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ABSTRACT
Photochromism has been reported for several rare-earth (RE) metal oxyhydride thin films and is characterized by a reversible darkening
of the sample when exposed to light with energy greater than its optical bandgap. Here, we extend the range of known photochromic RE-
oxyhydrides to include samarium oxyhydrides. These SmH3−2xOx thin films are made by reactive magnetron sputtering of as-deposited
SmH1.9+δ and post-oxidation in the air to the oxyhydride phase. The deposition pressure during sputtering is used to control the resultant
properties of the Sm-oxyhydride film, such as the optical bandgap, cubic lattice constant, photochromic contrast, and photochromic bleaching
speed. Using Sm as the RE-cation results in slower bleaching speeds compared to other lanthanides. We posit that this is due to the stability
of the Sm2+ state and the difficulty to oxidizing it back to the original RE3+ state. This points to the key role of the RE-cation charge state for
the optical properties of the material.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0147423

Photochromism and photo-conductivity in polycrystalline
rare-earth (RE) oxyhydrides thin films were first reported in 2011 on
Y-based compounds.1 Since then, photochromism has been found
in oxyhydride thin films based on other RE-cations (RE = Sc, Y, Nd,
Gd, Dy, and Er)2–5 (Fig. 1), suggesting that these properties are gen-
eral to the whole material class. These RE-oxyhydrides are generally
characterized by a REH3−2xOx composition and a crystal structure
based on the CaF2-type lattice, where the anions sit in the intersti-
tial sites of the fcc cation lattice.3,6 The oxide O2− and hydride H−

anions preferentially occupy the more stable tetrahedral sites, and
any remaining H− anions occupy the octahedral sites.7,8

Recently, it was shown that the deposition pressure used dur-
ing sputtering affects the composition (O:H ratio) of RE-oxyhydride
films because this deposition pressure influences the porosity of
the as-deposited film, which then oxidizes to different extents
upon exposure to air.6 Several other properties scale with the
deposition pressure (or composition), namely the lattice constant,
optical bandgap, electronic conductivity, photochromic contrast,
and photochromic bleaching speed.6,9,10 This suggests that the
anions play an important role in determining the properties of
the oxyhydride film, something further confirmed by the effect
of the aliovalent substitution of Y by Ca in Y-oxyhydride thin
films.11

Yet, it is not only the anions that impact the resultant prop-
erties of RE-oxyhydrides—the choice of RE-cation is also signif-
icant. When comparing Sc, Y, and Gd, for example, the lattice
constant of the RE-oxyhydride increases with cation size, and the
largest photochromic contrast, along with the fastest bleaching
speeds, are found for Gd-oxyhydrides.6 There are also differences
among RE-cations from the same period (lanthanides), such as Gd
and Nd. While Gd-oxyhydrides form cubic crystal structures, Nd-
oxyhydrides exhibit a tetragonal distortion.5 However, their pho-
tochromic properties are similar, suggesting that cubic symmetry is
not an essential ingredient in photochromism.

Here, we use samarium as the cation in our RE-oxyhydride
thin films (Fig. 1) because, compared to other RE-cations, Sm is
more difficult to oxidize and is often found in a RE2+ state rather
than the RE3+ that is present in oxyhydrides.12 Since we suspect that
photochromism involves the reduction of some RE-cations (RE3+ →
RE2+) during darkening and oxidation during bleaching, we decided
to investigate the use of Sm-oxyhydrides. These Sm-based films are
deposited by reactive magnetron sputtering of an Sm target (99.9%,
Mateck) at 75 W in an Ar/H2 gas mixture of 7:1 onto unheated
fused silica substrates (10 × 10 mm2, Mateck). The combined Ar
+ H2 pressure, called the deposition pressure (pdep), was varied
between 0.3 and 1.0 Pa, resulting in as-deposited SmH1.9+δ films
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FIG. 1. Periodic Table highlighting the RE-cations that have been reported as
photochromic oxyhydride thin films (red)2–6 with this present work highlighted as
yellow, bulk RE-oxyhydrides that have not been investigated for photochromism
(green),16–21 and RE-cations for which oxyhydrides have not yet been reported
(gray).

with different porosities, which then oxidize to the Sm-oxyhydride
phase upon air-exposure with a varying O:H ratio as a function
of pdep.5,6,13

This is seen in Fig. 2, where the material properties of Sm-based
films follow all the trends characteristic of the other RE-oxyhydride
thin films (RE = Sc, Y, Nd, Gd, Dy, and Er).2,3,5 Specifically, the
film deposited at a low pressure (0.3 Pa) shows a small transmission
window, similar to other RE-dihydrides [Fig. 2(a)].14,15 As well, this
material has a cubic crystal structure that is expected for SmH1.9+δ ,
although with a slightly larger lattice constant that may be due to
thin film stress.

As the deposition pressure increases to 0.6 Pa and above, an
optical bandgap opens [Figs. 2(a)–2(c)] and the lattice expands grad-
ually [Figs. 2(e) and 2(f)], all signs of the formation of the oxyhydride
composition. Between 0.3 and 0.6 Pa, there is a so-called critical
deposition pressure (p∗), which marks the turning point where the
porosity of the as-deposited film is sufficient to begin incorporat-
ing O2− upon air-exposure.2,5,6 In general, the optical band gaps
of these Sm-oxyhydrides are less sensitive to the pdep than those of

FIG. 2. (a) Optical transmission spectra for Sc-based film films deposited at various deposition pressures (pdep). (b) Tauc plots for Sm-oxyhydrides used to determine
the optical band gaps of the materials via the x-intercept. (c) The optical band gaps of the Sm-oxyhydrides as a function of pdep. (d) A comparison of the optical bandgap
dependence on pdep for Nd5, Gd6, and Sm-oxyhydrides (this work). (e) XRD patterns acquired in Bragg-Brentano geometry for the Sm-based materials studied here with a
reference for SmH2 (PDF-65-9249) and the (f) cubic lattice constants derived from these patterns as a function of pdep.
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other RE-oxyhydrides based on Gd and Nd [Fig. 2(d)],5,6 although
the expected increase in bandgap with pdep (thus, the O:H ratio) is
still present. This may be due to differences in the electronic band
structure of Sm-based compounds, but we cannot exclude that a
weaker propensity for oxidation resulted in an inhomogeneous or
more H-rich film compared to previous work with other cations. In
terms of crystal structure, the Sm-oxyhydrides follow a cubic crys-
tal structure, which is consistent with bulk stoichiometric SmHO
powders.17–19

The photochromic properties of Sm-oxyhydride thin films are
shown in Fig. 3(a), where the relative contrast (ΔT = ∣T0 − T∣/T0)
increases during 0.5 h of illumination by a narrow wavelength LED
(λ = 385 nm, I = 75 mW/cm2). When the light is turned off, the con-
trast decreases to its original value. The maximum contrast achieved
after 0.5 h is shown in Fig. 3(b), while the time required to “bleach”
back to the original transparency, quantified as a time constant based
on first-order kinetics,2,22 is shown in Fig. 3(c). As expected from
previous work,6 the contrast is highest and the bleaching speed is
slowest for the samples deposited at the lowest pressure (0.6 Pa), and
the opposite is true for the highest pressure (1.0 Pa). In addition, we
find again that the contrast and bleaching speeds do not show the
same trend with pdep, implying that bleaching is not the determining
factor for the darkening rate.5

In general, the photochromic contrast is similar to that of Nd-
and Gd-oxyhydrides,5,6 although direct comparison is not possi-
ble due to differences in film thickness, measurement temperature,
and illumination time, all of which influence the maximum con-
trast. The same is true for the bleaching speed, which we compare
only by order of magnitude. The bleaching speeds of Sm-oxyhydride
thin films appear slower (τB ∼ 35–80 min) than what was found
for Gd-oxyhydrides (τB < 10 min for GdH3−2xOx deposited at
pdep ≥ 0.8 Pa).6 Fast bleaching speeds (<10 min) are found only
for Sm-oxyhydrides deposited at higher pdep (1.0 Pa) and mea-
sured at 30 ○C, compared to 21 ○C for GdH3−2xOx. Since bleaching
is a thermally activated process,11,23 we can conclude that Sm-
oxyhydrides exhibit slower bleaching kinetics than their Gd-based
counterparts. This could be due to the characteristic difficulty of
Sm to oxidize from the 2+ state back to the 3+ state compared to
other lanthanides.12 This points to the importance of the persis-
tent RE2+ state for the reversible optical changes we observe during
photochromism.

With this work, we add Sm to the series of known pho-
tochromic RE-oxyhydride thin films (Fig. 1). We have shown that
SmH3−2xOx thin films can be prepared by post-oxidation of an as-
deposited SmH1.9+δ thin film, controlling the extent of oxidation
by the deposition pressure (pdep). These Sm-based films have simi-
lar properties to previous studies on other RE-oxyhydride thin films
(RE = Sc, Y, Nd, and Gd) and follow the same pdep dependence for
the optical bandgap, crystal lattice size, and photochromic prop-
erties. However, the unexpectedly slow bleaching kinetics of the
Sm-oxyhydrides suggests that the redox behavior of the RE-cation
plays an important role in the photochromic mechanism of these
compounds.

The mechanism for photochromism is far from settled. At
its heart is the electron–hole pair generated by the bandgap
excitation.6,24 We believe that the excited electron reduces the Y3+

while the hole oxidizes the H− ion to H0, particularly the octahedral

FIG. 3. (a) Photochromic properties of Sm-oxyhydride thin films illuminated for
30 min at 30 ○C. Two parameters are calculated from these measurements: (b)
the relative photochromic contrast and (c) the bleaching speed, which changes
with the pdep.

H−.11 Probably some (filamentary) clustering of the reduced yttrium
takes place, which causes the optical absorption.25–27 The nature and
the role of the oxidized H− are still unclear. In the absence of an
optical excitation, the bleaching process is dominant, meaning that
energy is gained by bleaching. Y2+ is supposed to revert back to the
Y3+ state by donating its electron to the oxidized hydrogen species.
Clearly, according to the energy scheme proposed by, e.g., Doren-
bos,12 the implied oxidation of the RE-ion is less favorable for Sm
than it is for Gd ions. The slow bleaching process is, therefore, in
accordance with the proposed oxidation/reduction mechanism we
propose. It would be interesting to test other RE-cations that are
often found in the RE2+ oxidation state,28 such as Eu and Yb. How-
ever, these could not yet be made to form RE-oxyhydrides due to the
propensity of both the metallic sputtering targets and the dihydride
films to fully oxidize.

This work was supported by the Mat4Sus research program
with Project No. 680.M4SF.034, funded by the Dutch Research
Council (NWO).
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