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A B S T R A C T

Arsenic is mainly removed from groundwater by adsorption onto, or co-precipitation with iron flocs and -de-
posits. The efficiency of this process depends on various factors, amongst which the oxidation state of arsenic,
adsorption competition or poor iron floc removal.

The aim of this study was to assess the adsorption efficiency of arsenic in full-scale groundwater treatment
plants in the Netherlands. Adsorption efficiency is dependent on the concentration of adsorbent (Fe) and ad-
sorbate (As), both of which vary considerably at the various treatment plants. To allow comparing treatment
plants at these different Fe and As concentrations, the framework of a linearized isotherm graph was used.

As a reference, jar tests were executed to derive adsorption isotherms of As(III) and As(V) based on co-
removal with Fe2+ precipitation.

All treatment plants have a higher adsorption efficiency than the As(III) reference, and lower adsorption
efficiency than the As(V) reference. Treatment plants with an efficiency close to the As(III) reference may suffer
from incomplete arsenic oxidation, although other causes cannot be ruled out. Classifying removal efficiency can
be used in an initial research phase to identify treatment plants with relatively poor performance as candidates
for improvement. Furthermore, treatment plants can be grouped into categories with similar adsorption effi-
ciency, aiding in identification of common factors responsible for As removal.

1. Introduction

Arsenic (As) contaminated ground waters can be found worldwide,
and are a serious health hazard in, for example, India and Bangladesh
[1]. In contrast, arsenic concentrations in Dutch ground waters are
often already below the WHO guideline of 10 μg/L, and are reduced
further during treatment. It is possible that this guideline could be
lowered in the future, and in order to be prepared, drinking water
companies investigate if As concentrations in treated water can be re-
duced to below 1 μg/L.

The main removal mechanism for As during passive groundwater
treatment, i.e., aeration-filtration, is by adsorption onto, or co-pre-
cipitation with iron (Fe) flocs or deposits. In well-aerated groundwater,
Fe flocs are typically formed in the water phase, while with limited
aeration and at relatively low pH values, Fe tend to form deposits onto
the filter material [2].

In adsorption processes in general, the adsorbent loading (qe) at
equilibrium decreases, when a low adsorbate concentration in the water

phase (Ce) is reached. In other words, the native groundwater Fe is less
effectively used (i.e. has a lower density of adsorbed As) when aiming at
lower As concentrations (Ce). Besides this inherent aspect of adsorption,
the water composition can affect As adsorption as well. Phosphate, si-
licate or organic matter can compete with As for adsorption sites [3–6],
or can prevent effective iron floc formation [7,8].

As is originally present in groundwater as its reduced form, As(III),
but when it is oxidized to As(V), its adsorption onto Fe oxides improves
considerably [9–11]. Although the oxidation of As by oxygen is slow, it
was found that within sand filters, As can be effectively oxidized by
bacteria [12,13].

The aim of this study was to assess the adsorption efficiency of As in
full-scale passive aeration-filtration groundwater treatment plants in
the Netherlands. Adsorption efficiency is dependent on the concentra-
tion of adsorbent (Fe) and adsorbate (As), both of which vary con-
siderably at the various treatment plants. To allow comparing treat-
ment plants at these different Fe and As concentrations, the framework
of a linearized isotherm graph was used.
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Our modelling approach is to consider each treatment site as an
adsorption batch reactor, where a unique Ce and qe are reached in the
treated water. In addition, a series of supplementary jar tests with either
As(III) or As(V) were carried out as a reference with known oxidation
state for As.

2. Materials and methods

2.1. Database

The database was provided by Vitens water company, and includes
data from 75 treatment sites with a wide range in groundwater com-
positions (collected in 2016). The quantity of Fe or As measurements
varied per site, with more intensive and consistent measuring programs
for treated waters as compared to groundwaters (Table 1).

Sites were excluded when the average raw groundwater contained
either (i) As below 0.2 μg/l or Fe below 0.3 mg/l (35 sites), or (ii) water
quality varied widely (amongst others due to mixing of different
groundwater wells; 7 sites). After exclusion, 33 sites remained for fur-
ther elaboration. In the raw groundwater of these sites, Fe concentra-
tions ranged from 0.2 to 8.4 mg/l (average 2.4 mg/l), As from 0.11 to
20.4 μg/l (average 2.7 μg/l), PO4 from 0.02 to 1.0 mg/l (average
0.3 mg/l), TOC from 0.2 to 8.8 mg/l (average 2.4 mg/l) and pH from 6
to 8 (average 7.2). The water treatment schemes at these sites varied
from basic aeration-filtration alone, to inclusion of pellet softening,
activated carbon filtration or split stream treatment with reverse os-
mosis. However, in none of the water treatment schemes a chemical
oxidant was applied.

2.2. Isotherm approach

The arsenic concentration in the treated water is considered as the
equilibrium concentration, Ce. Equilibrium loading (qe) of the iron flocs
is calculated according to Eq. 1. The isotherm graph is linearized by
taking the logarithm of Ce and qe.

= =q As
Fe

As As
Fe Fee

groundwter treated water

groundwater treated water (1)

2.3. Supplementary jar tests

Fe2+, As(III) and As(V) were dosed as FeSO4.7H2O, NaAsO2,
HAsNa2O4.7H2O. These chemicals were obtained as powder from
Sigma-Aldrich/Merck, with a purity of at least 90%.

For the jar test, Delft tap water was used after adjusting the pH to 7,
where HCl was used for pH adjustment. The main characteristics of this
water are shown in Table 2.

Fe doses were varied between 0.5–2 mg Fe/l, and the dose for As(III)
or As(V) varied between 5–50 μg/l. Fe and As were analysed after fil-
tration over 0.45 μm by ICP-MS (PlasmaQuant MS, Analytik Jena) at

the start of a jar test, and after a contact time of 60 min. While previous
jar tests showed that this was sufficient time for complete flocculation
[14], it is relative long as compared to contact times in practice. During
the jar test, a mixing rate of 60 RPM was maintained, and the experi-
ments were carried out at room temperature.

3. Results and discussion

Both the data points of individual treatment sites, and of the ad-
sorption isotherms obtained by the jar tests are included in Fig. 1. With
the adsorption isotherm for As(V), higher equilibrium loadings (qe) are
found as compared to As(III), when reaching a similar equilibrium
concentrations (Ce). This indicates that As(V) adsorbs more efficiently
to iron flocs than As(III), which is in-line with previous research [9–11].
Furthermore, it can be observed that the linearized adsorption iso-
therms for As(III) and As(V) are in parallel. According to Pikaar et al.,
the slope of a linearized isotherm depends on the heterogeneity of ad-
sorption sites on the adsorbent surface, while the adsorption affinity of
the adsorbate affects the vertical position of the isotherm [15]. For the
parallel isotherms of As(III) and As(V), this would imply that both have
access to the same number of sorption sites, and that As(V) has a higher
adsorption affinity with the Fe oxide surface than As(III).

The data points of individual treatment sites are found to be higher
than the isotherm of As(III). This could indicate that a base level of As
oxidation occurred, possibly due to reaction with an intermediate Fe
species that is formed during Fe oxidation [16].

However, none of the treatment sites show As adsorption as efficient
as the theoretical isotherm of As(V). One of the reasons could be in-
complete As(III) oxidation during treatment. Acceleration of As(III)
oxidation early in the treatment chain could solve this problem, and aid
in the more effective use of adsorption sites on the precipitated Fe. In
addition, adsorption of As might also be hindered by e.g. adsorption
competition, premature loss of Fe in a softener, or less effective Fe floc
formation. Furthermore, the iron hydroxides present in rapid sand fil-
ters are probably more aged than the iron hydroxides flocs formed
during the jar tests, which could also contribute to the higher As(V)
removal observed in the jar tests, as compared to the treatment loca-
tions.

The results in Fig. 1 are insufficient to explain differences in arsenic
adsorption efficiency, but it could be useful to classify them. The region
between the As(III) and As(V) isotherms can be divided in (arbitrary)

Table 1
Number of Fe and As measurements in groundwater and treated water per site.

Groundwater Treated water

# Fe measurements # As
measurements

# Fe
measurements

# As
measurements

6 - 21 1 - 8 21 – 22 6 – 7

Table 2
Composition of Delft tap water.

HCO3
− (mg/l) Cl− (mg/l) SO4

2− (mg/l) NO3
− (mg/l) Na+ (mg/l) Ca2+ (mg/l) Mg2+ (mg/l) Fe

(μg/l)
HPO4

2−

(mg/l)
pH (adjusted)

121 70 58 10 45 46 8 < 5 < 0.02 7.0

Fig. 1. Adsorption isotherms for As(III) (squares), As(V) (triangles) and in-
dividual data points of the full scale treatment site within the isotherm matrix
(diamonds).Parallel zones with similar adsorption efficiency are indicated by
dashed grey lines.
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parallel zones, as shown by the dashed grey lines in Fig. 1. Data points
within a zone represent treatment sites with similar adsorption effi-
ciency, and a guided attempt can be made to find similarities between
treatment sites within the same zone, or differences between treatment
sites with low and with high adsorption efficiency.

4. Conclusions

The linearized adsorption isotherms for As(III) and As(V) both had a
similar slope, with As(V) showing more effective removal than As(III).
These isotherms can be considered to be boundary conditions for As
removal in passive aeration-filtration systems, without application of a
chemical oxidant. Groundwater treatment was simplified as an ad-
sorption batch reactor, with a unique equilibrium concentration (Ce)
and loading (qe) for each treatment site. It was found that these data
points for each treatment site are between the adsorption isotherm for
As(III) and As(V). It is possible to classify the adsorption efficiency at
the treatment sites based on its affinity to either the As(III) or As(V)
isotherm. Classifying removal efficiency can be used in an initial re-
search phase to identify treatment plants with relative poor perfor-
mance as candidates for improvement. Furthermore, treatment plants
can be grouped into categories with similar adsorption efficiency,
aiding in the identification of common factors responsible for As re-
moval, including water quality matrix, applied treatment technologies
or operational modes.
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