
 
 

Delft University of Technology

Quantification and Assessment of Global Terrestrial Water Storage Deficit Caused by
Drought Using GRACE Satellite Data

Lu, Jing; Jia, Li; Zhou, Jie; Jiang, Min; Zhong, Yulong; Menenti, Massimo

DOI
10.1109/JSTARS.2022.3180509
Publication date
2022
Document Version
Final published version
Published in
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Citation (APA)
Lu, J., Jia, L., Zhou, J., Jiang, M., Zhong, Y., & Menenti, M. (2022). Quantification and Assessment of
Global Terrestrial Water Storage Deficit Caused by Drought Using GRACE Satellite Data. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5001-5012.
https://doi.org/10.1109/JSTARS.2022.3180509
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/JSTARS.2022.3180509
https://doi.org/10.1109/JSTARS.2022.3180509


IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022 5001

Quantification and Assessment of Global Terrestrial
Water Storage Deficit Caused by Drought

Using GRACE Satellite Data
Jing Lu , Li Jia , Member, IEEE, Jie Zhou, Min Jiang, Yulong Zhong , and Massimo Menenti

Abstract—A drought-induced water storage deficit index (D-
WSDI) is proposed to quantify the response of GRACE-based
terrestrial water storage change to meteorological drought and the
impact of drought on water storage deficit. D-WSDI is defined as
the normalized residual component of GRACE time-series data
after removing the long-term trend and seasonal components. The
evaluation based on the Emergency Events Database (EM-DAT)
showed that more than 90% of global drought events from 2002 to
2019 led to a water storage deficit, which can be detected by the pro-
posed D-WSDI. The severity of the water storage deficit caused by
drought increases with the extending drought duration. An average
of 73% of water storage deficit months at the global scale is related
to precipitation shortages. The cumulative precipitation deficit in
relatively short periods of less than 9 months can lead to the water
storage deficit in low-latitude regions, whereas a longer time scale
is required to lead to a water storage deficit in high-latitude regions.
The negative monthly precipitation anomaly of about −20% can
lead to a water storage deficit in high rainfall regions, whereas
the negative precipitation anomaly can reach −80% in arid and
semiarid areas. D-WSDI holds the capability to quantify the water
storage deficit caused by drought, especially in the regions with
terrestrial water storage change influenced by the long-term trends
in climate and anthropogenic activities, and can be used as an
index of drought monitoring with similar or superior performance
compared to some traditional drought indices.

Index Terms—Decomposing time series, drought, Gravity
Recovery and Climate Experiment (GRACE), water storage deficit.
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NOMENCLATURE

D-WSDI Drought-induced water storage deficit index.
DRC Democratic Republic of the Congo.
DSI GRACE-based Drought Severity Index.
EM-DAT Emergency Events Database.
GHDI GRACE-based Hydrological Drought Index.
GPCC Global Precipitation Climatology Centre.
GPCP Global Precipitation Climatology Project.
GPM Global Precipitation Measurement.
GRACE Gravity Recovery and Climate Experiment.
GRACE-FO GRACE Follow-On.
IMERG Integrated Multi-SatellitE Retrievals for GPM.
MTWSDI Modified the total water storage deficit index.
PAP Precipitation anomaly percentage.
scPSDI Self-calibration Palmer Drought Severity Index.
SPEI Standard precipitation evapotranspiration in-

dex.
SPI Standard precipitation index.
TSDI Total storage deficit index.
TWS Terrestrial water storage.
TWSA TWS anomaly.
WSDI Water storage deficit index.

I. INTRODUCTION

THE terrestrial water storage (TWS), including surface
water, soil moisture, groundwater, canopy water content,

snow, ice, and permafrost, is an integrated measure of water
availability and the terrestrial freshwater stock. As a status
indicator of the water cycle, the variations of TWS are related
to climate change, hydrological extremes, and human activities
[1], [2]. However, it is difficult to measure TWS due to the lack
of complete in situ observations of the terrestrial water cycle
components [3], [4]. The Gravity Recovery and Climate Ex-
periment (GRACE) mission, launched in March 2002, provides
measurements of the spatial-temporal changes in Earth’s gravity
field. GRACE observations have been used in the cryosphere,
hydrology, and ocean sciences to monitor the terrestrial water
cycle, ice sheet and glacier mass balance, sea-level change, and
ocean bottom pressure variations to respond to global climate
system changes, which has important implications for global
water, food, and human security [5], [6].

As a climate extreme, drought usually occurs due to the
persistent shortage of water, which can lead to changes in surface
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variables related to the water cycle and trigger the regional
or global water and food crisis [7]. Satellite-derived variables
associated with water and vegetation have been used to develop
various drought indices for drought monitoring and assessment,
including precipitation-based indices, evapotranspiration-based
indices, vegetation-based indices, land surface temperature-
based indices, soil moisture-based indices, snow-based indices,
groundwater and TWS-based indices, and the integrated indices
[8], [9]. The GRACE satellite mission provides an alternative
approach to monitoring drought from an integrated perspec-
tive. It can detect vertically integrated water storage changes
from the land surface to the deepest aquifers [10]. A large
number of studies used GRACE TWS anomaly (TWSA) for
drought monitoring and evaluation, especially for hydrological
drought [11]–[17]. Some drought indices based on GRACE
data have also been proposed to provide hydrologists with
practical insights into integrated drought indices, including the
total storage deficit index (TSDI), the GRACE-based hydro-
logical drought index (GHDI), the GRACE-based Drought
Severity Index (DSI), the water storage deficit index (WSDI),
etc. [18]–[22].

TWS deficit is closely related to drought but is not the
only factor triggering drought. Thomas et al. [23] provided a
quantitative storage deficit method for measuring hydrological
drought occurrence and severity using TWS measurements from
the GRACE satellite. This method used GRACE measurements
to calculate the magnitude of regional monthly TWS anomalies
from the time-series monthly climatology, and the negative devi-
ations of the monthly climatology represent storage deficits. The
GRACE-based drought indices mentioned above, with a similar
principle to the method presented in [23], can be used to quantify
the water storage deficit caused by meteorological drought.
However, one major issue with the existing GRACE-based
drought indices is the existence of long-term trends in some re-
gions, for instance, groundwater depletion, storage of water, and
glacier retreat, which may not be caused by drought [15], [16],
[24]–[27]. If the long-term trend is not eliminated, the GRACE-
based drought indices will inevitably provide unreliable infor-
mation on the impact of drought on water storage. Based on
the approach presented in [23], Humphrey et al. [24] assessed
global trends, seasonal cycles, subseasonal anomalies, and hy-
drological extremes in TWS from GRACE data. The notable
linear trend can result in one end of the time-series systematically
above/below the seasonal cycle. Using the residual signal after
removing the deterministic behavior of the time series instead of
the total signal, Hosseini-Moghari et al. [25] modified the TSDI
index to monitor drought in the Markazi Basin of Iran. The re-
sults were consistent with the standard precipitation index (SPI)
and the standard precipitation evapotranspiration index (SPEI).
Liu et al. [27] showed that GRACE-based DSI computed with
the detrended GRACE-TWS time series reasonably captures the
drought process in China compared to existing drought indices
based on nondetrended GRACE data. The modified MTWSDI
removed the long-term trend in GRACE time-series data, sep-
arating meteorological variability from anthropogenic impacts
on water availability [26]. These studies paid more attention to
GRACE-based drought monitoring at regional sales or the major
river basins. In the review of drought monitoring applications

based on GRACE observations, Yi and Wen [16] pointed out
that each drought index can characterize/analyze drought with
excellent efficacy in a specifical case study. Still, their global
performance is questioned from time to time because of the
complexity of the process.

Many factors can influence the water storage deficit. This
study will mainly focus on quantifying and assessing the global
water storage deficit caused by drought using TWS change from
GRACE data product and drought event information extracted
from the Emergency Events Database (EM-DAT). The specific
objectives of this article include the following:

1) to propose a GRACE-based drought-induced water stor-
age deficit index (D-WSDI) by using the time-series de-
composition method to quantify the water storage deficit
caused by drought;

2) to explore the probability that drought led to water storage
deficit;

3) to clarify the magnitude and duration of precipitation
anomaly that would lead to water storage deficit;

4) to compare D-WSDI with other commonly used drought
indices for drought detection.

II. DATA

A. GRACE/GRACE-FO Monthly Mass Grids Data

GRACE mission measured mass changes of the Earth every
month from April 2002 through June 2017. GRACE Follow-
On (GRACE-FO) has continued this data record since June
2018. The assessment of the global mass change fields through
December 2019 has demonstrated that GRACE-FO is extend-
ing the original GRACE record at an equivalent precision
and spatiotemporal sampling [28]. Fatolazadeh and Goïta [29]
also showed that TWS changes and their uncertainties derived
by GRACE-FO are consistent with GRACE estimates. The
GRACE/GRACE-FO satellite observations can be used to derive
monthly gravity field variation by a complex inversion. Mass
concentration blocks (mascons) are essentially another solution
for GRACE satellite data different from a spherical harmonic
method, with higher accuracy and potential for hydrologic
applications [10], [30]. Monthly Mass Grids-Global mascons
processed by GRCTellus JPL (JPL RL06_v02) with 0.5° global
grids from 2002 to 2019,1 was used in this study. For the missing
data in this dataset due to GRACE battery management and
a one-year gap between GRACE and GRACE-FO data, many
methods have been developed to fill the gaps so that the consecu-
tive and coherent data can be generated for more applications in
hydrology and water resources [28], [31]–[33]. This study used
the publicly released reconstructed data based on JPL mascon
and ERA5 data from Humphrey and Gudmundsson [31] to fill
the missing data in JPL RL06_v02 data, including January to
March of 2002. The reconstructed data have a consistent data
source with JPL RL06_v02 data and are often superior to those
driven by other precipitation datasets. The based-precipitation
reconstruction removed the seasonal precipitation cycle without
removing the long-term trend, while the GRACE/GRACE-FO
data had the long-term and seasonal trends. Therefore, the

1[Online]. Available: http://grace.jpl.nasa.gov

http://grace.jpl.nasa.gov
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Fig. 1. Number of drought events from the EM-DAT database during
2002–2019 disaggregated by province.

detrended reconstructed data were first done and then used
to fill the JPL RL06_v02 missing data after detrending and
deseasonalizing.

B. Global Drought Events From EM-DAT Database

EM-DAT was launched by the Centre for Research on the
Epidemiology of Disasters with the initial support of the World
Health Organization and the Belgian Government for humani-
tarian action at national and international levels.2 The database
is compiled from various sources, including U.N. agencies,
nongovernmental organizations, insurance companies, research
institutes, and press agencies. It contains essential core data on
the occurrence and effects of over 22 000 massive disasters,
including drought, flood, extreme temperature, wildfire, earth-
quake, volcanic activity, epidemic, etc., in the world from 1900
to the present day. EM-DAT database records drought events
as the climatological extreme. Although the EM-DAT database
cannot cover all drought events, the recorded drought events are
indeed the happened droughts. The onset month, termination
month, and locations of global drought events from 2002 to 2019
are extracted from the EM-DAT database. There are 289 drought
records in the EM-DAT database from 2002 to 2019, covering 97
countries and 1332 subnational (provincial) administerial units.
At the provincial scale, there are 2563 drought events. Fig. 1
shows that the drought frequently occurred in eastern Africa,
such as Ethiopia and Kenya (related to the Nile River Basin),
southern Africa (including the Zambezi River Basin), Thai-
land (the downstream Mekong River Basin), Northern China
(involved to Yellow River Basin, Hai River Basin, and Liao
River Basin), America, and Amazon basin in South America.
All drought records at the provincial scale were binned into four
drought duration classes, i.e., 1 to 3 months, 4 to 6 months,
7 to 12 months, and longer than 12 months. The percentage of
drought records in each class was 27%, 23%, 31%, and 19%,
respectively.

C. GPM Monthly Precipitation Data

The Global Precipitation Measurement (GPM) mission is
a joint satellite mission led by NASA and JAXA. GPM core

2[Online]. Available: https://www.emdat.be

observatory satellite was launched in February 2014, with ad-
vanced spaceborne active and passive sensors for accurate re-
trievals of rainfall and snowfall. The Integrated Multi-SatellitE
Retrievals for GPM (IMERG) algorithm developed by the U.S.
Science Team is used to generate the best precipitation estimates
at 0.1° every half hour globally [34], [35]. The precipitation
estimates are from the various precipitation-relevant satellite
passive microwave sensors comprising the GPM constellation
and also have been adjusted with the monthly GPCP Satellite-
Gauge (S.G.) product. GPM IMERG Final Precipitation L3 1
month 0.1° × 0.1° V06 (GPM_3IMERGM) product,3 is used in
this study. To match the spatial resolution of GRACE data, the
GPM precipitation data in this study were aggregated to 0.5°.
The upscaled GPM precipitation data are in excellent agreement
with the Global Precipitation Climatology Centre’s 0.5° monthly
precipitation (GPCC Full Data Monthly Product Version 2020
at 0.5°4), with r > 0.9 and the relative bias less than 20%
for most world regions. The comparison results are shown in
Fig. S1 of supplementary materials. The slight inconsistency is
only found in part regions of North Africa and the high-latitude
areas of the Northern Hemisphere. The prolonged precipitation
shortage is the primary reason for most drought events. The
GPM precipitation data were used to assess the reliability of
these drought records in the EM-DAT database and analyze
the relationship between precipitation deficit and water storage
deficit.

D. Drought Indices scPDSI and SPEI Data

The scPSDI based on climatic and environmental parameters
is a variant of the original PDSI of Palmer [36] and was in-
troduced by Wells et al. [37]. The scPDSI is calculated from
time series of precipitation and temperature, together with fixed
parameters related to the soil/surface characteristics at each
location to make results from different climate regimes more
comparable [38]. The monthly scPDSI data at the spatial resolu-
tion of a 0.5° grid based on the CRU-TS-4.04 (Climatic Research
Unit Time-Series version 4.04 of high-resolution gridded data of
month-by-month variation in climate)5 were used in this study.
The value of −0.5 is commonly regarded as the threshold value
of scPDSI to identify drought.

SPEI expresses the deviations of precipitation minus potential
evapotranspiration to the long-term average. SPEI is similar to
SPI with the advantage of multiscale character, but it includes
the effects of temperature variability on drought assessment [39].
The Global 0.5° gridded SPEI dataset6 was used in this study
to provide drought information across multiscale between 1 and
24 months. SPEI <0 is classified as drought at different severity
levels.

3[Online]. Available: https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/
GPM_3IMERGM.06/

4[Online]. Available: https://opendata.dwd.de/climate_environment/GPCC/
html/fulldata-monthly_v2020_doi_download.html

5[Online]. Available: https://crudata.uea.ac.uk/cru/data/drought/
6[Online]. Available: http://digital.csic.es/handle/10261/153475

https://www.emdat.be
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGM.06/
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGM.06/
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2020_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2020_doi_download.html
https://crudata.uea.ac.uk/cru/data/drought/
http://digital.csic.es/handle/10261/153475
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III. METHODS

A. Drought-Induced Water Storage Deficit Index (D-WSDI) by
Decomposing Time-Series Method

The additive decomposition method [40] was used to de-
compose the GRACE time-series data (Stotal) into the three
components, i.e.,

Stotal = Slong−term + Sseasonal +Residuals (1)

whereSlong−term is the deterministic and nonseasonal long-term
trend component, Sseasonal is the deterministic seasonal compo-
nent with known periodicity, and Residuals is the stochastic
irregular component. A linear model and a stable seasonal filter
with 12 months [41] are used to obtain the long-term trend and
the seasonal component in this study. A stable seasonal filter
assumes that the seasonal level is constant over the range of the
data. The detail for the stable seasonal filter is given in Appendix.
The Residuals is the residual part of the time-series data after
removing the long-term and the seasonal components, which
is usually the most useful component for short-term variation
detection. In this method, the interannual change component in
time-series data is not considered separately and included in
Residuals. The negative anomaly of the Residuals is suitable
for measuring the impact of drought on TWS.

Normalization can provide an indicator easier to compare
across geographical regions. The D-WSDI was thus defined as
the ratio of the Residuals in GRACE time-series data to its
standard deviation (δ) according to the following equation:

D−WSDI =
Residuals

δ (Residuals)
. (2)

We used the standard deviation rather than the difference
of maximum and minimum in (2) to normalize the D-WSDI
to avoid the impacts of the extreme maximum and minimum
on the results. In addition, unlike previously WSDI defined by
Sun et al. [22], we did not subtract the mean value of Residuals
in the numerator because detrending implied the operation. The
purpose of this operation without deducting the mean value in
this study is to hold that D-WSDI has the same implication with
Residuals, i.e., D-WSDI < 0 means that drought causes the
reduction of TWS. The smaller the D-WSDI value, the more
severe impacts of droughts on TWS.

B. Sun’s WSDI and Zhao’s DSI

Sun et al. [22] defined the WSDI to evaluate drought severity
over the Yangtze River Basin of China (hereinafter referred to
as Sun’s WSDI). In Sun’s method, WSDI is defined as follows:

WSDI =
WSD − WSD

δ (WSD)

with WSDi,j = TWSAi,j − TWSAj (3)

where TWSAi,j is the GRACE-based TWSA in the jth month
of year i. TWSAj is the long-term mean of TWSA in month j.
WSDI < 0 is the criterion to identify drought.

The DSI developed by Zhao et al. [20], [21] was defined as:

DSI =
TWSAi,j − TWSAj

δ (TWSAj)
(4)

where δ(TWSAj) is the standard deviation of TWSA in month
j. DSI <−0.5 is the criterion to monitor drought.

C. Precipitation Anomaly Percentage (PAP)

PAP presents the precipitation anomaly as a percentage of the
long-term average for a specific period, which is expressed as
follows:

PAP =
P − P̄

P̄
× 100%

where P is the accumulated precipitation during a specified pe-
riod, and P̄ is the long-term average of accumulated precipitation
of the same period. The negative PAP represents that accu-
mulated precipitation is less than the historical average during
the specified period. Negative PAP quantifies the precipitation
deficit.

D. Evaluation Metrics

Two main evaluation metrics, i.e., the consistency percentage
(cp) and the correlation coefficient (r), are used to quantify
the assessment accuracy of the response of D-WSDI to global
drought events and precipitation deficit and the relationships
between D-WSDI and other drought indices. The consistency
percentage is similar to the probability of detection [42], which
is expressed as:

cp =
n2 (x ∈ c1 ∩ y ∈ c2)

n1 (x ∈ c1)
× 100% (5)

where x and y are two variables with n elements. n1 is the
number of occurrences such as x�c1, whereas n2 is the number
of occurrences such as x�c1�y�c2. c1 and c2 are the different
criteria for the two independent variables.

cp mainly quantified the response of D-WSDI to global
drought events. The percentage of all EM-DAT drought events
with D-WSDI < 0 expresses the likelihood that EM-DAT
drought events may lead to a water storage deficit. The per-
centage of D-WSDI in response to the duration of the EM-DAT
drought events is the portion of months with D-WSDI < 0, indi-
cating how long the water storage deficit is caused by drought.
The percentage of the area with D-WSDI < 0 to the total extent
of a simultaneous EM-DAT drought event in the same region is
a metric of the spatial response of TWS to drought. In the early
stage of a drought event, the area affected by drought is limited.
With the evolution of the drought, the area affected by drought
may first expand and then decrease. The maximum affected area
in the drought process was a spatial indicator of drought severity.
The percentage of the months of D-WSDI < 0 with PAP < 0 to
all months of D-WSDI < 0 is used to quantify the intensity of
the water storage deficit related to the precipitation deficit, also
the consistency between PAP and negative D-WSDI.

E. Overall Framework

The overall technique flowchart of this study is shown in
Fig. 2. To realize the objective of quantifying and assessing the
global water storage deficit caused by drought, the main works
of this study are to develop the D-WSDI index, to evaluate
its response to drought event characteristics, to explore the
relationship between water storage deficit caused by drought
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Fig. 2. Overall technique flowchart of this study.

and precipitation deficit, and to compare D-WSDI with other
drought indices further to clarify the performance of D-WSDI
for drought detection. In addition, the uncertainties of D-WSDI
from different schemes of detrending and deseasonalizing are
also analyzed. All results are given in Section IV.

IV. RESULTS AND DISCUSSION

A. Response of D-WSDI to EM-DAT Global Drought Events

1) Precipitation Deficit in Global Drought Events: PAP is
a simple climate-based drought index widely used to evaluate
meteorological drought [43]. In China, a meteorological drought
is defined by a monthly PAP < = −40% [44]. According
to this definition, 80% of the EM-DAT drought events fall in
this category. The fraction increases with increasing drought
duration, 56% for drought events of 1 to 3 months, and 98%
for drought events longer than 12 months [see Fig. 3(a)]. PAP
< = −40% as a meteorological drought is spatial dependence,
which can differ with regions. In nearly all EM-DAT drought
events, about 96% are associated with PAP < 0. The mean
PAP for all EM-DAT drought events is −44%, with a standard
deviation of 18%, indistinctive change with drought duration.
The mean of the minimum PAP during the EM-DAT drought
events is -68%, with a standard deviation of 26%, and the

Fig. 3. (a) Percentage of GPM-based PAP response to drought events from
the EM-DAT database. (b) Average and minimum of PAP.

magnitude of PAP negatively increases with increasing the
drought duration [see Fig. 3(b)]. A few drought events without
negative precipitation anomaly can be attributed to counting at
the province scale, especially for the provinces at the edge of
the drought center, with not very severe droughts. Besides, the
uncertainties from GPM precipitation data and the EM-DAT
database may also influence the results.

2) Response of D-WSDI to Different Drought Characteris-
tics: Fig. 4(a) shows that 92% of the EM-DAT drought events
were associated with a detectable water storage deficit, i.e.,
at least one monthly negative D-WSDI. The percentage in-
creases with increasing drought duration, 82% for short-term
drought events lasting 1 to 3 months, and 98% for long-term
drought events lasting more than one year. The D-WSDI has a
significantly larger probability to identify drought events than
other drought indices such as scPDSI, sun’s WSDI, and Zhao’s
DSI, but slightly less than SPEI at the optimal time scale. The
higher probability of long-term drought means that the long-term
drought is more likely to reduce TWS. The lower percentage of
short-term droughts can be attributed to two reasons. One is
that the drought event is not severe enough to cause changes
in TWS. The other is that the hydrological droughts commonly
lag meteorological droughts, that is, water storage deficit lags
precipitation deficit.

The average percentage of drought durations detected by
D-WSDI is 75% of those recorded in EM-DAT [see Fig. 4(b)].
It means that about three fourth of the drought duration has a
water storage deficit. The percentage is generally greater than
other drought indices except for scPDSI. Since scPDSI is a
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Fig. 4. Response of D-WSDI and other drought indices to drought charac-
teristics with different durations: (a) the number of drought events, (b) drought
duration, (c) drought area, and (d) the mean and minimum D-WSDI during
EM-DAT drought events.

meteorological drought index, it is not strange that scPDSI is
more consistent with the EM-DAT drought events reflecting
the meteorological drought. With drought duration increasing,
the percentage of duration detected by D-WSDI decreases.
For the long-term drought, the percentage of D-WSDI detected
duration is 64%, which might be due to D-WSDI > 0 in some
months during an extended period. Interestingly, D-WSDI is

higher, namely about 93%, for shorter drought events, which
means that D-WSDI can capture fast responses to drought.

The percentage of the maximum drought area detected by
D-WSDI to the drought area recorded by EM-DAT is above
90%, especially for long-term drought, the percentage can reach
98% [see Fig. 4(c)]. The result for drought area detection is also
better than other drought indices, which means that D-WSDI
can respond to drought well at the spatial distribution.

The minimum D-WSDI value during the duration of a drought
event is an indicator of the severity of the water storage deficit
caused by drought. The smaller the minimum, the more se-
vere the water storage deficit caused by drought is. The mean
D-WSDI during a drought event indicates the intensity of the
water storage deficit caused by drought [see Fig. 4(d)]. The
minimum D-WSDI value for the short-term drought events of 1
to 3 months was −1.2. Its absolute value grows with increasing
drought duration with a D-WSDI=−1.7 for drought events over
12 months, further illustrating that more extended drought events
lead to a more severe water storage deficit. The absolute value
of mean D-WSDI decreases with increasing drought duration,
a different trend from the minimum D-WSDI. However, the
total water storage deficit cannot decrease due to the prolonged
drought duration. The standard deviation of the minimum and
mean D-WSDI for each drought class shows that even though
the drought events may belong to the same duration, the severity
and intensity of the water storage deficit caused by drought may
differ.

B. Relationship of Water Storage Deficit Caused by Drought
and Precipitation Deficit

1) Consistency of Negative D-WSDI and Precipitation Deficit
at Different Time Scales: D-WSDI eliminated the long-term
trend in GRACE data. Thus the water storage deficit caused
by drought should mainly be driven by precipitation shortage
during a certain period. The percentage of the months of negative
D-WSDI and PAP to all months of negative D-WSDI was used
to quantify the consistency of water storage deficit caused by
drought and precipitation deficit. PAP at different time scales
was calculated by the cumulative precipitation during the past
1 to 24 months. Only the months of D-WSDI < 0 lasting more
than 3 months were counted. More than 60% of months with
D-WSDI < 0 are simultaneous with PAP < 0 at different time
scales for the majority (94%) of the world regions, and the mean
percentage of the global is 73% [see Fig. 5(a)]. It means that
73% of water storage deficit duration is related to precipitation
shortages. This result is very consistent with the result shown in
Fig. 4(b): 75% of drought duration have a water storage deficit.
Those regions with relatively low percentages are generally
located in the high-latitude regions of the Northern Hemisphere
and several islands in Southeast Asia. The main reasons can be
attributed to two aspects. One is the uncertainty in precipitation
data in high-latitude regions because it is always challenging to
retrieve solid precipitation by remote sensing [34]. The other is
that caution should be applied in the interpretation of GRACE
data in ice-covered regions and land/ocean boundaries because
of significant leakage errors [30].
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Fig. 5. (a) Maximum percentage of PAP <0 consistent with D-WSDI <0.
(b) Corresponding cumulative months of precipitation.

The water storage deficit caused by drought in the low-latitude
regions is more related to the precipitation deficit at the relatively
short-term scales (< 9 months), whereas high-latitude regions
are more related to the relatively long-term scales (> 9 months)
[see Fig. 5(b)]. This may be attributed to the larger contri-
bution of precipitation to TWS change in low-latitude basins,
while larger contributions of evapotranspiration and runoff were
identified for mid-and high-latitude basins [45]. Water storage
deficit caused by drought seems to be better associated with
the cumulative precipitation deficit for the duration between
6 and 13 months for most world regions, which agrees with the
general knowledge that hydrological drought reflects a relatively
long-lasting precipitation deficit [46], [47].

2) Magnitude of Precipitation Deficit Leading to Water Stor-
age Deficit: Knowing how much precipitation can lead to the
water storage deficit would be helpful for water resources man-
agement. The monthly negative PAP was used to calculate the
mean precipitation deficit during negative D-WSDI periods. The
magnitude of the precipitation deficit leading to the water storage
deficit generally changes with latitude and rainfall (see Fig. 6).
In tropical rainforest regions with high rainfall, a smaller precip-
itation deficit of about −20% will lead to a water storage deficit.
In arid and semi-arid regions, the precipitation deficit leading
to water storage is higher, up to −80%. The possible reason for
this seemingly contradictory result is that a smaller PAP yields
a more significant absolute water deficit in regions with high
precipitation, while a larger PAP is needed to yield a signif-
icant absolute water shortage in drier regions. The terrestrial
freshwater storage capacity is mainly related to surface dryness

Fig. 6. (a) Average precipitation deficit percentage in water storage deficit
periods. (b) GPM-based average yearly precipitation from 2002 to 2019.

and wetness, and the vegetation cover, the arid and semiarid
regions have higher freshwater storage capability, and wet areas
show lower freshwater storage [48]. The mean percentage of
precipitation deficit that can lead to the water storage deficit at
the global scale is−43%, which is very consistent with the result
in Section IV-A1, i.e., the mean monthly PAP during the drought
period for all drought events is −44%.

C. Correlations of D-WSDI and Other Drought Indices

1) Comparisons of D-WSDI With Sun’s WSDI and Zhao’s
DSI: Sun’s WSDI is strongly related to Zhao’s DSI, with r
between them up to 0.988. Therefore, the spatial distribution
of r between D-WSDI and Sun’s WSDI at the pixel level is
similar to that between D-WSDI and Zhao’s DSI (see Fig. 7).
The regions of D-WSDI inconsistent with Sun’s WSDI and
Zhao’s DSI include North Africa, Western Asia, Central Asia,
Western China, North China, the west and north of Canada, the
Northwest of India, the central and southwest of North America,
and the south of South America. In these regions, the long-term
trend of TWS is generally decreasing because of arid climate
or irrigated agriculture, leading to meet water requirements by
exploiting groundwater, or glaciers retreating and melting due
to the warming climate [24], [26], [49]–[53]. For those regions
without the prominent long-term trend of TWS, D-WSDI has a
similar performance to Sun’s WSDI and Zhao’s DSI.

2) Comparisons of D-WSDI and scPDSI and SPEI: The
global mean r between D-WSDI and scPDSI is 0.38 [see
Fig. 8(a)]. The areas with r > 0.4 are mainly located in the
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Fig. 7. Correlation coefficient (r) between D-WSDI and (a) Sun’s WSDI and
(b) Zhao’s DSI from 2002 to 2019.

United States, the southeast of South America, Europe, the east
of Asia, South Asia, the east of Australia, and a few regions in
South Africa. The arid-semiarid regions, the equatorial regions,
and the high-latitude regions with ice and snow cover generally
have low r values. High r values imply that D-WSDI can detect
drought with the same performance as scPDSI. In contrast, the
low r values do not mean that D-WSDI has no skill in drought
monitoring or that the drought does not lead to the water storage
deficit, further discussed in next Section IV-D.

The r between D-WSDI and each SPEI of 1–24 months scales
was calculated, and the maximum r is given in Fig. 8(b). The
global mean value is 0.43. The spatial distribution of r is very
similar to the one with scPDSI shown in Fig. 8(a), with r of
0.756 and p < 0.01. Larger r values between D-WSDI and SPEI
may be attributed to using the maximum r, implying SPEI at the
optimal time scale. The optimal time scale of SPEI was longer
than 9 months for 80% of the world area, related to the long-term
water budget, which is consistent with the results in a previous
study [39].

Although the drought indices scPDSI and SPEI are often
used for drought monitoring, we cannot expect a perfect match
between D-WSDI and these indices. These indices deal with
different variables related to drought, responding to various
stages of drought evolution [16], [54]. GRACE is an independent
or a complementary indicator for droughts [16], [20], [21]. The
response of D-WSDI to global drought events given in Sec-
tion IV-A2 can illustrate the excellent performance of D-WSDI
for drought monitoring.

Fig. 8. (a) Correlation coefficient (r) between D-WSDI and scPDSI.
(b) Maximum r between D-WSDI and SPEI. (c) Corresponding time scale of
SPEI.

D. Time Series of D-WSDI and Other Drought Indices

We select some countries and subnational regions to analyze
the inconsistencies between D-WSDI and other drought indices
in the time series. These regions are Kenya and Congo (Demo-
cratic Republic of the Congo, DRC) in Africa, Tibet province
in the west of China, and Shanxi province in North China (red
boundaries in Fig. 1). Kenya is partly located upstream of the
Nile River Basin and often suffers from drought. The Congo
country is in the Congo River Basin, with abundant rainfall every
year. The Nile River and the Congo River are two major rivers in
Africa. The other two regions are in China. The Tibet province
on the Tibetan plateau is the source area of Asian major rivers,
with high elevations and relatively low temperatures. Shanxi
province lies in the middle of the Yellow River Basin and the
east of the Hai River Basin, with declining water storage and
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Fig. 9. Evolution of PAP, D-WSDI, and scPDSI for (a) Kenya, (b) Congo
(DRC), (c) Tibet of China, and (d) Shanxi of China.

frequent drought. These regions are also that with relatively low
r values in Fig. 7.

The evolution of D-WSDI and other drought indices of the
four regions is shown in Fig. 9. The D-WSDI is generally
consistent with Sun’s WSDI, with a slightly increasing trend
in Sun’s WSDI for Kenya and Congo [see Figs. 9(a) and 9(b)]
and a slight decrease in Tibet [see Fig. 9(c)]. The significant
inconsistency between the D-WSDI and Sun’s WSDI was for
Shanxi province because of the decreasing water storage in
this region [see Fig. 9(d)]. The groundwater depletion in North
China has been paid wide attention because of the increasing
water use demand [50], [51]. Drought can exacerbate water
storage depletion. Sun’s WSDI can reflect the declining trend of
TWS rather than the impact of meteorological drought on water

storage. D-WSDI can generally respond well to the extreme
drought identified by scPDSI. The changes in D-WSDI closely
correlate with PAP changes. It can be observed in Fig. 9 that
when there is less precipitation, the values of D-WSDI decrease,
and vice versa. Because of the difference between hydrological
and meteorological droughts [47], the droughts identified by
D-WSDI generally lag those expressed by PAP and scPDSI.
Water storage is the result of the balance between water supplies
(inputs) and demands (outputs). The water storage deficit in a
given month not only depends on the precipitation of this month
but also on the antecedent water storage and the water use in
the given period. If there is sufficient water storage, even though
poor precipitation or increasing water use for an extended period
is, it will be possible that the water storage anomaly still keeps
positive. If there has been a water storage deficit, the water
storage anomaly may remain negative even though the abundant
rainfall and declined water use are.

There are no drought records in the EM-DAT database for the
two cases of Congo and Tibet, although there were occurrences
of droughts. For the case of Congo [see Fig. 9(b)], D-WSDI
follows the evolution of scPDSI well before 2013. After 2013,
scPDSI is always positive, whereas precipitation anomaly and
D-WSDI fluctuate with time. Significantly, an extreme water
storage deficit appeared in 2017, but no evident precipitation
negative anomaly or a negative scPDSI was observed. However,
there was news on the drought leading to power shortage in
Congo in 2017 (VOA news. DRC faces power shortage caused
by drought; 2017.).7 The negative precipitation anomaly was not
significant in 2017, but the antecedent precipitation in 2016 was
less than the average. The likely reason for the positive scPDSI
value during this period is that surface vegetation may not suffer
from water stress because of the use of surface or groundwater.

There are multiple occurrences of water storage deficit caused
by droughts identified by D-WSDI from 2002 to 2019 in Tibet
[see Fig. 9(c)]. The signal detected in 2002, 2006, 2010, and
2015–2018 are generally consistent with the drought period
identified by scPDSI and always accompanied by negative pre-
cipitation anomalies. Although no drought in this province was
recorded in the EM-DAT database, its neighboring regions, such
as Yunnan, suffered from extreme droughts in 2001, 2010, and
2015, and Sichuan province experienced severe drought in 2006
[17], [55]–[59]. Zhu et al. [60] pointed out that this region
experienced a long dry spell from 2011 to 2017, accompanied
by a negative anomaly in low soil moisture. Except for the
precipitation shortage, Tibet province holds a large water stock
as glaciers and snow cover. With the increase in temperature
accompanying drought, glaciers and snow may thaw and lead to
a giant water outflow from this region. Therefore, in the areas
covered by glaciers and snow, the drought or high temperature
may aggravate the regional water storage deficit.

E. Uncertainties in D-WSDI

D-WSDI was calculated by the residual component of
GRACE time-series data after removing the long-term trend

7[Online]. Available: https://www.voanews.com/africa/drc-faces-power-
shortage-caused-drought

https://www.voanews.com/africa/drc-faces-power-shortage-caused-drought
https://www.voanews.com/africa/drc-faces-power-shortage-caused-drought
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Fig. 10. (a) Comparison results of different D-WSDI, and (b) the response
of different D-WSDI to drought characteristics of EM-DAT drought events
(D-WSDI (1) was calculated by removing the long-term quadratic trend and
stable season trend, D-WSDI (2) is by removing the long-term linear trend and
unstable seasonal trend, and D-WSDI (3) is by removing the long-term quadratic
trend and unstable seasonal trend).

and seasonal components in this study. The methods to ob-
tain long-term and seasonal trends may impact the value D-
WSDI. The quadratic trend and the unstable S3×3 seasonal filter
(the symmetric three-term moving average of three-term aver-
ages) were applied to evaluate the uncertainties in calculating
D-WSDI. The detail of S3×3 seasonal filter can be found in
Appendix. Three combinations were set, i.e., the quadratic trend
and stable season filter, the linear trend and unstable seasonal
filter, and the quadratic trend and unstable seasonal filter. The
comparison results of different D-WSDI are shown in Fig. 10(a).
The D-WSDI calculated by removing the long-term linear trend
and the unstable seasonal trend is strongly positively related to
the results by removing the long-term linear trend and stable
season trend, with r > 0.95. When the quadratic trend was
used, the r value slightly was declined, but also greater than 0.9.
When the quadratic trend and the unstable seasonal filter were
simultaneously used, the r was nearly 0.9. The root-mean-square
error among different D-WSDI is less than 0.5. The D-WSDI
calculated by different methods showed a similar response to
drought characteristics of EM-DAT drought events. They all
identified near 90% drought events, 75% drought duration, and
95% drought area [see Fig. 10(b)]. These results indicated that
the calculation for D-WSDI by the decomposition method is
relatively stable.

As we know, some anomalies from surface deformation and
those due to earthquakes or volcanic eruptions in GRACE fields
[12], which are not easy to eliminate, are still the problem in
D-WSDI. Additionally, this study applied the global drought

events in the EM-DAT database to assess D-WSDI. The uncer-
tainties in the EM-DAT database may be criticized. However,
this study’s main objectives are to explore the probability of
drought leading to water storage deficit, clarify the magnitude
and duration of precipitation anomaly to water storage deficit,
and understand the performance of D-WSDI in drought moni-
toring. We believe these questions have been answered after this
study.

V. CONCLUSION

Drought is a significant driver of the TWS deficit. This study
proposed a D-WSDI by the time-series decomposition method.
After removing the long-term and seasonal components, the
residual part in the GRACE time series was used to calculate
the D-WSDI to quantify the impact of drought on water stor-
age deficit. In total, 92% of EM-DAT drought events between
2002 and 2019 led to a water storage deficit by the assessment
based on D-WSDI, and the severity of the water storage deficit
caused by drought increased with increasing drought duration.
On average, 73% of the water storage deficit duration at the
global scale was related to negative precipitation anomalies. In
low-latitude regions, water storage deficit caused by drought
is more correlative to negative precipitation anomalies at a
relatively short-term scale (< 9 months) and longer duration in
high-latitude regions. A smaller relative precipitation deficit of
about −20% led to a water storage deficit in the areas with high
rainfall. In comparison, a higher relative precipitation deficit of
up to −80% was needed to induce a water storage deficit in the
arid and semiarid regions. The apparent inconsistency between
D-WSDI and previously developed GRACE-based indices in
North Africa, Western Asia, Central Asia, Western China, North
China, the west and north of Canada, the Northwest of India,
the central and southwest of America, and the south of South
America, appeared to be related to the long-term trends of
TWS in these regions. D-WSDI is generally consistent with the
commonly used drought indices scPDSI and SPEI but D-WSDI
captured more drought events. The drought process is complex,
and it impacts the whole process of the water cycle. Different
variables of the water cycle have different responses to drought.
The D-WSDI defined in this study can be used to qualify the
water storage deficit caused by drought, and it is helpful for
drought monitoring based on GRACE data and the analysis of
the drivers of TWS deficit, and further to support sustainable use
and management of water resources.

APPENDIX

Seasonal filter, also the moving average, is a way to estimate
the seasonal component of a time series. A seasonal filter is a
convolution of weights and observations made during past and
future periods. In general, for a time series xt (t = 1, …, N),
the seasonally smoothed observation at time k + js (j = 1, …,
N/s−1, k is the observations during the period, and s is the known
periodicity of the seasonality) is

s̃k+js =
r∑

l=−r

alxk+(j+l)s (A1)

with weights al such than
r∑

l = −r

al = 1.
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The stable seasonal filter and the Sn×m seasonal filter are the
two most commonly used seasonal filters. The stable seasonal
filter assumes that the seasonal level does not change over time.
Let nk be the total of observations made in period k. The stable
seasonal filter is given by

s̃k =
1

nk

N
s −1∑

j = 1

xk+js (A2)

for k = 1, …,s, and s̃k = s̃k−s for k > s.
The Sn×m seasonal filter is equivalent to taking a symmetric,

unequally weighted moving average with n+m−1 terms, that is,
r = n+m−1 in (A1). For example, an S3×3 seasonal filter has
five terms with weights (1/9, 2/9, 1/3, 1/9, 1/9).
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