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ABSTRACT
Model-Based Evolutionary Algorithms (MBEAs) can be highly scal-
able by virtue of linkage (or variable interaction) learning. This re-
quires, however, that the linkage model can capture the exploitable
structure of a problem. Usually, a single type of linkage structure
is attempted to be captured using models such as a linkage tree.
However, in practice, problems may exhibit multiple linkage struc-
tures. This is for instance the case in multi-objective optimization
when the objectives have different linkage structures. This cannot
be modelled sufficiently well when using linkage models that aim
at capturing a single type of linkage structure, deteriorating the ad-
vantages brought by MBEAs. Therefore, here, we introduce linkage
kernels, whereby a linkage structure is learned for each solution
over its local neighborhood. We implement linkage kernels into the
MBEA known as GOMEA that was previously found to be highly
scalable when solving various problems. We further introduce a
novel benchmark function called Best-of-Traps (BoT) that has an
adjustable degree of different linkage structures. On both BoT and
a worst-case scenario-based variant of the well-known MaxCut
problem, we experimentally find a vast performance improvement
of linkage-kernel GOMEA over GOMEA with a single linkage tree
as well as the MBEA known as DSMGA-II.

CCS CONCEPTS
• Computing methodologies → Discrete space search; Ran-
domized search; • Theory of computation → Evolutionary
algorithms.

KEYWORDS
Evolutionary Algorithms, Linkage Learning, Kernels, Local Neigh-
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1 INTRODUCTION
Recombination is most efficient when variables with a strong re-
lationship, i.e., linkage, are recombined jointly [25, 27]. Compared
to traditional Evolutionary Algorithms (EAs), Model-based EAs
(MBEAs) aim to be significantly more scalable and reliable in solv-
ing problems that exhibit a certain type of exploitable problem
structure by explicitly modelling aspects of this structure and using
this when creating new solutions. Such models may be built based
on problem-specific insights, if they are available, or, in case of a
black-box optimization scenario, be learned during optimization
based on previously performed function evaluations.

In this paper, we consider in particular MBEAs aimed at exploit-
ing information about dependencies between problem variables.
Various types of models exist in literature. Models capable of de-
scribing complex relationships, such as Bayesian networks [18], are
however expensive to learn because they capture information about
dependencies and explicitly estimate associated probability distri-
butions, making optimization particularly inefficient if function
evaluations themselves are not very expensive. Especially in such
cases, computationally cheaper alternatives tend to be preferred
and have become part of state-of-the-art algorithms in recent years.
Examples thereof include the linkage tree used in the Gene-pool
Optimal Mixing Evolutionary Algorithm (GOMEA) [5, 26] and the
Parameterless Population Pyramid (P3) [7], as the incremental link-
age set used in Dependency Structure Matrix Genetic Algorithm
(DSMGA-II) [10], in which only interactions between variables are
modelled explicitly.

Despite many advances in recent years, especially when it comes
to benchmark problems, most MBEA literature only consider prob-
lems in which a single linkage structure is clearly present. However,
in practice, it is well possible a problem exhibits multiple linkage
structures (in different parts of the search space). For instance, this
can easily occur in Multi-Objective (MO) optimization, i.e., because
the different objectives may have different linkage structures.
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In early multi-objective MBEAs, as well as the more recent MO-
GOMEA, objective-space clustering is used [14, 20]. While not
originally introduced to capture different linkage structures along
the front, the underlying rationale is similar: what is important in
one extreme region of the Pareto front, is likely not important in
another extreme region. I.e., solutions that maximize one objective
may look very different from solutions that maximize another. Em-
ploying clustering and restricted mating therefore increases the
chances of successful (local) variation. Similarly, clustering also
offers a first remedy to multiple linkage structures, especially if
linkage is learned in each cluster separately. However, the number
of clusters is typically taken to be relatively small, because this
has been observed to suffice to achieve effective optimization if
solutions differ along the Pareto front, but the linkage information
does not, as in the trap-inverse trap problem [14, 20] . However,
if linkage information gradually changes along the front as well,
which is to be expected if both objectives have different linkage
structures, coarse-grained clusters may not suffice. However, this
has, to the best of our knowledge, not been studied in detail.

The issue of multiple linkage structures in a single problem is
not restricted to MO optimization. Similar issues can occur in a
single-objective setting. For instance, single-objective optimization
problems can be (highly) multi-modal, and each mode can have its
own linkage structure. Such problems too, have, to the best of our
knowledge, never been studied in detail (in the context of MBEAs).
That is not to say that multi-modal problems have never been tack-
led before with EAs. Commonly, niching and mating restrictions
are used here. For example, in [1] an estimation-of-distribution al-
gorithm (EDA) is adaptively clustered and niched to optimize both
a real-valued and discrete problem, learning multiple models over
a population, showing improved performance over a conventional
EDA. Similarly, including niching into CMA-ES was investigated in
[21], which reports improvements on some multi-modal functions.
Additionally, in [12] the applicability of niching on a real-valued
multi-modal multi-objective problem is investigated, showing that
to obtain good performance on such problems, diversity in both
objective space and parameter space is necessary. Still, partially due
to the use of particular benchmark problems, none of these studies
address the explicit presence of different variables interactions per
niche and the additional requirements this may bring to bear on
model building in EAs, which is what we consider in this paper.

We name these problems with multiple linkage structures,multi-
structured problems. In the context of MBEAs, one study considers
a closely related phenomenon. Specifically, in [16] it is shown that
multi-modality can be an issue for use of pairwise linkage, as com-
monly used in DSMGA-II and GOMEA. To resolve this issue, higher-
order linkage was learned directly rather than through pairwise
combinations. In practice, this can be significantly more costly than
pairwise linkage; the cost of learning higher-order blocks grows
exponentially with the order required. Furthermore, this approach
and alternative linkage measures (e.g. [2, 19]), suffer from being
unable to represent higher order varying linkage, as they generally
build only a single linkage tree.

In this work, we propose a more scalable approach that is aimed
at solving the more general notion of multi-structured problems, by
introducing linkage kernels. Rather than learning a single linkage
model, every solution learns their own linkage model over their

own local neighborhood. In addition, to show the impact that the
presence of multiple linkage structures has on both existing MBEAs
and our newly proposed linkage kernels, we introduce a novel,
scalable benchmark function called Best-of-Traps (BoT) that can be
used both single- and multi-objectively. BoT is based on the well-
known deceptive trap functions [3] in which the number of linkage
structures and the size of key building blocks are parameterized.

The remainder of this work is organized as follows. In Section 2
we describe the recent variant of GOMEA, the approach that LK-
GOMEA extends. In Section 3, the extensions that make up LK-
GOMEA are described. In Section 4 the benchmark problems used
in this work, Best-of-Traps and MaxCut, are described. Subsec-
tion 4.3 describes relevant aspects related to MO optimization, as
both single- and MO experiments are performed. Section 5 contains
the experimental setup related to the single-objective experiments,
and the corresponding results, in which DSMGA-II, GOMEA and
LK-GOMEA are compared. Section 6 similarly contains the experi-
mental setup and results for the MO experiments. Finally, we end
with the discussion in Section 7 and the conclusion in Section 8.

2 GOMEA & MO-GOMEA
We will focus on MBEAs that employ both characteristics of local
search and EDAs. Of particular interest are GOMEA [5], DSMGA-
II [10], and P3 [7], which have shown to perform well on a wide
variety of problems and may be considered state of the art among
(discrete) MBEAs. Given that GOMEA was previously also applied
to MO problems, in this work we will extend upon GOMEA.

2.1 GOMEA
GOMEA, originally introduced in [26], is an MBEA that utilizes a
Family Of Subsets (FOS) to describe (strong) dependencies between
variables in terms of subsets of variables. These subsets are uti-
lized in a recombination scheme named Gene-pool Optimal Mixing
(GOM) which is applied to a copy of each solution in the popu-
lation. This scheme iterates over the FOS elements in a random
order, replacing the values in the solution at the problem variables
corresponding to the FOS element with those of a random donor
from the population. This change is immediately evaluated. If the
change yields a worse fitness, it is reverted, otherwise it is accepted.
If a solution has not been improved after a certain number of gen-
erations, forced improvements are applied: GOM is performed with
the current elitist as donor until a single strict improvement is
found. If no such improvement can be found for any FOS element,
the solution is replaced with the current elitist solution.

2.2 MO-GOMEA
In MO-GOMEA [14], the multi-objective variant of GOMEA, an
elitist archive is added to keep track of the current approximation
front. Further, an overlapping variant of k-means-like clustering
is applied, based on the distances in the objective space. For each
cluster, a linkage tree is learned. Any cluster that has the largest
mean value for objective 𝑖 is considered to be a single-objective
cluster. For such a cluster, single-objective GOM is usedwith respect
to objective 𝑖 . For the remaining clusters, GOM is still used, but a
change is regarded an improvement if it is weakly Pareto-dominant
over the previous state, or if it can be added to the elitist archive.
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2.3 Enhancements
Recently, some performance enhancements were proposed for
GOMEA [5]. Not all changes are applicable to MO-GOMEA, how-
ever. We therefore only employ a subset of the changes here.

Originally, a single linkage tree (LT) is learned from the popula-
tion in GOMEA, and a separate LT is learned from each cluster in
MO-GOMEA. Each LT is learned by first computing NormalizedMu-
tual Information (NMI) between all pairs of variables, as opposed to
MI in the original GOMEA version [26]. NMI was observed to lead
to slightly better performance on a range of problems. The pairwise
NMI is subsequently used in the UPGMA hierarchical clustering
algorithm to construct the linkage tree. UPGMA iteratively merges
sets of variables, starting from all univariate sets with one variable,
until all sets are merged into one set containing all variables. Each
node in the resulting clustering tree originally represents a subset
of variables in the FOS. As in the latest version of GOMEA [5], we
employ filtering. This removes all elements for which NMI ≈ 0 and
the subtrees of each element for which NMI ≈ 1.

Unlike the latest version of GOMEA [5], we do not include Lo-
cal Search (LS). Unlike single-objective search, there are multiple
possible acceptation criteria for multi-objective optimization. Find-
ing the best way to perform LS is problem-specific, especially for
multi-objective optimization, and is considered outside the scope
of this article. Moreover, LS can be added to our newly proposed
LK-GOMEA in the same way as to GOMEA.

Further, we use the original Interleaved Multi-start Scheme (IMS)
instead of the population pyramid introduced in [7], in part to allow
comparison with DSMGA-II in the same population sizing setup.
The IMS [5] is an online population sizing scheme, inspired by [8],
that can also be used to control parameters like the number of
clusters in MO-GOMEA [13]. Multiple simultaneous populations
of increasing size are used. For each 𝑏 generations of a smaller pop-
ulation, the next larger population undergoes one generation. This
pattern recurses, e.g., the larger population after that undergoes
one generation for every 𝑏2 generations of the smaller population.
Smaller populations with an average fitness lower than that of a
larger population are stopped. In GOMEA, commonly 𝑏 = 4 is used.

Of special note is donor search, originally introduced in P3 [7].
Instead of using a random donor, a donor is sought for which the
variables in the subset do not all have the same value as what is
currently in the solution. The effect of this is most notable when
the population is close to converging. As we utilize locality in this
work, the neighborhoods are much more likely to share variable
values, increasing the likelihood of donor search being beneficial.

Decomposition-based methods in multi-objective optimization
are known to provide better spread of solutions along the approx-
imation front, and to be better suited for higher-dimensional ob-
jective spaces [11, 28]. Therefore, a second version of MO-GOMEA
was introduced that leverages scalarizations by means of which
each solution is assigned an improvement direction [13]. This is
especially relevant for our work, since linkage kernels are simi-
larly meant to associate a notion of local linkage relations to each
solution that are likely important to exploit in order to achieve
improvements. Aligning these notions of locality is likely of high
value.

3 LINKAGE-KERNEL GOMEA
3.1 A Problem of 2 Modes
As outlined in the previous Sections, GOMEA (in a black-box op-
timization setting) employs (normalized) mutual information to
detect (pairwise) linkages. The idea is that if two variables are
dependent, after selection, some variable value combinations will
occur more frequently then others, which can be measured in terms
of their mutual information. While this has its limitations, leading
to novel dependency detection methods being introduced that do
not depend on statistical information [22], on most single-structure
problems, the structure can be efficiently detected. Even so, this
changes completely, also for other dependency-detection methods
(unless they do a full Walsh decomposition as in [4]), in case of a
multi-modal function with different dependencies in each mode.
Then, some correlations between variables are undetectable when
only looking at a pair of variables. An example of this is given in
Figure 1. In this example, we have two modes for which a pair of
variables 𝑣0 and 𝑣1 are strongly correlated, although differently for
each mode. Especially at the start of optimization, we can assume
the population is equally divided over the modes. That means, that
when looking at pairs within the combined population however,
the variables will seem to be uncorrelated, i.e. pairwise indepen-
dence actually occurs. Consequently, models learning linkage from
this will not create subsets with these variables together, making it
harder to optimize for any mode. The more important the linkage
information to optimize each mode, the bigger the problem.

5 0

0 5

0

1

0 1

Mode 1

MI = 1

v0v1
0 5

5 0

0

1

0 1

Mode 2

MI = 1

v0v1
5 5

5 5

0

1

0 1

Combined

MI = 0

v0v1

+ =

Figure 1: Countmatrices and correspondingMI values within
modes and within the entire search space, for two variables
𝑣0 and 𝑣1. High MI values for modes individually does not
necessarily lead to high MI for the combination.

It is important to note that while this example concerns an
example of only 2 variables, using higher-order linkage-learning
alone would not resolve this issue. Firstly, if important linkages
are completely different in each mode, but do overlap, the order
of linkage learning required could be intractable from a classical
single-population statistics point of view. Secondly, the values for
high-quality solutions in each mode may very well be very different
as well. When recombining during GOM, a subset is essentially sam-
pled from the entire population. Even if the block is perfectly iden-
tified for one mode, poor exploitation cannot be avoided without
also identifying the locality of the mode and employing restricted
mating within a mode. Otherwise, inheriting from solutions from
other modes will occur, which will likely still not be effective.

3.2 Splitting Modes
Based on the analysis above, it is clear that it is important to adeptly
identify modes. If linkage learning works when the modes are
separate, splitting up the population and learning separate linkage
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models for each mode should solve the problem of multiple modes
interfering. Luckily, similar to how linkage can be inferred using MI
from a population that has experienced selection pressure, solutions
belonging to the same mode tend to cluster together.

In and of itself, this concept is not new to EAs, as it is similar to
diversity preserving measures, like mating restrictions and niching,
that aim to distribute the population across different modes in
the search space different parts of the search space. It has even
previously be proposed to learn separate models for separate parts
of the search space [1]. Similarly related are island topologies used
in island model EAs. However, the best topology is known to vary
from problem to problem [23, 24].

While these approaches offer the right direction to solve the
outlined problem, there is an important catch: how well niching
works depends fully on the quality of how the population is split.
Including too many solutions from a different mode could have a
large negative impact, for the same reasons as outlined in Subsec-
tion 3.1. Moreover, unlike the strict boundaries in the approaches
above, linkage structures may be shared between different modes,
or gradually change along the Pareto front in multi-objective opti-
mization, necessitating many niches or fuzzy clustering boundaries.
Finally, while a solution that has many variable values in common
with another solution is likely part of the same mode, a solution
with very dissimilar values is not necessarily part of another mode.
Splitting the population, especially into a limited number of clusters,
is hence a non-trivial problem.

3.3 Linkage Kernels
To account for this, we propose to associate a local neighborhood
with each solution, from which both solution-specific linkage is
learned and donors are sampled from when performing GOM. This
enables many different types of linkage structure to be exploited
throughout the population, with non-strict neighborhood bound-
aries, meeting some of the concerns raised above. We refer to this
notion as linkage kernels.

In this paper, we use 2 definitions of neighborhood. Firstly, we
define the neighborhood (or kernel) of a solution as its k-nearest
neighbors (KNN) in the population, using Hamming distance as a
distance measure, with ties in distance broken randomly. We refer
to this neighborhood as the asymmetric neighborhood.

Using KNN as the neighborhood does come with a notable down-
side. When enough solutions converge to the same point, these
solutions can only recombine with one another, and the niche per-
taining to the linkage kernel becomes irreversibly converged. We
note that KNN is asymmetric: while the converged solutions will
only have each other as neighbor, a non-converged individual can
still have one of the converged solutions in its neighborhood. Allow-
ing recombination also with these solutions, would still allow for
the introduction of new building blocks to the local neighborhood.
Therefore, we secondly consider the symmetric KNN neighborhood,
in which the neighborhood of a solution consists of the solutions
of which it is a KNN, in addition to its own KNNs. Note that this
means the neighborhood size is no longer exactly 𝑘 for a solution,
but can be larger, depending on the number of neighborhoods that
solution occurs in.

What remains is the definition of the size of the neighborhood.
This should neither be too big, to avoid including solutions from
another mode, or too small, as linkage learning still requires a
sufficiently large neighborhood to properly infer linkage. Partly
based on preliminary experiments, we propose to use 𝑘 =

⌈√︁
|𝑃 |

⌉
,

where |𝑃 | is the population size and 𝑘 is the number of nearest
neighbors. This provides a large enough pool to learn local linkage
over, yet is small enough to be able to sustain niches. Furthermore,
by making 𝑘 relative to the population size, the IMS will make the
size of the neighborhood (note: in terms of number of neighboring
solutions in the population) relatively smaller as the population
size increases: each doubling of the population size only increases
𝑘 by a factor of

√
2 (ignoring rounding).

3.4 LK-GOMEA
With linkage kernels defined, we can now propose a novel version of
GOMEA: Linkage-Kernel GOMEA (LK-GOMEA)1. In LK-GOMEA,
the neighborhoods of each solution are first inferred, either using
KNN or its symmetric variant, and then, an LT is learned for each
solution based on this neighborhood. When improving a solution
through GOM (or FI), the solution’s FOS is used instead, and the
donor pool is restricted to the neighborhood. Pseudocode can be
found in the Supplementary material.

4 PROBLEMS
In this section we provide definitions of the problems we consider.

4.1 MaxCut & Worst-of-MaxCuts
The first problem is weighted MaxCut. In this problem, a graph𝐺 =

(𝑉 , 𝐸), with |𝑉 | = ℓ vertices and weighted edges 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ,𝑤𝑖 𝑗 ) ∈
𝐸, where 𝑣𝑖 and 𝑣 𝑗 are endpoints and 𝑤𝑖 𝑗 is the corresponding
weight, is given. The goal is to divide the vertices in two sets, such
that the sum of weights corresponding to edges between the two
sets is maximized. We encode a solution using a binary string,
which determines for each vertex which of the two sets it is in. The
objective value given a solution 𝑠 is then:

𝑓maxcut (𝑠) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑤𝑖 𝑗 ) ∈𝐸

{
𝑤𝑖 𝑗 if 𝑠 [𝑣𝑖 ] ≠ 𝑠 [𝑣 𝑗 ]
0 otherwise

(1)

MaxCut is a combinatorial optimization problem that GOMEA
is known to solve well [5]. It is however a symmetric problem,
swapping the sets (i.e., inverting the binary values of a solution)
has no impact on the objective value. Semantically similar solutions
are therefore not always close in Hamming distance, which could
potentially be an issue. Furthermore, in general, weighted MaxCut
is an NP-hard problem with many local optima. A single problem
instance is used for each string length ℓ , and consists of a fully
connected (dense) graph, with integer weights sampled from [1, 5].

Although weighted MaxCut may have many local optima, the
linkage structure of a single instance is still predominantly defined
by the graph structure and the weights in a singular way. We there-
fore additionally consider a problem we call Worst-of-MaxCuts.
Worst-of-MaxCuts is the worst-case scenario-based robust opti-
mization variant of MaxCut. In real-world optimization, oftentimes
1Source code: https://github.com/8uurg/Multistructured-Problems-LK-GOMEA
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there are uncertainties and multiple scenarios are then sampled
in order to optimize for expected value or to hedge against the
worst case. Worst-of-MaxCuts is representative of such problems.
In Worst-of-MaxCuts, a set of problem instances is given that all
have the same number of vertices. When evaluating a solution,
the worst objective value out of the individual MaxCut objective
values is returned. In this work, we combine two different instances,
generated similarly as above.

4.2 Best-of-Traps
While weighted MaxCut and Worst-of-MaxCuts are interesting
from a perspective of being a well-known problem and having a
relation to real-world problems, to assess the impact of linkage
kernels on multi-structured problems in a controlled way, a multi-
structured benchmark function is needed. This benchmark function
should be scalable, i.e., solvable for increasingly larger sizes, when
structure is recognized properly. Furthermore, the degree to which
a problem is multi-structured should be adjustable, as to be able
to determine to what degree having multiple structures within a
problem is an actual issue for scalable optimization.

The concatenated deceptive trap function [3] is an important
problem in the linkage-learning community. Its deceptive nature
makes the problem hard to solve in a scalable manner if the under-
lying structure, i.e., linkage between variables, is not recognized
and accounted for [3, 27]. This makes it a much-used benchmark,
used to assess if MBEAs are capable of recognizing higher-order
problem structure. Yet, the issues raised around linkage learning
have to do with a problem being multi-structured, and this is not
the case for the deceptive trap function.

To this end, we here introduce a problem named Best-of-Traps
(BoT), defined as the maximum over a number of the sub-problems.
Each sub-problem is a permuted concatenated deceptive trap func-
tion in which we also redefine the unitation function to count not
the number of ones, but the number of bits similar to a predefined
string, so that the global and local attractor can be made different
in the binary space as well (i.e., the optimum is not necessarily
all ones for each sub-problem). By taking the maximum, and be-
cause each sub-function has the same optimal value, yet different
binary encoding of the optimum, multiple modes are introduced. By
changing the structure in each mode, multiple linkage structures
are introduced that span the entire solution. Concordantly, this
problem is multi-modal and has a controllable amount of linkage
structure through the number of sub-problems used. This control
will allow us to investigate to what extent and from what degree
onward, multiple structures may pose an issue.

Each sub-problem in BoT is solvable individually by modern
model-based EAs like GOMEA, DMSGA-II and P3. Hence, once
a mode is localized, the problem should be effectively solvable.
However, since we preserve all modes through the max function,
the BoT function effectively contains all linkage structures of all
sub-problems, creating situations as illustrated in Figure 1.

For string length ℓ , each BoT sub-problem consists of fns per-
muted trap functions 𝑡𝑎 , 𝑎 ∈ {0, 1, . . . , fns − 1}, each with a pre-
defined different optimal solution 𝑠∗𝑎 , and permutation 𝜋𝑎 , both of
length ℓ . Given block size 𝑘 , each sub-problem is defined to be:

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9s

∑
trap(Σ) trap(Σ)

1

=?

1

=?

1

=?

1

=?

1

=?

0

=?

1

=?

0

=?

1

=?

0
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s∗0

∑
trap(Σ) trap(Σ)
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max objective
value

Figure 2: Illustration of Best-of-Traps evaluation for ℓ = 10,
𝑘 = 5, and fns = 2. Each sub-problem has their own optimum:
𝑠∗0 and 𝑠∗1 . As ℓ/𝑘 = 2, each sub-problem has two blocks, indi-
cated bywhite and gray.When a solution 𝑠 is evaluated, the so-
lution is compared with the optimum for each sub-problem.
For each block (color), the number of matches is counted,
over which the deceptive trap function is applied. The result-
ing values are summed together for each sub-problem. The
resulting sums are finally combined through a max function.

𝑡𝑎 (𝑠) =
ℓ/𝑘−1∑︁
𝑖=0

𝑇
©«
𝑘−1∑︁
𝑗=0

{
1 if 𝑠 [𝜋𝑎 [𝑖𝑘 + 𝑗]] = 𝑠∗𝑥 [𝜋𝑎 [𝑖𝑘 + 𝑗]]
0 otherwise

ª®¬ (2)

Where 𝑇 is the deceptive trap function:

𝑇 (𝑢) =
{
𝑘 if 𝑢 = 𝑘

𝑘 − 𝑢 − 1 otherwise
(3)

The BoT problem can now be defined as follows:

𝑓BoT (𝑠) =
fns−1
max
𝑎=0

𝑡𝑎 (𝑠) (4)

Instances are generated by shuffling indices (0, 1, . . . , ℓ − 1) to
construct 𝜋𝑎 , and uniformly randomly sampling a binary string 𝑠∗𝑎
of length ℓ for each permuted trap function 𝑡𝑎 , 𝑎 ∈ {0, 1, . . . , fns−1}.
An example with fns = 2, 𝑘 = 5 and ℓ = 10 is given in Figure 2.

4.3 Multi-Objective Problems
We will furthermore consider multi-objective optimization prob-
lems in which the linkage structure gradually changes along the
front by virtue of the individual objectives having different link-
age structures. Moreover, we will consider situations in which the
individual objectives themselves also have multiple linkage struc-
tures. Specifically, we propose to perform experiments with BoT vs
BoT, BoT vs MaxCut and MaxCut vs MaxCut. For each problem, a
different instance is used for each objective.

We will focus especially on the case in which both objectives
are BoT. This configuration is interesting due to the combination
of both large discrete changes in linkage within one objective, and
the gradual change from one objective to another. Of particular
interest is how difficult the resulting problem will be, and how well
the kernel approach will adapt accordingly.

As these problems are non-trivial to solve, we do not know the
optimum (i.e., the Pareto front). To still be able to obtain high-
quality fronts for reference, we split up the BoT problem into its
sub-problems. We then solved the MO problem for each of pair
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of sub-problems individually and combined the resulting fronts
afterwards. For more details, see the Supplementary material.

5 SINGLE-OBJECTIVE EXPERIMENTS
5.1 Experimental Setup
We consider Best-of-Traps (BoT), MaxCut and Worst-of-MaxCuts
with problem sizes ℓ ∈ {10, 20, 40, 80, 160, 320} for BoT, and ℓ ∈
{6, 12, 25, 50, 100, 200} for MaxCut and Worst-of-MaxCuts. We com-
pare LK-GOMEA, using both asymmetric and symmetric linkage
kernels, with GOMEA andDSMGA-II [10]. GOMEA and LK-GOMEA
use the LT as linkage structure (per kernel). In order to adapt the
population size during a run, all approaches, including DSMGA-II,
use the IMS as described in [5].

We measure the number of evaluations and number of millisec-
onds until the optimal solution is found. Limits are set to 100,000,000
evaluations and 6 hours of computational time per run. Each ex-
periment is repeated 30 times. The experiments are performed on
2x AMD EPYC 7282 @ 2.8 GHz with 32 cores total with 252 GB of
RAM. At most 30 experiments were running simultaneously, with
each experiment being single-threaded.

Our goal is to compare scalability. We therefore perform pairwise
statistical tests between GOMEA, DSMGA-II and LK-GOMEA (both
variants) for the highest value of ℓ , and if applicable, for each value
of fns. Statistical significance tests are performed using the Mann-
Whitney U-test [6, 15]. Due to the multiplicity of comparisons we
perform the Holm-Bonferroni [9] correction, with 𝛼 = 0.05.

5.2 Experimental Results & Discussion
A summary of the number of settings in which an EA is better (i.e.,
requires less time or evaluations) is provided in Table 1. Details and
individual comparisons are in the Supplementary material.

Table 1: Number of times (corresponding rank) an approach
is statistically significantly better over all single-objective
experiments for number of evaluations-to-optimum (#eval)
and time-to-optimum (time).

Approach #eval time

DSMGA-II 3 (4) 4 (3)
GOMEA 4 (3) 10 (1)

LK-GOMEA (Asymmetric) 9 (2) 7 (2)
LK-GOMEA (Symmetric) 12 (1) 10 (1)

The scalability results for Best-of-Traps (BoT) can be found in
Figure 3. The reliability, i.e., the probability of a run successfully
finding the desired optimum within the limits set, can be found in
Supplementary material.

When BoT consists of a single sub-problem, BoT is essentially
a concatenated deceptive trap function. All approaches can solve
BoT in this case scalably and reliably. It is here that the overhead
of learning many linkage models in LK-GOMEA is most noticeable,
as it is superfluous. While the number of evaluations required
increases slightly – within an order of magnitude – the amount of
time increases by one or two orders of magnitude.

The gap closes as the number of sub-problems in BoT is increased.
DSMGA-II fails to solve BoT with four functions (or more) and a

problem size larger than 40 variables. Furthermore, at 80 variables
and a similar number of sub-problems, GOMEA becomes less reli-
able. GOMEA is unable to solve problems larger than 40 variables
with 8 functions reliably, failing on all runs except for one.

By stark contrast, LK-GOMEA can solve all BoT instances for all
problem sizes tested. It is apparent that with eight functions with
different linkage, learning multiple linkage models becomes a re-
quirement. LK-GOMEA can solve these problemswhile maintaining
similar scalability as the number of sub-problems grows.

The scalability results for MaxCut and Worst-of-MaxCuts can
be found in Figure 4. Performance on MaxCut shows similar char-
acteristics as the single-function BoT (i.e., the original permuted
deceptive trap function). This is most likely due to the fact that
a single MaxCut instance has little variation in linkage structure
among its local optima, especially in case of fully connected graphs
as utilized here. However, as the problem is more difficult than
deceptive trap functions in general, the gap between GOMEA (the
best performing EA) and LK-GOMEA is smaller.

For Worst-of-MaxCuts with 2 sub-problems, at ℓ = 100 a sub-
stantial number of runs of GOMEA and DSMGA-II fail to find the
optimum, while LK-GOMEA finds the optimum consistently (see
Figure 4). This indicates the usefulness and larger problem-solving
capacity of LK-GOMEA also in this worst-case problem. Though not
tested, it is expected that the advantage of LK-GOMEA would only
increase if the number of MaxCut sub-problems would increase.

6 MULTI-OBJECTIVE EXPERIMENTS
6.1 Experimental Setup
We again consider Best-of-Traps (BoT) and MaxCut in three config-
urations: BoT vs BoT, BoT vs MaxCut and MaxCut vs MaxCut. Each
objective uses a different instance to ensure that the objectives are
not strongly correlated. As the DSMGA-II code used does not sup-
port MO optimization, we only use MO-GOMEA [14]. Furthermore,
in addition to using a domination-based acceptation criterion, we
use the scalarization scheme described in [13]. Finally, for the LK
variant, we test both approaches in 2 combinations: using asym-
metric (Asym) and symmetric neighborhood (Sym) linkage kernels.

We measure the normalized hypervolume (HV) of the elitist
archive over the number of evaluations. HV is the volume/area
dominated between a front and a reference point [17, 29]. To com-
pute the HV, the ranges of each objective are normalized by the
ranges spanned by the reference front. The reference point is taken
similarly to [17], placing it at an offset of 0.05 of the worst objective
values present, ensuring that the extreme points can contribute
HV. The normalized HV is then obtained by dividing the HV of the
archive by the HV of the reference front.

Limits on the number of evaluations and time, the hardware used,
and other experimental considerations are identical to the single-
objective experiments. Statistical tests are also performed similarly
as for the single-objective experiments, but now to compare the
HV at the evaluation limit for instances where ℓ = 100.

6.2 Experimental Results & Discussion
A summary, stating the number of cases in which an approach is sta-
tistically significantly better than another in a setting can be found
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Figure 3: Scalability in number of evaluations (top) and time in ms (bottom) on BoT for various problem sizes (i.e. string lengths
ℓ) and number of subfunctions fns. The line represents the median, whereas the shaded area ranges from the 95th percentile to
the 5th percentile. If the median run was unable to find the optimum within the allotted budget, the point is left out.
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Figure 4: Scalability in evaluations to optimum (top) and time
to optimum (bottom) onMaxCut (left) andWorst-of-Maxcuts
(right) with 2 problem instances, both for various problem
sizes (i.e., string lengths). No approach could consistently
find the optimum on Worst-of-Maxcuts for ℓ = 200. The line
and shaded area are defined similarly to Figure 3.

Table 2: Number of times an approach is statistically sig-
nificantly better on Best-of-Traps vs Best-of-Traps (and the
corresponding rank).

Approach Count (rank)

Objective / Domination 0 (6)
Objective / Scalarized 3 (5)
Asymmetric Kernel / Domination 5 (4)
Asymmetric Kernel / Scalarized 9 (2)
Symmetric Kernel / Domination 7 (3)
Symmetric Kernel / Scalarized 15 (1)

in Table 2. Detailed pairwise tests can be found in Supplementary
material.

Convergence graphs for BoT vs BoT, with ℓ = 100 and fns ∈
{1, 2, 4, 8} can be found in Figure 5. Furthermore, final fronts cor-
responding to the median run of each approach can be found in

Figure 6. Graphs and data for BoT vs MaxCut and MaxCut vs Max-
Cut can be found in the Supplementary material.

The graphs show that objective-space clustering is sufficient
when multiple structures along the front are the result of each
objective having a single different linkage structure, i.e., when
fns = 1. However, objective-space clustering becomes increasingly
insufficient as fns increases in both objectives. Both variants of
LK-GOMEA then obtain better hypervolume values.

Of special note is that BoT seems to be hard to solve around the
center part of the front, while the extremes (i.e., single-objective
regions) of the front are easier: while the optima for the extremes
are found in the median run by LK-GOMEA, in the central region
to the front there is a gap to the best solution we found using
the pairwise decomposition of the sub-problems as outlined in
Section 4.3. Furthermore, although not extensively tested, from
several additional runs we did, it appears that solving a weighted
combination in single-objective is more difficult in this region, with
the MO approach actually obtaining results much closer to the
front. A reason for this may be that at the center of the front, search
needs to account for the structure of both objectives. Since in our
case, each of the two functions has fns modes, this results in up to
fns2 potential modes in the center of the Pareto front. As a multi-
objective approach is inherently better at preserving diversity from
the perspective of finding multiple solutions along the Pareto front,
it is able to maintain and utilize building blocks required to succeed
in solving individual functions much better. Additional research is
needed however to look into this phenomenon further.

7 DISCUSSION
In our work, the neighborhood size has been set to

√︁
|𝑃 | so as to

ensure there was sufficient information to build a linkage model,
while being small enough that the locality assumptions would likely
hold. The best setting for this parameter is however dependent on
the problem as well. A smaller neighborhood is a better fit for
problems with a higher degree of multi-modality and multiple
linkage structures, whereas a larger neighborhood performs better
for problems with no multi-modality. Furthermore, as seen in the
MO problem, the number of solutions in each niche can be different.
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This indicates that a singular value for the neighborhood size is
insufficient. Certain modes can vary in their number of solutions,
and the neighborhood size needs to be adapted accordingly. An
adaptive scheme is therefore of interest for future research.

The fully connected instances forMaxCut do not lend themselves
well to linkage learning, and usage of a local neighborhood does
not improve this. It of interest whether MaxCut always has a more
global structure, or if there are instances with a different graph
structure or distribution of weights, in which linkage kernels help.

Furthermore, the FI operator performs recombination with the
(global) elitist(s). While this is generally beneficial, a solution is
not necessarily part of the same mode as the elitist. Applying this
operator may therefore waste evaluations and lead to premature
replacement of these solutions. An alternative scheme to perform
global recombination, or an adaptation of FI that takes into account
locality as well, may therefore be of interest for future work.

LK-GOMEA, the new variant of GOMEA evaluated in this work,
spends more time on model-building per evaluation than prior
versions of GOMEA. The added cost in time may be too great to be
applicable on problems where evaluations are computationally very
cheap. As the neighborhoods of neighboring individuals tend to be
similar, reusing local models or learning linkage models over larger
(combined) neighborhoods, could result in a notable improvement
without a significant reduction in performance.

Overall, despite the potential possibilities for improvement, link-
age kernels have shown to be a useful addition, providing a higher
degree of robustness, allowing approaches like LK-GOMEA to solve
more complex, multi-structured problems.

8 CONCLUSION
Model-Based Evolutionary Algorithms can be highly scalable by
capturing a problem’s structure in a model. In this work we have
shown that significantly more useful linkage models can be ob-
tained by introducing linkage kernels, i.e., learning linkage over

a local neighborhood, in case of problems that exhibit multiple
structures at once. In particular, we have introduced LK-GOMEA,
a novel variant of GOMEA that utilizes search space locality by
learning a separate linkage model for each solution in the popula-
tion using a subset of solutions in the population deemed to be in
its local neighborhood. While the definition of neighborhood is of
special importance, and may well need to be defined differently for
particular problems, we observed that a symmetric neighborhood
was more robust and led to better performance by LK-GOMEA than
using standard (asymmetric) KNN. We have shown LK-GOMEA
to be capable of scalably solving a novel benchmark problem that
has a tunable number of problem structures where current state-
of-the-art model-based evolutionary algorithms such as GOMEA
and DSMGA-II fail. Moreover, LK-GOMEA was found to also be
superior in solving multi-objective problems that exhibit multiple
linkage structures, especially at the problem length and the number
of underlying problem structures increases. As this may well occur
in complex real-world problems, we believe that we have provided
a valuable and novel contribution to the body of work on MBEAs,
moving the boundaries of the current state-of-the-art.
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