the MTIF model. This stress state gives rise to a hydrostatic expansion
which is well incorporated into the yield function through the independent hardening parameters 𝛼3
and 𝛼32 in tension. For low ratios, the match is perfect and co­relates well with the validation case. For
the higher stress ratios, the MTIF model over predicts by a very small amount of 0.3 to 0.4 MPa on
average. This also shows the capability of the model as it is able to capture the difference in behaviour
for different hydrostatic loads.

Figure 5.10 shows the stress strain plot of the hydrostatic loading in the TW model. The results
are well overestimated by about 150MPa on overage and the model shows ideal plastic behaviour at
much higher load levels. This is because the yield stress parameters used to calibrate the transverse
axial stresses is incorrect. The parameter 𝐹12 here is not defined well and causes this absurd plastic
behaviour of the model. This parameter in particular as pointed out in the original paper [25] is very
sensitive to calibration and the findings of this project verify that. Incorrect calibration could lead to the
yield function not being a closed paraboloid but an open surface which can cause the instability of the
solution.

5.2.3. Combined Axial Transverse Direction Stress and In­Plane Shear Stress
An interesting combination of stresses to explore would be that of the axial transverse tension and in­
plane shear. Significant plastic response is observed in either of these load cases and their combined
effect is investigated.
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Figure 5.11: Shear stress­strain curve
for combined longitudinal shear and

transverse axial tension for
(𝜎12/𝜎22 ∈ [11, 2, 0] from bottom to top)

in MTIF model

Figure 5.12: Shear stress­strain curve
for combined longitudinal shear and

transverse axial tension for
(𝜎12/𝜎22 ∈ [11, 6, 0] from bottom to top)

in TW model

From figure 5.11 it is observed that the response is highly nonlinear and show significant plastic
behaviour. The MTIF model has a great match with the micromodel results with the variance in range
from 0.5 to 1 MPa stress levels between the two, which is quite good for the observed magnitudes. For
higher ratios of transverse shear, the response of the in­plane shear stress is significantly amplified.
However, the stress levels are quite high and the matrix might fail even before reaching those stress
levels in reality. Although the match and trend is good, it is difficult to make physical sense out of this
test.

The results as seen from figure 5.12 show that the performance of the TWmodel is again quite poor
for this combined load case. It consistently over predicts the response as compared to the micromodel
and even shows some spurious hardening for higher strain levels. Again the cause for this inconsistent
behaviour is due to the incorrect calibration of the TW model parameters.

5.2.4. Summary
The results of the finite elements simulations using the two different constitutive formulations are pre­
sented. The validation of the models shows that there is good agreement from the MTIF model for
all three load cases where as the TW model only has acceptable results for the in­plane shear load
case and poor performance in the other two. Next the results from the combined stress states are
presented. The MTIF model consistently out performs the TW model for all the mixed modes cases
except the longitudinal axial stress with in­plane shear test. For this particular mixed mode case the
TW formulation reveals the significance of separate yield stress parameter for the fibre direction stress
in the matrix.
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Conclusions and Recommendations

Having discussed the new constitutive formulations, their implementations and results in pre­
vious chapters, this chapter discusses the concluding remarks from the study. It is followed
by recommendations that could potentially help in future endeavours along this line of work.
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6.1. Conclusions
Composites are heterogeneous materials that have a very complex physical behaviour. The fibres
have a very high stiffness compared to the matrix and behave mostly elastic. Thus there are no plas­
tic deformations observed along the fibres. On the other hand, the matrix is a material that exhibits
nonlinear behaviour and shows plastic deformations. The fibres are impregnated with matrix and as a
result, these behaviours interact with each other to form complex material response. Previously, this
interaction between fibres and matrix was not taken into account explicitly by most of the yield func­
tions defined for mesoscale models. One example of this was brought to light in the study performed
by Van Der Meer [27] when comparing the yield function proposed by Vogler et al. [28] at mesoscale
to the microscale model proposed by Melro et al. [18]. The study showed that the plastic response of
the matrix for various levels of fibre stress was different and this was not captured by the mesoscale
constitutive law. It is from this study that the research questions for this graduation project emerge.
The research questions posed at the start of this project are briefly discussed below.

1. How to incorporate the effect of fibre direction stress(𝜎11) on the evolution of plastic in­
plane shear stress(𝜎12) within the transversely isotropic invariant based yield criterion?
Mesoscale models are a homogenized representation of the actual micro structure of the com­
posite ply. Due to the inhomogeneous composition of the material, the materials are classified
as orthotropic materials. Orthotropic materials have different properties along three mutually per­
pendicular directions. Usually a special case of orthotropy, transverse isotropy, is used to further
classify unidirectional plies. This is used to define a separate material property along the direction
of the fibres from the rest of the directions. This meant that the stresses in the direction of the
fibres are quite high and mostly elastic while the stresses in other directions were dominated by
matrix behaviour and showed non linearity. Known from the background information presented
in chapter 2, the yield criteria are scalar functions of the stresses. Since the stresses in the fibres
is very high as compared to the matrix stresses and are elastic in nature, they are not taken into
account in the yield criterion formulation.
As revealed by the study in Van Der Meer [27], the fibre direction stress needs to be incorporated
to improve the accuracy of the mesoscale models. The additive split of the stress tensor into the
fibre component and matrix component stress tensors is chosen for this project. This additive split
enables to separately account for the elastic fibre stresses while still maintaining a component of
the fibre direction stress in the matrix stress tensor. With the help of this, the transversely isotropic
invariant based formulation posed by [28] is adopted. The form of the yield criterion is kept the
same, but the invariants are modified in accordance with the split of the stress tensor. This is first
formulation presented and implemented for the numerical analysis.
Various tests were performed with simple load cases and combined load cases using the MTIF
model. After observing the results presented in the previous chapter, the effect of fibre direction
stress on the in­plane shear stresses is captured successfully. The graphs are not overlapping
on each other as it did with the previous yield criterion. A shift in the in­plane shear stresses is
observed. However, the behaviour only indicates a linear scaling of the graphs for various levels
of fibre stress. It fails to capture the onset of matrix plasticity for the corresponding level of stress
in the fibres. On the bright side, the results from most of the other combined load cases reveal
that they are not affected much by this formulation changes and in some cases, the response has
improved.

2. Would an anisotropic yield criterion be able to capture the effect of the fibre direction
stresses(𝜎11) on plastic behaviour of the matrix?
Although the MTIF model does show promise, with it’s limited yield stress parameters, it is unable
to differentiate between the various plastic responses of the matrix. As observed from the yield
function shown in equation 3.14, the same hardening parameters are used to quantify the plastic
response of the matrix along the three mutually perpendicular directions. This is in contrast with
what was observed from the hardening curves of the matrix from the micromodel simulations.
The hardening curve measured in the transverse(‘2’) direction revealed that the yield stresses in
the matrix showed hardening and later stabilized to an almost ideal plastic behaviour(refer figure
4.4). The hardening curves for matrix stresses obtained by loading the microscale model along
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the fibre(‘1’) direction revealed a different picture(refer figure 4.10). The yield stress showed hard­
ening initially, followed by a softening response for the majority of the equivalent strains values.
As invariants are used to formulate the MTIF yield criterion, it becomes difficult to incorporate a
different yield stress parameter for a single stress component. Thus there is a need for a better
formulation.
An anisotropic yield function like the one proposed by Tsai and Wu [25], adds more flexibility to
the formulation. This yield function has independent yield stress parameters which can be tuned
independently according to each stress state. Because of these merits, this yield function is used
as the second formulation in this project. The yield function is used along with an associated flow
rule and implemented in the numerical framework. After calibration, the model was run for various
stress states. With the results presented in the previous chapter, it can be said that the model
shows good potential. It is able to capture good trends for the combined load case of longitudinal
axial stress with longitudinal in­plane shear stress, even better than the MTIF model. However,
for all other load cases, the TW model performs poorly. This is because of the difficulty faced to
correctly calibrate the model.

3. How sensitive is the anisotropic formulation to the calibration of the model?
With the adoption of the anisotropic yield function the constitutive formulation gains a lot of flexi­
bility but at the same time it gets more complex. There is no proper way to determine all the yield
stress parameters. Using material symmetries(transversely isotropic property), the number of in­
dependent parameters is reduced to simplify the model. As for the load cases of pure shear, the
derivation of the material parameters was done in accordance with the hardening curves obtained
from the micromodel simulations. Not much trouble was encountered in determining these pa­
rameters. In fact, these parameters are identical with the corresponding yield stress parameters
from the MTIF model. This ensures confidence in the procedure and thus the same procedure
is carried out to determine the axial yield stress parameters. It is found that 𝐹1 and 𝐹11 are de­
termined easily from the tension/compression hardening curves for that direction, however, the
derivation of 𝐹2 and 𝐹22 is not that simple.
As seen from equation 4.17, there is an additional term 𝐹12 present in evaluating 𝐹2 and 𝐹22. The
term 𝐹12 is responsible for taking into account the coupling between the stresses in the two axial
directions. Ideally, this term should only be appearing if a biaxial stress states is being evaluated.
But since an additive split of the stress tensor is performed at the very beginning of the formulation,
the internal stress component of matrix stress in fibre direction(𝜎𝑚11) is also present during pure
transverse axial loading. This adds to the complexity of the problem as it is known from literature
that the yield stress parameter 𝐹12 is very sensitive quantity.
At first an additional test case of biaxial tension along longitudinal fibre direction and transverse
axial direction was simulated. The intent of this was to generate an additional set of knonws to
solve for the three unknowns. Upon further investigation it was found that the results of the biaxial
tension test were subjective to the thickness of the model. To avoid subjectivity and lean towards
a more general formulation, this attempt was discarded. An analytical approach that derived from
the stability condition was used. Upon running simulations with this input, it was found that the
model was unable to converge to a solution thus indicating that the limitation of that approach.
Numerous attempts were made, each with a suitable assumption to generate a set of yield stress
parameters to obtain converged solution. It is extremely difficult to correctly determine all the
parameters. Among them, the assumption with 𝐹22 = 1/𝑌𝑈𝑇𝑌𝑈𝐶 was the best fit. After running
the simulations with this assumption, for various load cases, it was observed that the parameters
𝐹2 and 𝐹12 are extremely sensitive and severely impact the over behaviour of the model. This
bolsters the facts mentioned in the literature about the susceptibility of the calibration input for
combined stresses states.
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6.2. Recommendations
It is evident that the topic addressed in the project is quite complex and certainly needs more research.
With the knowledge gained from this project, a few recommendations are discussed in order to assist
future endeavours along this line of work

1. Possibility of using an additional invariant that can separately account for fibre direction
stress in the MTIF yield function
It was observed from the MTIF formulation that the same yield stress parameters are being used
for the matrix stress in transverse direction as well as fibre direction. As observed this does not
hold well and thus it might interesting to look at other potential option that can help differentiate
between these two behaviours without compromising the merits of the existing formulation. One
possibility would be to include a separate invariant along with it’s separate hardening parameter
for the yielding of the matrix in the fibre direction. Some leads on this can be found in M. Vogler
[16] with the 𝐼4 invariant, however, it is important to note that the same author does not include
that invariant for his future publications. It might be interesting to explore this option alongside
the additive split of the stress tensor used in this project.

2. Varying yield stress parameters with respect to fibre stress levels
As of now the yield stress parameters are derived from a single set of hardening curves. These
hardening parameters are a function of the equivalent plastic strains. This means that the yield
stress parameters consist of a single dependent value for each corresponding value of equivalent
plastic strain. It can be possible to make these parameters also a function of the fibre stress
levels. This can be done by generating additional hardening curves for the basic load cases like
uniaxial tension/compression, biaxial tension/compression, in­plane shear and transverse shear.
The level of fibre stress will be varied for these different hardening curves. As a result instead
of a single input per 𝜀peq value, now there would be a big tabular array of yield stress parameters
per 𝜀peq value. Each column would be for a different level of fibre stress. Indeed, it would be quite
cumbersome to generate such a large data set to calibrate the model, and as a result slow down
the simulations. This solution technique is also less robust and but is easy to implement. Hence it
is worth exploring up to what extent this approach would be feasible and how much longer would
the simulations run as opposed to the existing models.

3. Use machine learning to better calibrate the strength parameters for the anisotropic for­
mulation
The large data set of hardening curves as mentioned in the previous point, can be used to train a
machine learning model. Not only hardening curves for single load cases but also for all combined
load cases can be fed to the machine learning model. This can help improve the choice of the
yield stress parameter for a particular load step for a certain values of 𝜀peq during the simulation.
A second possibility would be to try and determine the best fit for the yield stress parameter 𝐹2
and 𝐹12 for the TW yield function from the large data sets. Of course the computational efforts
required to generate these large data sets and also the computational efforts required by the
machine learning model need to be evaluated in order to determine the overall benefits of this
approach.

4. Trial with a non­associative flow rule along with the anisotropic yield function
The TW constitutive formulation shows promise in it’s ability to tune the various yield stress pa­
rameters for different stresses independently. Many of the calibration attempts carried out in this
project were deemed unsuitable because they were not able to provide good converged solu­
tions. Because the convexity of the yield function is a function of these yield stress parameters,
it might just be that the calibrated values were appropriate. The associative flow rule used along
side the yield function was maybe not able to map the stresses back to the yield surface. Thus
the possibilities of a non associative flow rule along with this yield function should be explored.
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