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2 1. INTRODUCTION

This thesis deals with the theoretical and experimental studies about implementing a
tunable quantum interface between superconducting qubits and microwave photons.
The purpose of this chapter is to provide readers with overall backgrounds on how quan-
tum science and technology have developed so that they grasp the motivations and im-
portance of the studies provided in this thesis. The following is a brief summary of this
chapter.

Section 1.1 focuses on the development of quantum mechanics in the experimen-
talist’s perspective. I will explain how the technological developments contributed to the
advances in the quantum revolution that began in the early twentieth century. The point
I emphasize in this section is that quantum mechanics has evolved with much effort
from experimentalists as well as theorists. Section 1.2 introduces the rise of quantum
technology. As many mysteries in quantum mechanics have been unveiled, physicists
and engineers’ attention moved to how to make use of it, and these desires triggered
the advent of quantum technology. Section 1.3 introduces to the many types of quan-
tum systems considered promising platforms for applications. This section provides un-
derstanding their working principles and discusses the pros and cons as candidates for
quantum technology. Section 1.4 focuses on the case of state engineering harmonic
oscillators. One especially important mission in quantum technology is to engineer the
quantum states of harmonic oscillators, one of the most essential forms that frequently
appear in many disciplines of physics. However, manipulating Harmonic oscillator’s
quantum states is a challenging task compared with other strongly nonlinear systems
due to its harmonicity. A couple of strategies on how to synthesize the Harmonic oscil-
lator’s quantum states are introduced. Section 1.5 concludes this chapter. Currently,
superconducting quantum circuit is the best platform in terms of quantum state en-
gineering with harmonic oscillators. A variety of exotic quantum states have been ex-
perimentally demonstrated with microwave resonators assisted by the superconducting
qubits. Here, tunable quantum interface between them is a key for the successful ma-
nipulation. The rest of this thesis is closely related with the unexplored topics (mainly
quantitative) in the superconducting qubit research regarding this tuneable interface.

1.1. ADVANCES IN QUANTUM MECHANICS FROM AN EXPERI-
MENTALIST’S POINT OF VIEW.

The beginning of this chapter might be different from other literature that convention-
ally concentrates on the theoretical perspectives. In the early 20th century, physicists
found clear evidence of classical physics’ failure in explaining the experiments such as
black body radiation, photoelectric current, and electron scattering (Davisson-Germer),
electron-atom collision (Frank-Hertz), and many more. Through contributions from
many brilliant minds, a new framework that describes the microscopic world had ap-
peared, which we call quantum physics. It goes without saying that the advent of quan-
tum mechanics is one of the biggest events in science history.

However, the technical limitations significantly impeded the deeper studies on the
quantum foundation and more rigorous tests of quantum mechanics. For example, the
photoelectric effect that led to the discovery of light quanta can also be explained by an
alternative semi-classical theory without quantizing the electromagnetic fields. Strictly
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speaking, the photoelectric effect cannot be considered a sufficient condition of light’s
quantum nature. Unfortunately, at the beginning of quantum mechanics’ history, tech-
nical limitations hindered the rigorous test of the light quanta’s existence.

Another example is the test of Bell-inequality. There were a number of debates over
how to interpret the wavefunction in quantum mechanics. Two major interpretations,
among many others, are local realism and Copenhagen interpretation. These two differ-
ently state how the measurement in quantum physics works. The question of which in-
terpretation properly explains the nature can be answered through experimentally test-
ing Bell-inequality. If Bell-inequality violates, then local realism should fail. This means
that the locality and reality of the universe cannot exist at the same time. However, when
Bell-inequality was proposed, it could not be tested in the real world since there was
no proper experimental test-bed. Despite its importance, the experimental test of Bell-
inequality fell out of the attention of the physicist for many years.

It took a long time until both cases were experimentally confirmed. The first rigor-
ous experimental evidence of the photon was found in a photon correlation measure-
ment [1]. In the experiments given in [1], a couple of advanced techniques were em-
ployed. First, they used an atomic cascade decay as a single-photon source. When one
photon is detected, then it heralds the other photon at another detector. By doing so,
they were able to expect the arrival times of a single photon and identify the photon
cannot be divided further. Second, the other core of the experiment is the Hanbury-
Brown Twiss (HBT) interferometer. It was originally devised for astronomical study. In
this work, however, it was used to identify an anti-correlation of the photo-detection,
which demonstrates the single photon’s existence. Here, we can conclude the advances
in the experimental techniques such as heralding single-photon detection, or HBT type
interferometry had significant roles in revealing the fundamentals of quantum mechan-
ics.

Such a conclusion can be equivalently applicable to the case of Bell-inequality. The
first experiment that demonstrated the violation of Bell-inequality was reported in [2], a
long time after Bell proposed the theory. The experiment used the fact that the momen-
tum entanglement of the emitted photon pairs from the atomic cascade decay. Later,
more and more experiments were performed to test the Bell-inequality with different ap-
proaches. As the technology developed, various quantum systems have become testbeds
for Bell experiments such as optomechanics [3], Nitrogen vacancy centers [4], supercon-
ducting qubit [5]. All the results from these experiments are interpreted in the context of
the Copenhagen interpretation.

The lesson we should take from the above stories is that the progress in the exper-
imental techniques accompanied the progress in quantum mechanics. That is to say,
quantum mechanics is not all about the theoreticians’ masterpiece. We should also
acknowledge the many efforts made by a number of experimentalists and technicians
(whose names are indeed less familiar to the public) engaged in the development of
quantum mechanics. Taking such a technical point of view is largely recommended to
have a comprehensive view of how quantum physics studies have evolved and how it
will be like in the future.
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1.2. QUANTUM TECHOLOGY

One of the biggest motivations to study quantum mechanics is to use the quantum prop-
erties of the microscopic objects for our daily life. Nowadays, there are many research
areas where people are working toward the application of quantum mechanics. Such
a trend led to the birth of new terminology, ‘quantum technology.’ Literally, it refers to
the technologies that benefit from the laws of quantum mechanics. Many scientists ex-
pect that quantum technology will be a disruptive technology in the future. On the other
hand, many scientists expect that quantum technology will assist the existing technol-
ogy and not replace it. In any case, it is definitely clear that quantum technology will
push the limits of current technology to some extent.

The largest sector of quantum technology is undoubtedly quantum computing [6].
It uses superposition and entanglement to store information and perform computation.
Recently, quantum artificial intelligence has emerged as a potential area where we can
benefit from quantum computing. In communication and cryptography, it has been
proposed and demonstrated that using entangled photon pairs provides great advan-
tages [7]. Quantum simulation [8] is one of the big sectors of quantum technology. The
computational complexity of solving quantum systems exponentially scales with the size
of the systems. Using analogies with another simpler quantum system, we can indirectly
investigate the target system, beyond the efficiency limits of classical computers. Quan-
tum sensing, employing quantum technologies to overcome the limits of classical sen-
sors, is another rapidly growing area.

1.3. VARIOUS QUANTUM SYSTEMS AND THEIR CONTROLS

Faithful control of the quantum systems is a core technique for quantum technologies.
Unfortunately, controlling individual quantum systems is technically even more chal-
lenging than conventional classical systems. This is because the quantum states are ex-
tremely fragile under the interactions with the environments surrounding the quantum
systems. To conserve the quantum properties for a long time, we should isolate them
from the environment, and the demanded extent of the isolation is far beyond the re-
quirements for any classical technologies. Depending on the types of quantum systems,
different conditions are required. With advances in many engineering disciplines, ma-
nipulating the quantum states became more and more feasible, and the experimental
demonstrations have been reported with various quantum systems.

The atomic metastable states or hyperfine states have very long lifetimes, and hence
these were considered attractive places to store quantum information since many decades.
In an ultracold atomic gas in a quantum regime, millions of atoms behave as if they are
one particle. We can observe quantum mechanical phenomena more easily since the
light absorption or emissions by atomic clusters are even stronger than those from a
single atom. By manipulating the trapping potential, we can also investigate the dy-
namics of the electrons in solid-state lattices (quantum simulation with optical lattices)
[9]. Thanks to the advances in laser cooling/trapping techniques and vacuum technol-
ogy, atomic physics rose as a leading platforms for quantum information processing and
quantum simulation. Revolutionary developments in laser and vacuum technologies
made it possible to realize many marvelous experiments such as single atom trapping
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[10], Bose-Einstein condensation [11], and simulating quantum phase transition [12].
We cannot miss the invention of the ion trap as one of the milestones in the history of
modern atomic physics. Trapping neutral atoms should rely on laser trapping and the
laser power largely limits the depth of the trapping potential, which results in the limita-
tion in the trapping times. In the meantime, an ion trap normally yields more than 1 keV
trapping energy. Nowadays, ions even can be trapped for more than a day. Moreover,
the collective mechanical modes formed by Coulomb interactions between ions makes
it easy to transfer the quantum states among the ions. This makes the ion traps strong
candidate for realizing quantum computing. Remarkably high fidelities in quantum gate
operations are reported with ion trap architecture nowadays [13].

With optical photons, the polarization degree of freedoms as carriers of quantum
information is often used. The excellent property of the photonic qubits is that polariza-
tions are hardly affected by surrounding environments. Also, photons naturally prop-
agate through space, and therefore they are suitable to deliver quantum information
from one place to another. These advantages accounted for the fact that the photonic
qubits have been strong candidates for quantum information processing since the early
phase. One milestone event is entangled photon pair generation from the spontaneous
parametrical down-conversion (SPDC) process [14]. It formed a basis in many applica-
tions like quantum teleportation [15] and cryptography [16]. I should point out that the
progress in the photonic qubits goes along with the progress in nonlinear optics, as we
can see in SPDC.

So far, we have discussed quantum technologies using atoms and optical photons
(B.1)'. Twould have to call these ‘traditional’ forms since they are relatively older than
other approaches, which I will introduce now. Advances in nano-fabrication and cryo-
genic technology enable that solid state-based qubits have merged as strong competi-
tors. This involves semiconductor quantum dots [17], superconducting qubits [18], and
many others (B.2). They have a shorter history but have grown rapidly, threatening the
status of the ‘traditional’ approaches.

In the following part of this section, I will briefly introduce qubits based on semicon-
ductor quantum dots and superconducting circuits, and omit the explanations of other
types of solid-state qubits. Trapped electrons in the quantum dots defined in the two-
dimensional electron gas (2DEG) at heterostructures paved another way toward quan-
tum technology. The electric potential can be synthesized by manipulating the voltages
of the electrodes. Typically, the double-well potential configuration (double quantum
dot) is preferred. Electrons trapped in the quantum dots are analogous with the trapped
atomic ions, but the working principles are quite different. We can use the charge or
spin states of electrons as qubits. Qubits based on charge states have very short coher-
ence times (a few nanosecond scales) due to the charge noise. Meanwhile, qubits based
on spin states have much longer coherence times, but we need to apply strong mag-
netic fields to split the energy levels of each spin state. The strong magnetic fields can
break superconductivity, and therefore spin-based quantum dot qubits have a limitation
when we want to them interfaced with superconducting resonators or superconducting
qubits.

IFigures are taken from the following websites. https://physics.illinois.edu/people/directory/profile/kwiat
(a),https://quantumoptics.at/en/research/quantum-information.html (b), and https://www.nist.gov/ (c).
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Figure 1.1: Atomic and optical quantum systems. (a) An image of type-2 spontanous parameteric down con-
version (SPDC). Where two green rings intersect, the polarizations of the photon pairs at each intersections
are entangled. (b) An image of a blade type ratio-frequency ion trap. An image of a CCD camera that shows a
string of trapped 5 ions is also given at the lower part. (c) A schematic image of atoms trapped on an optical
lattice.
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Figure 1.2: Solid-state based quantum systems. (a) Illustrations on how the spin (left) and charge qubit (right)
can be defined with semiconductor quantum dots. (b) An optical microscopy image of a superconducting
device that contains multiple transmon qubits and co-planer waveguide resonators.
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A superconducting qubit is comprised of Josephson junctions and other linear cir-
cuit elements. Without Josephson junctions, we can always decompose the circuits into
a series of harmonic oscillators, and therefore all the energy levels of modes are equally
spaced. In this case, we cannot define qubit states. We can use Josephson junctions
that act as nonlinear inductors to make the energy levels non-equally spaced. Super-
conducting qubits refer to qubits based on the superconducting circuits involving such
nonlinear elements. Depending on the circuit designs, the superconducting qubits are
classified by several types. The most representative ones are the charge qubits, the flux
qubits, and the phase qubits. In addition to this, there are many hybridizations. De-
pending on the parameters, the charge qubits are divided into the Cooper-pair boxes
[19] and the transmons [20]. The former has strong nonlinearity but extremely sensitive
to the charge noise. The latter is widely preferred due to the insensitiveness to the charge
noise. The weak nonlinearity of transmons causes some problems, but at the same time,
many technical approaches to overcome them are devised and demonstrated [21]. The
study of the interactions between superconducting qubits and microwave photons is
called circuit quantum electrodynamics (QED) [19], taking analogies of cavity-QED that
studies the interactions between atoms and single-mode light.

We can roughly classify the quantum systems we have discussed so far into two classes:
One is atomic/optical systems, and the other is solid-state systems. The pros of the
atomic and photonic systems are long coherence time and the fact that we do not need
the clean room process. The finite trapping time of atoms or decay time of photons is
one of the cons. We can also point out that the system parameters of the atomic sys-
tem cannot be engineered since they are already fixed by nature. The solid-state systems
also have pros and cons. One of the pros is their compatibilities to Silicon and CMOS
technologies. Also, unlike atomic systems, we can engineer the system parameters as
targeted. The cons are requirement of cryogenic systems, clean room tasks, and rela-
tively short coherence times.

Nowadays, a number of academic and industrial research groups are competing for
developing quantum technology toward realization in real-life applications. It is cur-
rently debatable which one is the most superior and the most advantageous to the ulti-
mate goals. The one important thing is that all the candidates are yet nascent. It is an
interesting It is interesting to see which system will be the final winner in this race. At
the same time, we should not forget that we might not see the end of this race while we
live.

1.4. QUANTUM STATE ENGINEERING OF HARMONIC OSCILLA-
TORS.

As I remark in the previous section, manipulating arbitrary quantum states is the heart
of quantum technology. For strongly nonlinear systems like two-level qubits, we can in-
dividually address the transitions between arbitrary two quantum states of the systems.
By consecutively inducing the transitions, we can synthesize arbitrary quantum states
as long as the process is done within the lifetimes of each quantum state. Unfortunately,
this simple picture is not available for the opposite case, where the nonlinearity is not
sufficient. In that sense, the difficulty is the highest for the harmonic oscillators, where
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all the energy levels are equally spaced. It sounds quite paradoxical that the quantum
state control of the simplest system is more difficult than any other system.

The harmonic oscillator ubiquitously appears in all the areas of science and engi-
neering. Basically, any potential function near the stable points can be approximated
as harmonic potentials. Many systems have an analogy with the harmonic oscillator. It
also comprises one of the archetypes in quantum technology. The typical types of har-
monic oscillators that we frequently meet in the study of quantum technology are pho-
tons in optical and microwave resonators, mechanical modes of trapped ions, acoustic
resonators, and cavity optomechanics. Recently, the idea to store quantum informa-
tion on the harmonic oscillators, called the bosonic quantum information process, has
emerged [22-24] due to the convenience for quantum error corrections. Such a trend
demands further studies on the faithful quantum state generation in the harmonic os-
cillators.

Many schemes have been proposed and demonstrated in various systems. A com-
mon key strategy is to introduce other nonlinear systems (mostly two-level qubits) cou-
pled to the resonators in a tunable manner. In the case of trapped ions, the sideband
transitions are employed between the mechanical mode and two-level electric states. In
the case of superconducting qubits and resonators, the fundamentals of the methods
are the same. For example, a superconducting flux qubit is used to create multi-photon
Fock states in a superconducting resonator [25]. In the study, the qubit is initially far de-
tuned and effectively decoupled to the resonator. They turn on the interaction by rapidly
switching the qubit frequency to the same frequency of the resonator. Repeating turning
on and off the interaction, they create the Fock states up to six photons. In more recent
studies [26], a configuration with two superconducting resonators (one is for storage and
the other is for engineering) mediated by a transmon qubit is employed. Applying exter-
nal driving fields with proper matching frequencies, the state of the storage resonator is
stabilized to target states.

1.5. THESIS OUTLINE

From the above discussion, one can readily notice that the tunable interface between
nonlinear systems and harmonic oscillator is a key to engineer the harmonic oscillator’s
quantum states. In this thesis, I will narrow the scope to superconducting qubit cases.
Despite several disadvantages, the superconducting qubit architecture is undoubtedly
the leading platform at present. This thesis investigates a couple of unexplored topics in
superconducting qubit studies. I specifically focused on how to implement in-situ tun-
able quantum interface to superconducting resonators by driving the qubits. In circuit
QED, it is often required to use extreme drive fields. The previous studies largely depend
on the rotating wave approximation (RWA), a useful technique when dealing with the
time-periodically driven Hamiltonian, but it does not correctly describe the systems’ dy-
namics when the drive fields are excessively strong and far off-resonant. Breakdowns
in the RWA often happen in circuit QED experiments but are not intensively studied.
Specifically, how the breakdown of the RWA affects the interaction rates between two
systems has been mostly unexplored. The main topic throughout this thesis is a quan-
titative study on the sideband interaction rates in a dispersively coupled qubit and res-
onator configuration. We also explore a possible application of the sideband transitions
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in the precise resonator spectroscopy.

This thesis is organized as follows. Chapter 2 provides theoretical background re-
quired to understand the main ideas of the thesis. It involves elementary quantum the-
ory and an introduction to circuit quantum electrodynamics (QED). In addition, I will
discuss about several methodologies to implement tuneable quantum interfaces in cir-
cuit QED. I will argue that the method using external transverse driving fields is the most
advantageous one in some specific perspectives. This approach is the central topic in
the remaining part of the thesis.

Chapter 3 gives description on the fabrication steps for superconducting circuits.
It also provides description on the cryogenic measurement system used for the experi-
ments in this thesis.

In Chapter 4, covers analytical and numerical studies on two-photon sideband tran-
sition in the quantum Rabi model (QRM). Many circuit QED systems can be described
by the QRM. Therefore, it is of pivotal importance to understand how to implement the
tunable quantum interface between the qubits and microwave photons in the QRM.

In Chapter 5, I present a study on two-photon sideband transition between a trans-
mon and a reasonator. In the study, all the theoretical, numerical, and experimental
studies are consistent with one another. Since a transmon cannot be approximated by a
two-level system, a different approach is required to understand it quantitatively.

In Chapter 6, I propose and demonstrate a new approach for spectroscopy of super-
conducting resonators. Based on the electromagnetically induced transparency (EIT).
This new approach is especially useful when one do not want the probe to affect the
quality factors of the target resonators.

Chapter 7 concludes the thesis.






THEORETICAL BACKGROUND

This chapter provides the theoretical background necessary to comprehend the remaining
parts of this thesis. 1 start with introducing the elementary concept of quantum theory and
then discuss how to apply quantum theory to linear circuit systems. Next, the discussion
is extended to the nonlinear circuit systems. Josephson junction is the indispensable ele-
ment for the superconducting qubits, which is kind of artificial atoms made on the chips.
Together with microwave photons in superconducting resonators, the superconducting
qubits form the circuit electrodynamics (QED) systems. After a brief introduction to the
circuit QED, several methods for in-situ control of the interactions between superconduct-
ing qubits and microwave resonators are addressed. Of all the methods, this thesis covers
the one employing external transverse driving fields. I explain under which perspectives
this approach especially makes a difference compared with other approaches.

11
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2.1. QUANTUM THEORY IN A NUTSHELL

In quantum mechanics, the quantum state of a system is represented by a vector |y) in
a Hilbert space. This is called a state vector (or state ket). For a system having multiple
degrees of freedom, (DOF) direct product of multiple state kets represents the system’s
total quantum state, and each ket represents the state of each DOE Meanwhile, a her-
mitian operator acting on the state kets represents a corresponding physical observable.
The eigenvalues of the operator represent the possible values to measure. In the case of
some quantum operator such as position or momentum operator (X and p respectively),
the eigenvalues are continuous, and these are called continuous variables. The dimen-
sion of the Hilbert space is determined by the system’s physical properties. For a spin
1/2 system, the spin DOF can be represented by a two-dimensional Hilbert space. For
a system whose Hamiltonian is comprised of continuous variables, we need an infinite-
dimensional Hilbert space.

Unlike classical physics, quantum mechanics allows the systems to exist in two or
more different states at the same time. This is called quantum superposition. The math-
ematical expression of the quantum superposition among state |y ;) is given by,

|'(l/> =2y W’n) 2.1)

Here, c; are complex numbers whose magnitudes are lower than unity. A probability to
find the system in the state |y,,) is given by |cnl?. We should distinguish this from the
statistical mixture of each state. The former shows quantum interference effects but the
latter does not. In order to distinguish them mathematically we should introduce the
concept of the density matrix. If the state is defined by only a single ket i) (pure state),
the density matrix is given by g = |¥) (¢|. On the other hand, if the state is defined as
a statistical mixture of multiple kets |y ) (mixed state), the density matrix is given by
0 =Zpnlwn) (wyl. Here, p, is real positive numbers less than unity and interpreted as
a probability to find the system in the state 1,. Now, we can readily see the difference
between the quantum superposition and the statistical mixture in the density matrix
representations. We can define the purity y of a quantum state p like below,

y = tr(p?). (2.2)

v satisfies the condition 1/d <y < 1, and d is the dimension of the Hilbert space. If y is
unity, then g is a pure state. Even the state that was initially pure state can lose its purity.
One possible scenario is the interaction with the environment. More detail discussion on
this is given in section 2.1.4. Density matrices do not need to be diagonal in the matrix
representations. The diagonal components are called population and the off-diagonal
components are called coherence respectively.

In general, the time evolution of a ket state ) or a density matrix p is governed by
Schrédinger equation,

. 0
dp o (2.3)
—— =—ihlH, p]
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Figure 2.1: Retrieved from [27]. Illustration of Bloch sphere representation of the arbitrary quantum state of a
two-level system.

Here, H is the Hamiltonian operator of the system. If the state is the eigenstate of H
and there is not explicit time-dependence in H, only the phase of the state vector is
evolving not changing its direction. Therefore, the eigenstate of the Hamiltonian is a
stationary state. Describing the system on the eigenbasis of the Hamitonian operator
is the simplest way to do it and that is why we always try to find the energy levels of
the systems first in quantum mechanics. Things become more complex with the time-
dependent Hamiltonian. We will meet this case in section 2.1.3.

2.1.1. TWO-LEVEL SYSTEM

A two-level system (TLS) can be described by a two dimensional Hilbert space. The spin
DOF of spin 1/2 particles or the polarization DOF of the photons are examples. The TLS
is the simplest form of systems in quantum mechanics. Understanding the dynamics of
TLS is important not just for the systems like the spin 1/2 or polarization but also for the
multi-level systems such as atomic systems or other ones that have complicated energy
level structures. In describing the dynamics between two specific quantum states of an
arbitrary system, everything follows the rule of the TLS as long as the state leaking to the
other states is negligible. The quantum systems where we define qubit states are not the
TLS in many cases. If one cares all the energy levels of the systems, it results in huge
overhead in the calculations. It should be a wise decision to approximate the systems to
the TLS, when the contributions from the other states are negligible in the dynamics. In
this thesis, I use |0) and |1) for each energy eigenstates (|0) has a smaller energy) of the
TLS'. If the transition frequency is wy, then the Hamiltonian can be represented in a 2 by

11 stick to this convention throughout this thesis. That is, |n) refers to the n-th energy eigenstate of any arbi-
trary systems. Otherwise, there will be a remark.
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2 matrix,

. h
Hyis =+ ( 2.4

wo 0)
> .

0 —Wwo

Figure 2.1 describes how the state of a TLS can be represented with a Bloch sphere.
|0) and |1) are orthonormal basis states. For a Bloch vector U = (vy, vy, v;), the corre-
sponding density matrix is given by,

1 1+v Uy — 1V
0=- c X 1. (2.5)
2\vx+ivy  1-v,

In above matrix representation, the first row and column correspond to |1) in Figure 2.1.
For a pure state, the states are sitting on the surface of the sphere. For fully mixed state,
the states are within the Bloch sphere. The Bloch sphere representation provides us with
graphical descriptions of the quantum states. It is useful to visualize the the dynamics of
state kets.

2.1.2. SYSTEM WITH CONTINUOUS VARIABLES

The physical observables with a continuous eigenvalue spectrum are called continuous
variables. In fact, the most important physical quantities, the position, and momentum
are some examples of continuous variables. In addition to these, the electric and mag-
netic fields are also continuous variables. In contrast to the TLS, the systems defined
with continuous variables cannot be described with finite-dimensional Hilbert spaces.
Therefore, we need a different formalism than the TLS case. Using continuous-variable
(CV) quantum systems can be an alternative approach to realize quantum communica-
tion [7] and quantum information processing [16]. Especially for quantum computing,
the CV systems have the advantage of implementing quantum error correction codes
[22-24]. In this section, we deal with the harmonic and weakly anharmonic oscillator.
The importance of the former one is already discussed in chapter 1. The latter one is the
model for transmons qubits used in the experimental studies of this thesis.

HARMONIC OSCILLATOR
The Hamiltonian of a mechanical harmonic oscillator Hyyg is given by,

R 1
Hyo = — mw?3? p2. (2.6)

+_
2m

o=

Here, m and w are the mass and the angular resonance frequency of the oscillator re-
spectively. We can rewrite the Hamiltonian with creation and destruction operators a'
and a4,

. 1
o = ho(ata+ 5). 2.7)

The definition of 4 is given by,

4= ——=(p—-imwi). (2.8)
2hmw



2.1. QUANTUM THEORY IN A NUTSHELL 15

The constant one-half in Eq. 2.7 is omitted in many cases. The n-th energy eigenstates
|n) (n=0,1,2...) are related with one another by the following equations,

&Tln)=\/n+1|n+1).

2.9)
alny=vnln-1y,

and the eigenenergies E,, are

E,=hw(n+ %). (2.10)

It is useful to define the number operator 71 = @' a. This counts the number of the exci-
tation of the harmonic oscillators.

Although the derivation so far is based on the mechanical oscillator cases, many
other non-mechanical systems take the same form with this Hamiltonian. In this the-
sis, all of them are called the harmonic oscillators. A single-mode electromagnetic field
is one example. In this case, the photons are defined as the eigenstates of the harmonic
oscillator that describes the mode’s Hamiltonian. The n-th excited state of the harmonic
oscillator is equal to n photons stored in the mode.

WEAKLY ANHARMONIC OSCILLATOR

The harmonic oscillator has equally spaced energy levels as seen in Eq. 2.10. This prop-
erty creates significant difficulties in controlling the quantum states. Therefore, intro-
ducing nonlinearities should be necessary for the applications. In this section, I only
consider the case of weakly anharmonic oscillators, where the nonlinearities are pertur-
bative. It means that the systems still have properties as the harmonic oscillator but not
the same due to the nonlinearities. Two examples we deal with are Duffing and Kerr
oscillators. The Hamiltonian of a Duffing oscillator is expressed like below,

o4
X 1
2R+ B+ —p, (2.11)

N 1
Hpyf = 5 mw
2
and f is a Duffing coefficient. As we did with the harmonic oscillator, we can also rewrite
this Hamiltonian with 4t and 4. Then it takes the form given below,

Hpusi = hoa'a+ % @' +at. 2.12)

When w > y, we can approximate |n) as an eigenstate of Hpy. It is the model of trans-
mon qubits, which I will discuss in the section 2.3. If we neglect the off-diagonal terms
in Eq. 2.12, then the system described by the reduced Hamiltonian amounts to a Kerr
oscillator in the energy eigenbasis,

Hyerr = (ho +7y)ata+ 72—/51T ataa. (2.13)
In the Kerr oscillator case, |n) are the exact eigenstates to Hyerr, and this statement holds
without any approximation.




16 2. THEORETICAL BACKGROUND

2.1.3. TIME-PERIODICALLY DRIVEN SYSTEM
Time dependence in a Hamiltonian always causes additional difficulties in analytically
solving the system’s quantum dynamics. However, time dependence in the Hamiltonian
is indispensable if one wants to have a coherent transition from one state to another.
Driving the system periodically in time is technically the easiest way to induce the tran-
sitions. Thus, it is the most common type of time dependent systems one encounters
while investigating coherent quantum control.

There are two types of driving—longitudinal and transverse. In this thesis, when I
mention a term ‘driving’ then it should indicate a transverse driving. In a TLS case, a
driving Hamiltonian Hy can be expressed by,

0 Qgcoswgt

Ha(®)/1 = Qgcoswgt 0

, (2.14)
here w, w4, and Q  are the transition frequency of the TLS, the driving frequency, and
the driving amplitude respectively. The oscillatory terms only exist in the off-diagonal
components. In the case of a longitudinal driving, the oscillatory terms must be placed
at the diagonal components. The total Hamiltonian H(f) of the driven TLS is,

wo/2 Qgcoswgt

HD/h = Qgcoswgt —wo/2

(2.15)
Obtaining the equation of motion from this Hamiltonian seems an easy task. However,
the exact solution of the Schrédinger equation with the above Hamiltonian has not been
found until 2020 [28]. Considering the almost 100 year history of quantum mechan-
ics, this manifestly shows how much the ‘pain’ comes when we struggle with the time-
dependent Hamiltonian. Fortunately, if we take proper approximations, these difficul-
ties can be significantly alleviated. One widely used approximation technique when we
deal with the oscillatory time dependence is the rotating wave approximation.

ROTATING WAVE APPROXIMATION

The best way to comprehend the rotating wave approximation (RWA) is to look at the
Hamiltonian sitting on the rotating frame at a speed w,. The transformation from the
lab to the rotating frame is given by U= exp(id wot/2)). Under this transformation, we
obtain H,;, which refers to the Hamiltonian seen from the rotating frame.

0 Qdei(wo—wd)t + Qdei(a)d+a)o)t

Hrot/h = Qde—i(a)o—wd)t + Qde—i(wd+wo)l’ 0

(2.16)
From the result, we can see the Hamiltonian is divided into two parts: One rotating at
lwg — wq| (slow rotating terms) and the other rotating at wy + w, (fast rotating terms).
When w; = w, > Qg satisfies, the dynamics is clearly decomposed into a slow (with a
large amplitude) evolution and a fast (with a small amplitude) evolution. Typically, only
the dynamics with the large amplitude concerns us. By averaging out the fast evolu-
tion, we can simplify the dynamics without losing relevant information and this is what
amounts to the RWA. The fast evolution is induced by the fast rotating terms, and hence
the RWA can be applied just by neglecting that terms in the Hamiltonian from the begin-
ning. The validity of RWA is significantly harmed as the drive amplitude or the detuning
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from the resonance (Jwp — wg4|) are compatible to drive frequency. In the rest of this sec-
tion, we will explore the consequences when the RWA does not hold.

BREAKDOWN OF THE RWA - RESONANT DRIVING

We first deal with the case when the driving frequency is on resonant with the TLS. Fig-
ures. 2.2 lists the dynamics of a driven TLS numerically solved using QuTip [29, 30]. In
(@) and (b), where the driving amplitudes are moderate, the dynamics obtained using
the RWA (blue curves) are almost equal with the dynamics without the approximation
(yellow curves). In (c), we can see small wiggles in the yellow curve with a larger Q.
The wiggles get more several in (d) as increasing Q4. Until (d), we can somehow decom-
pose the fast and slow dynamics, and the RWA is still beneficial. In (e), with Q4/27 =10
GHz, we cannot distinguish the slow and fast dynamics anymore. In (f), with Q4/27 =50
GHz, the RWA entirely distorts the dynamics. Over the range 0 < ¢ < 2, both blue and
yellow curves seem sinusoidal, but their periods differ by almost double. More graphical
description using Bloch spheres is provided in figure 2.3 .

BREAKDOWN OF THE RWA - FAR DETUNED DRIVING

We now turn to the case when the driving frequency is far detuned from the resonance
frequency of the TLS. In this regime, the driving field cannot induce any transition, but
lead to a shift in the transition frequency. As long as wg 4 > Q4 holds, this shift can be
calculated perturbatively and the result is [31],

2 2
Qd Qd

2wo—wa) 2o twg)

dwgy = (2.17)

AC-Stark shift  Bloch-Siegert shift

The first term is called AC-Stark shift, and the second term is called Bloch-Siegert shift.
Mathematically, both shifts are caused by the slow and fast rotating terms in Eq. 2.16
respectively. In this case, the RWA amounts to neglecting the Bloch-Siegert shift com-
ponent. It holds when w, is near wg, but the detuning is still far above than Q4. Out
of this regime, taking only Ac-stark shift into account cannot be justified. To conclude,
Bloch-Siegert shift is the consequence of the breakdown of the RWA for the far-detuned
driving case.

2.1.4. OPEN QUANTUM SYSTEM

INTERACTION WITH THE ENVIRONMENT AND MASTER EQUATION

A quantum systems interacting with the surrounding environment is called an open
quantum system. Here, the environment normally refers to the thermal reservoir which
the systems are thermalized to. In this section, I define p,, and FIN as the density ma-
trices and Hamiltonians of the system and the reservoir. I also define the interaction
Hamiltonian between the system and the reservoir as H,,. The thermal reservoir has a
huge number of DOE and therefore completely solving the total system’s equation of mo-
tion is unfeasible in general. However, the difficulty is largely alleviated if several approx-
imations are valid. One is Born approximation, which assumes that the total system’s”

2The total system here is often called ‘world’ and its Hamiltonian is called ‘world Hamiltonian’.
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Figure 2.2: Dynamics of a resonantly driven TLS with sweeping the driving amplitudes.Yellow lines indicate the
numerically calculated dynamics with the full Hamiltonian and blue lines indicate that with the RWA Hamil-

tonian.
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Figure 2.3: Traces of the quantum states represented on a Bloch spheres. The traces describe the dynamics of
a driven TLS with several driving amplitudes. Time durationis 0 < t < 7/Qg
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density matrix p;o; is a direct product of o5 and p, for all time, thatis p;o:(#) = ps(£) ® -
Here, p, does not have the time-dependence since it is assumed to be stationary. The
second one is Markov approximation which amounts to assuming that the reservoir has
a very short memory compared with the time scale of the system’s dynamics. From this,
the system’s dynamics only depends on the current state and we can neglect the effects
of its history (non-Markovian effects). These two assumptions are called Born-Markov
approximation together.

Assisted by the Born-Markov approximation, analytically solving the equation of mo-
tion of the total system becomes tractable. After tracing out the reservoir state, we finally
come to Lindblad master equation (LME), a kind of extension of Schrédinger equation.
The LME reads,

dps
dt

= —i|H),ps0)]

N— ———
Liouvillian, unitary evolution

) (2.18)
+ 3 5 (2up] - p0C1 G- ClCupn).

Lindbladian, non-unitary evolution

In the above equation, I omit the generalized Lamb shift term. The collapse operators
Cp, are determined by the types and strength of the interaction between the system and
Ieservoir.

The interaction with the reservoir causes the non-unitary part of the equation (Lind-
bladian). I also want to remark that the time evolution of the open quantum systems
cannot be captured by Eq. 2.3 which only works for the closed quantum systems and
pure quantum states. The non-unitary dynamics is unfortunately irreversible. Accord-
ingly, we cannot retrieve the system’s quantum states once it undergoes the interactions
with its environment. That is why isolating the system from the external environment is
of great importance in most quantum experiments. Nonetheless, there are a few cases
where we benefit from the interactions with reservoir.

CONSEQUENCES IN TWO-LEVEL SYSTEM
Let us define a two-level system of a Hamiltonian, Hyys = —% |0Y (0| + % |1) (1] with col-

lapse operators C; = % 10) (1] and C, = \/IT_*(IO) (0] — 1) (1]). The first collapse operator
2

C‘l leads to a decay process from |1) to |0) and 1T lisa decay rate. The time evolution of
P11,

1
] =—— s 2.19
P11 Tlpn ( )

,and p1; indicates the population of the state [1). C; induces not only the decay in the
population p1;, but also the decay in the coherence p12 = p3,, called decoherence or
dephasing. The decay rate of p1» (i.e. dephasing rate) by C, is a half of Tll, that is,

1
)g = ——— s 2.20
P12 2T1p12 ( )
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without C,. The collapse operator C, accounts for an additional dephasing not rela-
vant with C; and does not affect the population decay. To distinguish them, we call this
additional one as pure dephasing. Consequently, the total dephasing rate is given by
Tiz = Tiz* + ﬁ, and the time evolution of the coherence is governed by,

1
g = —— . 2.21
P12 szlz (2.21)

The collapse operator C, is originated by the energy exchange between the system
and reservoir. In the above case, C; only induces the decay from excited to ground state,
meaning that the system always loses it energy to the reservoir. This implies that the
temperature of the reservoir is absolute zero, and therefore the system cannot get any
energy from the reservoir. In order to describe the TLS submerged in the reservoir with
non-zero temperature T, then C; must be replaced with two collapse operators, C1g =
\/% |0) (1] and C‘m = \/% |1)¢0|. Here, 1/ TI”’” is the decay rate from n to m states. Then

10 01
1 Tl

the rate equation for the population of the TLS is given by,

. 1 1
P11 = — 77 P11+ 57 Poo- (2.22)
T U

Both T{n and le should be determined such that the relation pgg(t — 00)/p11(f — 00) =
e/ ksT gatisfies. Here, kg refers to Boltzmann constant. Under ideal situation, when
the system is completely isolated from any other physical objects except the thermal
bath at the temperature T, we can more quantitatively describe the Eq. 2.22 by using
Einstein’s A and B coefficients like below,

P11 =—Ap11 — B&(wo) p11 + BS (o) Poo, (2.23)
where ¢(w) indicates the energy density of thermal radiation at the angular frequency w.

= —h —w3 2.24
Sw)=— ohwlkgT _ 1" 2.24)

2.2. LINEAR CIRCUITS AND QUANTIZATION

This section provides the explanation on how the quantum theories are applied to mi-
crowave electrical circuit systems. Using the mechanical analogy of the circuit, its quan-
tization is quite straightforward. I deal with only the linear circuit elements here. The
nonlinear element, which counts for realization of qubits, will be introduced in sec-
tion 2.3.

2.2.1. LUMPED ELEMENT

When the size of the circuit element is much smaller than the circuit’s operating wave-
length, we can use the lumped element model to describe it. Two examples are intro-
duced in figure. 2.4, one is a lumped-capacitor model and the other is a lumped-inductor
model. As particle’s position and momentum form a canonical pair and represent the
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Figure 2.4: Lumped models of linear circuit elements. (Left) A lumped-capacitor model. (Right) A lumped-
inductor model. @ 5 indicate the superconducting phases at each ends of both elements.
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Figure 2.5: Transmission line depicted by the array of lumped-capacitors and inductors.

physical state of its motion, we can use the voltage (V) and current (I) across the cir-
cuit elements to do the same thing. Instead of V and I, we can also use the charge
(Q = Q1 — Q) and flux (® = ®; — Dy) alternativelyg. In quantizing the superconduct-
ing circuits, the latter pair is more preferred. Both Q and ® are related with V and I by
the below equations,

av _.
dr ~
dQ—] (2.25)
dr

The charging and inductive energies stored in the capacitor and inductor (H¢ and Hj

respectively) are then given by H¢ = % and Hy = %. When the capacitor and induc-
tor are connected in parallel (parallel LC resonator), the total Hamiltonian becomes
Hic = Hp + Hc. Circuit quantization is simply made by promoting Q and ® to quan-
tum operators Q and & respectively. For Hyc, the Hamiltonian takes the same form of
a Harmonic oscillator. Therefore we can just follow the same approaches used for the
Harmonic oscillator. We can interpret the n-th energy eigenstates of the LC resonator
as n photons stored there. A single photon’s energy in this case is given by fiw,, where
o, = 1/VLC is the resonant frequency of LC resonator.
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top view side view

Figure 2.6: Schematics of a gap coupled co-planar waveguide resonator. (a) Top view. (b) Side view.

2.2.2. DISTRIBUTED ELEMENT

The circuit elements that cannot be described by the lumped element model are called
distributed elements. One example is transmission line, necessary to feed the microwave
power on the targets. It can be described by the array of lumped-capacitors and induc-
tors as shown in figure 2.5. When proper boundary conditions are set at two specific
points on the transmission lines, we can define resonator modes between the points.
Co-planar waveguide resonator is an example of this transmission line based resonator,
we deal with here.

CO-PLANAR WAVEGUIDE RESONATOR

Co-planner waveguide (CPW) is a type of the transmission line made out of 2-dimensional
metal sheets. It consists of a center pin, ground plates, and substrate layers. The impedance
of CPW is determined by the geometry, dielectric constant of the substrate, and kinetic
inductance of the metal (if the metal is superconducting). It also provide a convenient
way to construct a resonator (CPW resonator). One approach is given in figure 2.6(a).
The gaps at each end of a CPW resonator set boundary conditions, and only the electro-
magnetic wave at certain frequencies can exist there. These form the modes of the CPW
resonator, and each of them can be considered as LC resonators.

The design given in figure 2.6(b) is called gap-coupled A/2 CPW resonator. There
are other approaches to define resonators, and these are nicely illustrated in [32]. The
advantage of the gap-coupled design is that one can easily calculate its coupling rates
to the external transmission lines. Only the capacitance between them is needed, and
this can be done with the static electromagnetic simulations, without any RF domain
simulations.

2.3. ARTIFICIAL ATOMS WITH SUPERCONDUCTING CIRCUITS.

The term “Artificial atom" normally refers to a system where we can define a two-state
subsystem, in other word, a qubit. The qubit defined in superconducting circuits is
called superconducting qubit. For this, we need a nonlinear circuit element, and Joseph-
son junction has a role as such. Of many superconducting qubit designs, we explore the
one based on Cooper pair box (CPB) here. Transmon qubit is one specific case of CPB
based superconducting qubit, which we especially focus on in this thesis. The circuits
mimic cavity quantum electrodynamics (QED) systems when combining superconduct-

3Qy and ¢, mean the charge and flux at the node 7 of the circuit.
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ing qubits and resonators. Naming after cavity QED, the study on such a circuit configu-
ration is called circuit QED.

2.3.1. JOSEPHSON JUNCTION

To realize artificial atoms out of the circuits, we cannot exclude Josephson junction (J]). A
JJ is comprised of two superconducting metal parts, which are disconnected from each
other by an insulator layer. If the layer is thin enough, then the wavefunction of the
cooper pairs can stretch over both parts as depicted in figure 2.7. As a result, the wave-
function’s phase on both superconductor (call @jef right respectively) is correlated. We
can define the Josephson phase ¢ = ¢ief; — Prignt, and it relates the voltage and current
over the insulator as described in the below equations,

_2dé
C2mdt’ (2.26)
I=1Ipsindg.

Here, Ij is the maximum current through the JJ determined by the JJ’s geometry. ®g =
mh/eis called flux quanta. Above this value, all the relations in Eq. 2.26 breakdowns. The
Josephson phase ¢ is directly proportional to the flux @, ¢ = 2¢®. The total energy stored
in the JJ (therefore Hamiltonian Hj) is given by,

)
Hj =fVIdt= —E]cos(Zna) =—Ejcos¢, (2.27)
0

where Ej = Iy®y /2, called Josephson energy. Capturing the lowest order term (exclud-
ing the constant term), H; can be approximated by,

<Py bl
Hj= 2([) _(‘Po) ZCD. (2.28)
This form looks after Hy, and thus we can invoke to define Josephson inductance Ly =
(Dg/ 27[)2E]_1. The nonlinear part in Eq. 2.28 4 is the heart to realize qubits. Meanwhile,
for ideal superconductor, all the electrons are paired up into Cooper pairs, and therefore
it is useful to define n = —Q/2e as the number of Cooper pairs.

As we did with linear circuit elements, quantization of JJ can be done just by pro-
moting the canonical variables to quantum operators. It is conventionally preferred to
use n, ¢ instead of Q, ® for simplicity when JJs are involved in the circuit. In an operator
form, the Hamiltonian of the JJ can be expressed by, H; = —E;cos¢. In the meantime,
based on the canonical relation [#, $] = i, we can express cos ¢ with |n), the eigenstates
of /1. Then, Hj can be given by,

H]=—%(|n+1)(n|+|n)(n+1|). (2.29)

This expression is much convenient for computing the eigenenergies when the JJ is com-
bined with other shunt capacitors.

4The 4th and higher order terms of ®.



2.3. ARTIFICIAL ATOMS WITH SUPERCONDUCTING CIRCUITS. 25

) |2

Copper-pair

Superconductor Insulator Superconductor

Figure 2.7: A schematic description of a Josephson junction. The blue curve depicts the probability density of
the Cooper pair.

2.3.2. FROM COOPER PAIR BOX TO TRANSMON
A circuit diagram of the Copper pair box (the simplest charge qubit configuration) is
given in figure 2.8(a). The Hamiltonian of the circuit is given by,

Hepp = 4Ec(i - ng)? - %(In +1)(n|+n) (n+1)). (2.30)

Here, Ec = €?/2C is defined as a counterpart of Ej, called the charging energy. 2e x ng
is the offset charge existing at the capacitor. It is important to introduce ng here since
the offset charge is always fluctuating due to the external electrical noise in real situa-
tions. Figure 2.8(b) gives the eigenenergies of Hcpg as a function of ng. It is interesting
to see how the energy level structures change with respect to the dimensionless system
parameter E;/Ec.
When E; and E¢ are comparable to each other, we say the system is in the ‘charge’
limit. We can see the significant non-equality in the energy level spacing, which is a good
property to define qubit states. The downside of working in the CPB regime is that the
transition energies are too sensitive to ng. Therefore, the qubit’s dephasing rate largely
depends on 7, dispersion”. We can loosen the problem using an additional gate elec-
trode and biasing the ng to half integers. These bias points are called charge sweet spots.
However, even at the sweet spots, the predicted coherence time is only 1 us [20] in the
charge qubit regime (Ej = Ec) with the typical ng dispersion [20], and usual circuit pa-
rameters. When Ej > E( satisfies, the system is in the transmon limit. In this regime, the
transition energies become insensitive with respect to ng, and consequently the qubit
states become more robust against ng dispersion. For example, the theoretical predic-
tion of the coherence time limited by the g dispersion is 40 us when E;/Ec = 85, even
larger than that of charge qubits. The downside of the transmon is weak nonlinearity in
the energy levels.
In the transmon regime, we can approximate the CPB Hamiltonian to H; by truncat-
ing the higher order ¢ terms larger than 4-th order in the cos ¢,
Hepp — Hy = 4Ec(— ng)* + 2432 - QJ)‘*. (2.31)

2 24
We can set ng to be zero in the tramsmon regime since we already know its effect on the
energy levels is negligible. If matching 72 and ¢ to p and X respectively, the approximated
Hamiltonian resembles the Hpys. As we did in section 2.1.2, we can express transmon’s

5The origin of this n g dispersion is mainly the unknown 1/f electrical noise at the device.
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Figure 2.8: Charge qubit configuration based on a Josephson junction and the energy diagrams. (a) Simplified
design of a charge qubit. The cross mark symbolizes a Josephson junction. (b) Retrieved from [20]. The energy
levels as a function of offset charge ng for different values of E;/E.

Hamiltonian using creation and destruction operators. In the transmon case, those op-
erators are defined by,

. Tos
n=--(—=-)i(a-
2(2]5,6) ( )
(2.32)
PN 2EC Lo At
p=(—-)i@a+a’)
Then the transmon Hamiltonian is represented by,
2 st s EC ..t
H; = hwa a—ﬁ(a+a) . (2.33)

Here, fiw; = \/8EjEc. In the low excitation limit (up-to 3rd energy level), H; is reduced
to,

. A
HY ~ hwa'a - ?‘fﬂ a'aa. (2.34)

We call A; anharmonicity of the tramsmon. Please note that A; and E¢ are generally
different. They become identical only in the limit of 12Aw > Ec.

Figure 2.9 graphically depicts the difference between the LC resonator and transmon
qubit in their energy levels. The transmon’s potential deviates from parabola due to the
4-th order nonlinear term, resulting the anharmonicity in the energy levels. The two
lowest energy states constitute qubit states. Nonetheless, the higher energy levels of the
transmon affect the qubit’s properties and dynamics significantly. Therefore, one must
not indiscriminately apply the consequences from two-level systems to the transmon
qubit case.

2.3.3. CIRCUIT QUANTUM ELECTRODYNAMICS
Circuit quantum electrodynamics (QED) is the study of the interaction between super-
conducting qubits and quantized resonator modes. In this section, we only consider the
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Figure 2.9: Retrieved from [33]. Difference in the energy levels between the LC resonator (a) and transmon

qubit (b).

capacitive coupling case. In quantum mechanical view, the coupling mechanism be-
tween them can be understood that the resonator’s field affects the offset charge ng of
the CPB. We can capture the interaction by changing ng to ng + n.(b+ b") in the CPB

Hamiltonian Hcpg. We define n, = % to simplify the equations. Here, Cg is the ca-
pacitance between the CPB and resonator and Vj is zero-point voltage fluctuation of the
resonator. b is the destruction operator of the resonator mode. Then we obtain below
expression to describe the CPB coupled to the resonator mode of an angular frequency
wr.

Heep = 4Ec (i — ng)? + Ejcosp— gon(b + b") +4Ec(ng + ny (b + b")? + hw, b'h.
¢QED ‘ c(n ng) ]COS([z ‘g()l’l(v ), C(ng ny( ) &,—/ (2.35)

CPB Interaction Resonator

Here, g is given by 8 Ecn,. The fourth term in Eq. 2.35 is on the order of n?, and hence
results in only a tiny influence on the Hamiltonian.

Depending on the system parameters Ey,Ec, and ng Eq. 2.35 is reduced to different
forms. In the charge qubit limit when ng is half-integers, H.qep can be reduced to the
quantum Rabi model (QRM) like below,

Aeoen/h — Foru /T = %az —g(h+b"oc+w, b'b. (2.36)

Here, wqg = \/Ei +[4Ec(1 —an)]2 and g/h = eVpCq/(Cg+ C). 65 and 6, are x and z
components of Pauli operators. We approximate the CPB as a two-state systems with
a transition frequency wg in the above expression. The two-state approximation works
well in the charge qubit limit thanks to the large nonlinearity. In the transmon limit, the
system can be modeled by coupled Duffing and harmonic oscillators as given below,

Heqep/h— Hpplh=wia'a+o,b'h-gla+a")y(b+bh" - l—g(m ah*. @37
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(a)

Figure 2.10: The frequency control of a qubit. (a) A schematic. A squid loop and a coil are inductively coupled.
By adjusting the bias current applied to the coil, one can control the magnetic flux through the squid loop,
leading to the change in the qubit frequency. For the fast control of the frequency, it is desired to use the
on-chip flux line. (b) An optical microscopy image of the flux line realized in the device used in [35]

The definitions of a', @, and w; are the same in 2.32 and 2.33. We set ng = 0 as the offset
charge hardly contributes the transmon’s energy levels.

The system is in the dispersive coupling regime when the difference between the
qubit’s transition frequency (wg or w¢) and resonator frequency (w,) is much larger than
g. In this regime, Agry can be perturbatively diagonalized to”,

. ara 1 PN
Aorm /i — %&Z +2062(6'b+ ) + 0, b'b. (2.38)

Eq. 2.38 represents that the resonant frequency of the resonator depends on the qubit
states. This property is extremely useful to detect the qubit’s quantum states. Here, y
is called a dispersive coupling strength. When y~! is smaller than the decay time of the
qubit and resonator, then we can say that the system is in a strong dispersive coupling
regime.

The dispersive coupling regime is very important in circuit QED. It provide us with
a way for non-demolition measurement. Depending on the qubit states, the resonance
frequencies of the resonator are different, and therefore we can distinguish the states
by probing the resonator. The advantage is that probing the resonator does not lead to
any change in the qubit states. When the measurement outcomes tell the qubit is in the
excited state, then it still remains in the excited state, not collapsing to the ground state.
This allow the feedback control of the qubit states [34].

2.4. TUNEABLE LIGHT-MATTER INTERACTION WITH SUPERCON-

DUCTING CIRCUITS.

There are several avenues to achieve tunable interaction in a dispersively coupled qubit
and resonator system. They are described in figure 2.11 one by one. One approach
is to suddenly switch the qubit’s transition frequency (w, black curve) as depicted in
figure 2.11(a). If the qubit is initially far-off resonant from the resonator transition fre-
quency w,, then we consider qubit and resonator are effectively uncoupled. If the qubit’s
transition frequency jumps to w,, then the qubit and resonator become on-resonant and

6We can also perturbatively diagonalize Hp_;. This case will be more discussed in chapter 5.
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the coherent state transfer begins. In this way, we can turn on and off the interaction be-
tween the qubit and the resonator. The other approach is to modulate the qubit’s tran-
sition frequency as depicted in figure 2.11(b-c). When the modulation frequency w,,
satisfies the matching conditions, the sideband transitions between the qubit and res-
onator take place. These approaches require that the frequency of the qubit should be
tunable within a short time scale. It is technically feasible if one employs superconduct-
ing qubits with SQUID loops and on-chip magnetic flux lines [35] as shown in figure 2.10.
The sudden frequency switch was realized in [25] where the authors create Fock states in
a superconducting resonator. Inducing the first order sideband transitions by flux mod-
ulation was proposed in [36] and experimentally implemented in [37]. Although above
cases successfully demonstrate the state transfer from the qubit to the resonator, intro-
ducing the tunability in the transition frequency of qubit leads to the dephasing induced
by the external noise.

On the other hand, we can also implement the tuneable qubit-resonator interface
with a fixed frequency qubit using the external transverse driving fields. One specific
case is desired in figure 2.11(d), where a red sideband transition is induced by two driv-
ing fields. When we have a matching condition fi + f> = f; - f», where f} » are the driving
frequencies, the resonant transition between the qubit and resonator is on. In this the-
sis, I will intensively discussed on this scheme. Despite of its considerable advantage
compared to the other approaches, the quantitative studies has still remained undone.
Specifically, two systems will be considered, one is the dispersive quantum Rabi model
and the other is dispersively coupled a transmon and resonator.
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Figure 2.11: Possible schemes to implement tunable interactions between the qubit and resonator in a dis-
persively coupled qubit-resonator system. The black lines indicate the transition frequency of the qubit with
respect to flux into the squid loop (®). We call this flux arc. The blue lines indicate the resonator’s frequency.
The gray circles mean the qubit’s initial frequency. In all cases, qubit is initially sufficiently detuned from the
resonator, and therefore we can consider the interaction is effectively truned off at the beginning. (a) A sudden
shift of ® turns on the interaction between the qubit and resonator. The interfaction is turned off when we
bring the qubit is back. (b) The qubit is initially at the top of the flux arc. Modulating the qubit’s frequency with
fm that satisfies the matching conditions can induce the coupling between the qubit and resonator. (c) The
qubit is initially at the slope of the flux arc. Such a flux arc is given by an asymmetric squid. (d) This scheme
does not need flux dependence. The arrows refer to external transverse driving fields. We can have transitions
between the qubit and resonator when fj and f> satisfy the matching conditions.



DEVICE FABRICATION AND
MEASUREMENT SYSTEM

This chapter provides the overall description of the experimental studies in this thesis. Il-
lustrations of the device fabrication and the measurement system are present. The main
components are transmon qubits and superconducting co-planar waveguide (CPW) res-
onators. The fabrication process for both is widely known and standardized. However,
meticulous care is required during the fabrication process to have the great performance
of the devices. In this chapter, I address not merely the fabrication procedures, but also
the miscellaneous tips for the successful results. The measurement system part focuses on
the technical apparatus including magnetic/radiation shields, dilution fridge, and mi-
crowave cable configurations.

31
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Figure 3.1: Optical microscopy image of the main part of a complete chip.

3.1. DEVICE FABRICATION

The essential circuit components on the chip are shown in figure 3.1. The transmon
qubit consists of the finger capacitor and Josephon junction. It is coupled to two co-
planar 1/4 waveguide resonators. Furthermore, there is a drive line directly coupled
to the transmon. The resonators are coupled to transmission lines (only one of them
is shown). The device is fabricated of 525 um thickness Silicon substrate with 100 nm
Niobium titanium nitride (NbTiN) film on the top of it. The Josephson junction is located
between two electrodes, and comprised of Aluminium and Aluminium oxide. The holey
pattern on the ground plane is intended to suppress and trap vortices that could appear
by stray magnetic field.

The chip fabrication procedure can be divided into two parts. One is NbTiN base
layer fabrication, and the other is evaporating Josephson junction. I shall separately il-
lustrate them in the following sections. These are followed by a brief explanation on the
chip packaging to interface the chip to commercial microwave electronics.

3.1.1. BASE LAYER

Figure 3.2 describes the fabrication steps for NbTiN base layer. The process begins with
pure Silicon substrate’. NbTiN film is grown on the top of Silicon wafers in Evatec LLS800
Static evaporation machine”. NbTiN is a favorite material for high-quality factor planar
waveguide resonators [39]. NbTiN-air interface is known to be very stable over time.
Moreover, quasiparticle loss by infrared radiation is also relatively small due to its large
superconducting gap frequency (1100 GHz) [39]. The next step is spin-coating an elec-

1We can also use Sapphire substrate. The pros and cons of both materials are discussed in the main text.
2For the NbTiN films used for devices in this thesis, the deposition step was done by Netherlands Institute for
Space Research (SRON).
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(a) Pure silicon wafer. (b) NDbTIN on silicon.

(c) Resist on NbTiN. (d) Shot with electrons.

(e) Soft resist removed. (f) Etching.

(g) Hard resist removed.

Figure 3.2: Retrieved from [38]. Fabrication steps for NbTiN base layer. 1: Silicon, 2 : NbTiN, 3: E-beam resist,
4 : Resist exposed to E-beam.
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/

Figure 3.3: Optical microscopy (a-b) and SEM images (c-d) after reactive-ion etching when using PMMA as an
E-beam resist.

tron beam lithography (EBL) resist on the NbTiN film. In the EBL process, focused elec-
tron beam (E-beam) forms patterns by modifying the resist’s inter-molecular bonding
structures. The resist on the area not exposed to the electrons is removed by developing
solution.” Afterward, a reactive ion etching with SFg gas is used to completely remove the
NbTiN. The base layer fabrication is completed as removing all the residual resist on the
NbTiN and Silicon. The detail fabrication procedure and relevant information used for
the devices in this thesis is given in Appendix A. Practical advice and tips for successful
outcomes are given in the following subsections.

CHOOSING THE SUBSTRATE

The metal-substrate interface is known as the largest surface loss channel in planer res-
onator designs using NbTiN. Suppressing this loss channel is essential to realize mi-
crowave resonators with high-quality factors of more than 100k. Therefore, the surface of
the substrates must be intensively cleaned before depositing the superconductors. For
a Silicon wafer, the cleaning steps involve several acid cleaning. Hydrogen fluoride (HF)
cleaning must be included as the last step before loading into the evaporation chamber.
Once HF cleaning is done, we should load the cleaned wafer in the chamber right away

30nly true when using negative resist. For positive resist, the exposed area to the electrons is removed by
developing solution.
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since Silicon oxide is grown on the wafer otherwise. How quickly we load the wafer into
the chamber affects the quality of the resulting resonators, as proven in [40]. Sapphire
is more stable when exposed to air. Most importantly, Sapphire does not interact with
oxygen, and consequently, no surface oxidation takes place. The typical cleaning proce-
dure for Sapphire wafers is simpler than that of Silicon wafers. Even without HF cleaning
step, the obtained quality factors of the resonators are comparable to that made on the
Silicon wafers.

Although it seems that Silicon is a worse option as a substrate when considering only
the preparation process, there are several advantages in using Silicon over Sapphire. For
example, Silicon is a CMOS (Complementary metal-oxide-semiconductor)-compatible
material, whereas Sapphire is not. Therefore, Silicon can be a better choice than Sap-
phire if we consider collaborative applications with CMOS technologies [41, 42]. Fur-
thermore, since Silicon is conductive at room temperature, we do not suffer from side-
effects that could happen by undesired electrostatic charges. For example, during EBL
process, the electrostatic charges formed at the metal by the electron beam can distort
the patterns. The distortion can be suppressed by using Silicon substrate since the elec-
trostatic charges can escape through the Silicon substrates. For the same reason, SEM
inspections with Silicon substrates are much less proven to damage the chips. The con-
venience in dicing is also one of the upsides when using Silicon. In the case of Sapphire
substrates, we need to use diamond cutters, which is more expensive in general. How-
ever, this less-fragility of Sapphire can be an advantage in other perspectives.

FAILURE CASE STUDY

Although the optimized recipe I found during my PhD is provided in Appendix A, I will
discuss some failure cases while optimizing the recipe and the issues that account for
the failures. In choosing the EBL resist, I tried several types, such as AR-P series, AR-N
series, and PMMA series. In general, the AR-N series works nicely with NbTiN. In the
case of AR-P 6300-13, it sometimes causes issues after the RIE process. These issues did
not show up when trying with Sapphire substrates. Therefore, we can conclude that an
unknown collective effect with Silicon, resist, and NbTiN yields the issues. PMMA series
were one of the most widely used resists before the advent of the AR series. I tried PMMA
A8 specifically, and the decision was made based on the achievable thickness after spin-
ning. However, RIE with this resist results in unidentified particles on the etched area as
shown in figure 3.3. Figure 3.3(d) is a magnified image of the particle, and considering its
shininess in the SEM inspection, they could be NbTiN debris. Even after cleaning with
Nitric acid and HE I could not see any improvement.

Figure 3.4 shows a nano-masking effect that I experienced after RIE process. In this
case, I etched the chip two days after developing the resist layer. The particles appear
only at the etched area and the shape is vertically elongated. The height of the particle
is similar with that of NbTiN thinkness. Considering all these facts, I come to a conclu-
sion that the depositions on the developed parts could act as undesired etching masks.
In order to minimize the depositions, it is required to minimize the time between the
developing and etching.

It is known that the surface of NbTiN is teflonized by SFg during the RIE process.
One avenue to suppress this is using oxygen as a buffer gas together with SFg. However,
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Figure 3.4: Nano-masking effect that appears after RIE process.
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Figure 3.5: SEM images of NbTiN electrode without (a) and with (b) oxygen plasma cleaning after etching.
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Figure 3.6: Al-AlOx-Al Josephson junction fabrication. (Left) Electron beam lithography pattern for evapo-
ration mask. (Right) Schematic of double-angle shadow evaporation. The number refer to the sequence of
deposition.

the teflon seems still remaining through the SEM inspection as shown in figure 3.5(a).
The shiny area on a NbTiN electrode feature is suspected of the teflon. I conducted an-
other fabrication where I performed the oxygen plasma cleaning immediately after RIE
process (while maintaining the vacuum). Figure 3.5(b) shows the improved result as we
cannot identify the shiny area in (a).

3.1.2. JOSEPHSON JUNCTION

Josephson junction is a key element of superconducting qubits. The fabrication method

I follow during my PhD is mainly based on double-angle shadow evaporation and Niemeyer-
Dolan technique [43]. I choose T type Josephson junction design, which seems the
ends of two fingers are overlapped. An oxidation layer is grown between the overlapped
area. Figure 3.6(a) describes the design of EBL pattern for the evaporation mask and the
schematic of double-angle shadow evaporation. A Dolan bridge is formed between top
and bottom finger patterns. In order to make the bridge, I use a PMGI-PMMA double
layer. Due to the under-cutting effect, PMGI under the ‘gap’ area is completely removed
while the PMMA layer in this area still remains.

Figure 3.7(a) is an optical microscopy image after developing the resists. When zoom-
ing in the area between top and bottom finger pattern as in figure 3.7(b), we can identify
the Dolan bridge. A schematic of Josephson junction evaporation is given figure 3.6(b)
The first deposition forms the first Aluminum layer (dark green). Then, we inject the
oxygen gas into the evaporation chamber to grow an oxidation layer (red). The second
deposition forms the 2nd Aluminum layer (bright green), and consequently we have an
overlap between the top and bottom fingers. Finally, we obtain the oxide layer between
two fingers. It is vital to keep the interface between Aluminum and Silicon/NbTiN ex-
tremely clean. For this purpose, I first further clean the residual E-beam resists using
oxygen plasma. Afterward, the developed area is cleaned by HF solution shortly be-
fore the Aluminum deposition. The time between the HF cleaning and deposition is
extremely important. I normally finish this step within 5 mins. The process is completed
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Figure 3.7: Optical microscopy images before and after Aluminum deposition. (a) After developing the E-
beam resist. (b) Magnified the Dolan bridge part. We can identify the bridge by the slightly different color. (c)
After Aluminum deposition and lift-off. The bright-white part is Aluminum and the dark-white part is NbTiN
electrodes.
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Figure 3.8: SEM images of a complete Josephson junction.” (a) An overall view. (b) The overlaps of top and
bottom fingers of the Josephson junction. (c-d) Contacts between NbTiN electrodes and Aluminum. The dark
shadow near Aluminum is caused by HF cleaning.
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Figure 3.9: Room temperature resistance measurement of Josephson junctions. (Left) Experimental configu-
ration. The Josephson junction under test is contacted to the NbTiN pads. Probe needles contact the pads,
and then the junction is serially connected to a resistor with well known resistance. A sufficiently weak voltage
not enough to break the junction is biased over the circuit of the serially connected junction and resistor. We
can eventually extract the junction’s resistance from the amount voltage applied to the junction. (Right) Mea-
surement result. Estimated Josephson energy E; is plotted with respect to the widths (top) of the evaporation
masks corresponding Josephson junctions.

as lifting off all the deposited Aluminum except the Josephson junction part. The optical
microscopy image after deposition and lift-off is given in figure 3.6(c). Figure 3.8(a-d) are
SEM images of a complete Josephson junction. Please note that these are obtained from
a different device other than the one in figure 3.7 (the geometry of NbTiN electrodes are
different). The dark shadow around the Aluminum is due to the HF cleaning process.

The detail fabrication procedure and relevant information used for the devices in this
thesis is given in Appendix A.

RESISTANCE MEASUREMENT

Even before cooling down, estimating the E; of a Josephson junction is possible by mea-
suring its resistance at room temperature. For Al-AlOx-Al Josephson junctions, we can
rely on the Ambegaokar-Baratoff formula [44] that relates the Josephson energy E; with
the room temperature resistance Ry of the Josephson junctions. The formula reads,

E;= 8 Ry =~ 140.3/Ry (GHz/kQ). 3.1
Figure 3.9(a) describes the experimental configuration for Josephson junction’s resis-
tance measurement. The resistance mainly depends on the top-widths of the E-beam
patterns. Figure 3.9(b) shows the result of the measurement. I plot the estimated E;
from the measured resistance with respect to the top-widths of the E-beam patterns. By
applying heat to Josephson junctions, we can vary their resistances to some extend. This
process is called a thermal annealing. In figure 3.9(b), the red dots indicate the results
after baking the Josephson junctions at 250°C for 5 mins. We can see the resistances
are slightly downshifted after baking. Baking always downshifts the resistance. Further-
more, the subsequent baking does not lead to any further changes in the resistance.
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Figure 3.10: Optical microscopy image taken after developing the E-beam resist layer. Two issues can be found
in this image. One is the pattern is misaligned, and the other is unknown flakes near the pattern.

Figure 3.11: SEM image of failure case. In this case, Aluminum is deposited without changing the evaporation
angle during the process.

FAILURE CASE STUDY

In this subsection, I shall introduce to two failure with discussions on the sources of the
failure and how to improve them. In figure 3.10, the image shows the E-beam pattern
after developing the resists. We can identify two problems in the picture. First, the pat-
terned is not well aligned to the NbTiN electrodes. It seems that Aluminum can still
make contacts to the electrodes even with this evaporation mask, but better is to have
an optimal alignment for not only aesthetic reasons but also minimizing the probabili-
ties to have an open circuit in case that Aluminum deposition is not sufficient. Second,
we can find flakes around the pattern in figure 3.10. This happens only after develop-
ing the PMGI resist layer, and hence we may well suspect that the flakes are residual
PMGI. The chance to have such flakes can be reduced by developing the PMGI layer
for a longer time, but then the chance to destroy the Dolan bridge will increase either.
Changes in the condition of the EBL machine or resist chemicals could account for this
failure case. Therefore, the E-beam dose and developing time should be delicately opti-
mized regularly. We could prevent the flakes by gently shaking the chip while developing
the PMGI layer, but excessive shaking can also destroy the bridge. Sonication could be
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Figure 3.12: Printed circuit board design that suits a 3 by 10 mm chip. Top (a) and bottom (b) view. Gold-coated
parts (yellow) are for SMP connectors and screwing. The green area means soldering mask.
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Figure 3.13: Completed device after packaging. A chip is placed on a microwave platform made by copper. The
size of the platform is 4 by 2.7 cm. There is a copper cover on the chip to block external radiation. (a) When
the copper cover is assembled. (b) When the cover is open. The size of the chip is 3 by 10 mm. The chip is
wire-bonded to the PCB.

one possible solution to try. The other failure case is shown in figure 3.11. In this case,
the Aluminum is deposited twice with the same evaporation angle. Since the deposition
procedure for Josephson junctions is quite complicated, one can be easily lost during
the process. Even before taking the SEM image in in figure 3.11, I was able to identify
the disconnection through optical microscope. When measuring the resistance of these
samples, I obtained very high resistance more than 100 kQ.

3.1.3. PACKAGING

To feed microwave signals onto the chip and detect the transmitted signals from the chip,
we must interface the chip to coaxial cables. This is implemented by wiring the chip to
a printed circuit board (PCB). The PCB design used in this thesis is given in figure 3.12.
The design suits a 3 by 10 nm size chip and consists of 4 microwave ports. The base of
the PCB is comprised of FR-4, and a copper layer is coated on the top of it. Gold (yellow)
and soldering mask (green) are coated on the copper layer. The gold coating is only on
the places where SMP connectors and screws will be located. Gold and soldering mask
are also coated on the backside of the PCB. The chip and PCB are finally placed on the
microwave platform as in figure 3.13. The platform is comprised of copper and the size
is 4 by 2.7 cm. The chip is covered by a copper sheet to protect it from infrared radiation.
I discuss the effects of stray infrared radiation in more detail in the next section.
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3.2. INFRASTRUCTURE

We must provide the qubit devices with extreme physical conditions. First of all, the
device must be cooled down to the temperature below the critical temperature T, of
the constituent metals. Simultaneously, the devices need to be protected from external
noisy environments for their best performance. This section provides descriptions of
the measurement infrastructure that meets the above conditions while performing the
measurements using room-temperature electronics.

3.2.1. MAGNETIC AND RADIATION SHIELD

The superconducting qubit devices should not be exposed to excessive magnetic noise
and infrared radiation. First of all, the random fluctuation of the stray magnetic fields
that penetrate the squid loops of the qubits increases the pure dephasing rate. Even if the
stray fields are static, they are not welcomed as the qubits’ frequencies are unwantedly
biased away from the sweet spots. Another adverse effect is the creation of vortices.
The magnetic field applied to the superconductor can create superconducting vortices
when the field is strong enough, and the vortices degrade the quality factors of the qubits
and resonators when the number is excessive. The magnetic dipole moment carried by
vortices could also vary the magnetic flux through the squid loops when they are located
near the qubits. The infrared radiation is also critical to the superconducting devices. It
can create quasi-particles, and these are not anymore resistive-less, unlike Copper pair
condensate. The formation of quasi-particles, therefore, results in energy loss.

Consequently, the qubits and resonators should be isolated from these environments
as much as possible for their best performance. We need a shield surrounding the device
to protect them from the environment. Unfortunately, it contradicts our need for device
measurements. Apparently, if we completely isolate the device, then the measurements
such as transmission and reflection spectroscopy are not possible. Designing the shield
nicely compromising both requirements, is a tricky puzzle to solve. Furthermore, we
also should satisfy other conditions. First, the device should be thermally anchored to
the mixing chamber plate of the dilution fridge (the detailed explanations will be given
in the next section). Second, the total proportion of the shield must suit the allowed
space of the fridge. Third, we should take the mechanical stability of the system into
consideration.

There is a typical shield design adopted among the experimentalists working with
superconducting qubits [35]. The fundamental structure of the shield used in my PhD
resembles that of the typical design, but there are some distinct features in detail. Fig-
ure 3.14 and 3.15 show the design of the shield drawn by CAD. The shield consists of a
cold finger and four cylindrical layers having bottoms. The cold finger is used to mount
the total structure to the plate of the dilution fridge. Setting a place where the packaged
device is mounted is also essential. In the case of present design, the device is mounted
at the bottom of the cold finger. The design intends for the device to see the bottom of
the shield as usual. The innermost layer is comprised of copper, whose purpose is to
block the radiation. The copper sheet on the top of the chip shown in figure 3.13 also
has a radiation shielding effect, but usually not enough by itself. The next layer on the
copper is comprised of Aluminium. This layer shields both the radiation and magnetic
fields. The next two layers are comprised of Cryoperm, a magnetic shielding alloy that
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Magnetic chimney

Mounting plate

Figure 3.14: 3D CAD drawing of qubit shield and cold finger. Magnetic chimney and mounting plate are indi-
cated by arrows.

shows high permeability at a cryogenic temperature. In order to feed the cable inside
the shield, it is inevitable to have holes on the shields. To suppress the chance that the
external fields get broken into the shield, there are magnetic chimneys, which are also
made by Cryoperm. In order to maximize the radiation shielding effect, I coat inside the
copper layer with Silicon Carbide (SiC). The SiC layer inside the copper cylinder absorbs
the residual infrared radiation. The picture taken after completing the coating is given in
figure 3.16. The detailed procedure of SiC coating is given in Appendix B.° There are sev-
eral distinct features compared with the conventional designs. When fixing each layer
onto the cold finger, I use threads instead of screws. This approach is known to be more
stable under thermal contraction. Moreover, the present design has cable holders on
the cold finger, which make certain that the cables are not disconnected from the device
while closing the layers or cooling down the system. The picture is given in figure 3.17.

3.2.2. DILUTION FRIDGE AND WIRING

The device is cooled down at a Bluefors LD400 dilution fridge. The inside structure is
shown in figure 3.18(a). Each goal-coated metal plates are thermalized at different tem-
peratures, indicated by the numbers in yellow boxes. In practice, the observed tem-
peratures are different by a 10-20 percent. The device is located at the lowest stage,
called mixing chamber plate (MXC). We can identify the shield anchored below the MXC.
To feed microwave signals into the device, we need to wire the stages with coaxial ca-
bles. Several factors should be taken into account when choosing the types of cables
to use. It depends on the temperatures of the plates and the purpose of the lines. Fig-
ure 3.18(b) depicts a standard configuration usually adopted in superconducting qubit
experiments.

5This step was largely assisted by Alessandro Bruno.
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D TP

Figure 3.15: Top view and inside structure of qubit shield and cold finger. The mounted device and cable holder
are indicated by solid arrows. Dimensions are indicated by dashed arrows.

Figure 3.16: A cylindrical copper shield with a gold coating on the surface. Inside of the shield is coated by SiC,
which serves as an absorber for infrared radiation.
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Figure 3.17: Device mounted on the bottom of cold finger. Black arrow indicates one of the cable holders.

In this thesis, we will explore the case when the qubit is strongly driven. If the driving
power is excessive, then it could create undesired heat in the fridge. The heat is mainly
generated from the attenuators, which include resistive components. Especially the heat
from the attenuators at the MXC is the most critical. In order to circumvent this problem,
we can adopt alternative configurations, as described in figure 3.19. In the left diagram,
a directional coupler is installed at the MXC instead of an attenator. Approximate 99%
drive power propagates to the auxline, and at the same time we can protect the device
from the thermal noise created at the upper plates. In the right diagram, a reflective low
pass filter (VLFX) is employed. We can choose a proper filter whose cutoff frequency is
far below that qubit transition frequency, but lower than the desired driving frequencies.
Thereby, we can drive the qubit with desired frequencies, and at the same time we can
also protect the qubit from the thermal noise created at the upper plates.
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Figure 3.18: Inside look of dilution fridge (lelf) and conventional wiring diagram for superconducting qubit
experiments (right).
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SIDEBAND TRANSITION IN THE
QUANTUM RABI MODEL :
QUANTITATIVE DISCUSSIONS
BEYOND THE ROTATING WAVE
APPROXIMATION

In this work, we analytically and numerically study the strongly driven quantum Rabi
model (QRM) beyond the rotating wave approximation (RWA). We especially focus on the
conditions when the external transverse drive fields induce the first-order sideband tran-
sitions. Inducing the sideband transitions between two different systems is an essential
technique for various systems, including the QRM. Despite its importance, the analytical
study that successfully explains the sideband transition rates in a driven QRM has not been
reported yet. In our study, we analytically derive the sideband transition rates without the
RWA, which is valid for all ranges of drive frequencies. Based on the perturbation theory
to the 2nd order, our analytical derived formula agrees well with the numerical results as
long as the drive amplitudes are moderate. Interestingly, we have found the collusion effect
between co- and counter-rotating components in the drive Hamiltonian, which eventu-
ally accounts for significant corrections to the sideband transition rates expected from the
RWA. One can precisely estimate the approximate sideband transition rates in the QRM
only from the system and drive parameters based on our work. It will also contribute to
the experiments with the systems described by the QRM.

Parts of this chapter will be submitted for publication.

49
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4.1. INTRODUCTION

The quantum Rabi model (QRM) constitutes the essence of the light-matter interactions
atthe quantum level. It specifically describes the interaction between a two-state system
(qubit) and a single cavity mode. The QRM has been extensively studied for fundamen-
tal interests as well as applications toward quantum information processing. QRM can
describe many systems. It was originally formulated to mathematically describe cav-
ity quantum electrodynamics (QED), studying the interaction between a trapped atom
and cavity mode. Beyond atomic physics, it can also be extended to any other systems
having an analogy with the cavity-QED, such as a quantum-dot in microcavities and var-
ious types of qubits transversely coupled to superconducting cavities. Moreover, the ex-
tended versions of the QRM have been widely investigated [45, 46].

One of the important aspects of studying the QRM is how to implement in-situ tune-
able state transfer between the qubit and cavity mode (sideband transitions), which is
crucial for quantum gate operation using qubit and quantum state engineering of the
cavity. There are several ways to achieve this. One approach is to suddenly switch the
transition frequency of the qubit (w,). If the w is initially far-off resonant from the cav-
ity transition frequency (w.), then we consider the qubit and resonator are effectively
uncoupled. If the qubit’s transition frequency jumps from w to w,, then the qubit and
cavity become on-resonant, and the coherent state transfer begins. In this way, by shift-
ing the w4, we can turn on and off the interaction between the qubit and the cavity. The
other approach is to modulate the qubit’s transition frequency parametrically. When the
modulation frequency w;, satisfies the matching conditions(w,;, = |lw, + kw.|, k is an
integer), the sideband transitions between the qubit and cavity occur.

These approaches require that the frequency of the qubit should be tunable within
a short time scale. It is technically feasible if one employs superconducting qubits with
SQUID loops and on-chip magnetic flux lines. The sudden frequency switch was real-
ized in [25], where the authors create Fock states in a superconducting cavity. Inducing
the first-order sideband transitions by flux modulation was proposed in [36] and experi-
mentally implemented in [37]. In all cases, the given system can be modeled by the QRM.
Although the above cases successfully demonstrate the state transfer from the qubit to
the cavity, introducing the tuneability in the qubit’s transition frequency leads to another
side-effect, the pure dephasing induced by external noise. For example, when the tune-
ability relies on the magnetic flux through the squid loops, the magnetic field noise into
the loops accounts for the qubit’s pure dephasing.

Meanwhile, we can also induce the sideband transitions without any frequency tune-
ability of the qubit and cavity, applying the external transverse drive at proper frequen-
cies. This scheme is implementable with a fixed frequency qubit, and therefore the sys-
tem is insensitive to the external noise and the qubit’s dephasing rate is only limited by
the qubit’s decay rate [47]. There were a number of studies related to how the exter-
nal drive fields affect the QRM or similar systems [48-51], but only a few studies quan-
titatively focus on the sideband transition rates [19, 52]. Especially for the first-order
sideband transition in the QRM, the most demanded type of transition, the transition is
dipole forbidden, and therefore only two or even number photon drive can induce the
transition. This fact complicates the analytical derivation of the transition rates as we
cannot capture the transitions simply by the first-order perturbation theory.
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In this work, we performed a quantitative study on the first-order sideband transition
in the QRM induced by two-photon transverse drive fields. We analytically derive the
transition rates based on perturbative calculations up-to second order without relying
on the rotating wave approximations in the Hamiltonian. We specifically investigate the
parameter regimes familiar with circuit quantum electrodynamics (QED) experiments.
In circuit QED, the frequency matching condition for sideband transitions often requires
the drive parameters beyond the RWA, and therefore, one should not rely on the RWA in
the analytical derivation of the transition rates. However, satisfactory quantitative study
beyond the RWA regime has not been reported yet.

To our best knowledge, the initial attempt to analytically derive the two-photon side-
band transition rates in circuit QED system was given in [19]. In that study, the charge
qubit device dispersively coupled to the cavity was modeled by the QRM. However, the
analytically derived transition rates are 4 fold smaller than the simulation results. In our
work, we found that the RWA significantly distorts the calculated sideband transition
rates. We also probe that the transverse drive field accounts for a secondary longitudinal
drive effect, which also significantly contributes to the total sideband transition rates.
The analytical predictions on the frequency matching conditions and sideband transi-
tion rates are well consistent with the numerical results when we have moderate drive
amplitudes. Although our analytical model fails to explain the sideband transition rates
as the drive strength becomes comparable to the detuning between the qubit and drive,
it still yields more precise predictions than the model relying on the RWA.

This chapter is organized as follows. In Sec.4.2, we analytically derive the expected
matching frequencies and sideband transition rates based on the perturbation theory up
to second-order. The description of the numerical simulation performed in this study is
given in Sec. 4.3. We compare the analytical and numerical calculation results in Sec. 4.4
with extensive parameter scanning. In this section, we also discuss the validity and lim-
itation of our theory. We conclude our chapter in Sec. 7.

4.2. THEORETICAL DESCRIPTION

In this section, we derive the analytical formula to predict the matching frequencies and
sideband transition rates. We investigate two possible schemes for the first order two-
photon sideband transitions in the QRM, which Fig. 4.1 depicts. In the case that the drive
field has only single frequency w,; (monochromatic drive), the possible scheme for the
first order sideband transitions is descried in Fig. 4.1a. The downside of this approach
is that the only one possible drive frequency is allowed for given qubit and resonator
frequencies. When using two different drive frequencies (bi-chromatic drive), we can
have a flexibility in the frequency selection. Fig. 4.1b describes the case where one drive
frequency is close to the resonator (wg., resonator friendly), and the other one is close
to the qubit (wag, qubit friendly). The solid line and dashed lines refer to the bare and
dressed energy states of the QRM respectively.
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Figure 4.1: The first order red and blue sideband transitions in quantum Rabi model (QRM). The arrows in-
dicate the external drives that satisfy the matching conditions for red and blue sideband transitions (red and
blue arrow respectively). Two-photon drive is required since the first order sideband transitions in QRM are
dipole forbidden. (a) Single frequency (monochromatic) drives. (b) Two frequency (bi-chromatic) drives. |gn)
and |en) (corresponding dashed lines) represent the dressed states of the system. The black arrows indicate
the frequency shifts induced by the external drive fields and and qubit-cavity coupling g. The bare states are
indicated by solid lines.

4.2.1. SCHRIEFFER-WOLFF TRANSFORMATION
The transversely driven QRM Hamiltonian reads,
t

G.+wed a+ga +a)oy

~

ﬁQRM
+ Z Qg)éx cos (wg) 1).
i

J

4.1)

Hdrive
Here, 6, x is z and x components of Pauli operators, and a is the cavity field operator.

wg4,c are angular frequencies of the qubit and cavity respectively. Qg) and wg) refer to i-th

component of the drive amplitude and frequency. It is also useful to define eg) = QS) /2,
the drive strength for later. We are interested in the dispersive coupling regime where

lwg —wc| > g. We are also interested in the drive frequencies a)ii” are far off resonant

to wg,¢, and the drive amplitudes QS) much smaller than the |wg . — wg4l. With these
parameter conditions, A, can be considered as a perturbation to ﬁQRM. Then, we can
approximately diagonalize the H = ﬁQRM + Hyrive using Schrieffer-Wolff transformation
[53]. The transform operator U takes a form of U = exp(B*6. — B6_). We define X=
B6_ — B*6, in the followings. The transformed Hamiltonian H' is given by,

A =0a0+i06,000". 4.2)

The first term in Eq. 4.2 can be calculated using the Hausdorff expansion,

M He M = oA, X+ S8, X0, X+ (4.3)
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When B « 1, we can truncate the expansion to the low order of A. In order to capture
the two-photon transitions, we should include at least the terms which are 0(A?). In the
meantime, the second term in Eq. 4.2 can be approximated by [19],

(CROIARS
1o e 4.4)
E(ﬁ B-BP )G+ (Bo-— P76 ).

H' is then expressed by,
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The main purpose of the transformation U is to eliminate the Hdm,e, the largest off-
diagonal element in H' [26]. We need to chose proper B such Hyyive+ Hy = 0. H, accounts
for the qubit’s frequency shifts and modulations. Hy, is related with the sideband tran-
sitions. H, is irrelevant in the discussions here.

4.2,.2, MONOCHROMATIC DRIVE

In this case, we have a drive Hamiltonian Hgive = 2€4 cos(wq )6 x. For this, the proper
is given by, . .
_ b iwgr , td -iwgt
B= A e + > e . (4.6)
Here, A and Z are w,; — wq and w4 + w4 respectively. This § satisfies Hyrive + H; =0. We
obtain,
2 2

o € € 2046
H,=6,x (K + E)(l +2cos(2wgt)) — coswgt) |, 4.7

which explains the qubit frequency shifts 6w, and modulation with an amplitude Q,, =
2€,, as given below.

€ e
ow ZK +ZE,
5 ) 5 (4.8)
€ € qued
EpR2—+2—-2——
A z AZ
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The matching frequency can be found considering 6w, and the lamb shift +y in the
qubit and cavity induced by bare coupling g. We can approximate y by g%/Ag. + gZ/ZqC,
where Aye = wgy —wc and 24 = wg + 0. The conditions are given by,

2w =wg+0wy+w:+2) (bluesideband), (4.9)
20q = |wg+ 0wy —we+2x| (red sideband). '

When w, satisfies each blue and red sideband conditions, then the Hy;, at the qubit
and cavity rotating frame is reduced to,

Hgp, =
€ 2
g(Az + —)a + +h.c. (blue sideband).
€ 2e2 e ' (4.10)
- g(A2 + —)a —+h.c. (redsideband),w, > w.
€4 62 s
-8(5+ —) 4'6 - +h.c. (redsideband), wy < w.

>2

We define ng the transition rates obtained from Eq. 4.10. In addition to Qg, there is ad-
ditional contribution from the qubit frequency modulation €, [37]. We define this con-
tribution Qig, which amounts to 2gJ1 (2€,,,/A4¢), where J,(x) is the first kind of Bessel
function of order of n.

4.2.3. BI-CHROMATIC DRIVE

Now, we consider the drive Hamiltonian given by Hgyive = 2€34COS(Wag 1) 0 x+2€4.COS(W 410 .
The subscription d g and dc refer to qubit friendly and cavity friendly drives as depicted
in Fig. 4.1. In this case, we chose f as below,

B= 20 givagt | Z09 pivagt y S poivget , S ioger, (4.11)
Ay 2 Ay bY)

Here, A, %) = wg gy and A, 23 = wg *w4.. The drive induces the frequency shifts 6 4 as
given in Eq. 4.8. Italso modulations the qubit frequency with angular speeds of w 54— 4.
and w4 + wg4c. The amplitude of the modulations is also given in Eq. 4.8.

62 2 2 2
Swg ~2 Y +2— 1olde | plde
Al 21 AZ Zz (412)
1 1 1 1
Emzé'dqé'dc —t—F+ — 4+ =

AL A, 33,
Then, the matching conditions are given by,

Wag+w4e=wg+0wg+w:+2y (blue sideband), €13)
lwag—wael = lwg + 6wy —w+2y| (red sideband). )
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Asin Sec. 6.2.2, we reduce Hj, like below when the above frequency matching condition
satisfy.

Hgp, =
2€40€dc  €dg€dc €dg€d
g A T 6T, +hie.
AV PAY) Ar1Z, ArZy
(blue sideband).
€dg€d €dg€d €dg€d
T A 46 +he. (4.14)

-g + +
A1A Ar 2y 2122
(red sideband), w4 > w,).
€daq€ €dg€ €daq€
—g( dq dc+ dq dc+ dq dc)d
ASPAY) A 2o 212

(red sideband), wg < w,).

f6_ +h.c.

1)
sb

as in the monochromatic drive case, that is, Qilb) =281 2eml Age).

We also take the effect from €,,, asin Sec. 6.2.2. Q_ in this case takes the same expression

4.2.4. ROTATING WAVE APPROXIMATION
Under the rotating wave approximation (RWA), Hgyive is approximated to,

o N0 )
Fr(RWA) _ d i~ _—iw)/t | ~ iw;t
Hdrive = E T(U+e d"+6_e"a’). (4.15)
1

This amounts to taking ~ — oo in Qi%’l) and other quantities. The RWA converges to the
full model results when X > A. However, this condition often breakdowns with typical
circuit QED device parameters. In Sec. 4.4, we perform the analytical calculation both
based on the full and RWA model. The more detailed discussions will be provided there.

4.3. METHOD FOR NUMERICAL SIMULATION
The dynamics of the system can be described by the equation,

dpgys/dt: _i[ﬁQRM"'ﬁdrivevﬁsys]- (4.16)

Here, pys is a density matrix of the qubit and cavity. We do not take the dissipation into
consideration. In the numerical study in this work, we rigorously benchmark the real
experiments. We set the rising and falling in the sideband drive strength as in the real
experiments. Specifically, €4() is defined as a pulse with 10-ns of Gaussian rising and
falling time. Then we scan the pulse length and plot the quantum states of the system at
the end of each pulses. We do not include the rising and falling times in the definition of
the pulse length.

Fig. 4.2 provides a step-by-step description of our numerical simulation method. The
simulation parameters used in Fig. 4.2 are Wg,We,W4,€4,8 =27 % (6.5,4.0,0.1,0.2,5.278)
GHz. The monochromatic drive frequency w, satisfies the matching condition for the
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blue sideband transition. Fig. 4.2a show the dynamics of the system under the sideband
drive pulse with a length of 480 ns. Fig. 4.2b magnifies the area enclosed by the square
in Fig. 4.2a. One can identify the fast but small oscillation in the quantum state of the
system. This oscillation originates from the Hamiltonian’s time dependence. We can
remove the time dependence by moving to the rotating frame at w,, and removing all
the fast rotating components. This is what amounts to the rotating wave approximation
(RWA). However, the RWA is only available when the €, and |w; — w4| are small enough.
For the two-photon sideband transition with circuit QED parameters, these conditions
hardly satisfy. To tackle this oscillation, which allegedly does not exist in the real experi-
ments, we repeat the simulations varying the pulse lengths, and plot the states at the end
of the pulses (when the pulse falling finishes). The result is given in Fig. 4.2c. We obtain
a clear sinusoidal curve.

The procedure described above is analogous with the real experiment. This explains
why one still can see clear sinusoidal dynamics in the experiment even with very strong
drive strength. We calculate P(el) — P(g0) for the blue sideband traitions, and P(e0) —
P(g1) for the red sideband transitions in this work. Here, P refers to the probability to
find the system in that states. Once we obtain sinusoidal oscillation, then we determine
the sideband transition rate Qg from the period of the oscillation.

For monochromatic drive cases, we sweep the w, until the resonant sideband tran-
sition takes place to find the matching frequencies. The procedure is somewhat com-
plicated for bi-chromatic drive cases. First we fix w4./27m by w./2x —500 MHz. We pa-
rameterize the €4,/27 and €4./27 with a real positive parameter 7. Both are given by
€dq/2m =1n-25 MHz and €4./27 = 1-317 MHz respectively. With these conditions, we
sweep the w4, until the resonant sideband transition takes place. One result is given in
Fig. 4.3. All the simulation parameters are the same in Fig. 4.2 except that €;/27 is 500
MHz. The matching frequency for blue sideband transition is found at w;/27 = 5.474
GHz in this case. The asymmetric shape is attributed to the fact that the frequency shift
of qubit changes while sweeping the drive frequency.

4.4. RESULTS AND DISCUSSIONS

4.4.1. OVERALL

In this section, we perform the numerical simulation with several system parameter
sets. We define the drive frequency, transition frequencies of the qubit and cavity as
fa=wal2m, fy = wy/27, and f. = w /27 respectively. We investigate the cases of f; . =
6.5,4.0 GHz and f;, = 4.0,6.5 GHz in this work. In Fig. 4.4, we present the simulated
time domain dynamics when the two-photon sideband transitions take place. g/2x in
both cases is fixed by 200 MHz. Fig. 4.4-a shows the results under a monochromatic
drive with €;/2n = 300 MHz. Fig. 4.4-b shows the results under a bi-chromatic drive
with €44/27 = 25 MHz and €4./27 = 317 MHz respectively. The definitions of €4, €44,
and €4, are the same as in the previous section. We can also confirm that whether the
qubit is red or blue detuned to the cavity results in a difference in sideband transition
rates. This is already predictable from Sec. 4.2.
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Figure 4.2: Time-domain numerical simulation. (a) A direct solution of the master equation when the drive
field satisfies the blue sideband transition. Please see the text for the detail conditions in the simulation. We
consider 10 ns Gaussian rising and falling time in the drive amplitude. (b) Zoom in on the black rectangular
box in (a). We identify the fast micro-oscillation and the frequency of this oscillation is the same as the drive
frequency. (c) We plot the P(el) — P(g0) at the end of the pulse with respect to the pulse length without rising
and falling times. A clear sinusoidal oscillation is obtained.
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Figure 4.3: Finding a matching frequency. The plot shows the dynamics of the two-state system (qubit) when
we sweep the monochromatic drive frequency around the matching frequency that satisfies the resonant blue
sideband transition. Please see the text for the detailed conditions in the simulation.
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Figure 4.4: The first order two-photon sideband transitions in the QRM with various system configuations. 8
different cases are present. The red and blue lines indicate the red and blue sideband transitions respectively.
(a) The sideband transitions by the monochromatic drive fields. (b) The sideband transitions by bi-chromatic
drive fields. Please see the text and legend for detail conditions in the numerical simulation.

~-- RSB,Analytical
RSB Analytical-rwa
% RSB.Simulated

~-- BSB,Analytical
BSB,Analytical-RWA
% BSB.Simulated

1.36 — 56
134 (@) //k (b) /.
~ 5.5 .
5132 A y
& 130 < 54 e
- o {ri'
S x »
3128 e 53] e
1.26
5.2
00 01 02 03 04 05 0.0 01 02 03 04 05
1.30 5.3
ke - e3¢,
—_ 6w e
. 2
§12s S 5.2 *x,.
) “x X
E120 5.1 >
- "%, WX
S11s] (0 s0{ (d) :
X
M9 01 o2 03 o0a o5 *%0 01 02 03 04 05
&4/ 2 (GHz) &g/ 2m (GHz)

Figure 4.5: Matching frequencies (w,) for two-photon red and blue sideband transitions induced by
monochromatic drive fields (w;). The single and double dashed lines indicate the analytically calculated
matching frequencies the red and blue sideband transitions respectively. These are based on the full (single-
dashed) and RWA model (double-dashed). The cross marks indicate the numerically simulated results based
on the full model. (a,b) fq =6.5GHz and f; = 4.0 GHz. (c,d) fq =4.0 GHz and f; =6.5 GHz.



4.4. RESULTS AND DISCUSSIONS 59

4.4.2. MONOCHROMATIC DRIVES

We deal with only the monochromatic drive cases in this subsection. All the system
parameters fy 4, are the same in Sec. 4.4.1. The lines in Fig. 4.5 shows the predicted
matching frequencies analytically calculated. Single, and double-dashed lines indicate
the results based on the full and RWA drive Hamiltonians respectively. We divided the
cases into four different ones (see caption). Except the case in Fig. 4.5b, the full analyti-
cal model explains the numerical simulation results (cross). In the meantime, the lines in
Fig. 4.6 shows the the predicted sideband tranition rates based on Eq. 4.10. Single, and
double-dashed lines indicate the result based on the full and RWA drive Hamiltonians
respectively. We first obtained the matching frequencies based on Eq. 4.9, and plug the
values in Eq. 4.10 to calculate the sideband transition rates. In Fig. 4.6a-b, the red side-
band transition rates predicted by the full model excellently agree with the numerical
simulation, whereas the RWA model fails to explain the simulation. The full model pro-
vides more precise prediction in Fig. 4.6d either. As in matching frequency predictions,
the case of Fig. 4.6b shows an exceptional trend.

The discrepancy between the simulation and analytical predicition in the blue side-
band cases is larger than that of the red sideband cases. This is because the matching
drive frequency f; is much closer to the f; in the blue sideband case, and consequently
the validity condition (¢4/|wg — w¢| < 1) for perturbative approach used in Sec. 4.2 be-
comes weakened.

We need to contemplate the results in Fig. 4.5b and Fig. 4.5d further. In these cases,
the full analytical model is still more accurate than the RWA model in the low ¢, regime.
A magnified view around €;/27= 100 MHz is present in Fig. 4.7. As ¢4 becomes larger,
the analytical calculation based on the full model deviates from the numerical simula-
tion data faster than that of the RWA model. The deviation itself is reasonable since the
our perturbative approach in Sec. 4.2 should breakdown as the drive strength increases.
Since the predicted Qg;, from the full model is larger than that of the RWA model, the
deviation from the simulation is also faster for the full model. From these considera-
tion, we conclude the better consistency between the simulation and the RWA model is
a coincidence.

4.4.3. BI-CHROMATIC DRIVES

We investigate the bi-chromatic drive cases in this subsection. All the system parameters
fa,q,c are the same in Sec. 4.4.1. We define the qubit and cavity friendly drive frequencies
as fyq and fy respectively. We analytically find the proper f;, based on the Eq. 4.11 and
Eq. 4.12, fixing the f4.. €44 and €4, are parameterized as described in Sec. 4.3. We also
analytically calculate the sideband transitions based on Eq. 4.13.

In Fig. 4.8, we compare the matching frequencies obtained from the simulation (cross)
and analytical theories (line). The theory based on the full model gives more consistent
results with the simulation in general although the RWA model also shows almost equal
consistency in the case of Fig. 4.8a-b at large drive strengths. This can be attributed by
the same reason we discussed for Fig. 4.5b. Fig. 4.9 compares the sideband transition
rates calculated by the numerical simulation (cross) and analytical theories (line). The
errors between the numerical simulations and analytical calculations at the large drive
strengths are noticeably larger than those of monochromatic drive cases. This indicates
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that the accuracy of the perturbative method in Sec. 4.2 becomes worse with more com-
ponents of the drive Hamiltonian. Nonetheless, we can observe that the theory and sim-
ulation converge with small drive strength limit. This suggests that our analytical ap-
proach in Sec. 4.2 is correct as long as the approximation conditions € 4,44/ lwg—w¢| < 1

nicely hold.

4.4.4. ULTRASTRONG COUPLING REGIME

So far, we have fixed g/27 by 200 MHz. In this subsection, we perform the simulation
with different g while fixing the drive strengths and the other system parameters. We
use f; = 4.0 GHz and f; = 6.5 GHz in the simulation. We scan g from 100 MHz (strong
coupling regime) to 500 MHz (ultrastrong coupling regime).

In Fig. 4.10, we plot the matching frequencies and transition rates for red (a,c) and
blue (b,d) sideband transitions induced by monochromatic drives. €;/2r used to induce
the red and blue sideband transitions are 100 MHz and 300 MHz, respectively. The full
analytical model explains the numerical simulation results better than the RWA model
does. We can see the discrepancy between the full analytical model and numerical sim-
ulation in Fig. 4.10-d as g becomes larger whereas the full analytical model excellently
explains the simulation results for all range of g in Fig. 4.10-c.

In Fig. 4.11, we plot the case of bi-chromatic drives. We also use f; = 4.0 GHz and
fe = 6.5 GHz in the simulation. In these plots, we fix wg4./27 by w./27 —500 MHz and
paramterize €44 and €4 as in Sec. 4.4.3. The predicted matching frequencies are con-
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sistent with the numerical simulation results. The sideband transition rates agrees well
with the numerical simulation in the small g limit, and the full model always provides
better predictions for Qg than the RWA model does. We can see noticeable discrepancy
between them with larger g in both red and blue sideband transitions.

4.5. CONCLUSION

In this work, we analytically and numerically study the first order sideband transitions
induced by two-photon drives in quantum Rabi Hamiltonian. We confirm that both
matching frequencies and sideband transition rates can be excellently predicted based
on the analytical calculations when the parameters are in the perturbative regime, where
e/lwg—wq4| < 1 holds. We also confirm that the RWA significantly mislead the prediction
on the matching frequencies and sideband transition rates except a few special cases.
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SIDEBAND TRANSITIONS IN A
TWO-MODE JOSEPHSON CIRCUIT
DRIVEN BEYOND THE ROTATING
WAVE APPROXIMATION

Driving quantum systems periodically in time plays an essential role in the coherent con-
trol of quantum states. The rotating wave approximation (RWA) is a good approximation
technique for weak and nearly resonance driving fields, experiments often require large
detuning and strong driving fields, for which the RWA may not hold. In this work, we
experimentally, numerically, and analytically explore strongly driven two-mode Joseph-
son circuits in the regime of strong driving and large detuning. Specifically, we investigate
beam-splitter and two-mode squeezing interaction between the two modes induced by
driving two-photon sideband transition. Using numerical simulations, we observe that
the RWA is unable to correctly capture the amplitude of the sideband transition rates,
which we verify using an analytical model based on perturbative corrections. Interestingly,
we find that the breakdown of the RWA in the regime studied does not lead to qualitatively
different dynamics, but gives the same results as the RWA theory at higher drive strengths,
enhancing the coupling rates compared to what one would predict. Our work provides in-
sight into the behavior of time-periodically driven systems beyond the RWA, and provides
a robust theoretical framework for including these in the calculation and calibration of
quantum protocols in circuit quantum electrodynamics.

Parts of this chapter will be published in Physical Review Research.
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5.1. INTRODUCTION

Time periodic driving is a prominent technique for the in — situ coherent control of
quantum dynamical processes. However, exactly solving the quantum dynamics of the
system with time-varying Hamiltonian is particularly difficult [28, 31]. As long as the
drive is weak enough and nearly resonant with the quantum state transition of a target
observable, the rotating wave approximation (RWA) may provide a good estimate of the
dynamics. However, understanding the physics of quantum systems beyond the RWA is
required from both from a fundamental and a practical perspective. In the realm of faith-
ful quantum information processing (QIP), the need for fast gates in order to suppress
quantum errors requires drives strengths that could exceed those valid for the RWA. Mo-
tivated by this, theortical effort has been directed to understanding quantum driven sys-
tems beyond the RWA [28, 31], along with many experimental works under strong driv-
ing across many different physical systems. [54-61]. Existing studies exploring driven
systems beyond the RWA, however, focus on a single driven mode and do not address
the coupling of different degrees of freedom, such as the use of driving fields to induce
sideband transitions between modes.

Sideband transitions ubiquitously appear in a variety of physical systems [26, 62—
68]. Driving systems with appropriately chosen frequencies can yield engineered inter-
actions among different degrees of freedoms. For engineering a specific interaction, it
is important to accurately estimate the transition rates. In many cases such as trapped
ions, cavity-optomechanics, and Raman transitions [65-68], the driving parameters for
sideband transitions typically satisfy the requirements of the RWA. However, this is often
not the case for the circuit quantum elecrodynamics (cQED) platform, one of the most
promising QIP platforms in recent years, where a strong and far off resonant driving be-
yond the RWA is often required. Nonetehless, current approaches of such quantitative
analysis still rely on the application of the RWA. When the sideband driving frequencies
are far off-resonant from the transition frequencies of the system, in which the condi-
tions for the application of the RWA should not hold, it is unclear if it is currently possible
to make reliable predictions of the transition rates.

In this chapter, we study the sideband transition rates in a two-mode Josephson cir-
cuit induced by strong external time-periodical driving. The circuit comprises transmon
[20] dispersively coupled to a resonator mode. Specifically, we study beam splitter (BS)
and two-mode squeezing (TMS) interactions between each mode, which are the most
fundamental forms of the sideband transitions in such two-mode systems. For our de-
vice, the required driving parameters are close to (TMS coupling), or far beyond (BS cou-
pling) the RWA regime. We confirm a simple relation between the transition rates and
frequency shifts that explains the data in both regimes at once.

We furthermore perform numerical simulations to support our findings, and derive
an analytical perturbation expansion going beyond the RWA that is validated by our nu-
merical results. Our findings indicate that although the RWA is clearly violated and sig-
nificantly underestimates the mode frequency shifts and the sideband transition rates
for a known driving strength, the breakdown of the RWA does not result in qualitatively
different behaviour, but instead its effects in our measurements can be reproduced by
the RWA theory using a larger drive field. Although the confirmation of breakdown of
the RWA is therefore only possible through an independent calibration of the drive field,
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our results show the importance of including counter-rotating terms for accurate calcu-
lations of the sideband transition rates.

5.2. THEORETICAL DESCRIPTION

We derive an analytical expression taking a similar approach in [26, 69] but breaking the
RWA. The total Hamiltonian is given by,

Hég),)s (w(O) (to))éf'd+w(0),6)(,6+g(0c+6xT)(ﬁ+,BJr 1)
+xP@+ahtne.

Here, w( and w(o) are the resonant frequencies of each mode. @ and f are the mode de-

struction operators of the transmon and the resonator modes, respectively. y, is a Duff-

ing nonlinearity of the transmon mode. g is a transverse coupling between the transmon

mode and the resonator mode. In addition to Hég),)s, there is the driving Hamiltonian

PI;O) = Qgcoswqt(@+a'), where Q4 and wy are the driving amplitude and frequency,

respectively. Then the total Hamiltonian A io)t is give by H g),)s + H 0
It is often useful to rewrite above Hamiltonian in the normal mode basis (The normal
mode annihilation operators are @ and b):

A~ (w(l) +xna'a+oPb'h

A a4 (5.2)
L [y4a+ah + g b+ b

With typical circuit QED parameters, y; is approximately the same with )((IO). xr is the
inherited Duffing nonlinearity to the resonator mode by the coupling g. In the dispersive
coupling regime (Jw; —w,| > g), & in ﬁd can be approximated by & [26, 70]. Then, the
driving Hamiltonian can be approximated to A = Q, cosw,t(a+ a').

The total Hamiltonian in the normal mode basis is then given by H g)t =H S’)S IA{éU.
This can be perturbatively diagonalized by taking Schrieffer-Wolff (S-W) transformation
[53] U(t) = S with an appropriate generator S = £(nal (1) —&(H)* a When A >> y,, We can
choose &(t) = Qd e‘“”d” + %eiwdt. Here, A = a)(t )4y, —wgand L = w )+ ¥+ wg. In this
work, we treat beam splitter (ab' + a'b) and two-mode squeezing (ab + a'b') interac-
tions induced by two-photon driving. These appear with frequency matching conditions
204~ 0 0|,

After taking Schrieffer—Wolff transformation, collecting only the original and relevant
derived terms yields,

Higy = (w(“ +60+ pata+ @ +5w<1>)iﬁza

. (5.3)
i a+aty + b+ bT) + Hygp,

where Hj, = Q(D/Z(alfr 20at 1 gt he~2@at) when 204 = |0V ~wM|, and Ay = lelJ)/Z(dBeizwdf+
atbte 204 Y when 2w, = Iw(l) + w(rl)l Here, leb) is the interaction rate for both the BS
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and TMS interactions. 6w(t‘lz and Qilb) can be expressed by,
1 1 2
M _ 202 4= 4=
5a)m = ZQdXtvtr X (AZ + AY + 22),
1 1 2
1 _ 2.3/4.1/4
Qo = g0t 1 g+ 5 52
In the low excitation limit, the total Hamiltonian can be reduced to,

(5.4)

N arn A

Hlov ~ (wt+5wrm*a+(wr+5wr)b*b—E”a*afaa
A (5.5)

—éb*b*bb— 244" ab" b+ Hyp,.

wyrand A; rir (Arr = VAt Ar) correspond to the transition frequencies and anharmonic-
ities that we observe in the experiments. We can obtain A;,.;» by numerically diagonal-
ize Eq. B.1 [71]. The difference between A and y is due to the off diagonal elements in

Eq. 5.3. We empirically find that § a)(tli and Q(Slb) in Eq. 6.7 should be renormalized to dwy,

and Qgp,
1 2 1
Swir=-Q%A +— ,
t,r 2 d“ittr (AZ AS 22) 5.6
2 1 )
Qo = —Q2 A3/4 4114 L=
sb d‘'t r (AZ AS 22)
When applying the RWA, they are given by,
1 1
5w(tR:NA) = _QZAt,tr X
2 A (5.7)
(RWA) _ 2 2314 41/4
st = EQdAt Al’ X p

It is also interesting to investigate the case where only the counter-rotating terms in Hy
affects the system. In this case the frequency shifts and sideband transition rates are
given by,

1 1
6“’(th) = EQ?iAt,tr x 52
- 1 1 (5.8)
_ 2 23/4 41/4
st = EQdAt Ar X ?

The detailed derivation is provided in Appendix 5.6.1. When knowing dw,, replacing A
and X with A+dw; and Z+d6w, provides more accurate estimates. It is worthy to point out
that in many previous studies, the derivation stops at Eq. 6.2. However, the discrepancies
between A; . ;r and y;,r;r are sometimes significant depending on the system parame-
ters. Renormalization of dw;,, and Qg is therefore of great importance for the accurate
prediction of the quantities.

Eq. 5.6 and Eq. 5.7 suggests that the RWA significantly underestimates dw;,, and Qg
when A ~ Z but the ratios among them are identical regardless of whether using the RWA
or not. Itis also interesting to note that there is correlation between the co- and counter-
rotating terms that gives a significant contribution to the frequency shifts and sideband
transition rates.
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Figure 5.1: Overview of the experiment. (a,b) Schematics of the beam splitter (a) and two-mode squeezing
(b) interactions. Black, magenta and green wavy arrows indicate driving, transmon mode and resonator mode
photon respectively. (c,d) Energy level diagrams. Dashed arrows indicate decay of transmon and resonator.
Solid green arrow represents probe tone through resonator. (e) Simplified circuit diagram of the device. (f,g)
Electromagnetically induced transparency (EIT) spectrum of the resonator calculated by the numerical model
n 5.5 when Qg /27 is 2, 4 and 6 MHz respectively (from top to bottom). Red and blue curves correspond to
the BS and the TMS interaction respectively. See main text for detail simulation conditions.
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5.3. EXPERIMENT

Both the BS and the TMS interaction are schematically described in Fig. 5.1a and Fig. 5.1b.
Two black wavy arrows indicate the two-photon drive. Fig. 5.1c and Fig. 5.1d denote en-
ergy diagram descriptions. In all descriptions, the resonator and the transmon mode
are colored by green and magenta respectively. In addition to the two-photon drive, we
have a weak probe field (green) through the resonator mode to estimate Qg through the
resonator response. The decay rate of both modes are « and y, respectively. The energy
levels of the resonator mode are denoted by |0), [1), |2),... and those of the transmon
mode are denoted by |g), |e),...

Fig. 5.1e depicts a simplified circuit diagram of the system. We drive the transmon
mode through a direct driveline and probe the resonator mode through another feed-
line coupled to the resonator. Fig. 5.1f and Fig. 5.1g show how the probe transmission
through the resonator varies with increasing Qg for both BS (f) and TMS (g) interaction.
The curves are obtained by solving a numerical model based on Eq. 5.5 with dissipation
operators. The decay rates of the resonator and transmon modes in the calculation are
/2w = 10.2 MHz and y/2n = 129 kHz. These parameters are similar to those in the ex-
periment. Qg /27 is set by 2,4, and 6 MHz in both BS and TMS interaction. The detailed
information on the experimental setup and device is provided in Appendix 5.8.1.

In the experiment, we deliberately design a large « to facilitate the detection of the
interactions through the resonator transmission even with small Q. As long as Qg is
smaller than hf - Kl, our system satisfies the condition for electromagnetically induced
transparency (EIT) [72]. In this regime, Qg; and the other parameters independently
feature the transparency window in the middle of the transmission spectrum of the res-
onator. Thereby, we extract Qg by fitting the resonator transmission. The resonator
linewidth is overwhelmingly larger than the linewitdth of the qubit and therefore the
system is in the EIT condition as long as Qg is less than around 10 MHz.

The observed w;,, are 2 x 6.8112 and 4.0755 GHz respectively. The observed A; is
27 x 150 MHz and A, can be deduced by A;, ~ v/A;A;. Since the resonator has a broad
linewidth, we cannot simply extract A, from photon number splitting of the resonator
or the transmon spectrum. We obtained A;,/2n =~ 497 kHz from another calibration
method in Appendix 5.8.2. From these observations, we can calculate the system pa-
rameters in Eq. 5.1 and Eq. B.1.

In Fig. 5.2, we present the procedure used for determining the frequency match-
ing conditions for both the BS and the TMS interactions. If we do not take into ac-
count that the driving field shifts the resonance frequencies of the modes, the matching
frequencies w4 satisfies 20,4 = |0 = ,|. In reality the resonances undergo shifts,
Wy — ‘”,t,r = w;,r + 0wy, and in our system we have dw; > dw, = 0. Thus, we need
a careful adjustment of w, around the expected frequency matching conditions. We
define 20w’ ,, = |0} + w,| as driving frequencies satisfying the matching condition con-
sidering w,,,. We swept the driving frequency and find the condition w, = ), ,,. We
obtain the matching conditions when the transparency window is located at the center
in the transmission spectrum. Also, from w/,, ,,, we can extract Sw;. Roughly, w4 /27 =
1.36 and 5.44 GHz are expected for both the BS and the TMS interaction, respectively.
For the BS interaction, a)’m a1 1s extremely far off-resonant (A/Z = 0.6). This regime of the

driving parameter has not been explored. On the other hand, for TMS interaction, /), ,,
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Figure 5.2: Spectroscopic observation of sideband transitions. (g) Drive frequency sweep around the matching
condition for beam splitter (BS) interaction. (h) The same for two-mode squeezing (TMS) interaction. dwmar
is the deviation of the driving frequencies from the matching conditions (v, — w’m at)- (a-f) The cross section
of the dashed lines in (g) and (h) respectively.
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Figure 5.3: Driving power dependence of sideband transition rates. Left (red) : BS interaction. Right (blue)
: TMS interaction. (a,b) Resonator transmission spectrum (circle) with increasing driving amplitude (top to
bottom) while keeping w’m ar = 0q- Solid curves are fits to the data based on numerical model. From these fits
we extracted Qgp, and 6w¢. The probe amplitude Qp is 277 x130.6 kHz except that Q, is ten times larger for the
lowest data of (a). (c) Observed Qgj, with respect to corresponding dw; (circles). Solid line indicates a theory
based on Eq. 5.6. Fitting errors in Q g, are around 1% and not plotted in the figures.



5.4. NUMERICAL SIMULATION 73

is relatively closer to the RWA regime (A/Z = 0.11).

In Fig. 5.3 a-b, we plot a portion of the transmission spectrum observed in the ex-
periment. We scan the sideband driving power preserving the condition w, = ), ,,. The
solid curves are the fits based on the numerical model that we used in Fig. 5.1f-g. In the
fitting process, the free parameters are Qgj,, ¥ and w41, while the other parameters are
fixed. As increasing the driving amplitudes, one can readily see the transparency win-
dows behave as expected from Fig. 5.1f-g. In Fig. 5.3c, we plot Qg with respect to the
corresponding dw¢, both of which are extracted from the fitting. The statistical errors in
extracting Qj, from the fitting are around only 1% and thus not presented in the figures.
We can find a linear correlation between dw; and Qgj,. The slope of the solid line is ob-
tain from Eq. 5.6, with no free parameters. It is intriguing to point out that both BS and
TMS data lie on the same theoretical plot, although the driving parameters for each lives
in distinct regimes.

In order to directly identify the breakdown of the RWA, we need to calibrate Q; from
an independent method not relying on the transmon frequency shifts. If we know the
microwave power at the device (P;), and the coupling rate between the transmon and
drive line (y.y), then Qg is simply given by /P;y.,. However, the uncertainty in the
driveline attenuation set a challenge. Only 1 dB error in the attenuation induces a 10%
error in Qg , which is critical to our study. In the future study, this challenge can be cir-
cumvented by using an additional ‘sensor’ qubit as recently demonstrated in [73].

5.4. NUMERICAL SIMULATION

We performed a comprehensive numerical analysis with the experimental conditions.
We simulated the system’s time domain dynamics by solving the dpsys/dt = —i [ﬁg‘;’s +
FI&O) » Psys] without including any dissipation. s is the density matrix of the system. As
in the experiment, we swept the driving frequency for a given Q; and find the frequency
with which a full oscillation takes place in transitions |e0) <= |g1) (BS) or |g0) <= |el)
(TMS). Qgp, is then given by the frequency of the oscillation. More detail descriptions on

the method of the numerical simulation are given in Appendix 5.7.

In Fig. 5.4, we present the numerical calculation results (circles, triangles and squares)
and corresponding analytical calculation results (solid, dashed and dotted line). The cir-
cles and solid lines refer to the results with the FIQ,)S + ﬁg)). In the plots, triangles and
squares refer to the simulation results dropping the counter-rotating and co-rotating
driving terms in FI&O). The analytical calculation is based on the Eq. 5.6. The dashed
and dotted lines are obtained by Eq. 5.7 and Eq. 5.8 respectively.

In Fig. 5.4a-b, we compare sideband transition rates obtained by the numerical sim-
ulations (circles, triangles and squares) with the analytically calculated values (solid,
dashed and dotted line). In Fig. 5.4 c—d, we present the frequency shifts of the transmon
mode under the matching conditions for given the driving amplitudes in x-axes. The
driving frequencies for each data points are set to satisfy the matching conditions for the
given driving amplitudes. Although the RWA significantly distort the Qg and dw;, the
breakdown of the RWA is not visible in the Qg versus dw; relation as seen in Fig. 5.4 e-f.
The simulation data with the RWA perfectly lie on the data without the RWA. Therefore,
a careful treatment is required when estimating Q; through Qg or dw,. Relying on the
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Figure 5.4: Influence of counter rotating terms of the driving on the sideband transition rates and the mode
frequency shifts for BS (red, left) and TMS (blue, right) interactions. Symbols: numerical simulations with A g)))t
(circle), under the rotating wave approximation (RWA) keeping only co-rotating terms in FI;O) (triangle), and
keeping only counter-rotating (CR) terms in I:Iélo) (squares). Lines: analytical theory for I:Ig)) (solid), the RWA
in FI;O) (dashed), and only CR terms in ﬁg)) (dotted). Dynamics beyond the RWA is clearly observed for in the
transition rates (a,b) and frequency shift (c,d) for both red and blue sideband driving. For the red sideband,
even the purely counter-rotating terms lead to a non-zero coupling, although the deviation of the full result
from the sum of the RWA and purley-CR calculations indicates additional contributions from correlations of
the two. (e,f) Although discarding the CR terms leads to large correction of the Qy, the relation between Qg
and dw; for the full A9 remains the same and fall on the same line (circles, triangles): the error that arises in
discarding the CR terms is an incorrect value of both Qg and dw; for a given known driving strength.
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RWA results in significant overestimation of Q.

5.5. CONCLUSION

To summarize, we performed the quantitative investigation of the two-photon assisted
four-wave interactions in the superconducting circuit. Over the entire range of the driv-
ing amplitudes in this work, our theoretical, numerical and experimental values excel-
lently agree with one another, suggesting that the faithful quantitative expectation of
sideband transition rates is possible. This work expands our understanding in the strongly
driven quantum systems. The findings through this work would not be restricted within
the system we investigate here.

Kerr or Duffing type nonlinearity ubiquitously appears in many physics disciplines

other than circuit QED such as nonlinear optics, cavity optomechanics, and atomic physics

[74-77]. Therefore, we believe our findings can influence a variety of types of research.
This work also uses multi-photon assisted transition, which is widely adopted when a de-
sired transition is dipole forbidden [19, 49, 62, 63, 78-88]. In a perspective that the stud-
ies of multi-photon transition beyond the RWA are mainly limited to theoretical cases
[89-91], our work would attract attention.

5.6. APPENDIX-THEORETICAL DESCRIPTIONS

5.6.1. DERIVATION OF SIDEBAND TRANSITION RATES

We perturbatively diagonalize the total Hamiltonian by applying the unitary transforma-
tion U(¢) to the total Hamiltonian A lgzl))t =H S,)s + Hs) , where A, S,)S and Hy are defined in
the main text. The transformed Hamiltonian H';,; is given,

ﬁ,tot:UﬁﬁT*‘i(atﬁ)ﬁT- (5.9

Here, U(r) = 508" =507 @ and ¢(p) = %e‘i‘”dt + %ei‘”dt. U(t) simply displaces the field

operator a(a') by -£(-&*). Finally, A’ gjt can be expressed by,

(1 ot . A
H’(m)t = (a)(tl) +ynata+oVb'h
1/4 t vacg o, ih ]t (510
~ A *
12 Xt (a+a' -¢)—-¢ (N+yx, " b+bH| .
For given wy, collecting the non-rotating terms at the transmon and resonator rotating
frame in Eq. 5.10 yields Tab. 5.1. We only list the terms that represent the interactions

between different modes or the frequency shifts of each mode.

5.6.2. MODELING TRANSMISSION SPECTRUM

The resonator transmission spectrum is proportional to Tr;[p Ssi)]. Here, ps is a steady
state density matrix of the transmon and resonator system, and Tr, indicates trace over
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. Matching condition
Operator | Magnitude (xQ?/4) g
(wg ~)
ata thr 1 None
x ( A2 + = AZ 22)
b'b Yer X2 AZ +—+—) None
ab"‘ X%/‘l }‘/4 ( + & + 22) | (1) (1)|/2
aTbT X%/4X}’/4 (AZ + o + _) (1) + (1)5”/2
abTZ X}/4X§/4 X(A + =_) |2(,()(1) (l)l
&U}Tz X}MX?M X(% + 4 Zw(rli +w(fli
aZbT X?MX}M X(% + ::) |2w( ) ( )l
at2pt 1y x (% +34) Za)m +w(rl)

Table 5.1: List of a portion of the non-rotating terms at the transmon and resonator rotating frame for given
w g derived from the forth power term of Eq. 5.10.

the transmon states. pgs can be calculated based on the below Eq. 5.11
ap _ i [

dt  h
YorisarKoiira

+=9 +=9[b
2 lalp 2 [blp

Higw + Hy(1),6(0)]
(5.11)

Hy () = Q,cos (wp 1) is the Hamiltonian of the prove field. 2[G1p is defined by 2656 -
6'Gp— p6T 6. « is the decay rate of the resonator mode, and v is that of the transmon
mode. We neglect the pure dephasing rate of the transmon mode. Since we employ a
single Josephson junction design, it is expected that the coherence time of the transmon

dp s = (), then we can

mode is only limited to the decay time. For a steady state, we have
calculate p¢s from Eq. 5

Transmission spectrum is a function of a set of variables (wg, wp, Qp, Qsp, W}, W,
Ay, Ar, Agr x, and y). Here, w, is the independent variable in the fitting process. We
fix x, w;, A;, A, and A, by the values we obtain from the independent measurement
without driving field. These quantities are hardly shifted under the driving. w, is given
by the experiment. The free fitting parameters are w;, Qgp, Qp, and y. These quantities

are extracted from the fitting process.

5.7. APPENDIX-NUMERICAL SIMULATIONS

In this section, we describe the detail procedures of the time-domain numerical simu-
lations. The dynamics of the system is governed by the equation, dps,s/dt = —i [Hgg)s
ﬁ;o) (1), Psys), where H, S))/)s and ﬁ;o) follow the same definition in the main text. Here, pys
is density matrix of the transmon and resonator. We do not take the dissipation into
consideration in the time-domain dynamic simulations. Fig. 5.5a shows the simulated
dynamics (blue line) when the driving frequency satisfies the matching condition for
two-mode squeezing (TMS) interaction. The system parameters used in the simulation
are the same with the experimental conditions. The sideband drive (Q,;(#), green line) is
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Figure 5.5: Illustration of the method of the numerical simulations. (a) The blue line indicates the dynamics
of the system when the driving frequency satisfies the matching condition of the TMS interaction for given
driving amplitude (27 x 300 MHz). P(el) and P(g0) refer to the population of each state. We assume the time-
dependence in the sideband driving amplitude (green line), with 10 ns rising and falling time. The definition
of the driving pulse length is graphically depicted by green arrow. We adjust the pulse length such that almost
a full state transfer from |el) to |g0) takes place. (b) The area enclosed by the dashed square in (a) is zoomed in.
A significant change in P(el)-P(g0) can be identified. (c) We repeat the simulation with a various pulse length
and plot P(el)-P(g0) at the end of each pulse. (d) The area enclosed by the dashed square in (c) is zoomed in.
The fidelity of the state transfer from |el) to |g0) is 99.85 %.
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given as a pulse with 10-ns of Gaussian rising and falling. The arrow indicates the length
of the pulse. Fig. 5.5b shows the area enclosed by the dashed square in Fig. 5.5a. One
can identify the qubit and resonator states significantly vary during the rising and falling
duration of the sideband pulse. In Fig. 5.5c, we sweep the length of the sideband pulse
and plot the states of the system at the end of the pulse. We obtain a clear sinusoidal
curve. Fig. 5.5d shows the area enclosed by the dashed square in Fig. 5.5c.

We sweep the driving frequency for each simulation data point and find the optimal
frequency that yields the resonant sideband transitions. This procedure is described in
Fig. 5.6. We chose the w,; when the oscillation has a maximum contrast. We present
the simulation data with different driving Hamiltonian in Fig. 5.7. The solid lines refer
to the results with a full driving Hamiltonian containing both co- and counter-rotating
terms. The dotted lines (dashed lines) are obtained by the simulations with only co-
rotating (counter-rotating) terms in the driving Hamiltonian. See the caption for the
detail conditions in the simulations.

5.8. APPENDIX-EXPERIMENTAL METHODS

5.8.1. EXPERIMENTAL SETUP

An optical microscope image of the device is given in Fig. 5.8a. The device is comprised
of a transmon and two co-planar waveguide resonators. The design of the device is the
same as the one used in our previous work [47]. Only one of the resonator was used in
the experiment. Besides, there is a drive line directly coupled to the transmon. The base
layer of the circuit is fabricated from 100 nm niobium titanium nitride (NbTiN) film on
a Silicon substrate. The detail precudure to prepare the NbTiN film is described in [39].
The transmon is comprised of a Al-AlOx-Al Josephson junction and a finger capacitor.
The transmon is not flux tuneable and therefore the frequecy is insensitive to the external
magnetic field noise.

A cryogenic wiring diagram and measurement electronics are given in Fig. 5.8b. The
device is mounted at the mixing chamber plate of a Bluefors LD-400 dilution fridge.
The temperature of the plate is around 10 mK during the measurements. The device
is enclosed within a cylindrical cooper shield to block the infrared radiation. To block
the external magnetic fields, the copper can is enclosed by a Aluminum shield and two
Mu-metal shields. The shields are not represented in the figure. We used a vector net-
work analyzer (Keysight N5222A) to measure the resonator transmissions. An additional
microwave source (Keysight N5183B) was used for sideband drivings. We used a non-
dissipative low pass filter (Minicircuit VFL-3800+) in the drive line (third column).

5.8.2. DEVICE PARAMETERS EXTRACTION

In this section, we provide the procedure to calibrate the cross anharmonicty (A;,) be-
tween the transmon and resonator modes in the experiment. We use the fact that the EIT
transmission spectrum of the resonator depends on the A in the nonlinear response
regime. In Fig. 5.9, we simulate the resonator transmission spectrum with a beam spliter
interaction (Qg /27 = 1.2 MHz). The model we used in the simulation is based on Eq. (3)
in the main text including dissipation operators. Also, we set 0w ;;4:/27 by -300 kHz. In
the simulation, the linewidths of the resonator and transmon modes are the same with
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Figure 5.8: Experimental setup. (a) An optical microscope image of the device used in the experiment. (b) A
cryogenic wiring diagram and measurement electronics.
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Figure 5.10: Calibration of the cross anharmonicity (A;y). (a) The transmission spectrum of the resonator
while scanning probe power (P;,). The transmon and the resonator modes are coupled by a beam splitter
interaction. Horizontal dashed and solid line indicate the data when P;,, is 0 dBm and -15dBm respectively.
(b-c) The spectrum at the probe powers indicated in (a) with horizontal lines. The circles are experimental
data and the solid curves are fits based on Eq.3 in the main text. From the linear response date (c), we extract
Qgp, wg, wr,x and y by the fitting. When fitting the data in (b), these quantities are fixed with the extracted
values obtained from (c). Then we extract p and Az
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Figure 5.11: Calibration of the cross anharmonicity (A;;) from the resonator response. The lines indicate the
resonator transmission when the transmon is the ground state (solid) and approximately 50:50 mixed state
between the ground and first excitation states (dashed). The resonance is shifted by 520 kHz.

those in the experiment. We simulate in both linear response (Fig. 5.9a) and nonlinear
response (Fig. 5.9b) regimes. In linear response regime, we cannot distinguish the A,
from the transmission. Meanwhile, the effect of the A;, is prominent in the nonlinear
response regime.

Fig. 5.10a shows the measured resonator transmission spectrum while sweeping the
probe power. Py, is the resonator probe power measured at the output port of the vector
network analyzer (VNA). One can notice that the contrast of the transparency window
near the center decreases with increasing probe power. We first fit the resonator trans-
mission data in the linear response regime (solid line), setting Q¢p, wg4, @, k and y as free
parameters. Then, we fit the data in the nonlinear response regime (dashed line) while
fixing all the parameters obtained from the first fitting and only Q, and A;; are free fit-
ting parameters. When fitting the data in the linear response regime, we set A, = 0 and
Q,/27=10 kHz. The choice of A can be justified since we already know A, hardly af-
fects the transmission in the linear response regime. Fitting results in both regimes are
given in Fig. 5.10b and Fig. 5.10c. We obtain A;,/271=497 kHz and Q),/27=4.35 MHz from
the data in the nonlinear regime.

We can also obtain A;, from the fact that the resonator transition frequency depends
on the transmon’s quantum states. Fig. 5.11 shows how the resonator transmission spec-
trum changes as populating the transmon’s first excited state. We drive the transmon
mode with its resonant frequency and increase the power until we cannot see the further
shift in the resonator frequency. With this drive power, we can approximate the trans-
mon’s state 50:50 mixed state between the ground and first excited states. We observe a
frequency shift of 520 kHz, which can be interpreted as A;,.

Ay extracted from Fig. 5.11 is slightly larger than the value obtained from Fig. 5.10.
The discrepancy of the expected sideband transition rates based on both is about 2 per-
cent. In the main text, we use A;,/27=497 kHz obtained from Fig. 5.10. This approach is
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Figure 5.12: Comparison between the qubit decay rates (y) extracted from the EIT spectrum fitting (dots) and
the two-tone spectroscopy with a low probe and spectroscopy power (solid line).

advantageous as we can extract the resonator probe power and A;, simultaneously, and
consequently it guarantees more consistency.

5.8.3. TRANSMON DECAY RATE ANALYSIS

In the fitting process to extract the sideband transition rates, the free fitting parameters
other than Qg are y and dw,,4;. We also present the extracted values for y and 6w ;4¢
n [92]. In this section, we especially focus on the y. Fig. 5.12 shows the fitted y (dots)
with respect to corresponding Q. These values are consistent with the y from the low
power two-tone spectroscopy (dashed line) in general. For BS interaction case, some
data points far deviate from the dashed line. We attribute this to the undesired higher
order sideband interactions. The matching frequency for BS interaction is close to the
matching frequency for single-photon assisted sideband interaction between |e0) and
|g2). Since the resonator mode has a much larger decay rate, this undesired interaction
can increase the effective decay rate of the transmon mode. The rightmost two data of
TMS interaction case also far deviate from the solid line. We cannot find the systematic
reason for the discrepancy. We could attribute it to the fluctuation of the transmon’s
decay rate with respect to time.

5.9. APPENDIX-ADDITIONAL ANALYTICAL AND NUMERICAL ANAL-

YSIS

In this section, we confirm that Eq. 5.6 more accurately predicts the dw; and Qg than
Eq. 6.7. In Fig. 5.13, we compare the analytical calculation based on Eq. 6.7 and nu-
merical simulation results in Fig. 5.4. We can clearly see the discrepancy between the
analytical and numerical results becomes larger than that in Fig. 5.4.

In Fig 5.14, we perform the additional simulation with various system parameters
and compare the numerically simulated sideband transition rates (Qg;,-Sim) to the the-
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Figure 5.13: comparison between analytical and numerical calculations. All the contents in the figures are the
same as Fig 5.4 except that the lines are obtained based on Eq. 6.7.

oretical calculations (Q,;-Th). We compare two different theoretical approaches based
on Eq. 6.7 and Eq. 5.6 respectively. Except the one case (Fig 5.14-d), Qg,-Th based on
Eq. 5.6 are closer to Qg,-Sim. Even in Fig 5.14-d, Qg,-Th based on Eq. 5.6 is more accu-

rate with low driving amplitudes.
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Figure 5.14: Additional simulation results (Q},-Sim) and comparison to the analytical theory (Q-Th). (a-b)
BS interaction. (c-d) TMS interaction. Simulation is performed with four different system parameters (see

legend). t(or) are defined by wg/ 2m. g/2m in the simulation is 200 MHz. f;f)r) in (a,c) are 6.5 and 4.0 GHz

respectively. ft(or] in (b,d) are 4.0 and 6.5 GHz respectively.






TUNEABLE AND WEAKLY-INVASIVE
PROBING OF A SUPERCONDUCTING
RESONATOR BASED ON
ELECTROMAGNETICALLY INDUCED
TRANSPARENCY

Superconducting cavities with high quality factors play an essential role in circuit quan-
tum electrodynamics and quantum computing. In measurements of the intrinsic loss
rates of high frequency modes, it can be challenging to design an appropriate coupling
to the measurement circuit in such a way that the resulting signal is sufficiently strong but
also that this coupling does not lead to unwanted loading circuit, obscuring the intrin-
sic internal loss rates. Here, we propose and demonstrate a spectroscopic probe of high-Q
resonators based on the phenomena of electromagnetically-induced transparency (EIT)
between the resonator and qubit in the weak dispersive coupling regime. Applying a side-
band drive signal to the qubit, we observe an interference dip originated from EIT in the
qubit spectroscopy, originating from the quantum interference between the qubit probe
signal and sideband transition. From the width and the depth of the dip, we are able
to extract the single-photon linewidth of the resonator from an analytical model. Work-
ing in a previously unexplored regime in which the qubit has a larger linewidth than the
resonator reduces the technical challenge of making a high-coherence qubit and is advan-
tageous for remaining in the weakly-invasive limit of coupling to the resonator. Further-
more, the sideband and the dispersive coupling between the resonator and the qubit can
be tuned in situ controlling the strength of the sideband drive power. Thisin—situ tune-
ability allows the technique to be applied for efficient measurement of the resonator loss

Parts of this chapter has been published in Physical Review A 102 053721 (2020).
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rate for any quality factor below a fixed upper bound, on the order of 108 for our device,
allowing a wide range of quality factors to probed using a single design.
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6.1. INTRODUCTION

Superconducting resonators with high quality factors play an important role in the fields
of quantum science and information. One example includes quantum computing based
on encoding of quantum information in the bosonic modes represented superconduct-
ing resonators, which is particularly attracive for the implementation of quantum error
correction [[22], [23]]. In this scheme, a harmonic system such as an ion’s mechanical
mode or a photonic mode carries the quantum information instead of a two-level quan-
tum bit [[23], [24]]. For these, and many other, applications, a longer lifetime of the
resonator is highly desired. However, in order to implement near-lossless resonators, it
is crucial to have a technique that is able to determine what the intrinsic linewidth is of
the superconducting resonator at the single photon level.

A common spectroscopy approach for determining the loss rate of a superconduct-
ing resonator is to couple the resonator to external transmission lines and measure its
transmission or reflection spectrum. A disadvantage of this approach is that the res-
onator loss rate induced by the external channel (x.) can dominate the total loss rate
x of the resonator. In principle, internal and external loss rates (x; ) can still be inde-
pendently extracted, although in practice imperfections in the microwave impedance
of the measurement setup can result in asymmetric lineshapes that complicate the in-
dependent determination of the two [93], [94]. In particular, extracting kx; can become
challenging when «, > «;. One approach for mitigating this problem is to ensure that
K¢ < k;, in which case the internal loss rate is determined by the total linewidth [95]. A
disadvantage of this approach, however, is that the signal-to-noise ratio of the measure-
ment is reduced, and it can become challenging to measure at single-photon excitation
levels.

Determining the appropriate value of x, to design for such spectroscopy requires
a priori estimate of the order of magnitude of x;, which presents a challenge as the
value of «; can be difficult to predict. This is a problem in particular in planar res-
onators, in which «; can be strongly affected by surface contamination that is difficult to
control. An alternative non-invasive technique, which is unaffected by the possible un-
known impedances of external circuitry and in which the coupling to the resonator can
be tuned in-situ, could be advantageous for spectroscopy of superconducting cavities.

Here, we present a weakly-invasive spectroscopic probe of a superconducting res-
onator using a qubit in the weak dispersive coupling limit. The underlying principle
is based with electrically induced transparency (EIT) [96-102]. When the qubit has a
broader linewidth than that of the resonator, if the sideband coupling is smaller than
the difference between them (EIT regime), we can find a narrow dip in the qubit pop-
ulation spectrum, which is a strong indication of EIT. From these measurements, The
qubit and resonator decay rate can be extracted independently using a model of the EIT
process. As long as the sideband coupling can be made the same order of magnitude as
the resonator linewidth, one can extract the decay rate of the resonator in a way that is
insensitive to the error in the qubit decay rate.

The EIT-based spectroscopy approach is weakly invasive in the sense that it is suf-
ficient that the qubit and the resonator are in the weak dispersive coupling, in which
there is very little direct hybridisation between the two. Consequently, loss rate through
the qubit (x4) can be chosen to be negligible. In the presence of a sideband drive of ap-
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propriate frequency, the drive induces a predictable and tunable hybridisation between
the qubit and resonator through sideband transitions, which is the technique we apply
here to perform resonator spectroscopy. Furthermore, being based on inducing a small
EIT window in the qubit spectrum, our approach does not require high coherence qubit,
and wide ranges of values of x; of the resonator can be accurately probed in spectroscopy
by tuning the sideband drive power.

We experimentally demonstrate this scheme with experimental observations using
a device based on a transmon qubit [20] coupled to a coplanar waveguide (CPW) res-
onator. The work presented here demonstrates a application of EIT related physics in
a weak dispersive coupling regime. EIT with a circuit quantum electrodynamics (QED)
platform has already been reported in several configurations [99-102] but the present
paper is the first study of EIT related phenomena with a dispersively coupled resonator
and a qubit system when the qubit has a broader linewidth.

This chapter is organized as follows. In Sec. 6.2, we discuss theoretical background of
this work. We present experimental results in Sec. 6.3. We provide analysis of the results,
discussion on a major error source and a further direction of the study in Sec. 6.4. A
summary of this work is given in Sec. 6.5.

6.2. THEORETICAL DESCRIPTION
6.2.1. QUBIT POPULATION SPECTRUM UNDER SIDEBAND DRIVING

Wq,

Figure 6.1: Energy level diagram describing the system of a dispersively coupled target resonator and qubit.
Red arrows indicates an off-resonant two-photon drive field for enabling two-photon sideband transitions.
The blue arrow indicates a weak resonant field for probing the qubit. The readout resonator is omitted in the
diagram.

The system studied is depicted in Fig. 6.1. A two-level qubit is dispersively coupled
to a target resonator whose internal loss rate is our interest. We induce a first order side-
band transition with a coupling rate of Qy, that couples |g, n) and |e,n— 1) (red arrows)
through an external coherent drive with frequency w,4. The first order sideband tran-
sition is dipole forbidden for transmon qubits as described in [19]. Therefore, a two-
photon process is used to enable this transition in this work.

In the figure, |g) and |e) refer to the ground and excited state of the qubit. The num-
bers refer to the photon number of the target resonator. The target resonator frequency
and the Stark-shifted transition frequency of the qubit are w, and w, respectively. Their
decay rates are given by x and y respectively. A weak field (blue arrow) probes the qubit
transition. We define the detuning between qubit and probe w,—w), to be A. Also, we de-
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fine 6 as wq — w¢ — 2w4. These definition are also graphically presented in Fig. 6.1. In the
real device, we additionally have a readout resonator coupled dispersively to the qubit,
which is not present in Fig. 6.1. We will also omit the readout resonator in the following
mathematical derivation since it has no role in featuring the EIT.

The effective Hamiltonian of the system in Fig. 6.1 is

5 Wq ot o ata
SO = ?O'Z twi@' a—-2x4:0.04 a
=L (a0, e720at 4 alg_et2ioat) 6.1)
+ % (6’+e_iw”t + &7e+iwpt)’
where § ; denotes the Hamiltonian of the two-level qubit, & ;. are the raising and lowering
operators of the qubit state, and 2y 4, is the dispersive shift between the qubit and the
resonator. The external drive results in a negligible change of the dispersive shift [19] and
is therefore neglected. By applying the following time-dependent unitary transform,

U =exp |i(wy—20g)ta a+i(wy)td,|. (6.2)

the Hamiltonian can be simplified to

. (wg—wp)
' = %62 + (e +20 —wp)ata-2y,.6,a"a
Q
s (a6 +a's-) 6.3)
Q

Here, we can use the definitions of A = w; — wp and 6 = wy — w; — 2wg4; Both A and 6 are
as defined in Fig. 6.1 to simplify the expression. Then, the Hamiltonian takes the form

A

! =0+ (A-8)a'a-2y,.6,4"a
Q
s (a6 +a's-) 6.4)
QP

+ > GL+62).
The dynamics of the system is then given by the Lindblad equation:

dop A
d—‘; = - % (20, (D]
6.5)

+Lato 10+ Sata1p+ %@[cﬁa]p,

where 2(01p = 26 p6" — 676 p - p6 6, « is the decay rate of the target resonator, and y
is that of the qubit. y is the pure dephasing rate of qubit. From the steady state solution
pss that satisfies dpss/d =0, one can obtain the steady state qubit population by tracing
out the resonator state, pee = Tryes[Pss(1+352)/2].
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6.2.2. RESONATOR SPECTROSCOPY AT SINGLE-PHOTON LEVELS USING SIDE-
BAND TRANSITIONS

When |7/ +2y¢— 1<| > Qgp and y+2y > «, the sideband transition leads to a narrow trans-
parency window in the qubit transmission spectrum. This results from the interference
between two different transitions, |g,n+ 1) — |e,n) and |g, n) — |e, n). In this work, we
measure the population of qubits p.. rather than the transmission Im[p.g]. We define
the qubit spectrum as the response of its average population as a function of the probe
frequency pe.(wp). In Fig. 6.2(a), we simulate the qubit population spectrum with rea-
sonable parameters satisfying the EIT condition based on the master equation in Sec-
tion 6.2.1. We can also find the same features of the transmission spectrum in the qubit
population spectrum as well. A Lorentzian dip in the qubit population spectrum, in the
following we will refer to this as an ‘interference dip), is characterized by its width (w)
and minimum population (d).

In the linear response limit (), <« Q) and for zero detuning (6 = 0), the width and

2
depth of the dip are given by w ~ y+2y¢+1<—\/(y +2yp+K)? =02, d ~wpl(y +2yp + %)

and the total linewidth is & ~ y +2y4 [102]. When Q,, and y 4, are known, x,y,y¢ and Qg
together characterize the population spectrum and thus one can extract these by fitting
the spectrum to the model calculated by the master equation in Section 6.2.1.

Too small a value of Q) requires an excessive measurement time. Fortunately, al-
though Q, < Qg, does not hold in the present simulation in Fig. 6.2(a), we can clearly
see the dip in the spectrum unless the Q,, is excessively large. Nevertheless, the upper
bound on Q, sets a limit to the feasibility of our approach for investigating a single-
photon level resonator loss rate. In the experiment, Q, is separately calibrated as de-
scribed in Appendix 6.9. Also, x4, can be calculated from the device parameters. In this
work, since the qubit is weakly coupled to the resonator, the calculated y 4; is only 27 x7.8
kHz. With this magnitude, it hardly affects the spectrum and we confirm that neglecting
X q: does not make a significant difference in the fitting results.

In order to achieve the EIT condition, it is possible to achieve a sufficient sideband
coupling rate Qg for spectroscopy even with a very weak dispersive coupling between
the qubit and the resonator. To be able to extract the intrinsic resonator linewidth accu-
rately from the fits, one needs to be in the regime of Qg ~ k. By using a strong sideband
drive strength, this can be achieved in a limit where the dispersive coupling to the qubit
results in a negligible modification of the resonator linewidth.

Specifically, the contribution of the dispersive coupling to the qubit to the resonator
loss rate, which we denote as x4, scales with (g4/ Aqt)z, where g4 and Ag4; are bare
coupling rate and detuning between the qubit and the target resonator respectively. By
arranging a large detuning between the qubit and the target resonator, this can be made
negligbly small. The sideband coupling Qjp, however, scales as gq:(Qq/ Aqd)z, where
Agaiswg—wgy. Thelarge A 44 can be compensated for by a large sideband drive strength.
In this way, the EIT spectroscopy technique can be made minimally invasive on the res-
onator it is probing. This is in contrast, for example to other qubit-based spectroscopy
approaches [103] that requires a strong dispersive coupling. We also note that while the
sideband drive strength is strong, it is highly off-resonant from the resonator itself and
the occupation number of the resonator remains negligible.
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Figure 6.2: Single-photon resonator spectroscopy through sideband transition. ¢ is set to 0 for both the EIT
and ATS regime simulations. (a) Simulated qubit population spectrum in EIT regime when the parameters
Qs Qp, Y, Y, K X gt are 2 x(100,100,400,0,30,10) kHz (solid line). As an indication of the electromagnetically
induced transparency, a Lorentizan dip (interference dip) appears in the qubit population spectrum, which
is characterized by its width w and minimum population d. (b) Simulated qubit population spectrum in
ATS regime when the parameters Qep, LY, YK, Xqr are 27w x (1000,100,400,0,30,10) kHz (solid line). In this
regime, the spectrum has two peaks separated by s and their widths are both wyp. In the simulation, we set
Y¢ = 0, typically condition for the fixed frequency transmon qubit used in our experiment. In Sec. 6.6, we
present additional simulation results that show how the v, changes the qubit population spectrum.
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In Fig. 6.2(b), we also simulate the qubit population spectrum when the Auther—Towns
splitting [104] condition |y +2y4 — k| < Qgp, holds. Unlike EIT, ATS arises from the result
of electromagnetic pumping that results in a dressed normal mode splitting of the two
modes in the rotating frame of the pump. In circuit QED platform, ATS is also widely ex-
plored in several configurations [104-107]. When 6§ = 0, the spectrum has two symmetric
peaks separated by Q;, and each linewidth is equal to (y +2y +%)/2. Both the qubit and
resonator decay equally characterize the linewidth of each peak. Thus, one cannot set
both x and y as free fitting parameters and thus the qubit decay rate should be separately
calibrated. This can be more problematic if an extremely small decay rate of resonator is
expected. In this case, the measured resonator decay rate becomes sensitive to the error
in the qubit decay rate measurement, unless the qubit decay rate is much smaller than
the resonator’s decay rate, which imposes a challenging requirement on the preparation
of the device.

6.3. EXPERIMENT
6.3.1. DEVICE CONFIGURATION

(a)  Target Readout
resonator Qubit resonator

— q—

Direct "
Qubit probe /
probe Readout
' Sideband drive

Figure 6.3: Experimental setup. (a) Simplified circuit diagram of the device used in the experiment. (b) Optical
microscopy image of the superconducting circuit.

Fig. 6.3(a) presents a simplified circuit diagram of the device used in the experiment.
More detailed information on the circuit design and related electronics can be found
in Appendix 6.7. A transmon qubit (w40/27=6.723 GHz, without sideband drive) is ca-
pacitively coupled to two A/4 co-planar waveguide (CPW) resonators. One is the tar-
get resonator (w;/2n=2.9 GHz). The other is the readout resonator (w,/271=4.07 GHz)
to measure the qubit population more efficiently. Both are dispersively coupled to the
qubit with dispersive coupling x,/27=7.8 kHz and y4,/27=1.3 MHz to the target and
readout resonators respectively. The bare coupling between each resonator and qubit is
estimated by g,;/2m = 58 MHz and g,, /27 = 193 MHz respectively. Qubit decay rate y is
around 27 x400 kHz. Each resonator is inductively coupled to different feedlines. These
values yield qubit limited resonator decay rate x /27 =~ 100Hz, which is far below than
typically achieved internal loss rate in our lab (around 27 x 5 — 20 kHz.)

We use a single-junction fixed frequency qubit and therefore its transition frequency
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Figure 6.4: Observation of interference dip in a qubit population spectrum. (a) Observation of interference dip
in qubit population spectrum while scanning § from -200 to 200 kHz. The spectrum when § = 0 is enclosed
by a red box. (b) Comparison between qubit population spectrum with (blue) and without (black) sideband
field. (c) A separate measurement near the interference dip with finer step. The validity of the EIT model is
confirmed while the ATS model breaks down.
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is insensitive to magnetic flux noise, a strong source of dephasing in flux tuneable trans-
mon qubits. This is also experimentally confirmed by the observation of T> = 2T; in
separate time domain measurements given in Appendix 6.8. Although it is not neces-
sary in our case, it could be advantageous to use a flux tuneable qubit, with which x; is
in situ tuneable by adjusting the detuning to the ressonator. The technique and analy-
sis present here is also applicable for the flux tuneable qubit. We discuss how our scheme
is extended for the flux tuneable qubit in Sec. 6.4.4.

The optical microscopy image of the circuit can be found in Fig. 6.3(b). The trans-
mon qubit and CPW resonators were patterned on a 100 nm niobium titanium nitride
(NDTiN) film on a Silicon substrate [39]. The Josephson junction of the qubit is made by
Al-AlOx-Al

6.3.2. EXPERIMENTAL RESULTS

We apply the sideband drive directly to the Josephson junction of the circuit through the
direct drive line (middle arrow in Fig. 6.3(a)). The qubit probe Q,, is applied through
the feedline coupled to the readout resonator (right arrow). In addition, we have a di-
rect probe of the target resonator (left blue arrow). We use in all four microwave sources
in the experiment. One is used for the qubit probe, another for the qubit readout, an-
other for the sideband drive, and the remaining one for the direct resonator probe. In
order to avoid measurement induced broadening in the qubit population spectrum, we
performed the measurement in pulsed configuration. First, a 20-us long probe pulse
is applied, rapidly followed by a 200-ns long readout pulse. Using this pulsed readout
scheme, the qubit population spectrum is unaffected by the photons in the readout res-
onator during qubit measurement.

Fig. 6.4(a) shows the measured interference dip in the qubit population spectrum,
which results from a sideband transition between the qubit and the target resonator.
The sideband drive frequency w, is swept around 2w, = w4 — w. and we find § = 0 when
w4/2m=1.945 45 GHz. The interference dip is conspicuously identified in the compar-
ison to the spectrum without sideband transition in Fig. 6.4(b). The probe amplitude
Qp is 27 x 264 kHz according to the calibration method presented in Appendix 6.9. The
value we chose is a compromise between the high contrast of the interference dip and
the proper measurement time. The sideband drive also shifts the qubit frequency. In
Appendix 6.10, we present the data for how much the qubit frequency is shifted when
we obtain a sufficient sideband coupling.

In addition to the process of EIT, observations similar to those in Figure 6.4 can also
arise from the process of ATS. In order to distinguish EIT from ATS, one can numerically
fit the data by given simplified model in linear response limit [108]. A system in the EIT
regime can be modeled by

(wp) ¢ = (6.6)
wp) = - .
PeeEITWp N+y2 NtE
When the system is in the ATS regime, p., in the linear response limit is
C2 C2
Peears(wp) = (6.7)

+ .
(A=Ap?+y0  (A+Ap)?+70
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Figure 6.5: Two different spectroscopic measurement of a superconducting resonator. (a) Spectroscopy of
the superconducting resonator mode using interference dip. From numerical fitting of the qubit population
spectrum calculated using the master equation, we extract a resonator linewidth of x/27 = 20.3 + 1.5 kHz.
(b) A direct reflection measurement of the resonator through the weakly coupled port. Even for very weak
external coupling, the resonator displays an asymmetric lineshape due to Fano resonance. From a fit to a
Fano resonance lineshape, we extract a linewidth x/27 = 17.2 + 1.8 kHz, in agreement with the results of the
spectroscopy based on interference dip within the experimental error.
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All the parameters in these expressions are free fitting parameters except A. Here, v + is
not necessarily the same with y and y,. We perform a numerical fit with the two differ-
ent fitting models above corresponding to each phenomenon. The results are given in
Fig. 6.4(c). The data is taken with the same conditions as in (b) but a different range and
step of probe frequencies. While the EIT model Eq. B.1 shows excellent agreement with
the data (solid line), the ATS model Eq. 6.7 fails to explain the data well. Accordingly, the
fact that the system is in the EIT regime is clearly demonstrated. It is notable that the EIT
model is still applicable to the data even when Q,, <« Qg does not hold.

We fit the qubit population spectrum with the numerical model in Section 6.2.1 to
extract the target resonator’s linewidth x. The result is presented in Fig. 6.5(a). The data
is the same as in Fig. 6.4(c). From the data, x/27 = 20.3 + 1.5 kHz, y/2n = 445.95+2.4
kHz and Qg /27 = 112 £ 0.5 kHz are extracted. When f, = f,;, the photon number in
the target resonator is approximately 0.3, based on the master equation solution with
extracted parameters. The estimated x4 is only 277 x 104 Hz.

We also measured the single-photon level k¥ by the normal reflection spectrum via
a weakly coupled port in Fig. 6.5(b) to verify the above result. A Fano resonance is also
considered in the fitting process. From the fitting, /27 = 17.2 + 1.8 kHz is obtained. The
upper bound of the resonator photon number is approximately 1.25 based on the input
power from the source of the probe, the room temperature, and the cryogenic wiring.
The «’s extracted from both approaches agree within the overlapping statistical error.

6.4. DISCUSSION AND OUTLOOK

6.4.1. ANALYSIS OF THE RESULTS

We measured the single-photon level « of the target resonator through two independent
approaches. The target resonator is coupled to the external environment through the
qubit (kx4) and also the external feedline(x.). Both coupling rates are 27 x 104Hz and
27 x 112Hz respectively based on the measurement. Although these two quantities are
similar, one can see significant difference in the contrast of the spectroscopic signal. In
Fig. 6.5(a), the suppression of the qubit population in the EIT based spectroscopy is more
than 5 dB. On the contrary, the suppression of the reflection in Fig. 6.5(b) is only 0.1 dB.
This clearly shows that our approach covers much wider range of x;.

For given design in our work, considering an error margin of 10% on x4, our EIT
based spectroscopy works nicely for the resonator with an internal quality factor (Q;) up
to 10% and a resonance frequency of 10 GHz. Since it is difficult to obtain single-photon
level Q; more than 102 for planar resonators, the design is already optimized for such
types of device.

6.4.2. EFFECT OF QUBIT DECAY RATE FLUCTUATION ON THE MEASUREMENT
It is often observed that the decay time of a superconducting qubit can fluctuate in time
[109]. If one cannot finish the measurement before the fluctuation happens, there is
a resulting distortion in the qubit population spectrum. In this subsection, we model
such distortion and simulate how it affects the fitted x depending on the degree and the
tendency of the fluctuation.

We assume that we rapidly sweep the frequencies, faster than the time scale of the
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Figure 6.6: Investigation of systematic error induced by fluctuation in qubit decay rate. See main text for the
detailed method and a definition of 7. (a) and (b) How the qubit population spectrum varies when the qubit
decay rate fluctuates in a telegraphic way (a) and a drifty way (b) when 7 is 0.3 for both cases. (c) Effect of
the qubit decay rate fluctuation on fitted x/2z. Telegraphic fluctuation (gray) has a larger effect than a drifty
fluctuation (black) for given . Mean qubit decay rate over measurement duration (yg) is 27 x450 kHz and
Qgp, Qp, K, x g1 are 2% (100,264,19,7.8) kHz in the simulation.



6. TUNEABLE AND WEAKLY-INVASIVE PROBING OF A SUPERCONDUCTING RESONATOR
100 BASED ON ELECTROMAGNETICALLY INDUCED TRANSPARENCY

fluctuation, but repeat the sweeping enough to obtain an adequate signal to noise ratio.
We consider two different trends in the fluctuation: telegraphic fluctuation and diffusive
fluctuation[109]. In the simulation, the qubit decay rate varies from y; = (1 — 1)y to
Y = (1 +n)yo during the measurement. For the telegraphic case, we assume the decay
rate jumps at the middle of the measurement. For the diffusive case, the decay rate varies
at a constant rate over time.

We define pe.(wp;y) as the qubit population spectrum when the qubit decay rate is
. For telegraphic fluctuation, the spectrum is expressed by

1
pLe(w,) = 5 [Pee(@pi¥i) + Pec(@piy ). 6.8)
For diffusive fluctuation from y; to y f homogenously, the spectrum is expressed by
i 1
pféff(wp) = (Z)Pee(@p;yi +2nk/n)], (6.9)

where n is the number of sweeps during the measurement, set to 100 in our simulation
here.

The results of the simulation can be found in Fig. 6.6. In Fig. 6.6(a) and (b), we com-
pare the qubit population spectrums with and without qubit decay rate fluctuation for
1 =0.3. The gray curves indicate the spectrum when 7y is fixed at yo=27x450 kHz. The
black curves indicate the spectrum distorted by fluctuations in y. In Fig. 6.6(c), we fit the
distorted spectrum with the ideal fitting model from Section 6.2.1 and how the extracted
K is affected.

6.4.3. FURTHER DIRECTION OF THE STUDY

In this work, we rely on a two-photon assisted transition, the achieved sideband cou-
pling strength is only 0.1 percent of the bare coupling strength between the qubit and
the resonator. Achieving larger couplings could be achieved by introducing other types
of qubit, for example a flux qubit, with which one can address the first order sideband
transition to the resonator with a single photon transition. In that case, the required
bare coupling for the desired sideband coupling strength becomes significantly smaller,
along with a smaller requirement for x4 to stay in the EIT regime.

The resonator spectroscopy scheme presented here is extensible to the case of many
target resonators having different frequencies, as long as a qubit is coupled to them with
the proper coupling strength. Typically, the spectroscopy of multiple resonators on a
chip requires a circuit design with a long feedline so that all the resonators are properly
coupled to the feedline. Such a structure could induce some slotline mode and limit
the scalability of the design. For our method, such a long feedline is not necessary as
one only needs to feed the probe and readout pulse to the qubit, providing a relatively
simple measurement technique for the spectroscopy of multiple resonators on a chip.
For for this, an X-mon [110] or star-mon [111] design for the qubit, for example, would
allow the single qubit to couple to multiple resonators.

6.4.4. EXTENSION TO FLUX-TUNEABLE QUBIT
As we discuss above, employing a flux-tunenable qubit enables in — situ control of k4.
This is useful when we need control in — si tu, which is not necessary in our work. In this
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case, unlike the case of the fixed frequency qubit, we need to take the pure dephasing
rate of the qubit (y) into account. This however does not add complexity in using our
scheme. As long as we have x; < x; and y ~ y, the effect of the pure dephasing of the
qubit to the resonator is still negligible. In fitting process, we would only need to include
Y¢ in the master equation model. The effect of the pure dephasing in the qubit popula-
tion spectrum is distinguishable from other parameters and therefore we can sucessfully
extract the x from the fitting even with non-zero y,.

6.5. CONCLUSION

To summarize, we have demonstrated a single-photon resonator spectroscopy using a
weakly coupled qubit. From the appearance of an electromagnetically induced trans-
parency in the qubit population spectrum, we obtained a single-photon linewidth of a
high-Q resonator. We validated our result using an independent measurement of the res-
onator linewidth through a separate transmission line. Our spectroscopy method here
is compatible with a resonator of an even smaller loss rate than that in the present work,
without demanding a high coherence qubit, due to its being weakly invasive. This work
offers a method for reliable estimates of the loss rates of superconducting resonators and
enables the study of EIT in a weak dispersive regime of circuit QED.
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Figure 6.7: Comparison between the qubit population spectrum with and without considering the pure de-
phasing rate of the qubit. (a) Simulated qubit population spectrum in EIT regime when the parameters
Qp, Qp,7, Y¢» K, Xqt are 27 x(100,100,400,0,30,10) kHz (solid line) and 27 % (100,100,300,50,30,10) kHz (dashed
line). (b) Simulated qubit population spectrum in ATS regime when the parameters Qgp,, Qp,v,Y¢, X, X g1 are
27%(1000,100,400,0,30,10) kHz (solid line) and 27 x (1000,100,300,50,30,10) kHz (dashed line).
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Figure 6.10: Qubit probe amplitude calibration. A Gaussian Rabi pulse was applied through the readout res-
onator at the qubit resonant frequency. The peak voltage of the pulse measured at room temperature is con-
verted to the probe amplitude (red line) in units of angular frequency based on the phase of the oscillation in
the homodyne readout signal (black dot and blue line).
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6.6. APPENDIX-EFFECT OF PURE DEPHASING RATE IN QUBIT

POPULATION SPECTRUM

In Fig. 6.7, we present additional simulation results of the qubit population spectrum.
For both dashed and solid lines, the qubit have the same total linewidth but different
pure dephasing rate, y,. For dashed line,y is 27 x 50kHz whereas for solid line, y is
zero. One can find that even the total linewidth is the same, we can extract y, from
the qubit population spectrum. This is particularly important when using flux-tuneable
qubits that normally has significant y, comparable to y when the flux is tuned out of the
sweep spot.

6.7. APPENDIX-CIRCUIT DETAIL

In Fig. 6.8, we depict the device and related electronics in the experiment. A qubit (red
dashed box) is coupled to two co-planar waveguide (CPW) resonators. Each resonator
is inductively coupled to a separate feedlines. In all, four microwave sources (V;-4) are
used in the experiment: one each for the qubit driving, qubit readout, direct resonator
probing, and sideband driving. The device is anchored to the mixing chamber plate of a
LD250 Bluefors dilution refrigerator with a base temperature under 7 mK.

6.8. APPENDIX-DEVICE TIME DOMAIN CHARACTERISTIC

In Fig. 6.9, we present a time domain characterization of the qubit used in the exper-
iment. T; and T, are 447 + 30 ns and 870 * 35 ns respectively. Since 277 = T, holds
approximately, it justifies our decision in Section 6.2.1 to neglect the pure dephasing in
the master equation model.

6.9. APPENDIX-PROBE AMPLITUDE CALIBRATION

We applied a 60-ns long Gaussian pulse with a width of 0=15 ns at the qubit resonant
frequency through the source V1, which was followed by a 200-ns long readout pulse
from the same source. The Rabi oscillation swept the peak voltage of the pulse en-
velop Vjeqr as depicted in Fig. 6.10. The phase 6 of this oscillation is given by 6 =
Qpear /25 expl—12/(20?)]dt. For 6 = 1, Qpear = 27 x 13.94 MHz and Vjyeqr = 0.54 arb.
unit. This yields a conversion factor Qpeax/ Vpear =25.81 MHz/arb. unit. If the probe
field frequency is near the qubit transition frequency, then the probe amplitude Q, is
readily calibrated from V), using this conversion factor.

6.10. APPENDIX- QUBIT RESONANCE SHIFT

The sideband drive induces not only a sideband transition but also shifts the qubit tran-
sition frequency. A significant frequency shift (12 MHz downward) is observed when
Qgp = 27 x 100 kHz. The data are given in Fig. 6.11.
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7.1. CONCLUSION

We have discussed circuit quantum electrodynamics (QED) systems focusing on imple-
menting the tuneable interaction between qubits and resonators. It is of great impor-
tance for quantum state engineering as well as quantum gate operation. Although there
are several possible approaches using flux controls, the flux tuneability in the qubit’s
frequency introduces a formidable drawback, the pure dephasing of the qubit induced
by the flux noise. Instead, here we are using the external transverse driving fields. This
approach is implementable even with fixed frequency qubits, and therefore the qubit’s
coherence time is limited solely by the decay rate. I have given quantitative studies on
the sideband transition rates induced by the transverse drive fields. I also cover the
regime beyond the regime of the rotating wave approximation (RWA). In total, we have
discussed two popular systems, one is the quantum Rabi model and the other is a dis-
persively coupled transmon-resonator, both of which frequently appear in circuit QED
research. In addition to the discussions on quantifying the sideband transition rates, I
have also discussed a possible application of the sideband transition in the precise res-
onator spectroscopy. The representative added values made out of this thesis are sum-
marized as follows.

First, the rotating wave approximation significantly underestimates the sideband
transition rates as well as the qubit frequency shifts. The latter one is already well known,
but the former one has been hardly investigated. This thesis proves the effect of the RWA
in the sideband transition rates in analytical, numerical, and experimental ways.

Second, the breakdown of the rotating wave approximation is not explicitly shown in
the conventional experiments, where we simply measure the transition rates and qubit
frequency shifts without any independent calibration for the driving power. We typically
calibrate the driving power from the qubit frequency shifts, and estimate the transition
rates based on this calibration. Since the RWA distorts both simultaneously, one cannot
identify the effect whether the RWA breakdowns or not. For precise estimation of the
required drive power, this fact can critically mislead the experimentalist. This finding
should concern the quantum technology community.

Third, electromagnetically induced transparency (EIT) can be used for non-invasive
spectroscopy techniques when probing high-quality factor resonators. The conventional
approach to measuring the internal quality factor of the superconducting resonators is
coupling them to the external feed line and investigating the transmission or reflection
signals. To keep the internal quality factor high, the external coupling strength should be
much smaller than the internal loss rate of the resonator, which results in very poor con-
trast in the resonator spectroscopy signal. This challenge can be circumvented by using
a sensor qubit weakly coupled to the resonator. By creating EIT in the qubit’s population
spectrum, one can measure the resonator’s quality factor without the external feedline.
The sensor qubit also mediates the coupling between the resonator and environment as
the external feedline does. However, the obtainable contrast is much better than that of
the conventional approach.

Forth, an accurate numerical simulation methodology is presented in this thesis in
chapter 4 and 5. It explains why the micro-oscillation in the quantum dynamics does
not exist in the real experiments. Repeating the simulations with different pulse lengths
and Gaussian rising and falling, it has been proven that precisely benchmarking real ex-
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periment is feasible. Clear sinusoidal oscillations are obtained in the simulation, which
are in fact consistent with those observed in the experiments.

7.2. OUTLOOK

7.2.1. PROPERTIES OF TRANSMON UNDER TIME-PERIODICAL DRIVE

This thesis has mainly discussed the implementation and quantification of the qubit and
resonator tuneable interface through external transverse drives. In chapters 4,5, and 6,
we also have learned that the external drive fields also can induce the qubit’s frequency
shifts. Then, we can naturally raise a question: Is there any other significant changes in
qubit’s characteristic other than frequency shifts? The answer to this question is yes. At
the final stage of my PhD, I have realized that the external drive fields also can signifi-
cantly change two essential properties of the transmon. One is transmon’s anharmonic-
ity, and the other one is dispersive coupling strength to the resonator. I have also studied
these phenomena analytically, numerically, and experimentally. However, I could not
include the results of these studies in this thesis due to the time restriction. The results
will be presented in papers 8 and 9 in my publication list.

7.2.2. DIRECTION OF FURTHER STUDY

The main advantage of using the external drive for the tunable interfaces among the
circuit elements is that it can be implementable without flux tunability. Fixed frequency
qubits have several subtaintial advantages over flux tunable qubits. First of all, the fixed
frequency qubit is insensitive to the flux noise, known as the most significant source of
the qubit’s pure dephasing. Removing the flux lines also decreases the complexity in the
fabrication and control of the device. Nonetheless, there are several downsides together
in using fixed frequency qubits. Hence, the direction of the further study should go in a
way to maximize the advantages and minimize the disadvantages.

Frequency crowding problem [112, 113] is one of the possible issues often remarked
as a downside of using fixed frequency qubits. It takes place when multiple qubits hav-
ing similar frequencies are coupled to a single resonator or a qubit is coupled to multiple
neighboring qubits with similar frequencies. When performing single qubit gates on
a specific qubit in this situation, the gate operations can couple the qubit to neighbor
qubits’ transitions (leakage) or induce other unwanted transitions on the third qubit. To
suppress this problem, we can distribute the qubits to multiple resonators that are to-
tally decoupled to one another. Also, if all the individual qubits have different drivelines,
we can make sigle qubit gate operations to each qubit independent. Another potential
issue is fridge heating. Tunable coupling based on the external drive fields relies on the
nonlinear process and requires high drive power. The required total drive power to the
fridge linearly increases the number of qubits on the device. Although I have already
provided a method I used to avoid this issue in chapter 3, this approach should break
down at some point with the large qubit number. All these problems are not fundamen-
tal but technical. In the future study, they need to be solved for large scale qubit device
without flux control.
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A. APPENDIX-A

A.1. FABRICATION RECIPE FOR SUPERCONDUCTING QUBIT DE-

VICES

A.1.1. BASE LAYER

The below recipe is applicable when using a 100 nm NbTiN film on a Silicon substrate.
If the thickness is different, then the thickness of the EBL resist and the etching time
should be also different.

Spin coat EBL resist. ARN 7780-13 at 4000 rpm and bake at 95°C for 90 seconds .
EBL with a dose of 130 uC/cm?.
Develop ARN layer using MF321 for 2 mins and 30 seconds.

Reactive ion etching. Use SFg and O, as etching gas. The flow rates are 145 sccm
for SFg, and 120 sccm for O,. Applied AC power is 50 Watt. Typical etching time is
around 2 min 30 seconds.

Eliminate remaining EBL resist using PRS or NMP.

A.1.2.JOSEPHSON JUNCTION

Spin coat EBL resists. PMGI SF7 at 1500 rpm and bake at 185°C for 5 minutes”.
PMMA A3 950k at 2500 rpm and bake at 185°C for 10 minutes®.

EBL with a dose of 1850 uC/cm?.

Develop PMMA and PMGI layer. For PMMA, develop by using MIBK and IPA 1:3
mixture for 60 seconds. Then move the chip to MIBK and Ethanol 1:3 mixture for
60 seconds. Finally, put the chip in the IPA solution for 10 seconds. For PMGI, use
MF321 for 15 seconds, and immediately move the chip to the water for 30 seconds.

Oxygen plasma cleaning to eliminate the residual resist. O, gas with a flow rate of
10 sccm. Applied AC power is 30 Watt for 60 seconds.

Buffered oxide etch (BOE) for 30 seconds. Use 1:7 BOE solution.
Deposit the first Aluminium layer. Thickness of 60nm.

Oxidation layer. Chamber pressure is 1.3 mbar when oxygen is injected. Duration
is 11 mins.

Deposit the 2nd Aluminium layer. Thickness of 100 nm.

Lift-off the Aluminum layer using NMP.

I This forms a layer of 540 nm thickness.
2This forms a layer of 570 nm thickness.
3This forms a layer of 150 nm thickness.
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A.2. FABRICATION RECIPE FOR S1C COATING INSIDE THE RADI-

ATION SHIELD

First, we prepare pre-coating with Stycast 2850FT (100g) and Catalyst 9 (4g). SiC coating
mixture is composed of Stycast 2080FT (100g), Catalyst24LV (8g), and SiC powders. We
use several sizes of SiC, 70 grit (40g), 60 grit (45g), 24 grit (40g), 36 grit (40g), and CMF-
CVD (40g). Once the mixture is completed, the remaining steps are the followings. Stir
the mixtures until they get well mixed. Put red non-elastic tape over screw holes in Cop-
per shield. Coat inner side of Copper can with pre-coating mixture. Coat inner side of
Copper can with SiC coating mixture. Coat cold finger with pre-coating and SiC coating
mixture. Remove the residual coating material inside of wire holes by cotton bud. Clean
up the stuff. Dry for a day at room temperature.







APPENDIX-B

Descriptions of some of the programming codes I developed during my PhD is presented
here.

All the simulation codes discussed in this chapter is available in github.com/bann-01.
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Figure B.1: Time-domain plots of the numerical simulation results. Blue sideband transition between a trans-
mon and resonator is simulated. The bottom panel is the magnified view of the area enclosed by the box in the
top panel. One can identify the slow and large oscillation (top) and the fast and small oscillation (bottom) exist
at the same time.

B.1. QUANTUM DYNAMIC SIMULATION WITHOUT THE ROTAT-
ING WAVE APPROXIMATION.

In Chapter 4 and 5, I briefly introduce the numerical calculation method to obtain the
sideband transition rates. In fact, there is a technical challenge to solve the master equa-
tion of the time periodically driven quantum systems. As you can see in figure B.1, the
dynamics is decomposed into two parts. One is the slow oscillating component with
a large amplitude, and the other is the fast oscillating component with a small ampli-
tude. In order to get the sideband transition rates, the total time range of the simulation
should be sufficiently long to cover at least one cycle of the slow oscillation, and the unit
time should be small enough to resolve the fast oscillation. Therefore, the total num-
ber of the time steps in the simulation should be very large, consuming lots of random
access memory (RAM). This could not be a significant problem when simulating very
low dimensional system like spin-1/2. However, if you want to simulate the system that
should be described high dimensional hilbert space, like driven harmonic oscillator for
instance, than your simulation is largely limited by the size of the (RAM).

Together with Wouter Kessels, we have invoked an idea to tackle this challenge. First,
we segment the time range of the simulation as depicted in figure B.2. Then, we per-
form the simulation in the first segment, denoted by number 1. Once the simulation is
done, then we save all the results in the hard disk drive and empty the memory except
the last data point of the first segment. This data is used as the initial condition for the
simulation in segment 2. We repeat this procedure until we complete the simulation
in the final segment. No matter how long the total time range is, we can complete the
simulation without using up the computer memory.
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Figure B.2: Description of ‘Segment and combine’ simulation approach.

B.2. SYSTEM’S NOISE SPECTRUM SIMULATION BASED ON THE

TIME-CORRELATION.
It is often useful to estimate the qubit’s shifted transition frequency under the driving
fields. Although the analytical formula is given in Chapter 4 and 5 for two-level sys-
tem and transmon cases respectively, the accuracy of the formula is not guaranteed for
strong drivings since they are derived based on the perturbative approach. The transi-
tion frequency can be also obtained from the qubit’s noise spectrum. For transmon case,
the noise spectrum Sy, (w) defined by,

Syx(@) = f dre' (2(t + 1) R(1) (B.1)

4
Here, % is defined by ZEE (a+ah). Also, @ and a' are lowering and rising operators of the

tramsmon. The bracket in Eq. B.1 means the time average over ¢. For stationary system,
(X(t+1)X(1)) is a function of only 7. For non-stationary systems like time-periodically
driven transmon we mainly discuss in this thesis, we cannot drop the ¢ dependence of
(X(t+1)X(2)). For time-periodically driven systems, (X(f+ 7)X(#)) has a time periodicity
T= angl. Fortunately, I have found that just fixing ¢ by an arbitrary value between 0
and w(}l solves the problem. The calculated spectrum is independent with ¢ with minor
differences. Another point at which we should be mindful in calculating Sy (w) of time-
dependent systems is that we should set the initial state by quasi-stationary states. For
the transmon under the driving field, the ground state cannot be a quasi-stationary state.
If one uses the ground state as an initial state in the calculation, then significant distor-
tion in the spectrum is shown. In my case, I first acquire the quasi-stationary state from a
separate master equation simulation, and use the obtained state in the time-correlation
calculation. Successfully calculated driven transmon’s noise spectrum is given in fig-
ure B.3.
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Figure B.3: Simulated noise spectrum of a time-periodically driven transmon qubit. (Left) Simulation with
driving Hamiltonian without the rotating wave approximation. (Right) Simulation with driving Hamiltonian
with the rotating wave approximation.



SUMMARY

In this work, I investigate how to implement and quantify in-situ tunable quantum inter-
face between superconducting qubits and resonators using external transverse driving
fields beyond the rotating wave approximation (RWA). When studying the system under
the time-periodic driving field, we typically rely on RWA, a useful technique that signif-
icantly reduces the analytical difficulties in solving the dynamics with time-dependent
Hamiltonian. Nonetheless, it does not correctly describe the systems’ dynamics when
the drive fields are excessively strong and far off-resonant. Especially in circuit QED
platform, the RWA often breakdowns. Many studies before, however, mainly focus on
the transition frequency shifts. How the RWA distorts the interaction rates between two
systems has been rarely explored.

I have performed quantitative studies over two different systems. One is the quan-
tum Rabi model (QRM) where a two-level atom is dispersively coupled to a resonator
mode. The other is dispersively coupled a transmon and resonator system, which is the
same as the QRM except that the transmon replaces the two-level atom in QRM. In both
cases, I have revealed that the RWA significantly mislead the sideband transition rates
between two elements. In the latter case, I have performed the experiments, and the re-
sults nicely agree with the analytical and numerical calculations. In addition to these, I
also have introduced a study where the tunable coupling between a transmon and res-
onator is used for non-invasive resonator probing.
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SAMENVATTING

In dit onderzoek wordt het middenveld tussen supergeleidende qubits en resonatoren
gekwantificeerd met behulp van externe transversale aandrijfvelden waarbij de rotating
wave benadering (RWA) niet meer van toepassing is. Bij het bestuderen van het sys-
teem onder periodieke aandrijving, is de RWA een gebruikelijke methode om het sys-
teem Hamiltonian tijdsonafhankelijk te maken. Hier wordt het verkrijgen van een ana-
lytische oplossing minder ingewikkeld en moeizaam. Helaas kan dit techniek niet wor-
den toepast wanneer de aandrijfvelden extreem sterk of ver aflegt van het resonantie van
het systeem. Veel literatuur richt zich voornamelijk op het verband tussen RWA en ver-
schuivingen in transititie frequenties. De manier waarop de RWA de interactiesnelheid
tussen 2 gekoppelde systemen verstoort is grotendeels nog niet onderzocht.

Ik heb kwantitatieve studies uitgevoerd van twee verschillende systemen: het ene is
het kwantum Rabi-model (QRM) waarbij een atoom met twee energie niveaus dispersief
is gekoppeld aan een resonator. Het andere is een transmon dat dispersief gekoppeld
is aan een resonatorsysteem, wat hetzelfde is als de QRM behalve dat de transmon het
atoom met twee niveaus vervangt. In beide gevallen heb ik aangetoond dat de koppeling
tussen kruiselings energieniveas, verkregen uit de RWA, onjuist is. Ook heb ik de experi-
menten uitgevoerd waarbij resultaten overeen komen met de analytische en numerieke
berekeningen. Daarnaast heb ik ook een onderzoek uitgevoerd waarbij het aanpasbare
koppeling tussen een transmon en resonator kan worden gebruikt voor non-invasive
resonatormetingen.
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