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Abstract. The universal scaling relationship between an attribute and the
size of a system is widespread in nature and society and is known as allomet-
ric growth. Previous studies have explained that the allometric growth expo-
nent of single-source systems is uniquely determined by the dimension. However,
the phenomenon that the exponent shows diversity in some systems, such as
rivers, freight transportation and gasoline stations, lacks a reasonable explan-
ation. In this paper, we hold the view that allometric growth may originate
from efficient delivery from sources to transfer sites in a system and propose a
multisource transportation network model that can explain diversified allometric
growth exponents. We apply this model to some multisource systems, and the
results show that our model successfully reproduces the diversity of the allomet-
ric growth exponent.
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1. Introduction

Allometric growth is an important research topic in many disciplines ranging from bio-
logy to urban science. It is the scaling relationship between a system attribute (e.g.
an organism’s metabolic rate, lifespan, urban road area) and the size of the system
(e.g. an organism’s weight or volume, the population of a city). The law of allometric
growth was originally discovered by biologists [1–5], which states that the basal meta-
bolic rate level of animals (including mammals, reptiles, insects) is proportional to the
3/4 power of their three-dimensional body mass. In addition, there are also numer-
ous two-dimensional systems and even one-dimensional systems that exhibit allometric
growth. For instance, Olaf Dreyer used a one-dimensional experiment to discover that
the length and mass of water flowing in a single direction on a permeable tissue showed
an allometric growth relationship with an exponent of 1/2 [6]. Banavar discovered that
the relationship between the flow and size of each tributary for a two-dimensional river
system can be expressed by an allometric growth equation with an exponent of 2/3 [7].
Significant allometric growth has also been observed in two-dimensional urban systems,
but the allometric growth exponent is diversified and no longer 2/3 [8–12]. For example,
the growth of urban infrastructure (e.g. cable length [13], road area [14], number of gas-
oline stations [15]) tends to be sublinear compared to the size of the city (expressed
in terms of population), with an allometric growth exponent between 2/3 and 1. On
the other hand, the growth of wealth creation and innovation in cities (e.g. GDP [16],
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number of new patents [17] and inventions [18]) tends to be superlinear compared to
city size, with an allometric growth exponent greater than 1. Furthermore, Rocha et al
found that the number of social interactions in animal groups, including humans and
other mammals, also exhibit a superlinear allometric growth relationship with group
size [19].

More recently, researchers have focused on providing a reasonable explanation for
allometric growth scaling and revealing the nature of allometric growth. West et al
proposed a model that established the mechanism of energy and material transfer
from an organism to terminals through a branching tube network to explain allometric
growth from a fractal perspective [2, 20]. It can explain the allometric growth exponent
D/(D+1) of living organisms, where D is the dimension, but lacks an explanation for
nonliving organisms [21]. Banavar et al proposed a single-source transportation network
(STN) model [7]. A transportation network is a flow network with one source or mul-
tiple sources where the flow originates or converges. For example, in the cardiovascular
system, nutrients originate from a single source (the heart), and flow to various organs.
Hence, the cardiovascular system qualifies as a single-source transportation network. In
the urban gasoline station system, multiple gasoline stations serve customers across the
city, making the gasoline station system a multisource transportation network. The STN
model clearly illustrates how network topology can affect resource transport efficiency
and how the most effective structure can introduce the D/(D+1) power exponential
form [7]. It is successful in explaining the allometric growth of not only living organisms
but also rivers. However, it cannot explain the diversified allometric growth exponents
(not always 2/3) presented in urban systems. This is primarily caused by the fact that
most urban resource transportation networks have multiple sources [22, 23]. Unlike the
STN model, Samaniego and Moses developed a fully decentralized transportation net-
work (DTN) model by assuming that people would travel to each nearby location that
can be considered a source [24]. The DTN and STN models are the two extreme scen-
arios for transportation networks. Many transportation networks, both in natural and
social systems, are multisource networks rather than single-central or fully decentralized
networks. However, there is a lack of research on deriving the allometric growth scaling
of multisource transportation networks.

In this paper, we propose a multisource transportation network (MTN) model by
expanding on the STNmodel. Furthermore, we apply our model to predict the allometric
growth exponents of river, freight and gasoline station systems. The results show that
the MTN model can provide an alternative explanation of the origin of the allometric
growth exponent in the range of [D/(D+1),1]. This suggests that our model presents a
new theoretical framework to explain the allometric growth phenomenon in both natural
and social systems.

2. Multisource transportation network model

2.1. Single-source transportation network model

The basic rule of the STN model is that nutrients are transported from a central source
to transfer sites through a resource transportation network [7], as shown in figure 1(a).

https://doi.org/10.1088/1742-5468/aceb4d 3
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Figure 1. Single-source and multisource transportation networks. (a) Single-source
transport network (directed spanning tree network). Each circle represents a trans-
fer site. The number on the circle represents the distance from the transfer site
to the central source, and the red point with a distance of 0 is the central source.
(b) Single-source transport network (coiled network). (c) Multisource transporta-
tion network. The red points with a distance of 0 are the sources.

Transfer sites are points that accept and transfer nutrients in the network. When nutri-
ents pass through a transfer site, a portion is absorbed by the site, while the remainder
continues to be transported to the next layer, and so on, until reaching the final layer
where there is no further outflow. The number of transfer sites is LD, where L is a
variable that represents the length of the organism, and is expressed in terms of the
average distance between adjacent transfer sites. D is the Euclidean spatial dimension
of the network. The total amount of nutrients transported to each site per unit time is
B ∝ LD. In the case of steady-state supply, the structure of the transportation network
determines the total blood volume C (proportional to the volume of the organism) of
a given organism at any given time, and the most effective network is defined as the
one with the smallest C. The relationship between C and network structure can be
described as

C ∝ LD⟨LX⟩, (1)

where ⟨LX⟩ is the average distance of all transfer sites to the central source. We can
attribute equation (1) to the fact that the network capacity (total blood volume C )
must meet specific requirements, i.e. the transportation demand of all transfer sites can
be met at once, to ensure a constant flow (metabolic volume B) is maintained in the
transportation network. As a result, the network capacity is determined by multiplying
the number of transfer sites (LD) by the average distance (⟨LX⟩) between the transfer
sites and the central source.

Banavar discovered that the directed spanning tree shown in figure 1(a) is the most
efficient network, while the network shown in figure 1(b) is the least efficient. For these
two networks, the values of ⟨LX⟩ are L and LD (see appendix for detailed derivation),
respectively, from which the range of C can be obtained as follows:

L(D+1) ⩽ C ⩽ L2D. (2)
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As B ∝ LD, we can derive such a relationship between B and C when the network
is the most efficient network:

B = CD/(D+1). (3)

Equation (3) explains the allometric growth of three-dimensional organisms, two-
dimensional rivers and even one-dimensional permeable tissue.

2.2. Multisource transportation network model

As mentioned above, Banavar tested the STN model in the river scenario and found that
the allometric growth exponent of two-dimensional systems is 2/3. However, this model
cannot capture the allometric growth phenomena in multisource networks. Depicting the
impact of multiple sources on the allometric growth exponent is a significant challenge.
For this problem, we first analyze the relationship between the total number of sources S
and the network flow B. It is simple to determine that S = f(B) = 1 for a single-source
network and S = f(B) =B for a fully decentralized network. However, the S = f(B)
function for a multisource network is still obscure. Here we assume that there is a power-
law relationship as S ∼Bn, where B is the flow for a general system. This assumption
will be validated in subsequent empirical analyses (see section 3.1). At this point, the
average distance ⟨LX⟩ from all transfer sites to the source is no longer proportional to
L because the number of sources becomes larger. The average number of transfer sites
that are assigned to each source is LD/S = LD/Bn = LD/LD·n = LD−Dn. This leads to
a relationship between ⟨LX⟩ and L as

⟨LX⟩ ∼
(
LD−Dn

)1/D
= L1−n. (4)

Substituting equation (4) into (1), we obtain

B = CD/(D+1−n). (5)

Now we represent the influence of multiple sources on the allometric growth exponent
and derive the equation for the allometric growth relation. The exponent D/(D+1−n)
depends on the Euclidean space dimension D of the network and the power exponent n
between the number of sources and flows. When n =0, the MTN model degenerates to
the general STN network. When n =1, the MTN model degenerates to the decentralized
network [24].

2.3. Simulation

Now, we perform simulations on the multisource network to analyze the effect of n on the
allometric growth exponent. For simplicity, we perform this work in a two-dimensional
space. A multisource network implies that the nodes are divided into multiple sources
to form their respective networks. We simulate such a network by the following steps.

(i) Add a number of randomly located points proportional to the spatial area L2. As
the transportation demand B is proportional to L2 in two-dimensional space, the

https://doi.org/10.1088/1742-5468/aceb4d 5

https://doi.org/10.1088/1742-5468/aceb4d


A multisource transportation network model explaining allometric scaling

J.S
tat.

M
ech.(2023)

083404

Figure 2. Method for generating the most efficient transportation network (B =
25), where (a)–(c) is the generation process of a single-source network (n = 0), and
(d)–(f) is the generation process of a multisource network (0 < n ⩽ 1). (a) Add 25
points randomly in the two-dimensional space. For n =0, the number of clusters is
Bn = 250 = 1. The pentagram point is the central point. (b) Connect all points
into a connected single-source network using the Delaunay triangle algorithm.
(c) Generate a breadth-first spanning tree of this connected network, which is
the most efficient network. (d) In the case of n =0.5, the number of clusters is
Bn = 250.5 = 5. Aggregate the points generated in (a) into five clusters by the K -
means space clustering algorithm, where points of the same color belong to the same
cluster and the pentagram point is the central point of the cluster. (e) Connect all
nodes of each cluster separately into a connected subgraph using the Delaunay
triangle algorithm. (f) Generate a breadth-first spanning tree for each subgraph.

number of points is also proportional to B. An example with 25 points (B =25) is
shown in figure 2(a).

(ii) Given the number of sources of Bn, the points generated in the previous step are
divided into Bn clusters by the K -means space clustering algorithm, and the point
closest to the clustering center is regarded as the source of each cluster. Figures 2(a)
and (d) show different scenarios for n =0 and n =0.5, respectively.

(iii) Connect all points of each cluster into a connected subgraph using the Delaunay
triangle algorithm (see figures 2(b) and (e)).

(iv) Generate a breadth-first spanning tree (BFST) from the source point in each sub-
graph, as shown in figures 2(c) and (f). The resulting BFST network is the most
efficient transportation network [7].

https://doi.org/10.1088/1742-5468/aceb4d 6
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Figure 3. Simulation results. The horizontal axis (C ) and vertical axis (B) rep-
resent the capacity of the transportation network and the transportation demand
of the network sites, respectively. n is the power exponent between the number
of sources and the transportation demand. Each point represents the simulation
result of C when n and B take different values. The straight lines are the theor-
etical results of the MTN model. The slope of the straight line is the theoretical
value of the B −C allometric growth exponent calculated by the MTN model. R2 is
the coefficient of determination between the simulation results and the theoretical
results.

(v) Calculate the network capacity C for each BFST network by computing the sum
of the network distances (the shortest number of edges) of all nodes to the source
of the BFST network.

(vi) Sum the network capacity C of each BFST network to calculate the C of the entire
multisource network.

According to the above algorithm, we can obtain different values of C by setting
different values of n and B. C in practical measurement serves as a metric for evaluating
network capacity, such as the blood volume in a metabolic system or the watershed area
in a river system. Figure 3 shows the comparison between the simulation results and
the theoretical allometric growth line. The points and line show the simulated and
theoretical relationships between B and C, respectively, when n takes a definite value.
The simulation results are quite close to the theoretical results. As n increases, the
allometric growth exponent also increases according to the pattern in equation (5).
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3. Application of the MTN model

In this section, we apply the MTN model to analyze the allometric growth of Chinese
river, Chinese freight and U.S. gasoline station systems.

3.1. Application to Chinese river system

Our first application of the MTN model is in the Chinese river system. We gather
and examine data for some rivers that are part of the Taizi River system in China
(see figure 4(a)). From these data, we can determine an allometric growth relationship
between the annual runoff, defined as the total amount of water that flows out of the river
network over the course of a year (network flow B), and the watershed area, which is the
geographical area in which all the water drains into the river system (network capacity
C ). We use the least squares regression method (which is also used for subsequent
exponents estimation) on the Taizi River system data to estimate the allometric growth
exponent, resulting in a scaling exponent of 0.654 (very close to 2/3), as shown in
figure 4(b) and table 1. However, the exponent becomes 0.905 (see figure 4(c) and
table 1) when we examine the relationship between annual runoff and watershed area
for river systems (consisting of mainstream and its tributaries, see figure 4(a)). This is
because the river system is a multisource transportation network, with the confluences of
the mainstream and tributaries serving as the sources [25]. By counting the relationship
between the number of sources S and annual runoff B in the river system networks
(as shown in figure 4(d)), we find an approximate power-law relationship as S ∼B0.726.
Substituting the power-law exponent n between S and B into equation (5), we can
obtain B = C0.882, which covers the exponent 0.905 in figure 4(c) (see table 1). Thus, it
is clear that the MST model is an alternative tool that can be used for analyzing the
allometric growth relationship of the river system.

3.2. Application to the Chinese freight system

We begin by constructing a freight transportation network using Chinese freight data
(related to trucks) [26]. We first extract the travel trajectories of each truck within
the city from our basic truck data. For each long-time parking point in the travel
trajectory, we consider the enterprise closest to it as a loading and unloading enterprise
[26]. The enterprise with the most appearances in each travel trajectory is considered
the travel trajectory source, and multiple travel trajectories with the same source are
combined as a freight source. In this freight network, the number of network sources
S can be represented by the number of freight sources, the transportation demand B
can be represented by the number of trucks in a city, and network capacity C can be
represented by the urban population. We then count the relationship between the freight
sources and the number of city trucks as S ∼B0.960 (see figure 5(a)). Substituting n into
equation (5), we obtain B = C0.980 (see table 1). We then count the actual allometric
growth relationship between the number of urban trucks and the urban population,
as shown in figure 5(b). The actual data show that B ∼ C0.950. The allometric growth
exponent calculated with the MTN is within the deviation range of the actual data
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Figure 4. Relationship between the annual runoff and watershed area for some
river systems and some rivers within the Chinese Taizi River system. (a) Schematic
diagram of the mainstem and tributaries of the Taizi River (partial). The solid
curve is the main stream, the dotted curve is the tributary, and the nodes are the
confluence of the main and tributary streams. (b) Relationship between the annual
runoff and watershed area of some tributaries within the Taizi River system. The
slope of the fitted line is 0.654 (R2 = 0.699). (c) Relationship between the annual
runoff and watershed area of major river systems in China. The slope of the fitted
line (solid line) is 0.905 (R2 = 0.825), and the slope of the predicted line(dotted
line) is 0.882 (R2 = 0.823). (d) Relationship between the number of central sources
and the annual runoff of the river system network. The slope of the fitted line is
0.726 (R2 = 0.941).

calculation results (see table 1), which suggests that the MTN model captures the
essence of the allometric growth of freight systems.

3.3. Application to the U.S. gasoline sales system

The gasoline distribution network is a multisource network, similar to the freight net-
work. We can use the number of gas stations to represent the number of sources S in
the network, the quantity of gasoline sales to represent the transportation demand B
of the network [27], and the urban population to indicate the network capacity C. We
count the relationship between S and B, as shown in figure 6(a), which gives S ∼B0.787.
We can obtain B = C0.904 by using the MTN model. We then count the relationship
between urban gasoline sales and the urban population, as shown in figure 6(b), and
obtain B = C0.841. The calculation results of the MTN model are close to the statistical
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Figure 5. Empirical data on the allometric growth of the Chinese urban freight
system. (a) Relationship between the number of freight sources and urban trucks.
The slope of the fitted line is 0.960 (R2 = 0.876). (b) Relationship between the
number of urban trucks and urban population. The slope of the fitted line is 0.950
(R2 = 0.767).

Table 1. Empirical and model allometric growth exponents in different systems.

System
Empirical
exponent R2

Standard
deviation

Model
exponent

Relative error (%)
between empirical

and model
exponents

Tributaries 0.654 0.699 ±0.181 0.667 1.99
River systems 0.905 0.825 ±0.107 0.882 2.54
Trucks 0.950 0.767 ±0.039 0.980 3.16
Gas stations 0.841 0.871 ±0.047 0.904 7.49

Figure 6. Empirical data of the allometric growth of U.S. gasoline sales system.
(a) Relationship between the number of gas stations and gasoline sales. The slope
of the fitted line is 0.787 (R2 = 0.962). (b) Relationship between gasoline sales and
population. The slope of the fitted line is 0.841 (R2 = 0.871).
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results of the actual data (see table 1), which further demonstrates the applicability of
the MTN model.

4. Conclusion and discussion

Allometric growth is pervasive and has a considerable research significance in both
natural and social systems [28–31]. Banavar et al discovered that a single-source trans-
portation network with maximum efficiency is where the allometric growth exponent
D/(D+1) emerges [7, 32]. However, their work was unable to reproduce the diversified
allometric growth exponents [9, 33, 34]. In response to this problem, we conduct an
empirical study of river systems and find that the allometric growth exponent depends
on the number of sources in the transportation network. Based on the results, we pro-
pose an MTN model that can describe allometric growth with an exponent in the range
of [D/(D+1),1] for single-source and multisource networks. We apply the MTN model
to sufficiently reproduce the allometric growth exponents of not only river but also
freight and gas station systems, indicating that our model is generalizable.

Empirical studies have found that the exponent of multisource urban systems usu-
ally ranges from 0.7 to 0.9 [9]. The MTN model suggests that an increase in the number
of sources leads to an increase in efficiency (and the exponent). However, it remains a
question as to why the number of sources in real-world systems does not reach the max-
imum, resulting in an exponent that does not reach the theoretical maximum of 1. One
possible explanation for this phenomenon is that cities must balance efficiency and cost
[35–39]. As the number of sources increases, the cost of implementing the system also
increases [40], forcing urban systems to make trade-offs. Although we have reproduced
and explained the diversity urban allometric growth exponent, we do not yet know the
process by which the urban system reaches an efficiency-cost equilibrium. Therefore,
the mechanism of efficiency-cost equilibrium in urban systems deserves further study.

It’s important to note that the data sets we used in this paper have some limita-
tions, particularly their discrete nature. For instance, the empirical result of the truck
number versus population has an R2 value lower than 0.8. Future work could benefit
from employing higher quality and more comprehensive data sets to further validate and
refine our model. Furthermore, while our model can explain allometric growth exponents
in the range of [D/(D+1),1], it currently does not account for systems with allometric
growth exponent exceeding 1. Although our model can derive Y ∼ C((D+2−2n)/(D+1−n))

with allometric growth exponent in the range of [1,(D+2)/(D+1)] by combining
Bettencourt’s hypothesis [35] that socioeconomic output Y is equal to the product
of the urban population C and the per capita interaction C/B, this hypothesis still
needs to be verified in non-urban systems. Future research should focus on extending
our model or developing new ones to capture phenomena across all allometric growth
exponents [9, 19].
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Figure A1. Schematics of the most efficient network (a) and the least efficient
network (b) within a two-dimensional grid scenario. Both grids encompass a side
length of 3, uniformly distributing 9 nodes with the central node situated at (0,0).
Paths from the central point to distinct nodes are identified by lines of the node’s
color. In the most efficient network (a), the Manhattan distance from any given
node to the center amounts to the sum of the absolute values of the node’s x and y
coordinates. Conversely, in the least efficient network (b), each node is connected
to the center via a spiral path.

Appendix

In this appendix, we derive the expressions for ⟨LX⟩ associated with the most effi-
cient and least efficient networks. We begin with a discussion in the context of two-
dimensional space.

The most efficient network is visualized as a two-dimensional grid, featuring a side
length of L and consisting of L2 nodes, as shown in figure A1(a). We locate the center
node at the coordinate origin (0,0) and compute the Manhattan distance for each

node from the center. Nodes have integer coordinates, spanning from − (L−1)
2 to (L−1)

2
(assuming L to be an odd number for the purpose of defining a distinct center). The
distance is the sum of the absolute values of the x and y coordinates for each node. With
each distinct x or y coordinate, there are L nodes spanning the entire grid along the other

axis. Hence, the total absolute value of x coordinates of all nodes is 2×
∑(L−1)/2

i=0 i×L
(the same applies to y coordinates). Accordingly, the average distance from all nodes
to the center can be computed as

⟨LX⟩=
1

L2
× 4×

(L−1)/2∑
i=0

i×L=
L

2
− 1

2L
≈ L

2
∼ L. (A.1)

In contrast, the least efficient network, as visualized in figure A1(b) and as hypothes-
ized by Banavar et al [7], resembles a spiral where each node is exclusively connected to
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its adjacent neighbors. Here, the distance from the center node to the ith node equals
i. Therefore, the average distance can be estimated as the sum from 1 to L2, divided by
the total node count (L2), giving

⟨LX⟩=
1

L2
×

L2∑
i=0

i =
1

L2
× L2× (L2+1)

2
=

(L2+1)

2
∼ L2. (A.2)

The above explanation highlights the characteristics of the most and least efficient
networks in terms of ⟨LX⟩. Specifically, ⟨LX⟩ grows linearly with L in the most efficient
network, while it expands in the order of LD in the least efficient network.
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