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Exploring the Heliogyro’s Orbital Control Capabilities  

for Solar Sail Halo Orbits  

Jeannette Heiligers1 

Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands 

Daniel Guerrant2 

Deep Space Systems Inc, Littleton, CO 80127, USA 

 Dale Lawrence3 

University of Colorado, Boulder, CO 80309, USA 

Solar sailing is an elegant form of space propulsion that reflects solar photons off a large 

membrane to produce thrust. Different sail configurations exist, including a traditional fixed 

polygonal flat (FPF) sail and a heliogyro, which divides the membrane into a number of 

long, slender blades. The magnitude and direction of the resulting thrust depends on the 

sail’s attitude with respect to the Sun (cone angle). At each cone angle, an FPF sail can only 

generate force constrained to a particular magnitude and direction, while the heliogyro can 

arbitrarily reduce the thrust magnitude through the additional control of pitching the 

blades. This gives the heliogyro more force control authority, which is exploited in this paper 

for orbital control of solar sail, Sun-Earth, sub-L1 halo orbits through a linear-quadratic 

regulator feedback controller. Two test cases are considered, quantifying either the 

maximum error in the injection state or the maximum delay in solar sail deployment due to 
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deployment failure at injection from which the nominal orbit can still be recovered. This 

paper finds that the heliogyro can accommodate approximately an order of magnitude 

larger injection error than an FPF sail and a significantly larger sail deployment delay of up 

to 20.2 days in some cases.  

Nomenclature 

a   = Solar sail acceleration vector, km/s2 

a   = Averaged solar sail acceleration vector, km/s2 

A   = Area, m2 

ca  = Solar sail characteristic acceleration, km/s2 

coa  = Amplitude of the collective blade pitch profile, rad 

cya  = Amplitude of the cyclic blade pitch profile, rad 

hpa  = Amplitude of the half-p blade pitch profile, rad 

F   = Solar sail force, N/m2 

K   = Gain matrix 

m   = Mass, kg 

m̂   = Unit normal vector of FPF sail 

n̂   = Unit normal vector of heliogyro blade 

N   = Number of heliogyro blades 

P = Solar radiation pressure, N/m2 

Cr  = Dimensionless solar sail position vector in circular restricted three-body problem 

r   = Sun-sail distance, km 

AUr  = Sun-Earth distance, km 

ŝ   = Unit Sun-direction vector 

,3iLs   = Third component of the ˆ
iLs  unit vector 

t   = Dimensionless time 
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u   = Control vector, rad 

U   = Dimensionless effective potential 

x   = Dimensionless state vector 

ẑ   = Unit vector perpendicular to the Earth’s orbital plane 

 

   = Cone angle of solar sail acceleration vector, rad 

   = Solar sail lightness number 

   = Angle between p̂ - and 3d̂ -axes, rad 

   = Clock angle of solar sail acceleration vector, rad 

u   = Feedback control vector, rad 

 x   = Dimensionless state error vector 

0r   = Dimensionless injection error on position vector 

0r   = Dimensionless injection error on velocity vector 

0t   = Dimensionless solar sail deployment delay 

   = Dimensionless error tolerance 

   = Angle between ŝ - and 1d̂ -axes, rad 

   = Heliogyro blade pitch angle, rad 

   = Eigenvalue 

   = Mass ratio of the circular restricted three-body problem 

   = Gravitational parameter of the Sun, km3/s2 

ξ   = Unstable eigenvector 

cy  = Phase angle of the cyclic blade pitch profile, rad 

hp  = Phase angle of the half-p blade pitch profile, rad 

i   = Heliogyro thi  blade azimuth angle, rad 

ω   = Dimensionless angular momentum vector of circular restricted three-body problem synodic 
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reference frame 

   = Heliogyro spin rate, deg/s 

Ω  = Heliogyro spin axis 

Subscripts 

0   = At time 0t    

C   = In the synodic circular restricted three-body problem reference frame  ˆ ˆ ˆ, ,C x y z  

,1C   = Referring to, or with respect to, first primary in circular restricted three-body problem 

,2C   = Referring to, or with respect to, second primary in circular restricted three-body problem 

i   = Blade number 

l   = In l̂ -direction of the reference frame  ˆˆ ˆ, ,S s l p , N/m2 

iL   = In the thi  blade’s reference frame  1 2 3
ˆ ˆ ˆ, ,iL l l l  

max  = Maximum 

min  = Minimum 

nom   = Referring to nominal conditions 

p   = In p̂ -direction of the reference frame  ˆˆ ˆ, ,S s l p , N/m2 

pos   = In direction of position vector 

s   = In ŝ -direction of the reference frame  ˆˆ ˆ, ,S s l p , N/m2 

S   = In the Sun reference frame  ˆˆ ˆ, ,S s l p  

sail   = Referring to the main sail 

vane   = Referring to the solar sail vanes 

vel   = In direction of velocity vector 
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I. Introduction 

     olar sailing is a relatively new form of spacecraft propulsion that exploits solar radiation pressure by using a 

large, very thin and highly reflective membrane to reflect solar photons, thereby producing thrust [1, 2]. As a 

propellant-less form of propulsion, it has great potential for high-energy and long-duration missions and has recently 

been successfully demonstrated in space with the IKAROS [3], NanoSail-D2 [4] and LightSail-1 missions4. Each of 

these three missions employed a fixed polygonal flat (FPF) solar sail; however, renewed interest exists in the 

heliogyro concept [5, 6]. This solar sail concept divides the sail area into a number of long, slender blades which are 

deployed from a central hub and flattened by spin-induced tension [1]. Not only does this allow simple packaging 

and deployment, it also removes the need for a relatively heavy mechanical deployment and stiffening structure as 

required for the FPF sail configuration. The heliogyro concept is therefore more efficient, allowing a higher force 

per unit mass because of a lower sail loading (the spacecraft mass to sail area ratio). Note that in this paper, the FPF 

sail and the heliogyro are assumed to be manufactured conventionally, namely, consisting of a polymer support onto 

which a non-photonic reflective metal layer is deposited.  

 Significant research has been conducted regarding the heliogyro’s blade dynamics, stability and control [7] and 

its attitude control moment authority [8], but much remains to be explored in its orbital dynamics and control 

capabilities, which appear to have some interesting possibilities. For example, the force vector with respect to the 

Sun-line that an FPF sail can achieve is constrained to the surface of a “force bubble”. A coning strategy can scale 

down the average force magnitude, but only over long periods of time, e.g., at orbital rate [9]. Instead, the heliogyro 

can scale down the force magnitude in any direction within minutes by pitching its blades, which reduces the 

heliogyro’s effective sail area. The heliogyro can therefore “fill up” the force bubble, allowing finer force control, 

which is exploited in this paper for orbital control. In particular, the ability to correct for orbit injection errors and 

delays in solar sail deployment at injection into solar sail, Sun-Earth, sub-L1 halo orbits is investigated and 

compared to the performance of an FPF solar sail. Note that the gravitational effect of the Moon on these Sun-Earth, 

sub-L1 halo orbits is not considered in this paper.  
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The heliogyro is expected to outperform the FPF sail in terms of orbit correction capabilities because of the 

following: the time evolution of the acceleration vector of a solar sail determines how the sailcraft will reach its 

mission target. To optimize this trajectory for some index, three control variables are available: when considering an 

FPF sail, two of the control variables include the sail loading ( , which is a function of the area-to-mass ratio of the 

solar sail) and the optimized time-dependent direction of the solar sail acceleration vector. However, this optimal 

profile is a local one, i.e., the one related to the chosen value for  . Unless the mass of the sailcraft can be varied, a 

(complicated at present) way to recover the third degree of freedom would be the use of a photonic material 

deposited on the sail. A simpler way is to vary the sail area and this is where the heliogyro gains advantage through 

its significant capability to vary the sail area exposed to Sunlight.  

 A solar sail sub-L1 halo orbit has been proposed for several mission concepts (e.g., Geostorm [10] and 

Sunjammer [11]) and is one of the key missions enabled by solar sail technology [12]. This mission concept exploits 

the solar sail’s continuous thrust to efficiently position a platform around the Sun-Earth line, sunward of the L1 

point. From such a vantage point, a platform like Sunjammer can almost double the warning time [11] for solar 

storms over existing infrastructure at L1 (e.g., SOHO (ESA/NASA, 1996), ACE (NASA, 1997), WIND (NASA, 

2004) and DSCOVR (NOAA/NASA, 2015)). This increased warning time is essential to allow operators of ground 

and space assets enough time to take appropriate action for incoming solar storms. This mission concept has been 

investigated quite extensively (e.g., References [10-14]) with Reference [14] showing the sub-L1 point’s 

controllability by varying the FPF sail’s effective area through the use of control vanes. Compared to a heliogyro, 

this area variation is small, because the entire heliogyro sail area can be considered to be control vanes. Superior 

orbital control capabilities are therefore once again expected for a heliogyro compared to an FPF solar sail with 

vanes when considering unavoidable orbit injection errors and potential solar sail deployment difficulties at injection 

into a solar sail sub-L1 halo orbit. 

 This paper evaluates the performance of a heliogyro relative to an FPF sail (with vanes) for the sub-L1 station 

keeping application, and is structured as follows. First, Section II explains the heliogyro force model and gives a 

detailed explanation of the reference frames involved, with details of their transformations given in the Appendix. 

Section III outlines a range of possible pitch profiles of the heliogyro’s blades, followed by the impact of these pitch 

profiles on the heliogyro’s force generating capabilities in Section IV. Section V derives and presents the solar sail 

halo orbits that serve as a test case throughout this paper, followed by the design of a linear-quadratic regulator 
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(LQR) to maintain these orbits under injection errors and sail deployment delays in Section VI. The results for 

injection errors are presented in Section VII.A, while the results for a time delay in solar sail deployment are 

presented in Section VII.B.  

II. Heliogyro force model 

Different solar sail force models exist, including the ideal solar sail reflectance model [1, 2], which considers the 

sail to be perfectly reflecting and perfectly flat, without wrinkles or optical imperfections. Under these assumptions, 

the incoming solar photons are specularly reflected. The solar radiation pressure force and acceleration then act 

perpendicular to the local sail surface or the heliogyro blade. References [1, 2] highlight the need to use a more 

realistic force model, e.g., the one coming from scalar scattering theory (SST), which includes specular reflection, 

diffuse reflection, and absorption. However, SST does not consider the polarization of light in surface scattering, 

which is taken into account in the so-called Vector Scattering Theories (VSTs)  [15-17], which is beyond the aim of 

this paper. In the interest of a more transparent exposition of the relative advantages of a heliogyro over an FPF sail, 

this paper will assume the ideal solar sail reflectance model, taking the realistic value for Sunjammer’s lightness 

number (see below Eq. (8)) as the absolute upper bound in our analyses.  

With the assumption of perfect specular reflection, Eq. (1) gives the solar radiation pressure acceleration of the 

sailcraft due to the thi  heliogyro blade, i.e., the fraction of total sailcraft radiation pressure acceleration due to a 

single blade [1, 18]. The total sailcraft radiation pressure acceleration is then obtained by summing the acceleration 

in Eq. (1) for all blades.  

 2
, ˆ2 cos

i i

i
i L i L

A
P

m
a n  (1) 

In Eq. (1), P  is the solar radiation pressure at the considered Sun-sailcraft distance (e.g., 4.563 10-6 N/m2 at 1 

Astronomical Unit (AU)), iA  is the thi  heliogyro blade’s area and m  is the spacecraft mass. The thi  blade’s cone 

angle, i , is the cone angle between the Sun direction and the thi  blade’s normal, ˆ
iLn , where the subscript iL  

refers to the thi  blade frame, one of four reference frames used in this work:  ˆˆ ˆ, ,S s l p ,  1 2 3
ˆ ˆ ˆ, ,D d d d , 

 1 2 3
ˆ ˆ ˆ, ,B b b b  and  1 2 3

ˆ ˆ ˆ, ,iL l l l  [18], see Figure 1, with their transformations detailed in the Appendix:  
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1. Sun coordinate system,  ˆˆ ˆ, ,S s l p   

- ŝ : Sun-spacecraft unit vector  

- l̂ : When defining ẑ  as the unit vector perpendicular to the Earth’s orbital plane,  ˆ ˆ ˆˆ ˆ/  l z s z s   

- p̂ : Completes the right handed reference frame, ˆˆ ˆ p s l  

2. Despun coordinate system,  1 2 3
ˆ ˆ ˆ, ,D d d d  

- 1d̂ : Along the heliogyro spin axis Ω   

- 2d̂ : Completes the right handed reference frame (along blade 4 at time 0t   for the 4-bladed heliogyro 

of Figure 1) 

- 3d̂ : Along blade 1 at time 0t  , where the orientation of blade 1 at 0t   is defined by the angle   with 

respect to p̂   

3. Body coordinate system,  1 2 3
ˆ ˆ ˆ, ,B b b b   

- 1b̂ : Fixed along blade 1  

- 2b̂ : Completes the right handed reference frame (along blade 2 at time 0t   for the 4-bladed heliogyro 

of Figure 1) 

- 3b̂ : Along the heliogyro spin axis Ω   

This reference frame is thus fixed to the heliogyro body and aligned along the centerline of blade 1.  

4. thi  blade coordinate system,  1 2 3
ˆ ˆ ˆ, ,iL l l l   

- 1l̂ : Along thi  blade span 

- 2l̂ : Along thi  blade chord 

- 3l̂ : Normal to thi  blade ( 3
ˆ ˆ

iLl n ) 

The blade coordinate systems differs from the body coordinate system  1 2 3
ˆ ˆ ˆ, ,B b b b  because they are 

aligned along different blade centerlines (for i  different from 1), and because the blades are generally 
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ŝ   

l̂   

p̂   

1d̂    

2d̂

3d̂   



   Ω   

pitched relative to the body frame. Blade motion other than rigid-body pitching is neglected in this paper, 

but this motion is expected to be small and damp within minutes [7, 19]. 

 

 

 

a) b) 

 

c)  

Figure 1 Definition of reference frames. a) S - and D -frames. b) D - and B -frames. c) B - and iL  -

frames. 

 

Ω

1b̂    

2b̂   

3b̂    

Blade 1 

1̂l

2l̂ 3l̂   

i

 

1d̂    

2d̂

3d̂   

Ω 1b̂   

2b̂   

3b̂    Blade 1 

Blade 1 

1

Blade 2 

Blade 3 

Blade 4 



10 

 

Finally, note that there is a slight difference in the definition of the  1 2 3
ˆ ˆ ˆ, ,D d d d -frame with its definition in 

Reference [8] as well as in the use of the terms cone and clock angle. While Reference [8] refers to the heliogyro’s 

attitude angles   and   as cone and clock angles, this paper adopts the definitions as in Reference [1], where the 

angles   and   are referred to as cone and clock angles that describe the direction of the solar sail acceleration 

vector with respect to the Sun coordinate system,  ˆˆ ˆ, ,S s l p , see Figure 2. Note that, for an FPF solar sail, the 

definitions are almost interchangeable ( 1
2

;  =      ), because the direction of the solar sail acceleration vector 

of an FPF sail is fully defined by its attitude. Instead, for a heliogyro both its attitude (through the angles   and  ) 

and the blades’ cone angles (i.e., i ) define the direction of the solar sail acceleration vector.  

 

Figure 2 Definition of cone, , and clock, , angles of the solar sail acceleration vector in  ˆˆ ˆ, ,S s l p  

reference frame. 

 

The blade’s cone angle in Eq. (1) is defined in the  ˆˆ ˆ, ,S s l p  reference frame as illustrated in Figure 2. To 

compute the cone angle, first the Sun-direction is transformed from the Sun  ˆˆ ˆ, ,S s l p  reference frame, 

 ˆ 1 0 0
T

S s , into the thi  blade  1 2 3
ˆ ˆ ˆ, ,iL l l l  reference frame using the transformation 

    ˆ ˆ
iS i LSD DB BLs s   (2) 

with the rotation matrices  SD ,  DB , and  iBL  defined in the Appendix. The blade’s normal vector can be 

defined in the  1 2 3
ˆ ˆ ˆ, ,iL l l l  frame as 

ŝ   

l̂   

p̂   

a   

   


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  ,3ˆ 0 0 sign
i i

T

L Ls   n  (3) 

where ,3iLs  is the third component of the ˆ
iLs  unit vector, and the sign function ensures the sail normal points away 

from the Sun. The blade’s cone angle can then be computed from 

 ˆ ˆcos
i ii L L  s n . (4) 

To obtain the total solar radiation pressure acceleration on all N  blades of the heliogyro in the  ˆˆ ˆ, ,S s l p , 

 1 2 3
ˆ ˆ ˆ, ,D d d d  or  1 2 3

ˆ ˆ ˆ, ,B b b b  reference frames, the individual , ii La  acceleration components need to be 

transformed to the respective frame and summed. For the Sun  ˆˆ ˆ, ,S s l p  reference frame this becomes 

      ,
1

i

N

S i i L
i

SD DB BL


 a a .  (5) 

Because the heliogyro rotates, Eqs. (1) and (5) only provide the instantaneous acceleration vector. Equation (5) 

therefore needs to be averaged over one or two revolutions (depending on the selected blade pitch profile per 

Section III). This averaged acceleration vector, Sa , can be obtained by integrating a single-blade heliogyro with 

respect to its azimuth angle, 1 , see Figure 1b [8]. This approach is valid because the integral is the same for each 

blade. The average acceleration for all blades can thus be obtained by evaluating the integral for one blade only, as 

long as this integral is multiplied by the total sail area A  (not by the area of one blade iA ): 

       
1 1 1

4
2

1 1
0

1
ˆ ˆ ˆ2

4S L L L
A

P SD DB BL d
m





 a s n n . (6) 

Note that no analytical solution to Eq. (6) was found. It is therefore evaluated numerically. 

The term 2 /iPA m  in Eq. (1) is usually rewritten using the so-called characteristic acceleration, ,c ia . The 

characteristic acceleration is the solar radiation pressure acceleration that the sail or heliogyro blade can achieve 

when facing the Sun (i.e., i  0) at AUr  1 AU and at rest in the  ˆˆ ˆ, ,S s l p -frame:  

 , 2
1

,    
N

c i i i
iAU

a
r


  


     (7) 
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with   the gravitational parameter of the Sun and   the solar sail lightness number (ratio of solar radiation 

pressure acceleration to gravitational acceleration at the same location and time). Note that i  refers to the lightness 

number of a single heliogyro blade and is computed using the blade’s area and the total spacecraft mass. For N  

blades with the same size and material properties, each blade has a lightness number equal to 1 / N  of the lightness 

number of the entire spacecraft. At any other distance from the Sun, r , the acceleration of Eq. (1) becomes: 

 2
, 2

ˆcos
i ii L i i L

r


 a n


. (8) 

This paper assumes a baseline lightness number of the entire spacecraft of   0.0363 based on the expected 

performance of relatively mature FPF sail technology designed for the previously-proposed Sunjammer mission 

[11]. For an ideal solar sail reflectance model, this lightness number corresponds to a sail area of sailA  1068 m2 

for a 45 kg spacecraft mass [11]. Note that, due to the reduced sail system mass, a near-term value for a similarly-

mature heliogyro-type sail would be approximately   0.08 [5]. 

III. Heliogyro pitch profiles 

The blade pitch angle, i  (see Figure 1c), depends on the pitch profile selected and is required to compute the 

 iBL  transformation matrix. Reference [6] and many following works (e.g., References [5, 7, 8, 18]) define three 

different pitch profiles, which can be used independently or in combination: 

1. Collective profile (‘co’) 

2. ½-Period cyclic profile (half-p, ‘hp’) 

3. 1-Period cyclic profile (cyclic, ‘cy’) 

The ‘co’ profile pitches the blades constantly while the heliogyro rotates, while the ‘hp’- and ‘cy’-profiles pitch 

the blades sinusoidally with revolution. The ‘hp’ profile repeats after two revolutions (requiring the total 

acceleration vector in Eq. (6) to be averaged over two revolutions), while the ‘cy’ profile repeats after one 

revolution. Each of the pitch profiles and its effect on the solar radiation pressure force and moment is illustrated in 

Figure 3, which is taken from Reference [18]. Note that variants of these pitch profiles can be defined such as the 

attenuate profile, which is similar to the collective profile but pitches each blade in the opposite direction. The 

choice of which pitch profile to use will depend on the profile that can generate the desired solar radiation pressure 
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accelerations for orbital control without generating any adverse moments. Note that zero-moment about each body 

axis can be achieved with the attenuate profile for any pitch amplitude and attitude of the heliogyro.  

Reference [8] provides the thi  blade’s pitch angle for any combination of the three pitch profiles itemized 

above: 

    1
sin sign sin

2 2i co hp i hp hp cy i cya a a a
                  

 (9) 

where coa , hpa , and cya  are the amplitudes of the collective, half-p and cyclic profiles, respectively, and hp  and 

cy  are the phase angles of the half-p and cyclic profiles, respectively.  

      Collective          ½-Period cyclic  1-Period cyclic 

   

Figure 3 Illustration of pitch profiles for Sun-facing heliogyro ( = 0) (source: [18]). 

 

IV. Heliogyro force capabilities 

For an FPF (fixed-area) non-spinning solar sail at 1 AU, tilted with respect to the Sun direction at a cone angle 

  (where   ) and a clock angle 
2
   (or 0  ), see Figure 2, the normal vector to the sail area, m̂ ,  can be 

written in the  ˆˆ ˆ, ,S s l p  reference frame as 

  ˆ cos sin 0 ,    90 ,90T o o
S        m . (10) 

The solar radiation pressure force that such an FPF (fixed-area) sail can achieve at 1 AU, per square meter sail 

area, and in the direction along the Sun line, sF , and perpendicular to it, lF , can be obtained from an equation 



14 

 

analogous to Eq. (1) or (8). Considering an interval for the cone angle of 90 ,90o o     , the result is the surface 

of a “bubble-shaped” force curve as shown in Figure 4a.  

When transforming this force curve into an acceleration for a Sunjammer-type sail, the solid curve indicated with 

  0.0363 in Figure 4b is obtained. The other, dashed curves in Figure 4b are obtained when considering an FPF 

solar sail with four control vanes. Through the use of the vanes, the solar sail area can be scaled up and down by 

2 vaneA , up to a maximum and minimum value of 2sail vaneA A  and 2sail vaneA A , respectively, with vaneA  the sail 

area of a single vane. Note that, here, sailA  is the average solar sail area (not just referring to the main sail) and that 

the lightness number scales proportionally with these changes in sail area. Using a vane area of 15 m2, as previously 

proposed for Sunjammer [20], the vanes enable an increase or decrease in the nominal sail area, and thus in the 

lightness number, of 2.8 percent: 0.03528 0.03732min max      . This FPF sail with vanes can thus achieve 

the thin volume shown in the shaded  ,s la a -combinations in Figure 4b.   

a) b) 

Figure 4 FPF solar sail “bubble-shaped” force curve at 1 AU for  = [-90, 90] deg. a) Force per square 
meter sail area for a fixed area sail. b) Acceleration for fixed area sail and sail with control vanes. 

 

When now considering a heliogyro, the ability to pitch its blades (in a collective, cyclic, or half-p manner as 

described in Figure 3) provides achievable spin averaged  ,s lF F - and  ,s la a -combinations that are not 

constrained to the surface of the bubble for an FPF (fixed area) sail nor to the thin shaded volume for an FPF sail 

with vanes as in Figure 4b, but can instead take on any value within the whole bubble volume. This implies that the 

solar radiation pressure acceleration vector can be oriented away from the heliogyro’s spin axis. This is 

   
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demonstrated in Figure 5, which shows averaged force contours of equal pitch amplitudes for the collective, half-p 

and cyclic pitch profiles. Each curve represents one specific amplitude of one of the profiles and is constructed by 

considering heliogyro attitudes of 90 ,90o o      and assuming that the angle   equals zero (see Figure 1a). 

Extending the results to non-zero values for   gives the force curves of Figure 6. The figure shows that a non-zero 

  angle rotates the two-dimensional “bubble-shaped” force curves around the ŝ -axis (Sun-spacecraft line).  

The results in Figure 5 and Figure 6 show that a heliogyro can be modelled as an FPF sail with a highly-variable 

lightness number, allowing it to scale the solar radiation pressure force between zero and that of an equivalent-area 

FPF solar sail. Note that for the cases considered in Figure 5 (i.e., 0hp   and 0cy  ) the half-p and cyclic 

profiles cannot generate all combinations of the force magnitude and direction in the interior of the bubble, as shown 

by the black infeasible regions in the plots on the right hand side of Figure 5b and c. However, these regions can be 

captured by using a collective profile, which does allow any combination of the force magnitude and direction in the 

interior to be reached. It is this property of a heliogyro, i.e., enabling a highly-variable lightness number (more 

variable than that of an FPF sail with vanes), which is exploited in this paper for orbital control. In particular, it is 

used here to correct for injection errors and solar sail deployment failure at injection into a solar sail Sun-Earth sub-

L1 solar sail halo orbit. 
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Figure 5 Heliogyro “bubble-shaped” force curves providing the average force per square meter sail area 
at 1 AU for  = [-90, 90] deg,  = 0 deg, and different heliogyro blade pitch profiles and profile amplitudes. 

a) Collective profile. b) Half-p profile, hp = 0. c) Cyclic profile, cy = 0. 
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Figure 6 Heliogyro “bubble-shaped” force curves for a collective profile, providing the average force per 
square meter sail area at 1 AU for  = [-90, 90] deg and  = [-90,90]. 

 

V. Solar sail Sun-Earth L1 halo orbits 

One near-term application of solar sail technology is an advanced space weather forecasting platform at a sub-L1 

location [12]. In reality, the sail cannot be placed exactly on the Sun-Earth line as this causes solar radio interference 

during communications. The sail would have to reside in a solar sail halo orbit around the sub-L1 point such that it 

orbits a 5 deg solar exclusion zone (SEZ) [21]. The generation of solar sail halo orbits has been investigated before 

(e.g., References [22-24]), and the approach is briefly repeated here, starting with the solar sail dynamics in the Sun-

Earth circular restricted three-body problem (CR3BP). Note that the eccentricity of the Earth’s orbit makes a 

significant difference in the details of such orbits [13], but the CR3BP is used here to investigate the fundamental 

advantages of the heliogyro over an FPF sail in this application.  

A. Solar sail Sun-Earth circular restricted three-body problem 

As a summary of more extensive works on the CR3BP (e.g., Reference [25]), the CR3BP can be characterized as 

a framework that describes the motion of an infinitesimal mass, m  (here the sailcraft), under the influence of the 

gravitational attraction of two much larger primary masses, 1m  (the Sun) and 2m  (the Earth). The CR3BP further 

assumes that the gravitational influence of the sailcraft on the Sun and Earth can be neglected and that the Sun and 

Earth move in circular orbits about their common barycenter O . Figure 7 shows the synodic reference frame 

employed in the CR3BP,  ˆ ˆ ˆ, ,C x y z , that rotates such that the Sun and Earth remain on the x -axis. A set of 
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canonical units is used where the Sun-Earth system mass, the Sun-Earth distance and the frame’s angular velocity, 

ˆC ω z , are set to unity and the mass ratio  1
-6

2 2 3.0404/ 10m m m      is defined. Note that the subscript 

C  refers to the synodic reference frame. 

In the synodic reference system, the motion of the solar sail is described by [1] 

 2C C C C U   r ω r a   (11) 

with  TC x y zr  the position vector of the sail,     2 21
,1 ,22 1 / / rC CU x y r        the effective 

potential that combines the gravitational potential and the potential from the centripetal acceleration, and Ca  the 

solar sail acceleration expressed in the CR3BP reference frame, which for an FPF solar sail equals: 

  2,12
,1

1
ˆ ˆ ˆC C C C

Cr

 
 a m r m  (12) 

with the vectors ,1Cr  and ,2Cr  defined as  ,1
T

C x y z r  and  ,2 1
T

C x y z    r .  

 

 

Figure 7 Schematic of solar sail circular restricted three-body problem. 

 

B. Solar sail halo orbits 

Many works in the literature (e.g., References [22-24, 26-28]) describe methods to find solar sail periodic (halo) 

orbits under the dynamics described in Eq. (11) or similar systems. In this paper, the approach of Reference [24] is 
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adopted, which shows that solar sail halo orbits exist under different sail steering laws, e.g., ,1ˆ ˆC Cm r  (Sun-

pointing) or  ˆ 1 0 0 T
C m (synodic x -pointing). In this work, the latter steering law is adopted.  

The process for finding a halo orbit is initialized by approximating the equations of motion in Eq. (11) in the 

neighborhood of the sub-L1 point by linearization, but expanding the effective potential and solar sail acceleration 

terms to third order with a Taylor series. The Lindstedt-Poincaré method is subsequently used to find the third order 

solution to this approximated dynamical system. Details on the method can be found in Reference [24]. As these 

solutions only hold in the linearized system, the orbit quickly diverges when it is integrated in the full non-linear 

system of Eq. (11). A differential correction scheme is therefore applied to correct the initial conditions of the 

approximated orbit to find closed solar sail halo orbits in the full non-linear system. This is used to find solar sail 

halo orbits with small amplitudes, i.e., close to the sub-L1 point. A continuation scheme is subsequently applied to 

gradually increase the orbit’s out-of-plane amplitude until the orbit remains outside the 5 deg SEZ.  

The resulting solar sail halo orbit for a Sunjammer-type sail, i.e.,   0.0363 is presented in Figure 8a, with 

initial conditions as 

  ,0 ,0 ,0 0.9798 0 0.0018 0 0.0128 0
T T

C C C   x r r . (13)  

This initial condition corresponds to the most northern (i.e., out-of-ecliptic) location of a solar sail halo orbit 

with average in- and out-of-plane amplitudes of approximately 61.25 10  and 52.5 10  km, respectively. The 

additional dots in Figure 8a indicate the initial conditions of other orbits in the family of solar sail halo orbits for 

  0.0363 and  ˆ 1 0 0 T
C m , clearly indicating how the family evolves from lying within the SEZ to orbits 

orbiting around the SEZ. For reference, these orbits have periods of approximately 268 days. Solar sail halo orbits 

for other values for the lightness number are provided in Figure 8b which is a side-view to clearly show how the 

orbit is displaced further Sunward for increasing values of  . At the point closest to the Sun and compared to a 

satellite at the L1 point, these orbits increase the solar storm warning time by a factor 1.3 to 4.4.  
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a) b) 

Figure 8 Solar sail halo orbits fitting around a 5 deg solar exclusion zone. a)  = 0.0363 with dots 
indicating initial conditions of family of solar sail halo orbits for  = 0.0363. b) (x,z)-view for  = 0.01 - 0.04 

and 0.08. 
 

VI. Linear-quadratic controller 

To investigate the orbital control capabilities of a heliogyro, this paper investigates how well the heliogyro can 

recover from errors on the orbit injection and from solar sail deployment delays at injection. To this end, an LQR 

feedback control approach is used to generate reasonable sailcraft control actions in response to these initial 

condition errors, similar to the works in References [13, 14, 29-31]. The MATLAB/Simulink diagram of the LQR 

algorithm is provided in Figure 9. 

As a result of the injection error or delayed solar sail deployment, the trajectory, x , will deviate from the 

nominal solar sail halo orbit, i.e., the nominal trajectory, nomx . The error on the state, nom  x x x  is used to 

compute the required feedback control, u , which is added to the nominal control to obtain the total control, 

nom  u u u . Given sufficient control authority, this total control should bring the trajectory back to the nominal 

trajectory after some time. If the state error is small, i.e., the sailcraft remains close to the reference trajectory, the 

system dynamics can be described by linearizing the equations of motion in Eq. (11) around the nominal conditions. 

For that, Eq. (11) is rewritten as a set of first order differential equations: 

       , ,t t t tx f x u   (14) 

to obtain 
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    x A x B u  (15) 

with 

 6 6 6 3
, ,

,     
nom nom nom nom

x x
            x u x u

f f
A B

x u
. (16) 

Note that the linearization about points on the nominal halo orbit results in a time varying linear system in 

Eq. (15), but the notation of the time dependency is omitted for brevity. An infinite-horizon quadratic cost function 

is used 

  
0

T TJ dt   


  x Q x u R u ,  (17) 

where the first and second terms on the right hand side of Eq. (17) penalize the transient state error and control 

effort, respectively. The weighing matrices 6 6 6 610,000x xQ I  and 3 3 3 3x xR I  were chosen to result in 

reasonable control effort and control performance in this application. Note that the same scaling factor is applied to 

the position- and velocity-related components of the matrix Q , because in the canonical units of the CR3BP the 

position and velocity are of equal order of magnitude. In addition, the position and velocity need to be tracked 

equally well in order to remain in the neighbourhood of the halo orbit and maintain the halo orbit over time.  

The control that minimizes the value of the cost J  (assuming time-invariant A  and B ) is the feedback law 

   u K x  (18) 

with the constant gain matrix 3 6xK found using the Matlab function lqr(A,B,Q,R). This solution is re-computed at 

each integration step, resulting in a time-varying gain matrix K . For the solar sail halo orbit of Figure 8a, most 

elements of the gain matrix oscillate around a value close to zero. The difference between the minimum and 

maximum value therefore never exceeds a factor 2.4 (where a factor of two reflects oscillation around zero) and the 

maximum rate of change in any element of the gain matrix is in the order of 10-4 s-1.  

For comparison, the solar sail halo orbits will be controlled both with an FPF sail with vanes (hereafter referred 

to in short as FPF sail) and a heliogyro, where (according to the findings in Section IV) the heliogyro is modelled as 

an FPF sail with a highly varying lightness number. For both configurations, the control components then include 

the direction of the sail’s acceleration vector, which is described using the cone and clock angles,   and   (see 



22 

 

Figure 2). In addition, to account for the effect of the variable area effect of control vanes and of pitching the 

heliogyro’s blades, the lightness number is added as a control, resulting in         T
t t t t     u . Note that 

the nominal control consists of the cone and clock angles required to achieve  ˆ 1 0 0 T
C m (synodic x -

pointing) along the solar sail halo orbit and a corresponding constant value for the lightness number, nom . The 

block diagram in Figure 9 shows that bounds are enforced on these control components 

 
90 90

 -

o o

min max




  

  
   
 

  (19) 

where the bounds on the lightness number are defined as: 
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 
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








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


 


  (20) 

For the heliogyro, different values for the upper bound of the lightness number, max , are assumed, including 

the upper bound for the FPF sail configuration.  

 

Figure 9 Matlab/Simulink® diagram of LQR for solar sail halo orbit control. 



23 

 

A. Injection error 

The first test case of this paper considers injection errors into the solar sail halo orbit. This injection error is 

modelled by perturbing the initial condition of the solar sail, see Eq. (13), as 

 ,0 0
,0

,0 0

C
C

C

  
    

r r
x

r r  , (21) 

where the perturbation is provided in the direction of the unstable eigenvector, ξ , corresponding to the eigenvalue 

with 1j   of the one-orbit discrete state transition matrix of the nominal orbit. This test case is intended to 

explore the worst case orbit injection errors, as these should tend to require the largest control effort. With 

T
pos vel   ξ ξ ξ , the perturbations become 0 0 posr  r ξ  and 0 0 velr  r ξ  . The position error component of 

this perturbation is illustrated in Figure 10a, where the gray arrow indicates the unstable eigenvector direction and 

the round marker the location along this direction where injection actually takes place. Section 7 will present results 

for a large range of perturbation magnitudes, 0r  and 0r , both positive and negative, where negative values for the 

perturbation represent an injection error in the ξ -direction (i.e., Earthward of the nominal injection location). Note 

that, only for 0 0r r    is the eigendirection perturbation preserved, but that additional perturbation magnitudes are 

considered (i.e. 0 0r r   ) to expand the design space to include additional, realistic injection error cases. 

B. Time delay in solar sail deployment 

The second test case of this paper considers a solar sail deployment failure upon injection into the solar sail halo 

orbit. Here the orbit injection is assumed to be accurate, resulting in a position and velocity on the desired halo, but 

because the sail does not deploy on time, the sailcraft will drift away from the halo orbit according to the classical 

(no solar radiation pressure) CR3BP dynamics. This is illustrated by the black dashed trajectory in Figure 10b. Once 

the sail deploys, the position and velocity at that point are used as initial condition perturbations for the LQR control 

evaluation. Note that the position error in this case is similar to that of the orbit injection error case (for 0 0r  ), 

but the resulting velocities are in quite different directions.  
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Figure 10 Illustration of test cases for nom = 0.0363. a) 500,000 km error on the nominal injection position 
in direction of unstable eigenvector. b) Solar sail deployment delay with actual deployment after 

t0 = 25 days. 
 

C. LQR performance quantification  

The control is considered successful if, after four nominal halo orbit periods (i.e., 2.9 years), the error on the 

position and velocity components are smaller than a tolerance,  . An example for one position and one velocity 

coordinate is provided in Figure 11, where two dimensionless values for the tolerance are considered: a strict 

tolerance of 410  , which corresponds to an allowable error on the position of 15,000 km and an allowable error 

on the velocity of 3 m/s, and a looser tolerance of 45 10   , corresponding to allowable errors of 75,000 km and 

15 m/s. While the velocity coordinate in this example satisfies the stricter tolerance of 410  , the velocity 

coordinate does not (within the time period shown), but it does satisfy the tolerance of 45 10   . As this example 

is representative of controlled behavior in this application, the LQR control is considered successful if the tolerance 

of 45 10    is met. While the example in Figure 11 only considers two states, the error tolerance will be applied 

to each of the six solar sail states and all need to satisfy the error tolerance after four halo orbits in order for the 

control to be considered successful.  
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Figure 11 Example of state error to support definition of LQR performance quantification. 

 

VII. Results  

This section provides the results of the LQR feedback controller of Section VI to correct for injection errors and 

solar sail deployment failure at injection into the solar sail halo orbits of Section V.  

A. Injection error 

The first results, in Figure 12, are for a nominal lightness number equal to that of Sunjammer, i.e., 

nom  0.0363. See Figure 8a for the corresponding solar sail halo orbit. Figure 12a and b provide, respectively, the 

recoverable injection error for an FPF solar sail and a heliogyro with the same upper limit on the lightness number 

of  1 0.028max nom    0.03732 and for 45 10   . The only difference between the two sail configurations 

is thus the value for min . It is clear from Figure 12a and b (which are plotted on the same scale) that the heliogyro 

can correct for significantly larger injection errors in position and velocity than an FPF sail, at least for negative 

(Earthward) position errors. The FPF sail can only recover from injection errors that are approximately of the same 

magnitude as the controlled error tolerance   (see the rectangular boxes in Figure 12). These initial results clearly 

show the effect of the heliogyro’s capability of fully scaling down the lightness number. From an operational point 

of view, the results furthermore show that it is best to undershoot, i.e., intentionally inject slightly Earthward. This 

will artificially shift the nominal injection point to the center of the recoverable injection error surface of Figure 12b, 

from where greater errors both in Sunward and Earthward directions can be recovered.  
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Figure 12 Recoverable injection error for solar sail halo orbit with nom = 0.0363. Details for the cases 
numbered one through four are in Figure 13 and Figure 16. a) FPF sail. b) Heliogyro with max

 = 0.03732. 
 

Details for the cases numbered one to three in Figure 12b are provided in Figure 13. These plots provide insight 

into the orbital control on the boundary of the recoverable injection error surface in Figure 12b. The plots on the left 

hand side of Figure 13 provide the state error over time. Note that these are plotted for an integration time of eight 

nominal halo orbit periods with the prescribed convergence time of four halo periods indicated with a black dotted 

line. The allowable error tolerance of 45 10   is represented with a light gray band around the time axis, while a 

tighter tolerance of 410  is shown in dark gray (similar to Figure 11).  

The right hand side of Figure 13 provides the direction of the solar sail acceleration (i.e., the cone and clock 

angles   and  , see Figure 2) over time and the lightness number profiles, indicating the maximum lightness 

number of max  0.03732 as well as the FPF sail’s minimum lightness number of min  0.03528 with dashed 

lines. From these three controls ( ,  , and  ), the required solar radiation pressure acceleration vector can be 

computed. By subsequently defining an inverse problem and choosing a particular heliogyro blade pitch profile to 

provide this acceleration, the required pitch amplitude (and phase) and attitude of the heliogyro (in terms of the 

angles   and  , see Figure 1a) can be obtained. Solving this inverse problem is highly complex (see for example 

References [8, 18] for the inverse problem for the heliogyro’s solar radiation pressure moments) and is beyond the 

scope of the current investigation that is meant to demonstrate the fundamental advantages of the heliogyro over an 

FPF sail for the orbital control of solar sail halo orbits. 
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Figure 13 Details for cases numbered one to three in Figure 12b. a) Case 1: 0r  -500,000 km; 0r  140 

m/s. b) Case 2: 0r  -500,000 km; 0r  130 m/s. c) Case 3: 0r  -500,000 km; 0r  100 m/s. 
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For case 1 (Figure 13a), with 0r  -500,000 km and 0r  140 m/s, it is clear that the trajectory quickly 

diverges from the halo orbit and cannot be recovered even though the maximum lightness number is applied 

continuously towards the end of the control. (Note that for computational speed, propagation is truncated when the 

error on the position becomes larger than 1,500,000 km, which is considered an unrecoverable error). 

For a slightly smaller error on the velocity (case 2: Figure 13 b), with 0r  -500,000 km and 0r  130 m/s, a 

completely different state error profile emerges where the error tolerance of 45 10   is met within one nominal 

halo orbit period. The tighter tolerance of 410  is not met after four orbital periods, but the left plot in Figure 

13b shows that by increasing the integration time, this tolerance can eventually be met. To show the effect of the 

error tolerance, Figure 14 is included, which shows how the surface of recoverable injection error changes when 

decreasing the error tolerance for the prescribed convergence time of four halo orbit periods. Note that further 

increasing the tolerance does not give any gain in recoverable position or velocity errors: on the edge of the surface 

for 45 10    a bifurcation takes place between dynamics with diverging trajectories (as in Figure 13a) and with 

recoverable errors (as in Figure 13b). The only way to move this bifurcation to larger errors in position and velocity 

is by increasing the value for max  as will become clear later on in this section. Finally also note that the gap in the 

error surface for 410   and for large negative values for the error on position and velocity can be filled by once 

again increasing the prescribed convergence time (not shown), indicating that the error is still decreasing with time 

in this area.  

Figure 15 provides the trajectory that brings the heliogyro back to the nominal halo orbit for case 2, where the 

detail also includes other neighboring nominal halo orbits for nom   0.0363 (corresponding to the dots in Figure 

8b). The figure clearly shows that the majority of the orbit is recovered in the first orbital revolution, bringing the 

sail back to the vicinity of the targeted halo orbit and seemingly onto an alternative solar sail halo orbit, oscillating 

around the target orbit as it slowly converges onto the target orbit. The control angle profiles in the right plot of 

Figure 13b show that this control can be achieved with very small cone angles,  , for the solar sail acceleration. 

The solar sail acceleration vector is thus almost aligned with the Sun-sail direction and oscillates around this Sun-

sail direction once per halo orbit period (see the clock angle profile,  ).  
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Figure 14 Heliogyro recoverable injection error for solar sail halo orbit with nom = 0.0363 and 
max = 0.03732 for different error tolerances. 
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Figure 15 Trajectory for case 2 in Figure 12b: 0r  -500,000 km; 0r  130 m/s. 

 

When decreasing the error on the velocity even further (case 3, Figure 13c with 0r  -500,000 km; 0r  100 

m/s) both tolerances can be met with the heliogyro within the prescribed convergence time of four halo periods. For 

both successful controls (cases 2 and 3) the lightness number profiles show how the heliogyro eventually settles with 

the lightness number around the nominal value of 0.0363, as one would expect. Finally, the lightness number 

profiles also show that the LQR feedback controller requests lightness number values far below the minimum value 

for the FPF sail, showing that it is the unique capability of the heliogyro of being able to significantly reduce the 

lightness number that leads to successful control in these cases.  
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The final case to highlight is the one indicated as number four in Figure 12, with 0r  -25,000 km and    

0r  -50 m/s. This is one of very few cases where the FPF sail enables successful control, while the heliogyro does 

not. More details on this case are provided in Figure 16. The state error profiles in Figure 16a show that the 

trajectory quickly diverges from the halo orbit when controlled with a heliogyro, while successful control is 

achieved with the FPF sail configuration. The difference in performance can be explained by the difference in the 

lightness number profiles at the start of the control. From Figure 16b (right plot) it is clear that this particular case 

initially requests the minimum lightness number value, which, according to Eq. (20), equals 0min   for the 

heliogyro and min  0.03528 for an FPF sail. By “switching off” the sail in the case of the heliogyro, the sailcraft 

builds up an amount of momentum that cannot be countered by a subsequent increase in the lightness number up to 

a value of max . More symmetric control limits as imposed for the FPF sail would therefore be of benefit. This 

option will be explored next, by increasing the value for max .  

The above has shown the influence of the lower bound on the lightness number on the control capabilities of the 

FPF sail and heliogyro configurations. It would therefore be of interest to investigate what the influence of the 

heliogyro’s upper bound on the lightness number could be. Note that, increasing the value for max  for the heliogyro 

configuration is justified because the heliogyro concept allows smaller sail loadings, enabling near-term lightness 

numbers of approximately   0.08, twice that of near-term FPF sail technology for the previously proposed 

Sunjammer mission. This larger lightness number can be used to place the sailcraft closer to the Sun for a further 

increase in the solar storm warning time, better control authority (as proposed in this paper), or a combination of 

these two objectives. 

To show the effect of other values for max  on the recoverable injection error, Figure 17 keeps all simulation 

parameters the same as those used to generate the results in Figure 12, only increasing the heliogyro’s value for 

max . As can be expected, the larger the value for max , the larger the injection error that can be corrected for. 

Further details for case 1 of Figure 12 ( 0r  -500,000 km and 0r  140 m/s), which did not lead to successful 

control for max  0.03732, are provided in Figure 18 for additional max -values. Again, while a value of 

0.03732max   could not recover from these injection errors (see Figure 13a), values of max  0.038 can. Figure 
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18 shows that the lightness number control profile is very similar for each value for max  0.038 and only differ in 

the length of time that the maximum lightness number value is requested.  

Finally, a similar conclusion can be drawn for case 4 of Figure 12, which also did not lead to successful control 

for the heliogyro, but was successful for the FPF sail configuration. When increasing the maximum lightness 

number value to max  0.04, the errors in position and velocity of case 4 can be accommodated with a heliogyro. 
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Figure 16 Details for case 4 in Figure 12 for both FPF sail and heliogyro configurations. a) State errors. 
b) Lightness number profiles (the right plot is a detail of the left plot). 
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Figure 17 Orbital control of solar sail halo orbit with nom= 0.0363. Recoverable injection error for FPF 
sail and heliogyro with different values for max. 
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Figure 18 Details for case 1 in Figure 12 ( 0r  -500,000 km and 0r  140 m/s) for different values for 

max. a) Lightness number profiles. b) State error profile for max = 0.038. 
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1. Additional halo orbits 

The results in Figure 12 and Figure 17 have been generated for halo orbits with a nominal lightness number of 

nom  0.0363. This section investigates the heliogyro performance for some of the other orbits shown in Figure 8, 

in particular for nom  0.01, 0.02, 0.03, and 0.04. The results are provided in Figure 19, which shows (where 

possible) the recoverable injection error for both an FPF sail and for a heliogyro, where different values for max  

are considered for the heliogyro configuration. In particular, max  is increased with increments of 10% up to an 

increase of 100%, i.e.,  1 /10max nomi      with 1, 2,...,10i  . Note that for nom   0.01 and an FPF sail 

configuration, the recoverable injection error is so small that it is not visible in Figure 19.  
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Figure 19 Orbital control of solar sail halo orbits with nom = 0.01, 0.02, 0.03, and 0.04. Recoverable 
injection error for FPF sail (only visible for nom = 0.02, 0.03, and 0.04) and heliogyro for different values for 

max. 
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The results in Figure 19 show that the heliogyro outperforms the FPF sail configuration for all halo orbits 

considered, with increasing performances for increasing values for max . Comparing the performance among the 

different orbits, it becomes clear that the smaller nom , the smaller the recoverable injection error. This holds both 

for the heliogyro and the FPF sail configurations, but the orbital control capabilities of the FPF sail degrade faster 

with decreasing values for nom  than those of the heliogyro. 

 

2. Injection location  

The results in this paper thus far have only considered orbit injection at the most northern location of the solar 

sail halo orbit, i.e., at 0y   and 0z  ; however, injection may occur at any location along the orbit. In this section, 

four injection locations, coinciding with the crossings of the  ,x z - and  ,x y -planes, are considered (see Figure 

20):  

 ,0

0,  0 North

0,  0 East

0,  0 South

0,  0 West

C

y z

z y

y z

z y

 
     
  

r . (22) 

 

The results are presented in Figure 21 for an FPF sail (subplot a) and for a heliogyro with three different values 

for max  (subplots b-d). It is clear that the injection location can have a significant influence on the performance of 

the control, with the ‘east’ and ‘south’ locations appearing to perform worst. In addition to the recommendation of 

injecting slightly Earthward (as concluded at the start of Section VI.A), it can thus be recommended to inject at the 

‘north’ or ‘west’ locations. However, the larger the value for max  the smaller the influence of the location 

becomes, with only some minor differences observable at the extremes of the position and velocity error intervals 

for max  0.04.  
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Figure 20 Alternative injection locations along the solar sail halo orbit with nom = 0.0363. 
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Figure 21 Recoverable injection error for different injection locations along solar sail halo orbit with 
nom = 0.0363. a) FPF sail. b-d) Heliogyro with (b) max = 0.03732, (c) max = 0.038, and (d) max = 0.04.  
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B. Solar sail deployment delay 

Next, the case of a delay in solar sail deployment due to deployment failure at injection is considered, starting 

again with a lightness number equal to that of Sunjammer, i.e., nom  0.0363, as seen in Figure 22. Subplot a) 

shows the maximum delay in solar sail deployment from which the nominal orbit can still be recovered for a range 

of max  values. This delay ranges from 1.0 to 7.4 days. For a value of  1 0.028max nom    0.03732 the results 

for both an FPF sail and a heliogyro are provided, which show that the FPF sail and heliogyro perform equally well; 

both allow a delay in sail deployment of one day. To understand these results, details of the three cases numbered 

one to three in the inset of Figure 22a are provided in Figure 22c-h. When increasing the sail deployment beyond 

one day (case 1: 0t  1.1 days), the trajectory diverges from the solar sail halo orbit (see Figure 22c,d). The LQR 

controller requests the maximum lightness number, but this is not enough to bring the solar sail back to the halo 

orbit. This can only be achieved by increasing the maximum value on the lightness number as shown in Figure 22a. 

Successful control is achieved for both cases 2 and 3 ( 0t  1.0 and 0.9 days), which both demand heliogyro 

lightness number profiles that remain almost entirely above the FPF sail’s minimum lightness number, min . The 

heliogyro’s capability to fully scale down the lightness number further than that is thus not used in these cases. As a 

result, the lightness number profiles for both the heliogyro and the FPF sail configurations are very similar, hence 

both configurations perform equally well.  

The sharp transition between successful control (case 2) and unsuccessful control (case 1) is similar to the 

bifurcation shown for injection errors in Figure 14. Also, while the final state errors for cases 2 and 3 are smaller 

than both the loose error tolerance of 45 10    and the tight tolerance of 410  , this is not the case for all time 

delays and values for max . Therefore, Figure 22b is included which clearly shows how the definition of successful 

control changes when changing the error tolerance and for which value of the solar sail deployment delay the control 

bifurcates to unstable.  
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Figure 22 Orbital control of solar sail halo orbit with nom = 0.0363. a) Recoverable time delay in solar sail 
deployment after injection for a range of max-values. b) Influence of error tolerance. c-h) Details of case 1 (c-

d), case 2 (e-f), and case 3 (g-h). 
 

The results for the other solar sail halo orbits with 0.01,  0.02, 0.03   and 0.04 are presented Figure 23. This 

figure again shows that the heliogyro’s performance increases for larger values for max . Interestingly, for the same 

ratio of / 1.3max    the solar sail halo orbits with smaller lightness numbers seem to perform better, i.e., allow a 

larger delay in solar sail deployment than the solar sail halo orbits for larger lightness numbers. This is due to the 

fact that the same delay in deployment leads to a larger error on the position and velocity at sail deployment for the 

orbits with a large lightness number, i.e., the classical dynamics deviate more from the solar sail dynamics for large 

 . This is further illustrated and verified in Figure 24, which shows the error on the state vector at sail deployment 

in position and velocity for the largest recoverable delay in solar sail deployment for the cases considered in Figure 

23. Figure 24 shows that the recoverable deployment delay time is relatively small for larger lightness numbers, but 

the recoverable error in position and velocity (especially velocity) is much larger. Some final conclusions to be 

drawn from Figure 23 are that, similar to the results for nom   0.0363 in Figure 22a, the FPF sail configuration and 

the heliogyro with  1 0.028max nom    perform equally well and that the maximum time delay that can be 

recovered from among all cases considered is 20.2 days. 
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Figure 23 Orbital control of solar sail halo orbits with nom = 0.01, 0.02, 0.03, and 0.04. 
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Figure 24 Position and velocity error for maximum recoverable t0 (see Figure 22) for solar sail halo 
orbits with  = 0.01-0.04 and for a range of max. 

 

Finally, similar to the sensitivity analysis in Section VII.A, Figure 25 provides an insight in the effect of the 

injection location on the performance of an FPF sail and that of a heliogyro for recovering from a solar sail 

deployment failure at injection. Again, for every injection location the FPF sail’s performance is the same as that of 

a heliogyro with  1 0.028max nom   . Furthermore, similar to the results for an injection error in Figure 21, the 

‘east’ location performs worst and the influence of the location becomes smaller for larger max  when computing 

the percentage increase or decrease in allowable sail deployment delay between the injection locations.  
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Figure 25 Recoverable time delay in solar sail deployment after injection at different injection locations 
into solar sail halo orbit with nom = 0.0363. 

 

VIII. Conclusions 

This paper has demonstrated the superior capabilities of a heliogyro for halo-orbit control compared to the 

traditional fixed polygonal flat (FPF) sail configuration. For a solar sail, Sun-Earth, sub-L1 halo orbit with a nominal 

lightness number of nom  0.0363 (technology designed for the previously-proposed Sunjammer mission) and a 

maximum sail lightness number equal to that of an FPF sail configuration with vanes ( 1.028max nom  ) the 

heliogyro can accommodate approximately an order of magnitude larger range on the injection position and velocity 

error than an FPF solar sail. This improved performance is solely due to the heliogyro’s capability of fully scaling 

down the lightness number to zero. A clear bifurcation between stable and unstable control can be established where 

increasing the tolerance on the residual error in position and velocity after a set amount of time does not provide 

improvements in performance. Because the control performs better for injection errors Earthward of the nominal 

injection point than Sunward, it is recommended for operations to undershoot, i.e., intentionally inject slightly 

Earthward.  

When using a larger upper value for the heliogyro’s lightness number, max , even larger injection errors can be 

recovered. For solar sail halo orbits with other nominal lightness numbers it is shown that the recoverable injection 

errors scale with nom  for both the heliogyro and the FPF sail, but the heliogyro’s recoverable error region is always 

larger. Finally, considering different injection locations along the orbit, it appears that the injection location has only 
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a minor effect on the heliogyro’s performance for large values for max , but can significantly deteriorate the 

performance for ‘east’ and ‘south’ injection locations for smaller max . In that case, injection in the ‘north’ or 

‘west’ locations is recommended. 

When considering a delay in the solar sail deployment past the nominal injection into the solar sail halo orbit, a 

delay in deployment of 1.0 to 7.4 days can be overcome by both the FPF sail and the heliogyro (with 

1.028max nom  ). Here, the heliogyro’s capability of fully scaling down the lightness number does not provide 

any additional benefit. However, larger values for max  do provide better performance, up to a maximum value of 

20.2 days among all solar sail halo orbits considered. Finally, the effect of the injection location is only small for the 

case of a sail deployment delay and the error tolerance has a similar effect as established for the case of an injection 

error with a clear bifurcation between stable and unstable control.  

Appendix 

To transform between the reference frames of Figure 1, the following rotation operations are required, where the 

following definition and notation of the standard rotation matrices is adopted: 

 , , ,

1 0 0 cos 0 sin cos sin 0

0 cos sin ,  0 1 0 ,  sin cos 0

0 sin cos sin 0 cos 0 0 1
x y zR R R  

   
   
   

     
             
          

. (23) 

1. Transformation from  1 2 3
ˆ ˆ ˆ, ,D d d d  →  ˆˆ ˆ, ,S s l p   

A vector in,  1 2 3
ˆ ˆ ˆ, ,D d d d , Dx , can be transformed to a vector in  ˆˆ ˆ, ,S s l p , Sx , through 

  , ,S x z D DR R SD  x x x   (24) 

2. Transformation from  1 2 3
ˆ ˆ ˆ, ,B b b b  →  1 2 3

ˆ ˆ ˆ, ,D d d d  

A vector in  1 2 3
ˆ ˆ ˆ, ,B b b b , Bx , can be transformed to a vector in  1 2 3

ˆ ˆ ˆ, ,D d d d , Dx , through 

  
1, ,

,
2

D x z B B
y

R R R DB  


 x x x ,  (25) 

where i  is defined as 

 
1

,      2i i i
i

t
N

    
    , (26) 



42 

 

with i  the thi  blade number,   the heliogyro spin rate, and N  the number of heliogyro blades. The 

constant   and / 2  rotations are merely to change the axis numbering to align with convention in 

literature. 

3. Transformation from  1 2 3
ˆ ˆ ˆ, ,iL l l l  →  1 2 3

ˆ ˆ ˆ, ,B b b b  

A vector in  1 2 3
ˆ ˆ ˆ, ,iL l l l , 

iLx , can be transformed to a vector in  1 2 3
ˆ ˆ ˆ, ,B b b b , Bx , through 

  , ,i i i iB z x L i LR R BL  x x x ,  (27) 

 with i  the pitch angle of the blade.  
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