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ABSTRACT
The main obstacles to achieve truly ubiquitous sensing are (i) the

limitations of battery technology - batteries are short-lived, haz-

ardous, bulky, and costly - and (ii) the unpredictability of ambient

power. The latter causes sensors to operate intermittently, violat-

ing the availability requirements of many real-world applications.

In this paper, we present the Coalesced Intermittent Sensor (CIS),
an intermittently-powered “sensor” that senses continuously! Al-

though a single node will frequently be off charging, a group of

nodes can –in principle– sense 24/7 provided that their awake

times are spread apart. As communication is too expensive, we

rely on inherent component variations that induce small differ-

ences in power cycles. This basic assumption has been verified

through measurements of different nodes and power sources. How-

ever, desynchronizing nodes is not enough. An important finding

is that a CIS designed for certain (minimal) energy conditions will

become synchronized when the available energy exceeds the design

point. Nodes employing a sleep mode (to extend their availability)

do wake up collectively at some event, process it, and return to

charging as the remaining energy is typically too low to handle

another event. This results in multiple responses (bad) and missing

subsequent events (worse) due to the synchronized charging. To

counter this undesired behavior we designed an algorithm to esti-

mate the number of active neighbors and respond proportionally to

an event. We show that when intermittent nodes randomize their

responses to events, in favorable energy conditions, the CIS reduces

the duplicated captured events by 50% and increases the percentage

of capturing entire bursts above 85%.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in ubiquitous
and mobile computing.
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1 INTRODUCTION
Batteries may compromise the viability of sensor nodes in various

ways. Batteries are bulky, short-lived, hazardous, and expensive.

To ameliorate the battery problem, researchers have been inves-

tigating different alternatives to extend lifetime and reduce costs

and form factor. The reduction in power consumption of recent mi-

crocontrollers (MCUs) and the advances in energy-harvesting (EH)

circuitry have enabled the emergence of battery-free EH sensors.

These sensors elide the constraints of batteries and extract power

from ambient energy sources such as sunlight and RF emissions.

Ambient energy sources provide perpetual power. However, am-

bient power is usually too weak to directly power a sensor node [21].

Therefore, an EH node first buffers the harvested energy until a

usable amount has been accumulated; then it operates, for a short

period of time, until the buffered energy has been exhausted [22].

Consequently, battery-less EH sensors operate intermittently (Fig-

ure 1).

Intermittent power introduces a set of new challenges that are

under ongoing investigation. For example, [2, 5, 22, 29, 30, 32]

studied the intermittent computation problem, which is concerned

with the preservation of application progress and data consistency

under frequent power failures; Hester et al. [12] investigated the

timely operation challenge, which is concerned with data freshness

after a power interrupt; and Yıldırım et al. [40] introduced event-

driven execution for the intermittent domain, which deals with

input and output operations under arbitrarily-timed power loss.

Despite these notable advances, intermittently-powered sensors

suffer from a new fundamental shortcoming: the intermittent avail-
ability of the system. Being frequently off charging compromises

the value of these devices. For example, a sensor that has a low

probability (e.g., 10% [24]) to be available (on) when an event of in-

terest occurs has no value. Overcoming the intermittent availability

challenge without changing the size of the device or re-including

batteries requires a novel approach that explores new design di-

mensions.
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Figure 1: Harvested-energy profile. Ambient power is weak;
therefore, it is usually buffered. The buffered energy is then
consumed to operate the device. The operation period is of-
ten short as power consumption is much higher than the
energy harvesting rate.
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Figure 2: A Coalesced Intermittent Sensor (CIS) is a group of
intermittently-powered nodes that sense continuously de-
spite the intermittent power supply. CIS exploits the inher-
ent randomization of energy harvesting systems, if avail-
able, and introduces artificial randomization, when needed,
to preserve continuous sensing.

1.1 Vision and Application
Miniaturized sensors are less intrusive devices than bigger ones.

Therefore, they can be embedded in locations that are not suited

for the others (enabling new applications). Miniaturizing sensors,

however, introduces the signficant challenge of powering them. On

the one hand, batteries make these sensors continuously available

-for sensing opportunities-, but with an environmental footprint

and only for a short period of time. On the other hand, removing

batteries and relying on ambient energy make them available for a

long period of time, but intermittently. Our vision
1
is that by com-

bining multiple battery-less EH sensors we can create a new virtual
sensor that operates permanently (no batteries) and reliably (con-

tinuously available): we call this sensor the Coalesced Intermittent
Sensor (CIS).

Sensors with such characteristics would allow us to add a cheap

and maintenance-free sensing layer to many objects, making them

smart and interactive. For example, one can imagine developing

smart wallpaper that users can interact with. Smart wallpaper with

embedded microphones can enable direct in-building human-to-

object communication (Figure 2). Such a permanently operating

sensor can be deployed, for example, in kids’ playgrounds to moni-

tor their occupancy. These battery-less sensors can enable interac-

tive and safe-to-dispose sports rugs (that count how many times

a person has jumped on them) or play rugs for kids. In short, we

would like to develop small sensors with permanent and continuous

sensing capabilities.

1.2 Research Challenges
Many sensing applications require the sensor to be available when

there is a change in the monitored environment. EH battery-less

sensors can provide cheap and maintenance-free sensing, but the

do not meet the availability requirements of many real-world ap-

plications.

C1-Approach continuous availability on intermittent power:
An EH battery-less sensor is frequently off, spending most of the

time charging. One way to increase the system availability is by

using multiple nodes. However, coordinating the nodes’ awake

1
An alternative approach is to combine EH with a (small) rechargeable battery [17, 18].

times using communication may introduce prohibitive overhead as

a scattering algorithm must be regularly executed, and messages

for synchronizing nodes’ clocks and reserving time slots need to be

repeatedly exchanged. Thus, the challenge is can we exploit some
of the inherent characteristics of EH battery-less sensors to distribute
nodes’ awake times without the need for communication?
C2-Continuous sensing on intermittently powered sensors:
Even when the collective availability of intermittent sensors ap-

proaches 100%, the emerging overall sensing behavior may still be

intermittent. Event-trigger sensors sleep in low-power mode wait-

ing for an event to wake them up. When ambient energy rises, the

EH rates of these sensors may equal (or approximate) their sleeping

mode power consumption. Under such energy conditions, these

sensors become available for an extended period of time. There-

fore, when an external event arrives, nodes respond collectively,

which exhausts their energy buffers, making them unavailable for

the next set of events. This is, particularly, a significant problem

when events arrive in bursts, like a command of a few words (e.g.,

light on). Thus, the challenge is, how to prevent EH battery-less sen-
sors from synchronizing their power cycles on some of the incoming
events?
C3-Efficient sensing on intermittent sensors: One of the main

factors that determine the intermittency pattern of an EH battery-

less sensor is the richness of ambient energy. For example, at mid-

noon under direct sunlight, even a small solar panel can power

a sensor node continuously. In such conditions (favorable energy

conditions), using plenty of intermittent sensors would only result

in duplicated work that leads to duplicated messages when the data

is being communicated to a sink node: a continuously-powered

node acts as a gateway for such sensors to communicate with other

layers of the Internet of Things. These messages will collide as

they will be generated at approximately the same time, and if some

of them are received by the sink, then they waste energy as they

carry the same information. Thus, the challenge is, how to reduce
the number of duplicated event detections?

1.3 Contributions
In this paper, we tackle the paradox of continuous sensing on

intermittently-powered sensors. We studied the inter-relationship

between the power cycles of EH battery-less devices, the emerging

collective behavior, and the effect of the change in ambient energy

on this behavior. In particular, this paper makes the following key

contributions:

• We show how to approach continuous sensing using multiple

intermittently-powered sensors. For that, wemodeled the col-

lective effective availability—the system availability that leads

to successful sensing—of a group of intermittent sensors and

validated our models using simulation and on real hardware

against different ambient energy sources.

• We introduce a new type of virtual sensor, showing its capabilities

and limitations. This Coalesced Intermittent Sensor (CIS) is
the abstraction of a group of intermittently-powered sensors that

achieves maximum statistical availability by exploiting (inherent)

randomization to spread nodes’ awake times uniformly.

• Contrary to common sense, we show how favorable energy con-

ditions can deteriorate the performance of a CIS. We, therefore,
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equipped the CIS with an new algorithm that makes it ambient-

energy aware. This algorithm enables the nodes to determine

their own duty cycles (without requiring additional hardware),

and the average number of alive nodes (without requiring com-

munication). This information can effectively be used by the

nodes to decide when to back off to avoid duplicated event de-

tection and availability interruptions (implicit synchronization

in favorable harvesting conditions).

• We prototype, evaluate, and demonstrate the feasibility of the Co-

alesced Intermittent Sensor concept in the form of a voice-control

commands recognizer, theCoalesced Intermittent Command
Recognizer (CICR). We chose to develop a command recognizer

as voice is a natural way for the human to interact with small

devices. Moreover, words allow us to easily experiment with in-

dividual event arrivals and events that arrive in bursts. However,

the goal of this paper is not to present a novel word recognition

technique. Instead, we adapts a classical word recognition algo-

rithm to make it power-failure immune. Yet, our CICR prototype

is the first intermittent command recognizer, shedding light on

the potential of intermittent systems.

2 RELATEDWORK
Recent advances in ultra-low-power microcontrollers along with

the development of energy harvesters have enabled the creation of

stand-alone battery-free sensors. These sensors operate intermit-

tently because the power that they harvest is weak and volatile.

2.1 Energy-harvesting systems
Energy harvesters have the potential to power devices indefinitely

as they collect energy from perpetual energy sources. Sunlight,

vibration, and radio frequency (RF) waves are examples of such en-

ergy sources. The power harvested from these sources vary wildly,

for example, RF harvestable power ranges from nW-scale when

harvested from ambient signals to µW-scale when collected from

a dedicated RF signal emitter, and solar power varies from tens of

µW to tens of mW when it is harvested by a solar panel of a few

cm
2
illumination surface [22, 31].

Many battery-less EH platforms have been proposed. Some of

them rely on dedicated external energy sources such as WISP -and

its variants-, a general wireless sensing and identification plat-

form [34, 41, 42]; WISPcam, an RF-powered camera [27] and, the

battery-free cellphone [35]. Others, harvest from ambient sources

such as the ambient backscatter tag [21], and the solar-powered

tag [25]. Platforms that facilitate the development of battery-less

EH systems have also been proposed. For instance, Flicker [11], a

prototyping platform for battery-less devices; EDB [4] an energy-

interference-free debugger for intermittent devices; and Capybara [6],

a re-configurable energy storage architecture for EH devices.

However, there is no EH platform that considers the abstraction of
many intermittent sensors (or nodes) and exploits the statistical energy
harvesting differences between them to provide reliable sensing.

2.2 Intermittent execution
Intermittent execution models enable applications to progress de-

spite frequent power failures [3, 5, 10, 23, 38]. To this end, they

decompose an application into several small pieces and save the

state of the computation on the transitions between these code

segments. Therefore, intermittent applications do not return to the

beginning of the program (i.e., main()) after each power failure.

Instead, they resume execution from the last successfully saved

progress state.

Mementos [30] proposed a volatile memory checkpoint-based
approach to enable long-running applications on intermittently

powered devices. DINO [29] enables safe non-volatile memory ac-

cess despite power failures. Chain [5] minimizes the amount of data

needed to be protected by introducing the concepts of atomic tasks
and data-channels. Hibernus [1, 2] measures the voltage level in the

energy buffer to reduce the number of checkpoints per power cycle.

Ratchet [38] uses compiler analysis to eliminate the need for pro-

grammer intervention or hardware support. HarvOS [3] uses both

compiler and hardware support to optimize checkpoint placement

and energy consumption. Mayfly [12] enables time-aware inter-

mittent computing. InK [40] introduces event-driven intermittent

execution. For our prototype implementation we adopt a power failure
protection approach similar to that of DINO [29], see Section 4.2.

2.3 Explicit duty-cycle desynchronization
Explicit duty-cycle desynchronization has been proposed in the sen-

sor network literature [7, 9, 43]. These (biologically-inspired) algo-

rithms, however, cannot be applied to desynchronize intermittently-

powered nodes as they assume that nodes (i) are able to listen to

other nodes, and (ii) can maintain a notion of global time (slots).

Listening is expensive, and keeping track of time is difficult at best

when nodes can power down at random moments. We therefor

adopt a best-effort approach.

2.4 Speech recognition
The speech recognition problem has been tackled from many an-

gles and has experienced many breakthroughs. For example, the

dynamic time warping (DTW) algorithm enables matching voice

signals with different speed (or time) [39]. Approaches based on

Hidden Markov Models showed much better performance than

DTW-based ones [20]. Hence, they became the standard techniques

for general-purpose speech recognition until artificial intelligent

algorithms [13] outperform them.

From a recognition complexity standpoint, we can classify the

speech into spontaneous speech, continuous speech, connected word,
and isolated word [8]. The continuous and spontaneous speech are the
closest to natural speech, but they are the most difficult to recognize

because they need special methods to detect words boundaries [8].

This is less the case for the connected word type, where a minimum

pause between the words is required. The type with the least com-

plexity is the isolated word, as it requires a period of silence on both

sides of a spoken word.

Speech recognition on resources—memory, computation power,

and energy—limited platforms is challenging, to say the least. There-

fore, our command recognizer targets isolated-word type of speech.

3 COALESCED INTERMITTENT SENSOR
The Coalesced Intermittent Sensor (CIS) is the abstraction of a

group of EH battery-less sensor nodes seeking to approximate the

continuous sensing availability characteristic of a battery-powered
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sensor. The design of a CIS needs to consider four main aspects:

(i) how the nodes’ awake time is distributed; (ii) the consequence

of emulating continuous sensing availability by chaining multiple

short on-times; (iii) the effect of the environment on the CIS’s

availability; and (iv) the spacial coverage of the event of interest,

which determines the diameter of the CIS.

However, let us first characterize the power cycle of an EH

battery-less device. An EH intermittent node frequently switches

between off and on, charging energy and operating. We can char-

acterize, from a time perspective, this charge-discharge (or power)

cycle using the following notation, (ton, tp), where ton is the node’s

uptime interval, and tp B ton+toff, where toff is the node’s charging

time interval.

3.1 Sensing
The ability of a CIS to sense depends on the availability of its

intermittent nodes and on the characteristics of the event of interest.

3.1.1 Coalesced availability. The CIS’s availability is the projection
of its underlying intermittent nodes’ on-times on the time axis. To

determine the expected availability of a CIS, the strategy being

employed to distribute its nodes’ on-times must be first specified.

Explicit on-time division strategy. A CIS can build on top of the

recent advancements in passive (light or RF) communication [21]

and ultra-low-power timers [12] to apply a time-division multi-

plexing strategy, minimizing overlapping on-times. For example, a

node calculates its average on-time ton and off-time t
off

for a certain

number of power cycles. Then, it encodes the information (t
off
, ton)

in a message and broadcasts it to its neighbors at the beginning

of it’s next power cycle. When a node receives this message it can

then adjust its power cycle, relative to the transmitting node’s cycle,

by increasing (or decreasing) its power consumption to shorten (or

lengthen) its on-time and subsequently shift its power cycle to a

different time slot.

With such explicit on-times control strategy, a CIS of N nodes

with on-time of ton and off-time of t
off

will have an availability

= min

(
N × ton

tp
, 100%

)
. However, we expect such an approach to

introduce significant overhead as a scattering algorithm (e.g., [9])

must be frequently executed, messages need to be exchanged, and

clocks should be synchronized. Therefore, we propose a different

on-times spreading strategy.

Implicit on-time division strategy. With no information being

exchanged between intermittent nodes, the best CIS can do is to

uniformly distribute its node’s on-times and maintaining this dis-

tribution over time. The key observation to approach uniform dis-

tribution is to ensure that the lengths of the node’s power cycles

are randomized, avoiding nodes being in lockstep indefinitely.

Let us start by assuming that we have a CIS of two nodes with

idealized power cycles and these nodes have the same initial con-

ditions. The availability of this CIS equals ton as the nodes are in

perfect synchronization (the two nodes wake up and power down

together). To extend the availability of this CIS, one of the node

should shift its on-time away from the other. If one of the nodes

sleeps for t units of time, then the on-time of this power cycle will

be ton + ∆t . Consequently, the length of this power cycle will be

Time

CIS

1 4

2node	1

node	2

available

not	avail.

turn	on

turn	off

ton

toff	=	4

Figure 3: A Coalesced Intermittent Sensor’s availability is
the emerging collective on-time of its intermittent nodes’
on-times. The difference between the power cycles leads to a
constant relative shift between the nodes’ duty cycles. This,
in turn, causes their on-times to be uniformly distributed
on the overall power cycle. The red bars indicate a mini-
mum CIS time span—CIS nodes are overlapping—whereas
the green bars show the maximum time span of the CIS.
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Figure 4: Coalesced Intermittent Sensor availability for a dif-
ferent number of nodes and different duty cycles. The nodes
are uniformly distributed and the CIS on-time evolves,
when adding new nodes, according to equation 1.

tp +∆t , delaying the next awake time by ∆t . If the node sleeps only
once, then availability of the CIS will equal min (2 × ton |ton + ∆t)

However, if the initial conditions are unknown, then shifting a

node’s on-time a constant number of times may cause the initially

desynchronized nodes to become synchronized, collapsing the CIS’s

availability instead of extending it. Therefore, a safer option is to

constantly shift the awake time of the node. In this case, the on-time

will shift over the entire power cycle of the other node, spending
toff
tp

and
ton
tp of the time overlapping with the other node’s off-time and

on-time, respectively. This behavior is illustrated in Figure 3, where

node 1 and node 2 have power cycles of (2,6) and (1,5). Following

the time axis from the left to the right, we can observe that the

position of the on-time of node 2 is shifted by -1 unit of time relative

to the on-time of node 1 after each power cycle of node 1. This

implies that the on-times of the two nodes are
1

3
of the time cluster

together and
2

3
of the time they are apart (from an external event

standpoint, the on-times are uniformly distributed over the longest

power cycle, as they have the same probability to be anywhere

when the event arrives). To model the availability of a CIS of N
nodes, we first model the nodes’ on-times and power cycles. If we

represent the on-time of a node with a random variable Rn and

find its expected value E(Rn) then we can approximate any CIS
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Figure 5: Nodes’ power cycles length for different ambient
energy sources, and different energy buffer sizes.

node’s on-time with mean of the expected values of the nodes’ on-

times, i.e., ton =
1

N ×
∑N
i=1 E(Rn)

i
(intuitively, since we assume CIS

nodes have the same energy buffer, their expected on-times should

approach the same value; we relax this assumption in Section 5.2.4).

Using a similar analogy, we can define the mean of the expected

values of the power cycles lengths as tp =
1

N ×
∑N
i=1 E(Rp)

i
. Now,

we can model the availability of a CIS of N nodes as:

Av(N ) = Av(N − 1) + (1 −Av(N − 1)) ×
ton
tp
, (1)

for the initial case where N = 1 we define Av(0) B 0. Figure 4

shows the availability of CIS when N ∈ {1, 2, .., 20} and nodes’

duty cycles
ton
tp ∈ {10%, 20%, .., 50%}. We can conclude from the

above discussion that to approach uniform distribution of nodes’

on-times, the lengths of the power cycles need to be randomized
2
.

The power cycles of EH battery-less devices are inherently ran-

domized and different because the power source (ambient energy) is

volatile and the harvesters are not perfect devices (notice that, even

battery-powered wireless sensor nodes require a synchronization

protocol to correct for the drift in their local clocks). Our own mea-

surements using different EH devices and different energy sources,

i.e., solar and RF, also confirm that the power cycles of intermittent

nodes are different and randomized (Figure 5). Therefore, we expect

their on-times to be uniformly distributed (we will challenge our

expectation in Section 5).

3.1.2 Events classification. The availability of a CIS is not a single

stretched interval: it is a chain of short intervals. Therefore, it is

important to classify from a CIS perspective which types of events

the CIS is best suited for.

• Short events: are events that can be captured using single inter-

mittent node. For example, a spoken word can be seen as a short

event if the energy needed to record it is less than what the

energy buffer, i.e., the capacitor, can store.

• Long events: are events that need more energy to be completely

captured than what the energy buffer can store. Long events can

be subdivided into three categories:

– Simple: is a long event that can be captured using single inter-

mittent node—capturing part of it is sufficient to obtain all the

information of interest—such as the sound produced by the

friction between two moving parts of an engine.

– Burst: is a group of short events that requires multiple intermit-

tent nodes to be captured such as a command of a few words

(e.g., room temperature up).

2
Note that, having power cycles of lengths that are multiples of each other is a very

unlikely as nodes’ energy buffers are assumed to be of the same size.
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) (modeled) availability

(simulated) availability
(modeled) effective availability
(simulated) effective availability
(simulated) captured events

Figure 6: Simulating the availability, the effective availabil-
ity, and successfully captured events of a CIS of 10 nodes
with a node duty cycle ∈ {10%, 20%, ..., 50%}.

– Complex: is a long event that must be fully captured to be

recognized. For example, sampling a gyroscope attached to a

moving device (e.g., a toothbrush).

Based on the above classification, we can argue that designing a CIS

for long events is not like designing it for capturing short ones. For

example, while capturing a short event may require continuous CIS

availability, capturing a long simple event that is longer than the

power cycle tp does not require extending the availability of a single
intermittent node. Furthermore, capturing a long complex event

may require data fusion and processing that require the CISs’ nodes

to communicate the raw data to a more powerful node, which may

lead to significant overhead. However, this paper focuses on short

and long bust events as they cover a wide range of applications

(e.g., voice-controlled human-object interface).

3.1.3 Effective Availability. Approaching continuous availability
does not mean that a CIS can successfully capture all events. It

can happen that an event is being only partially captured by one

or more nodes, which may lead to unsuccessful event detection.

Therefore, it is important to specify the effective availability of a

CIS that leads to a successful event capturing (which we assume

leads to successful sensing).

Polling-based Sensing. Let us assume that we have a CIS of a

single intermittent node monitoring a short event of length te. For
capturing the entire event, the event has to arrive within the inter-

val, ton − te, which we call, the effective on-time of an intermittent

node. Therefore, the effective availability of a CIS of N nodes is

the joined effective on-times of the underlying intermittent nodes,

which can be modeled as,

Av(N ) = Av(N − 1) + (1 −Av(N − 1)) ×
ton − te

tp
, (2)

Event-driven Sensing. An intermittent sensor has a limited energy

budget per power cycle. When it is tasked with a polling-based sens-

ing activity, its energy consumption, generally, switches between

two levels: zero when charging and maximum when sensing. How-

ever, in event-based sensing, a node puts its MCU into low-power

mode and waits (or listens) for an external event to wake up the

MCU. For example, in our prototype, a voice-controlled command

recognizer, we exploit the microphone’s wake-on-sound feature to

send an interrupt to the MCU, which will then start recording the

sound samples from the microphone. This wake-on-event style of
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operation is important as the minimal energy consumption during

sleep significantly prolongs the period during which an event can

be handled (for example, our prototype consumes 7 times less en-

ergy during sleep compared to being active). To model the effective

CIS availability when it is tasked with event-based sensing the

change in energy consumption between the sleep and active mode

must be taken into account. Since the event itself times when the

node changes its energy consumption, we can model the effective

availability as,

Av(N ) = Av(N − 1) + (1 −Av(N − 1)) ×
ts − (te ×

pa
ps )

tsp
, (3)

where ts is the expected sleep time of the CIS nodes, tsp B ts + toff,
and pa and ps are the power consumption in active and sleeping

mode, respectively. Notice that, there is a subtle point about equa-

tion 3 as when an event arrives the node wakes up, consuming more

energy. Therefore, its uptime shrinks. We, for simplicity, modeled

this effect by extending the event time with the same factor. This

is sufficient to say if that the event will be fully captured or not

(effective availability).

3.1.4 Simulation. As a first sanity check on our models, we sim-

ulated 10
5
power cycles of a CIS of 10 nodes (Figure 6). The duty

cycles of the nodes range from 10% to 50%, while the event length

is fixed at 3% of the power cycle length, tp. The on-times and event

arrivals were uniformly distributed over the power cycles. The re-

sults clearly confirm our models and support our argument about

the distinction between CIS’s availability and effective availability

(notice that the percentage of captured events matches the effec-

tive availability). The importance of this distinction—availability

versus effective availability—is a function of the value
te
ton ; observe

the difference between availability and effective availability when

nodes’ duty cycle is 10% (large effect) and 50% (negligible effect).

3.2 Environment
Ambient energy controls the availability of a CIS nodes. Conse-

quently, it also controls their collective response to external events.

When it rises, it extends nodes’ on-times that may lead node’s

power cycles to be synchronized on the arrival of some external

events, compromising the CIS’s overall availability. To overcome

this problem the CIS nodes must be power-state aware and able to

estimate the number of active nodes in the CIS.

3.2.1 Power States. A CIS can experience a wide range of ambient

power intensities. For example, a solar-powered CIS may harvest

no energy at night, modest energy from artificial light, and abun-

dant energy from direct sunlight. Generally, we can identify four

different CIS powering states:

• Targeted power state—These are the powering conditions that

a CIS is designed for. In these conditions, the CIS should work

intermittently and have sufficiently randomized power cycles to

uniformly distribute its intermittent nodes on-times and meet the

desired availability (Figure 4). In general, the targeted powering

conditions should be near worst energy harvesting conditions to

ensure that the system is properly functioning for the majority

of the time.
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Figure 7: Capturing events may lead synchronized power cy-
cles of nodes that were in low-power mode. In particular, if
some of the nodes power down while capturing an event,
then this implies that these nodes slept (prior to the event)
longer than the nodes that capture the event. This means
that the nodes that have died spent their energy slower (they
stayed longer in sleepmode); therefore, their overall uptime
is longer than the uptime of the node the captured the event.
In other words, the nodes that woke up earlier have stayed
longer on, and therefore, the next power cycles aremore syn-
chronized, see the ∆t before and after the event.

• Under-targeted power state—Ultimately, the ambient energy is

an uncontrollable power source, and it is not hard to imagine

scenarios where a CIS will be under-powered or even comes

to complete and long power down (for example, a solar CIS

will come to a perpetual power down in darkness). In general,

for under-targeted energy conditions, the CIS behavior can be

considered as undefined.

• Hibernating power state—In event-driven sensing, nodes sleep

in low-power mode waiting for an event to wake them up. This

mode extends CIS nodes’ on-times andmakes them overlap signif-

icantly. Moreover, the on-times overlap evenmore, when ambient

energy level rises (favorable energy conditions). If an event ar-

rives in such conditions, it will wake up many nodes, causing

them to consume their buffered energy much faster. Some of

these nodes will power down before capturing the entire event,

while others survive. This difference in how much energy is

spent in active and sleep mode causes these nodes to tend to

synchronize their power cycles after the event. To understand

why let us analyze the example presented in Figure 7. The figure

shows the power traces of two nodes. the nodes consume 7 times

more power in active than in sleep mode (our prototype has a

similar power consumption ratio, Table 3). Further, it shows that

a node sustains the low-power mode for 90 units of time, ts = 90;

therefore, the maximum buffered energy can be calculated as

E
buf
= ts × ps,

where ps is a node’s power consumption in sleep mode. If we

focus on the power cycle with the first event, then we see that

node R powers up at t0, and it remains in low-power mode for

50 units of time, whereas node G spends only 20 units of time

before the event arrives. Now, we can calculate when these two

nodes will power down and compare the difference, ∆t , before
and after the event. A node will turn off when the buffered energy

is depleted. This can be expressed as follows,

E
buf
= tse × ps + ton × pa,
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where tse is the sleep time of the power cycle that an event arrives

in, ton is a node’s on-time and pa is the power consumption

in active mode, which can be expressed as pa =
δ
ps . tse and

δ are given and ps can be eliminated; thus to find when the

nodes will power down we need to find ton for both nodes. By

substituting the given values we find ton to be 10 and 5.7 units of

time for the G and R node, respectively. Therefore, ∆t becomes

4.3 while it was 30 before the event (notice,
30

7
≈ 4.3). In general,

nodes that die while capturing the event must have started their

power cycles before the nodes that capture the event. Further,
the uptime of the died-while-capturing nodes is longer than the

nodes that capture the event because they spend less time in

active mode. Therefore, the difference, ∆t , between the power

cycles of a died-while-capturing node and a node the successfully

captures the event becomes smaller. This difference shrinks by

a factor δ =
pa
ps . When the events arrive in burst this becomes a

significant problem, as a CIS will capture multiple copies of the

first event, while missing the subsequent ones.

• Continuous power state—Under direct mid-noon sun a tiny solar

panel may provide sufficient power to run a sensor node contin-

uously. In such conditions, a CIS node will be available and able

to sense continuously. Therefore, the job of a single node will

be repeated N times, and instead of sending a single message to

a sink—to push the data to the Internet—N identical messages

will be sent. These messages will collide as they are sent at about

the same time, causing the information to be lost; if they arrive,

however, they -except the first one- will waste energy of the sink

as they carry the same information.

The inefficiencies highlighted in the hibernating and continuous

power states can be mitigated by enforcing randomization on the

response of intermittent nodes : when a node is woken up by an

external event it responds to that event with a certain probabil-

ity. However, if the randomized response is enforced all the time,

then the CIS will have a lower probability of catching events dur-

ing the targeted energy conditions state. Therefore, the CIS has to

distinguish between the targeted and above-targeted energy condi-

tions and randomize its response only during the hibernating and

continuous power states.

Furthermore, responding with a constant probability during

the above-targeted energy conditions is inefficient, as the number

of active nodes is a function of the total number of intermittent

nodes and the power intensity at that time. Therefore, efficient

randomization requires intermittent nodes to estimate the number

of active nodes and respond proportionally. Our proposed algorithm

for estimating the number of active nodes depends on the nodes

ability of measuring their on-times and off-times.

3.2.2 Intermittent Timing. Timing is a key building block of sens-

ing systems. It is, however, missing on intermittent nodes unless

an additional dedicated (RC-based) timer is included [12]. Here we

propose an alternative that does not require additional hardware.

This alternative does not only enable time estimation but also am-

bient energy richness, which is very important for estimating the

number of a node’s active neighbors. But, how a node can time its
own on/off cycle?

Intermittent nodes fail abruptly; therefore, a persistent timer

is needed to measure node’s on-time. A simple way to emulate

Ehar
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discharging without 
harvesting
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Figure 8: The difference in the time of discharging the en-
ergy buffer—anode’s on-time—when anEHdevice is allowed
to charge while operating, and when it is not allowed.

Algorithm 1 off-time estimation

1: Rcntr++ ▷ reboot counter

2: E
buf

▷ Size of energy buffer

3: ta ▷ time of discharging E
buf

at load a, no harvesting

4: Xcy ▷ time every X power cycles

▷ Code executed on each X power cycles

5: if (Rcntr == Xcy) then
6: fload(a) ▷ set node load to a
7: ton ← time() ▷ measure time until power down

8: end if
▷ Code executed on each X + 1 power cycles

9: if (Rcntr == Xcy + 1) then
10: ∆t = ton − ta ▷ time difference due to charging

11: E
har
← E

buf
×

ta
∆t ▷ harvested energy

12: Pin ← E
har
÷ ton ▷ incoming power

13: t
off
← E

buf
÷ Pin

14: Rcntr = 0

15: end if

persistent timer is by using a persistent counter, or sampling the

volatile built-in timers of the MCU and save the obtained values in

the non-volatile memory. To estimate the off-time, t
off

in Figure 8, a

node needs to determine the incoming power (harvesting rate). The

average harvesting rate can be induced from the on-time as follows.

The node measures its on-time while harvesting, see ton in Figure 8,

and compares it to the time required to drain the energy buffer

without charging, see ta in Figure 8. The additional on-time, ∆t , is
the result of the energy accumulated while executing. If ton and ta
are measured on the same load—thus, they have the same power

consumption—then the amount of the energy harvested while the

device is on can be calculated as in Line 11, Algorithm 1. And, the

average input power can be found as in Line 12 that, in turn, enables

the node to estimate its own t
off

(Line 13). Since calculating the off-

time requires constant load, the sensor cannot run arbitrary code

during time measurement. Therefore, the sensor needs to sacrifice a

certain percentage of its power cycles for measuring time (Line 1-7).

Once the on-time and off-time are found the node’s power cycle

for load a is determined.

Notice that, when the harvested power is very low the accu-

racy of inferring the charging time from the discharging degrades.

However, for the Coalesced Intermittent Sensor this is not a serious

problem as the intermittent nodes need to randomize their response

to events only in favorable energy conditions.
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Figure 9: The average duty cycles of 8 solar-powered and
6 RF-powered intermittent nodes for different ambient en-
ergy sources and energy intensities. In general, the average
duty cycle of a node is a good indicator of the average duty
cycle of the other CIS nodes.

3.2.3 Alive nodes estimation. To estimate the number of active

nodes, a CIS node needs to determine the following information:

(i) the total number of nodes in its CIS, which is a typically constant

value that can be loaded to the device memory; (ii) the on-times

distribution, which is uniform in our case; and (iii) its own average

ton and t
off
.

Since, we assume that a CIS nodes have the same energy buffers

and are in the vicinity of each other (thus, they are exposed to the

same energy conditions) then their duty cycles should approach

the same value. Figure 9 shows the average duty cycles of the nodes

of a solar- and RF-powered CISs. In general, we can conclude that

a node’s average duty cycle is a good estimator of other CIS nodes’

duty cycles. Now, a node can estimate the maximum time span,

tmax, of its CIS, which is the total duration of the nodes’ on-times

when they are aligned next to each other, as follows

tmax = N × ton. (4)

Then, from equation 1, the node calculates the CIS availability,

Av(N ). As we argued in Section 3.1.1, nodes on-times are uniformly

distributed; therefore, the overlapping on-time is also uniformly

distributed. As such, a node can calculate the average number of

active intermittent nodes, Nactive, using the following formula,

Nactive =
tmax

tp ×Av(N )
. (5)

3.2.4 Response randomization factor. Once a node has estimated

the number of active neighbors, Nactive, it can use the following

formula to determine the response probability,

Presp =

{ Nresp

Nactive

if

Nresp

Nactive

< 1

1 otherwise,
(6)

where Nresp is a system parameter that reflects the desired re-

dundancy factor required by an application.

Table 1 shows the average number of active nodes of an 8-nodes

CIS for different light intensities. These measurements provide a

sanity check on equation 5. For example, at 1200 lux an individual

node of our CIS has a duty cycle of ≈ 62%, i.e., it is on average 0.62 tp
operating. If we multiply that by the number of nodes (equation 4)

we get about 5 tp. Figure 4 indicates that a CIS with eight nodes of

duty cycles above 50% has near 100% availability. From equation 5,

we find that the expected number of clustered nodes is 5 confirmed

by the measurements presented in Table 1.

Table 1: Measuring intermittent nodes overlapping of a CIS
of 8 intermittent nodes for different light intensities.

light (lux) on/off cycle (%) Nactive std
300 8 1.01 0.85

500 17 1.63 0.98

800 31 2.88 1.50

1200 62 5.05 1.08

4 PROTOTYPE: COALESCED INTERMITTENT
COMMAND RECOGNIZER

The coalesced intermittent command recognizer (CICR) is a pro-

totype of the Coalesced Intermittent Sensor. The CICR consists

of eight
3
battery-less intermittent nodes. Each node is capable of

performing isolated word recognition.

4.1 Hardware
A CICR node consists of thee main parts: a microphone, a MCU, and

a harvester. MSP430RF5994 [37], an ultra-low-power MCU, is used

for data acquisition and processing. This MCU has a 16-bit RISC

processor running on 1 MHz, 8KB of SRAM (volatile), 256KB of

FRAM (non-volatile), and a 12-bit analog to digital converter (ADC).

It also features a Low Energy Accelerator (LEA), which offloads the

main CPU for specific operations, such as FFT. For recording we use

the PMM-3738-VM1010-R piezoelectric MEMS microphone, which

features Wake on Sound and ZeroPower listening technologies [28],

allowing both the MCU and the microphone to sleep in a low-power

mode until a sound wave is detected. The MCU and microphone

are powered by a BQ25570 solar power harvester [36] connected

to an IXYS SLMD121H04L solar cell [16] and a super-capacitor of

470 µF. For debugging we used the Saleae logic analyzer [33].

4.2 Software
The CICR runs power interrupts immune command recognizer. The

recognizer is capable of recognizing isolated-word type of speech.

The main parts of the recognizer are illustrated in Figure 10 and

explained below:

Data acquisition. TheWake-on-Sound feature of the microphone

triggers the data acquisition process once the energy level in the

sound signal crosses a certain level. The ADC, then, samples the

output of the microphone at 8 kHz. This sampling rate is sufficient

to cover most of the frequency range of the human voice. The

recording length was set to 285ms, which suffices to get all the

acoustic features needed to recognize the words.

Feature Extraction. For word recognition, we adopted the method

presented in [14]. Here, we briefly describe the algorithm for con-

venience. The CICR starts by dividing the signal into frames of 256

samples (≈ 33 milliseconds). Then, it computes a 256-point Fast

Fourier Transform for each frame. The resulting feature vectors are

normalized (by computing the binary logarithm of each entry of

that vector) to reduce detection errors that result from differences

in the amplitude of the speech input. This feature vectors are the

basis for the word-identification process.

3
The number of nodes is bounded by the hardware available to us.
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Figure 10: The Coalesced Intermittent Command Recog-
nizer (CICR) features a power-failure-immune word recog-
nizer. First, a word is recorded. Then, its spectral features are
extracted. The resulting feature vector is compared against
previously-stored words for recognition.

Feature Matching. Feature matching is achieved by computing

the the squared Euclidean distance between the normalized feature

vectors of the recorded word and the feature vectors of the words

stored during the training phase (templates, see Table 2). Once the

recorded word has been compared to all template words, the tem-

plate with the smallest distance to the recorded word is considered

the correct word. However, if the smallest distance is bigger than a

confidence threshold, then the CICR will return "undefined word".

We have experimented with two feature matching algorithms:

the Linear Distance Matching (LDM) and Dynamic Time Warping

(DTW) algorithm. While LDM compares the feature vectors of

two words successively, DTW looks for the minimum distance

between the two vectors. In our implementation, the DTW was

about 10 times slower than LDM, whereas the detection accuracy

was comparable; therefore, we default our implementation to LDM.

Power-Failure Protection. In order to preserve the progress state

and to protect CICR data against randomly timed power failures, we

split the recognition program into 19 atomic regions. We ensured

that each of these regions requires less energy than what the energy

buffer can provide with a single charge. The program state is check-

pointed in non-volatile memory on the transition between these

regions. This prevents the program from falling back to its start-

ing point (main()) after each power failure. Data in non-volatile

memory with Write-After-Read dependency is double-buffered to

ensure data integrity when the power supply is interrupted.

Code profiling. The entire command recognition software was

written in C. The total program consists of 973 lines of code, exclud-

ing the FFT function, which is imported from the Texas Instrument

DSP library. The memory footprint on the MCU is 20,064 bytes of

FRAM and 1,134 bytes of SRAM.

The power usage of a node differs according to its activity. When

a node is waiting for a voice event, it is in low-power mode. Record-

ing a voice event activates the microphone, ADC and MCU (maxi-

mum power consumption). Processing the recorded data requires

only the MCU to be on. Table 3 lists a node’s power consumption

for each of these states (sleeping, recording, and processing), as

measured with a Monsoon power monitor [26].

5 EVALUATION
To evaluate the performance (availability) of the Coalesced Intermit-

tent Sensor, we conducted several experiments in different energy

conditions and with different event arrivals patterns.

Table 2: Test set

on off

stop clear

load go

pause resume

edit cancel

Table 3: Power usage

State Current (µA) time (ms)

Sleeping 64 ±20 —

Recording 423 ±20 285

Processing 282 ±20 600

5.1 Availability
Irrespective of the energy source (RF or light) we showed in Fig-

ure 5 that the power cycles of a CIS’s nodes are different, which

leads to a uniform distribution of their on-times, as we argued

in Section 3.1.1. We captured the expected joined availability of

these nodes in Model 1. Here, we validate model by comparing the

modeled availability of a CIS against data captured with different

hardware (solar- and RF-powered nodes) in different scenarios. Fig-

ure 11 shows the availability of three CISs when they are powered

by sunlight, artificial light, and RF and for a different number of in-

termittent nodes. The results clearly confirm our expectation: when

the power cycles are slightly different, the on-times are uniformly

distributed. The results also validate our model; the dashed lines

represent the modeled availability when the nodes duty cycle is

15%.

5.1.1 Availability on a Fine Scale. Since the nodes’ on-times are in

a constant shift relative to each other (Section 3.1.1), the collective

availability of the CIS fluctuates when it is observed in a short time

window. Figure 12 captures CIS availability on a time window of

5 seconds for thee different ambient energy conditions. In these

experiments, the average power cycles of the CIS nodes are (3,18),

(3.9,12.3), and (4.3,11.5) seconds when ambient light intensity are

500, 800, and 900 lux, respectively. If we focus on the line graphs

associated with 500 and 800 lux and compare the system availability

within the interval [20, 50] seconds and the rest, we can observe

that the CIS gradually alternates between low and high collective

availability; nodes’ on-times gradually transition from maximum

to minimum separation and vice versa (Section 3.1.1). Notice that,

when ambient light intensity was 800 lux the CIS collective availabil-

ity transited from low to high to low, while this pattern happened

to be reversed when light intensity was 500 lux. For the 900 lux the

8-node CIS achieved near-continuous 100% availability.

5.2 Sensing
5.2.1 Experiment setup. After validating our observation on differ-

ent energy sources, we designed a testbed with controllable light

intensity for clarity and reproducibility. To this end, we blocked

uncontrollable light sources with a box of 60 × 40 × 40 cm. On the

box ceiling, we attached a light strip of 2.5m with 150 LEDs that can

produce 15 different light intensities. On the bottom a Coalesced

Intermittent Command Recognizer of 8 intermittent nodes is placed

(see Section 4.1 for hardware description).

The events in our experiments are spoken words (Table 2). Short

events (see events classification in Section 3.1.2) are represented

with individual words, while burst events are represented with
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(a) The CIS is powered by uncontrollable
light sources—artificial light (night) and sun-
light (day).
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(b) The CIS is powered by a controllable ar-
ray of LEDs.
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(c) The CIS is powered by an RF reader [15]
located 30-70 cm away from the RF tags
(WISPs [34]).

Figure 11: The Coalesced Intermittent Sensor’s availability for differed energy sources and number of nodes. The modeled
availability (dashed red lines with nodes’ duty cycles of 15%) approximates the measured availability with high accuracy.
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Figure 12: CIS availability smoothed with a 5-second time
window.

phrases of a few words. We recorded different patterns of inter-

event and inter-bust arriving time.We used a Bluetooth speaker [19]

to replay a certain recording.

5.2.2 Events detection rate. Here we experiment with the behav-

ior of a CIS when events arrive individually or in bursts without
enabling randomized response in favorable energy conditions.

Individual events. Figure 13 shows the percentages of capturing
duplicate and unique events when light intensity varies from 300 lux

to 1400 lux and the inter-event arrival time ranges from 1 second

to 6 seconds. For each experimental trial 20 words were played,

resulting in a total of 240 playbacks.

Figure 13 shows a positive correlation between light intensity

and the number of detected events. In particular, the number of du-

plicate detections rises dramatically when light intensity increases,

demonstrating the overpowering problem (Section 3.2.1). Moreover,

increasing the inter-event arrival time also surges the number of

duplicated events. The reason for this is that when the time between

events increases, the intermittent nodes get the chance to sleep

longer in low-power mode, consuming less energy. Thus, nodes’

on-times expand, reducing their inherent randomization, which

leads them to be in hibernating power state (Section 3.2.1).

Bursty events. Figure 14a shows the capturing behavior of a CIS

when the events arrive in bursts. A burst of four events with one

second between the individual events was fired every 20 seconds.

Each burst was repeated 10 times and under four different light
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Figure 13: Duplicate and unique events captured by a co-
alesced intermittent command recognizer of eight solar-
powered nodes. In general, the number of captured events
increases in two case: when light intensity rises and when
inter-event arrival time increases. Red numbers indicate
events arrival interval in seconds.
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(a) When capturing a burst of
4 events without randomizing
the response, the majority of the
nodes reacts to the first event
in the burst and powers down
shortly after, missing the rest of
the burst.
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(b) Response randomization en-
ables a CIS to capture the en-
tire burst of events with high
capturing rates. It also reduces
the number of duplicated events.
Red numbers indicate events in-
dex in a burst.

Figure 14: Capturing bursts of events when CIS nodes’ re-
sponse is immediate (a) or randomized (b).

intensities. The nodes sleep in a low-power mode when they finish

processing an event, waiting for the next one.

In general, we observe that in favorable energy conditions (above

500 lux) intermittent nodes react to the first event of a burst and

power down shortly after, missing the rest of the burst. These

results confirm our argument about the side effect of the hibernating
power state of a CIS (Section 3.2.1). These results also demonstrate
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that the hibernating power problem happens on a wide range of

power intensities, showing its significance. Next, we will show how

randomizing the response can mitigate the problems generated

when ambient energy exceeds the design point.

5.2.3 Events detection rate with randomization. Here, we examine

the effect of enabling artificial randomization on the CIS’s response.

Individual events. Table 4 compares the number of detected

events when the CICR’s response is randomized and when not.

When randomization is enabled, nodes respond to events with

a probability of 65% for the scenario of (800 lux, 6 seconds) and

(1400 lux, 4 seconds), and for the highest energy level and the longest

inter-event arrival time the responding probability was set to 30%.

Table 4 shows that randomizing the response reduces duplicated

events by an average of ≈50%, while only marginally lowers the

number of the uniquely detected events (7% on average).

Bursty events. To enable a CIS to capture events that arrive in

bursts, the response probability for each event in a burst should be

different. The CIS should respondwith aminimumprobability to the

first event in a burst and gradually increase the response probability

for the subsequent events in the burst (we assume that between

the bursts the CIS resumes to its expected collective availability).

This gradual increment to the responding probability is motivated

by the observation that when a node captures an event it becomes

unavailable for the subsequent ones in the burst. In this experiment,

the nodes reacted with a probability of 40%, 50%, 70% and, 100%

on the first, second, third and fourth event, respectively. Since the

event distribution is known these probabilities were fixed during

the development stage.

Figure 14b shows how randomizing the CIS response spreads the

nodes’ awake times–as compared to Figure 14a–and enables the CIS

to capture the entire burst with a high probability, i.e., above 85%.

However, capturing the signal of a word does not ensure correct

word recognition as the recognition algorithm is not robust to

ambient noise. As a consequence, our word recognizer achieved an

acceptable recognition accuracy of 76.6% on average.

5.2.4 Different energy harvesting rates. A valid concern is that

neighboring nodes may harvest energy at different rates (e.g., be-

ing in direct sunlight vs. in the shade) leading to a different view

on the effective power cycle, in turn, yielding different response

probabilities. Figure 15a shows (in green) that the length of a power

cycle can differ by as much as a factor of two between low and high

intensity lighting. Note that this data is from nodes that employ

the wake-on-event strategy and –in good lighting conditions at the

right– spend most of their on time in low-power mode (in blue),

allowing them to charge while sleeping. That also explains their

very short off times (in orange).

To see what the effect of the different energy harvesting rates

(and corresponding response probabilities) is we ran a simulation

experiment with 10 nodes where we varied the number of nodes

in the shade (400 lux) and sunlight (1200 lux) running at 16% and

50% duty cycle, respectively. The response probabilities were set to

achieve a 2.5 factor of redundancy following Equation 6. Figure 15b

shows that the CIS availability (i.e., the number of uniquely captured

events in green) is not dramatically affected by the distribution of

nodes over sun/shade. This is in part due to the redundancy (cf. the

Table 4: The number of unique/total detected events. Ran-
domizing the response reduces the number of duplicated
events by 50% while losing only 7% of the unique events.

(lux,second) (800,6) (1400,4) (1400,6)
randomization∗ 205/432 236/675 223/493

no randomization 240/831 240/938 240/1802

∗
A node’s response probability is 65% in the first two

scenarios, (800,6) and (1400,4), and 30% in the third.
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Figure 15: The effect of non-uniform energy distribution.

number of captured events in orange), but mainly caused by the

adequate response (sleep on it) of the “sunny” nodes.

6 CONCLUSION AND FUTUREWORK
This paper addresses the availability problem of intermittent sen-

sors that fail to capture (and process) events while charging their

energy buffer. As the power to drive a node is much higher than

what can be harvested from ambient sources, the chance of captur-

ing an event can be as low as just 8% (sunlight) and 4% (RF) (cf. the

duty cycles reported in Figure 9). To address this problem of miss-

ing most events we presented the Coalesced Intermittent Sensor

(CIS), which is the abstraction of a group of intermittently-powered

sensors, whose collective duty cycle (on-time) can approach the

desired 100% availability. The inherent differences in the powering

subsystem of intermittent sensors result in (slight) differences in

the sensor nodes’ power cycles causing the nodes’ on-times to be

uniformly distributed. This implies that simply selecting the right

number of nodes is all that is required. To this end we have modeled

the (effective) availability of a CIS and validated its accuracy against

data collected on real hardware.

Experimentation with an 8-node prototype CIS, a basic voice-

control application recognizing up to 4-word commands, showed

that the inherent randomization in the power cycles can easily be

disrupted. In case the ambient power exceeds the (worst-case) de-

sign point and nodes employ an efficient wake-on-event sleep mode,

all nodes wake-up on the same (rare) event. If the energy buffer

is small then they all enter the charging state at approximately

the same time (unwanted synchronization) and subsequent events

(words) will be missed (compromising availability). To counter this

unwanted behavior, we proposed to use a probabilistic approach
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in which the number of active neighbors is determined and nodes

respond proportionally to an event. This approach was shown to

be effective for our prototype, capturing burst events with above

85% detection accuracy.

In the futurewe plan to dive deeper in studying partially captured

data. Intermittent sensors may partially capture events. Classical

recognition algorithms face difficulties dealing with partially cap-

tured data. Therefore, we want to investigate how much machine
learning algorithms can improve the sensing quality of intermittent
sensing?

7 ACKNOWLEDGEMENTS
We like to thank Stephan Wong for his contributions in the early

stages of this work, and the anonymous referees for their comments

helping us to polish the paper to perfection.

REFERENCES
[1] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez Arreola, Da-

vide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and Luca Benini. 2016.

Hibernus++: a self-calibrating and adaptive system for transiently-powered em-

bedded devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 35, 12 (2016), 1968–1980.

[2] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi,

Davide Brunelli, and Luca Benini. 2014. Hibernus: Sustaining computation during

intermittent supply for energy-harvesting systems. IEEE Embedded Systems
Letters 7, 1 (2014), 15–18.

[3] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient code instrumen-

tation for transiently-powered embedded sensing. In Information Processing in
Sensor Networks (IPSN), 2017 16th ACM/IEEE International Conference on. IEEE,
209–220.

[4] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P Sample. 2016. An

energy-interference-free hardware-software debugger for intermittent energy-

harvesting systems. ACM SIGPLAN Notices 51, 4 (2016), 577–589.
[5] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels for reliable

intermittent programs. ACM SIGPLAN Notices 51, 10 (2016), 514–530.
[6] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A reconfigurable energy

storage architecture for energy-harvesting devices. In ACM SIGPLAN Notices,
Vol. 53. ACM, 767–781.

[7] Julius Degesys, Ian Rose, Ankit Patel, and Radhika Nagpal. 2007. DESYNC:

self-organizing desynchronization and TDMA on wireless sensor networks. In

Proceedings of the 6th international conference on Information processing in sensor
networks. ACM, 11–20.

[8] Santosh K Gaikwad, Bharti W Gawali, and Pravin Yannawar. 2010. A review on

speech recognition technique. International Journal of Computer Applications 10,
3 (2010), 16–24.

[9] Alessandro Giusti, Amy L Murphy, and Gian Pietro Picco. 2007. Decentralized

scattering of wake-up times in wireless sensor networks. In European Conference
on Wireless Sensor Networks. Springer, 245–260.

[10] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence Be-

yond the Edge: Inference on Intermittent Embedded Systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 199–213.

[11] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid prototyping for the battery-

less internet-of-things. In Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems. ACM, 19.

[12] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution on Inter-

mittently Powered Batteryless Sensors. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems. ACM, 17.

[13] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups. IEEE Signal processing
magazine 29, 6 (2012), 82–97.

[14] Greg Hopper and Reza Adhami. 1992. An FFT-based speech recognition system.

Journal of the Franklin Institute 329, 3 (1992), 555–562.
[15] Impinj Inc. 2018. Impinj Speedway R420 RFID Reader Product Information.

https://www.impinj.com/platform/connectivity/speedway-r420/. Last accessed:

Apr. 8, 2019.

[16] IXYS Corporation. 2018. IXOLAR™ High Efficiency SLMD121H04L Solar Module.

http://ixapps.ixys.com/DataSheet/SLMD121H04L_Nov16.pdf

[17] Neal Jackson, Joshua Adkins, and Prabal Dutta. 2018. Reconsidering batteries in

energy harvesting sensing. In Proceedings of the 6th International Workshop on
Energy Harvesting & Energy-Neutral Sensing Systems. 14–18.

[18] Neal Jackson, Joshua Adkins, and Prabal Dutta. 2019. Capacity over Capacitance

for Reliable Energy Harvesting Sensors. In Proc. IPSN. ACM/IEEE, Montreal, QC,

Canada.

[19] JBL. 2019. JBL Go+ bluetooth speaker. https://www.jbl.com/

[20] Frederick Jelinek. 1997. Statistical methods for speech recognition. MIT press.

[21] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David Wetherall,

and Joshua R Smith. 2013. Ambient backscatter: wireless communication out

of thin air. In ACM SIGCOMM Computer Communication Review, Vol. 43. ACM,

39–50.

[22] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.

2017. Intermittent Computing: Challenges and Opportunities. In LIPIcs-Leibniz In-
ternational Proceedings in Informatics, Vol. 71. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[23] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer programming and

execution model for intermittent systems. ACM SIGPLAN Notices 50, 6 (2015),
575–585.

[24] Amjad Yousef Majid, Delle Donne Carlo, Kiwan Maeng, Alexei Ytidtnm, Colin,

Kasim Sinan, Przemystaw Pawetczak, and Brandon Lucia. 2019. Dynamic Task-

Based Intermittent Execution for Energy-Harvesting Devices. ACM Transitions
on Sensor Network (2019).

[25] Amjad Yousef Majid, Michel Jansen, Guillermo Ortas Delgado, Kasim Sinan

Ytidtnm, and Przemystaw Pawetczak. 2019. Multi-hop Backscatter Tag-to-Tag

Networks. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 721–729.

[26] Monsoon Solutions Inc. 2018. High Voltage Power Monitor. https://www.msoon.

com/hvpm-product-documentation

[27] Saman Naderiparizi, Aaron N Parks, Zerina Kapetanovic, Benjamin Ransford,

and Joshua R Smith. 2015. WISPCam: A battery-free RFID camera. In 2015 IEEE
International Conference on RFID (RFID). IEEE, 166–173.

[28] pui audio, vesper. 2019. PMM-3738-VM1010-R: A ZeroPower Listening piezoelec-

tric MEMS microphone. http://www.puiaudio.com/pdf/PMM-3738-VM1010-R.

pdf

[29] Benjamin Ransford and Brandon Lucia. 2014. Nonvolatile memory is a broken

time machine. In Proc. MSPC. ACM, Edinburgh, United Kingdom.

[30] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: system support

for long-running computation on RFID-scale devices. InACM SIGARCH Computer
Architecture News, Vol. 39. ACM, 159–170.

[31] VS Rao. 2017. Ambient-Energy Powered Multi-Hop Internet of Things. (2017).

[32] Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V Merrett, and Alex S

Weddell. 2018. RESTOP: Retaining external peripheral state in intermittently-

powered sensor systems. Sensors 18, 1 (2018), 172.
[33] Saleae. 2017. Logic 16 Analyzer. http://www.saleae.com. Last accessed: Jul. 28,

2017.

[34] Joshua R Smith, Alanson P Sample, Pauline S Powledge, Sumit Roy, and Alexander

Mamishev. 2006. A wirelessly-powered platform for sensing and computation.

In International Conference on Ubiquitous Computing. Springer, 495–506.
[35] Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and Joshua R Smith. 2017.

Battery-free cellphone. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 1, 2 (2017), 25.

[36] Texas Instruments. 2018. Ultra Low Power Management IC, Boost Charger

Nanopowered Buck Converter Evaluation Module. http://www.ti.com/tool/

BQ25570EVM-206

[37] Texas Instruments. 2019. MSP430FR5994 16MHz Ultra-Low-Power Microcon-

troller Product Page. http://www.ti.com/product/MSP430FR5994

[38] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent computation without

hardware support or programmer intervention. In 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16). 17–32.

[39] Taras K Vintsyuk. 1968. Speech discrimination by dynamic programming. Cy-
bernetics and Systems Analysis 4, 1 (1968), 52–57.

[40] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,

Przemyslaw Pawelczak, and Josiah Hester. 2018. Ink: Reactive kernel for tiny

batteryless sensors. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems. ACM, 41–53.

[41] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. 2011. Moo: A

batteryless computational RFID and sensing platform. University of Massachusetts
Computer Science Technical Report UM-CS-2011-020 (2011).

[42] Yi Zhao, Joshua R Smith, and Alanson Sample. 2015. NFC-WISP: A sensing and

computationally enhanced near-field RFID platform. In RFID (RFID), 2015 IEEE
International Conference on. IEEE, 174–181.

[43] Chenyu Zheng and Douglas C Sicker. 2013. A survey on biologically inspired

algorithms for computer networking. IEEE Communications Surveys & Tutorials
15, 3 (2013), 1160–1191.

https://www.impinj.com/platform/connectivity/speedway-r420/
http://ixapps.ixys.com/DataSheet/SLMD121H04L_Nov16.pdf
https://www.jbl.com/
https://www.msoon.com/hvpm-product-documentation
https://www.msoon.com/hvpm-product-documentation
http://www.puiaudio.com/pdf/PMM-3738-VM1010-R.pdf
http://www.puiaudio.com/pdf/PMM-3738-VM1010-R.pdf
http://www.saleae.com
http://www.ti.com/tool/BQ25570EVM-206
http://www.ti.com/tool/BQ25570EVM-206
http://www.ti.com/product/MSP430FR5994

	Abstract
	1 Introduction
	1.1 Vision and Application
	1.2 Research Challenges
	1.3 Contributions

	2 Related Work
	2.1 Energy-harvesting systems
	2.2 Intermittent execution
	2.3 Explicit duty-cycle desynchronization
	2.4 Speech recognition

	3 Coalesced Intermittent Sensor
	3.1 Sensing
	3.2 Environment

	4 Prototype: Coalesced Intermittent Command Recognizer
	4.1 Hardware
	4.2 Software

	5 Evaluation
	5.1 Availability
	5.2 Sensing

	6 Conclusion and Future Work
	7 Acknowledgements
	References

