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Abstract

Locating people inside buildings is still an unsolved problem. There is a lot
of research going on in this field and many different solutions using different
techniques have been proposed. However, there is no widely accepted indoor
localization solution like how GPS is for outdoor localization due to less accur-
acy, higher hardware requirement, cost etc,. We introduce a system that locates
people indoors more accurately.
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Chapter 1

Introduction

With the miniaturization of computing and communicating devices we are
witnessing abundant growth of innovative Location Based Services (LBS) both
for indoor and outdoor environments. For an outdoor environment GPS has
firmly established its standards in terms of precision and accuracy to provide
user location. On the other hand in spite of a lot of research carried and tech-
niques proposed to estimate location of a target indoors, there is still no in-
door positioning technique or system that is widely accepted. Several reasons
for such a set back being user acceptance in terms of convince and privacy,
hardware requirement, ease of deployment, power consumption and cost of the
system. The technologies employed today for presence detection and localiz-
ation can be categorized as shown in Figure 1.1 into device-based and device-
free, whether or not the user carries an identifiable device. Each of these cat-
egories are further classified into active and passive technologies, depending on
whether an active or passive elements are employed.

In case of device based localization [19, 41], target has to carry devices such
as smartphones, wearables, and tags etc., These systems provide an accuracy of
up to centimeter level, however it is very inconvenient to carry a device every-
where all the time. Hence device-free systems and solutions are also very much
in demand for its simplicity and convenience. In active device-free systems like
Wifi[17], Radar [3] and Lidar [15], a transmitter is constantly emitting waves or
pulses of light and changes in these waves due to the presence of target are
measure to find the location of target. It is evident that these systems are power
hungry and cannot be employed for domestic services. However, Passive device
free systems are low power systems, because they use data like changes in tem-
perature or pressure due to the presence of target to estimate the location.

From figure 1.1 we can see that passive device-free system has in general four
different techniques. Camera, is a vision based passive localization technique
which is used to identify and track multiple people, it is very popular in 3d
games. But, camera is dependent on illumination and most importantly it is
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Figure 1.1: Categories of localization systems.

obtrusive. Smart floors [4] or also known as pressure sensitive tiles rely on foot
pressure of the person to detect the presence or measure their location. The de-
ployment of these smart floors is not trivial and since the whole of the tracking
area should be covered with these sensors, it is very expensive. Visible lights,
like conventional LEDs which are readily available can also be used to estimate
indoor location of a target, with slight variations in the hardware. The accuracy
of visible light communication (VLC) based localization systems [27] depend on
how closes the lights are placed and the median error increases as the distance
between these lights increases. All these limitations are hindering the accept-
ance of such systems by the public. Hence there is a need for a system which
is convenient, unobtrusive, inexpensive, low power consuming and are easy to
install. Since humans emit thermal radiations which can be captured by pass-
ive infrared sensors and these sensors are less power consuming, non intrusive
and also cost efficient they are perfect to be practically installed and used in in-
door environments. Therefore, in this work, we focus only on thermopile and
PIR based systems.

In literature, we can find several techniques, algorithms and systems that have
been developed using infrared sensors like thermopile arrays and/or PIRs for
localization [34, 32, 1]. However, they have one or more of the following issues:

• Inflexible. Many systems/algorithms promise accuracy in tens of centimeters
in their specified deployment scenario, which is a key point to be noted, even
when the deployment area is indoors. Some works create zones that may dif-
fer from room to room; some would require multiple towers placed at pre-
specified angles and so on. Furthermore, with thermopile arrays, many works
choose to deploy their module on the ceiling in order to avoid quasi-stationary
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background noise due to lights or hot objects in the Field of View (FoV) of the
sensor. These solutions do not work when deployed in non-ideal conditions.
These make the systems inflexible.

• Unscalable. Many proposed systems require lot of sensors to guarantee loc-
alization with sufficient accuracy over a larger coverage area. Most of the
work consider the sensor has a fixed range and cannot be dynamically tuned.
Moreover, the deployment is not easy and it should be properly planned de-
pending on the rooms.

• Low accuracy. Existing PIR based localization techniques fail when the signals
get weaker and cannot accurately distinguish between a person walking slow
at a farther distance and a person walking fast at a closer distance to the PIR.

These issues leave a gap in the literature and mandate newer systemic methods
to address them, thus leads to our problem statement.

1.1 Problem statement and Challenges

Develop and implement localization algorithm using passive infrared sensors, to
achieve high accuracy, in high coverage area, with reduced infrastructure, cost
and power consumption.

Figure 1.2: Our proposed hardware platform that houses a thermopile sensor
and a PIR sensor.

In this work, we propose and build a new system, consisting of both hardware
and software modules. The hardware platform, as shown in Figure 1.2, con-
sists of a Melexis 32×24 thermopile array and a PIR sensor. We use the analog
waveform from the PIR sensor instead of simple ON/OFF signal. The novelty of
our system is the gain of the PIR sensor can be dynamically controlled through
software. By combining both the sensors into one platform, we will be able to
eliminate noise in the background more effectively, eliminate the need for mul-
tiple PIR sensors, and bring in more flexibility for deployment. Our platform
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can be used for many applications – to compute the height of a person, localize,
track the movement, recognize some activity (such as fall detection), and count
the number of people (upto five people with a reasonable accuracy). Since the
breadth of applications is huge, we focus only on computing the height and loc-
alization of a person as localization is the basis for tracking and better activity
recognition and better height estimation is necessary for fall detection and also
gives an idea of whom you are tracking.

Challenges.

1. To increase the ease of deployment, we plan to deploy only one system
for the entire room. Thus, it is significantly difficult to achieve a better
localization accuracy in three dimensions even with our fusion of sensed
data from thermopiles and PIR.

2. With a PIR sensor, it is extremely difficult to discern the fast moving per-
son at a nearer distance from the sensor, from the slow moving person at
farther distance from the sensor. This is because the sum total of incident
heat energy falling on PIR is the same.

3. Low-power and real-time computation – thermopile requires heavy float-
ing point computation for temperature measurements. This is compoun-
ded because total number of pixels to be processed is higher. The chal-
lenge is to directly use the thermopile output.

4. To use the low power computing platform the sampling rate needs to be
low. However, the location of the person should be computed when the
person is present at that spot rather than when (s)he is gone. We observed
this in [34] that negates the whole purpose.

5. Thermopile array sensor is extremely sensitive even to slight disturbances
in ambient heat. Thus removing the background hot objects and ambient
heat noise is mandatory for effective localization and height estimation.

1.2 Contribution

Apart from the design novelty of our detection system, we propose many innov-
ative solutions. Specifically our major contributions are as follows:

1. We use machine learning based classifier on peak to peak voltage Vs gain
curve to find the distance of the target from sensor, unlike in the literature
where only a single peak to peak output value is used, hence, our algorithm
is agnostic to the clothing worn (e.g., jackets, full-clothing, and semi-clad).

2. This is the one of the first works to achieve joint height classification and loc-
alization using two different types of IR sensors in a miniaturized low power
and low form factor and high FoV system that can be easily mounted.
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3. The novelty is in the use of variable gain at PIR sensor to avail the spatial
diversity gain that helps in avoiding multiple PIR sensors (like in [34]) without
complex deployment.

4. We use raw values from thermopiles unlike other works. This enables the
usage of low power MCU as processing is less stressful.

5. Since the gain control is done in software, our system works in real-time to
localize moving persons with the accuracy of less than 35cm 80% of the times.

1.3 Report overview

The rest of the report is organized as follows: Chapter 2 describes the relevant
literature and state of the art. Chapter 3 outlines the development of our hard-
ware platform followed by its characterization. Subsequently, we describe our
algorithm in Chapter 4, which is evaluated in Chapter 5. Finally, we conclude
and discuss the future work in Chapter 6.
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Chapter 2

Background and Related Work

2.1 Working principle of sensors

A thermopile sensor consists of many thermocouples that are connected in
series on a silicon substrate to form hot and cold junctions attached to very
thin IR detectors as shown in Figure 2.1. The incident infrared energy on this
material makes thermocouples to generate a potential proportional to the
incoming energy because of the Seebeck effect. Hence, thermopile sensors are
used for non-contact temperature measurement. A thermopile array contains
multiple thermopile sensors arranged in the form of a grid, such as MLX90640
array sensor having 768 pixels.

Figure 2.1: Working of thermopile infrared sensor [39]

Unlike thermopiles, PIR sensors work on the theory of pyroelectric effect. The
sensor is made up of two halves as shown in Figure 2.2 and are wired up so that
they cancel each other out. If one half sees more or less IR radiation than the
other, the output will swing high or low [?]. This generates a voltage proportional
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to the differential change in the generated charge on these elements when IR en-
ergy is incident on them. When the sensor is idle, both elements detect the same
amount of incident energy from the ambient temperature. When a warm body
(e.g., human) passes across in front of the sensor, it first intercepts one of the
elements of the PIR sensor, causing a positive differential change between the
two elements. When the warm body leaves the sensing area, the sensor reports
a negative differential change.

Figure 2.2: Working of PIR sensor [9].

While thermopile can detect both stationary and moving warm objects, PIR
can detect only when the objects move. Hence, we use a fusion of these sensors
to identify humans from the rest of the background warm objects. Addition-
ally, there is a flexibility of adjusting the detection range of the PIR using a vari-
able gain scheme that is not possible with the commercially available thermo-
pile sensor arrays.

2.2 Literature survey

Localization has been a very active area of research for decades now. Algorithms
and systems using both active and passive techniques, with device-based and
device-free localization have been proposed. Our work targets the usage of pass-
ive and device-free type of technique. In this section the works related to device-
free passive localization using low-power thermal sensors are mentioned. The
state of the art techniques that are relevant and comparable to our work is listed
in Table 2.1.

Narayana et al. presented a novel sensor tower containing four collocated PIR
sensors that can perform height classification and localization of moving ob-
jects [34]. Sensor tower was designed with two spot lens at the top and two mul-
tiple lens PIR sensors at the bottom. In order to amplify the output of multiple

8
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lens PIR sensor, a two stage amplifier is used and the gain of each stage is adjus-
ted using a potentiometer placed at the feedback of each stage. Frequency and
amplitude of the analog signal are the two features that have been made use to
characterize the movement by object like speed, direction and distance. Mak-
ing use of the sensor placements in the tower the objects were classified based
on width and height of the object. The authors estimated the range between
humans and the sensor tower by fixing different gains for different PIR sensors
to form various detection zones. Two such towers placed spatially apart at 90°
localizes the moving warm object.

Mukhopadhyay et al. improved the work in [34] by reducing the number of
PIR sensors to one on each tower but by placing four such PIR sensor systems to
form a square inside which localization can be performed [32]. Their algorithm
exploits the peak to peak value of analog output of PIR sensor and its relation
with distance to propose the distance estimation model. Distance of a person
from every node is estimated either by using a hyberbolic function based model
(in which the relationship between distance and peak-to-peak output voltage
of PIR sensor is hyperbolic in nature) or by using piece wise linear model. This
estimated distance from every sensor node is used in multi-lateration and Sup-
port Vector Regression (SVR) based techniques are used to compute the location
co-ordinates of a person.

Chen et al. make use of two 16 x 4 thermopile array sensors, placed at 30°, and
3.3 m away to capture 3D image with which tracking elderly and fall detection
is done [7]. Human detection is done initially by subtracting averaged 3 back-
ground frames. However, to update the background over the period of time,
mean and variance of frame is calculated and compared with a fixed threshold
value. Once the human is detected, the location of the human is obtained using
the angle of arrival (AOA) from each sensor. With AOA of both the sensors, the
position is estimated by calculating the angle of interception further to reduce
the position error two quadratic regression models to describe the correction in
x and y direction.

Occupancy detection and tracking of people within an FoV of 2.5 m x 2.5 m is
reported in [1]. The main issue that is addressed in this work is the wrong es-
timate of number of people who are in close proximity, when connect compon-
ent labelling technique is directly applied on the background subtracted image.
Since the head and chest region of human body emits more thermal radiation
than the other parts of body, the local excitation peaks carry more information
along with the connected component features. It is assumed that the temperat-
ure or intensity recorded at the sensor array is proportional to the height of the
person and hence a sliding window of size 4 pixels is used to count people of
different height accurately. Support Vector Machine(SVM) classification is used
to count the number of people in the FOV. Results show that a maximum of 4
people with 80% accuracy can be counted. 4D features instead of 3D for clus-
tering gives a remarkable accuracy however this work fails to recognize that the
temperature intensity depends on the height, size and distance of the person
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from the sensor. Moreover this work fails to adapt the background in real time.
Z. Chen et al. propose an activity recognition and a face direction tracking

system by using a low pixel infrared thermopile array and a Time-of-flight
sensor [8]. As a pre-processing step the 8 x 8 data matrix is interpolated to a 32
x 32 matrix and then binary image is extracted by using an adaptive threshold
to extract the human detected information. Adaptive threshold is calculated
by sorting the maximum temperature difference of every column and using
the minimum value of these maximum temperature differences. Features
extraction is done either by convolution neural network (CNN) or manually by
defining the features. These features are fed to support vector machine (SVM)
for the direction detection. A servo motor is used to rotate the sensor module
depending on the distance of the heat center and the angle received from the
feedback of the servo motor. The work has produced a face tracking accuracy of
above 80% with the root mean square error of 0.19m. However this work uses
the active TOF sensor to detect the distance between the sensor and a person.

An implementation of Probability Hypothesis Density (PHD) filter is presen-
ted by J. Kemper et al. to perform localization and tracking of multiple people
using 4 thermopile array sensors placed in corners of a room[22]. A PHD fil-
ter estimate an unknown, time varying number of targets and their states from
noisy observations available at discrete intervals of time [36]. PHD uses a set of
weighted particles to approximate the number of estimated targets. As an ini-
tial step location of target in x and y co-ordinates is estimated by using angle
of arrival(AOA) of the highest temperature pixels of all the 4 sensors or by us-
ing triangulation. Further, multiple people localization is carried out by particle
implementation of PHD which is based on motion and sensor model. Motion
model is based on target’s former movement and Gaussian white noise, this mo-
tion model gives an estimate about the target velocity in sensor model error cor-
rection of measured location using AOA is performed.

A method of using a network of thermopile sensors distributed along the walls
of a room to locate a person within the room is studied by M. Hock [35]. In total,
5 thermopile sensors are required to localize a person in 4.6 m x 2.7 m area. The
data set is fit to an equation where sensed temperature is inversely proportional
to square of distance of a human from sensor. When a person enters the FOV of
any of these sensors, based on which sensor senses maximum temperature the
vertical and horizontal distances are estimated with an accuracy of 50cm. The
body temperature and area of sensed object are assumed to be constant in this
work which is not a real time scenario. Additionally other warm objects are not
taken into account which is a major drawback of this system.

C. Shih et al. designed a ceiling mounted thermopile array sensor network
to track gait of a moving person [40]. The tracking algorithm is developed on a
virtual run-time library called WuKong[23]. A thermopile array deployed on the
ceiling is used to monitor activity index in home environment. An actual human
target is detected by computing z-scores for every pixel followed by z transform
to reduce the effect of temperature changes. z-score is calculated using mov-
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ing average and standard deviation of a data point in a particular time interval.
Later human is identified if this z-score is greater than the threshold. Then gait
velocity is calculated by tracking the human target.

A brief summary on rest of the significant relevant works on detection, local-
ization and tracking are given in the following sections.

2.2.1 Detection

A. Beltran et al. designed a battery operated node called ‘ThermoSense’ using
a combination of both PIR and Grid eye sensors to determine the occupancy
count of the room [2]. ThermoSense was mounted on a ceiling and the digital
output of PIR sensor was mainly used to determine whether the room was occu-
pied or not then a Grideye sensor is used to count how many people are present
in the FOV. Whenever PIR indicated the room as empty, the Girdeye output at
that time was saved as a reference thermal background map in order to differen-
tiate humans from other warm objects. A 15 minute window is used to update
the background based on an assumption that it is not possible for occupants
to stay stationary for more than 15 minutes. Further to update the background
when there are occupants in a space for a long time, a new background is formed
by multiplying a scaling parameter to all the current background pixels. The
scaling parameter is formed by using the minimum temperature values of all
pixels in the current frame and diving them by previous background pixel val-
ues. Further features like the number of warm pixels, size of all connected warm
pixels, size of the largest connect component are used in the supervised ma-
chine learning based classification algorithms like K nearest neighbor, Artificial
neural networks and linear regression to count the number of people in a room.

A low resolution 4 x 16 thermopile array sensor is mounted on the ceiling of a
room at an angle to estimate occupancy in the area of 3m x 0.7m, where upto 3
people can be present [43]. The authors make use of number of pixels, connec-
ted components and size of the largest connected component as features in dif-
ferent classification algorithms to count people in a rectangular space. Human
detection is performed by image subtraction as performed in [2]. Further fea-
tures of this human detected pixels are extracted and used in KStar (K) algorithm
which is similar to k-nearset neighbours (KNN) but uses entropic distance in-
stead of euclidean distance to classify the number of people. The classification
accuracy of 82% was achieved using this system.

Human detection using thermal sensors outdoor is very complicated because
of the varying environment which influences the difference in human and back-
ground temperatures. To solve this issue different computer vision techniques
like gradient difference, cross correlation and frame difference etc., were im-
plemented in [6] using Grideye sensor. These methods were checked for per-
formance, time taken and complexity. It is noted that the human detection by
a simple frame to frame subtraction has real time performance but it cannot
identify static targets. On the other hand, static humans could be identified us-
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ing a background model to update the background over time but this was very
complicated to realize in real time. Furthermore, the authors show that a hu-
man can be detected in a changing environment with 97% accuracy if an op-
timal threshold is used instead of a fixed threshold.

S. Mashiyama et al. mount Grid-eye thermopile sensors on ceiling to clas-
sify human activities such as walking, sitting, and falling [28]. The algorithm is
implemented in three stages: human detection, feature extraction and classific-
ation. In human detection stage, a time window is fixed and a threshold tem-
perature value is used to identify human targets. Later, features such as active
frame, maximum number of reacting pixels, maximum temperature variance,
moving distance are used in SVM classification algorithm for activity detection.
The accuracy for all the activities other than sitting is above 94% in the exper-
imental setting. However all the thresholds are decided in preliminary exper-
iments and are a constant which doesn’t adapt to the changing environmental
conditions. Most of the features focus on fall detection; however to achieve more
accuracy for sitting and walking other features like temperature variation and
pixel cell variation can be considered.

Single 8 x 8 pixel thermopile array sensor is mounted on the ceiling of office
pantry for recognizing objects and human-object interactions to monitor the
energy related activities in the office in [13]. Pixels with temperature higher than
the ambient temperature and the adjacent pixels with same temperature values
are grouped as one object. A prior knowledge on static object’s location is used
to identify the usage of objects in the FOV. Each object is classified into different
states for example refrigerator is either open or close, faucet is off, hot or cold etc.
And the interactions are either static-dynamic or dynamic-dynamic. In static-
dynamic static object is taken as reference and in dynamic-dynamic either of
the one is considered as reference. An activity interest list is employed which
contains all possible interactions with the reference object. The current activ-
ity is determined by selecting the highest ranked activity from all the detected
interactions for that particular reference object. A total of 8 features were used
to determine the state and interaction class. Hidden Markov model (HMM) was
used to implement the state filtering. While static-dynamic interactions were
classified with the accuracy higher than that of the dynamic-dynamic interac-
tions like meeting of two persons.

2.2.2 Tracking

A thermo-spatial and conventional histogram based technique to track humans
in complex environments is discussed by H. Takashi et al [20]. The temperat-
ure of target is calculated by using the median of the pixels in a bounding box.
Thermo-Spatial histogram is the combination of conventional histogram which
preserves the spatial information and thermal histogram which reduces the in-
fluence of background pixels. The initial location of human is given as input to
the system, then the tracking in case of different occlusion scenarios like black
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board, chair, human, doll and lockers are evaluated. A target human region in
the current frames is detected by checking the similarity between input tem-
plate and the human detected region using the histogram intersection function.
Although the tracking is achieved with improved results over spatial histogram
and conventional histogram, this work fails to provide the exact location estim-
ate or the tracking results like x,y co-ordinates and the distance at which the
target is from the sensor.

M. Kuki et al. use a ceiling mount 4 x 4 grid thermopile array sensor to record
human movement trajectory [24]. The authors implement fuzzy rules and Con-
nected Component Labeling (CCL) to identify and track humans. Multi-human
trajectory extraction was done by attaching 16 x 16 pixel thermopile array sensor
to the ceiling [25]. The trajectories are estimated by using the Mahalanobis dis-
tance algorithm. Q. Hao et al. build a wireless distributed PIR sensor system that
houses 8 PIR sensors to track a single human target [16]. Kalman filter is mainly
used to estimate the trajectory.

2.2.3 Localization

S. Lee et al. present a location-recognition system called PIR sensor-based in-
door location-aware system (PILAS) [26]. Different sensing areas of 2m size are
created using 12 PIR sensors which are placed on the ceiling of a room of size
4m x 4m and at a height of 2.5m. A threshold was set to turn the PIR sensor on or
off depending on human movement. The system recognizes the resident’s loc-
ation by combining outputs from all the sensors belonging to one area with the
accuracy of 0.5m. Since the output of the PIR depends on the incident thermal
energy setting up a hard threshold to turn the sensors on and off becomes a ma-
jor drawback of the system as different humans have different body temperat-
ures and setting up lower threshold may consider noise can humans and higher
threshold may not detect low temperature human signals as noise.

Using a ceiling mount 8 x 8 array thermopile sensor, D. Qu et al. present a sys-
tem to perform Multiple human localization and tracking [38]. As a first step
interpolation is performed to increase the resolution of the thermal image, a
Gaussian filter is applied to this interpolated image to remove noise. Further, a
threshold which adapts to the background changes is calculated using the mean
and max temperatures of every frame. This adaptive threshold is used for hu-
man detection. Relative location of human is converted to real locations by find-
ing the cell numbers and calculating the angle of view of these cells. Then the
tracking is done using Kalman filter. Multiple human trajectories are considered
and the results of tracking are shown for the same. Even though this work has
addressed the main issues like pixel deviation error introduced while manufac-
turing silicon chips and the false detection of human due to fixed threshold the
main drawback of the system is that the height of the roof differs and hence the
pixel size, due to which the error is introduced in the initial step of the algorithm
as mentioned earlier blind stops are produced by mounting sensor on the ceil-
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ing, requiring more number of sensors to cover small area.
T. Yang et al. introduce a concept of ’azimuth’ change that adopt particle filter

to solve the issue of abundant training data collection in a PIR based system for
localization. The system involves 4 PIR sensors located at corners of a 7 m x 7 m
area [44]. The concept of fresnel lens dividing the PIR output into different zones
is exploited here. The azimuth change of a moving person is defined as an angle
between the targets previous location and the current location. This angle is
calculated by counting the number of rising and falling edges of the output of a
PIR sensor. However only the higher peak to peak voltage values are considered
for processing and lower peak to peak voltages are regarded as noise but it be-
comes difficult to distinguish between the actual signal and noise when a person
is moving at a farther distance from the sensor. To avoid this problem of false in-
terpretation, difference between heat fluxes (DHF) of the two slots of a PIR is
calculated and is used to get better estimate of number of zones covered(N).
Further a particle filter is used for localization with 0.63m accuracy.

The analog output of a PIR sensor in conjunction with signal processing and
machine learning algorithms is used by H. Gami to estimate the presence, direc-
tion, and distance of the human movements [12] in 2.7 m x 4.6 m area. Features
used in machine learning are Peak to peak voltage value to estimate the distance
and speed of movement, phase of PIR output to estimate the direction. Since the
data is labelled basic supervised machine learning algorithms like Tree, KNN,
Support Vector Machine (SVM) and Artificial Neural Network (ANN) are used
to check the accuracy of the system. 93% of accuracy is observed using single
hidden layer based ANN algorithm for distance estimate and 99% accuracy for
direction estimate. However since only peak to peak voltage is used to find the
distance of a person from the sensor it is prone to change with different thermal
insulation or different body temperatures.

Limitations of previous work and our improvements

Of the works listed above, Narayana et al. [34], B. Mukhopadhyay et al. [32], and
W. Chen et al. [7] are the state of the work (as listed in Table 2.1) done on localiz-
ation, tracking, and height classification that is the closest to our work.
Deployment: While these works requires to deploy multiple sensor platforms
on a region of interest (as high as 4 platforms on corners of the square region)
to localize people, our approach requires only one platform to perform multiple
tasks. Further, our system is portable, battery operated, and wireless, connect-
ing all the platforms to a centralized server so that tracking can be performed at
room level, as well as the building level. The system provides the flexibility of
mounting on ceiling or on walls.
Noise cancellation: To the best of our knowledge, none of the above works have
considered factors such as types of clothing, and background noise from house-
hold hot objects such as heaters, kettle, computer, and light bulbs. Our approach
eliminate such noises and works irrespective of the ambient temperature and
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the type of clothing worn to some extent.
Coverage area: While Narayana et al. [34] provide the coverage area of 8 m x 8 m,
the largest in the literature, we achieve 9 m x 8 m without compromising the ac-
curacy much, as compared.
Scalability: Further, their approach require one PIR sensor for every 1 m dis-
tance in the FoV, while our system has single PIR sensor that can adjust the de-
tection range dynamically – as far as 9 m, hence, scalable over distance.
Applications: Unlike all the works found in the literature, our sensor platform is
multi-modal – can be used for multiple applications such as localization, track-
ing, activity and fall monitoring, and height classification.

We also evaluate the performance of our work with the state of the art work
and present the results in Chapter 5.
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Chapter 3

The Hardware Platform

In this chapter, we will give a detailed explanation of our hardware platform, ex-
plain the choice of our sensors and other components and why they are needed,
nature of data from these sensors.

3.1 Hardware Platform

Figure 3.1: The proposed hardware system showing collocated thermopile array
sensor and PIR sensor.

While a single thermopile array sensor can provide information on the direc-
tion of movement of a person, it is challenging to localize in two dimensions
with reasonable accuracy because the number of pixels occupied by the target
depends on it’s height, width and distance from the sensor. A second thermo-
pile array sensor, placed at a certain distance in another place and at a particular
angle, can assist in achieving localization but it demands additional cost, power,
and synchronization [7]. To achieve 2d localization with low power and low cost
system we innovate by using an inexpensive low-power PIR sensor placed adja-
cent to the thermopile, to provide depth information. Hence, we have designed
a custom-made system for our experiments. The proposed hardware platform

17



Table 3.1: Comparison of different commercial thermopile sensors. We choose
MLX90640 because of its large FoV (110°x 75°) and refresh rate.

Sensors HTPA80x64d MLX90621 MLX90640 MLX90641 Grid-Eye

Manufacturer Heimann Melexis Melexis Melexis Panasonic

Array size 80x64 16x4 32x24 16x12 8x8

Field of View (FoV) 88°x 70° 120°x 25° 110°x 75° 110°x 75° 60°x 60°

Maximum refresh rate 200 Hz 512 Hz 64 Hz 4 Hz 10 Hz

Power consumption 82.5 mW 23.4 mW 66 mW 39.6 mW 14.85 mW

houses two collocated infrared sensors – a thermopile array sensor and a PIR
sensor placed one above the other as shown in Figure 3.1. The distance between
the center of thermopile and PIR is fixed to be around 1 cm so that the FoV of
thermopile does not blocked by the PIR sensor. The overall dimension of the
platform is 5 x 5 x 2 cm3. The maximum power consumption of the platform is
80 mW without WiFi transmission, and the entire hardware is powered by a 3.7 V
battery embedded inside the enclosure. The hardware also includes an ultra
low-power ARM Cortex M0 microcontroller ATSAML21J18B [31], from Atmel’s
pico power series microcontrollers, for acquiring data from the infrared sensors
and process them. The information comprising of detection, localization, and
height of the person is transmitted to a central server using an ESP32 WiFi mod-
ule [10].

3.1.1 Selecting suitable sensors

Thermopile array sensor. There are various commercial thermopile array
sensors available from manufacturers such as Panasonic [37], Melexis [30], and
Heimann Sensor GmbH [18]. Sensor models, such as FLIR Lepton [11] provide
high-resolution imaging and fall under thermal camera category but, they
need high operating and processing power and are quite expensive (≈$250).
We list different potential thermopile array sensor modules with their relevant
specifications in Table 3.1. We choose MLX90640ESF-BAA FIR sensor from
Melexis in our platform as it provides large FoV of 110°x 75°, a refresh rate of
64 Hz, and cost of $45 [29]. A minimum of 90° FoV is required to avoid blind
spots in a horizontal direction when the sensor platform is placed in a corner
of the room. Melexis sensor meets this requirement. The sensor can measure
object temperature between -40°C to 300°C with a temperature accuracy of
±1°C. Furthermore, resolution of 32 x 24 = 768 pixels (IR sensors), covering 110°x
75° FoV offered by this sensor is appropriate for human localization (which
we discuss and evaluate in Section 5.1) compared to all other sensor modules.
The refresh rate of the sensor was set to 8 Hz, as the walking speed of humans
indoor is less than 7.2 kmph. So, this refresh rate is enough to capture all the
information needed even at the highest walking speed of 7.2 kmph.
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PIR sensor. We employ Zilog’s ZSBG446671, a dual-element PIR sensor in our
system because of its large FoV of 132°(from the center of the element on x-
axis) x 222°(from the center of the element on 45°) [45]. The detection area of
a PIR sensor element is small and is not very sensitive to the infrared energy.
To increase the range of detection, strengthen the incoming infrared rays and
change the sensing pattern, we implanted a Fresnel lens in such a way that the
center of the PIR sensor coincides with the focal point of the lens.

Fresnel lens plays a significant role in condensing the infrared rays onto the
sensor elements. The output pattern of the PIR sensor can be altered using dif-
ferent configurations/mouldings of Fresnel lenses [34]. In our application, we
require identical detection from all the directions in the FoV of the PIR sensor to
estimate the distance of the moving object from the hardware platform. Hence,
we selected a generic golf ball lens, shown in Figure 1.2, that concentrates the
incoming heat rays from the moving object onto the PIR sensor elements. The
golf ball lens is a semi-sphere containing multiple spot Fresnel lenses on its cir-
cumference. The FoV of the chosen golf ball lens is 150°x 150°, larger than that
of the PIR. However, the overall FoV of the platform is limited by the FoV of the
thermopile sensor, which is the maximum FoV that our system offers. The ADC
sampling rate for PIR sensor was set to 16 Hz, twice as that of thermopile sensor
to meet the Nyquist criterion.

3.1.2 Efficient processing of thermopile data

In this section, we provide an efficient approach to process raw data from the
thermopile without compromising the accuracy of the output much. This ap-
proach enables the algorithm to be executed on a microcontroller with low com-
putation power.

The MLX90640 does not output the absolute temperature values but 16-bit
raw values read by each pixel. These values correspond to the amount of infrared
energy falling on each pixel. The raw values can be converted to the temperature
values using,

(3.1)To(i , j ) = 4

√
VI R(i , j )COMP

αcomp(i , j ) ∗ (1 − KsTo2 ∗ 273.15) + Sx(i , j )
+ Ta−r − 273.15,

Where,

(3.2)Sx(i , j ) = KsTo2
4
√
α3

comp(i , j ) ∗ VI R(i , j )COMP + α4
comp(i , j ) ∗ Ta−r .

Where To(i , j ) is the temperature reading for pixel i , j ,∀i ≤ 32, and j ≤ 24,
i,j∈ N , VI R(i , j )COMP is the offset compensated raw value for each pixel,KsTo2 is a
constant and αcomp(i , j ) and is a constant corresponding to each pixel, and Ta−r

varies with the ambient temperature. These parameters are calculated using
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Figure 3.2: MLX90640ESF-BAA frame is divided into three zones depending on
the measurement accuracy [29]. Zone 3 produces more noise than Zone 1. The
image on the right shows a sensor frame with raw values from the sensor when
there is no warm body in front of the sensor.

various constants and pixel offset values1 that are stored in the EEPROM of the
sensor [29].

Further, the MLX90640ESF-BAA frame, containing 768 pixels, is divided into
three zones, Zones 1 to 3 by the manufacturer, based on the measurement ac-
curacy of the pixels. The different zones of a frame associated with raw values
from the sensor when there is no warm body in front of the sensor are shown in
Figure 3.2. For an object in front of the sensor with temperatures between 0°C
and 50°C, Zone 1 has the highest accuracy of ±0.5°C, Zone 2 with ±1°C and Zone
3, the least with ±2°C. Additionally, IR sensors in Zone 3 produce more noise
compared to that in Zone 1. We observe in the image with raw values that there
is a temperature gradient from Zone 1 to Zone 2 even if there is no hot object
in front of the sensor. However, these pixel offsets or errors between different
zones can be corrected using offset calculations that result in Equation 3.1.

The calculation indicated in Equation 3.1 involves complex computation of
multiple floating point numbers to turn the raw pixel data into temperature
data. This demands a minimum SRAM of 150 kb and ≈100 MHz processing
power to process the raw data at 8 Hz [42]. Further, running the localization
algorithm and wireless data transmissions require high power microcontrol-
lers as the host platform. As we desire to design a low-power solution, we
simplify the calculation by working with the relative difference between the
pixel data rather than the absolute temperature data. Hence, we apply only
that part of the calculation that involves pixel offset compensation and zone
error adjustments. We analyzed the range of VI R(i , j )COMP , αcomp(i , j ), KsTo2, and
Ta−r for ambient temperatures To(i , j ) ∈ [−20°C,125°C]. αcomp(i , j ) in the range
[−3x10−8,1.23x10−7], VI R(i , j )COMP has the range [−79,427], KsTo2 is in the order
of −2x10−4, and Ta−r in the range [4x109, 2.3x1010] for ambient temperatures
between 0° C and 100° C.

1Each pixel is provided with a correction factor from the manufacturer, when the sensor is
calibrated.
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Figure 3.3: (a) Image with warm objects such as human, incandescent light, hot
kettle, monitor (b) Raw values output from the thermopile sensor (c) Absolute
temperature obtained using Equation 3.1 (d) Raw compensated value calculated
using Equation 3.3.

Looking at the above ranges, KsTo2 and Sx(i , j ) can be neglected. Finally, we
arrive at the relation,

(3.3)R AWcomp = (
VI R(i , j )COMP

αcomp(i , j )
+ Ta−r )x10−9,

where R AW(i , j )comp is the compensated (for offset and irregularities in zones)
raw value which is directly used in our algorithm.

Figure 3.3 shows an image with (a) warm objects such as human, incandescent
light, hot kettle, and a monitor, (b) a frame displaying raw values in the form of
gradient map, (c) the same frame with absolute temperature calculated using
Equation 3.1, and (d) the same frame after raw values are processed using our
technique using Equation 3.3. We observe from the images that our approach
preserves the temperature gradient as if the raw data is converted to temper-
ature. We also tested our approach in the presence of the light bulb at the top
left corner, hot kettle and monitor, and person in front of the sensor. Figure 3.4
shows the raw compensated values represented by each pixel (Pixel-1 corres-
ponds to top left of the frame and incremented column-wise) for the frame dis-
played in Figure 3.3. We observe in the figure that raw compensated value is a
scaled down version of the absolute temperature. Complete processing is done
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Figure 3.4: Values represented by all 768 pixels in a frame for the images dis-
played in Figure 3.3.

Figure 3.5: Circuit diagram of our system, displaying the hardware elements,
and the two-stage amplifier design and variable resistors for the PIR sensor.

on our hardware platform – reading EEPROM data and acquiring raw data from
the thermopile sensor at 64 Hz, reading PIR data at 16 Hz, execute our algorithm,
and transfer the data over WiFi to a centralized server.
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3.1.3 Variable gain setup for PIR sensor

The output voltage from a PIR sensor is very weak and is in the order of µV.
Hence, they need to be amplified several thousand times in order to get a reas-
onable signal that can be measured by a microcontroller. Generally, this is done
using operational amplifiers in two stages. We adopt Texas Instrument’s LPV802
dual channel nano-power amplifier [21] in our design as they consume only
1µW. The circuit diagram of our hardware platform is shown in Figure 3.5. While
most of the work in literature that use PIR involve working with binary output as
provided in the vendor reference circuits [44], there are a few that utilize the PIR
output in analog form [34, 12]. Since analog output provides more information
than the binary, we make use of the analog signals from a single PIR, read by the
ADC pin of the microcontroller, to estimate the distance of the moving object
from the sensor. The traditional way, as found in literature, is to use a fixed gain
amplifier stages by selecting suitable feedback resistors. On the contrary, in this
work, we facilitate the microcontroller to vary the gain of each amplifier stage
using digital potentiometers that are controlled using I2C lines2.

The amplified output Vo of the PIR sensor read by the microcontroller is pro-
portional to the overall gain given as,

Vo = −Vi n

(
1 +

Rf1

R1

)(
Rf2

R2

)
, (3.4)

where Rf1 is fixed to 3 MΩ, Rf2 is a 1 MΩdual channel digital potentiometer,
AD5242BRUZ1M from Analog Devices, whose resistance can be varied in 255
steps between 0 and 1 MΩ. We connect both the resistor channels in series to
get a broader range of upto 2 MΩ. Similarly, R1 and R2 are 512 kΩdigital po-
tentiometers, AD5272BRMZ from Analog Devices, that can be varied in 1024
steps between 0 and 512 kΩ. By adjusting these resistor values dynamically, it
is possible to vary the overall gain of the PIR output between ≈ 2x10−6 to 6x1012
in ≈ 537x106 steps, hence customizing the detection range of the PIR sensor.
The analog output from the PIR is similar to a sine wave and produces negative
voltage. As the microcontroller is not capable of measuring negative voltages on
its ADC pins, we introduce fixed resistors R3, R4, and R5, R6, as shown in Fig-
ure 3.5, to scale and shift the PIR output before feeding to the ADC pin of the
microcontroller. We fix R3 = 510 kΩ, R4 = 240 kΩ, R3 = 10 kΩ, and R3 = 2.4 kΩto
get a full PIR output swing between 0.2 V and 3.25 V. A sample amplified output
from the PIR sensor is shown in Figure 3.6.

3.1.4 Software

Serial communication takes place at 1/fs time where fs is the frame rate, send-
ing 452, 16 bit unsigned integer values from micro-controller to computer using

2It should be noted that there are programmable gain amplifiers available commercially but
not in the gain range that we require. Hence, we used the variable resistors.
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Figure 3.6: Amplified output from the PIR

Matlab. Where, the first 450 data belong to the thermopile array sensor (thermo-
pile array sensors updates 768 pixel data in two sub-pages each sub-pages has
384 pixel values and 66 calibration values), 451 and 452 data packets are the ADC
value from PIR sensor and thermistor respectively. These raw data are calibrated
and stored in .CSV file format for further analysis. Simultaneously, the pixel out-
put from thermopile sensor and peak to peak analog output from PIR sensor are
graphically interfaced using Matlab as shown in Figure 3.7. The GUI also shows
the values ambient temperature and diferent resistors values we have set to.

Figure 3.7: GUI to display both Sensors’ output and to set different resistor val-
ues.
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Chapter 4

Localization Algorithm

In this chapter, we present the observations from thermopile and PIR sensor in
Section 4.1 and derive features based on these observations then we explain how
the classification features can be exploited to perform localization and tracking.

The principal idea behind the fusion of two sensors - thermopile array and
PIR in our system is that thermopile sensor can be used to estimate the location
in two dimensions (across the FoV cone axis, and height of the object, when
deployed on the walls), and PIR can be used to estimate the range between the
sensor platform and the object, thus providing the location information in the
third dimension.

The output of sensors depend only on the thermal signatures of target. These
thermal signatures are not unique to a particular target and it is highly depend-
ent on the target size, thermal insulation and how far away from the sensor is a
target moving. For instance, the pixel temperature of a thermopile array sensor
due to the presence of a person wearing a jacket and is nearer to the sensor will
be same as presence of a person not wearing a jacket and who is far away from
the sensor. Another ambiguity would be the coverage of number of pixels by a
shorter person who is near to the sensor and a taller person who is far from the
sensor. Because of such limitations of the sensors, it is not possible to gener-
alize the system to find the location of a target which directs us to the world of
machine learning. In machine learning system, we can collect data for different
target size, temperature and at different distance and train the model to estim-
ate the location. The most important step to get better accuracy using machine
learning algorithms is identifying the unique features of your sensor output and
extracting them.

4.1 Features for machine learning

Feature extraction is the most important step to any machine learning algorithm
to perform accurately. Hence, to identify the features to make use for our system
we profiled the sensors for various conditions like targets of different body tem-
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perature, size, height and distance of the target from the sensor, their walking
speed etc,.

4.1.1 Observations from thermopile array sensor

(a) Human in front of the sensor at 2 m (b) Human in front of the sensor at 7 m

Figure 4.1: Temperature recorded by MLX90640 for a human at two different
distances. The actual temperature of the human (on forehead) is around 34 °C
and the sensor reported 25.8 °C at 2 m, and 21.8 °C at 7 m.

Though thermopiles provide information on the absolute temperature that
each pixels see, it is not equal to the actual temperature of the object. For a warm
object having constant temperature, the temperature recorded by a thermopile
is inversely proportional to the distance between the sensor and the warm ob-
ject. For instance, Figure 4.1 shows temperatures recorded by the thermopile
sensor for a human at two different distances.

It is worth analyzing the impact of different types of clothing on the temper-
ature measured by the thermopile sensor as it is a trivial consideration in offices
and households. Hence, to investigate this, we conduct an experiment with thin
clothing, and a thick jacket. Figure 4.2 shows the temperature recorded by the
thermopile sensor for a human at 2 m in front of the sensor with thin clothing
(Figure 4.2a) and with jacket (Figure 4.2b). It can be observed from the figures
that clothing is an important factor that affects the temperature reading output
by the sensor. It should be noted that the body heat from inside the jacket is
recognized by the sensor.

From our experiments, we conclude that the following features can be utilized
in our algorithm to perform localization, tracking, and height estimation.

Summary of thermopile features

1. As the distance between the warm body and the sensor increases, the tem-
perature read by the sensor decreases. This holds with the theoretical model
provided in [35] that says

T ∝ 1

d 2 ,
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(a) Human with thin clothing (b) Human with jacket

Figure 4.2: Temperature recorded by MLX90640 for a human at 2 m with and
without jacket

where T is the temperature recorded by a pixel and d is the distance of the
warm body from the sensor.

2. As the person moves away from the sensor, the number of pixels used to in-
dicate the object decreases. Hence, if the height of the person is known, the
distance between the object and the sensor can be estimated as the vertical
FoV and the total pixel count in the vertical dimension is known. Similarly, if
the distance is known, the height of the person can be estimated.

3. One of the important observations is the spatio-temporal changes in the
number of pixels covered by a moving object. When a person walks in front
of the thermopile array, in any direction, the number of pixels traversed
horizontally and vertically in a specific duration is proportional to the speed
of the movement and distance of movement from the sensor. This provides
a new relation,

Pt (h, v) ∝ s

d
, (4.1)

where Pt (h, v) is the number of pixels traversed horizontally (h) and vertically
(v) in time t , s is the speed of the movement, and d is the distance of person
from the sensor.

4. The static hot objects such as bulbs, computers, and heaters that contributes
to the background noise do appear in the thermopile output frames.

5. Any hot object such as kettle carried by a human is detected as a warm object
by the sensor and we consider that hot object also as part of the human body.

6. A human can be detected even if s/he is wearing thick clothing such as a
jacket.

7. Head, chest and waist are the parts of the human body that exhibits high
gradients compared to the rest of the body.
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4.1.2 Observation from PIR sensor

(a) Speed 0.5 m/s (b) Speed 1.2 m/s

Figure 4.3: Peak to peak voltage generated by the PIR sensor for different gains
at different speeds.

Considering the generic models from [34] and [33], we can portray the rela-
tion between the peak to peak voltage Vp−p generated by the PIR sensor and the
amplifier gain G as,

Vp−p ∝ I G

s2 d 2 , (4.2)

where I is the infrared energy from the moving person incident on the PIR
sensor, s is the speed, and d is the distance of the person from the sensor.

In Figure 4.3, we show the peak to peak voltage generated by the PIR sensor
for different gains at different speeds. It must be observed that large gain is re-
quired to see the same person at a farther distance at a constant walking speed.
Similarly, as the movement speed increases at a constant distance, the gain has
to be increased to observe the same levels of signal.

Summary of PIR features

1. As the distance of the person from the sensor increases, the peak to peak
voltage output from the PIR sensor decreases, provided that the speed of the
movement, body temperature and the amplifier gain remains approximately
the same.

2. When a person is moving at a particular distance with a constant speed, the
peak to peak voltage generated by the amplifier output can be varied by chan-
ging the overall gain G of the amplifier stages. This can be observed in Fig-
ure 4.3a or Figure 4.3b, where speed is constant in both the cases.

3. The peak to peak voltage output from the amplifier stages decrease as the
speed of the movement at a specific distance increases. This is evident from
Figure 4.3a and Figure 4.3b.

4. The peak to peak voltage output from the amplifier stages for a person mov-
ing at distance d1 with speed s1 may be same as the output for the same per-
son moving with speed s2 at distance d2, where d1 < d2 and s1 > s2. This is
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Figure 4.4: Voltage - Gain curve obtained for movement with speed 0.5 m/s at
2 m in front of the sensor

because the duration and amount of IR rays falling on the sensor reduces as
the speed of the moving object increases. Similarly, when the object moves
slowly at farther distance, the exposure time of the object is longer, providing
higher chance of absorbing all the IR rays emitted by the object, and thus,
generating relatively higher amplitude.

5. Static hot objects such as hot kettle, computer, light bulbs do not affect the
output of the PIR sensor.

4.1.3 Feature extraction

The training data comprises of curves obtained from PIR sensor, and pixel data
from thermopile array:
Curvesets from PIR sensor: Peak to peak voltage measurements Vp−p (repres-
ented by Equation 4.2) against all dependent parameters - amplifier gains G ,
various speeds s, and at different distances d is one of the features that will be
used in machine learning algorithm. When a person is moving at a constant
speed at a given distance, the peak to peak voltage output from the PIR sensor
can be recorded by varying the amplifier gain from the maximum to the value
at which there will not be any detection (peak to peak voltage equivalent to the
noise level). This gain can be varied by decreasing the resistor values by 1 step(
i.e., R1, R2 by 98Ωand Rf2 by 3.9kΩ) but for practical purposes we decrease gain
using binary search method.

The obtained peak to peak values Vp−p for various gains G are stitched to-
gether to form Voltage - Gain curve (V-G curve). A sample curve for movement
with speed 0.5 m/s at 2 m in front of the sensor is shown in Figure 4.4. Similar
such curves can be recorded for different people moving with speeds and at dif-
ferent distances. So, a single V-G curve spans over three dimensions with speed,
distance and different people and clothing, that addresses all the variables in
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Equation 4.2. We represent the training data from PIR sensor as

Vp−p = f(s,d ,I )(G), (4.3)

where gain G is varied from maximum to the minimum detection level, I rep-
resents infrared energy from different people with different clothing.

Datasets from thermopile array: In the case of thermopile sensor, there are
two factors - movement speed and distance - that affect the number of pixels tra-
versed by the moving person as indicated by Equation 4.1. This pixels traversed
in horizontal and vertical direction is used as a feature for machine learning.
Figure 4.5 illustrates how the pixels traversed vary as the speed and distance of
person varies. When a person is at point ‘A’ which is at the distance near the
sensor, the number of pixels traversed by the target are 20 in vertical direction
and 7 in horizontal direction as the person moves far from the sensor to location
‘B’ the number of pixels traversed are reduced to 9 in vertical direction and 3
in horizontal, however when the person moves from ’B’ to ’C’ at the same dis-
tance from the sensor but parallel to the sensor the number of pixels traversed
remains the same in vertical direction. Hence, the dataset from thermopile array
comprises of Pixel Traversed data (P-T data) in horizontal and vertical direction
recorded for different speeds s at different distances d . Hence, each P-T data is
of four dimensions. The datasets from both PIR and thermopile sensor should
be recorded concurrently so that both the datasets represent the same event. We
represent the training data from thermopile sensor as

pt (h, v) = (i , j )(s,d) (4.4)

where pt (h, v) is the pixels traversed in horizontal and vertical direction with
i ≤ 32, and j ≤ 24.

4.2 Localization and tracking steps

Once the training data is available, localization and tracking can be performed
with the following steps. We consider a sample case wherein a human, light
bulb, and a monitor are present as shown in Figure 4.6, and explain the steps for
better understanding.

4.2.1 Human detection and horizontal location estimate

Detection of movement

Initially, amplifier gain of the PIR sensor is set to the highest to detect the human
movement in the FoV. Simultaneously, snapshots of a frame from the thermopile
sensor is taken every second (as the refresh rate is 8 Hz, a frame snapshot is the
pixel to pixel average of 8 frames) that forms the background frame. This frame
will be subtracted from the detection frame (frame in which a human is detec-
ted) in later stages. This helps to eliminate static warm objects such as monitors
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Figure 4.5: Number of pixel occupied when the target is at different locations

and light bulbs from the detection frame. We represent the background frame
Bi , j as

Bi , j =
1

8

8∑
k=1

Fk (i , j ) (4.5)

where i ≤ 32, and j ≤ 24, and Fk (i , j ) represents a single frame containing 768
pixels. The human presence is indicated when Vp−p > 0.02, as 0.02 is the mean
noise amplitude at the highest possible gain1. When there is a movement detec-
tion in the PIR sensor, the background estimation process is stopped. Figure 4.6a
shows the background frame.

Background and noise removal

When there is a human presence (shown in Figure 4.6b), the background frame
is subtracted from each thermopile frame that is being read. Figure 4.6c shows
the frame from thermopile corresponding to the scenario shown in Figure 4.6b.
The resultant background removed frame is shown in Figure 4.6d wherein the
human presence is persistent. Even though the static warm bodies and back-
ground noise are removed from the data, there may be a few pixels present
that do not represent the human. Such pixels can be neutralized using two-
dimensional Gaussian filter G(x), given in [14] as

G(i , j ) =
1p

2πσ
e−

i 2+ j 2

2σ2 , (4.6)

1We observed during our experiments that the amplified PIR output does not include high
frequency noise that can trigger the false detection. This may not hold always with PIR sensors
from other manufacturers. In this case, a low pass filter may be required.
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(a) Background
frame

(b) Actual image (c) Thermal
frame from
thermopile

(d) Background
subtracted image

(e) Image ob-
tained after
applying Gaus-
sian filter

(f) Interpolated
image

(g) Image after
edge detection.

Figure 4.6: Steps involved in localization and tracking

where σ is the standard deviation, which we found out empirically to be 1.5
in our application to get better smoothing. The filtered data is shown in Fig-
ure 4.6e.

Interpolation of thermopile data

The area covered by each pixel increases as the distance from the sensor in-
creases. To increase the resolution the or decrease the area covered by each
pixel, the number of pixels can be increased by interpolating the image. In our
system, The filtered data is interpolated by 2 times to get a frame of size 32 x 2
x 24 x 2 = 3072 pixels to get better accuracy. The interpolated image is shown in
Figure 4.6f.

Estimation of position in one dimension

The next step is to identify the position of the person in one dimension, i.e, dir-
ection perpendicular to the FoV axis of the sensor platform. To perform this, the
outline of the pixels representing the person has to be detected.

This can be achieved using any of the edge detection methods. They are image
processing techniques to outline the boundary of objects in an image by finding
the difference in the image brightness. In our system since the background noise
is already subtracted, the target is indicated by different pixel values when com-
pared to rest of the image. Hence, there will be a clear distinction in brightness
between human and background due to which edge detection can accurately
identify the edges of human target.

We use Canny edge detector in our algorithm as this involves low complexity
processing compared to other edge detection techniques and widely applied in
various computer vision systems [5]. This is a multi-step technique that detects
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edges as well as suppresses noise at the same time. Once the edges are detected
by using pixel magnitude gradient a double thresholding (using two different
thresholds one high and another low threshold) is applied to find the potential
edges of an object.

Applying edge detection filter performs better in terms of accuracy than using
one particular threshold or adaptive threshold to detect humans like the works
mentioned in the literature. This is because the edges are detected by checking
the changes in brightness of the image and the difference between the bright-
ness values of human is huge when compared to background image and hence
there is no misclassification of noise as human and human as noise due to the
usage of wrong threshold value in the algorithm.

Figure 4.6g shows the position of the human in the frame. We consider the
centroid of the shape as position ‘X’ from the column 1 of the frame (Red line
in the image is passing through the centroid). However, this position cannot
be mapped onto the physical location unless the depth of the person from the
sensor platform is known as the thermopile frame is the rectangular projection
that enlarges away from the sensor. Hence, we call this position as the virtual
position.

4.2.2 Distance estimate

Machine learning - Estimating location using PIR

The main objective of this step is to find the distance of the person from the
sensor platform. As mentioned earlier in Section 4.1.3 we have to get the V-G
curve and P-T data i.e., the pixels traversed in horizontal and vertical direction.

V-G curves can be obtained by using the variable gain feature in our system.
As soon as a human is detected (step 4.2.1, the gain of the amplifier is reduced
from maximum to the level at which the peak to peak amplitude of the output
is just above the detection level. Note that the gain can be reduced to the min-
imum but the outputs for gains set below the detection level contain only noise.
For each gain set in the range between detection level and the maximum, the
Vp−p is recorded to form a V-G curve. This has to be performed as soon as pos-
sible (within a second or two), before the movement speed and/or distance is
changed by the person. The V-G curve thus obtained forms the test data. Simil-
arly, the test data (P-T data) from thermopile is recorded at the same time when
the test V-G curve from PIR is computed.

In the training phase, V-G curves and P-T data for different distances are used
as input-output pairs to make the system learn different distance depending on
the V-G curves and P-T data inputs. To train the system using example input-
output pairs, we should use different supervised learning algorithms. We tested
different supervised machine learning algorithms for our dataset and from the
Table 4.1 it is evident that KNN has highest accuracy and can be used for classi-
fication of input to different distances. On the other hand, with Artificial neural
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Figure 4.7: Misclassification error in KNN for different values of k

networks (ANN) there is always a trade between high accuracy and low speed
and high resource utilization. Hence, we employ KNN with Euclidean distance

Algorithm Accuracy
Tree 92.36%
SVC 72.3%
KNN 93.1%

Table 4.1: Performance of supervised machine learning algorithms

to find the distance of each point in testing V-G curve and P-T test data. k (num-
ber of neighbours) is an important parameter in KNN. It decides the accuracy of
the algorithm and must be picked in such a way that we get the best possible fit
for the dataset. A 10 fold cross validation was done on different values of k, the
results of which are shown in Figure 4.7, from which it can be seen that above
k=7 the curve is overfitting and below that it is underfitting. Hence, we set k = 7,
where 7 V-G curve instances in the training dataset are most similar to the test
V-G curve. Similarly for P-T dataset.

As explained in Section 4.1.3, each V-G curve in PIR training dataset has its
pair in P-T data in thermopile dataset. Hence, out of the resultant 7 nearest
neighbors in both PIR and P-T dataset, there is a unique V-G curve in PIR data-
set that pairs with corresponding P-T data in thermopile dataset. We prove this
uniqueness using contradiction.

Let us assume that there are two V-G curve – P-T data pairs. We know that
these data correspond to specific speed and distance. We observe from Equa-
tion 4.2 that, as speed and/or distance increases, Vp−p decreases. However, from
Equation 4.1, we see that Pt (h, v) increases as speed increases. Further, at con-
stant speeds, Vp−p varies quadratically and Pt (h, v) varies linearly with distance.
Hence, there cannot be multiple pairs in K-nearest neighbours (where k=7 in our
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case) classified for the test data in PIR - Thermopile training dataset.
It should be noted that, the nearest training datapoint to the respective test

data in a dataset (either PIR or thermopile) may not be the solution as it may not
have its pair in the other K-Nearest Neighbours set. For instance, in Figure 4.8,
the nearest datapoint to the test data in thermopile training data indicated by
brown line is not the solution as it does not have its pair in the 7-Nearest Neigh-
bours in the test data of PIR training data.

Figure 4.8: PIR and thermopile training dataset comprising of V-G curves and
P-T data

The solution having distance d forms the second dimension ‘Y’, the distance
of the person from the sensor platform. Using ‘Y’, we update the virtual position
‘X’ to the absolute position as the frame projection height and width at distance
‘Y’ from the sensor is known using Equation 4.7.

absoluteposi t i on = Pw ·virtual position, (4.7)

where

Pw = Y

 t an(55)
Number of pixels in horizontal direction

2


From Figure 4.9 we know that the horizontal FOV of thermopile array sensor is

110°which spans over 32 pixels. And at a particular distance ‘Y’, using the t an(θ)
formula in a right angle triangle (where θ is half of the horizontal FOV) we can
find the area covered by each pixel and then multiply area covered by each pixel
with the virtual position to get the actual position.

4.2.3 Tracking

Tracking is important in this system to reduce the error introduced when the tar-
get is occluded by other objects. Hence, once localization is completed, tracking
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Figure 4.9: FOV of sensor system

is performed from subsequent thermopile frames. From step 4.2.2, we get the
absolute position of the person in two dimensions. For every thermopile frame
recorded, the difference in locations is calculated using distance formula con-
tinuously. These steps are continued until there is human detection after that
the gain of the PIR sensor is reset to the highest and snapshots of a frame from
the thermopile sensor is taken every second until a human is detected to form
the background frame.

4.2.4 Height classification

Now that the absolute position of the person is known, the height can be estim-
ated using the number of pixels in a frame in vertical direction, representing the
person in the vertical FoV of 75°. Assuming that the person is perpendicular to
the FoV cone axis, the height H of the person is given by

H = Ph ·Number of pixels representing the person vertically, (4.8)

where

Ph = Y

 t an(37.5)
Number of pixels in vertical direction

2


From Figure 4.9 we know that the vertical FOV of thermopile array sensor is

75°which spans over 24 pixels. And at a particular distance ‘Y’, using the t an(θ)
formula in a right angle triangle (where θ is half of the horizontal FOV) we can
find the area covered by each pixel and then multiply area covered by each pixel
with the number of pixels that are occupied by the person to calculate the height
of the person. However since the resolution is very less in case of the original
image i.e., 32 x 24 the area covered by each pixel is high which leads to the higher
error therefore we increase the resolution by interpolating the pixels.
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Algorithm 1 Location and Height estimation algorithm

G ← Gain of PIR
Vp−p ← Peak to peak voltage output from PIR
h ← Pixel occupied by target in horizontal direction
v ← Pixel occupied by target in vertical direction
while Vp−p ≤ 0.02 do

Bi , j ← Save background frame every second (using Equation 4.5)
end while
X ← Estimate virtual horizontal location (as in Section 4.2.1)
Pt (h, v) ← (hmax −hmi n , vmax − vmi n)
i← 0
while Vp−p > 0.02 do

i← i+1
Gi ← Decrease Gi−1 (as mentioned in Section 4.1.3)
Vp−pi ←Vp−p at Gi

end while
V-G curve ← {(Vp−pi ,Gi )}i

i =1
dv g ← Classify V-G curve to a distance using KNN classifier
dpt ← Classify Pt (h, v) to a distance using KNN classifier
Y ← Estimate distance using dv g and dpt

x ← Estimate absolute horizontal location using Y ( in Equation 4.7)
H ← Estimate height of target using Y ( in Equation 4.8)
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Chapter 5

Results

5.1 Performance Evaluation

We evaluated our sensor platform and the algorithm in real time scenario. We
also considered the factors such as background noise, static warm objects,
obstacles, and more number of people, that affects the localization accuracy.
Further we also compared our algorithm with the state of the art approaches.
In this section, we first explain our experimental setup and then present the
results and observations.

5.1.1 Experimental Setup

Figure 5.1 shows our experimental setup covering the area of 9 m x 8 m. Several
circles from 0.25 m to 9 m with the sensor platform as the center were drawn at
0.25 m increment in radius to form equal distances from the sensor platform.
This is shown in Figure 5.1b. Several locations were marked at every 0.25 m dis-
tance along the circumference of all the circles. The distance of 0.25 m was con-
sidered as an average width of a person. The sensor platform was placed at a
height of 1.2 m, an acceptable height to place it in indoor locations and measure
the height of a person.

The training data was collected from 20 different people with and without
wearing jackets, and different types of clothing on different days. At different
speeds from 0.2 m/s to 2 m/s, V-G curves and corresponding P-T data were re-
corded in the FoV. The movement direction included walking perpendicular to
the FoV cone axis, parallel to the cone axis, along circumference of the circles,
diagonal to the FoV cone axis, and random. Using this training dataset, we
tested the performance of our algorithm in different locations and with differ-
ent people. The deployment of the sensor platform was preferred to be at the
corners of the wall so that the FoV of the sensor can cover a larger area.
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(a) Experimental setup covering the
area 9 m x 8 m

(b) Diagram showing the experimental
setup

Figure 5.1: Experiment setup for localization and tracking

5.1.2 Localization and tracking accuracy

To test the localization error in different walking paths different experiments
were done in a completely different setting from that of the training environ-
ment and the results for them are discussed below.

In the most basic test, the person is moving perpendicular to the FOV cone
axis. In this case both the sensing elements of the PIR sensor receives different
amount of incident energy, hence the output signal of PIR sensor has clear si-
nusoidal waves which results in the higher accuracy of the system irrespective
of the speed of movement. From the Figure 5.2 it can be seen that when moving
in radii from 2m till 7m the error is less than 25cm but is increasing that is mainly
because of the increase in area covered by each pixel with increase in distance.
At 1m the error is high because the whole body of the person is not in the FOV of
the sensors and hence the peak to peak output of PIR sensor is less which results
in classifying them at the higher distance. Furthermore, when a target is moving
at slow speed that is at 1.8kmph and is at farther distances that is from 7m on
wards at the error is high because of the diminishing analog wave.

Different walking paths as shown in Figure 5.3 have been evaluated at different
distances. In walking path 1 the target is walking across the FOV cone, starting
at a distance of 2m from the sensor system till 8m distance. The actual path
traversed and the path estimated are shown in Figure 5.4a. As expected the er-
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Figure 5.2: Localization accuracy while walking perpendicular to the FOV cone
at different distances

ror from 2m till 4m is less than 15cm but the error at 5m and 6m is 28cm and
40cm which is higher than expected and it is because of the misclassification
of distance which influenced the error in x-location calculation as well. At 8m
however the pixels covered are less which results in the higher error in x-axis.
However the average tracking error for this path was 18.6cm which is still ac-
ceptable.

When walking parallel to the FOV cone axis as shown in path 2 the distance
estimate is more error prone because, it is possible that both the PIR sensing
elements might be receiving the same energy and hence the output peak to peak
voltage variation is very low, which is evident looking at the actual path and es-
timated path difference in Figure 5.4b. The total error in this path was 42cm.

In path 3, the target is walking from one side to another in a straight path
which is same as the basic case of walking perpendicular to the FOV cone axis
but walking in straight path instead of radii. And the results are similar as well
which can be seen in Figure 5.4c that the error is quite low, however at distance
4.12, it can be either classified as 4.25 or 4, hence there is an error introduction
in x-location calculation as well.

In path 4, target is moving across the FOV axis like in path 1 from 5m till 8m
and it can be seen in Figure 5.4d that the error in tracking is mainly due to the
error is x-axis estimation which is due to the increase in area covered by each
pixel of thermopile array sensor with the increase in distance from the sensor.

To test the overall localization and tracking accuracy, different sensors were
placed in rooms with different dimensions in a building, shown in Figure 5.1 and
Figure 5.5. The rooms had obstacles such as table and chairs, and static warm
objects such as monitor and light bulbs. Different people were asked to walk
randomly inside rooms at different speeds. In total, 50 recordings were done.
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Figure 5.3: Different walking paths for evaluation

(a) Path 1 tracking accuracy. (b) Path 2 tracking accuracy.

(c) Path 3 tracking accuracy. (d) Path 4 tracking accuracy.

Figure 5.4: Different walking paths and their tracking accuracy.

To know the ground truth, markings were also made on all the rooms where
testing was done. The error in localization was calculated by finding the dis-
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(a) Room with dimensions 6 mx5 m (b) Room with dimensions 4 mx5 m

Figure 5.5: Additional locations considered for evaluations

tance between the estimated X, Y location and the ground truth using distance
formula. The CDF graph of localization accuracy of our system is shown in Fig-
ure 5.6. We observed from the results that the maximum error of 1.62 m was
seen at 0.5 m distance from the sensor platform. The reason is that, at proximity,
the entire human body is not visible to the sensors and are out of the conical
FoV. Hence, the pixels traversed by the person and his speed cannot be meas-
ured by the sensor accurately. As the distance increases, the human movement
is completely visible to the sensors, resulting in good accuracy (maximum er-
ror of 0.24 m at 4.5 m). As the movement distance increases, much information
about the person is not available to the thermopile sensor as the person cov-
ers less number of pixels. The best localization accuracy obtain was 100 % in
the grid resolution of 0.25m x0.25 m. The best case tracking accuracy obtained
was 100 % in the grid of 0.25 m x 0.25 m. The maximum deviation obtained was
0.6 m.

Figure 5.6: CDF of localization error

43



From these results it can be seen that using the V-G curves in combination
with P-T data in machine learning algorithms, instead of using just on peak to
peak voltage value to find the distance gave better accuracy than the previous
works and also it is independent of human body temperature. Since the system
is deployed in the corner of the room there are no blind spots which otherwise
would have caused error in localization. This is one of the major problems the
works who deploy their system on ceiling face. However since the system is de-
ployed on the wall there can be error in localization due to occlusion of target by
other objects which is elaborated in the next section.

5.1.3 Impact of obstacles

To analyze the impact of obstacles, we considered a plant and a chair that cov-
ers the lower part of the person, and a board that covers upper part of the per-
son. The obstacles were placed 2.5 m away from the sensor platform as shown
in Figure 5.7. The corresponding data from the thermopile is also shown in the
figure. A person walking behind the obstacles was tracked and localized con-
tinuously. In all the cases when the person was completely visible to the sensor,
the person was tracked and localized with almost no error (best case, 100 % ac-
curacy). In the presence of obstacles, such as in Figure 5.7d, Figure 5.7h and
Figure 5.7j, there was an abrupt increase in the error in ‘Y’ direction, i.e, the dis-
tance between the sensor platform and the person. This is because, as soon as a
part of the person becomes invisible because of obstacles, the number of pixels
traversed by the person changes suddenly giving the impression that the person
has moved away from the sensor. This also affects the accuracy of height es-
timation. As we observed, the highest localization error of 42 % in accuracy was
observed in the case of board, followed by the plant with 31 %, and chair with
22 %, the least. In the case of chair, the infrared energy from the person was not
completely blocked.

5.1.4 Height classification accuracy

To evaluate our approach on height classification, we considered 10 people with
different heights in the range 1.5 m to 1.94 m. The height classification was per-
formed for each person at different distances varying between 1 m and 8 m in
steps of 1 m. Figure 5.8 shows the 3d bar plot of errors in height classification at
different distances and for different heights. We observe from the figure that the
average error is 8 cm and the maximum error was seen at the extremes - i.e, at
1 m and 8 m. It is obvious that at proximity, the complete height of the person is
not visible to the thermopile. Similarly, at farther distances, the number of pixels
covering the person decreases. For distances between 2 m to 7 m, the maximum
error was 0.14 m. It was also observed that interpolation of the thermopile data
to certain extent (4 times for our system) helps to get better accuracy. The errors
shown in Figure 5.8 was obtained by interpolating the thermopile data 4 times.
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(a) Before
plant

(b) Before
plant -
thermopile
frame

(c) Behind
plant

(d) Behind
plant -
thermopile
frame

(e) After
plant

(f) After
plant -
thermopile
frame

(g) Behind
chair

(h) Behind
chair -
thermopile
frame

(i) Behind
board

(j) Behind
board -
thermopile
frame

Figure 5.7: Experiment to analyze the impact of obstacles

Figure 5.8: 3d bar plot showing error in height classification

5.1.5 Raw data compensation accuracy

As mentioned in Section 3.1.2 we are using compensated raw values instead of
actual calculated temperature in order to enable the algorithm to execute on a
microcontroller with low computation power without compromising the much
accuracy. However it is important to know how much of the accuracy we are
missing on and is it acceptable.

Figure 5.9 shows the variation of raw compensated values from that of actual
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temperature calculated, and it can be seen that in between 20° C and 40° C the
values are overlapping and deviate for temperature values below 20° C and above
40° C.

In order to check the loss of accuracy due to the use of raw compensated val-
ues, the pixels occupied by target at different body temperatures were counted
for both raw compensated and actual temperature calculations. It was observed
that when the target is in between the temperature range of 17° C and 19° C there
was 2 pixel variation after 4 times interpolation which means the error ranges
from 3cm at 2m distance to 10.8cm at 9m distance in horizontal location estim-
ation. In case of height estimate the error ranges from 1.6cm to 11.2 cm again
depending on at what distance the target is. Further, there was no variation in
number of pixels excited due to the presence of target whose temperature was
from 20° C to 30° C.

It should be noted that, it was practically not possible to check the error due
to body temperatures below 17° C and above 35° C.

Figure 5.9: Variation of raw compensated value from calculated temperature

5.1.6 Occupancy detection

Multiple people can be detected and tracked using thermopile array sensor as
shown in Figure 5.10a however, if more than one target is walking in the FOV the
PIR produces arbitrary mixed waveform pattern, because of which it becomes
hard to localize more than one person with this system. On the other hand,
following the same steps as localization, people counting can be performed by
using the number of connected components after edge detection as shown in
Figure 5.10b that is when people in FOV are far from each other. But, there are
multiple limitations with this approach for instance when one person is walk-
ing in front of the other, then the pixels with high temperature overlap and will
be counted as a single person, similarly when group of people are together as
shown in Figure 5.11a it becomes difficult to count people, since most of the
connected pixels are of same temperature value, the edge detection doesn’t dif-
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ferentiate them as multiple people as shown in Figure 5.11b. However the size of
largest edge detected component, along with blob detection can be used in clus-
tering algorithms as mentioned in [1] to find the number of people in complex
scenarios.

(a) Thermopile output showing 6
people in a frame

(b) Edge detection output of 6 people

Figure 5.10: Occupancy detection for 6 people

(a) Thermopile output showing 6
people in a frame where 4 are in a
group

(b) Edge detection output of 6 people
where 4 in a group as detected as 1

Figure 5.11: Occupancy detection for 6 people where 4 are in a group
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Localization is an important problem that is being continuously addressed in
the last two decades. In this work, we addressed passive device-free, privacy-
aware localization. We custom-built a miniature platform that could be de-
ployed on the ceiling or the wall. Research into localization using passive in-
frared sensors so far, has used multiple sensors, deployed in a particular way to
achieve higher accuracy is smaller areas. We addressed many such challenges
for example, a single system with 2 sensors is used to localize in 9 m x 8 m room.
We proposed many novel techniques such as variable gain for PIR sensor to
simulate a spatial diversity gain. Using sensor data from PIR and thermopile
we showed that we can accurately localize and track persons in real-time. Our
sensor system uses 80 mW for estimating the location and height. Using thermo-
pile we removed the background hot objects and ambient heat noise to detect
human. Features like gain, peak to peak voltage, pixels traversed were used in
knn based classification to estimate the distance of target from sensor. Which
makes our system agnostic to the clothes worn, compared to the literature. In
this work, we focused on joint height and localization with a single platform.
The distance estimated in location estimation was used along with number of
pixels covered to estimate the height of the target. This system achieves 50% of
the times < 22 cm accuracy and 80% of the times < 35 cm compared to 13.5 cm
best case accuracy. The height estimation is within 8 cm in majority cases.

6.2 Future Work

Although this work achieves localization and height estimation with higher ac-
curacy there is still much research that can be done to improve the accuracy of
the system. The following are some of the areas where we feel improvements
can be made:
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1. Other Applications - Since the system has thermopile array sensor, it can
easily be used in other applications like activity recognition, improve the
occupancy detection for complex scenarios, for elderly health care and
monitoring like fall detection etc.

2. Multiple people localization - As mentioned early, our system can localize
only one person. However, it would be better if multiple people can be
located and tracked.

3. Efficient implementations of neural networks - There are some modified
neural networks which claim to be efficient on low power micro control-
lers. These techniques can be implemented and tested to see if the accur-
acy increases.

4. Flexible system - Now the system has fixed PIR and thermopile array
sensors. However, it can be made more flexible by giving system users to
choose the thermopile array sensor of their requirement. Also to give the
user an option to vary the range of detection.
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