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1. Introduction

1.1 General

Increasing population pressures in developing countries and the desire for water front living in
developed countries are causing development to take place near the high water mark in the
coastal zone. Such development is not limited to the coastal zone but extends to the foreshore
areas of lagoons and lake systems. This has resulted in development which is increasingly
vulnerable to wave inundation. The approval of foreshore developments within councils requires
information on water levels and wave inundation through the waterway to assist in the
assessment of development proposals.

The problem of wave overtopping by oscillatory waves has been studied by various researchers
since 1960's. The initial investigations were basically based on laboratory experiments. In recent
years, following advances on mathematical treatment on wave propagation some researchers
concentrated on numerical modelling of wave deformation on the dike slope and the subsegment
overtopping (i.e. Kobayashi and Wurjanto 1989). ‘

The primary function of sea defences in general, and sea dikes and dikes in particular is the flood

prevention of the (low) interland. Under storm conditions, these structures should withstand the

combined action of storm surges, waves and strong winds. On the other hand they should fulfill

the assigned functional requirements, i.e. protection of hinterland from adverse effects of high

water and waves. For dikes, since the hight water protection is required, the structure’s height J

H, in relation to the design storm surge level or to the maximum level of wave run-up during

design storms is one of the most important structural parameters to be determined. This directly

depends on the character of hinterland to be protected. In general, some amount of wave
overtopping g may be allowed under design conditions.

For analysis, the wave overtopping

criterion is used. That is during the design

\‘ storms, the discharge over the structure’s

/\/‘\/_’\ - crest should be less that some specified

v quantity, g liters/second per running

N meter of a structure. The allowable value

\ Frotected anes of g primarily depends on the quality of

the inner slope.

Figure 1.1. Definition of problem
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The above mention criterion can be stated in terms of formula as:
Pr(g>q )<pV
>9e)<P (1.1)
Pr(V >V, )<pv

in which:

Pr(x)
pv
q’ qu

V? VCI

- probability of the occurance of event x;

- prescribed value of the probability which should not be exceeded;

- values of the normal and critical overtopped discharge on the structure;

- values of the normal and critical volume of the water which is allow in

hinterland.

Overtopped discharge and the volume of the
water inside the protection area are functions
of the crest of the structure, peak of the flow
hydrograph and time of the hydrograph:

q=fy(h, H, tp) and Vq:fz(h, H, tp)(1_2)

Figure 1.2. Flow hydrograph

1.2 Objective of the study

The main objective of the study is to add to the understanding of overtopping over structures
computation. This is an important part of a design of sea structures and dikes.

With this main objective in view specific tasks developed in the study are:

to make a review Of the existing formula in the literature, formula for computing
discharges due to overtopping;

assessment of duration and time development of water levels with purpose of
introducing them in computer program;

writing computer code based on formula which are design and set-up of the
existing design graphs;
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1.3 Outline of the thesis

The summary presentation of the study is done in this section. Thesis has seven chapters in which
the statement of the problem and the available formulas are presented.

Formulas found in literature are presented in two chapters (i.e. chapter 3 and chapter 4). The
reason for this was to group the formulas based on both mathematical and experimental approach
in one chapter and that ones based mainly on experimental study were grouped together in
chapter 4. The importance of them is not to be neglected because of this experimental part which
adds a lot to the understanding of the complex phenomena of wave overtopping for a given
structure in a certain environment.

The contents of the report is as follows:
0 Chapter 1. Introduction - in which the reason and objective of the thesis is presented.

O Chapter 2. Statement of the problem - is identifying the major parameters used for
determining the overtopping rates over structures in general and over
vertical structure in particular. A review of geometries of existing types
of structures is also presented together with the references to the authors
which researched them.

(O Chapter 3. Analysis of different overtopping formula - is presenting 11 most
important used formula for computing overtopping. The reference method
for computing the formula remains Goda’s graphs. Formulas are
presented in order of time publication of them.

( Chapter 4. Experiments and test in literature - is presenting the most significant 7
experiments which can be found in the literature.

0 Chapter 5. Comparison of the formula - is comparing the difference in values of
overtopping obtained for a given set of data. The reference point for this
comparatione are Goda’s graphs. Also in the frame of this chapter
expression for run-up needed for each overtopping formula is presented.
Analysis of various formula is only supportive and ment to take a
selection of most promising and reliable overtopping models to be
connected to the final probabilistic approach for safety of dikes and
vertical structures and of polders, design described in chapter 6.
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U Chapter 6.

(3 Chapter 7.

Procedure for design of flood defense - the basic principles of risk and
safety acceptance are presented together with probabilistic determination
of the crest height of a structure. Inundation level and speed flooding are
commented. However in a given design situation a clear cost analysis is
required, analysis which is only mention as a principle in this chapter.

Computer programs - As a final outcome of this study a Pascal computer
programme and spreadsheet were built. The use of them are presented in
this chapter.

The choice of three most promising different formulas of overtopping is
available via the programme. The researcher using these computer tools
has to decide which formula he should use for preliminary design and for
final design as well.
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2. Statement of the problem

2.1. Introduction

Wave overtopping is one of the most important hydraulic responses of a breakwater and the
definition of tolerable limits for the overtopping discharge is still an open question, given the
high stochasticity of the phenomenon and the difficulty in measuring it and recording its
consequences.

Usually, in order to estimate the wave overtopping rate, the Goda's diagrams (Goda 1987) are
used. This diagrams illustrates the relationship between a mean overtopping and a crown height.
It has been pointed out that short term overtopping rate is important for the design of drainage
facilities behind the seawall (Kimura and Seyama, 1984). More over it is suggested that the short
term overtopping rate become several ten times of mean wave overtopping rate and large amount
of water comes into the drainage facilities (Inoue et al, 1989)

It can be pointed out that overtopping discharges are estimated from empirical equations that
were developed from physical model studies on scale models (Weggel 1976, Ahrens and Martin
1985, Ahrens And Heimbaugh 1988, Saville 1955, Jensen and Sorensen 1979, Jensen and Juhl
1987, Aminti & Franco 1988, Bradbury and Allsop 1988, De Waal and Van der Meer 1992, Van
der Meer and Stam 1991, Schulz and Fuhrboter 1992, Ward 1992, Yamamoto and Horikawa
1992) while only few data from full scale observation ( Goda 1985, De Gerlonmi 1991) are
available.

Numerical models have been developed by Kobayashi and Wurjanto 1989, 1991, Kobayashi and
Poff 1994, Peregrine 1995, models which needs to be calibrated with physical model test results.
Empirical formulas are limited to the structural geometry and wave conditions examined in the
model tests and are not versatile enough to deal with various combinations of different coastal
structures and incident wave characteristics. As a results it is desirable to develop numerical
models ( to fill the gap between empirical formulas and site specific hydraulic model tests).

Numerical models have been developed by Kobayashy and Wurjanto 1989, 1991, Kobayashi and
Poff 1994, Peregrine 1995, models which needs to be calibrated with physical model test results.
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2.2. Basic formula

Wave overtopping can be described by the following formula:

Q=a exp( b%) 2.1
in which:
Q - dimensionless discharge [-]
a,b - coefficients [-]
R - dimensionless freeboard
Y - reductio coefficient for different influence as berms,
roughness, depth limitation, wave attack, etc. [-]

The above a and b coefficients are used in two different approaches depending on the author.
The approaches are as follows:
1) values of coefficients a and b are computed as an average values from carried out
experiments’;
2) values of coefficients a and b are computed as an average standard deviation

from carried out experiments.

From design point of view the second approach is situated more in the safety part so this is the
reason why it is more preferred by the designers.

2.3. Relevant parameters

2.3.1. Basic parameters

The scheme below presents the relation between the basic parameters and the parameter of
interest: the wave overtopping.

A waves B structure C wind

D water section
at structure

E overtopping
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The parameters A, B and C are regarded to be independent. The five parameters may be
subdivided as follows:

A Waves ( incident, undisturbed )
A, significant wave height
A, peak period
A; (mean ) angle of wave attack
A, directional spreading
A; spectrum shape
As wave height probability of exceedance curve

B Structure
B, shape below SWL
B,; water depth at toe
B,, structure shape between toe and SWL
B,; slope of foreshore
B, shape above SWL
B,, crest height
B,, structure shape between SWL and crest
B, roughness
B, permeability

C, wind speed according to standard definition
C, spray density profile

C, time average velocity field

C, time variation in velocity field

D Water motion at structure
D, time average velocity field and average density in vertical plane

E Overtopping
E, time average discharge
E, volume per wave
E, distribution of water volume over the height above the crest and distance
from the crest

A) The water is characterized by the mass density p,,, the dynamic viscosity p and the surface
tension 6. The compressibility is not taken into consideration.

A first approximation to a description of irregular waves is obtain by assuming that the wave
phenomenon is linear, in which case the wave patten may be interpret as the sum of a large

7
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number of waves each with a given frequency, propagation direction and energy, behaving
independently of each other. This approximation may only be used if the steepness is sufficiently
low. The otherwise arbitrary wave pattern is then statistically determined if the energy per unit
of area is known as a function of the propagation direction and frequency. This function is known
as the two dimensional energy density spectrum. This spectrum is difficult to measure because
it is necessary not only to know the wave pattern at a fixed point but also the correlation between
the latter and the wave pattern in the environment.

If we confine ourselves to the wave pattern at a fixed point, the direction in space ceases to be
independent variable; the wave pattern is considered solely as a function of time. All energies
which are associated with components of a given frequency but of different directions are added
together. The total is considered solely as a function of frequency and the two dimensional
energy density spectrum reduces to a one dimensional energy density spectrum, known simply
as the energy spectrum.

The energy spectrum for an arbitrary irregular wave pattern of sufficiently low steepness
therefore indicates the quantity of energy which must be attributed to respective component
waves for the statistical characteristics of the sum of the components to be identical to those of
the wave pattern, as a function of time. To describe a wave pattern of this kind statistically. It is
therefore sufficient to know the energy spectrum. In practice this may give difficulties because
the spectrum cannot be determined precisely in a finite measuring time but only estimated. In
such cases it is useful to measure in addition a number of other characteristic parameters of the
wave level, wave height and periods and the correlation between height and period.

Waves which are relevant for design purposes are generally so steep that a linear theory is not
adequate to describe then. The energy spectrum can then be determined but the component waves
are not completely independent because they are partly coupled by non-linear influences.
Both the energy spectrum and the distributions of wave height, period etc. are completely
determined by a length scale and their shape. In general, a characteristic wave height H, may be
chosen for the length scale and a characteristic period T, for the time scale.

The above considerations indicate how the wave movement at a particular point may be
described as a function of time. The wave length can be approximately determined from this,
provided that g, the gravitational acceleration, and d, the depth, are known.

B) It is assumed that the slope is completely rigid and stationary. For the consideration of wave
run-up ( and also overtopping ) this assumption seems reasonable so that the dynamic
characteristics of the slope are not taken into account. The slope is then determined entirely by
its geometry. It is also assumed that this geometry and that of the foreshore are entirely
determined by the form and a characteristic length A of the cross-section.
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C) The wind is partly characterized by p,, the air density, w,,, the time-average velocity at 10

10°
m above the water level,ﬁ, and aw, the average wind direction. If necessary a number of
parameters may be added giving a more detailed description of the variation of the mean wind
speed as a function of height and the instantaneous wind speed as a function of time. The
dependent variable is the run-up height z, the maximum height above the water level reached by

a wave tongue running up against the slope. The run-up height is a stochastic variable. If n is the
exceedance frequency, then z, is the dependent variable for a given or chosen n value, B,an
average direction of incidence in relation to the dike, p_, mass density of air, p , mass density
of water, o, surface tension at air-water interface, and d, water depth, the above may be
summarized as follows:

z=fp,, u, O, H, T,, g, d, B, P, ;10’ 'q;w, formfactors, n, A) 2.2)
or
H H woo_ H
_Z_:f _k k. Re,, Wek,f-a—, 0 B, @, form factor, n, . 2.3)
H, d  gr} P, &H, A
where:

Re, =Reynolds number

[}

We, = Weber number
2.3.2. Discussion on different parameters find in literature
2.3.2.1. Run -up and dimensionless overtopping

Run up is a major parameter need to compute overtopping rate and the formula of computing it
differs from author to another depending on the range of geometric and hydraulic condition
considered for experiments.

Dimensionless overtopping is the main parameter defining overtopping computation. Two
different approaches can be found in the literature:

Q t= 9 - Goda (2.3)

J28H}

0= 9 - van der Meer and others (2.4)
y&eH.

Formulas on overtopping and related parameter are given in detail in chapter 5 for different
authors.
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2.3.2.2. Admissible overtopping rates

The definition of tolerable limits for overtopping is still an open question, given the high
irregularity of the phenomenon and the difficulty of measuring it and its consequences. Many
factors, not only technical ones, should be taken into account to define the safety of the
increasing number of breakwater users such as psychology, age and clothing of a person
surprised by an overtopping wave.

Still the current admissible rates (expressed in m*/sec per m length) are those proposed by the
Japanese guidelines, based on impressions of experts observing prototype overtopping (Fukuda
et al, 1974; Goda, 1985).

They are included in CIRTIA/CUR - manual (1991), and in British Standards (1991). The lower
limit of inconvenience to pedestrians may correspond to safe working conditions on the
breakwater, while the upper limits of danger to personnel may correspond to safe ship stay at
berth.

2.3.2.3. Spray transport

Due to strong winds the phenomena of spray transport occur. This is a volume of water which
should be added to the overtopping values. Few experimental formulas for computing quantity
of spray transport are available (N. Matsunga et al, 1994). Further studies should be done.

2.3.2.4. Personnel danger on a promenade

Public access to breakwater areas is usually prohibited due to safety reasons, yet many people
nevertheless enter these areas to enjoy the comfortable sea environment. On the other hand
because breakwater are typicaily the low - crown type, wave overtopping sometimes occurs, and
therefore, it is essential for the design of a breakwater to consider maintaining safety.

Various studies were done for this. The main research was done in Japan and main formulas can
be found in ‘“Numerically modeling personnel danger on a promenade breakwater due to
overtopping waves” (Kimihiko Endoh and Siego Takahashi 1994). The basic concluding remarks

arc:

1) Based on prototype experiments, was developed a loss of balance model to
calculate the critical water depth at a breakwater’s seaward edge. If a person is
152 cm tall and has a standard body physique, the critical water depth is 0.5 m
which causes a person to their balance.

10
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2)

3)

4)

The proposed carry model can calculate the critical water depth at the
breakwater’s seaward edge which will carry a person into the sea. This depth is
dependent on the opening ratios of handrails installed at the breakwater’s seaward
and landward edge. If fence-type handrails having a 0.7 opening ratio are
installed at the both edges, the critical water depth is 2.1 m for a 152 cm tall
person.

When no handrails are present, the calculated critical water depth which carries
a person into the sea is only 0.7 m for a 152 c¢m tall person, thus handrails are
demonstrated to be a very effective measure for preventing a person from being
carried into the sea by overtopping waves.

The proposed breakwater formula for evaluating the wave height at which
personnel dangers will occur during successive stages of wave overtopping
should be employed in the design of promenade breakwaters.

2.4. Types of structures

The most varied parameter in studying of overtopping is the structure geometry.
Therefore, an initial distinction is made between certain "basic" types of structures. The two most
basic types are a vertical wall and a plane slope. Many variants of these two types of structures

commonly occur. In the table below, common types of structures are identified and references

pertaining to each type are given. A few references vary also the loading conditions: accounting

for oblique wave attack and/or the influence of wind. These are also noted in the table below.

Table 2.1. Types of structures

Structure References Comments
1.Vertical wall Goda et.al. (1975) Foreshore slopes 1:10,1 :30;
parapet wall present, with
nose
v Ahrens et.al. (1986) Vertical wall with crest nose
- and 1:100 foreshore.
T
o ) )
Juhl (1992) 3 different caisson structures
tested.
Report Taw-Al Max. possible contribution by
wind measured by
mechanical transport device.

11
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Structure

References

Comments

2. Vertical wall fronted by a berm

Goda et.al. (1975)

Ahrens et.al. (1986)

Foreshore slopes 1: 10,1:30;
parapet wall present; berm
width varied.

3 berm/wall configurations
tested

3. Plane slope (impermeable)

Goda & Kishira (1976)

v.d. Meer (1987)

Smooth, stepped slope. 1:10
& 1:30 foreshores.

Afsluitdijk section. Measured

: TAW average overtopping, volume
- - per wave, % overtopping
X I waves, thickness & speed of
— overtopping water.
Jensen and Juhl (1989) | Long and short crested wave
attack; oblique wave attack
Influence of wind
4. Plane slope (permeable) Jensen and Juhl (1989) | Influence of wind
5. Slope with a berm Szmytkiewicz (*) data not yet available
6. Slope fronted by offshore reef Goda and Kishira 1:30 foreshore slope
(1976)

Takayama et.al. (1982)

Same structure as Goda and
Kishira (1976). Additional

tests for low crests.

12
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3. Analysis of different overtopping formula

3.1. Nagai and Takada’s formulas (1972)

1 — T 1 I T T r 4
a hy/L; =0.097~0.1713
L & h/H’, =2.66~4.05 -}
L R - .

0 ‘l.(% HyH’, =0.526~1.27 -
10 G —
102
103 L l i l § l -1 1 L l 3 _

0 1 2 3 4 5 6

Fi iguré 3.1. Condition generating maximmg %tugntity of
wave overtopping

Shoshiro Nagai and Akira Takada deduced formulas for the maximum quantity of overtopping
The relationships between the slope angle of the sea-wall and the deep-water-wave steepness
were studied by experiments. Figure 3.1 shows the results which they obtained. According to
figure 3.1, the maximum overtopping of waves occurs at the critical region between surging
waves and breaking waves.

There are two methods to relate the height of wave run-up to the quantity of overtopping. One
is the method which uses the profile of wave run-up (Takada, 1970), and the other uses the
surface elevation of wave run-up on the front of the sea-wall (Shigai, 1970; Takada, 1972).

The study of the authors is concerned with the former ones, but whichever method is used, it is
thought to be of practical importance to find out a response function against the incident waves.
The formulas are specific for each geometry of a structure. These formulas are presented bellow.

13
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3.1.1. For the Vertical Wall

z
7
v \5_ o It was assumed that the quantity of
Z He I R overtopping for a constant wave period, Q
x —zaXe 0 1s proportional to the water volume of the
h 4= run-up wave above the crown height of the
A sea-wall, (from fig.3.2),

Figure 3.2. Relation between wave run-up

and wave overtopping over a vertical wall Q=aBv 3.1)
in which:

a = the coefficient for quantity of overtopping; [-]

B = the width of overtopping, perpendicular on plane xOz.  [m]

If the wave profile obtained from the second-order approximation is used of finite amplitude
standing wave theory without overtopping, the water quantity of overtopping can be calculated

as:
=a n(x)-H }dx=
0=a,B f () -H_} 32)
a, BI(H,/k)sink x, +(H12/1 6)(300‘[113k1h1 +tanhk h )sin2kx -H x ]
in which:
H, = crown height of a sea-wall from the still water level [m]
H, = wave height at the toe of the sea wall [m]
Hy' = wave height in deep water {m]
0 = angle of inclination of sea wall to the horizontal plane [rad]
ny(x) = profile of wave run-up of the second order solution of
finite amplitude standing wave theory [m]
x.(<L,,) = can be obtained by ny(x) = H, [m]
L = one quarter of the length of the wave [m]
cosklei( JH. +8d(d+H ) —Hl) (3.3)
4d
in which:
dzélefG coth’k,h, +tanhhk,h.) (3.4)
14



Report Chapter 3
rmwhen h,>(hy), :
(h,), = water depth of breaking of standing waves [m]
ay = given by the following equation, which was obtained by the experiments:
g (r-m )"
a,=9.3— —L-° 3.5)
LO Hl

in which, Ry; shows the height of wave run-up of the second-order approximation of finite

amplitude standing wave theory.

The quantities of overtopping obtained by the experiments were compared with the calculated
ones, as shown in figure 3.3.

i ]
- R 2 R tanat 4
— H A, =0.01~0.084 : ao ]
o (Rn—Hc)/,_‘.=O.06~(.l8 A /a0 |
— x 2o —
— a A0 ~
Qo |- ]
o-c;l - < o_|
>on c & P ° °
. X o 5'02‘ d - 8 e
4 S o < [

! — n‘,s‘:#*ggo o g g -4 = j
— Rlasaa o° pn
— t’ . g;“s L4 g -
| | § 8 —]
107 = _|
[ | I N T | S B | L1 1 1 -

Figure 3.3. Calculated and measured values for wave overtopping

Figure 3.3 shows that eq.(3.2) may be adapted to be in a fairly good agreemental values. The
mean value of Q¢,/Q ca, (Qp/Q.ad and the standard deviation, o, are given by:

(chp/Qcal) =0.98 (3 6)
and:
-
o= | Lxtee | Zew | hg9g G-7
Ni=1 Qcal cal
15
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m>when h; = (hy), ~(h;), and tana =1/10, in which (h,), denotes the water depth of breaking of
progressive wave and tane is the slope, a; is given by:

R -H 12
[ I/ c] (38)

H,

h

B
a,=5.5|— [ -
(hb)s LO

Values of (Q__/Q.) and o for eq. (3.8) are given by:

€Xp

(Q cxp/Q cal) =1.1 (3 9)

and
0=0.40 (3.10)

Further investigations are needed to get higher accuracy.

3.1.2. For the Sloping Wall

If the wave profile running up on the slope of the sea-wall in the case of non-overtopping of
waves can be approximated by a trapezoid, as shown in figure 3.4.

05H

Figure 3.4. Relation between wave run-up and
wave overtopping for sloping wall

The quantity of overtopping is obtained by the following equation:

(1+cot?0)(R,~H )’
2(coty —cotB)

(3.11)

Q=agBV=(ay),B +0.15H (R,,-H /)

n which:

(ag)e = denotes the coefficient for quantity of overtopping [-]

16
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Y = is an angle at the edge of the profile of run-up wave [rad]
coty =is given by the following equations, obtained by the experiments,

when: cot0z1,
coty = 67 (H,/L,)(cot0)'¢
when: cot@ = 0~1,

n(n-1) 12
coty=|n+ 5 cot?’0| cotB (3.12)

in which:

1
n=-3.224log 3.13
1 {1 +(67H1/L1)2} (3-13)

Figure 3.5 shows that the comparison between the experimental and calculated values may be
stated to be in a fairly good agreement.

,oz RS T T

THq U s '3
- H)/Lo' %l =
= e (€.0240 0.097 -
" | Mane=0, |/l° © 00288 0./123 ]
o 0.0422 0.086
-1 a2 (), A 0.0422 0435 |
0 A 00527 0477 _|
=  0.0561 0.068 3
“._g-: x 00616 0.229
3:;:: o 0.0858 0.331 —
. 4 n l -
~/ . ™ g °
I S SN W, |
= o8 ;00 :o ° u% L S
S E
o ¥ -
Io-l | | | | | }
0 ! 2 3 4
cotB >

Figure 3.5. Comparison between experimen-
tal and analytical approaches

When h;>(hy), (ag)y is given by the following equation obtained by the experiments:

(ag),;=7.6(cotg)* " (H/L )™ (3.14)

Figure 3.6 shows that the comparison between the experimental and calculated values may be
stated to be in a fairly good agreement.
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'Oz_:-IIIIIII I B
: ‘Fl,.-z (Ab)s x Cg:tse :
~ P =00~0084 2 te ]
[ ‘tmoL=O,'/o o 2 -
0 . 2 Values of (Q,,/Q.,) and o calculated by
= 3 eq.(3.14) are:
Quen | , i
Qcar . ) _ (Qexp/ Qo) =10 (3.15)
Aﬁgﬁ fﬁ‘“‘g 2. s
I E 2% q;-:.:.b ‘“RQ 1 = .
ELT LU By - ] and:
- ) * 1 s} - 0=0.35 (3.16)
Py A O O O
0.5 IR 15
Figure 3.6. Calculated and measured values of
wave overtopping for h;>(h,),
When h,=(h,),~(h,), and tana = 1/10, (ag)y is given by the following equation:
hy
log,,(ag),=log,, 6.6 +1.8log .
(hb)s
h,) —-h R —-H
+2J (h,),=h, ong I e (3.17)
.-y, || H,
H
+0.73log,,cot0+0.831og,,—
L,
Values of (QexpCead) and o calculated by eq.(3.17) are:
(chp/Qcal) =1.0 (3 1 8)
and:
6=0.51 (3.19)

Further experiments are needed to get higher accuracy. In the previous studies, the maximum

overtopping of waves arise generally in the critical region between surging waves and breaking

waves. The calculation formulae for the quantity of overtopping proved to give fairly good values

to the experimental values. It is clear that the slope which produces the highest run-up of waves

is nearly in agreement with the slope which produces the maximum overtopping.
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3.2. Akira Takada formula (1974)

The author investigated the problem by the “Calculation method for discharge of overflow
weirs” i.e. the method of Fukui et al. (1963) and Shi-igai et al. (1970).

The quantity of wave overtopping Q of width B per a wave period is represented by eq. (3.20)
by using the method of Shi-igai et al. (1970):

td td
0=[a(rde="2g B[e(t) LN () +h,~H)* -t (3.20)
tu tll
where:
q(t) = discharge of wave overtopping per a unit time at time t [m*/sec]
H, = crown height of a sea-wall from the still water level [m]
C(t) = discharge coefficient of overtopping wave at time t [-1
n*(t) = time history of the surface elevation for a vertical
sea-wall at the wave overtopping time ‘ [-]

(h,) = water head of approach velocity [m]
(t)  =time when a wave of a given period start overtopping [sec]
(t) = time when the overtopping is terminated [sec]
g = acceleration of gravity [m/sec?]

For practical use, (h,) is disregarded and the time history of surface elevation n(t) on a vertical
sea-wall for non-overtopping wave is used instead of n*(t), and errors caused from above
assumptions are considered to be included in C(t).

On the other hand, assuming that an average value of times is used for C(t) which is defined by
a constant K, Q is given by eq.(3.21), as proposed by Shi-igai et al. (1970).

Q=§\f2—g BK [{n()~H,}"dr (3.21)

where:
K = average coefficient of wave overtopping discharge [-]

As shown in figure 3.7 n(t) is assumed to have approximately a trapezoidal profile, then Q is
further given by follows, as proposed by the author (1972):
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The time history z
of the surface elevation The height of wave run-up
b I at non-overtopping '
The crown . ?
height of a sea-wall - ; l ;
............. t \
RR i
H,
( ’ .
(to)y ty bRy 0 gy % (to)d tixe)
o0

Figure 3.7. The assumption of the time history of the surface elevation.

t, (t-'t )R 3/2 (tp)s
Q=§ﬁg_ BK |2 f » )"_t —Hc} dt+ f (R-H )**dt (3:22)
t, R'u "u o),
4 nd| _H. 5 (3.23)
0=—0V2g BK R-HoY")| 1=2 | oo tp)*—tan :

where (tgg) varies with H/L and h/L. Here the values of (tzg) are assumed to have approximately
0.05T. Therefore, the calculational formula of Q is expressed by eq. (3.24):

H t
0 =_‘.”-\/§ BK (R -Hc)”{ [ 1 —-‘) ( -1’3—0.05) +0.125}T (3.24)
15 R T .
where:
T = wave period [sec]
(t,x) =1is shown in figure 3.7. [sec]

The (t5) values are expressed by follows:
-for h>0:

too! T=(t/ T ,~(1/T), (3:25)

-for 1/8 < t/T<1/4:
too/ T=2(1,/T) (3:26)

Here, the values of ty/T are calculated from n(t). Eq (3.27) is n(t) by the second-order
approximation solution of finite amplitude standing wave.
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t °TH 3. h h t © H h
t)=Hcos2K—+—— H(3coth’2t—-coth2t1— 4Tt—+— —Hcoth4t—
1n(t)=Hcos 7 a1 Bco I co L) cos 1tT+4 7 co 1tL (3.27)
With n(t) = 0 in eq. (3.27), the values of ty/T are calculated from eq(3.28):
1 [ H)? Rl
cos(2n—)=——I{ 1+—| =| MN tanh2n={ -1
( T) ng{ 2(L) L} (3.28)
L
where:
2, R h
M={3coth’(2T—)~1}coth(2T—)
L L
h h (3.29)
N=3coth*(2t=)-2coth?(—)-1
L L
The (t,,) value for beach line (h=0) are:
1,,=0.25 sec (3.30)

Fig.3.8. shows the comparison between calculated values and experimental values. It is thus seen
that, though the scattering in experimental values are fairly large, the calculated values indicate

fairly accurately the tendency of the experimental values.

K[ T T T T LI e L K E N EEE ' 17
B0l B, B 10 s * 035~0.50 3
SE * 025~0.50 3 2 FE H’o/L=0.038 3
2 F H'y/L,=0.018 ° 0.50~1.00 £ tan &= 1/10 ° 0.50 ~1.00
'3) - tan & =1/10 " ) -1 ':n R
£ F £
. . . - &

& I~ Theaverage coeﬁic:ex}t of discharge §- The average coefficient of discharge
§ i For sharp crest weirs (K=0.65) | g |- for sharp crest weirs (K=0.65) __
s E__2 © k=0 ] SE K.=038 3
8 F - . § . 2 d 5 F ® b -
E  Pwe-os 255 e I ol e - .
(=] P -~ o : X é -
. - 1 kRsfot - ]
s | s . i N
T o — S 10 w ° —
8 *\ He, H, - 6.5 3 8 3
L 1 ] -
=] - 8 -1 [~ I . o p=
5 b0\ e/ = 1,0 1 § E.nSze .
2 o o "o . . S |-° e/ = 1,00 N
a e - Limiting standing waves 4 s L Limiting standing waves
(hy) .

E [ by g [ M oy

-2 ; N T T 1 ‘ Lt L 1 l 11 "‘

107 205 v.10 Ve "0 0.1 ¥ = A

Relative water depth at the toe of sea-walls
(2) Results for H’/L, = 0.018 and the bottom

slope of 1.10 slope of 1.10

Relative water depth at the toe of sea-walls
(b} Results for H’,/L, = 0.038 and the bottom

Figure 3.8. Comparison between calculated and measured values of the average coefficient of -

wave overtopping discharge for vertical walls
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3.3. Richard Weggel formula (1976)

The overtopping data was reanalyzed and an empirical expression derived. A broad range of

model scales were used in the overtopping experiences. The variables describing the overtopping

of a given structure are depicted on figure 3.9.

Variables are:
H,

D < Fa"OoOnr

T =Wave Period

/

Ho SWL
™~ h

Beach

Figure 3.9. Definition of terms

= deepwater wave height

= wave period

= gravitational acceleration

= overtopping rate
= run-up height measured vertically from the still water level

= water depth of the structure toe
= height of the structure crest above the bottom
= kinematic viscosity

= structure slope

ds

///‘ Q
7 rd

8 swe
]

heds /W’F’
/]

Structure

[m]
[sec]
[m/sec?]
[-]

[m]

[m]

[m]
[sec/m?]
[rad]

A dimensional analysis of the precedent 9 variables having 2 dimensions gives the following

dimensionless terms:

d/H’,
H ) 0/ gTZ
F=(h-d,

Q*=Q¥/gH’y’

= relative water depth at the structure toe

= wave steepness parameter
YH’, = relative height of structure or height of structure
crest required to preclude overtopping

= structure slope

= a Reynolds’ number

= relative overtopping rate

[-]
[-]
[rad]

[-]
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The phenomenon is scaled primarily according to Froude similarity. However, the Reynolds’
number serves as a measure of any scale effects. Other formulations of R, are possible, the
present one having been adopted for its simplicity.

Generally it is not permissible to eliminate dimensionless terms by combining them unless an
analytic or empirical relations between two of the variables is known. If it is assumed that such
a satisfactory relationship is available for the run-up R, the overtopping rate can be expressed in
terms of R and the ratio F/F=(h-d,)/R can be substituted for F and F, The preceding
dimensionless terms are obviously not the only combinations of terms possible; however, they
were selected after considerable trial and error because they provided the greatest possibility for
keeping dimensionless variables constant and investigating the variation of Q* with individual
parameters.

o771 T T T T T

1-1/2 Smooth Slope For a given structure and set of

o Hp/gT2= 0.00455;ds/Hp= 0.75

LB R
L L Ll

incident wave conditions (e.g.
constant d/H’,, H’/gT? and 0), the
° | dimensionless overtopping rate,

T
0
]

Q* was plotted against the
dimensionless  crest  height,
F/F=(h-d)/R. A typical plot
showing two data sets differing
only in model scale, is shown in
figure 3.10. Generally, all data sets
when plotted semi-logarithmically
exhibited a linear variation of Q*
with F/F, for small values of F/F;
also, the wvalues of Q* must

L1 il

FoTNTaTy

T
Lo el 1

T=TTT1TT]
0

® o0

0.0t = H2 = .
® Re® Ho/uT = 8030 approach zero as the relative crest

height, F/F, approaches 1.0 (i.c. as
the crest of the structure
approaches the limit of wave run-
0.001 ] 1 1 i 1 1 1 1 1 up) N
O Of 02 03 04 05 06 07 08 09 IO The curve therefore approaches
F/Fg =(h-d)/R )
F/F=1.0 asymptotically on the
semi-logarithmic plot.

© Re= HE/¥T = 22700

T T T1777]
3 3 31l

Figure 3.10. Typical data plot
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The hyperbolic tangent function exhibits identical behavior; hence, an equation of the form,

0 Qo*

0

—§=a tanh [log o ] (3.31)

was used to approximate the data. Here o and Q* are empirical coefficients to be established by
comparing the equation with the data.

The values of a generally establishes the shape of the curve since it is the slope of the curve at
F/F,=o0. Q*, represents the value of Q* for a structure with its crest elevation at the SWL. By
substituting the dimensionless variables into equation (3.31) and solving for Q, one finds:

h-
o zngo "H /ozeXp{— 0.217 tanh _‘H Rds) }} (332)

or equivalently, since tanh™}| £ =lloge bra ,
b 2 b-a

R+h-d, (3.33)
R-h+d,

w73 0.217
=y/gQ, H' exp)~ log,
0=/gQ,"H 'y exp o

Either equation (3.32) or (3.33) can be used in conjunction with figures such as those from annex
4 to determine overtopping rates.

Table 3.2.

AGREEMENT BETWEEN MEASURED AND CALCULATED OVERTOPPING RATES
(Ustng SPM published values of & and Q;, besed on 1 to 17 scale data)

Structurs Number Correlation
Type of Points Coefficient

8mooth Facs

Vertical 56 6.980

1 on 1-1/2 slope 93 8.936

1on 3 slope 83 06.992
Ripcap Face

lon1-1/2 4 0.95¢8
Btepped Face

1om1-1/2 60 0.990

Galveston Curved Wall

onl on 10 beach 33 0.998
on 1 on 25 beach 33 0,998
Recurved Wall

on 1 on 10 beach H] 0,999

To evaluate the ability of equation (3.32) or (3.33) to predict the overtopping rates measured in
the experiments, the values of o and Q¥*; as published in the SPM, were used with equation
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(3.32) and computed overtopping values compared with measured values. Tables 3.1 presents
the correlation coefficients found in the analysis. In general, agreement was excellent; the worst
case was for the vertical wall data with r=0.98. The small number of data points for the recurved
wall make the correlation analysis for that structure inconclusive.

3.4. Saville formulas (1984)

Saville provides formulas for wave overtopping for two kind of waves: regular and irregular.
Bellow are given these formulas.

3.4.1. Regular waves

Saville and Caldwell (1953) and Saville (1955) investigated overtopping rates and run-up heights
on small-scale laboratory models of structures. Larger scale model tests have also been
conducted for Lake Okeechobee levee section (U.S. Army Corp of Eng, 1984). A re analysis of
Saville's data indicates that the overtopping rate per unit length of structure can be expressed by:

in which:
0<——2<1.0 3.35
2 (3.35)
or equivalently by:
—[°~1°851°g( R*"'d,)] 336
0=\gQ Hy e L & \F (3-36)
in which:
0 %1 (3.37)
< <1. .
R
where
Q = overtopping rate (volume/unit time) per unit structure length [-]
g = gravitational acceleration [m/sec?]
H; = equivalent deepwater wave height [m]
h = height of the structure crest above the bottom [m]
d, = depth at the structure toe [m]
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R = run-up on the structure [m]
Q,,0¢ = empirically determined coefficients that depend on incident
wave characteristics and structure geometry [-1

Approximate values of Q,,0 are given as functions of wave steepness and relative height for
various slopes and structure types as:

- smooth vertical wall on a 1:10 nearshore slope (annex 1);
- smooth 1:1,5 structure slope on a 1:10 nearshore slope  (annex 2);
- smooth 1:3 structure slope on a 1:10 nearshore slope (annex 3);
- smooth 1:6 structure slope on a 1:10 nearshore slope (annex 4);

- riprapped 1:1,5 structure slope on a 1:10 nearshore slope (annex 5);
- stepped 1:1,5 structure slope on a 1:10 nearshore slope  (annex 6);

- curved wall on a 1:10 nearshore slope (annex 7);
- curved wall on a 1:25 nearshore slope (annex 8);
- recurved wall on a 1:10 nearshore slope (annex 9).

Equations ( 3.24) and (3.25) are valid only for O<(h-d)<R. When (h-d,)>R the overtopping rate
is taken as zero. Calculated overtopping rates may be multiplied by a wind correction factor

given by:

h-d
k’:1.0+W{ - ‘+o.1)sin6 (3.38)

where W, is a coefficient depending on wind speed, and 0 is the structure slope (0 = 90° for
Galveston walls). For onshore wind speeds of 60 mi/hr, or greater, W=2.0 should be used. For
a wind speed of 30 mi/hr, W=0.5; when no onshore winds exists, W~0. Equation (3.38) is
unverified, but is believed to give a reasonable estimate of the effects of onshore winds of
significant magnitude. For a wind speed of 30 mi/hr, the correction factor k’ varies between 1.0
and 1.55, depending on the values of (h-d,)/R and sin. Values of Q,,0 larger that those should
be used if a more conservative (higher) estimate of overtopping rates is required.

3.4.2. Irregular wave.

Irregular wave run-up on coastal structures is assumed to have a Rayleigh distribution, and the
effect of this assumption is applied to the regular wave overtopping equation.

In applying this equation to irregular waves and the resulting run-up and overtopping, certain
modifications are made and the following equation results:

3| l0.217 o B4,
Q=[,/gQ H3}'e *tanh
0 0 o

R

(3.39)
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in which:
h-d_ | R
05( ’) —<1.0 (3.40)
R R
s P
where:
Q = overtopping rate associated with R, [m?¥/sec]
R, = wave run-up with a particular probability of exceedance [m]
R, = wave run-up of the equivalent deepwater significant wave height.[m]
The relationship between R, R; and P is given by:
R -
Zp_ | LR (3.41)
R, 2

Equation (3.39) provides the rate of overtopping for a particular wave height. In analysing the
rate of overtopping of a structure subjected to irregular waves and the capacity for handling the
overtopping water, it is generally more important to determine the extreme (low probability) rate
and the average rate Q of overtopping based on a specified design storm wave condition.

3.5. Goda’s graphs (1985)

Goda (1985) presents six separate graphs for wave overtopping of a vertical wall at specific
combinations of the foreshore slope and the wave steepness. Compared with other information
on wave overtopping in literature these graphs have proven to be very well applicable. These
graphs are presented in Annex 10 for two different slopes of the bottom . The dimensionless
overtopping discharge is plotted on a logarithmic scale against the relative local water depth,

identifying lines for constant values of the

m/cm®s .
?c{g_ o] T , relative crest height. In order to make the
O e = information in the graphs more accessible, the
SOF-  (28ea ok Xt . .
- information was tabulated for h/H > 1.0
ol In the six graphs of Goda (1985), the vertical
distance between the lines for successive relative
°E ' crest height values is fairly constant. This
sk | implies that the relation between the
- dimensionless overtopping discharge and the
2 relative crest height is well approximated by an
, L oo exponential relation, for constant values of the

° ° e ° “°H.s [em] foreshore slope, the wave steepness and the local
Figure 3.11. Overtopping discharge of regular

waves

water depth. An example of the relationship
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between the dimensionless overtopping discharge and the relative crest height according to Goda
is presented in figure 3.11. Although the presented lines are slightly curved an approximation
with a straight line is very well possible. Figure 3.11 shows the overtopping discharges of regular
waves, q (cm’/ cm sec ), against the incident wave height, H (cm).

;

S B B The overtopping discharge of individual wave in

irregular wave train, on the other hand, does not

8

show much difference with that of regular waves

8

as shown in figure 3.12, wuere the rate of
individual wave overtopping on the vertical wall
of R =12.8 cm ( where R stands for crest height)
1s plotted against the wave crest height 1. in
front of the vertical wall. Although the data of
irregular waves show some scatter, they almost

8

8

Overtapping Discharge of Single Wave ¢ (em¥cm-sac)

(%]

. agree with those of regular waves. The scatter is
= partly due to the difficulty in accurate

20 . 0
o G e e e determination of individual wave overtopping
Figure 3.12. Overtopping discharge of quantity. The interference of preceding waves
individual waves in irregular wave train may have caused additional scatter of the

overtopping data, but the tendency

of figure 3.12. indicates that the irregular wave overtopping if expressed in terms of wave crest
height does not differ much from that of regular waves. All these results are the outcome of an
experiment carried out by Tsurta and Goda . With the experimental data of regular wave
overtopping shown in figures 3.12. and the histograms of wave height of incident waves, the
expected discharge of irregular wave overtopping was calculated. The results of calculation are

compared with the experimental discharge in figure 3.13. for R=9.4 cm and forR=12.8 cm.

q[em/em®s] o q [cm¥cm*s)

h | [ I

100

i

20|

T 1 T T

-

g 3 s % f ; x5 b
BN R Hy, [cm] o . Hy [em]

Figure 3.13. Comparison of expected and experimental discharge for R=9.4 cm and R=12.8 cm
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The expected values are generally larger than the experimental ones: about 50 to 80% up for
R = 9.4 cm and about 30 to 50% up for R = 12.8 cm. The difference is partly attributed to the
effect of interference by preceding waves and to the effect of wave period, but the difficulty in
maintaining the same statistical characteristics of irregular waves is another cause of the
difference. In spite of these differences, the tendency of expected overtopping discharge agrees
with that of experimental data.

The non-dimensional calculation of expected overtopping discharge has been carried out for
predetermined values of R (crest height). Along one q-H curve with the parameter of R/h,
q»/Y2gh* was calculated .The result was converted into the form of g,,./\/2gH, ? with the
ratio of H,/h, which is obtained by dividing R/h with R/H,,. For the asymptotic case of H,,/h~0,
equation of Kikkawa et al. (1967) was utilized after rewriting it as follows:

q =0 . 1 B3/2n312
2gH }

/2
I-BE? %]S (3.42)

so

with p = H,/H =1.60 and n=H/H (Rayleigh distribution).

The parameter k for 1/H was taken as 1 since at the limit of H, /h~ O the sinusoidal wave gives
a good approximation to the wave profile. Also the discharge coefficient, m, was given a little
over-estimated value of 0.5 in order to cover the difference between the sinusoidal wave and
triangular wave profiles, the latter having been employed in the derivation of eq. 3.42.

The result of calculation are combined in figures 3.14 for vertical walls and in figures 3.15 for
block mound type sea walls, These figures reveal several characteristics of expected overtopping
discharge. First, it does not respond sharply to the variation of Hy/h. This is clearly observed for
the small value of R/H,, Second, even with a high parapet of R/H,, = 2.0, the average discharge
of overtopping may amount to 0.0004,/2gH > for vertical walls.

The figure yields the discharge of 0,02 m*/sec per every one metre of the sea wall for the wave
height of H, =5 m.

If a pumping station for drainage is constructed for every thousand metres of the sea wall, the
station must have the capacity greater than 20 ton/sec. Third, the maximum overtopping
discharge appears at relatively low wave height: i.e. , H,/h = 0.8 for vertical walls and H,/h =0.6
for block mounds. The shift of peak position toward smaller height for block mounds is
explained as the result of the promotion of wave breaking by presence of block mounds and of
the absorption of after- breaking waves.
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walls

Annexes 10 a + f are design diagrams compiled by the author for the estimation of wave
overtopping rate of vertical revetments. They were prepared on the basis of irregular wave tests
and calculation of wave deformation in the surf zone. Annex 10.b. is for a sea bottom slope of
1/10, and annexes 10a is for a slope of 1/30. The symbol H,’ in the figures denotes the equivalent
deepwater wave height, h the water depth, h_ the crest elevation of the seawall above the still
water level, and g the acceleration of gravity (g = 9.8 m/s?). As seen in the insets of the figures,
a simple wall with no recurved parapet and no foot-protection rubble mound is being considered.
If either the wave steepness or the bottom slope differs from those in annexes 10, interpolation
or extrapolation becomes necessary. If the bottom slope is gentler than 1/30, the wave
overtopping rate in water shallower than 2H_’ becomes less than that given by annexes 10 in
general. The rate of reduction in overtopping rate increases as the relative crest elevation h/H_’

Increases.

Seawalls made of sloping mounds of rubble stones and concrete blocks of the energy-dissipating
type are more popular than vertical revetments. In Japan, block mound seawalls of relatively steep
slope backed by a vertical retaining wall are quite common, especially along coasts facing rough
seas. The wave overtopping rate of block mound seawalls is governed not only by the
characteristics of the incident waves, water depth and crest elevation, but also by the size and
shape of the mound. Therefore, the compilation of generalized design diagrams for the
overtopping rate of block mound seawalls is more difficult than for the case of vertical

revetments.
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3.6. Juul Jensen and Jorgen Juhl formula (1986)

The study presents the J. Jensen and J. Juhl experience from studies of wave overtopping on
breakwater and sea dikes. The studies wave were all made by use of irregular waves. Based on
model investigations is discusses the influence of the various physical parameters on wave
overtopping, such as wave height, wave period, water level, wind speed, type of armour unit,
distribution of overtopping, discharges for individual waves and as function of the distance from
the breakwater.

The wave run-up, R, on a rubble mound breakwater armour layer is for a fixed wave period
almost proportional to the wave height, H, which means: R,=aH. If for simplicity all waves in
an irregular wave train are considered having the same wave period, T, i.e. the parameter « is
independent of T, the overtopping discharge as function of H; can be calculated. The height crest
is quoted as Ah.

The Rayleigh‘wave height distribution is assumed valid:

2 .
p(E)=—L- H exp| -2 (3.43)
2H2 H2 4

The volume of water passing the crest per unit length of the breakwater is equal to (figure 3.16):‘

4 =( _V_) Y LAT (3.44)
27 2 ,
l =(R" —Ah)/sine (3.45)

By introducing R, = a H, the volume per unit length of overtopping for a single wave is given
by:

V (0H -AR) 14
g= ( f o (3.46)
sin%0 2(H -Ah/e)*/sin%0
The total volume of overtopping can be as:
[--] oc 2 —ﬂHz
0= [ q ptdn= [ @2V L | g2 2HAR [AR\T| T o an? g
A A 2 sinze [+ o 2H2
H== H== (3.47)
n:& C: an Z:LA._h/L)ZIE
o« 25in?6’ g2 4
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The equation can hereafter be solved and written as:
o=20A 2Z ¢ " qat -erf(v)] (3.48)
i1

In figure 3.16 the calculated overtopping per wave is shown as function of H/Ah. It appears that
the parameter, H/A, is not giving completely dimensionless values of Q. It is further of interest
to notice that the curves for Q is not exactly linear, but tends to curve especially for larger values
of H/Ah. All the tests were performed with the DHI method of direct reproduction of natural
wave records. All tests were performed in a flume of 0.6m width and about 22m long. Most tests
had a prototype duration of about one hour.
The results show that the overtopping varies from structure to structure, but some general
conclusions may be derived:

- the amount of overtopping increases rapidly

m’/m with the parameter H/Ah. The logarithm of
1 R overtopping per wave , Q is an almost linear function of H/Ah;
o g :0;". - K - the influence of the wave period is very
L . E.:..'oa . _[‘, different from structure to structure;
eoxmo |- U - in the presentation of the results, no sharp
i . :: . :.: : ,l',' limit exists between wind-carried spray and
al. 84ncoom g mass overtopping where solid masses of
V7 water are passing the crest of the breakwater
2 1 F (“ green water”).
H The intensity of overtopping behind a breakwater
* I' : 7 decreases very rapidly with the distance from the
R it breakwater. In all the tests performed as well as in
- ;}’ the available prototype measurements, it has been
s Jf experienced that on the average the intensity of
o I overspill decreases exponentially with the distance,
y x, from the breakwater. This means :
.:' P 4(x)=g,10"P (3.49)
e ] 0.1 (¥ ] c.3 [-X'3 0.8 Where:
’ . . > H/Ah q - intensity at adistancex  [m?%sec]
Figure 3.16. Calculation of wave qo - intensity for x=0 [m%/sec]
overtopping
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The parameter [ is a constant and equal to the distance for which the overspill intensity decreases
by a factor of 10.Now the total amount of overtopping, Q, may be calculated by integration:

0= [q,0 *Pat (3.50)
0
resulting in the following formula:
Q:q _.B.._..
LD (3.51)

knowing Q and f, the intensity, g, for x=0 may be calculated, and thus the intensity, q(x), for a
distance x can be estimated.Besides the horizontal distribution of wave overtopping behind a
breakwater, the distribution of the wave overtopping discharge of individual waves is highly
important. Since the overtopping discharge is an nonlinear physical phenomenon, it is not so much
the average intensity that determines the level of inconvenience or danger, although average
intensities can be used as criteria for acceptable overtopping.

The authors have made model tests in scale 1:30 with measurements of both the average
overtopping volume and the volume of overtopping in the 5-10 waves causing the largest
overtopping. These tests were made without wind. The breakwater used for theses experiments
appears in figure 3.17, where the results are also shown.
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Figure 3.17. Results of overtopping measurements
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In the following, q,, 1s the overtopping for one single wave and ;‘:, the average value of
overtopping, i.e.

qw :—]_;;Eqw (352)
1

where N is the theoretical number of zero-crossing waves. Note q,, may be zero for many of the
smaller waves. It appears from the study that the following distribution applies as an

approximation:

p(g,)=exp{—(q,/4)"} (3.53)

A and vy are constants. The results show that for this specific case that v is in the order of 0.25.
The wind velocity has an important influence on the quantity of wave overtopping especially for
small overtopping quantities, i.e. “Spray carry over”’ conditions. In situation with extreme * green
water” overtopping the effect of the wind is almost negligible.

From the results it appear clearly that the wind velocity is an important factor for the overtopping
discharge for small overtopping discharges, i.e. “Spray-carry-over” conditions.

3.7. Dutch guidelines (1989)

In the following section formulas for wave overtopping according to Dutch guidelines (D.G.),
edition 1989 are presented. At the end of the section there are presented modification done to this
in June 1997 by van der Meer in report H 2458/H3051.

3.7.1. D.G.- 1989

777777777777

Figure 3.18. Free crest height with wave overtopping

With wave overtopping, the crest height is lower than the run up levels of the highest waves.
The parameter to be considered here is the free crest height R, (Figure 3.18). This is the
difference in level between SWL and the crest height. The crest height itself can be given as an
absolute crest height hy, for example determined with respect to NAP (Amsterdam ordnance
datum). If the crest height i1s reduced by the water level (also with respect to NAP) then yields
the free crest height R...
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Wave overtopping is mostly given as an average discharge q per metre width, for example in
m>/s per m or in I/s per m. The Guideline (TAW, 1989) indicates that for relatively heavy seas
and with wave heights of up to a few metres the 2%-wave run up criterion yields an overtopping
discharge of the order of 1 Vs per m. It becomes 0.1 1/s/m with lower waves such as those
occurring in rivers. An overtopping of 1 I/s per m in the river area can lead to a reduction of the
freeboard of the dike (taking into account the minimum freeboard of 0.5 m). The Guideline
further quotes "Which criterion applies depends of course also on the design of the dike and the
possible presence of buildings. In certain cases, such as a covered crest and inner slopes,

sometimes 10 I/s per m can be tolerated".

In the Guidelines it is assumed that the following average overtopping rates are allowable for the

inner slope:

* 0.1 Us per m for sandy soil with a poor turf;

* 1.0 Usper m for clayey soil with relatively good grass;

* 10 I/s per m with a clay protective layer and grass according to the standards for an
outer slope or with a revetment construction.

At the moment studies are being carried out to better explain the relation 0.1, 1.0 and 10 I/s per
m overtopping as well as the condition of the inner slope.

Wave overtopping can be expressed in two formulas: one for breaking waves (€,, <2) and

one for non-breaking waves (€., >2).

The dimensionless overtopping discharge Q, (b for breaking waves) is given on the ordinate :

s
0,=——\| % (3.54)
gH3 an

s

and the dimensionless crest height R, (application area 0.3<R<2) with:

R, S, 1
R=—2Ye2 (3.55)
H tanc ¥,Y,Y/¥,

The formula using first approach (average value) presented in section 2.2. is:
Q,=0.06exp(-5.2R) For §,, <2 (3.56)
The dimensionless overtopping discharge for non-breaking waves (€,,>2) is:

Q = q
" 3.57
o (3.57)

5
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and the dimensionless crest height R, .

RC 1
o (3.58)
H Y Y, Y
The formula is:
Q,=0.2exp(-2.6 R) (3.59)

By TAW , a somewhat more conservative formula with build in safety factor should be applied
for design purposes rather than the average value. The two recommended formulas based on
mean average values (second approach from section 2.2.) for overtopping are:

* for breaking waves with £,,<2:
Q, = 0.06exp(-4.7R) (3.60)

* and for non-breaking waves with £, >2:

Q. =0.2exp(-2.3R,) (3.61)
The used quotation in above formulas are:

Q = dimensionless overtopping discharge for breaking waves (., <2) [-]

Q. = dimensionless overtopping discharge for non-breaking waves (§,,>2) [-]

q = average overtopping discharge (in m*/s per m width) [m%/sec]
g = acceleration due to gravity [m/sec?]
H, = significant wave height (average of highest 1/3 part) [-]

S  =wave steepness =27nH/(gT?)) [-]

T, = peak period, with a double peaked spectrum T, [sec]

R, = dimensionless crest height with breaking waves (£,, <2) [-]

R, = free crest height above still water line [m]

YuYn Y1 Yp = reduction factors for influence of a berm, shallow foreshore,
roughness and angle of wave attack. Minimum value using a
combination of factors is 0.5. [-]

Both the dimensionless overtopping discharge and the dimensionless crest height are function
of the significant wave height, the wave steepness and the slope gradient. To account for the
varying conditions, the dimensionless crest height is virtually increased through division by the
- reduction factors Yy, Yn, Y Yp (<¥<0.1), which are also given by the Dutch Guidelines .
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Both design formulas are graphically shown in figures 3.19 and 3.20. In these figures the
recommended lines, the mean and the 95% confidence limits are. Also, in figure 3.19 the formula
from the Guideline, part two, is drawn and is practically the same as the recommended line
(figure 3.19, 3.20).
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Figure 3.19. Wave overtopping with breaking waves
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Figure 3.20. Wave overtopping with non-breaking waves
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With the presented formulas steep slopes are accounted for by considering non-breaking waves
separately. The improvement is mainly the description of the reliability of the formulas and a
better description of the influence of berms, a shallow foreshore, roughness and the angle of
wave attack.

The recommended line for the overtopping discharge q, according with the Dutch guidelines, is
described in the above section by the equations (3.60) and (3.61.). However, the average
overtopping discharge does not say much about the amount of water of a certain overtopping
wave passing the crest. The volumes of individual waves deviate considerably from the average
discharge. By means of the average overtopping discharge the probability distribution function
of the overtopping volumes can be computed. This probability distribution function is a Weibull
distribution with a form factor of 0.75 and a scale factor a which is independent of the average
overtopping discharge per wave and the overtopping probability. The probability distribution
function is given by (Report H638, Delft Hydraulics, 1994):

_ A LEE
P =P(V<V)=1 —exp[ —( -a—) ) (3.62)
T,4q
a=0.84 (3.63)
with:
P, = probability of the overtopping volume per wave V being
less than or similar to V [-]
V = overtopping volume per wave [m*/m]
T,, = average wave period (NT,, is the storm duration or
time interval considered) [sec]
q = average overtopping volume [m*/m]
P,., =N,./N, = probability of overtopping per wave [-]
N,, = number of incoming waves during the time the storm lasts [ -]

The probability of overtopping can be computed by:

P,, =exp[ —( RC/HSJ ] (3.64)

The value of the reduction factor c follows from the assumption that the run up distribution is
similar to the Rayleigh distribution.
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3.7.2. 1997 modifications

According to report H 2458/H3051 of Delft Hydraulics new values for reduction factors have
been found as follows:

Yn =1
tan & =3 Hy/(Lg,-B) - were a is the equivalent angle of the slope [°]
Lgwe = the length of slope in front of the structure measured
between 1.5 H, depth in the water and 1.5 H; above the
water level. [m]
B = is the length of the berm (if this exist) [m]
Yy = new coefficient for influence of vertical wall on the top of the
sloping structure. [-]

3.8. Yoshimichi and Kiyoshi formulas (1992)

The proposed formula by the above authors presents a new methods for calculating the wave
overtopping rate over a seawall located on a complicated bottom profile of sea coast. It was
assumed that the influence of the complicated coastal profile on the wave run-up height can be
evaluated by introducing a hypothetical single slope angle & proposed by Nakamura et al.(1972)

as follows:
o=tan”(R+h,)*/24 (3.65)
\
R \
‘}r— ¥
he he
///// xm
Figure 3.21. Hypothetical single slope angle
(Nakamura et al. 1972).
where:
R = wave run-up height [m]
hy = breaking water depth [m]
A = the shade area from the depth at the breaking point to the

extreme of maximum wave run-up, as shown in figure 3.21. [m?]

The predicted results coincide well with the available data.
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3.8.1. Breaking Waves

The actual shape of wave run-up profile 1s presented in figure 3.22 (a). Takada (1977) assumed
that it could be approximated by the one presented in figure 3.22 (b) and studied the wave
overtopping rate over one wave period T. He found that this value is proportional to the shade
area A in figure 3.22 (b). That is,

q A4 (3.66)
where:
q = wave rate overtopping over one wave period [m?*/sec/m]
A =hypothetical area above the seawall crown in a wave run-up profile  [m?]
A=(R-H)[(X,/R)-cota](R~H )/2 (3.67)
where:
H, = freeboard above SWL [m]
Xo = horizontal length of the shape of the wave run-up profile. [m]

(a) Actual shape

(+)§
£ 53
?..\
(+)
(b) Assumed shape
Xo
2 7
R R <.
Hc a
1 hm
y
< —z.

Figure 3.22. Actual shape and assumed shape of wave run-up profile.
From eq. (3.65) and (3.66) , the overtopping rate q can be predicted by the following equation:

g=c[(X,/R)-cota](R-H )*/2 (3.68)

where c is the overtopping coefficient which can be determined from experiment
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In figure 3.22 , the upper part of the actual shape of the wave run-up is thinner than that of

~ assumed shape, and the value of X,, in the actual shape is longer than that of the assumed shape.

Thus if the value of X, of the actual shape is used, the resultant evaluation of the area A will be
extremely exaggerated. Therefore the value of X, of assumed shape is used. It is calculated by
using the following equation obtained from geometrical relationship.

X /R=cot[a~tan"'(k_/R/sinc)] (3.69.)

where h,, is the maximum thickness of the water tongue shown in figure 3.22 (b).
The expression for h,, can be found by the following formula:

Om 1 Ze g VT 1 O] g8 406 (3.70)
H, 2 H, g Ti H,
where:

H, = wave height at the point where is no energy loss by breaking waves [m]

H, = breaking wave height [m]

T, = Bessel function of the zero order [-1

1 = bottom slope ( cotg o) [-1]

T = wave period [sec]

R is calculated using the system given by equations (3.68) - (3.70).
The results of the calculation by using Eq.(3.70) are shown as the dotted lines in figure 3.23.

N
4

T y T T T T
"""""" Huo/ Lo=0.0075 +/L0s50.8075 |

O:H
Eq (3.56) { ------ He/ Lo=0.015 0:H./Los0.015
— — — H./L0o=0.030 A:H./1L050.030 ]

H./ Lo=0.0015
Hes/Lo=0.0815
He/ Lo=0.030

o B Ba0sn |

_ cota
Figure 3.23 Relation between the maximum thickness of the
water tongue and the bottom slope.
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It takes long time to calculate the Bessel function J; in eq. (3.70) . Therefore the use of the
approximate expression of the Bessel function and the substitution of realistic values for h,,

induce the following equation:

172

+0.8 {0 (3.71)

L. 037s( i

3/4
H, T L JO.8H /L

The results of the calculations by using eq.(3.71) are shown as the solid lines in figure 3.23.
Finally the overtopping coefficient c, can be obtained, by substituting experimental data into eq
(3.68 ) and (3.68):

¢=0.1(L/H,)"*(cosB +cosa)/2 (3.72)

3.8.2. Non-breaking waves

It can be assumed that the effect of the seabed profile on the wave overtopping rate is small for
non-breaking waves. Therefore the following experimental equation by Takada (1977) was used.

q=0.65(R-H_)’ (3.73)
where:
R=[1.0 +T(H/L)coth(2Tth/L)1H,
3.8.3. Irregular waves

The wave overtopping rate for irregular waves can be calculated by the following equation:

Q:ffq p dH dT (3.74)
00
where:
Q = overtopping rate of irregular waves [m*/sec/m]
p = joint distribution function of wave period and height of the wave [ -]
q = overtopping rate of the component waves [m?/sec/m]
H,T =wave height and wave period of the component waves respectively. [m,sec]
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The term p proposed by Watanabe et al. (1984) can be expressed as follows:

p=p(OPAT/X,,(T)
Y1+v? v?
1+4/1+v2 [V +(T-1)°1"°
2
\7=\/(m0m2/m1 )-1 (3.75)

P(LI™) =(32/%) X expl -4 7,/T]
X=X X

p(v)=

X, (D) =V5() £/ f VSO f p(vydr
0

where:
x=H/H, T=TIT (The over bar indicates an average value) [-]
f = frequency | [-]
m,  =Kth order moment of the spectrum [-1]
S(f) = Bretschneider-Mitsuyasu Spectrum. [-]

The proposed methods have been checked with laboratory data as well as the field data. The
agreement between the calculated values and the available data is favorably good.

3.9. Kobayashi formula (1992)

The numerical model developed by Kobayashi et al. (1987) for predicting the up-rush and down-
rush of normally incident waves on rough impermeable slopes is expanded to predict wave
overtopping over the specified crest geometry of an impermeable coastal structure located on a
sloping beach. The related problem of wave overtopping (e.g. Cross and Sollitt 1972; Seelig
1980) and through a porous rubble-mound breakwater (e.g. Madsen and White 1976) is
considered herein. Kobayashi et al. (1987) showed that their numerical model was in agreement
with available test data on run-up, run-down, and reflection of monochromatic waves plunging
and collapsing and surging on uniform and composite riprap slope. This model is presented in
annex. Based on this numerical model, for incident monochromatic waves, the normalized
average overtopping rate per unit width, Q, is obtained from the computed temporal variation of
m=uh at x=x,

/ P+l
Q=-—/Q——/—= [ mar (3.90)
H 0 gH 0 tp
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in which:
Q = dimensional average overtopping rate per unit width; [m*/sec/m]
t, = normalized time when the flow at x=x, becomes periodic. [sec]

For the computation made in this paper, t, =4 is found to be sufficient as will be shown later. The
computed value of Q is hence the average value of m(t) at x=x, during 4< t < 5.

The numerical model is compared with the extensive small-scale test data summarized by Seville
(1955). The following comparison is limited to the structure geometry shown in figure 3.24
(annex) in which:

B’ = crest width [m]
H’, = crest height above SWL [m]
d’; = water depth below SWL at the toe of the structure

fronted by a 1:10 slope [m]
0>, = angle of the structure slope [rad]
d’>,  =water depth below SWL on the horizontal bottom in a wave flume [m]

The values of Q listed in Table 3.2 are plotted in figure 3.25 where, for each measured value of
Q,the numerically computed value of Q and that calculated using SPM are shown. The numerical

model yields fairly good agreement with the data but it underestimates Q for the runs in groupl
TABLE 3.2 Summary of Computed Results for 20 Runs

Run b x 102
—
£ 0.15 - B Numerical Method number | d. d d, H. r Data | Numerical { SPM
) L O sPM Method ) @ | @ | @@iel®eim 8 9
é,’ - ] o 1 492 | 300 { 075 | 0.50 | 0.27 6.6 2.7 5.5
nE L 2 492 | 300 | 075 | 1.00 | 030 | 4. 0.3 2.6
&, R 3 567 | 3.00 | 150 { 050 | 029 | 6.4 5.3 7.6
S 0.10 - 4 567 { 3.00 | 1.50 { 1.00 { 029 | 3.6 1.4 3.8
a = ob
P i - . 5 756 | 400 | 200 | 067 | 049 | 9.0 8.1 10.0
>
Z i ] oq 6 492 1 400 | 075 | 050 | 044 | 60 5.4 8.7
o 0s |- 7 492 | 450 [ 0.75 | 1.00 | 048 1.7 16 5.9
I [ | 8 492 | 400 | 075 | 1.50 | 049 | 04 0.2 3.9
- B, D 9 567 { 400 | 1.50 | 050 | 053 | 94 9.1 12.4
2 g 10 567 { 400 | 150 | 100 | 060 | 40 4.5 8.0
L » z @D n 567 | 400 | 150 | 150 | 0.65 | 08 1.6 49
.
o D : 12 656 | 600 | 1.00 | 0.67 | 060 | 9. 9.8 1.6
PRNE TN T NN S R T R U A N SN A I | 13 1.56 6.00 2.00 | 0.67 0.60 13.0 1.3 14.9
0 0.05 0.10 0.15 :; ;gg 6.00 2.00 1.33 0.70 7.7 5.1 1.0
. 600 | 200 | 200 | 076 | 25 1.6 78
3
COMPUTED Q [m*/sec/m] 16 | 756|600 | 200 267 | 077 | 1 15 s
17 492 | 492 [ 075 | 050 | 045 | 49 6.6 5.5
. 18 492 | 492 | 075 | 1.50 | 0.63 13 0.8 2.4
Figure 3.25.Computed and measured o | a17 | s17 | 000l o3| ore] 30 a0 o
values ofwave overtopping 20 4.17 | 417 | 000 | 100 | 0.28 | 20 0.7 2.0

In addition to the average overtopping rate, the model computes the temporal and spatial
variations of the normalized water depth and horizontal velocity in the computation domain
O< x< x..
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The numerical model presented herein may be used to predict the fairly detailed hydrodynamics
associated with wave overtopping over the crest of a smooth impermeable coastal structure
located on a sloping beach. The comparison of the model with the data is limited to the average
overtopping rates of monochromatic waves. The numerical model may also be applied to rough
impermeable structures by adjusting the friction factor associated with the surface roughness
(Kobayashi et al. 1987). In order to apply the model to overtopping rubble- mound breakwaters,
the effects of permeability and wave action on the landward side of the breakwater may need to
be taken into account. Such an extended numerical model combined with the armor stability
model of Kobayashi and Otto (1987) could be used to investigate various design problems
associated with rubble-mound breakwater. :

3.10. Richard Silvester formula (1992)

. /) 1% p,y o3 T o
£ I[ / ]1/
ST A A
o /V / /, /, © .
PADAAIN [/ A 1A .
% 2 = it o P B
z i 1 ///L/'/
“C ' A m?l/ FA 1
Qo oos [-T- 1 ILooa oo2 -] 2 a L. ... 8 10
A q. N1.2gH?

Figure 3.26. Average overtopping discharge q,,, per unit length of walls

The definition sketch of figure 3.26 indicates the variety of variables that can enter the problem
of overtopping. By the time the wave reaches the crest of a dike it will either be a standing wave
or be breaking. In either case the crest shape should be close to triangular. The equation so
derived can be put in the form:

9 ave =\/§-2—m _IED_ % 1__’_1_ % (3.91)
15 \ H '

gH 3 R,
where:
Qwe = average discharge over the weir per unit length of dike  [m*/sec/m]
m = discharge coefficient for flow over the weir [-]
R, = maximum reach of the overtopping wave above SWL  [m]
h = height of the dike above SWL fm]
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Eq.(3.91) has been plotted in figure 3.26 for m=0.6. also included are curves for RyH from the
various dikes illustrated. The volume V; discharging over a length B of the dike in a wave period
T is given by:

V1240, TB (3.92)
with an average velocity v=2q,./(R¢-h), assuming the discharge to take as a rectangular block
for half the wave period. Since the overtopping water body has been considered of triangular

cross-section this velocity should be doubled, but verification of such figures should be made in

the laboratory.
3.11. Van der Meer formulas (1994)

The following basic dimensionless parameters are to be identified:

Mean overtopping discharge

-_ 49
0= (3.93)
gH ,,
Relative crest height
R e
= i (3.94)
Wave steepness
HDS
Sop™ 7 (3.95)
op
Relative local water depth
ht
H, ) (3.96)
with:
g = acceleration due to gravity (= 9.81) [m/sec?]
h, = water depth at the structure [m]
H,, = significant wave height at deep water
(mean of highest one third of the waves) [m]
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L,, =wave length in deep water, based on T, [m]
q = average overtopping discharge per metre structure width  [m*/sec/m]
R, =crest level with respect to SWL [m]
Se, = wave steepness in deep water (= H; /L) (-1
T, =wave period at the peak of the spectrum [sec]

A basic form of overtopping formula proposed by van der Meer is presented bellow.
A generally applicable form of the overtopping formula is the basic relationship between the
dimensionless overtopping discharge Q and the relative crest height R:

Q=cexp(-¢c,R) 3.97)

The coefficients ¢, and c, are also dimensionless and may be dependent upon all parameters
except Q and R. Another way to write the basic formula is:

c
logQ=logc, —ﬁk (3.98)

A common way to present a measured relationship between Q and R is a plot of log(Q) (or Q on
logarithmic scale) against R. Formula (3.98) implies that this type of presentation yields a
straight line. Formula (3.97) is valid for wave overtopping of slopes, but also for overtopping of
vertical structures.

An important parameter for slopes is the breaker parameter &:

ﬁ tanc_
op 3.99
P \/‘5— ( )
op
With:
Eop = breaker parameter [-]
o = structure slope [°]

Wave overtopping can be expressed in two formulas: one for breaking waves £, < 2, and one

for non-breaking waves £,, >2. The transition between breaking and non-breaking has been
defined as £, = 2.
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For breaking waves:
tano
c,=0.06 - (3.100)
Sop
A
¢,=5.2-12 (3.101)
tano
For non-breaking waves:
¢,=0,2 (3.102)
c,=2.6 (3.103)

These values are valid for the average of reference measurements with relatively deep water at

the structure (h/H,>3,0).

There is a close relation between the wave overtopping and the wave run-up: For nonbreaking

waves the wave run-up is proportional to the significant wave-height and independent of the peak

period and structure slope. For breaking waves the wave run-up is proportional to the structure

slope (tana ) and the parameter \/ H, L, (or Tp\/ H,).

This relationship between wave overtopping and wave run-up is reflected in formulas 3.101 to

3.103 for the coefficients ¢, and ¢,

48



Report Chapter 4

4. Experiments and tests in literature

4.1. A.Paape experiment (1960)

" Information about the overtopping by waves was obtained from model investigations on simple

plane slopes with inclinations varying from 1:8 to 1:2 by A.Paape. The experiments were made
in a windflume where wind generated waves as well as regular waves were employed. Using
wind generated waves, conditions from nature regarding the distribution of wave heights could
be reproduced. It appeared that the overtopping depends on the irregularity of the waves and that
the same effects cannot be reproduced using regular paddle generated waves.

In this paragraph a description of the model and the results of the A.Paape tests are given.
Investigations were done on coniposite slope, including the reproduction of conditions for a
seawall which suffered much overtopping but remained practically undamaged during the flood
of 1953 in Holland.

The height of a series of wind waves are often characterized by the value of the significant wave
height H,,=H,;. The wave period is determined as the mean value of a series of waves. The mean
wave length can be found from period and water depth. For wind generated waves in the wind
flume the mean period were varying from 0.65 sec with a wind velocity of 4m/sec to 0.85 sec
with a wind velocity of 10m/sec. When the wave height and period, using wind only, is too
small, a regular paddle generated swell can be applied in combination with a rather high wind
velocity to obtain the required period and wave height distribution. In his experiments only wind
was used.

The model had a width of 0.5 m and was placed in a glass wall flume, which formed part of a
windflume, 4m wide and 50 m long. Before the model was placed, series of tests showed the
subdivision of the main flume had no effect on measured wave characteristics.

The overtopping was measured as the volume of water passing the crest during each test. For
every height of the crest the overtopping was measured as the volume of water passing the crest
during 600 sec, from which an average value per second could be determined. Also the number
of overtopping waves, as a percentage of the total number was determined. During each run
waves registrated for 120 sec. In this way an average distribution from about 2000 wave heights
was obtained for each slope and wind velocity.

An attempt has been made to express the results of these tests in terms of dimensionless
parameters as follows.
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The height of the crest of the seawall above still water level, h, was expressed as the ratio:

hH,, 4.1

It was found that the overtopping could be related to the dimensions of the waves using the ratio.

2nOT
7502‘ “4.2)
where:
h = height of the crest of the seawall above still waterlevel [m]
Q = overtopping in m*/sec per m length of the seawall [m*/sec/m]
T = wave period [sec]
H,, = wave height exceeded by 50% [m]
L = wave length [m]
AL - area, in cross section, of a sinusoidal wave above
2m mean water level. [m?]

The results obtained are given in figure 4.1 for each slope curves for different average wave
steepness were obtained, as various wind velocities were applied. Also the percentage of the
waves causing overtopping is indicated. From the tests carried out on a slope of 1:5, the same
results were obtained for a water depth of 0.25, 0.30 and 035m. The wave length in deep water,
L,, according to the periods used in these tests was approximately 1.2 m, so no influence of the
water depth, d, was found for d/L,> 0.21.

The best results have been obtained using the assumption that the overtopping is proportional to

h(cotan @)*”

(tan ¢ )*2, which is shown in figure 4.2. where, instead of h/Hs,, has been plotted.

50

It is seen that with slope varying from 1:3 to 1:8 the results can be represented by a single line.
But for a slope of 1:2 the results are completely different, possibly due to greatly increased
reflection of wave energy for the steeper slopes.

It should be noted that there are probably limitations to the applicability of these results and that
the experiments reported here were limited to the raIiges:

0.03< H5°<o 06
03<——<0. 4.3)
0
and
d/Ly20.21 (4.4)

in which:

d = water depth [m]

L, = wave length in deep water [m]
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The overtopping has been measured for regular and irregular waves with the same mean height.
The results are given on figure 4.3. As could be expected, the irregular waves produced more
overtopping. It can also be seen from this figure that there is no simple relationship between the
height of a regular wave which will give the same overtopping as a given irregular wave, because
the height of the seawall crest must also be taken into account

50
\;@ T=SLOPE 1:2. 4« SLOPE 1: 5
§ = * 13ex ~ 164
m~1(36) \ 2) [
4\\\:!2{1 o= = t3kss - 18
g 1 x= L4 1:4 =
- \ \m
\\z\k S \\: \
K
N
Hsg &7 RARNAN
NN
or '&5‘“ SRRR
~ \\l 4
E B2 TSRE \! 57)
2 s N
| @ - U ! NIY,
—en | | : Q\\{SR. &
TN
e (38) o |
e N R SN ~ . A
bt ¥ . L 2] (LB \
(GJT -‘n~‘\ ‘~
GJ& .Z -~ ~ 0 \‘
°‘Y‘h~-_(6.1)\ I~ Doy SN N
Verny — 0Y >
“s?:::~2"\~ L bd.‘?. \ \\.
ok (BT 02 ~ |
L IS SR LB~ Y
—— \'th \b
..§'.PL
'\
~
v.
0

0° 2 4 681 2 4 681035 2 4 6812 2 4 687
21QT
L

NUMBERS IN BRACKETS INDICATE WAVE STEEPNESS IN %.

PLAIN NUMBERS INDICATE PERCENTAGE OF WAVES OVERTOPPING.

Figure 4.1. Overtopping for diferent average wave steepness for various wind
velocities

51




Report Chapter 4
.
25le
x
264 _ ¢
u .
s | o o w
‘T o
22 L B
e |g o ®
v g
* = %;v
°
g‘ % o '_-
18 —
oy L J
v
16 b wo *
~ v
~_ , ¥ =%
[ ]
: 1% "'%_ﬁ
:le 1 kb
) . Al
Q 12 7y ‘
e ‘+‘ 0'{
101 r“' L -
SLOPE  AVERAGE 4 + Vo g
WAVE STEEPNESS | 44, | oyl
8 & 12 22 ) D B P
A 57 &8 +* ]
T .4 34 ad
=i b Rrat
. b
: 1.3% &9 — & o +
. 41
. o 14 ",:2 lo
) =~ 1:6% gz; 3
$ e 57
A . 2
q Lo 1 $20 _
10° 2 4 68%W% 2 4 681° 2 4 68W2 2 4 681
2197

Figure 4.2. Overtopping values for diferent wave steepness

52



~
.
V
& HIOIM W ¥3d 8@: NI ONIddOINTA0
S £ 01X ST 02 Sl o 5 0
‘ o€
vN.—- — M
9l = / - m
5% P g
A .
L — M 3
~ / = .m
. @ ~
i 2 m
I le.I m . M m ﬁ
Y h" 05 3 mva
. .
ol- M xS
gl W_ Wa
\ 5
z B
3 N
0z~ ‘ Ja/; 09 r~ S
"ONIddOLY3A0 SIAVM 0 2
39VINIJNId 3LVIIANI SHIEWNN 2
9%s 8 QOI¥3d . . S
- wog HIONTT . . 20 -
WOt LHOIFH IAVM NVIW ) ~
§:1 3d01S 3
0% 8o
N o
8 3
)




Report Chapter 4

4.2. Oullet and Eubakans experiment (1976)

Yvon Oullet and Pierre Eubakans describes the results of an experimental study on the effect of
waves on rubble-mound breakwater, wave transmission subsequent to overtopping, the stability
of the three subjected to wave action and the effect of the breakwater on waves. Two different
rubble-mount breakwaters were tested, i.e. one with a rigid impermeable crest and other with a
flexible permeable crest. Tests were performed with both regular and irregular wave train
systems. To obtain the simulated 1rregular wave trains, four theoretical spectra were chosen:
Neumann, Bretschneider, Moskowitz and Scott which are shown in figure 4.4.with the
corresponding wind velocities used.

8
T ray
—— SCO1 7 A/
e Neumonn ’
6§11 ———= Moskowitz g ¢ "7/
amune o s Bretschneider 'r. ’ ES5 /.
\ VA%
s 24 ¢
Va
2 ﬁ'

2 4 & 8 10 12 4 & 18 2
velocity ,V, /g
Fig.6 b—WIND VELOCITY OF SIMULATED SPECTRA.
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o

o

%2

o s ——————— S
o 0025 0050 0075 O0I00 QI25 QIS0 QI75 0200 0225 0250 0275 Q300 0325 03%
f,Hz

Figure 4.4. Theoretical wave spectra

Wave flume has the following characteristics: a channel 36m long, 1.86m wide and 1.3m deep.
The distance between the wave paddle and the model breakwater ( center of crest) is about 21m.
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Figure 4.5 a) and b) show typical examples of recorded surface profiles of incident and
transmitted waves, and the results of the spectral analysis of the above signals in the case of a
simulated Neumann spectrum. Figure 4.5 a) corresponds to the concrete cap breakwater with the
depth h=60cm and the simulated significant wave height H=4.25m. Figure 4.5b), on the other
hand, corresponds to the other structure for the same values of h and H,.
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Figure 4.6 (a) and (b) show the relationship between height and overtopping wave height for all
four spectra respectively for the concrete and dolos crest breakwater in 60 cm depth. The same
relationship was also found in the case of regular wave trains as shown in figure 4.7.(a) for the
concrete cap and in figure 4.7.(b) for the dolos crest breakwater.
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Figure 4.6. Significant wave height versus overtopping height for
irregular waves

56




Report

Chapter 4

40
| { 1 /I/F
frequency s
3sH o 0.2 . A
E A 0.4 ” | N I
o A . ”
£30H .. g: // ?'
2 o ! I'O // / l >
. . - .
g 25 /’ 1 -/ LA
2 o
€ o +I 2
-§ 20 > = 79 o)
£ // * crest : concrete
= Ppid © | depth:e e = 50 cm
'5 /' / -
/ /0 A (e} oo 55 cm
. = G0 CM
|o j l } ¢ 4
0 2 4 8 10 12 14 16 I8
Z4,overtopping height ,cm
: (a)
frequency
35 H o) 0.2
E A 0.4
- a 0.6
£ 30 +H .
° . 0.8
; ) 1.0
2 25
g
2 20
£
- crest : dolosse
15 depth: ===+ 55cm
s G0 c

0 2 4 6 8 10 12 14 16 18
Z,overtopping height ,cm
{b)

Figure 4.7. Wave height versus overtopping height for regular waves

Having established that an incident wave height and an equivalent significant wave height have
almost identical overtopping heights, it would be possible to predict at which significant wave
height structure will be damaged, using only regular wave trains, the main difference being the
quantity of damage.
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4.3. Ozhan and Yalciner formula (1990)

Erdal Ozhan and Ahmet Cevet Yalciner discusses in the paper * Overtopping of solitary waves
and model sea dikes’- published in Coastal Engineering,1990 for The 22nd International
Conference of Coastal Engineering - an analytical model for solitary wave overtopping at sea
dikes. The analogy proposed by Kikkawa et al (1968) is extended in their proposal and applied
to solitary wave overtopping to derive a closed form analytical model.

By considering analogy with steady flow over a sharp crested weir, wave overtopping rate at a

sea dike may be equated to:
2
(0 =;m\/2g{z(t) -z} 4.5

where:

q(t) = unsteady overtopping rate per unit dike width [m?/sec/m]

z(t) = changing water level elevation measured from still water level [m]

Z, = crow elevation of the dike [m]

g = gravitational acceleration [m/sec?]

m = the weir coefficient which is equal to 0.611 in steady flow [-]

The change of water level elevation during overtopping is written as:

z2()=Z_, F(® (4.6)
where:
Zmax = maximum rise of the water level [m]
F(t) = a function having the range of 0 and 1 [-1]
It is assumed that the maximum water level rise is related to the incident solitary wave height :
z K H 4.7)

where the maximum rise coefficient K may be a function of wave height-to-water depth ratio
(H/d), dike angle (¢ ), and wave height-to-crown elevation ratio (H/z,). Substitution of €q.(4.6)
and (4.7) into (4.5) and by integrating results:
_ 4 3773 1
Q—;m\ﬂgK H aC 4.8)
where:
Q = overtopping volume of a solitary wave per unit dike width [m*/sec/m]
g, A = shape coefficients given in eq. (4.11)
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T* z 3
I=f Sech?t——2| dt
A KH

Zy

KH'
It has been shown that the integral I is approximately equal to (Ozhan, 1975):

3
7=Yeoch \l ( L)[ I __'f’g_) 4.9
2 KH KH

Then, the final result giving the overtopping volume of a solitary wave unit dike width is obtain
from (4.8) and (4.9) as:

Q(l+£) 3
2d =o.6652\] K3[1— z ) . _1( Z ) (4.10)
KH

Hd €

and t*=Sech !

where m=0.611 is used.

This equation includes two empirical coefficients € and K. Laboratory experiments were-
designed to investigate the values of these coefficients together with their dependence on various
parameters.

The geometries of model dikes and water depths used in each experimental group are shown in
figure 4.8.
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Figure 4.8. Geometries of model dikes

The values of € for all three dike slope are plotted in figure 4.9 against H/z, ratio.
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Figure 4.9. Values of shape coefficient

The maximum rise coefficient, obtained are compared with the respective K, values
corresponding to the maximum recorded level in fig. 4.10.
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Figure 4.10. Comparison between theoretical and measured rise
coefficient

It is observed that two values are correlated reasonably well. In line with expectations, the
maximum rise coefficients computed from the theoretical model by using the measured
overtopped volume are larger by 9% on the average that the respective K, values. This is due to
3 cm distance between the measurement location and the dike crown.

60



Report

Chapter 4

The least square lines for € and K were used in the analytical expression (Eq.4.10) to compute
the dimensionless volume of overtopping as a function of H/z, s, The resulting curves for three
dike slopes tested are compared with the experimental data in figure 4.11.
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For comparison of solitary wave overtopping with that of regular waves, it is necessary to define
a practical wave period for the solitary wave. This may be done as the time length over which
a certain percentage of solitary wave volume passes a fixed point. The resulting expression reads

as:
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Fi;gu;e 4.12. Soli;ar;i} and oscillatory wave

overtopping for a vertical dike
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The reanalysed experimental data in this
manner for the vertical dike is compared in
fig.4.12 with the curve for regular oscillatory
waves given by Tsuruta and Goda (1968). In
this comparison, q is the average overtopping
discharge over a wave period. The
experimental data for solitary waves are
plotted twice by using practical wave periods
determined form two volume percentages,
namely 95% and 99%. The presentation in
figure 4.12 reveals that the solitary wave
overtopping rates are significantly in excess
of the respective oscillatory wave discharges.
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4.4. Sekimoto experiment (1994)

The characteristics of short term overtopping rate for a deep sea block armored seawall were
investigated experimentally by Sekimoto Tsunehiro. He conducted two series of experiments .
One is a series that seawall has low crown height and a wave grouping effect is investigated.
Another experiments is a series that it has a high crown height and slope effect of amour unit is
studied. From these experiments, it has to be consider the short term wave overtopping such as
an artificial island.

Experiments were conducted in a wave flume with dimension of 0.6m in width, which is partly
divided from a wave basin of 5m in wide, 34m in length and 1.2m in depth. At an end of basin,
rubbles banked in 1:5 slope are posed in order to reduce reflected waves. Model seawall were set
up in the flume. In the frame of the experiments it is supposed that a prototype water depth in
front of the seawall is 22.5m. Considering the wave flume dimensions, the model scale of series
one and two are assumed to 1/85.7 and 1/87.5 respectively.

One of two experiments is a series that seawall has low crown height and a wave grouping effect
is investigated. A typical model section in series-one is shown in figure 4.5. Both a vertical and
a block armored seawall are used in this series. The water depth in front of a model seawall was
26.3cm. Sea bed slope in front of a seawall is 1/1000. The tetrapods (58.9g) were used as
armoured bocks and the same size blocks were used in all section. A crown height was 10.5cm.
It is 9m in prototype scale and the slope of amour units is 1:4/3. Irregular waves which have
Wallops type spectrum were act on model seawall.

I_g 5.9
9.0
SR Model
Caisson
| Wave-dissipating
i block
_ 27 3

UNIT: m

Figure 4.13.  Typically model seawall
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Wallops type wave spectrum are of the form:

SU=BH T (T ) "expl =T N @4.13)
(m-2)4
p=—_0:6238m [1+0.7458(m +2) 1957 (4.14)
40T (m -1)/4]
T,=T,,[1-0.283(m -1.5)¢% 4.15)
where:
m = spectral shape factor [-]
H,; = significant wave height [m]
T,s  =significant wave period [sec]
T, = peak wave period [sec]
r = gamma function [-]

The shape factor m become small, the bandwidth of wave spectrum becomes narrow, while the
m is large, the band widths of wave spectra become wide. In the case that m=5", Wallops type
wave spectrum corresponds to Modified Bretschneider-Mitsuyasu type wave spectrum modified
by Goda. The experimental cases are shown in Table 4.1.

Table 4.1. Experimental case for series 1 The three types of spectral

T p(0) | Hghe vertical seawall  [block armored seawall shape factor m=3.5 and 9
13 ! m=3 | m=5 | m=9 | m=3 | m=5 | m= were selected. The wave

| 060 ] O O] O]10]O period was 1.73 second and
173 274 0]0i010]0 five kinds of wave height

(16.0) (1)(';191 8 8 8 8 8 were used. The wave height
1:19 510 01 0 normalized by the crown

height were changed from
0.65 to 1.42.

Another experiments is a series that it has crown height and slope effect of amour unit is studied.
Assuming an actual wave overtopping condition, the mean wave overtopping rate set below
0.05m*/m/s in prototype scale in the condition that the significant wave height normalized by
crown height is 0.684, and significant wave period is 16s in this series.

The Wallops type wave spectra were also used in this series. In this series, the shape factor of
incident wave spectra is selected m=5. The wave heights normalized by the crown height were
changed from 0.46 to 0.91 and three wave periods 1.28s, 1.71s and 2.14s in experimental scale
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were used, which were 12s, 16s and 20s second in prototype scale respectively. Experimental

condition is shown in Table 4.2.

Table 4.2. Experimental case for series 2

T\
(sec)

Hythe

Slope of block armour units

—

(¥ )

1:1.6

1:1.8

1:2.0

1:2.5

1.28

0.456

0.548

0.639

0.684

0.730

0.812

0.913

1.71

0.456

0.548

0.593

0.639

0.684
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0.456
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0.593

0.639

0.684

0.730

0.821

0.913
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In order to get the short term overtopping rate, a time dependent weight of water was measured
using the measurement apparatus which was used by Sekimoto et al.(1994).

The short term wave overtopping rate measured with it is:

q,(O=

where:

q(t) = instantaneous wave overtopping quantity

nT, /2

nT1/3

—nT /2

g,(t) =n-wave mean overtopping rate

T,s = significant wave period

qﬂ ~max

=Max[q (1]

f g(t+1)dT, n=1,3,5

(4.16)
[m*/sec/m]
[m*/sec/m]

4.17)

[sec]
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Figure 4.14. Relationship between spectral
shape factor m and groupiness factor

In figure 4.15. the mean wave overtopping rate normalized by wave height is plotted against the

“spectral shape factor m. In this figure, the wave height is measured on the position of seawall in

the condition that the model seawall dose not up. On left hand side of this figure, the results of
vertical wall type seawall are shown and on the right hand side the results of block armored
seawall are shown. The mean wave overtopping rate have tendency of increase while spectral
band width become narrow.

00/ 0.01 il n/q,,--..i'r
—.— hcin, 133
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So D E —— he/K,~0.96
~ o ~
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e
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0 .:::;53:\\. v 5_—.
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Spectral Sh_ape Factor m Spectral Shape Factor m
vertical wall block armoured

Figure 4.15. Relationship between the mean wave overtopping rate and the spectral shape factor

The relationship between wave-overtopping rate and groupiness factor is compared in figures
4.16 and 4.17. On the left hand side of this figure, the results of vertical wall type seawall are
shown and the right hand side the results of block armoured seawall are shown. The results show
the strong relationship between both is available. In the case of the same wave height, the wave
overtopping also increase as the wave groupiness increase.
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Figure 4.16. Relationship between the mean overtopping rate and the groupiness factor
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Figure 4.17. Relationship between the maximum wave overtopping rate and the groupiness
factor

Figure 4.18 shows the case of mean wave overtopping rate. The mean wave overtopping rate has
one to one correspond to maximum wave height. The relationship between the mean wave
overtopping rate and an inverse of the slope in each wave period had investigated by Sekimoto
et al. (1994). According to this study, the tendency of these relationships is similar to the results
of Saville’s run-up experiment (1952). That is the mean overtopping rate is small when the slope
is steep. As the slope becomes mild, the mean overtopping rate becomes large. The slope further

becomes mild, the mean overtopping rate decreases.
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Figure 4.18. Rélationship between the mean bvertopping rate and the maximum wave
height
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4.5 Donald L. Ward experiment (1994)

The study of D.L.Ward is evaluating effects of wind on overtopping of coastal structures
through physical model studies conducted in a combined wind/wave flume .Analysis of the data
should lead to a better understanding of the physical of wind effects on coastal structures.
Physical model tests have been conducted in a 36m long, 0.61m wide and 0.91m deep glass-
walled wave flume equipped with a flap-type mechanical wave generator. The electrically-
activated wave generator is capable of producing monochomatic wave trains as well as spectral
wave trains through a computer-generated signal.

A series of tests with monochomatic wave conditions were performed to compare run-up and
overtopping rates without wind to run-up and overtopping rates when wind of different
intensities is added to monochromatic wave conditions. Mechanically-generated waves used in
these tests had frequencies of 1.0Hz, 0.57Hz and 0.4 Hz. Waves generated by wind had a
frequency of about 2.0 Hz at the toe of the test revetment. Because the mechanically generated
waves had a different frequency than waves generated by wind, the result was a bi-modal
spectrum comprised of a sharp, low-frequency monochromatic peak for the mechanically
generated wave and a broader, high-frequency peak for wind generated waves.

Although crest of a wave from each wave train may coincide to produce a maximum wave
height, it is just as likely that a wave trough from one wave train will coincide with a crest from
the other wave train. The effect of the wind-generated wave train on overtopping rate, which is
time-averaged, is therefore expected to be less significant that effect of wind on maximum run-
up. This is illustrated in figure 4.19, which shows overtopping rates for a fixed revetment crest
elevation of 60cm (10 cm above SWL).

500 1 ' © 0% wind speed (0 m/sec)
2 : <1 A 50% wind speed (8+9mv/sec)
2 L0l o 0175% wind speed (12+13m/sec)
E fl o 100% wind speed (16+17 m/sec)
5 ;
S 300 N
B )
9 &
5 200 | - o
w ¢ o
£ a
§ 100 | . ©° .
§ : o ° Py o
] ot & o N 8 )

0.00 002 0.04 0.06 008 0.0 012 014 0.6 018 0.20
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Figure 4.19. Overtopping rate for different wind speeds tested
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Table 4.3. Wave steepness, period and height for each set of
test conditions The 50% wind speed had little

: t i te,

Ka Wave period Wave height cffect on ovel.'toppmg rate
(sec) (cm) although larger increases were

observed at 75% and 100%

0.013 250 22 wind speeds. The sharp
0.023 2.50 3.8 decrease in overtopping rate
0.029 1.75 39 for maximum wind speed and
wave steepness between 0.146

0.049 L.75 34 and 0.208 is noteworthy. The
0.104 1.00 5.0 mechanically generated wave
0.146 1.00 70 for ka=0.208 was 1.0 sec,
10cm wave (Table 4.3). At

0.208 1.00 100 100% wind speed, the 10cm

waves broke before reaching
the revetment.
It is seen in figure 4.19 that the increase in overtopping rate with wind is much greater for waves
tested with a period of 1.0 sec. (0.10< ka < 0.20) that for tests with wave'periods of 1.75 sec or
2.5 sec. An explanation for this may be found in figure 4.20.
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Figure 4.20. Wind effect on H,, of mechanically generated wave

Figure 4.20 show the change in H,_,, of the mechanically generated wave under the influence of
wind. Because the frequency of wind waves (=2 Hz) differs significantly from frequencies of the
1.75 sec or 2.5 sec waves, wind is seen to have little effect on H,,’s of the longer waves.
However, the frequency of the wind waves is relatively close to the frequency of 1.0 sec waves,
and wind energy is seen to have a significant effect on the H,,, of the 1.0 sec waves.
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4.6. Peter Sloth and Jorgen Juhl experiment (1994)

The authors has been carried out a series of flume tests at the Danish Hydraulic Institute with the
aim of studying the volumes of individual wave overtopping of traditional rubble mound
breakwater with an armour layer slope of 1:2.

Tests were carried out varying the crest width, the crest free board, the significant wave height
and the peak wave period. For each test, the mean overtopping discharge was calculated based
on the sum of the individual overtopping volumes. An expression of the mean overtopping
discharge as function of the significant wave height, wave steepness, crest width and crest free
board was established from these data. Subsequently, the individual overtopping data for each
test were fitted to a three parameter Weibull distribution function including the mean
overtopping discharge and the probability for a wave resulting in overtopping.

Physical model test have been carried out in a 22 m long and 0.6 m wide wave flume (as can be
seen in figure 4.21) with the aim of measuring the overtopping volume for individual waves per
unit length of the breakwater, V(m *m).

STRAIN GAUGE

SEA SIDE 8

ARMOUR LAYER

< FILTER "LAYER

0.03 [N
oyl

Figure 4.21. Typical cross section of breakwater used in overtopping tests

A summary of the test conditions ( model measures ) for the 75 tests performed as part of the
research is presented below:

Significant wave height, H 0.05t00.11 m [m]

Peak wave peniod, T, 1.0t02.0s [sec]

Wave steepness, S, 0.018 and 0.03 [-]

Crest free board, R, 0.1, 0.075,0.05m [m]

Width of crest, B 0.16, 0.21 and 0.26 m [m]

Slope angle, cot(a ) 2.0 [-]
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The wave steepness is given by the ratio between wave height and the deep water wave length
calculated on basis of the peak wave period:
H 2 T H s (

(4.17)

The dimensionless free board, defined as R /H,, varied between 0.55 and 1.30, which means that
the tests were carried out with relative low-crested breakwater.

The overtopping water was collected in a 0.6 m wide tay located immediately behind the
breakwater in a level corresponding to the crest elevation of the breakwater. This means that the
recorded wave overtopping refers to water overtopping the rear edge of the breakwater crest.
Finally, the total amount of overtopping water was measured after each test and compared to the
sum of all individual overtopping. Based on the total amount of wave overtopping, the mean
overtopping discharge, q, was calculated.

Through the yearly overtopping results have been presented in numerous waves including
dimensionless plots. The most used dimensionless parameters are the dimensionless overtopping
discharge, Q=q/ ng and the dimensionless free board, R=R /H..

Figures 4.22 and 4.23 show plots of data for two different wave steepnesses, and it was found
that the dimensionless free board, R/H, is not a proper parameter to be used as also the crest
width, B, has an influence on the overtopping quantities for rubble mount breakwater. Various
combinations of the crest free board and crest width have been plotted in order to describe the

combined influence of these two parameters.
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Figure 4.22. Dimensionless overtopping discharge for Sop=0.018
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Figure 4.23. Dimensionless overtopping discharge for Sop=0.030

For a fixed wave steepness, it was found that the dimensionless mean overtopping discharge can
be fitted well to an exponential function using (2 R + 0.35B)/H; as parameter.

Figure 4.24 show plots of the measured data for the wave steepnesses of 0.018 used in the
present study.
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Figure 4.24. Dimensionless overtopping discharge as a function of dimension-
less parameter(2Rc+0.35B)/Hs. Legend x:measured,-:calculated
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Combining all the above described correlations, an expression of the mean wave overtopping
discharge has been established:

g 2R.+0.35B
=exp|(-17.6-4.74ln § )+(2.96+1.75In § )| ———— (4.18)
3 op op H .
V&H s s

This equation has been plotted in fig. 4.24, and a very fine agreement was found to the measured
data for both of the tested wave steepnesses. The deviations between measured and calculated
values were found to be within £50% for the major part of the data, whereas deviations up to
125% were found for the smaller overtopping discharges.

4.7. L. Franco, M. de Gerloni, J.W. van der Meer (1994-1995)

An extensive laboratory investigation on the overtopping performance of modern vertical-face
breakwater has been started in Milano since 1989, With random wave flume model testing.
Preliminary results were presented by de Gerloni et al. (1989, 1991).

Model tests were carried out in the 43 m long, 1,5 m deep random wave flume of ENEL SpA -
Center for Hydraulic and Structural Research (CRIS) laboratory in Milano. The effects of each
overtopping wave were analyzed by placing a few model cars and model persons along the center
of the crown slab behind the wall, and by accurately observing the number of displacement and
relative distance from the former position after each overtopping event ( then repositioning the
“targets”). To improve the statistical validity rather long test were used with no less than 1000
waves. Peak periode (T,) of JONSWAP spectra ( bimodal spectra were also generate ) varied
between 7 and 13 s, significant wave height (H,)between 2.5 and 6 m with water depths/wave
height ratios (WH,,) ranging between 3 to 5. Model breakwater configuration are shown in figure
(4.25). They include traditional vertical-face caissons, perforated ones ( 14%, 25%, 40%
porosity), shifted sloping parapets and a caisson with rubble mount protection (horizontally
composite) with variable elevation and width of the homogeneous porous rock berm (S, to S4 in
figure 4.25). All structures were designed for low overtopping conditions (i.e. high freeboard).

Additional results from model studies on similar structures designed in Italy and carried out by
other European laboratories were included in the analysis, to enlarge the data set by covering a
wider range of geometric and hydraulic conditions (H;=2-8m, T,=6-15s, h=9-18m). They were
performed at Delft Hydraulics (DH) on vertical and shifted caissons and at Danish Hydraulic
Institute (DHI) on perforated shifted-wall caissons. Further model test results from a research
study on a simple vertical wall were supplied by CEPYC laboratory in Madrid. All these
additional model test data typically only refer to the mean overtopping volumes.
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Figure 4.25. Model test sections of caissons breakwaters

For each breakwater configuration the individual overtopping volumes recorded in any tests were
divided in classes of 0.1 m*/m and the corresponding effects on model cars and pedestrians were
statistically evaluated for each class. Some results obtained for pedestrians are shown in figure
4.26. 1t is interesting to observe that the effect is dependent on the structure geometry itself. The
same overtopping volume is likely to be more dangerous if the breakwater is purely vertical that
in the case of perforated or shifted-parapet caissons or horizontally composite ones. This is
probably due to the different overflow mechanism which produces a more concentrated and fast
water jet falling down from the crest of a vertical wall in comparison with a slower, more aerated,
horizontal flow over a sloping structure.

b

Falling probability (%)
coB8838833888

Figure 4.26. Risk curves for pedestrians on caisson
breakwaters from model tests
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From figure 4.27 it can be seen that the “critical bands” of overtopping volume (being dangerous
above the upper limit and safe below the lower one) lie between 0.2 and 2.0 m*/m (but a
concentrated jet of 0.05 m*/m on the upper body can be enough to make a person fall down as
shown by the full scale calibration tests).

1 00 et - crmimTmTIn ,
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Figure 4.27. Relation between mean discharge and maximum oveﬁopping
volume
It is confirmed the significant parameter for the breakwater functional safety is the overtopping
volume rather than the mean discharge. A relationship exists between the two parameters but it
varies with the structure geometry and wave conditions.
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Figure 4.28. Correlation between the percentage of overtopping waves and the
relative freeboard.
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The method of analysis proposed by van der Meer and de Waal (1992) to derive a general design
formulas was applied to the tests results (restricted to a wave steepness range of 0.018-0.038) in
terms of mean overtopping discharge allowing a direct comparison with the above admissible
limits and an easy evaluation of the overtopping volumes per wave with eq. (4.18) and (4.19).
Overtopping event occure unevently both in time and amount, often just a few waves
overtopping among the thousands. The measurement of the individual overtopping volumes
carried out during the model tests allowed the definition of their probability distribution. The
exceedence probability of each overtopping volume is :

P =1- d =Crex F B—ex e ’ 4.18
v Nw+1 P A P A (4.18)
in wich:
— 0.84T,q
A=0.84V-=
Now (4.19)
NW
P, = exceedance probability [-]
N, = number of wave in the test [-]
Now = number of overtopping waves [-1
\Y = volume in the i rank [m?]
ABC = fitting constants [-]

Consistent curves have been fitted with the least square method to the experimental data
representing the dimensionless mean overtopping discharge Q =q/‘/g *H * against the relative

freeboard R /H,, which is the most important parameter. Since an exponential relationship is
assumed according to Owen (1980), the data should give a straight line on a log-linear plot:

PR, 4.20

O=a exp “H (4.20)
From figure 4.29 can be deducted that for vertical-face breakwater b=4.3 and a=0.192, which is
close to the one found by van der Meer and Janssen (1994) for sloping structures (2=0.2); the
value a=0.2 was then kept constant for the successive regressions with different geometries
which generally showed a high correlation coefficient.
The physical interpretation of “a” is the dimensionless mean discharge when the freeboard is set
at the mean water level.
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Figure 4.29. Regression of wave overtopping data for
vertical wall breakwaters

Then the influence of structural modifications with reference to the vertical-face breakwater can
be described by suitable freeboard reduction factors (), which are the ratios between the

reference value b=4.3 and the various b coefficients fitted by eq.(4.20) as given in figure 4.30.
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Figure 4.30. Wave overtopping data for different types of
caissons breakwaters
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All the data can be plotted together (figure 4.31 ) after correction of the R /H; values for each
geometry with the corresponding vy, the general equation thus becoming:

R
0=0.2 exp( —i\'(i?c] (4.20)

which can be effectively used for the preliminary design of vertical breakwater.
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i Q=0.2exp(-4.3 Re/Hs) i .
16-07 !
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Rc / Hs ( corrected for gamma )

Figure. 31. Wave overtopping on vertical and composite
breakwaters: conceptual design graph.

The reliability of the formula (4.21) can be given by taking the coefficient 4.3 as a normally
distributed stochastic variable with a standard deviation 6=0.3.
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From the influence factors of the various caisson geometries, as compared to the plain vertical
wall some useful engineering conclusions can be deduced:

- the greatest overtopping reduction can be achieved by introducing a recurved parapet (nose)
at the crest of a vertical front wall: the corresponding y,=0.7 means a 30% crest elevation
reduction to get the same overtopping rate; this may however be limited to relatively small
dischargers:

- for simply perforated or shifted caissons the freeboard saving is only 5-10%;

- if a nose is adopted at the crest of a perforated caisson, then the combined reduction factor
can achieve 0.65, while its effect on a shifted parapet is negligible;

- the overtopping of horizontally composite breakwaters is influenced by porosity, slope,
width and elevation of the mount. Overtopping increases if the armour crest is below or at
mean sea level (max y=1.15).
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5. Comparison of the formulas

5.1. Generalities

As it can be seen from the previous paragraphs there are available a range of formulas for
computing the overtopping discharge over a structure. Since now could not be determined a
general formula for this phenomena. All the formula available are applicable in certain condition
and for a specific structure. They were determined after experimental tests in empirical format.
Making the following quotation:

H, - wave height [m]

T - wave period [sec]

L, - wave length in deep water [m]

h - water depth at the structure [m]

Q - dimensionless overtopping discharge for breaking wave [m*/sec/m]
Q, - dimensionless overtopping discharge for non-breaking wave [m*/sec/m]
R, - dimensionless crest height for breaking wave -1

R, - dimensionless crest height for non-breaking wave [-]

R, - free crest height (-1

R,  -run-up [m]

The presented formulas are:
A. For dikes and vertical walls with slopping structure in front:

- after Dutch guidelines (eq. 3.54):

0,=0.06¢ "

0 =0.2¢ 23R,

R JS
Rb: c. op ., 1
H_ tano 'Yb"yh"yf"yB
R 1
R,,z Ce__ =
HS Yb.Yh.Yf-Yﬁ

(

where:?
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-after Saville (eq.3.34)

_( o.217_tanh_,[ﬁD
gQO*.H 3.0 o R,
0= y 0

ye'H,}

where o and Q’, are read from graphs given in annexes 1-6 and run-up is depending on
R, =f(H ,h,T,})

-after Yoshimichi (eq. 3.66):

X,
— —cota
R

u

Tec*
2

(R,,—H,)z}

0,=
gH’

0.65-T-(R,-H )

Qn

in which ¢, X/R, and H, are computed with the following formulas:

H,  2mH,
1 "“TCL—'COth .Ho
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1/3
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]
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H, :(tana)o'zl ZP—J ;4

o

h,, = constant depending on Hy and cotet is given in figure 3.17 of the report;

- after Richard Weggel the formulas are identically with those one deduced by Saville
only that the coefficients & and Q°, are determined different;

- after Silvester (¢q.3.91):
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where:
m = discharge coefficient for flow over the weir [-]

B. For vertical walls:

-after van der Meer (eq. 3.97):

non-breaking waves: 1

where) ¢ =5.2._VS°P

c,=0.2
breaking waves

.

- after Goda (eq. 3.42):

R
—a1-R3%2)1 _R._¢
0=0.1p [IBH

o

where P =
t

-after Saville, Silvester and Weggel is the same formula as for dikes;
-after Takada (eq. 3.1):

RC
1-—51-0.20 +0.125
R!l

4 3
—2g'K"/(R,-R T
VKR, R
0=
el
K = average coefficient of wave overtopping discharge

It should be mentioned that the term which represents the run-up R, has specific formulas for
each case. All overtopping discharges formula are dimensionless, using the same term for doing
this. The term used was y/gH* .
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5.2. Comparison for dikes and vertical walls with sloping structure in

front

In order to compare how much is the difference in value for this formulas it should be processed
numerical data through them. So, for a dike with the given data shown in Table 1. The obtained
results are also shown in Table 5.1. and in Figure 5.1 . It can be seen that the only value which
is in big difference with the others is that one given by Saville’s formula.

[Table 5.1.Dimensionless overtopping discharge for dikes and vertical walls with sloping structures in the front

Given data:
Hs= 3jm
Re= 3.5|m
h= 6.5 m Ho= 37 m
T= 8 sec Lo= 99.8 m
Sop= 0.030
cot theta= 3
Dutch guidelines (eq 3.54) U.S.A. (Saville)(eq.3.34) "Yoshimichi (eq 3.66) Silvester (eq 3.91)
gamma 1.000]- h/Ho 1.750}- Lo= 99.8{m 0.030]-
Rn= 1.167|m Ho/gt"2 0.006{- Ho= 3.7|m Ruw/Hs 1.498}-
Rb= 0.606 |m R/Ho=* 4.200}- alpha= 0.322|rad Ru 4.495|m
Qn= 1.37E-021- =+ 1.145]- Ru= 4.922|m Rc/Ru 0.779]-
Qb= 3.47E-03{- Ru= 17.862 |m Hb= 6.789|{m Q= 3.19E-021-
qn= 2.22E-01|{m3/s/m Jalfa=* 0.055 jrad Hb/Lo= 0.068 - = 5.19E-01 m3/s/m
gqb= 5.65E-02|m3/s/m [Qo*=* 0.014 - hm/Hb=* 0.210§-
Hs/R - 0.168 |- hm= 1.426jm
tanh-1=* 0.169 |rad Xo= 20.982|{m
Q= 8.37E-02|- c= 0.232]-
= 1.36E+00|m3/s/m Q= 333E-02]-
q= 5.42E-01 |m3/s/m
*. means the values are read from graphs and tables from annex 1-9
14
12
E
x4
52}
E os
o
0.6
L -
04
02 m
0
DG USA Yoshimichi Silvester

Figure 5.1. Values for overtopping over dikes
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5.3. Comparison for vertical walls

5.3.1. Between available formulas

In Table 5.2. and Figure 5.2. it is made the same comparison in the case of a vertical structure.

Table 5.2. Dimensionless overtopping discharge for vertical walls
Given data:
Hs= 3m
Rc= 2 m
b= 6.5 m Ho= 3.714286 m
T= 8 sec Lo= 99.84 m
Sop= 0.030
cot theta= 3
van der Meer (eq 3.97) U.S.A. (Saville) (eq 3.34) Goda (eq 3.42) Silvester (eq.3.91)
gamma= | - 1.000}- JwHo=. |. 1.750}- Lo= 99.8{m Hs/L= -0.030§-
R= 0.667|m Ho/gt"2= 0.0061- Ho= 3.7]m Ru/Hs= 0.600]-
clb= 0.200{- R/Ho=* 2.400]- Q= 247E-02] - Ru= 2.400{m
c2b= 2.703}- K=+ 1.0001- = 4.02E-01 {m3/s/m JRc/Ru= - 0.833}-
Qb= 3.30E-02- Ru= 8.914|m Q= 3.98E-03j- -~
cln= 0.21- alfa=* 0.068|- q= 6.47E-02 |m3/s/mj
c2n= 261- Qo*=* 0.006{- I
= 3.53E-02]- Hs/R=" | " 0.337]- ‘ . T
gb= 5.37E-01 | m3/s/m Jtaph-1=* 0.353 |rad
qn= 5.75E-01 |m3/s/m [Q= 3.49E-02{-
q= 5.69E-01 |m3/s/m
*. means the values are read from graphs and tables from annex 1-9
0.6
» »
E 05
]
o3
£ 04 »
o
03
02
0.1
-
Van der Meer Saville Goda Silvester

Figure 5.2. Values for overtopping over vertical walls
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5.3.2. Between Goda’s graphs and Dutch Guidelines
Due to the fact that the major point of reference in the domain of overtopping over structures are
Goda’s graphs, undemeath is presented the difference obtained between the mentioned formula

and the formula used in the frame of Dutch Guidelines (section 3.7 of the report).

For the computation purpose Goda’s graphs were included in a Quatro Pro spreadsheet.

0.006
0.005 % &
]
T 00041 @
o 1
£ i
g 0003 § & &
[] !
T 1
3 0002 ) o °: .
¢ ° °
0.001 & a
;e e L ¢ ° c. 2
] [ ] P N o ° 6 . g § [ N ‘ Y
0{ ; .;..g - ) Qe L ‘
0 5 10 15 20 25 30 35

Experiment number

Figure 5.3. Comparison between Dutch Guidelines and Goda’s graphs
Legend: ®Goda ‘s computed values;
A Dutch guidelines measurements

The results of Dutch Guidelines are obtained from reference (de Waal, TAW-AT1). For this set
of data the spreadsheet was use to compute overtopping values on base of Goda’s graphs. Results
are presented in figure 5.3. and the values in Annex 12.

From the graph it can be seen that Goda’s graphs gives almost all time values smaller then those
obtained with Dutch Guidelines. This is due to the fact that in Goda’s graphs the slope of bottom
is in the range of 1:10 to 1:30 and in the examples chosen from the above mentioned reference
the bottom slope was 1:50 (which is more common in Netherlands then 1:10 or 1:30). However
the results show that both formulas can be used with confidence.

With reference to the comparison presented in section 5.2 and 5.1 it can be stated that for design
purposes it is good to be used Goda’s graphs and Dutch Guidelines. The reason why Saville ‘s
formulas are not very precise is the fact that it relies a lot on readings of graphs. This can lead
in many cases to errors due to wrong interpretation of read data from graphs ( or for example
Inaccurate interpolations).
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6. Procedure for design of flood defence

Overtopping allowance is in direct relation with concept of risk. 100% safety is an ideal situation
which is never “touched” in reality. Problem in designing is how big can be taken the risk which
is equivalent with accepting a certain level of safety.

The level of safety design of a structure depends on the willingness of investing in safety and (of
course) in the available budget.

The study of safety of structures concentrates on the concept of damage and collapse. Although
these two terms are commonly used as having almost identical meanings, it is good to draw a
clear distinction.

A structure or a structural component fails if it can no longer perform one of its principal
functions. In the case of a flood defence structure, this function can be defined as the prevention
of inundation, which means preventing a protected region from being flooded, attended by loss
of human life and/or damage to property.

A structure or a structural component collapses if it undergoes deformations of such magnitude
that the original geometry and integrity are lost. In general, collapse will be attended by a greatly
increased probability of failure. It is rather conceivable that partial collapse occurs without
automatically implying failure of the structure. For instance the occurrence of slip which affects’
a dam during a long period of low water level. The opposite may occur in the event of
overtopping: the revetment of other parts of the flood defence fails, but the structure itself does
not collapse.

The probability of failure multiplied by the damage or loss (eg. of life or economically due to
inundation within a polder) constitutes the risk. For obtaining an optimal design, it is essential
to seek a balance between the risk of inundation on one hand, against the cost of making a flood
defence structure an the other.
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6.1. Levels of approach

In order to determine the safety of a structure through predicting the probability of failure due
to a particular mechanism, the following approaches can be followed:
- deterministic approach (level O-approach): The design is based on average
situations and an appropriate safety factor is included to obtain a safe structure;
- semiprobabilistic approach(level I approach); A characteristic value is used in the
design, like the load which is not exceeded in 95 % of the cases.
- probabilistic approach (level II and III-approaches): The probabilistic approach
considers the full statistical distribution of all parameters.
Presently, scientific developments are ongoing in the probabilistic techniques, for which a
lot of research is done. In practice, the design follows in general the semi-probabilistic methods.

6.1.1. Deterministic approach

The traditional design is based upon the deterministic approach. In this approach a limit

state condition is chosen with respect to the accepted loading state of the structure (eg. water
lever + wave height). This limit state usually corresponds to a certain strength value (eg. crest
level) or the characteristic strength. Exceedance of the limit state condition ("failure") is not
accepted.

6.1.2. Probabilistic approach

Within the probabilistic approach, the mechanisms are described by means of a formula or a
computational model. On the basis of such a model, a so-called reliability function Z can be
defined, which regards the limit state in such a way that negative values of Z correspond to

failure, and positive values to non-failure. In general form, the Z-function can be written as:
Z = Strength - Load (6.1

By using this Z-function, the probability of failure can be defined by P{Z<O}. For simple
failures (like the collapse of an overloaded plank over a ditch) the Z-function can be described
easily. For the collapse and failure of a dyke, however, this Z-function may be very complicated,
mainly because of the complicated interaction between water (supplying the loadings), soil,
revetment (mainly at the strength side), etc. These interactions involve a number of failure
mechanisms.

In this report failure is associated with overtopping being a leading mechanism.
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6.2. Daily computation of probability

The application of the probability theory to the assessment of structural reliability may lead to
the question whether the calculated probability of failure corresponds to reality. It is supposed
that a probabilistic safety analysis is only fruitful when it is based on accurate computational
models and on sufficient statistical data. However, in practice these requirements are seldomly
fulfilled. In most cases, it is just the lack of (statistical) data and the absence of an adequate
computational model that are important features of the reliability problem. In other words, the
uncertainties associated with them are often even greater than the uncertainties due to the
intrinsically (by nature) stochastic character of load and strength.

These uncertainties must be taken into account in determining the margins of safety.
Theoretically, the best procedure consists in first translating all the uncertainties into probabilistic
terms (especially into the coefficients of variation), followed by the determination of the
required safety factors. Of course, in the case of "model uncertainties" and "statistical
uncertainties”, the coefficients of variation can only be estimated subjectively. As a consequence;
a calculated probability of failure can be interpreted as a "measure of confidence in a particular
design".

The accepted probabilities of exceedance for loadings and prescribed safety coefficients applied
in established codes of practice or design rules reflect the collective opinion of a large number
of professionals rather than the subjective opinion of one expert. Hence, the probabilities and
parameters have the character of design quantities. For this reason the designation "notional
probabilities” is sometimes used in literature. Besides, in most cases it will suffice just to have
an approximate idea of the order of magnitude of the failure probabilities.

It is very important that a sound and balanced design can be produced with the available
information. For instance, a difference of one order of magnitude or a factor of 10 in the failure
probability of a dike corresponds to a difference of merely a few centimetres in its design height
only (J.K.Vrijling, 1996).
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6.3. Design procedure
6.3.1. Design criteria

The determination of the probability of failure of a flood defence system inevitably starts with the
question as to which probability of failure is acceptable. Even though the calculated failure
probability can only to a limited extent be conceived as a "frequentistic" probability in the sense
of an inundation occurring once in N years, such a relation nevertheless has to be established.

Hence it is advisable to adjust the calculation of failure probability as much as possible to the
assumptions made in the predesign stage and, in addition, to conceive a standard or norm for the
acceptable probability, so that a framework serviceable for discussion in the social context is

available.

Risk is regarded as the expectation of the consequences of inundation (mathematically: probability
x consequence). In this context, two points of view should be examined: that of the individual,
who considers the acceptance of a particular risk; and that of society, which judges the probability
of a particular accident.

Personal acceptable risk

The personal assessment of risks by an individual can be considered the smallest component of
the socially accepted level of risk. In the individual sphere, the appraisal (i.e., the balancing
process of the desired benefits against the accompanying risk) is often accomplished quickly and
intuitively. Furthermore, a correction can be quickly made if the appraisal turns out to be

incorrect.
Social acceptable risk

In principle, the acceptance level of risks of a democratic society consists of the aggregate, or the
summed total, of all individual appraisals. Although it can be said that, at social level, for every
project in the widest sense the social benefits are balanced against the social costs (including risk),
this process of appraisal can not be made explicit. Actually, the social optimization process

is accomplished in a tentative way, by trial and error, in which governing bodies make a choice.
The further course of events shows how wise this choice was.

88



Report Chapter 6

If a socially acceptable risk level must be determined for a particular project, a solution can be
reached only through a considerable simplification of the problem. One way to achieve this is to
schematize the problem to a mathematical economic decision problem by expressing all
consequences of the disaster in- monetary terms. A second approach consists of deducting an
acceptable level of risk from accident statistics, while limiting the consequence of the disaster to
the number of deaths.

6.3.2. Height of the crest of the structure

The mathematical decision problem has been formulated by Van Danzig (1955) for the inundation
of central part of The Netherlands in the Delta Commission's report . To simplify the problem, the
height of a dyke is assumed to be a deterministic quantity. Furthermore, the only failure
mechanism considered is overtopping, which means that inundation of a polder only occurs when
the storm tide level rises above the crest level of the dyke. These simplifications allow for
establishing the probability of inundation directly from the high water exceedance line:

hy-a

P(Shy)=F; (h)=e P 6.2)

where:

S,- storm tide level [m];
h,-height of dyke [m]
o,B -constants (-5

Let S denotes the total damage ( on buildings, stocks, cattle and loss of production) which occurs
upon inundation of the polder. The mathematical expectation of this loss per year is the product
of the inundation probability and the loss S. In a first approximation some losses (like loss of
income and loss of human lives) are not considered. The monetary value of the expected loss over
the service life of a structure (N years) is a measure for the total loss. In this model description,
the risk of failure can be reduced by heightening the structure. The cost of this safety measure
consists of a partly constant and a partly approximate proportion to the increase in height. The
total cost consists of the sum of the cost of heightening the structure and the monetary value of
the expected losses.

The optimal height of the structure can be determined by a differentiation with respect to the
decision variable h, as to arrive at the minimum total cost. In practice, when a dike is constructed
an additional height is included, which give a higher crest level. This is done to account for water
level oscillations and overtopping due to wind waves.
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6.3.3. Inundation depth and inundation speed

In general, inundation can occur as a result of overflowing and/or wave overtopping of a flood
defence structure or as a result of flow through a gap due to collapse of the structure. The flow
rate depends on the length of the structure (in the case of overtopping), the behaviour (variation)
of the river water level, the ground level or the water level in the polder protected by the dyke,
and the size and shape of the gap in the dyke. The size and shape of the gap will in turn depend
on the velocity of the inflowing water, the inflow duration, and the composition of the subsoil and
the body of the dyke.

Water flows over the crest of the structure and, river water is discharged laterally into the polder.
Let Q(7) be the lateral discharge, where Q represents the rate of flow and T represents time. The
total volume of river water that has been flowed into the polder at the instant t is then:

o), = f Q(7) dt (6.3)

where t, is the instant at which the lateral discharge commences. Furthermore, let A(£) be the area
of the endangered polder at level ( (see figure 7.3), h (t) the inundation depth at time t and h,, be
the lowest point in the polder. Then the mass balance for the water that has flowed into the polder

1S:

X0

[o@) de= [ [4E) dE (6.4)
N hy

Equation (6.4) determines the inundation depth. The greatest inundation depth at the instant t is
{h,()-h,,}. The inundation speed is obtained by differentiation of equation (6.4) with respect to
time:

Wy 00 65
d  A(h(0) '

The unknown quantity in these equations is the lateral discharge of river water Q(t).
The level of the river bottom will be taken as the zero reference plane for height or levels.

(figure 7.3.)
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7. Computer programs

In this chapter are presented the following computer programs:

-vert_ovr - Pascal programme which computes the values of
overtopping over vertical structure;

-goda.wb2,cmp.wb2 - Quatro Pro spreadsheets which gives the output as the
Pascal programme;

-cress modules - the modules which are needed for the extension with IHE

coastal structures computation program CREES.

7.1. Pascal programme -vert_ovr

Based on the formulas presented on previous chapters a Pascal programme was developed.
The programme is organized in menus as follows:

(A) - The main menu with four options (figure 7.1.)

Figure 7.1. Main menu

Option Data entry for input data .

This option has three alternatives for input the data (figure 7.2.) : from a file, case in which the
name of file with input data is required; from the keyboard and create data file. This last option
allows the user to create a file of data. In the last two options of this menu input values for the
data will be required.
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The required input data are:

1 - Structure characteristics as they are quoted in chapter 5 of the report:
- front of structure: vertical or with a sloping structure in front;
- structure with or without berm,;
- slope of the bottom in front of structure;
- height of the water in front of structure h;
- height of the crest R..
In case that the front of the structure has a slope in the front additional data are required
in this section:
- slope of the structure in front of berm;
- slope of berm;
- slope of structure after berm.

2 - Wave charactenstics:

- height of the wave H;
- period of a wave T;
- significant wave height in deep water H,.

! Goda's graphs

l TAW

[ oo

UL L

Figure 7.2. Data entry menu

Option Calculation in which there is a secondary menu which gives the choice of computation

wave overtopping with different formulas.
However, there are some restrictions. In case of Franco formula if the input values for geometric

and hydraulic conditions are not in the range of:

- wave height H=2+8 [m]
-period of the wave T,=6+8 [sec]
-height of water in front of structure h=9+18 [m]

the program will not perform any computation and will give a sound message.

92



Report Chapter 7

Option Safety time which computes the time for filling a certain volume. Requires the following
data (figure 7.3)

- geometric dimensions of the area: B,L [m]
- existent height of water: h, [m]
- allowable water height: h, [m]
river polder
=

Fig. 32. Diagram defining a polder.

Figure 7.3. Geometric definition of the flooded area

Option EXIT as the name saying for existing the program. Output is located in text file “results”
and on the screen.

(B) - The secondary menu in correspondence with option Calculation of the main menu
(figure 7.4)

L romiowoas |
Create data file

Figure 7.4. Secondary menu
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Option Goda’s graphs is computing the overtopping by using interpolation in the 12 Goda’s
graphs presented in Annex

Option TAW is computing the overtopping using the formulas from Dutch Guidelines (1989).

Option Franco compute overtopping with Franco’s formula only if the requirements for the
input data are fulfilled.

Option RETURN go back in the main menu.
Remark: Only one computation formula can be used for one set of input data. If the same set
needs to be done with another formula the programme should be ran again with the same input
data.
In order to run the programm needs the following files to be located with it in the same directory:
~discl;
-grvl 12, grvl 17, grvl 36, grv3_12, grv3 17, grv3_36;
-grsl 12, grs1 17, grsl 36, grs3_12,grs3_17,grs3_36.

7.2. Spreadsheet

For the purpose of computation at once between different formulas, Quatro Pro spreadsheets for
computation the dimensionless overtopping was done.

7.3. Link towards CRESS

Modules were added to CRESS with the purpose that in path
Coastal Hydraulics\Run-up, overflow and overtopping\Overtopping over a vertical wall

the volume of overtopping over vertical structures to be computed.
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Annex I.Overtopping parameters o and Q*o (smooth vertical wall on a 1:10 nearshore slope)
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Annexes

Annex 3.0Overtopping parameters o and Q*o (smooth 1:3 structure slope on a 1:10 nearshore slope)
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Annex 10.c
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Annex 11. Kobayashi mathematical model (/numerical model)

Figure 3.24. Definition sketch for numerical model and comparison with data

The two-dimensional coordinate system (x’, z’) used in that paper is defined in figure 3.24 in
which the prime indicates the physical variables. Fig 3.24 also shows the slope geometry for the
tests of Saville (1955) with which the modified numerical model will later be compared. in the
following, the problem is formulate in a general manner. the X’ - coordinate is taken to be positive
in the landward direction with x’=0 at the water depth d,” below the stillwater level (SWL) where
the incident train is specified as input. The z’ - coordinate is taken to be positive upward with
z’=0 at SWL. the water depth d,” and the variation of the local slope angle 6’ with respect to x’
are used to specify any slope geometry in the computation domain 0< x’< x.’, where x.’ is the X’ -
coordinate of the landward edge of the slope which is assumed to be located above SWL.

In figure 3.24, tan 0’ is equal to 0.1 in front of the structure and tan 0,” on the structure slope
while it is zero on the crest of the structure. assuming that the pressure is hydrostatic below the
instantaneous free surface located at z” =n)’, Kobayashi et al. (1987) used the following equation
for mass and X’ - momentum integrated from the assumed impermeable bottom to the free surface.

o1 2 o (3.76)
ot’ ox’
d 3] o’ b
Sy =y gL 2 (3.77)
ot Ox ox’' P
in which :
t’ = time
h’ = instantaneous water depth;
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uw’ = instantaneous depth-averaged horizontal velocity;
g = gravitational acceleration;
n = instantaneous free surface elevation above SWL;
7 = bottom shear stress;

= fluid density, which is assumed constant.

The bottom shear stress is expected as:

f u'u (3.78)

in which f’is the bottom friction factor which is assumed to be constant for given slope roughness
characteristics neglecting the effect of viscosity.

Kobayashi and Watson (1987) compared the numerical model with the empirical formulas for
wave run-up and reflection proposed by Ahrens and Martin (1985) and Seelig (1983),
respectively. Their limited calibration indicated that £=0.05 or less for small-scale smooth slopes,
although the computed results were not very sensitive to the value of f. consequently, £=0.05
is used for the subsequent computation.

Denoting the characteristic wave period and height by T* and H’,, respectively, the followmg.

dimensionless variables are introduced:

t/ x! x/, u’ ” '
t —; X —5 X —; U ;
7 s X, ; ’ 3.79)
T T gH’O T ,gjy/0 ngo
2/ B! / d’
22y b on-ly 4 —% (3.81)
H', H, H, H,
r_& . . 1
oT'|=2- Bom 0 f=of (3.80)
H', 2
in which:
c = dimensionless parameter related to wave steepness;
§) = normalized gradient of the slope;
f = normalized friction factor.

In terms of normalized coordinate system, the slope geometry in the computation domain is given
by:

z fedc d, fr 0<xx<x, (3.82)

For normally incident monochromatic waves, the characteristic period and height used for the
normalization are taken to be the period and height of the monochromatic wave. since the wave
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height varies due to wave schooling, it is required to specify the location where the value of H’,,
is given. for a coastal structure located on the horizontal seabed, Kobayashi et al. (1987) used the
wave height at the toe of the structure, which was tacked to be located at x=0, so that the
normalized wave height at x=0 was unity. for the monochomatic wave overtopping tests of Saville
(1955), the deep water wave height was given. As a result, the wave height H’; used for the
normalization is taken to be the deep-water wave height in the following substitution of eq 3.82
into eq. 3.76 and 3.78 yields:

Sh om 0 3
o ox (3-83)
om 0 27 -1 1 2
M 9l m2n-t Zh2| 6k
y ax(m 5 ) Suju (3.84)

in which m=uh is the normalized volume flux per unit width. Eq. (3.83) and (3.84) expressed in
the conservation-law form of the mass and momentum equations except for the two terms on the
right hand side of eq (3.84) are solved numerically in the time domain using the explicit
dissipative Lax-Wendroff finite difference method based on a finite-difference grid of constant
space size Ax and constant time step At as explained by Kobayashi et al. (1987).

For the subsequent computation for smooth slope, the number of spatial grid points in the
computation domain 0 < x < X, is typically taken to be about 130. The number of time steps per
wave period is taken to be on the order of 6000.

The initial time t=0 for the computation marching forward in time is taken to be the time when
the specific incident wave train arrives at the seaward boundary located at x=0 and no wave action
is present in the computation domain 0 < x < x.. In order to derive appropriate seaward and
landward boundary conditions, Eq (3.84) and (3.85) are rewritten in terms of the characteristic

do do. Sflulu &
o g% g JiuH, .
>, (u o ~ P dog e (3.85)
B, B o flulu &
o L4
> (u o) . . dog Tuc (3.86)
with:
cyh, owule P oulc (3.87)

The seaward boundary is taken to be located seaward of the breakpoint so that the flow at x=0
is subcritical and satisfies the condition u,c at x=0, which is normally satisfied seaward of the
breakpoint.

Then « and [ represent the characteristics advancing landward and seaward, respectively, in the
vicinity of the seaward boundary. Kobayashi et al. (1987) expressed the total water depth at the
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seawater boundary in the form:
hdn@nr(®); a x0 (3-88)

in which 1), and 7, are the free surface variations at x-0 normalized by the deep-water wave height
H’,. It is convenient to introduce the following dimensionless parameters:

/ / r A2 KL2
: g/‘; L 7];7; U, —% —-‘-i‘L—; (3.89)
0 t t 4
in which:
K = schooling coefficient at x=0;
H = wave height at x=0;
H’, = deep-water wave height used for the normalization;
L = normalized wavelength at x=0;
L = wavelength at x=0;
d’, = water depth below SWL at x=0;
U, = ursell parameter at x=0.

The landward boundary on the structure is located at the moving waterline where the water depth .
is essentially zero unless wave overtopping occurs at the landward edge located at x-x,. For the- -
actual computation, the waterline is defined as the location where the normalized water depth A -

equals an infinitesimal value, 8, where 8 =10 is used on the basis of the previous computation

for smooth slope (Kobayashi and Watson 1987). Wave overtopping is assumed to occur even the

normalized water depth /4 at x=x, becomes greater than d. The computation procedure for the
case of wave overtopping at x-X, essentially follows the procedure used by Packwood (1980) to
examine the effect of wave overtopping on the measured wave transformation in the surf zone on
the gentle slope whose height was less than wave run-up. It is assumed that water flows over the
landward edge freely since a different boundary condition is required for a vertical wall
(Greenspan and Young 1978). The flow approaching the landward edge can be supercritical as
well as subcritical since the associated water depth is relatively small.

An additional relationship required to find the values of # and 4 at X=X, is obtained from the value
of a (u 2y/h)at x=x, computed using eq.(3.86) with f=0 which is approximated by a simple first-
order finite difference equation. On the other hand, if #>y/k at the grid point next to the landward
edge, the flow approaching the the landward edge is supercritical, and both characteristics o and
B given by eq.(3.86) and (3.87) advance to the landward edge from the computation domain.
Since eq.(3.86) and (3.87) are equivalent to eq (3.84) and (3.85), the values of u and h at x=x,
are obtained directly from eq. (3.44) and (3.85) with f-0, which are approximated by simple first-
order finite difference equations (Wurjanto 1988). If the value of h at x=x, becomes less that or
equal to 8, the wave overtopping at x=x, is assumed to cease and the composition of the
waterline movement is resumed.
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Annex 12. Dutch Guidelines measurements and Goda’s computed values for overtopping

Ino D.G. Goda
1] 0.00503 0.004
2} 0.001686] 0.00154
310.0009307 0.001
410.0006047] 0.00059
5] 0.001307 0.0009
6 12/30{ 0.00036
71 0.001872 0.002
810.0004756 0.0005
910.0001586| 0.000144
10] 0.001158} 0.000786

11]0.0007405} 0.00026
12} 0.000324] 0.000162
13} 0.00028] 8.1E-05
14f 0.00317]| 0.00158
15| 0.00088{ 0.00062
16| 0.000216| 0.00032
17 12/30 0.0003
1810.0002685| 0.000142
19| 0.00302] 0.00187
20| 0.00187] 0.00097
21} 0.00133{ 0.00104
22| 0.000586] 0.00036
23| 0.000203| 3.1E-05
24{ 0.000129} 0.00021
25} 0.00169] 0.00073
26| 0.000116] 7.7E-05
27| 0.000116] 9.3E-05
28| 0.000427] 0.000204
29} 0.000427( 0.000433
30| 0.000329{ 0.000215
31} 0.000111| 6.2E-05
32| 0.000997| 0.000663
33| 0.000586] 0.000509
34| 0.00074] 0.00039
35 0.000277| 1.1E-05
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