
 
 

Delft University of Technology

From large language models to small logic programs
Building global explanations from disagreeing local post-hoc explainers
Agiollo, Andrea; Cavalcante Siebert, Luciano; Murukannaiah, Pradeep K.; Omicini, Andrea

DOI
10.1007/s10458-024-09663-8
Publication date
2024
Document Version
Final published version
Published in
Autonomous Agents and Multi-Agent Systems

Citation (APA)
Agiollo, A., Cavalcante Siebert, L., Murukannaiah, P. K., & Omicini, A. (2024). From large language models
to small logic programs: Building global explanations from disagreeing local post-hoc explainers.
Autonomous Agents and Multi-Agent Systems, 38(2), Article 32. https://doi.org/10.1007/s10458-024-09663-
8
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10458-024-09663-8
https://doi.org/10.1007/s10458-024-09663-8
https://doi.org/10.1007/s10458-024-09663-8


Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems           (2024) 38:32 
https://doi.org/10.1007/s10458-024-09663-8

1 3

From large language models to small logic programs: 
building global explanations from disagreeing local post‑hoc 
explainers

Andrea Agiollo1 · Luciano Cavalcante Siebert2 · Pradeep K. Murukannaiah2 · 
Andrea Omicini1

Accepted: 19 June 2024 
© The Author(s) 2024

Abstract
The expressive power and effectiveness of large language models (LLMs) is going to 
increasingly push intelligent agents towards sub-symbolic models for natural language 
processing (NLP) tasks in human–agent interaction. However, LLMs are characterised by 
a performance vs. transparency trade-off that hinders their applicability to such sensitive 
scenarios. This is the main reason behind many approaches focusing on local post-hoc 
explanations, recently proposed by the XAI community in the NLP realm. However, to the 
best of our knowledge, a thorough comparison among available explainability techniques 
is currently missing, as well as approaches for constructing global post-hoc explanations 
leveraging the local information. This is why we propose a novel framework for comparing 
state-of-the-art local post-hoc explanation mechanisms and for extracting logic programs 
surrogating LLMs. Our experiments—over a wide variety of text classification tasks—
show how most local post-hoc explainers are loosely correlated, highlighting substantial 
discrepancies in their results. By relying on the proposed novel framework, we also show 
how it is possible to extract faithful and efficient global explanations for the original LLM 
over multiple tasks, enabling explainable and resource-friendly AI techniques.
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1 Introduction

Large language models (LLMs) represent the de-facto solution for dealing with complex 
natural language processing (NLP) tasks such as sentiment analysis [1], question answering 
[2], and many others [3]. The ever-increasing popularity of such data-driven approaches is 
largely due to their uncanny performance improvements against human counterparts over 
tasks such as grammar acceptability of a sentence [4] and text translation [5]. In this con-
text, the foreseeable future of intelligent agent systems is likely to be deeply intertwined 
with LLMs. Intelligent agents exploiting NLP-enabled process for human-agent interaction 
as well as for inter-agent communication within complex Multi-Agent Systems (MASs) are 
going to become more and more popular [6, 7]. Natural language explanations are funda-
mental for improving agents expressiveness and explaining agent actions, beliefs, and rea-
soning [8], as well as argumentation and negotiation processes [9, 10]. However, leaning 
on LLMs—and Neural Networks (NNs) for NLP tasks in general—brings about a novel 
layer of complexity, requiring full comprehensibility of sub-symbolic components. Agent’s 
observable behaviour should be understandable at every step, which requires the explaina-
bility of the sub-symbolic mechanisms in charge of the interaction—both with humans and 
agent-to-agent. Substantial reliance on LLMs does not make explanation extraction easy, 
as the LLM decision process is far from being transparent, given the complexity of popular 
architectures such as BERT [11], GPT [12], and T5 [13]. While powerful and empirically 
reliable, those models suffer from a performance vs. transparency trade-off [14, 15].

LLMs are black-box models, as they rely on the optimisation of their numerical sub-
symbolical components, which are mostly unreadable by humans. Mechanisms are then 
needed that could make the reasoning process of LLM black-boxes somehow observable 
and understandable by humans. To this aim, a few different explainability approaches have 
been recently proposed, which mostly focus on Local Post-hoc Explainer (LPE) mecha-
nisms. An LPE represents a popular solution to explain the reasoning process by highlight-
ing how different portions of the input sample impact differently the produced output, by 
assigning a relevance score to each input component. These approaches apply to single 
instances of input sample—they are local—and to optimised LLM—they are post-hoc. 
While popular, such approaches do not give information about the general reasoning prin-
ciple of the underlying LLM, as they cannot produce a global view. Moreover, despite a 
broad variety of LPE approaches, the state of the art lacks a fair comparison among them. 
A common trend for proposals of novel explanation mechanisms is to highlight its advan-
tages through a set of tailored experiments. This hinders comparison fairness, making it 
very difficult to identify the best approach for explanations of NLP models, or even to 
determine whether a best approach exists.

This is why in the following we present a framework for comparing several well-known 
LPE mechanisms for text classification in NLP—first introduced in [16]. Aiming at obtain-
ing comparison fairness, we rely on the aggregation of the local explanations obtained by 
each local post-hoc explainer into a set of global impact scores. The scores identify the set 
of concepts that best describe the underlying NLP model from the perspective of each LPE. 
The concepts, along with their aggregated impact scores, are then compared for each LPE 
against other LPE counterparts. The comparison between the aggregated global impact 
scores rather than the single explanations is justified by the locality of LPE approaches. 
Indeed, it is reasonable for local explanations of different LPEs to differ somehow, depend-
ing on the approach design, therefore making it complex to compare the quality of two 
LPEs over the same sample. However, it is also expected for the aggregated global impacts 
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to be aligned between different LPEs as they are applied to the same NN, which leverages 
the same set of relevant concepts for its inference. Therefore, when comparing the aggre-
gated impact scores of different LPEs, we expect them to be correlated—at least up to a 
certain extent.

Subsequently, given the lack of available global post-hoc explainers, we consider ena-
bling the extraction of global explanations from the output of a single LPE. Here, we refer 
to global as expressing the totality of knowledge acquired by the LLM at training time, thus 
being representative of the full reasoning principles of the LLM at hand. We extend the 
LPE comparison framework first introduced in [16] leveraging a a neuro-symbolic process 
[17–21] to build global explanations from LPEs. In this context, we aim at extracting the 
LLM knowledge under the form of a logic program equivalent to the sub-symbolic model 
at hand, similarly to [22, 23]. More in detail, the presented knowledge extraction frame-
work—namely, Global Explanations from Local Post-hoc Explainers (GELPE)—relies on 
the output of a single LPE to identify the set of most relevant components in sentences, and 
optimise a transparent-by-design—such as Classification and Regression Tree (CART)—
surrogate model to mimic the LLM predictions. Once the transparent model is optimised, 
an equivalent logic program is extracted from the model, allowing for the inspection of the 
global reasoning process of the LLM. Figure 1 summarises the GELPE’s working process. 
While simple, this approach represents up to our knowledge the first mechanism for build-
ing global explanations of LLMs for text classification accounting for the available local 
explanations. As such, the proposed approach is likely to represent a desirable tool for the 
trustworthy and explainable AI community, as it allows opening LLM black-boxes while 
keeping the explanations complexity bounded. Identifying small and efficient surrogate 
programs over several tasks, the proposed framework enables the deployment of intelligent 
techniques over resource-constrained environments where LLMs represent a limited solu-
tion [24, 25].

We test the proposed framework over a large set of text classification domains, ranging 
from simple scenarios—e.g., spam text classification [26, 27]—to challenging tasks such as 
the Moral Foundation Twitter Corpus (MFTC) [28]. Possibly surprisingly, our experiments 
show how the explanations of different LPEs are far from being correlated, highlighting 
how explanation quality is highly dependent on the chosen eXplainable Artificial Intel-
ligence (xAI) approach and the respective scenario at hand. There are huge discrepancies 

Fig. 1  Overview of the GELPE extraction process. The LLM belonging to a smart agent is examined by a 
single LPE mechanism, generating a set of relevant lemmas (see Eq. 16 for more details). The set of rele-
vant lemmas, along with the LLM’s predictions for a set of available inputs, are used to optimise the CART 
model to mimic the LLM behaviour. Thereafter, the CART model can be converted quickly into a logic 
program equivalent to the starting LLM.
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in the results of different state-of-the-art local explainers, each of which identifies a set of 
relevant concepts that largely differs from the others—at least in terms of relative impact 
scores. These results highlight the fragility of xAI approaches for NLP, caused mainly by 
the complexity of large NN models, their inclination to extreme fitting of data and the lack 
of sound techniques for comparing xAI mechanisms. Notably, the proposed experiments 
also highlights how GELPE enables the extraction of reliable surrogate logic programs 
from LLMs with high fidelity over a broad set of datasets. The extracted knowledge is not 
only faithful to the original model, but also quite simple, as the complexity of the logic 
program is kept bounded depending on the number of relevant lemmas selected. Through-
out our experimental evaluation, we analyse the computation requirements of the proposed 
extraction process and the efficiency of the extracted logic program. Numerical results 
highlight the efficiency of the extracted surrogate model, improving over the original LLM 
in terms of required processing time and consumed energy. The results show how the pro-
posed framework enables the deployment of intelligent solutions over resource-constrained 
environments via identifying transparent surrogate models. Also, we highlight that leverag-
ing on LLMs to tackle a learning task in NLP does not always represent the best option, as 
alternative equivalent solutions that are simple, small and transparent can be available [29, 
30].

Contributions: We summarise our contributions as follows:

• We present the first framework for comparing explanations obtained leveraging differ-
ent LPEs over LLMs. The proposed scheme is designed to assert the correlation level 
of LPEs over a broad set of input sentences.

• We test the correlation performance of seven different LPEs over nine different NLP 
datasets, showcasing how state-of-the-art LPEs strongly disagree.

• We present GELPE, the first framework for extracting global explanations from the 
output of LPE processes, enabling the extraction of logic rules from LLMs.

• We study the performance of GELPE considering its fidelity with respect to LLMs, the 
complexity of the extracted rules and its achievable efficiency improvements, showcas-
ing encouraging results.

Organization: Sect. 2 discusses the basic concepts of available explanation mechanisms in 
NLP, along with the required discussion between local and global explanations. Section 3 
presents the methodology used in this paper for comparing LPE mechanisms and building 
global explanations from LPE’s outputs. The experimental evaluation of our methodology 
is made available in Sect. 4, in which we first focus on the comparison between the avail-
able LPEs in Sect. 4.3, while Sect. 4.4 presents the knowledge extraction results. Conse-
quently, Sect.  5 discusses the limitations of the proposed methodology, whereas Sect.  6 
concludes the paper with some insight into the possible extensions of our work.

Glossary: Table 1 summarises notations used in the article.

2  Background: explanation mechanisms in NLP

The set of explanations extraction mechanisms available in the xAI community are often 
categorised along two main axis [31, 32]: (i) local against global explanations, and (ii) 
self-explaining against post-hoc approaches. In the former context, local identifies the 
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set of explainability approaches that given a single input produce an explanation of the 
reasoning process followed by the NN model to output its prediction for the given input 
[33]. In contrast, global explanations aim at expressing the reasoning process of the 
NN model as a whole [34, 35]. Given the complexity of the NN models leveraged for 
tackling most NLP tasks, it is worth noticing how there is a significant lack of global 
explainability systems, whereas a variety of local xAI approaches are available [36, 37].

About the latter aspect, we define post-hoc as those set of explainability approaches 
which apply to an already optimised black-box model for which it is required to obtain 
some sort of insight [38]. Therefore, a post-hoc approach requires additional operations 
to be performed after that the model outputs its predictions [39]. Conversely, inher-
ently explainable—self-explaining—mechanisms aim at building a predictor having a 
transparent reasoning process by design—e.g., CART [40]. Therefore, a self-explaining 
approach can be seen as generating the explanation along with its prediction, using the 
information emitted by the model as a result of the prediction process [39].

In the context of local post-hoc explanation approaches, a popular solution in NLP 
is to explain the reasoning process by highlighting how different portions of the input 
sample impact differently the produced output, by assigning a relevance score to each 
input component. The relevance score is then highlighted by using some saliency map 
to ease the visualisation of the obtained explanation. Therefore, it is also common for 
local post-hoc explanations to be referred to as saliency approaches, as they aim at high-
lighting salient components.

Table 1  Summary of glossary. Acronym Definition

NN Neural Network
NLP Natural Language Processing
xAI eXplainable Artificial Intelligence
LPE Local Post-hoc explainer
MFTC Moral Foundation Twitter Corpus
LLM Large Language Model
CART Classification And Regression Tree
GELPE Global Explanations from Local Post-hoc Explainers
SHAP SHapley Additive exPlanations
BLM Black Lives Matter
ALM All Lives Matter
BLT Baltimore protests
DAV hate speech and offensive language
ELE 2016 presidential election
MT MeToo movement
SND hurricane Sandy
GS Gradient Sensitivity analysis
GI Gradient × Input
LRP Layer-wise Relevance Propagation
LAT Layer-wise Attention Tracing
LIME Local Interpretable Model-agnostic Explanations
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3  Methodology

In this section, we present our methodology for comparing LPE mechanisms and build-
ing global explanations from LPE’s outputs. We first overview the proposed approach in 
Sect. 3.1. Subsequently, the set of LPE mechanisms adopted in our experiments are pre-
sented in Sect.  3.2, and the aggregation approaches leveraged to obtain global impact 
scores from LPE outputs are described in Sect.  3.3. In Sect.  3.4 we present the metrics 
used to identify the correlation between LPEs. Finally, in Sect. 3.5 we propose GELPE as a 
novel methodology to build global explanations of LLMs on top of LPE’s outputs.

3.1  Overview

Measuring different LPE approaches over single local explanations is a complex task. This 
is why we first consider measuring how much LPEs correlate with each other over a set 
of fixed samples. The underlying assumption of our framework is that various LPE tech-
niques aim at explaining the same NN model used for prediction. Therefore, while expla-
nations may differ over local samples, one could reasonably assume that reliable LPEs 
when applied over a vast set of samples—sentences or set of sentences—should converge 
to similar (correlated) results. Indeed, the underlying LLM considers being relevant for its 
inference always the same set of concepts—lemmas. A lack of correlation between differ-
ent LPE mechanisms would hint to the existence of a conflict among the set of concepts 
that each explanation mechanism considers as relevant for the LLM—thus making at least 
one, if not all, of the explanations unreliable.

We first analyse the correlation between a set of LPEs over the same pool of samples, 
and define �NN as a LPE technique applied to a NN model at hand. Being local, �NN is 
applied to the single input sample xi , producing as output one impact score for each com-
ponent (token) of the input sample lk . Throughout the remainder of the paper, we consider 
lk to be the lemmas corresponding to the input components. Mathematically, we define 
the output impact score for a single token or its corresponding lemma as j

(
lk, �NN(xi)

)
 . 

Depending on the given �NN , the corresponding impact score j may be associated with a 
single label, making j a scalar value, or with a set of labels, making j a vector—one sca-
lar value for each label. To enable the comparison between different LPE, we define the 
aggregated impact scores of a LPE mechanism over a NN model and a set of samples S as 
�NN(S) . In our framework we obtain �NN(S) aggregating �NN(xi) for each xi ∈ S using an 
aggregation operation A—mathematically:

By defining a correlation metric C , we obtain from Eq. 1 the following for describing the 
correlation between two LPE techniques:

where �NN and �′
NN

 are two LPE techniques applied to the same NN model.
The aggregated explanations �NN(S) obtained from LPE’s outputs can also be leveraged 

as a starting point for building transparent surrogate models of the original LLM, as they 
highlight the impact of each lemma or token in the LLM decision process. Constructing 
a transparent surrogate model allows for extracting explanations of the global reasoning 

(1)�NN(S) = A
({

�NN(xi) for each xi ∈ S
})

.

(2)
C
(
�NN(S), �

�

NN
(S)

)
= C

(
A
({

�NN(xi) for each xi ∈ S
})

,

A
({

��
NN

(xi) for each xi ∈ S
}))
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process of the black-box LLM, enabling knowledge extraction, model debugging, and 
interaction with a human user or other intelligent agents. To this extent, we here propose 
GELPE as a novel framework for constructing a logic program—represented as a set of 
sequential propositional rules—that mimics the LLM behaviour starting from a set of 
locally relevant lemmas �NN(S) , extracted using a single LPE. More in detail, GELPE relies 
on transparent-by-design models such as CART optimised over the LLM outputs, rather 
than the dataset considered.

We rely on CART models as they represent one of the easiest and most reliable 
approaches to identify human-readable rules—under the form of trees—from complex 
structured data. In summary, the optimisation of CART models involves selecting input 
variables and split points on those variables until a suitable tree is constructed. The selec-
tion of which input variables and split points to use is performed using a greedy algorithm 
aiming at minimising a given cost function. Finally, the tree construction process ends 
using a predefined stopping criterion, such as a minimum number of training instances 
assigned to each leaf node of the tree. The set of tree-structured rules extracted using 
CART can be easily translated into a list of sequential, human-readable expressions that 
contain logic expressions over the input variables, by extracting one rule for each leaf used 
in the CART model. Therefore, CART represents a very popular solution for extracting 
explanations from fuzzy data or black-box classifiers, trying to mimic their outputs. How-
ever, a thorough background on CART models is out of the scope of this paper and we 
refer interested readers to [40].

Since CART relies on structured—usually tabular—data to perform optimisation and 
inference, we convert the input sentences into a binary format, expressing the presence or 
absence of relevant lemmas and their combinations. The binarised input is used to optimise 
the underlying CART model, from which it is possible to extract the equivalent logic pro-
gram P . Mathematically, we represent the knowledge extraction procedure as:

where H identifies the transparent-by-design models used to extract the explanations logic 
program P , bin�NN (S) represents the binarization process used to convert the sentence xi into 
a corresponding binary vector of lemmas occurences and NN(xi) identifies the output of 
the LLM when fed with input sentence xi.

3.2  Local post‑hoc explanations

In our framework, we consider seven different LPE approaches for extracting local expla-
nations j

(
lk, �NN(xi)

)
 from an input sentence xi and the trained LLM—identified as NN . 

The seven LPEs are selected in order to represent as faithfully as possible the state-of-the-
art of xAI approaches in NLP. Subsequently, we briefly describe each of the seven selected 
LPEs. However, a detailed analysis of these LPEs is out of the scope of this paper and we 
refer interested readers to [33, 39, 41].

3.2.1  Gradient sensitivity analysis (GS)

The Gradient Sensitivity Analysis (GS) probably represents the simplest approach for 
assigning relevance scores to input components. GS relies on computing gradients over 

(3)P = H
{
(bin�NN (S)(xi), NN(xi)) ∀ xi ∈ S

}
,
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inputs components as 
�f�m (xi)

�xi,k
 , which represents the derivative of the output with respect to 

the the kth component of xi . Following this approach local impact scores of an input com-
ponent can be thus defined as:

where f�m (xi) represents the predicted probability distribution of an input sequence xi over 
a target class �m . While simple, GS has been shown to be an effective approach for under-
standing approximate input components relevance. However, this approach suffers from a 
variety of drawbacks, mainly linked with its inability to define negative contributions of 
input components for a specific prediction—i.e., negative impact scores.

3.2.2  Gradient × input (GI)

Aiming at addressing few of the limitations affecting GS, the Gradient × Input (GI) 
approach defines the relevance scores assignment as GS multiplied—element-wise—with 
xi,k [42]. Therefore, mathematically speaking, GI impact scores are defined as:

where notation follows the one of Eq. 4. Being very similar to GS, GI also inherits most of 
its limitations.

3.2.3  Layer‑wise relevance propagation (LRP)

Building on top of gradient-based relevance scores mechanisms—such as GS and GI—, 
Layer-wise Relevance Propagation (LRP) proposes a novel mechanism relying on conser-
vation of relevance scores across the layers of the NN at hand. Indeed, LRP relies on the 
following assumptions: (i) NN can be decomposed into several layers of computation; (ii) 
there exists a relevance score R(l)

d
 for each dimension z(l)

d
 of the vector z(l) obtained as the 

output of the lth layer of the NN; and (iii) the total relevance scores across dimensions 
should propagate through all layers of the NN model, mathematically:

where, f (x) represents the predicted probability distribution of an input sequence x , and 
L the number of layers of the NN at hand. Moreover, LRP defines a propagation rule for 
obtaining R(l)

d
 from R(l+1) . However, the derivation of the propagation rule is out of the 

scope of this paper, thus we refer interested readers to [43, 44]. In our experiments we con-
sider as impact scores the relevance scores of the input layer, namely j

(
lk, �NN(xi)

)
= R

(1)

d
.

(4)j
(
lk, �NN(xi)

)
=

�f�m (xi)

�xi,k
,

(5)j
(
lk, �NN(xi)

)
= xi,k ⋅

�f�m (xi)

�xi,k
,

(6)f (x) =
∑

d∈L

R
(L)

d
=

∑

d∈L−1

R
(L−1)

d
= ⋯ =

∑

d∈1

R
(1)

d
,
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3.2.4  Layer‑wise attention tracing (LAT)

Since LLMs rely heavily on self-attention mechanisms [45], recent efforts propose to iden-
tify input components relevance scores analysing solely the relevance scores of attentions 
heads of LLM models, introducing Layer-wise Attention Tracing (LAT) [46, 47]. Building 
on top of LRP, LAT proposes to redistribute the inner relevance scores R(l) across dimen-
sions using solely self-attention weights. Therefore, LAT defines a custom redistribution 
rule as:

where, h corresponds to the attention head index, while a(h) are the corresponding learnt 
weights of the attention head and k is such that i is input for neuron k. Similarly to 
LRP, we here consider as impact scores the relevance scores of the input layer, namely 
j
(
lk, �NN(xi)

)
= R(1).

3.2.5  Integrated gradient (HESS)

Motivated by the shortcomings of previously proposed gradient-based relevance score 
attribution mechanisms—such as GS and GI—, Sundararajan et al. [48] propose a novel 
Integrated Gradient approach. The proposed approach aims at explaining the input sample 
components relevance by integrating the gradient along some trajectory of the input space, 
which links some baseline value x′

i
 to the sample under examination xi . Therefore, the rel-

evance score of the kth input component of the input sample xi is obtained following

where xi,k represents the kth component of the input sample xi . By integrating the gradient 
along an input space trajectory, the authors aim at addressing the locality issue of gradient 
information. In our experiments we refer to the Integrated Gradient approach as HESS, as 
for its implementation we rely on the integrated hessian library available for hugging face 
models.1

3.2.6  SHapley additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP) relies on Shapley values to identify the contribu-
tion of each component of the input sample toward the final prediction distribution. The 
Shapley value concept derives from game theory, where it represents a solution for a coop-
erative game, found assigning a distribution of a total surplus generated by the players 
coalition. SHAP computes the impact of an input component as its marginal contribution 
toward a label �m , computed deleting the component from the input and evaluating the out-
put discrepancy. Firstly defined for explaining simple NN models [36], in our experiments 

(7)R
(l)

i
=
∑

k

∑

h

a
(h)R

(l+1)

k,h
,

(8)j
(
lk, �NN(xi)

)
=

(
xi,k − x

�

i,k

)
⋅ ∫

1

a=0

�f (x�
i
+ t ⋅ (xi − x

�

i
))

�xi,k
dt,

1 https:// github. com/ suinl eelab/ path_ expla in.

https://github.com/suinleelab/path_explain
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we leverage the extension of SHAP supporting transformer models such as BERT [49], 
available in the SHAP python library.2

3.2.7  Local interpretable model‑agnostic explanations (LIME)

Similarly to SHAP, Local Interpretable Model-agnostic Explanations (LIME) relies on 
input sample perturbation to identify its relevant components. Here, the predictions of the 
NN at hand are explained via learning an explainable surrogate model [37]. In detail, in 
order to obtain its explanations LIME constructs a set of samples from the perturbation 
of the input observation under examination. The constructed samples are considered to be 
close to the observation to be explained from a geometric perspective, thus considering 
small perturbation of the input. The explainable surrogate model is then trained over the 
constructed set of samples, obtaining the corresponding local explanation. Given an input 
sentence, we here consider obtaining its perturbed version via words—or tokens—removal 
and words substitution. In our experiments, we rely on the already available LIME python 
library.3

3.3  Aggregating local explanations

Once local explanations of the NN model are obtained for each input sentence, we aggre-
gate them to obtain a global list of concept impact scores. Before aggregating the local 
impact scores, we convert the words composing local explanations into their correspond-
ing lemmas-i.e., concepts-to avoid issues when aggregating different words expressing the 
same concept-e.g., hate and hateful. As no bullet-proof solution exists for the aggregation 
of different impact scores, we adopt four different approaches in our experiments, namely: 

Sum  A simple summation operation is leveraged to obtain the aggregated 
score for each lemma. While simple this aggregation approach is effec-
tive when dealing with additive impact scores such as SHAP values. 
However, it suffers from lemma frequency issues, as it tends to overes-
timate frequent lemmas with average low impact scores. Global impact 
scores are here defined as J(lk, �NN) =

∑N

i=1
j
�
lk, �NN

�
xi

��
 . Therefore, 

we define A as 

Absolute sum  Here we sum the absolute values of the local impact scores—rather 
than their true values—to increase the awareness of global impact 
scores towards lemmas having both high positive and high negative 
impact over some sentences. Mathematically, we obtain aggregated 
scores as J(lk, �NN) =

∑N

i=1
�j
�
lk, �NN

�
xi

��
� . 

(9)A
({

�NN(xi) for each xi ∈ S
})

=

{
N∑

i=1

j
(
lk, �NN

(
xi

))
for each lk ∈ S

}
.

3 https:// github. com/ marco tcr/ lime.

2 https:// github. com/ slund berg/ shap.

https://github.com/marcotcr/lime
https://github.com/slundberg/shap
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Average  Similar to the sum operation, here we obtain aggregated scores aver-
aging local impact scores, thus avoiding possible overshooting issues 
arising when dealing with very frequent lemmas. Mathematically, we 
define J(lk, �NN) =

1

N
⋅

∑N

i=1
j
�
lk, �NN

�
xi

��
 . 

Absolute average  Similarly to absolute sum, here we average absolute values of local 
impact scores for better-managing lemmas with a skewed impact 
as well as tackling frequency issues. Global impact scores are here 
defined as J(lk, �NN) =

1

N
⋅

∑N

i=1
�j
�
lk, �NN

�
xi

��
� . 

 Since the selection of the aggregation mechanism may influence the correlation between 
different LPEs, in our experiments we analyse LPEs correlation over the same aggregation 
scheme. Moreover, we also analyse how aggregation impacts the impact scores correla-
tion over the same LPE, highlighting how leveraging the absolute value of impact score is 
highly similar to adopting its true value—see Sect. 4.3.2.

3.4  Comparing explanations

Each aggregated global explanation J depends on a corresponding label �m since LPEs pro-
duce either a scalar impact value for a single �m or a vector of impact scores for each �m . 
Therefore, recalling Sect. 3.3, we can define the set of aggregated global scores depending 
on the label they refer to as following:

J�m

(
�NN ,S

)
 represents a distribution of impact scores over the set of lemmas—i.e., con-

cepts—available in the samples set for a specific label. To compare the distributions of 
impact scores extracted using two LPEs—i.e., J�m

(
�NN ,S

)
 and J�m

(
�′
NN

,S
)
—we use Pear-

son correlation, which is defined as the ratio between the covariance of two variables and 
the product of their standard deviations, and it measures their level of linear correlation. 
The selected correlation metric is applied to the normalised impact scores. Indeed, dif-
ferent LPEs produce impact scores that may differ relevantly in terms of their magnitude. 
Normalising the impact scores, we map impact scores to a fixed interval, allowing for a 
direct comparison of J�m

 over different �NN . Mathematically, we refer to the normalised 
global impact scores as ‖J�m

‖ . Therefore, we define the correlation score between two sets 
of global impact scores for a single label as:

(10)A
({

�NN(xi) for each xi ∈ S
})

=

{
N∑

i=1

|j
(
lk, �NN

(
xi

))
| for each lk ∈ S

}
.

(11)A
({

�NN(xi) for each xi ∈ S
})

=

{
1

N
⋅

N∑

i=1

j
(
lk, �NN

(
xi

))
for each lk ∈ S

}
.

(12)A
({

�NN(xi) for each xi ∈ S
})

=

{
1

N
⋅

N∑

i=1

|j
(
lk, �NN

(
xi

))
| for each lk ∈ S

}
.

(13)J�m

(
�NN ,S

)
=
{
J
(
lk, �NN

)
|�m for each lk ∈ S

}
.

(14)
�
�
‖J�m

�
�NN ,S

�
‖, ‖J�m

�
��
NN

,S
�
‖
�
= �

�
‖
�
J
�
lk, �NN

�
��m for each lk ∈ S

�
‖,

‖
�
J
�
lk, �

�

NN

�
��m for each lk ∈ S

�
‖
�
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where � refers to the Pearson correlation used to compare couples of J�m

(
�NN ,S

)
 . Through-

out our analysis we experimented with similar correlation metrics, such as Spearman cor-
relation and simple vector distance—similarly to [50]—, obtaining similar results. There-
fore, to avoid redundancy we here show only the Pearson correlation results. Throughout 
our experiments, we consider a simple min-max normalisation process, scaling the scores 
to the range [0, 1].

As we aim at obtaining a measure of similarity between LPEs applied over the same set 
of samples, we can average the correlation scores � obtained for each label �m over the set 
of labels T  . Therefore, we mathematically define the correlation score of two LPEs, putting 
together Eqs. 13, 2 and 14 as:

where M is the total number of labels, belonging to T .

3.5  GELPE: global explanations from LPEs

Although useful, local explanations are limited, as they do not highlight the general reasoning 
principle of the underlying model, but rather focus solely on relevant input components for a 
specific prediction. Aiming at overcoming such limitations, we here present GELPE as the 
first—up to our knowledge—framework for extracting global explanations from LPEs. Rely-
ing on LPE outputs, GELPE allows for the adoption of reliable local extraction mecanisms, 
while extending their impact to the global reasoning process of the black-box model. Figure 1 
presents an overview of GELPE’s working process.

The aggregated explanations �NN(S) obtained from a single LPE’s output are leveraged as 
a starting point for building a transparent surrogate model of the original LLM. GELPE relies 
on transparent-by-design models such as CART optimised over the LLM outputs, rather than 
the dataset considered. As described in Eq. 3, during the optimisation process of the CART 
model, input sentences are converted into a binary format, expressing the presence or absence 
of relevant lemmas and their combinations. In order to convert a sentence xi into its binary 
format, we consider the K most valuable lemmas for each class identified during the aggrega-
tion process presented in Sect. 3.3. The K most valuable lemmas are the ones with the high-
est aggregated impact scores over a set of sample sentences for a single LPE mechanism. To 
avoid relying only on keywords, and accounting instead for more complex constructs, we also 
consider the set of skipgrams built from the combination of the single K most valuable lem-
mas. In this context, skipgrams define co-occurences of relevant lemmas over a span of lim-
ited tokens sequences [51]. With such a procedure we build a set of valuable lemmas and 
sequences L defined as:

where Li represents the lemma in the ith position of the sorted lemmas list—in terms of 
relevance—, and (Li,… , Lj) represent the concatenation of two or more lemmas. Once the 
set of most relevant lemmas and corresponding sequences L are available, we can define 
the binarized version of an input sentence as the binary vector that identify the presence or 
absence of each lemma and sequence in the considered sentence. Mathematically, the bina-
risation function can be defined as the following:

(15)C
�
�NN(S), �

�

NN
(S)

�
=

1

M
⋅

M�

m=1

�
�
‖J�m

�
�NN ,S

�
‖, ‖J�m

�
��
NN

,S
�
‖
�

(16)L = {(Li), (Li, Lj), (Li, Lj, Lk),… ∀ i, j, k ∈ K},
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where xi,j represent the components—i.e., tokens or lemmas—of the input sentence xi , 
skip(xi,j−n,… , xi,j) the corresponding skipgrams built from the last n input components, and 
1 represents the indicator function, being equal to 1 if the lemma/skipgram belongs to L 
and 0 otherwise. Finally, || represents the concatenation operation between vectors. As an 
example, consider the input sentence the dog is an animal with four legs and the set of 
most relevant lemmas extracted by a given LPE to be L = {animal, face, legs} . Then the 
corresponding binarised version of the input sentence is shown in Fig. 2, where the + sym-
bol is used to identify the concatenation of two relevant lemmas inside a sentence—i.e., 
lemma1 + lemma2 can be interpreted as lemma1 followed by lemma2.

The binarised input is used to optimise the underlying CART model, from which it is 
possible to extract the equivalent logic program P—see Eq. 3. P is extracted by identify-
ing one rule for each leaf used in the CART model optimised over the LLM outputs. The 
obtained logic program P represents an explanation of the black-box LLM in the form 
of a set of sequential propositional rules containing lemmas, sequences of lemmas, and 
negations thereof. Extracted rules are sequential, meaning that each propositional rule 
applies if and only if the previous ones were not valid. As GELPE relies on the CART 
model, the extracted rules can only identify the presence or absence of a specific set of 
keywords and sequences, which represents a limitation of such approach. However, vary-
ing the value of K and the length and expressiveness of the skipgram construction process, 
the GELPE extraction procedure can be tuned to consider sequences of lemmas as com-
plex as it is needed to fit well the LLM reasoning process. To keep the complexity of the 
extraction process under control, throughout our experiments we consider relying at most 
on (2,5)-skipgrams—i.e., building sequences of lemmas of length at most two which are 
contained over the span of five input tokens. An example of the GELPE extracted knowl-
edge, along with the analysis of its correctness is made available in Sect. 4.4.3.

4  Experiments

In this section we present the setup and results of our experiments. More in detail, we first 
analyse the set of datasets used in our experimental evaluation in Sect. 4.1, along with the 
model training details and its obtained performance in Sect. 4.2. We then focus on the com-
parison between the available LPEs, showing the correlation between their explanations in 

(17)xbin = bin�NN (S)(xi) = 1(xi,j ∈ L) ||1(skip(xi,j−n,… , xi,j) ∈ L) ∀ j ∈ xi,

Fig. 2  Sentence binarization approach in GELPE.
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Sect. 4.3. Section 4.4 presents the knowledge extraction results, analysing the performance 
of the knowledge extractor model, along with the complexity of the extracted knowledge. 
Finally, we analyse the efficiency of the knowledge extraction model, showcasing the 
improvements in terms of time and energy consumption over the LLM counterpart. The 
source code of our framework and experiments is publicly available.4

4.1  Datasets

In our experiments, we aim at analysing the correlation among different LPEs and the fea-
sibility of global knowledge extraction from LLM over a large set of scenarios. Therefore, 
we consider an heterogeneous set of datasets targetting text classification tasks, ranging 
from easy to complex setups. More in detail, we consider targetting the SMS [26] and 
YOUTUBE [27] spam classification datasets as easy setups, having two highly separable 
classes. Here, each sample represents a text—either obtained from text messages or from 
comment posted in the comments section of youtube videos—manually labeled as spam 
or legitimate (ham). Although available, the metadata information—such as the author’s 
name and publication date—is not used. As a slightly more complex setup, we consider 
the TREC [52] dataset, containing 4,965 labeled questions. In this context, each sample 
represents a question belonging to one of six classes—i.e., Abbreviation, Entity, Descrip-
tion, Human, Location, Numeric-value—to be semantically classified. Finally, as a com-
plex setup we select the MFTC datasets as the target classification task. The MFTC dataset 
is composed of 35,108 tweets—sentences—, which can be considered as a collection of 
different datasets. Each split of MFTC corresponds to a different context. Here, tweets cor-
responding to the dataset samples are collected following a certain event or target. As an 
example, tweets belonging to the Black Lives Matter (BLM) split were collected during the 
period of Black Lives Matter protests in the US. The list of all MFTC subjects considered 
in our experiments is the following: (i) All Lives Matter (ALM), (ii) Black Lives Matter 
(BLM), (iii) Baltimore protests (BLT), (iv) 2016 presidential election (ELE), (v) MeToo 
movement (MT), (vi) hurricane Sandy (SND). Each tweet in MFTC is labelled, follow-
ing the same moral theory, with one or more of the following 11 moral values: (i) care/
harm, (ii) fairness/cheating, (iii) loyalty/betrayal, (iv) authority/subversion, (v) purity/deg-
radation, (vi) non-moral. Ten of the 11 available moral values are obtained as a moral con-
cept and its opposite expression—e.g., fairness refers to the act of supporting fairness and 
equality, while cheating refers to the act of refraining from exploiting others. Given moral-
ity subjectivity, each tweet is labelled by multiple annotators, and the final moral labels are 
obtained via majority voting.

As the size of each dataset represents a relevant component to take into account, Table 2 
reports the number of sentences belonging to each dataset. Throughout our experiments 
we use 70% of the samples belonging to the dataset as the training set, in which LLMs are 

Table 2  Size of the considered datasets.

SMS YOUTUBE TREC ALM BLM BLT ELE MT SND

Number of samples 5574 2403 4965 4424 5257 5593 5358 4891 4591

4 https:// github. com/ AndAg io/ SKE_ NLP.

https://github.com/AndAgio/SKE_NLP
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trained, and both local and global explanations are fitted. The remaining 30% of samples 
is kept for testing the LLM performance as well as the quality of both local and global 
explanations.

4.2  Model training

The SMS, YOUTUBE, and TREC datasets represent standard multi-class single-label 
classification tasks. Therefore, we tackle the classification task over those datasets using 
a standard cross entropy loss [53]. Meanwhile, tackling MFTC we follow state-of-the-art 
approaches for dealing with morality classification task [54, 55]. Thus, we treat the moral-
ity classification problem as a multi-class multi-label classification task, using a binary 
cross entropy loss [53]. Differently from recent approaches, we here do not rely on the 
sequential training paradigm for the MFTC datasets, but rather train each model solely 
on the MFTC split at hand. Indeed, in our experiments, we do not aim at obtaining strong 
transferability between domains, but rather we focus on analysing LPEs behaviour.

For all datasets we leverage BERT as the LLM to be optimised [11], and define one 
NN model for each dataset, optimising its parameters over the 70% of samples, leaving 
the remaining 30% for testing purposes. We leverage the pre-trained bert-base-uncased 
model—available in the Hugging Face python library5—as the starting point of our train-
ing process. Each model is trained using the standard Stochastic Gradient Descent (SGD) 
optimization procedure for 3 epochs, a learning rate of 5 × 10−5 , a batch size of 16 and a 
maximum sequence length of 64. We keep track of the macro F1-score for each model 
to identify its performance over the test samples. Table 3 shows the performance of the 
trained BERT model.

4.3  Local post‑hoc explainers comparison

We analyse the extent to which different LPEs are aligned in their process of identifying 
impactful concepts for the underlying NN model. With this aim, we train a BERT model 
over a specific dataset (following the approach described in Sect.  4.2) and compute the 
pairwise correlation C

(
�NN(S), �

�

NN
(S)

)
 (as described in Sect. 3) for each pair of LPEs in the 

selected set. To avoid issues caused by model overfitting over the training set, which would 
render explanations unreliable, we apply each �NN over the test set of the selected dataset.

Table 3  BERT performance over considered datasets.

SMS YOUTUBE TREC ALM BLM BLT ELE MT SND

F
1
 score 98.71% 95.81% 97.18% 63.04% 82.59% 64.51% 63.14% 52.16% 56.85%

5 https:// github. com/ huggi ngface.

https://github.com/huggingface
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4.3.1  Local post‑hoc explainers disagreement

Using the pairwise correlation values we construct the correlation matrices shown in 
Figs. 3 and 4, which highlight how there exist a very weak correlation score between most 
LPEs over different datasets. Here, it is interesting to notice how few specific couples or 
clusters of LPEs exist which highly correlate with each other. For example, GS, GI, and 
LRP show moderate-to-high correlation score, mainly due to their reliance on computing 
the gradient of the prediction to identify impactful concepts. However, this is not the case 
for all LPE couples relying on similar approaches. For example, GI and gradient integra-
tion—HESS in the matrices—show little to no correlation, although they both are gradient-
based approach for producing local explanations. Similarly, SHAP and LIME show no cor-
relation even if they both rely on input perturbation and are considered the state-of-the-art.

Figures  3 and 4 highlight how the vast majority of LPE pairs show very-small-to-no 
correlation at all, exposing how the selected approaches actually disagree. Interestingly 
enough, disagreement between LPEs holds true for every dataset studied in our analyses, 
no matter the complexity or simplicity of the learning task and the samples considered. 

Fig. 3  C
(
�
NN

(S), ��
NN

(S)
)
 using average aggregation as A over the SMS (left) and YOUTUBE (right) data-

set.

Fig. 4  C
(
�
NN

(S), ��
NN

(S)
)
 using average aggregation as A over the ALM (left) and BLM (right) dataset.



Autonomous Agents and Multi-Agent Systems           (2024) 38:32  

1 3

Page 17 of 33    32 

This finding represents a fundamental result of our study, as it demonstrates how no 
accordance exists between LPEs even when they are applied to the same model and data-
set, even on very simple classification tasks such as the one represented by the SMS data-
set. The reason behind the large discrepancies among LPE might be various, but mostly 
bear down to the following:

• Few of the LPEs considered in the literature do not represent reliable solutions for iden-
tifying the reasoning principles of LLMs.

• Each of the uncorrelated LPEs highlights a different set or subset of reasoning princi-
ples of the underlying model.

Therefore, our results show how complex it is to identify a set of fair and reliable metrics to 
spot the best LPE or even reliable LPEs, as they seem to gather uncorrelated explanations. 
Similar results to the ones shown in Figs. 3 and 4 are obtained for all datasets and are made 
available at https:// github. com/ AndAg io/ GELPE.

Fig. 5  C
(
�
NN

(S), ��
NN

(S)
)
 using different aggregations over the ALM dataset.

https://github.com/AndAgio/GELPE
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4.3.2  Aggregation affects correlation

Since our LPE correlation metric is dependent on A , we here analyse how the selection of 
different aggregation strategies impacts the correlation between LPEs. To understand the 
impact of A on C , we plot the correlation matrices for a single dataset, varying the aggrega-
tion approach, thus obtaining the four correlation matrices shown in Fig. 5.

From Figureds 5c, d one could notice the strong correlation between different LPEs. 
This seems to be in contrast with the results found in Sect. 4.3. However, the reason behind 
the strong correlation achieved when relying on summation aggregation is not caused by 
the actual correlation between explanations, but rather on the susceptibility of summation 
to tokens frequency. Indeed, since the summation aggregation approaches do not take into 
account the occurrence frequency of lemmas in S , they tend to overestimate the relevance 
of popular concepts. Intuitively, using this aggregations, a rather impactless lemma appear-
ing 5000 times would obtain a global impact higher than a very impactful lemma appearing 
only 10 times. These results highlight the importance of relying on average based aggrega-
tion approaches when considering to construct global explanations from the LPE outputs.

Figure  5 also points out how leveraging the absolute value of LPEs incurs in higher 
correlation scores. The reason behind this is to be found in the impact scores distributions. 
While true local impact scores are distributed over the set of real numbers ℝ , computing 
the absolute value of local impacts j shifts their distribution to ℝ+ , shrinking possible dif-
ferences between positive and negative scores. Moreover, LPE outputs rely much more 
heavily on scoring positive contributions using positive impact scores, and typically give 
less focus to negative impact scores. Therefore, the output of LPEs is generally unbalanced 
towards positive impact scores, making negative impact scores mostly negligible.

4.3.3  LPEs visualization examples

The results obtained over various LPEs when considering several input sentences identify 
a large discrepancy between the available LPE approaches. To better visualize the quarrel 
between LPEs, we here consider to visualize the output of LPE explanations over few of 
the sentences belonging to the considered datasets in Figs. 6 and reffig:lpespsalmspssingle

Fig. 6  Example of LPEs influence scores over the sentence achieving the lowest (left) and highest (right) 
correlation of LPEs in the SMS dataset.
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spssentence. More in detail, we plot the LPEs relevance scores for each token over the sen-
tences of the dataset used in our experiments. Generally speaking, higher scores identify 
the most relevant tokens for the LLM prediction, while low scores identify non relevant 
tokens. Negative scores are assigned to the tokens that negatively influence the prediction 
for a specific class, thus identifying the tokens that should drift the prediction towards a 
different class.

Figure 6 shows the LPEs scores over two sentences of the SMS dataset. The left-side 
plot is obtained for a sentence where LPEs are far from being correlated, thus highlight-
ing the quarrel between LPEs and confirming the findings of Sect. 4.3.1. The difference 
in LPEs influence scores is evident across most tokens, with each LPE considering as the 
most relevant tokens several different candidates—e.g., SHAP focuses on anti, GS focuses 
on invest, LRP focuses on in, etc. On the other hand, the right-side plot is obtained for 
a sentence where LPEs are slightly correlated, thus showing somewhat an agreement 
between most LPEs. However, even considering sentences where LPEs generally agree, 
it is possible to notice how few approaches are far from being perfectly adherent to the 
majority of LPEs. For example, SHAP and LIME assign an almost zero influence score 
to all tokens, while other LPEs tend to produce non-negligible scores. Similar results are 
obtained for the ALM dataset and shown in Fig. 7. However, for the ALM dataset, the disa-
greement among LPEs is evident even when selecting the sentence achieving the highest 
LPEs correlation (right-side plot). Similar results to the ones shown in Figs. 6 and 7 are 
obtained for all sentences in each dataset considered, and made available at https:// github. 
com/ AndAg io/ GELPE.

4.4  Knowledge extraction

We here analyse if and to what extent it is possible to extract a knowledge base repre-
senting the trained LLM from each LPE, and how much these are aligned in their pro-
cess of explaining the underlying NN model. With this aim, we rely on the GELPE global 
explainer construction process presented in Sect. 3.5, extracting a set of rules representing 
the LLM decision process for each dataset at hand. As the building process is dependent on 
the number of most impactful lemmas, we consider varying the hyperparameter K to select 
the top-K relevant lemmas for each class. After the relevant lemmas are selected from a 

Fig. 7  Example of LPEs influence scores over the sentence achieving the lowest (left) and highest (right) 
correlation of LPEs in the ALM dataset.

https://github.com/AndAgio/GELPE
https://github.com/AndAgio/GELPE
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given LPE, we construct the skipgrams of relevant lemmas as the set of skipgrams occur-
ring in the training set that are composed from relevant lemmas only. Skipgrams are con-
sidered to extend the capabilities of the extraction process to consider sequences of relevant 
concepts rather than blindly focusing only on single tokens. Once the relevant lemmas and 
skipgrams are available, we consider converting the samples of the training set into binary 
vectors describing the presence or absence of each lemma and skipgram. We optimise the 
CART model on the binary vectors representing the training samples and extract the cor-
responding knowledge from the tree as a set of ordered propositional rules. The extracted 
rules are sequential, meaning that one rule applies if and only if the previous rules were 
not successful in identifying the relevant prediction. To avoid incurring in an unbearable 
number of propositional clauses—that would hinder the utility of the knowledge extraction 
process—we limit the depth of the CART model to be:

where Λ represents the number of total relevant lemmas and skipgrams identified from 
the LPE, |Y| represents the number of classes of the classification task at hand, and � rep-
resents an hyperparameter that we set to � = 5 empirically. Throughout the remainder of 

(18)depth = � ⋅

Λ

K ∗ |Y|
,

Table 4  Fidelity of the extracted 
knowledge w.r.t. to the original 
BERT model over the SMS 
dataset.

† Identifies the best LPE over a single K value, while the bold row(s) 
identify the overall best LPE

LPEs K

50 (%) 100 (%) 150 (%) 200 (%) 250 (%)

GI 87.00 87.60 90.20† 91.80† 91.60†

GS 87.40† 87.80† 89.80 90.40 91.60†

LAT 87.40† 87.40 89.00 89.60 91.00
LRP 86.60 86.40 86.60 87.80 90.80
SHAP 86.40 86.60 86.60 86.40 86.40
HESS 86.20 86.40 86.80 86.80 86.40
LIME 86.20 86.20 86.20 86.60 86.80

Table 5  Fidelity of the 
extracted knowledge w.r.t. to the 
original BERT model over the 
YOUTUBE dataset.

† Identifies the best LPE over a single K value, while the bold row(s) 
identify the overall best LPE

LPEs K

50 (%) 100 (%) 150 (%) 200 (%) 250 (%)

GI 69.20 72.40 72.40 76.00 76.80
GS 69.20 72.40 72.40 78.00 76.40
LAT 66.00 64.40 70.80 80.00 84.40
LRP 65.20 65.20 68.80 70.00 70.00
SHAP 43.20 75.20 80.80 80.80 80.40
HESS 82.40 87.60 86.40 88.80 87.20
LIME 88.00† 92.00† 94.00† 93.20† 92.80†
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this paper, we consider leveraging the average operation as the aggregation function A , as 
it represents the least biased aggregation process. However, we also experiment with other 
aggregation functions, such as sum, absolute sum, and absolute average, obtaining similar 

Table 6  Fidelity of the extracted 
knowledge w.r.t. to the original 
BERT model over the BLT 
dataset.

† Identifies the best LPE over a single K value, while the bold row(s) 
identify the overall best LPE

LPEs K

50 (%) 100 (%) 150 (%) 200 (%) 250 (%)

GI 92.64 92.70 93.18 93.12 92.76
GS 93.60 92.28 93.18 93.24 92.82
LAT 90.19 91.74 92.28 92.34 92.46
LRP 92.28 93.12 93.00 93.48 92.88
SHAP 95.69 94.14 94.14 94.14 94.14
HESS 93.72 93.84 93.48 93.48 93.60
LIME 95.27† 95.27† 95.09† 95.09† 95.09†

Table 7  Fidelity of the extracted 
knowledge w.r.t. to the original 
BERT model over the ELE 
dataset.

†  identifies the best LPE over a single K value, while the bold row(s) 
identify the overall best LPE

LPEs K

50 (%) 100 (%) 150 (%) 200 (%) 250 (%)

GI 68.51 72.00 74.67 75.92 76.23
GS 68.95 73.93 74.74† 74.67 76.79†

LAT 58.93 61.36 66.77 67.45 69.14
LRP 72.81 74.74† 75.36 75.48 75.79
SHAP 67.64 68.70 69.51 70.50 70.50
HESS 68.33 73.80 74.05 74.11 74.11
LIME 73.61† 73.93 74.49 76.60† 76.73

Table 8  Fidelity of the extracted 
knowledge w.r.t. to the original 
BERT model over the SND 
dataset.

† Identifies the best LPE over a single K value, while the bold row(s) 
identify the overall best LPE

LPEs K

50 (%) 100 (%) 150 (%) 200 (%) 250 (%)

GI 45.39 58.39 60.20 59.84 61.73
GS 46.48 57.59 59.84 61.00† 62.60†

LAT 38.63 45.53 49.82 49.89 57.30
LRP 40.02 49.67 59.98 59.62 61.00
SHAP 57.01 57.23 57.23 57.23 57.23
HESS 60.49 60.13† 58.75 58.53 58.61
LIME 61.15† 60.06 60.28† 60.20 60.13



 Autonomous Agents and Multi-Agent Systems           (2024) 38:32 

1 3

   32  Page 22 of 33

results. Therefore, in order to avoid redundancy we here show only the average aggregation 
results.

4.4.1  Knowledge fidelity

To asses the performance of the proposed knowledge extraction process from LPEs, we 
measure the fidelity of the predictions obtained using the propositional rules against the 
corresponding LLM predictions. The fidelity metric measures the percentage of instances 
in which the propositional rules predictions and model predictions are equivalent, thus 
measuring the accuracy of the knowledge extraction process. Since, GELPE relies on the 
output of a single LPE mechanism to produce the logic program equivalent to the LLM 
at hand, we compare the fidelity performance of GELPE over all the LPEs presented in 
Sect. 3.2. Tables 4 and 5 present the fidelity of the GELPE extraction process over the SMS 
and YOUTUBE datasets. In those simple scenarios, the proposed approach extracts a set of 
accurate rules, representing with high fidelity the decision process of the underlying LLM. 
Using GELPE, we enable the extraction of simple and easy to understand rules from the 
complex black-box model.

Over more complex datasets, the performance of the extracted knowledge using GELPE 
varies depending on the dataset at hand. Table 6 shows the fidelity of GELPE over the BLT 
dataset, where the explanation model achieves up to 95.09% fidelity. Meanwhile, Tables 7 
and 8 presents the fidelity results over the ELE and SND datasets respectively, where the 
proposed GELPE extraction seems to struggle to achieve high fidelity values. This is due 
to the underlying complexity of the dataset at hand. For some tasks—e.g. YOUTUBE, 
BLT—, considering the most relevant lemmas and their skipgram combinations is suffi-
cient, while others—e.g. ELE, SND—require a more complex understanding of the inner 
sentence constructs.

As expected, increasing the number of relevant lemmas K considered to optimise 
GELPE results in higher fidelity, as the underlying CART model takes into account a 
broader set of meaningful features. However, increasing K over a certain threshold results 
in an unbearable rules complexity and in smaller fidelity gains. The increment on rule 
complexity also hiders the understandability of the extracted explanation, representing a 
fundamental concept to take into account. This phenomenon is clearly shown in Tables 7 
and 8, where the fidelity grows up to 20% when K ranges from 50 to 250.

Interestingly, the disagreement between different LPEs seems to affect also the per-
formance of the obtained global explainer model. Fidelity results highlight that GELPE 
explanations obtained from highly correlated LPEs such as GI and GS achieve comparable 
performance level. Meanwhile, propositional rules obtained from uncorrelated LPEs result 
in different fidelity level. While expected, such a behaviour represents a useful finding as it 
allows for the identification of more reliable LPEs, as the ones that results in a higher level 
of fidelity—e.g., LIME in most scenarios.

4.4.2  Knowledge complexity

The ideal extraction process is required to output a set of sequential propositional rules 
that is as faithful as possible w.r.t. the underlying LLM. However, the dimensionality of 
the extracted program should be kept small to limit the complexity burden of the anal-
ysis process. An overly complex knowledge base would not be useful for analysing the 
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Table 9  Complexity of the 
extracted knowledge over the 
YOUTUBE dataset.

L represents the length of the obtained explanation—i.e., the number 
of clauses—, while C represents the cumbersomeness—i.e., the aver-
age number of atoms in each clause. The bold row(s) identify the over-
all simplest LPE

LPEs K

50 100 150 200 250

GI L = 30 L = 41 L = 40 L = 40 L = 66

C = 6.73 C = 7.71 C = 7.65 C = 7.05 C = 10.38

GS L = 30 L = 41 L = 42 L = 37 L = 73

C = 6.63 C = 7.71 C = 7.79 C = 7.51 C = 10.59

LAT L = 20 L = 43 L = 116 L = 75 L = 64

C = 5.65 C = 6.42 C = 10.28 C = 8.84 C = 11.23

LRP L = 37 L = 46 L = 36 L = 32 L = 48

C = 6.51 C = 7.15 C = 7.17 C = 7.09 C = 7.81

SHAP L = 14 L = 25 L = 34 L = 36 L = 33

C = 5.21 C = 7.04 C = 7.62 C = 7.78 C = 7.61

HESS L = 48 L = 53 L = 55 L = 39 L = 52

C = 9.67 C = 10.36 C = 12.05 C = 11.67 C = 11.88

LIME L = 32 L = 56 L = 57 L = 60 L = 68

C = 6.72 C = 9.29 C = 9.42 C = 11.30 C = 13.01

Table 10  Complexity of the 
extracted knowledge over the 
ELE dataset.

L represents the length of the obtained explanation—i.e., the number 
of clauses—, while C represents the cumbersomeness—i.e., the aver-
age number of atoms in each clause. The bold row(s) identify the over-
all simplest LPE

K LPEs

50 100 150 200 250

GI L = 430 L = 363 L = 353 L = 273 L = 296

C = 19.78 C = 19.68 C = 18.21 C = 15.76 C = 15.29

GS L = 422 L = 335 L = 350 L = 269 L = 369

C = 19.58 C = 19.54 C = 18.27 C = 15.61 C = 17.94

LAT L = 639 L = 487 L = 373 L = 379 L = 360

C = 20.52 C = 19.93 C = 19.11 C = 20.00 C = 20.47

LRP L = 390 L = 433 L = 391 L = 375 L = 364

C = 19.85 C = 22.08 C = 18.45 C = 18.19 C = 17.93

SHAP L = 16 L = 15 L = 16 L = 16 L = 16

C = 4.06 C = 3.93 C = 4.06 C = 4.06 C = 4.06

HESS L = 17 L = 64 L = 71 L = 71 L = 72

C = 4.12 C = 7.84 C = 8.04 C = 8.03 C = 8.08

LIME L = 64 L = 68 L = 71 L = 130 L = 131

C = 7.75 C = 7.94 C = 8.06 C = 10.72 C = 10.76
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inner working principle of the explained LLM, as it would be mostly impossible to be pro-
cessed by a human interpreter. To assess the complexity of the extracted knowledge, we 
consider tracking the length of the logic program and its cumbersomeness. In this context, 
the length L represents the number of clauses in the obtained explanation, while the cum-
bersomeness C represents the average number of atoms in each clause. L and C represent 
two fundamental parameters for describing the complexity of the extracted logic program. 
Lengthier programs are more complex to read and may result in the reader getting lost. On 
the other hand, a higher cumbersomeness translates directly into longer rules, which are 
by default more complex to understand, as human users are generally more susceptible to 
complex multi-variable reasoning. Moreover, longer rules are generally more specific, as 
they require linking multiple input variables—and possibly their interactions—to a specific 
output label. Therefore, when long rules are extracted it possibly means that the LLM sig-
nals a specific behavior over a specific input. This phenomenon can translate directly into 
the identification of bias issues, overfitting problems and much more.

For each dataset considered we keep track of L and C and analyse their variability over 
each LPE and K value. Tables 9 and 10 show the complexity of the GELPE output over 
the YOUTUBE and ELE dataset respectively. The results highlight the relevant difference 
in terms of required complexity to extract reliable explanations when dealing with simple 
or complex classification tasks. Both L and C are kept small for each LPE and K combina-
tion over the YOUTUBE dataset, while still being able to reach high fidelity (see Table 5). 
Meanwhile, the ELE moral classification task requires to consider higher values of L and C 
in order to achieve a satisfactory level of fidelity (see Table 7).

Table 9 also highlights a dependency between the complexity of the extracted explana-
tions and the parameter K . In the vast majority of cases, the higher K produces a more 
complex global explanation program, usually characterized by a higher number of clauses 
L and a larger number of atoms for each clause C. This is expected, since a higher value 

Fig. 8  Logic program P obtained from the GELPE extraction process when leveraging LIME as LPE and 
K = 50 on the YOUTUBE dataset.
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of K identifies a broader set of relevant lemmas considered during the optimization of the 
CART explainer, thus increasing the number of features available to construct proposi-
tional clauses. However, it is interesting to notice how the almost-linear dependency on K 
affects more C than L, since L can be bounded during the CART optimization process via 
pruning. The increased complexity of the obtained explanation represents a fundamental 
aspect to take into account when considering leveraging GELPE, as we need for the expla-
nations to be bounded in complexity for them to be human-readable. The limitation of the 
CART depth—see Eq. 18—represents an helping tool from this perspective, as it allows 
to keep the complexity of the explainer under control in complex setup, such as the ELE 
dataset. This phenomenon can be seen in Table 10, where the complexity of the extracted 
explanations remains stable over K . However, depth limitation is not drawback free, as it 
hinders the achievement of high fidelity values.

4.4.3  Knowledge visualisation

We visualise the logic programs obtained from the knowledge extraction process to 
analyse their correctness and understandability. Figure  8 shows the logic program P 
obtained from the GELPE extraction process when leveraging LIME as LPE and K = 50 
on the YOUTUBE dataset. The extracted knowledge is characterised by a manageable 
complexity, having a small number of relatively short clauses. In this context, the sum-
mation symbol + is used to identify the concatenation of two relevant lemmas inside a 
sentence—lemma1 + lemma2 can be interpreted as lemma1 followed by lemma2. More-
over, we remind that the extracted rules are sequential, meaning that each propositional 
rule applies if an only if the previous rules did not. For example, in Fig. 8 the last rule, 
specifing that the message is spam, is valid only if all the previous 31 rules did not 
match a class output. Interestingly, the extracted knowledge also shows some relevant 
properties, such as the identification of spam comments as those containing certain 

Fig. 9  Logic program P obtained from the GELPE extraction process when leveraging SHAP as LPE and 
K = 100 on the BLM dataset.
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hyperlinks (org lemma), subscription related lemmas (sub and subscribe), as well as 
grammatical errors (suscribe rather than subscribe and withing rather than within).

Figure  9 shows the extracted knowledge when GELPE is used with SHAP and 
K = 100 over the BLM dataset. Here, it is also possible to notice relevant concepts 
being extracted from the LLM decision process. For example, the proposed extraction 
process allows to identify that the combination of keywords obey and rape result in 
the text being considered as harmful, as well as the keyword murder. Meanwhile, the 
sequence standing + injustice along with the justice keyword identify that the sentiment 
is fairness. Finally, since the extracted rules are sequential, the loyalty fact at the end 
of the program serves as the default prediction whenever none of the extracted rules 
applies. These results highlight the goodness of the proposed GELPE framework than 
enables the extraction of meaningful logic rules from the LLM reasoning principle with 
high fidelity.

4.4.4  Resource effeciency

The proposed GELPE framework allows for the extraction of sequential propositional rules 
from LLM starting from LPEs outputs. In an ideal scenario, the logic program obtained 
as a result of the GELPE process contains a handful of simple—i.e., short—clauses. The 
execution of such simple program—surrogate of the original LLM model—requires few 
computational power, as it does not rely on complex operations such as convolutions that 
require GPUs or hardware-specific solutions. However, the complexity of the GELPE 
output can grow quickly depending on the set of considered lemmas and skipgrams, thus 
hindering its efficiency. Therefore, it is fundamental to assess the ability of the proposed 
GELPE framework to produce a resource-friendly surrogate model of the original LLM. 
To this end, we consider measuring the time and energy efficiency of the original LLM 
model against few of the logic programs obtained using GELPE. More in detail, we con-
sider running the original BERT model both in a GPU enabled scenario—using a Tesla 
V100S-PCIE with 32GB of RAM—and a CPU only scenario—using an Intel(R) Xeon(R) 
Gold 6226R CPU @ 2.90GHz. We rely on the pyJoules6 library for measuring the energy 
consumption and latency of both LLM and logic program executions. pyJoules is a soft-
ware toolkit relying on (i) the Intel “Running Average Power Limit” (RAPL)7 technology 

Table 11  Resource efficiency comparison of BERT against GELPE for each dataset.

Model
Dataset

SMS YOUTUBE TREC ALM BLM BLT ELE MT SND

BERTGPU
t = 0.017s t = 0.009s t = 0.008s t = 0.006s t = 0.006s t = 0.006s t = 0.006s t = 0.007s t = 0.006s
E = 2.841J E = 2.350J E = 0.987J E = 1.181J E = 1.209J E = 1.481J E = 1.196J E = 1.961J E = 1.148J

BERTCPU
t = 0.047s t = 0.066s t = 0.023s t = 0.027s t = 0.028s t = 0.029s t = 0.026s t = 0.049s t = 0.026s
E = 5.008J E = 7.893J E = 2.421J E = 2.940J E = 3.037J E = 3.141J E = 2.906J E = 5.576J E = 2.719J

SHAP50
t = 0.009s t = 0.004s t = 0.004s t = 0.008s t = 0.011s t = 0.005s t = 0.006s t = 0.008s t = 0.008s
E = 0.574J E = 0.223J E = 0.269J E = 0.492J E = 0.595J E = 0.307J E = 0.383J E = 0.456J E = 0.490J

LIME50
t = 0.004s t = 0.004s t = 0.010s t = 0.021s t = 0.026s t = 0.005s t = 0.015s t = 0.020s t = 0.013s
E = 0.208J E = 0.260J E = 0.592J E = 1.189J E = 1.455J E = 0.283J E = 0.891J E = 1.121J E = 0.777J

SHAP250
t = 0.010s t = 0.012s t = 0.019s t = 0.032s t = 0.035s t = 0.018s t = 0.025s t = 0.026s t = 0.034s
E = 0.556J E = 0.694J E = 1.115J E = 1.736J E = 1.968J E = 1.015J E = 1.403J E = 1.432J E = 1.859J

LIME250
t = 0.016s t = 0.034s t = 0.084s t = 0.144s t = 0.235s t = 0.024s t = 0.087s t = 0.106s t = 0.078s
E = 0.866J E = 1.789J E = 4.696J E = 7.990J E = 13.047J E = 1.388J E = 4.808J E = 5.797J E = 4.364J

For each dataset, we highlight in blue the most energy efficient model, in brown the least energy efficient 
one, in green the quickest model and in red the slowest one

6 https:// github. com/ power api- ng/ pyJou les.
7 https:// power api. org/ refer ence/ formu las/ rapl/.

https://github.com/powerapi-ng/pyJoules
https://powerapi.org/reference/formulas/rapl/
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to estimate power consumption of the CPU, RAM and integrated GPU devices; and on 
(ii) the Nvidia “Nvidia Management Library”8 technology to measure energy consump-
tion of Nvidia GPU devices. Therefore, pyJoules represents a reliable solution to measure 
the energy footprint of a host machine during the execution of a piece of Python code. 
We consider comparing the BERT efficiency performance against the most faithful logic 
program—i.e., the one obtained with LIME as LPE—and against the simplest one—i.e., 
the one obtained with SHAP as LPE. For each LPE, we consider two setups, having the 
lowest and highest value of K—i.e., K = 50 and K = 250 , respectively. The logic programs 
obtained from GELPE from each LPE are run using only the CPU device. We keep track of 
the average time t required to infer the prediction over a single sample and the correspond-
ing average energy consumed E . Table 11 shows the obtained results over all datasets.

The obtained results highlight how over simple setups such as SMS and YOUTUBE, 
the surrogate model obtained using GELPE always outperforms the BERT counterpart. 
This is due to the small task complexity, enabling the proposed framework to extract a 
small set of simple clauses to mimic the model behaviour. Indeed, the efficiency of the 
logic program obtained is proportional to the complexity of the clauses to be analysed to 
achieve a prediction. Meanwhile, over more complex setups, such as the ELE dataset, in 
which GELPE outputs a large set of long clauses, it is possible to outperform the BERT 
counterpart only when considering a small value of K . However, noticeably it is always 
possible to find a surrogate logic model obtained via GELPE representing a more efficient 
solution than running the LLM model over the CPU. These results highlight the advan-
tage of leveraging a simple rule-based approach over sub-symbolic models when hardware 
acceleration is not available. As such, the proposed model represents a feasible solution for 
those scenarios where the deployment setup is composed of resource-constrained devices, 
such as embedded devices and micro-controllers. In this scenarios, running the original 
LLM would not be acceptable, due to latency and memory issues, while GELPE’s output 
results in a resource efficient transparent program that is easily deployable. Therefore, the 
obtained results show that the GELPE surrogate model does not represent just an explain-
able and transparent twin of the LLM original model, but also an efficient one.

5  Discussion and limitations

Fidelity vs. efficiency trade-off The set of experiments proposed in Sect. 4 highlights how 
it is possible to identify a relevant logic program surrogate of the original LLM achieving 
high fidelity and efficiency for some scenarios. However, generally speaking there exists 
an intrinsic trade-off between the achievable fidelity of the surrogate logic program and 
its resource-efficiency improvements. Indeed, Table 11 highlights how resource efficiency 
gains are usually achievable whenever small logic programs are enforced using a small set 
of relevant lemmas—i.e., small K values. However, these small programs do not attain the 
best achievable fidelity. Consider for example the YOUTUBE dataset, where GELPE rely-
ing on LIME with K = 50 achieves 88% fidelity, against the best fidelity of 94% achieved 
with K = 150 . On the other hand, logic programs extracted using large set of relevant lem-
mas—e.g., K = 250—usually achieve higher fidelity, while being less effective in reducing 
the resource consumption. Therefore, it is possible to identify the fidelity vs. efficiency 

8 https:// devel oper. nvidia. com/ nvidia- manag ement- libra ry- nvml.

https://developer.nvidia.com/nvidia-management-library-nvml
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trade-off as one of the limitations of the proposed approach. However, while this trade-
off exists, it is fundamental to note that it is relevant only whenever hardware accelera-
tion—e.g., using GPUs—is available. Indeed, even the largest logic programs—which are 
expected to be the most faithful—extracted with GELPE performs similarly—from the 
resource-efficiency perspective—to the LLM at hand whenever it runs on CPU only (see 
Table  11). Moreover, the application of knowledge extraction mechanisms is generally 
considered in those scenarios where model opacity is a no-go. Therefore, we consider the 
trade-off between the achievable fidelity and the resource-efficiency to not apply in those 
scenarios where available hardware is limited or whenever transparency represents the 
most important feature, thus rendering the trade-off less relevant.

BERT and other LLMs Throughout our investigation we consider BERT as the tar-
get LLM architecture. Indeed, BERT represent the first large NN model—comprising 340 
millions weights—which targets NLP and that is trained on large corpus of data collected 
from the web, namely the BooksCorpus dataset and a dump of the English Wikipedia of 
the time. We rely on BERT as it allows for the quick implementation of all LPE approaches 
available in the state-of-the-art. Indeed, few of these approaches require access to the inner 
mechanisms building the NN model to produce their explanations, thus being not applica-
ble to closed source models such as the GPT family. The full focus on BERT represents a 
limitation of the proposed work, as the behaviour of BERT may differ significantly from 
other LLMs. Therefore, we consider the analysis of the application of our methodology to 
several different LLMs—wherever possible—as a future extension of this work. Moreo-
ver, we note that larger models—such as GPT or Llama—might exhibit some emergent 
properties not appearing in the adopted BERT model [56]. The emergent properties may 
somehow cause different results to be achieved employing the same methodology proposed 
in this paper, thus requiring further investigation. Indeed, emergent properties clash with 
model interpretability, thus making larger LLMs even more complex to analyse and inspect 
using available LPEs. Therefore, it is reasonable to expect an even larger lack of correla-
tion amongst available LPEs over larger LLMs caused by the inherent fuzzy nature of their 
emergent properties which is difficult to analyse from a single or a few examples.

On the LLM reasoning principles From the very first proposal of LLMs, the research 
community has largely explored and speculated on their ability to reason over complex 
concepts. However, the definition of the LLMs reasoning capabilities and their limitations 
represents an open research question in the literature. Indeed, there is no definitive proof on 
the extent to which LLMs can process complex concepts incorporating human-like logical 
reasoning behaviour. Therefore, we here feel the need to stress that in this paper, whenever 
we refer to the reasoning principles of LLMs we consider the process by which the model 
elaborates the textual information given, without assuming any human-like reasoning capa-
bility from the LLM. Accordingly, the explanations extracted using GELPE mimic the 
information elaboration process of the LLM, rather than conjecturing the LLM’s logical 
reasoning capabilities. Therefore, the reasoning process carried out in the logic program 
may be profoundly different to the reasoning capabilities of LLMs and rather represent the 
logic grounding of how information is elaborated sub-symbolically by the LLM.
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6  Conclusions and future work

As intelligent agents are going to increasingly rely on LLMs for smooth interaction with 
humans and other agents, a fundamental issue for intelligent MASs is to open the LLM 
black-boxes, enabling explanation of their inner reasoning principles. However, xAI tech-
niques for NLP still suffer several issues, linked with the heterogeneity of available local 
explanation techniques and the lack of robust global explanation processes. Inspired by 
these limitations, we propose a novel approach for enabling a fair comparison among state-
of-the-art local post-hoc explanation mechanisms, aiming at identifying the extent to which 
their extracted explanations correlate. We rely on a novel framework for extracting and 
comparing global impact scores from local explanations obtained from LPEs, and apply 
such a framework over several text classification datasets, ranging from simple to complex 
tasks. Our experiments show how most LPEs explanations are far from being mutually 
correlated when LPEs are applied over a large set of input samples. These results highlight 
what we called the “quarrel” among state-of-the-art local explainers, highlighting the cur-
rent fragility of xAI approaches for NLP. The disagreement is apparently caused by each 
of them focusing on a different set or subset of relevant concepts, or imposing a different 
distribution on top of them. Furthermore, we propose a novel approach to construct global 
explanations—under the form of logic programs—of the original LLM starting from the 
LPE outputs. We test the global explanation extraction approach—namely GELPE—over 
a broad set of scenarios, highlighting its fidelity against the sub-symbolic model and the 
simplicity of the extracted knowledge. Moreover, we analyse the efficiency of the extracted 
logic programs, showing how it is possible to extract a logic program that is equivalent to 
the original LLM and is faster and less energy wasteful in scenarios where hardware accel-
eration is not available. Therefore, our experiments show how the extraction process can 
be leveraged to enable the deployment of NLP applications to resource-constrained envi-
ronments, such as embedded devices and microcontrollers. These findings also highlights 
how—for some learning tasks—leveraging LLMs might represents an over complication, 
as it is possible to achieve similar performance using simple and small logic programs.

Future work is likely to include the application of the proposed methodology to a broad 
range of state-of-the-art LLMs, starting from Llama and other available open-source archi-
tectures, aiming at showing if—and to what extent—the findings of this paper apply to 
models different from BERT. Similarly, we intend to extend the analysis on the trade-off 
between the achievable fidelity and efficiency of the surrogate logic programs extracted 
using GELPE. Finally, although the proposed framework is applied to the NLP realm, it 
represents a useful starting point for analysing the relevance of LPEs in different domains, 
such as computer vision [57, 58], graph processing [59–61] and many more.
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