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Chapter 1

Thesis Structure

This thesis is the completion of the master Mechanical Engineering at the TU Delft. The subject
of the thesis can be defined as a combination of mobile robot navigation and machine learning.
The main body of this thesis is written in a paper format. Additional information is provided
in the appendices. New readers should start with the paper, and move to the appendices for
detailed information.

Chapter 2 contains the paper, which introduces the research goal, related works, presents the
learning algorithm, experimental results, and conclusions.

Appendix A provides additional information on the robot setup and the implementation dur-
ing the thesis.

Appendix B explains further details about the neural networks which have a vital role in the
architecture.

Appendix C presents an additional investigation into the parameters of the main learning
algorithm.

Appendix D describes an addition to the learning algorithm. This addition is excluded from
the final algorithm presented in the paper.

Appendix E gives additional information about the main simulation experiment. It describes
the expert training, typical scenario’s, a brief analysis of data collected during the training,
including trajectories.

Appendix F provides additional information on the real-world experiments described in the
paper.
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Chapter 2

Paper
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Learning Interactively to Resolve Ambiguity in Sensor Policy
Fusion for Robot Navigation

Bart Bootsma, Giovanni Franzese, and Jens Kober
Department of Cognitive Robotics

Delft University of Technology, Netherlands

Abstract—This work applies interactive imitation learn-
ing for the navigation of a mobile robot. The algorithm
"Learning Interactively to Resolve Ambiguity in Sensor
Policy Fusion" (LIRA-SPF) is introduced in the field of ma-
chine learning for robot navigation. This algorithm extends
on existing methods by allowing the ambiguity-free fusion
of existing single-sensor policy behavior using an active and
interactive querying of the human expert. The ambiguous
situations investigated in this work are due the possible
perspective mismatch of each sensor: LIRA-SPF aims to
detect these situations and save the correct solution in a new
fused policy. As a consequence, we provide an alternative
to training a new behavior again from scratch, leveraging
the knowledge of existing expert behaviors and reducing
the required teacher’s effort. The algorithm is tested
with different supervised and unsupervised disambiguation
strategies thanks to its modular implementation. This paper
summarizes multiple simulated and real robot tests, show-
ing the advantages of the proposed disambiguation module
on state of the art approaches. In particular, the analysis
underlines the necessity of less human-robot interaction
during the training process. Finally the conclusions reveal
the missing blocks of the approach and how this could be
beneficial in the sensor fusion procedure.

I. INTRODUCTION

The use of robotics in assisting humans and performing
several different tasks can change our lives. Unfortu-
nately, for the execution of each new task, a slow
reprogramming of the robot is necessary. This approach
limits the adaptability of robots to new conditions.
Ideally, robots can quickly adapt to unknown situations
and can learn directly from humans. What if even a
child could teach a robot to drive autonomously? Or
if a non-expert user could transfer her skills to the
robot via a kinesthetic demonstration? Learning from
Demonstration (LfD) methods allow a human to teach
robots this way [1].

Within LfD, there are different approaches to the
training of a new behavior. For example, Behavioural
Cloning (BC) collects all the demonstration data and

then trains the robot policy to clone that desired behavior.
It can, however, be challenging to foresee which demon-
strations lead to the desired behavior [2]. A solution is
to have the human in the learning loop and supervise
the robot with corrective feedback. Instead of providing
all demonstrations at the start, the human is asked to
supervise the training and provide corrective feedback
during multiple iterations. This is the field of Interactive
imitation learning (IIL) methods. Examples like DAgger
[3], HG-DAgger [4], TAMER [5], COACH [6], have
shown promising results in an easier, safer, and faster
way of teaching robots. IIL methods teach the learner in
an online fashion, in contrast to the offline BC.

This work focuses on learning navigation behavior
for an autonomous mobile robot. Mobile robots of-
ten use a combination of sensors to navigate through
the environment safely. As each sensor modality has
its strengths, they are often responsible for a specific
behavior. Combining different sensor modalities is the
field of sensor fusion. A survey, by W. Elmenreich [7],
describes sensor fusion as "the combining of sensory
data or data derived from sensory data such that the
resulting information is in some sense better than would
be possible when these sources were used individually."
What if we can leverage these different sensor modalities
to help the human demonstrate the desired behavior?
With existing sensor-specific behaviors that acts as ex-
perts, our methods assists the human teacher by detecting
ambiguous situations and applies the actions of these
experts behaviors to reduce the input a human teacher
has to give.

We named our method LIRA-SPF (Learning Interac-
tively to Resolve Ambiguity in Sensor Policy Fusion).
During their lifetime robots operate in different envi-
ronments and fulfill different tasks. LIRA-SPF is based
on the assumption that during their lifetime different



behaviors are developed. Instead of defining a complete
new behavior for each application, we can use these
existing behaviors to speed up the implementation pro-
cess. Examples of the expert behaviors are: ‘follow the
line’, ‘avoid obstacles’, and ‘drive through a narrow
opening’. We assume the expert behaviors are a black
box and only provide an action for the robot. This makes
our approach applicable to a wide range of existing
behaviors. Based on their action LIRA-SPF assigns
priority to one of the expert behaviors during the training
process. It is however likely that the existing behaviors
are dependent on different sensors. These different sen-
sor modalities can result in ambiguous situations. The
training approach specifically detects and resolves these
ambiguities. LIRA-SPF essentially fuses sensor-specific
policies into a novice behavior which depends on the
full observation.

Figure 1: When a LIDAR perceives table legs to the left and
right side, the LIDAR-based policy might deem it safe to drive
ahead. However, the camera can see the connecting tabletop
and decides it is not high enough to drive underneath.

The scenario displayed in Figure 1 is an example
of ambiguity the robot might encounter. Often mobile
robots use multiple sensors to observe the environment.
However, each sensor perceives different features. For
example, an RGB monocular camera cannot infer the
distance measurements from an obstacle, but a 2D laser
scan can. On the other hand, a 2D laser rangefinder
cannot detect color and textures, but a camera can. Based
on these perception mismatches, ambiguous situations
can occur in the policy fusion when the single actions
are not coherent: which sensor perceives the feature that
matches the teacher intention?

We define an ambiguous situation as the scenario
where only one sensor can sense the relevant feature,
and the output decision is not consistent among the dif-
ferent sensor policies. We aim to detect those ambiguous
situations and actively query a human expert to teach
a sensor-fusion novice policy in these situations. The
experiments in Section IV and V-A use both a camera
and a 2D laser rangefinder which we will refer to as a
LIDAR in the remaining text.

Research Question. Could Interactive Learning be suc-
cessfully applied to the learning of sensor policy fusion,
leveraging the knowledge of the teacher on the task
execution for the automatic inference of the different
sensor’s relevance in ambiguous/conflicting situations?
Is learning sensor policy fusion more data-efficient
and user-friendly than learning everything again from
scratch?

The main contributions of this paper are:
1) A learning approach that ingrates existing ex-

pert policies in a human-robot interactive learning
framework.

2) A validation of the learning approach on simulated
and real-world navigation tasks.

3) A comparison between LIRA-SPF and a state of
the art interactive imitation learning approach.

In Section II related work is discussed. Section III
explains the learning algorithm. Section IV focuses on
the simulated experiments, followed by the real world
validation in Section V. Section VI discusses the method
and concludes the findings of this study.

II. RELATED WORKS AND BACKGROUND

LIRA-SPF is a variation on the work in [8], which pro-
posed the method named ‘Learning Interactively to Re-
solve Ambiguity in Reference Frame Selection’ (LIRA-
RFS). LIRA-RFS already uses human-robot interaction
to resolve ambiguous situations. The approach presented
in this paper touches on different research fields. At its
core, LIRA-SPF is an IIL approach, but it is also related
to active learning and sensor fusion.

A. Interactive Imitation Learning

While Behavioural Cloning separates the demonstration
from the policy execution, Interactive Imitation Learning
places the human teacher in a fused learning-execution
loop where the feedback directly affects the robot’s de-
cisions. The quality of the teacher’s feedback determines
the performance of the learner. Therefore, recent studies
focused on the type of feedback and interaction between
human teachers and learners. The DAgger algorithm [9]
records the current policy roll out so a human teacher can
add feedback for the recorded states. As the control never
fully switches to the human, it can be hard to provide the
correct feedback and lead the exploration. HG-DAgger
[4], therefore, switches completely during training from
the novice to the human teacher when he/she wants to
take control. Figure 2 is a schematic visualization of HG-
DAgger. TAMER [5] does not require feedback in the
action space but asks the teacher to assign a reward for
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the novice’s actions. However, it is not always an obvious
choice, making it hard to give the correct feedback. The
approach of [10] extends on HG-DAgger. In combination
with the explicit feedback, it also leverages the implicit
feedback. They show a reduction of demonstrations
required from the teacher.

Another approach, COACH [6], uses a human inter-
pretation model to translate the feedback from a human
teacher to policy corrections. The human gives feedback
in the form of directional corrections. As the method
does not need perfect action labels from the human,
COACH allows even unskilled teachers to demonstrate
complex tasks. LIRA-SPF extends on these existing
IIL methods, specifically HG-DAgger, by assisting the
human teacher during the training phase. The existing
sensor-specific expert behaviors are used to detect and
highlight ambiguous situations, so the human can be
warned to pay extra attention. In addition, LIRA-SPF
benefits from the experts’ knowledge and reduces the
feedback required from the human teacher.

Figure 2: During HG-DAgger, the observation O is fed to the
novice policy πN , which output is an action aN . The human
often has a complete view of the state x, and chooses when
to take control and supply an action aH . During the training
phase of HG-DAgger, the human acts as a gating function
by taking control. During the test-phase, a novelty detection
based on the uncertainty of πN determines whether additional
aH is required. The combination of aH and O is used as input
for a supervised learning algorithm to update the πN .

B. Active Learning

It is likely that a trained behavior has not seen the
complete task environment. New areas where the novice
is not confident might lead to dangerous situations.
As used in [11]–[14], active learning aims to detect
when the novice is not confident about its actions and
requires more feedback from the human. Similar to the
uncertainty measure used in [13], HG-DAgger uses the
variance between a committee of trained networks to
detect novel situations in the test phase. Interesting is
that the training phase’s interaction defines the threshold
to determine the confidence of the trained networks.
LIRA-SPF explicitly targets conditions where one of the
sensors is blind to specific features in the environment.
In these situations, the difference between single-sensor

expert policies can be used to detect the ambiguity. This
decision ambiguity can also result from the intrinsic
difference between the expert policies. In both scenarios,
all expert policies can be confident but contradicting.
In contrast to the active learning methods that apply an
epistemic uncertainty metric to determine the novice’s
confidence in the test-phase, LIRA-SPF uses the am-
biguity between expert policies during the training to
actively signal the human teacher.

C. Sensor Fusion

LIRA-SPF aims to learn navigation policies efficiently
that fuse multiple sensors. Previous LfD studies mostly
used a single sensor modality [4], [9], [15]–[20]. There
are examples of sensor fusion inside neural networks.
The LfD method applied in [21], fuses range and im-
age data inside the neural network. The approach in
[22] combines RGB and Depth image into a single
feature which acts as input for the function approx-
imation. A comparison in [23] shows that a camera
and laser range finder perform better while learning to
drive autonomously. The LfD methods in [19], [24]–[26]
fuse sensor input with state measurements (e.g., speed,
position) and higher-level goal commands in the same
network. These methods use the fusion of different data
sources to increase the complexity of the learned task.

Sensor fusion can also actively increase the per-
formance by leveraging the sensor characteristics. In
[27], sensor fusion increases robustness in an end-to-
end driving policy. By applying Sensor Dropout during
the training process, the policy is less sensitive to one
specific modality. In [28], a confidence metric deter-
mines whether a second camera is needed to resolve
the ambiguity. Similarly, LIRA-SPF actively leverages
the differences between the sensor modalities. However,
instead of adding an extra sensor, the human teacher
is queried for more feedback when an ambiguity is
detected.

Some fusion attempts focus on the fusion of separate
networks. In [29], two separate networks are available
on different sensors. The camera-based network can de-
termine mid-long term actions, while the LIDAR-based
networks are better equipped for close range obstacle
avoidance. The networks are fused on a decision level
with a simple rule: ‘when the LIDAR sensor readings are
within a minimum range, its network takes over control
for a preset number of time steps.’ The disadvantage of
this approach, aside from the difficulties in scaling to
more sensors, is that the camera is disregarded when the
LIDAR sensor is active.
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The method in [29] uses a fixed parameter to switch
between sensor-specific network modalities. While in
the MAMMOTH method of [30], the fusion of two
sensor-specific networks is trained on a third novice
network. The method is compared to a ‘Monolithic’ ar-
chitecture. [30] state that MAMMOTH architecture gives
the teacher more control over which sensor-modality
is essential in different situations. Similarly, LIRA-SPF
allows a general sensor fusion approach by learning
the fusion of the sensor-specific networks in an addi-
tional network. However, in contrast to [30], LIRA-SPF
actively calls for the human teacher’s attention, which
makes it easier to supply the right demonstrations.

III. LIRA-SPF

This section describes the LIRA-SPF training approach,
as visualized in Figure 3 and Algorithm 1. End-to-end
navigation architectures map sensor data directly to an
executable command for the mobile robot. LIRA-SPF
trains a new behavior (novice) to map the output of
multiple sensors to an action command. The sensor
combination will change depending on the task, and
instead of learning from scratch, LIRA-SPF leverages
existing policies during the training. The only constraint
for the expert policies is that they are able to predict
continuous action commands for the robot. LIRA-SPF
judges the relevance of the expert policies based only
on their action output. This feature makes it easier to
implement different sensors and experts, as it treats all
experts equally without the need for prior knowledge
about expert behavior.
A LIRA-SPF training loop requires at least two expert
policies Π1,Π2. While it is possible to extend to more
experts, the algorithm is described based on two experts
for the explanation. At the start, an empty novice buffer
DN , and short term memory Sj are initialized. The short-
term memory stores the expert policy actions for the last
j steps. Each time step, an observation O is retrieved
from the robot sensors. Each loop, the expert policies
predict an action a1, a2. Sometimes the human provides
feedback in the form of an action aH . Eventually the
action a is executed on the robot and demonstrations
labels d(a,O) are added to DN .

LIRA-SPF starts with the O, see line 3 in Algorithm
1. The actions predicted by Π1,Π2 (line 4) are added
to the finite Sj (line 5). The expert policies only use
their specific subset of the observation. If the human
expert takes control (line 7) and provides an aH , the
demonstrated label is added to the DN . The human
can always decide to take control during the training to
prevent unwanted or dangerous situations. If the human

Figure 3: LIRA-SPF control loop starts with the observation O
as input for the novice policy πN , and expert policies π1,..,n,
which all output an action aN , and a1,..,n, respectively. The
human has a complete view of the state x, and chooses
when to take control and supply an action aH . The experts
actions a1,..,n is fed into the ExpertActivation function and
the ExpertConsensus function. The output these functions
determines which policy should have control and if additional
human feedback is desired. The supervised learning algorithm
updates the πN with the collected feedback.

Algorithm 1 Basic LIRA-SPF training loop

Require: Π1,Π2

1: Init: DN = [], Sj = []
2: for t = 1, 2, ... do
3: Get O
4: a1, a2, aN = Π1(O), Π2(O), ΠN (O)
5: Sj ← a1, a2

6: Get ExpertActivation(Sj)
7: if human gives feedback then
8: a = aH

9: DN ← d(a,O)
10: else if Π1 or Π2 is activated then
11: Call for attention
12: a = a1 or a2

13: DN ← d(a,O)
14: else if Both Π1 and Π2 are activated then
15: Get ExpertConsensus(a1, a2)
16: if Experts agree then
17: a = mean(a1, a2)
18: DN ← d(a,O)
19: else
20: Call for feedback
21: a = aN

22: else
23: a = aN

24: Execute a
25: Train ΠN on DN if m new labels in DN

expert is not in control, three possible situations may
occur.
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In line 6, Π1 and Π2 are evaluated on their temporal
activation. The experts’ activation determines whether
an expert is relevant in this specific state of the en-
vironment. The activation is computed based on their
last j actions. If a sensor is effectively blind to features
in the environment, the accompanying expert’s output
will not change. When the predicted action change is
large enough, we assume that the accompanying sensor
is picking up relevant features in the environment. By
defining the activation as a temporal change in action,
we can distinguish where the expert behavior is blind
and where it isn’t.

If a single expert is activated, it receives priority as
we assume the other expert is blind in this situation (line
10). However, a call for attention is sent to the human
(line 11) to notify that one expert is now in control,
and feedback might be necessary. The notification is
important because this makes it easier for the human
to determine when extra focus is required.

If more than one expert is activated, the similarity
is computed with the ExpertConsensus function (line
15). Both expert policies may be activated on different
features in the environment and agree on the action.
When the experts predict the ‘same’ action (line 16),
their action is set as a and added to DN . The similarity
between Π1,Π2 is computed based on the difference of
their action. The other option is that both Π1, and Π2

are activated and disagree about the action. In that case,
we assume there is an ambiguous situation that requires
human feedback. During the experiments, the speed of
the robot is reduced in case of an ambiguous situation.
The reduced speed allows the human to observe the
current novice policy and take over control when needed.
In all other cases, the novice action is executed (line 23).

A. ExpertActivation

The ExpertActivation function receives Si as input,
which is a matrix with the last J actions ak for expert
policy i. The output is a measure of activation for Πi.
The activation is measured by summing the standard
deviation for the most recent actions of the expert policy.
The actions have a dimension k, depending on the task.
The activation for expert i is

∑

k

√∑J
j=1(Sijk − S̄ik)2

J
. (1)

The output of the ExpertActivation function is thus a
measure of the temporal change for each expert policy.

B. ExpertConsensus

The ExpertConsensus function receives a1t and a2t as
input. The result is true if

|a1t − a2t | < T . (2)

The threshold T defines the boundary of the consensus
area. A large T allows big differences between the
expert’s actions. This difference can lead to destructive
behavior and imperfect labels for the novice buffer. If the
threshold is set small, ambiguous situation are declared
more often except for identical behaviours. Empirically
we found that setting T to 10% of the action dimension
is a good starting point.

C. Redundant Demonstrations

Every time the experts are activated, they supply an
action for the novice buffer. It is, however, possible the
novice is already capable in this situation from a previous
encounter. To make sure redundant demonstrations are
not stored to the novice’s buffer, the action supplied
by the experts is compared with the novice’s action.
After line 8, 12, and 17 in LIRA-SPF, an additional
comparison is made between the novice action aN and
the current action a supplied by one of the experts. The
comparison is similar to the ExpertConsensus function,
only with the input being aN and a. If they are similar
the label is not added to the demonstration buffer. We
name the threshold L, and assume the novice is already
capable in that state if the difference is lower then L.

IV. SIMULATED WORLD VALIDATIONS

The player stage environment [31] is used to simulate
the world. The Robot Operating System (ROS) and
Tensorflow (TF) library are used for the implementation.
The robot is equipped with a camera and a LIDAR, as
visualized in Figure 4. A 32x32 pixel RGBa image is
the output from the camera. As color differences will
not influence the applications, the RGBa is converted to
a grayscale image. The 2D LIDAR, placed at a heigth
of 26cm, produces 101 distance measurements, evenly
spaced in a forward-facing 130°angle. This angle is
similar to the camera field of view, which allows them
to see the same obstacles.

There are two expert policies, one for each sensor.
The expert policies use a simple end-to-end architecture
to predict a two-dimensional action. The camera-based
expert (CamExpert) uses convolution layers to extract
the features from the image input. While the LIDAR-
based expert (LidExpert) only consists of fully connected
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(a) Side-view simulated robot. (b) Top-view simulated robot.

Figure 4: Both the camera and the LIDAR look in a 130°
horizontal angle α. With a range R of 4m. While the LIDAR
is 2D, the camera looks in a 40° vertical angle β.

(a) Third person simulated robot. (b) Top view.

Figure 5: In the ‘narrow passage’ scenario, the LIDAR is loo
low to perceive it as an obstacle; instead, it sees a narrow
opening. The camera, however, is capable of seeing the whole
obstacle. The narrow opening is indicated with dashed purple
line.

layers (FC). The expert networks are trained interactively
for each task with HG-DAgger.

The sensor data is normalized before it is fed into
the networks. The expert policies and novice predict a
linear and angular velocity, ranging between -1.0 and 1.0.
A simulated on-board controller converts these motor
commands. The environment contains a ground plane
where obstacles are added for the specific tasks.

A. Driving Through a Narrow Passage

The goal of this scenario is to validate that LIRA-SPF
can detect and learn to resolve an ambiguous situation.
The first ambiguous situation, is visualized in Figure 5.
The LIDAR is placed too low to perceive the obstacle
and sees a suitable opening. On the other hand, the
camera does discern the whole dimension of the opening
and can judge the feasibility of going through it. Both
expert behaviors are trained to avoid obstacles and pass
through narrow corridors, as visualized in Figure 6. If no
obstacles or corridors are present, the experts are trained
to drive straight ahead. In Table I the demonstration
labels and policies updates are summarized.

(a) Top view of the narrow corridor. (b) Obstacle situation.

Figure 6: The the expert behaviors are trained to pass through
narrow corridors and void obstacles.

Figure 7: The training trajectory is visualized in a top-view.
The distance between the red footprint squares indicates the
speed of the robot. In position D, it is clearly visible that
the robot drives with reduced speed. The narrow opening is
indicated with dashed purple line.

The resulting trajectory, during the experiment, is
displayed in Figure 7. The robot starts in position A,
with initial input from the human to drive straight. In
position B, the robot is able to drive straight after a
first policy update. In position C, the LidExpert picks
up the wall opening and wants to steer to the left. The
camera, however, wants to avoid the wall and steers to
the right. As both experts are activated and disagree,
the speed is reduced, and the human is called for
feedback. The human expert gives a clockwise steering
action as feedback in position D. After the feedback, the
novice drives straight towards position E. The novice
can reproduce this behavior after a policy update. The
reduced speed and detection of the ambiguous situation
make it easy for humans to give correct demonstrations.

B. Learning Line-Following with Collision Avoidance

The goal of this scenario is two-fold. In the previous
example, the novice only learned a dominant camera
situation, while in this experiment, both a camera and
LIDAR have to be operative. Furthermore, the test aims
to prove that it is possible to use LIRA-SPF to detect and

6



Policy Expert
Labels

Training
Step

LidExpert 210 7
CamExpert 270 9

Novice 30 1

Table I: The buffer size and policy updates during the ‘narrow
passage’ scenario. A single training step consist of 50 policy
updates with the collected data set. A mini-batch gradient de-
scent approach, randomly selects 32 labels from the complete
set for a single policy update.

(a) Top-view. (b) Third-person perspective.

Figure 8: The top-view and perspective orientation of the robot
while it encounters an obstacle along the black line. A red dot
is placed in the obstacle to make it easier for the human to
recognize. From the camera perspective, the obstacle blends
with the road below. The LIDAR does see the obstacle, yet it
cannot see the black line.

solve several ambiguous situations. The performance is
compared to the training-phase approach of HG-DAgger,
see Figure 2.

The robot is placed in an environment with a black
line. However, black obstacles are placed along the line,
as visualized in Figure 8. The environment’s design
is such that the camera will not see the difference
between the black line and the obstacles. The LIDAR
is only capable of seeing the obstacles. The CamExpert
is trained to follow a black line, as seen in Figure 9b.
The LidExpert is trained in an obstacle forest to drive
straight or steer away from the obstacle (Figure 9a).
This experiment aims to teach the novice to avoid the
obstacles while following a black line. The assumption
is that the human is queried when the robot encounters
an obstacle on the black line.

Results displayed in Table II are the averages from
ten repetitions. The novice is trained until it avoids all
obstacles and does not lose the black line. If the final
policies are placed in a situation, which they did not
encounter during training, they will likely fail. While
the HG-DAgger algorithm learns the desired behavior
with a smaller buffer size, the number of demonstrations
provided by the human is almost three times the amount
of demonstrations during LIRA-SPF. The number of

(a) The Forest environment. (b) The Black-line environment.

Figure 9: Both the LidExpert and the Camexpert are trained
with HG-DAgger to get the desired behavior. The CamExpert
is also trained to steer back to the black line actively.

Training
method

Buffer size Human
labels

Human
interventions

1st final 1st final 1st final
LIRA-SPF 158 273.5 50 59 7 9.5
HG-DAgger 167 228 96.5 156.5 11 19.5

Table II: The results are averaged over ten repetitions for both
LIRA-SPF and HG-DAgger. The activity threshold is set to
3%, and the redundancy threshold L is set to 5% for LIRA-
SPF. The numbers for the first lap and after the final policy
is learned are displayed.

human interventions is double for HG-DAgger. This
means that during HG-DAgger, the human provides 1.5
times longer trajectories during a take over compared
to LIRA-SPF. This means during LIRA-SPF, the human
avoids the obstacle but trusts the experts to steer the
robot back to the black line as the danger has already
passed.

C. Obstacle Race: LIRA-SPF vs HG-DAgger

In the ‘obstacle race’ scenario, a 120m long black line
runs straight to the finish, with 21 black obstacles placed
randomly along the path as seen in Figure 10. Similar to
the scene in Section IV-B, the black obstacles are hard
to distinguish from the black line based on the camera
image. However, the ‘obstacle race’ environment has a
higher obstacle density, with obstacles on and besides
the black line. The CamExpert and LidExpert used in
Section IV-B can also apply this adjusted scenario. This
experiment compares LIRA-SPF to the training-phase
approach of HG-DAgger, see Figure 2. The training
continues until the novice reaches the finish, without
any additional feedback. The desired novice policy has
learned to avoid obstacles and closely follow the black
line while driving as fast as possible.

The results, as summarized in Figure 11 and 12, show
that LIRA-SPF requires less interventions and labels
from the human teacher. During the training process
of LIRA-SPF, the CamExpert and the LidExpert supply
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Figure 10: While the robot follows the 120m long black line
towards the finish, it encounters 21 black obstacles. The robot
needs both the camera and the LIDAR to reach the finish
safely. The finish line is visible in the top right corner of the
figure.

Figure 11: During the training process, the human teacher has
to intervene and give feedback. The experiments are repeated
ten times for both LIRA-SPF and HG-Dagger. To get a policy
capable of reaching the finish line on its own, LIRA-SPF
requires fewer interventions than HG-DAgger.

useful corrections, reducing the input the human has
to give. An unforeseen ambiguous situation occurred
because the novice sometimes actively wanted to steer
away from the black line as it saw the black obstacles
as pieces of a black line. Often, the camera’s influence
would be larger when features in the environment are
further away, compared to the LIDAR influence. This
influence difference can be explained by the fact that
as soon as an obstacle enters the field of view, the
pixels immediately change from neutral to black, while
the LIDAR only experiences a small change from the
maximum range to a little less. The large variance and
outliers visible in Figures 11 and 12 are the result
of imperfect demonstrations: during the experiment the
human teacher made errors in the feedback, and moved

Figure 12: There is a large variance in the number of hu-
man labels required for a capable policy between repeated
experiments. The number of human-provided labels can be
twice as large between repeated experiments for LIRA-SPF
and HG-DAgger. Overall, LIRA-SPF requires less input from
the human teacher compared to HG-DAgger.

the robot in a less desirable direction. The correction
of the mistakes required extra demonstrations from the
human teacher, which resulted in the large variance
between experiments. This happened during both LIRA-
SPF and HG-DAgger.

V. REAL-WORLD VALIDATION

Similar to the simulated setup, ROS and Tensorflow are
used to implement the method. The ROSbot connects
with a laptop through wifi. The laptop receives sensor
data from the ROSbot and sends back velocity com-
mands. The images are transformed to grayscale, and the
resolution is reduced to a 32x32 pixel size. The LIDAR
measurements are reduced to a maximum of 1 meter
and clipped from a full 360°to a 130 °forward-looking
angle. With a resolution of one degree per measure-
ment, the resulting array contains 130 measurements. In
Figure 13 the ROSbot is displayed. The networks for
the CamExpert and the Lidexpert is very similar to the
simulation. The convolution layers in the CamExpert use
32 filters instead of 16. Input layer of the LidExpert
receives 130 measurements instead of 101. Linear and
angular velocity commands are sent to the ROSbot range
between -1.0 and 1.0. The onboard controller translates
them to wheel speeds—the maximum linear velocity set
to 0.20 m/s, and the maximum angular velocity to 210
deg/s.

A. Invisible Obstacle

To validate if the LIRA-SPF method applies to a real-
world environment, the ROSbot is placed in a tiled
environment displayed in Figure 14. The CamExpert is
trained to follow the steel edge border along the blue
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Figure 13: The ROSbot 2.0 is equipped with multiple sensors.
In this work, the Orbbec Astra RGB-D camera (A) and the
RP LIDAR A2 (B) are used.

Figure 14: The ROSbot placed in a tiled garden environment.
The blue path displays the desired path of the CamExpert. The
orange path is the desired path of the LidExpert. The White
box with the purple edge is hardly visible for the CamExpert.
However, it is easily detected by the LidExpert.

path (without the obstacle). The LidExpert is trained in
presence of the obstacle and learns to avoid the obstacle
by steering clockwise.
For the training of the sensor fused policy with LIRA-
SPF, the white box is placed again along the expected
trajectory. As seen in Figure 15, the white box blends
with the tiles in the camera image, which make it difficult
for the CamExpert to notice the danger.

The resulting trajectory follows the blue path in
Figure 14 between position A and B. Between positions

(a) ROSbot camera view with a white
box.

(b) Rosbot camera view without a white
box.

Figure 15: The purple arrow point to the white box placement.
The white box is difficult to recognize for the CamExpert.

A and B, the CamExpert teaches the novice to drive
on the blue path. From position B the LidExpert takes
control for five steps along the orange path. In position C,
the human is queried for feedback. The novice follows
the path up to position C after two repetitions of this
training cycle. It should be noted that the white box
blends with the tiles due to the specific lightning during
that time of the day and the greatly reduced resolution
of the camera image.

B. Obstacle Corridor

This test the ROSbot has to drive through a corridor
while avoiding obstacles. The position of the obstacles
is displayed in Figure 16. The floor is filled with white
areas that look similar to the real foam obstacles. Figure
17a shows an example setting of obstacles and the
accompanying camera in Figure 17b. The CamExpert
is trained to drive in the center of the corridor towards
the end. During the training, the real obstacles are not
present. The LidExpert is trained to avoid obstacles in
an open space. During the LIRA-SPF training loop, the
CamExpert will try to steer the ROSbot back to the
center of the corridor, while the LidExpert detects the
real obstacles.

Figure 16: The ROSbot has to move through an obstacle-
filled corridor. The A-type obstacles are fake and really white
spots on the ground; the B-type are real obstacles in the form
of white foam blocks. The camera cannot distinguish the two
types, while the LIDAR detects correctly only the B-type. The
ROSbot starts at the black cross on the left side and finishes
behind the black dashed line on the right side.

The results displayed in Table III are averaged over
three repetition of the experiment. After a single training
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(a) Third person view. (b) ROSbot camera view.

Figure 17: The two types of obstacles are seen from the
ROSbot perspective. The obstacles look indistinguishable in
the camera image.

run through the obstacle corridor, the trained novice
had varying results for both LIRA-SPF and HG-DAgger
The trained novices had an average of 1 collision for
both methods. The number of demonstration collected
with LIRA-SPF is almost double that with HG-DAgger.
However, only roughly a third is given by the human
teacher. This difference is also visible in the number of
human interventions, which is more than double for HG-
DAgger.

Training
method

Buffer size Human
labels

Human
interventions

1st lap 1st lap 1st lap
LIRA-SPF 161.7 52.7 6
HG-DAgger 93.7 9.7 13.3

Table III: The buffer size and human input were collected
after a single training run through the obstacle corridor. The
results are averaged over three repetitions.

VI. DISCUSSION

LIRA-SPF is evaluated in different scenarios. It can
detect ambiguities between single-sensor expert policies
and learn to resolve them by training a multi-sensor
novice. The expert policies are always predicting ac-
tions; the ExpertActivation function aims to detect when
their actions are relevant. Currently, the function sums
the standard deviation for each action dimension. The
current threshold to determine whether an expert is active
would have to scale with a change in the action dimen-
sion. The expert policies used during the experiments
are trained for specific purposes. It is, however, possible
to use already existing behaviors or programs to act as
an expert. This allows a modular approach for the same
robot, where a different composition can quickly be used
to learn a desired behavior. When more than one expert
is active, an error threshold is used to determine whether
a situation is ambiguous. Based on the properties of the

action, this threshold can easily be estimated. However,
if the thresholds are not well set, and the human does
rely too much on the method, it can result in dangerous
situations.

We see two significant improvements for our ap-
proach. The first improvement focuses on the application
of the expert policies. The current expert policies are as-
sumed to be sufficiently trained for the task environment.
During the experiments, the expert were strategically
trained to perform well in the task environment. This
approach is, however, not always feasible in a practical
implementation of LIRA-SPF. If the expert policies
can provide a confidence metric about their prediction,
LIRA-SPF can choose to ignore uncertain predictions or
even signal the human teacher that the robot has entered
a novel state for the experts.

The second improvement involves the novice policy.
Each time the robot encounters a previously seen am-
biguous situation, the human teacher is notified, and the
speed is reduced. To prevent the human from giving the
same feedback again, the human teacher can choose to
trust the novice. In future work, we like to automate this
to reduce the human teacher’s input further. There are
two main solution directions we want to explore. The
simplest adjustment would be to increase the required
expert activation during the training. This way, the expert
policies are quickly activated at the start of the training
but lose importance later as the novice likely learned
a capable behavior. However, a more general approach
would be to compute the novice’s confidence during
the training. When the robot encounters an ambiguous
situation, LIRA-SPF can choose to trust the novice
based on its confidence. Because the current LIRA-
SPF implementation requires only a reasonable small
amount of demonstration labels, gaussian processes are
a possible candidate. Another option is the approach
of [32] that computes the confidence based on neural
network ensembles.

During the experiments, the human used a Ps3 con-
troller to teleoperate the robot. Taking control when the
human expert is queried for feedback can be difficult.
Giving feedback to go straight forward is easy, yet a
steering action becomes somewhat more challenging.
The human expert will likely under- or oversteer with
this controller. Another aspect is the communication with
the human. Currently, a computer display is used to
signal the human. This can be improved by using haptic
or sound signals. These signals will reduce the strain on
the human even further.

We encountered that the imperfect demonstrations
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have a significant influence on the speed of the learning
process. Flawed demonstrations are a known problem in
LfD [33], and remain an open question in our work. Be-
cause the experiments used the same human teacher, this
teacher can be regarded as skilled. Further investigation
should also involve unskilled teachers to compare the
influence of LIRA-SPF better.

Conclusion

This study shows that a combination of single sensor-
based experts can help teach a multi-modal learner
a more complex task by detecting ambiguous novel
situations and providing demonstrations. We showed that
it is possible to reduce the human strain while teaching
a mobile robot navigation behavior. The approach was
evaluated in simulation and validated in real-world ex-
periments.
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Appendix A

Robot Setup

This Appendix provides a brief description of the implementation during the thesis. The robotic
operating system (ROS) framework is used to implement the different modules. ROS supports a
modular approach, making it possible to easily switch between a simulated and a physical robot
setup. The experiments are executed on a notebook with an Intel i5-7200U CPU (2.50GHz),
16 GB ram, and integrated HD Graphics 620. Figure A.1 provides an overview of the main
modules in the architecture. The simulated experiments are fully executed on the notebook,
while during the real-world experiments, the notebook communicates with the ROSbot over a
WiFi protocol. The information gathered by the robot sensors is placed on ROS topics. The
training loop runs with 5Hz. The speed is limited by the transportation of the images from
the ROSbot to the notebook. The current speed of the training loop is sufficient for the low
velocities during the experiments. The human teacher controls the linear and angular velocity
through a joystick gamepad.

Figure A.1: The same architecture is used for the simulated and real-world experiments. The sensor data
is posted on ROS topics and used by the main training loop to update the agents. The action from the
agents or human teacher is then used to control the robots.
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Appendix B

End-to-End Networks

LIRA-SPF uses an end-to-end architecture for the application to mobile robot navigation. End-
to-end architectures map raw sensor data to useful commands for a robot [1]. Figure B.1 displays
the approach used during the experiments described in the paper. This section describes the
neural networks that facilitates end-to-end learning based on different sensors. The networks are
implemented with the Tensorflow 2.0 API, which provides an easy to use interface. This appendix
is divided into three sections. Section B.1 describes the network used by the CamExpert, and
Section B.2 explains the network used by the LidExpert. The novices’ network uses both the
camera and LIDAR information. Section B.3 describes a multimodal network that fuses the
sensor information. All networks are trained with an experience replay buffer similar to the
buffer used in [2]. The replay buffer allows efficient use of the collected demonstrations. The
Adam optimizer updates the neural networks, in mini-batches of 32 samples, with a mean squared
error loss function to calculate the losses, and a learning rate set to 1e-3. The dimensions of the
networks are the result of fine-tuning during preliminary tests. The networks are sufficient for
the current application. It is, however, likely that the networks can be further optimized.

Figure B.1: The end-to-end architecture directly maps the output from the sensors to action commands
for the robot. The image data is reduced in resolution and channels to keep the networks small and easily
trainable.
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Figure B.2: Overview of
the dedicated image net-
work.

Layer Properties Activation
Input Size 32x32x1

CCN 1 16 or 32 Filters,
3x3 kernel Leaky ReLU

CNN 2 16 or 32 Filters,
3x3 kernel Leaky ReLU

MaxPool 2x2 kernel

FC Output 2x1 Hyperbolic
Tangent

Table B.1: The most important properties of the image network are
listed for each layer.

B.1 Camera Network

The camera-based network expects a single channel 32x32 pixel image. The network properties
are summarized in Table B.1 and visualized in Figure B.2. Similar to the work of [3], convolu-
tion layers are expected to extract the relevant features from the image input. The network was
first tuned for the simulated environment and then adjusted for the real-world tests. The simu-
lated tests use convolution layers with 16 filters, while for the real-world tests, the convolution
layers were extended to 32 filters. As real-world environments have a higher complexity than
the simulated environment, the higher filter level was expected to capture a higher abstraction
level. A preliminary test showed that the adjusted setting allowed the network to learn simple
‘corridor following’ behaviors faster. A fully connected layer maps the convolution output to a
two-dimensional action after a pooling operation to reduce the output dimension. The hyper-
bolic tangent activation function is used for the output layer to ensure the output values stay
between -1 and 1.

Figure B.3: Overview of
the dedicated laser scan
network.

Layer Properties Activation
Input 101x1 or 130x1
FC 1 Ouput 64x1 Leaky ReLU
FC 2 Ouput 64x1 Leaky ReLU

FC 3 Output 2x1 Hyperbolic
Tangent

Table B.2: The most important properties of the laser scan network
are listed for each layer. The input size varies between 101 during the
simulated experiments and 130 during the real-world experiments.
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B.2 LIDAR Network

The output of the laser scanner is an array with range measurements. The array’s size differs
between the simulated and real-world robot, with 101 values for the simulation and 130 for the
ROSbot. The network consists of three fully connected layers in sequence. The hidden layers
have a size of 64 neurons. The hyperbolic tangent activation function is used for the output
layer to ensure the output values stay between -1 and 1.

Figure B.4: The first layers of the fusion network are similar to the single-sensor networks. The sensor
information is combined in 3 fully connected fusion layers to predict a linear and angular velocity.

Function Layer Properties Activation

Feature Extraction LIDAR
Input 101x1 or 130x1
FC 1 Ouput 64x1 Leaky ReLU
FC 2 Ouput 64x1 Leaky ReLU

Feature Extraction Camera

Input 32x32x1
CNN 1 16 or 32 Filters, 3x3 Kernel Leaky ReLU
CNN 2 16 or 32 Filters, 3x3 Kernel Leaky ReLU
MaxPool 2x2 Kernel

Sensor Fusion
FC 3 Output 128 x1 Leaky ReLU
FC 4 Output 128x1 Leaky ReLU
FC 5 Output 2x1 Hyperbolic Tangent

Table B.3: The properties of the fusion network are displayed for each layer. The network is divided into
two separate functions: feature extraction for the camera and LIDAR, and sensor fusion in final layers.

B.3 Fusion Network

The fusion network combines two separate single-sensor branches into a fusion network as visu-
alized in Figure B.4. The layer-specific properties are described in Table B.3. The output of the
sensor-specific layers is flattened and concatenated in a single tensor. The final fully connected
layers map the sensor information to a two-dimensional action. The most straightforward way to
train the fusion network is from scratch with the collected demonstration labels. An advantage
of LIRA-SPF, however, is that the expert networks are already available. Those networks are
already trained to process camera and LIDAR data. The first layers of those networks can be
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used to reduce the size of the fusion network. In [4] a similar architecture is used. The first layers
of the expert networks are designed to extract features from raw sensor data. The output of
the feature extraction layers is then used as input for a novice network. During LIRA-SPF only
the final fusion layers have to be updated. The simulated test showed that the reduced fusion
network performed similarly to a complete new fusion network. However, a full comparison of
the methods is beyond the scope of this research.
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Appendix C

LIRA-SPF Parameter Tuning

Several thresholds need to be set in the LIRA-SPF framework. This section describes a pre-
liminary investigation to estimate the influence of those thresholds. The investigation evaluates
settings for the ExpertActivation function and the additional ‘redundant demonstrations’ module
(Chapter 2). The same experiment is repeated with different settings to evaluate the behavior of
the algorithm. The settings are then compared based on the number of demonstration collected
and how well the novice learned the desired task. The robot is placed in an environment with a
black line. The aim is that the novice learns to follow the line with maximum speed. The camera
does see the black line, while the LIDAR does not. The track is visualized in Figure C.1a, and
the perception of the camera in Figure C.1b. The LidExpert is trained to drive straight unless
it sees an obstacle. The CamExpert learned to steer towards and follow the line with maximum
speed.

Since the CamExpert is the only one that will be activated, LidExpert is ignored. During
the experiment, the human can step in if the robot does not show the desired behavior. First,
the settings for the ExpertActivation function are changed with the redundant demonstration
module off. Second, the experiment is repeated with relevant settings for the activation func-
tion and the redundant demonstration module. During all settings, the policy is automatically
updated after 30 new demonstration labels.

(a) Top-view of the track. (b) Camera view of the robot.

Figure C.1: The simulated ‘follow the line’ environment consist of a single black line. The track has a
eight figure shape with bends in different directions.
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# Activation
threshold

Buffer size Policy updates
1st lap 2nd lap 1st lap 2nd lap

1 1% 570 998 18 33
2 3% 77 124 2 4
3 6% 30 30 1 1
4 10% 30 30 1 1

Table C.1: The activation function computes the standard deviation over the last five actions of the
LidExpert and CamExpert. A fixed threshold is used to determine when the experts are active. The
threshold is set between 1% - 10% of the action range. The amount of demonstration labels and novice
policy updates are counted after the 1st and 2nd lap.

Results of first setting are displayed in Table C.1. As seen in Table C.1 the number of demon-
stration labels stored reduces with a higher activation threshold. With the activation threshold
set to 1% and 3%, the novice learns the desired policy. With the activation threshold set to 6%,
the novice learns to follow the black line. However, it does follow slightly off-center at times.
The difference is that the lower thresholds allow smaller adjustments from the CamExpert while
following the black line. When the activation threshold is set to 10%, the novice roughly learns
to follow the black line but often drives besides the line. The speed is also half the maximum
speed. To get the correct behavior, the human has to add 50 extra labels with five interventions.
The CamExpert is quickly activated with an activation threshold of 1%. This results in many
similar demonstration labels.

# Activation
threshold L Buffer size Policy updates

1st 2nd 1st 2nd

1 1% 5% 83 99 3 3
2 1% 3% 167 228 5 7
3 3% 5% 52 61 1 2
4 3% 3% 54 73 1 2

Table C.2: The activation threshold is changed from 1% to 3% of the output dimension. The redundant
demonstration module compares each expert action to the current novice policy’s action, with the absolute
difference. The error threshold L is set to 3% and 5%. The amount of demonstration labels and novice
policy updates are counted after the 1st and 2nd lap.

Results with the additional redundant demonstration module are displayed in Table C.2. The
activation threshold is set to 1% and 3%, as the higher thresholds already stop accumulating
demonstrations. The redundant demonstration threshold L is set to 3% and 5%. The use of this
additional comparison is most beneficial for the lowest activation threshold (1%), but also, with
the activation threshold set to 3%, the module reduces the number of demonstration labels.
Already after two laps, the difference becomes significant. The performance of the learned
novice policy is not distinguishable from the policies learned without the module. During the
experiments, the human did not have to take control. This is due to the placement and task the
novice had to learn. After the first 30 labels, the novice policy is updated. With this experiment,
the first 30 labels are sufficient to get a basic line following behavior. During the experiment,
the novice policy will not deviate very far from the black line.
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Appendix D

Intention Reading in Human Feedback

This Appendix describes an additional investigation made during the research. This addition
aims to further reduce the required input from the human teacher. Section D.1 describes the
approach, and Section D.2 applies the approach to a simulated test.

D.1 Approach

In LIRA-SPF, the human is called for feedback. The assumption is that the human will often give
feedback similar to one of the expert policies. Therefore, the expert policies can provide feedback,
which reduces the number of demonstration labels the human has to give. The additional
comparison is added in Algorithm 1. When the human is in control, the human’s actions, expert
policy actions, and novices actions are stored in a short-term buffer R (line 5). If the human
gives back control, the FeedbackSimilarity function is called. The FeedbackSimilarity assigns
priority based on the lowest mean squared error between the human and the expert or novice
predictions. The result determines whether a single expert or novice gains priority for u steps.
The human can still take back control if the priority results in undesirable behavior.

Algorithm 1 LIRA-SPF with Shared Feedback

Require: Π1,Π2

1: Init: DN = [], Sj = [], R = []
2: for t = 1, 2, ... do
3: ...
4: if human gives feedback then
5: Rn ← a1, a2, aN

6: ...
7: else if at t-1 human was in control then
8: Get FeedbackSimilarity(Rh)
9: if feedback is similar to a single expert then

10: follow similar expert policy for u steps
11: end if
12: else
13: ...
14: end if
15: ...
16: end for
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Figure D.1: The test is executed on the
figure-eight track. The track is pop-
ulated with black obstacles, which the
robot has to avoid.

Figure D.2: The robot notices the obstacle in position A.
The LidExpert’s preferred trajectory runs from position
A-F. When the robot encounters the obstacle, the human
teacher is called to resolve the ambiguity. This results in
positions B, C, D. In position D, the human gives back
control. The preferred position is now E. However, based
on the low error with the human feedback, the LidExpert
receives priority and moves the robot to position F.

D.2 Validation

This test aimed to validate whether it is possible to share the feedback burden between a human
and an expert policy. The setting is similar to the ‘Learning Line-Following with Collision
Avoidance’ experiment, as visualized in Figure D.1. The same trained LidExpert and CamExpert
are used as in the Learning ‘Line-Following with Collision Avoidance’ experiment. The LidExpert
avoids obstacles, and the CamExpert steers towards the black line. A fixed and flexible setting
are compared. In the fixed setting, the expert takes control from the human after two steps.
The flexible setting waits for the human to resign control.

Setting Buffer
size

Policy
updates

Human
labels

Human
interventions

Fixed 296 9 50 25
Flexible 236 8 92 16

Table D.1: The shared feedback module is tested with a fixed and flexible setting. During the fixed setting,
the experts take over after two feedback actions from the human, while in the flexible version, the human
decides when to resign control. The numbers are averaged over ten repeated experiments.

The results are summarized in Table D.1. In the fixed setting, the expert takes over control after
two steps. However, often the feedback was not similar enough to one of the experts. Therefore
the number of human interventions is much higher for the fixed setting, as the teacher had to
retake control. The amount of labels provided by the human is less for the fixed setting because
it is hard to determine when an expert policy can take over. In the case of the flexible setting,
this results in an extended length of the demonstration. The main problem is visualized in Figure
D.2. The task during the experiment requires a quick switch between the LidExpert and the
CamExpert. Because the expert receives priority based on the history of the human feedback,
this switch is missed. The human teacher can take over if the wrong expert receives priority.
However, this results in confusing situations and imperfect demonstrations. Additionally, the
priority to the wrong expert will also result in imperfect demonstration labels for the novice.
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Appendix E

Additional Information Obstacle Race
Experiment

This appendix provides additional information about the ‘obstacle race: LIRA-SPF vs. HG-
DAgger’ experiment, described in the paper. After a summary of the experiment, Section E.1
gives further details about the training of the expert policies used by LIRA-SPF. Section E.2
aims to explain the ambiguous situation as it occurs during the experiment. The buffers collected
with both HG-Dagger and LIRA-SPF are compared in Section E.3. Section E.4 contains the
trajectories of the final policies during the experiment.

During the simulated ‘obstacle race’ experiment, the novice is trained to follow a black line
while avoiding obstacles. The results presented in the paper show that LIRA-SPF requires fewer
interventions and demonstrations from a human teacher compared to HG-DAgger. The novice
is trained until it can reach the finish line without additional feedback.

E.1 Expert Policies

The expert policies used in this experiment are referred to as the CamExpert for the camera-
based policy and LidExpert for the LIDAR based policy. Both experts are trained in their own
environment. The LidExpert and CamExpert learn to predict a linear and angular velocity.

(a) Sparse obstacle area. (b) Dense obstacle area.

Figure E.1: The training starts in a sparse area of the environment. The robot receives the initial
demonstration as driving straight and steer away from the obstacle. After the initial demonstration,
the robot wanders into more densely populated areas. Occasionally it receives feedback from the human
teacher. The human teacher is instructed to steer the robot away from collision paths and obstacles closest
to the robot. It can, however, be challenging to judge the right direction in the dense obstacle area. Based
on the instruction, the move from position C-D is wrong.
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The LidExpert is trained to avoid obstacles in the ‘forest’ environment, which contains ran-
domly placed obstacles. Figure E.1 provides a summary of the scenarios the robot encountered
during the training of the LidExpert. The LidExpert learns to predict both the linear as angu-
lar velocity. The training starts by driving straight until the robot encounters an obstacle, see
Figure E.1a. After 30 new labels, the policy is updated. During the training, a human teacher
is instructed to drive straight until an obstacle enters the LIDAR range. Based on the position
of the obstacle, the teacher steers the robot away from the obstacle. The training starts in a
position with a single block to give an initial demonstration Figure E.1a. After an initial policy
update, the robot will wander into areas of the environment that are denser populated with
obstacles. Along the trajectory seen in Figure E.1b, the robot receives feedback from the human
to help it navigate the area safely.

(a) Initial demonstrations. (b) Manual scenarios.

Figure E.2: The robot starts the training on the black, initially it has no clue and will therefore receive
feedback to stay on the black line. During the bends in different directions, the robot requires more
feedback. During the ‘obstacle race’ experiment, the robot also ventures besides the black line. Therefore
the robot is placed in positions beside the black line to teach the CamExpert a recovery behavior.

The CamExpert is trained to follow the black line. The robot starts on the black line, and
receives feedback when it steers away from the line, see Figure E.2a. When the robot capable
of following the curved line from start to end, the robot is also placed in position beside the
line. This teaches the robot to steer back to the line when it sees the line from the corner of the
camera view, see Figure E.2b.

E.2 Ambiguous Encounters

During the sensors policy fusion with LIRA-SPF, the robot encounters ambiguous situations.
In this section, a brief overview is given of the situations encountered in the obstacle race
experiment. In Figure E.3 several steps are visualized of an ambiguous situation. Initially,
the obstacle is not visible, Figure E.3a. When the obstacle comes into the LIDAR range, the
LidExpert wants to avoid the obstacle, see Figure E.3b. From the camera perspective, nothing
changed; hence its action stays the same. The LidExpert receives priority and steers the robot
away from the line to avoid the obstacle. However, the CamExepert notices the black line is
now moving away from its center and starts steering to the right Figure E.3c. Both experts
are activated, and thus the LIRA-SPF calls for the human teacher’s attention to resolve the
situation. An additional ambiguous situation occurred because the CamExpert was not trained
in an environment with obstacles besides the line. In FigureE.3d the robot encounters an
obstacle close to the line. In this situation, the CamExpert wants to steer somewhere in the
middle between the obstacle and the line.
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(a) Stationary line following. (b) LidExpert activation.

(c) CamExpert activation. (d) Wrong CamExpert activation.

Figure E.3: The Ambiguous situation occurs when the LidExpert steers the robot away from the black
line to avoid the obstacle, and the CamExpert is activated as it wants to steer back to the black line. An
unforeseen ambiguity occurs when the CamExpert is wrongly activated as it wants to steer towards an
obstacle, and the LidExpert steers to avoid the obstacle.

E.3 Buffer Intensity

This section gives an insight into demonstration labels collected during the ‘obstacle race’ ex-
periment. During LIRA-SPF, both the human teachers and the experts can add demonstration
labels to the novice’s buffer. Figure E.4 displays two density plots that visualize the linear
and angular velocity action labels collected with LIRA-SPF. Most action labels contain the
maximum linear velocity. The human and experts account almost equally for the number of
demonstrations. The second plot shows, however, a large difference between the human teacher
and the experts. The human teacher either drives straight or applies maximum steering velocity,
while the experts give much more mid-range angular velocities.

Figure E.5 displays the difference between the actions in the buffer collected by HG-Dagger
and LIRA-SPF. The action labels are very similar for both methods. Only some small differences
are noticeable. The buffer collected by HG-DAgger also contains demonstrations of driving
backward. This indicates that during HG-DAgger, the human teacher rescued the robot from
positions too close to the obstacles. The angular velocity is almost similar. However, throughout
ten repetitions, HG-DAgger required more demonstrations from the human, hence the height
difference.
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Figure E.4: There is a clear difference between the frequency of the mid-range angular velocities provided
by the experts and the human teacher.

Figure E.5: The collected action labels are very similar between LIRA-SPF and HG-DAgger.

E.4 Trajectory Plots

The final trajectories from the novice policies are visualized in Figure E.6. The full 120-meter
long trajectory is divided into three equal parts for an accurate visualization.
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Figure E.6: The final trajectories from both the LIRA-SPF and the HG-DAgger approach are visualized.

31



Appendix F

Additional Information Obstacle
Corridor Experiment

This appendix provides additional information about the real world ‘obstacle corridor’ exper-
iment. After a summary of the experiment, Section F.1 explains the used experts’ training.
Section F.2 gives a short description of the ambiguity during the experiment. The ‘obstacle
corridor’ experiment aims to train a novice to drive along a corridor. However, the corridor
is populated with real and fake obstacles. The real obstacles are foam blocks, and the fake
obstacles are just white spots on the floor, which look similar to foam blocks from the camera’s
point of view. Based on both the camera and the LIDAR, the novice is trained to avoid the
obstacles and drive towards the end of the hallway.

F.1 Expert Training

For this experiment, both the LidExpert and the CamExpert were trained to predict a robot’s
linear and angular velocity command. This section describes how the expert are trained.

The LidExpert was already available from the ‘invisible obstacle’ experiment and could be
used again for this experiment. Figure F.1 shows a collection of steps in the training process. A
human teacher placed the robot in various situations before an obstacle and provided feedback
for the robot to safely avoid the obstacles. Obstacles of different sizes were used to generalize
the LidExpert for multiple situations.

The CamExpert is trained in the same corridor as the final experiment. Only fake obstacles
are placed on the floor during the training. Figure F.2a shows the training environment of the
Camexpert. During the ‘obstacle corridor’ experiment the actual obstacles are added, see Figure
F.2b. The robot is reset to the same initial position until the CamExpert can drive to the end
of the hallway while staying in the center.

32



(a) Large obstacle (1). (b) Large obstacle (2). (c) Large obstacle (3).

(d) Narrow obstacle (1). (e) Narrow obstacle (2). (f) Narrow obstacle (3).

Figure F.1: The LidExpert is manually placed in different positions before different obstacles.

(a) CamExpert training environment. (b) Obstacle corridor environment.

Figure F.2: The CamExpert is trained to drive down the same corridor as the ‘obstacle corridor’ experi-
ment. The training environment is vacant of ‘real’ obstacles and only contains ‘fake’ obstacles.
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F.2 Ambiguous Situation

This section describes the ambiguous situation as encountered by the robot during the ‘obstacle
corridor’ experiment. Figure F.3 visualizes two positions of the robot in the environment and the
accompanying actions predicted by the experts. When the robot encounters the first obstacle,
the LidExpert is activated and steers the robot away from the obstacle. The CamExpert is now
also activated as the robots moves away from the center of the corridor. LIRA-SPF now calls the
human teacher to resolve the situation with additional demonstrations. Between obstacles, the
CamExpert also assists with demonstrations to steer the robot to the corridor’s center. These
demonstrations reduce the number given by the human compared to HG-Dagger.

Figure F.3: The robot encounters the first obstacle. The actions predicted by booth the LidExpert and
CamExpert are visualized.
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