
 
 

Delft University of Technology

Dynamic Predictive Matching Framework for Crowd-Sourced Delivery Service

Hou, Shixuan; Gao, Jie; Tang, Yili; Ghaddar, Bissan

DOI
10.1109/ITSC58415.2024.10919739
Publication date
2025
Document Version
Final published version
Published in
Proceedings of the IEEE 27th International Conference on Intelligent Transportation Systems (ITSC 2024)

Citation (APA)
Hou, S., Gao, J., Tang, Y., & Ghaddar, B. (2025). Dynamic Predictive Matching Framework for Crowd-
Sourced Delivery Service. In Proceedings of the IEEE 27th International Conference on Intelligent
Transportation Systems (ITSC 2024) (pp. 1174-1181). (IEEE Conference on Intelligent Transportation
Systems, Proceedings, ITSC). IEEE. https://doi.org/10.1109/ITSC58415.2024.10919739
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ITSC58415.2024.10919739
https://doi.org/10.1109/ITSC58415.2024.10919739


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



1

Dynamic Predictive Matching Framework for
Crowd-Sourced Delivery Service

Shixuan Hou, Jie Gao, Yili Tang, Bissan Ghaddar

Abstract—This paper studies a same-day crowd-sourced de-
livery setting where in-store customers deliver online orders on
their way home. This environment is dynamic and uncertain,
characterized by fluctuating numbers of in-store customers and
online orders throughout the day, and unpredictable customer
decisions to accept or reject delivery tasks. To address these
challenges, we develop a two-stage event-driven dynamic match-
ing framework. The first stage leverages short-term predictions
about future arrivals of in-store customers and online orders,
allowing us to postpone matching decisions for certain drivers
and orders, thus optimizing immediate outcomes to maximize
order satisfaction over a future time interval. In response to
these initial outcomes, the second stage computes the probability
of in-store customers accepting matched orders and introduces
two compensation models. These models are designed to tailor
compensation for each customer, aiming to minimize expected
delivery costs at the current decision-making point. Experimen-
tal results demonstrate that our framework reduces delivery
costs by approximately 15% compared to baseline methods,
highlighting its potential to improve the efficiency of crowd-
sourced delivery systems in a constantly changing market.

Index Terms—Crowd-sourced delivery, dynamic, uncertainty,
human factor, prediction, matching

I. INTRODUCTION

Riding on the wave of urbanization and advancements
in communication technology, B2C e-commerce sales have
reached an astonishing figure of $907.9 billion in 2022
worldwide 1. In such a fiercely competitive environment,
these major retailers are on the constant lookout for effi-
cient, high-quality, and low-cost delivery solutions. Crowd-
sourced delivery service (CDS) is an emerging urban logistics
solution. Its core philosophy originates from the sharing
economy model and is defined as ordinary individuals, such
as commuters, taxi drivers, and travelers, sharing available
space in their vehicles for parcels and deviating slightly
from their original routes in exchange for various forms of
compensation. Due to this mode of transportation maximizes
the utilization of existing transportation resources, significant
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bghaddar@ivey.ca).

1https://www.oberlo.com/statistics/global-ecommerce-sales-growth

economic, social, and environmental benefits are realized [9].
Currently, it is garnering increasing attention by many large-
scale retailers such as Walmart with its “Spark” program 2, e-
commerce giants like Amazon Flex 3, Jingdong crowdsourc-
ing 4, they have successfully implemented crowd-sourced
delivery. Additionally, several startups, such as PiggyBee5,
Postmate6, and others, have also managed to achieve prof-
itability.

Diverging from traditional freight transport, CDS systems
are characterized by a greater degree of inherent uncertainty,
such as the uncertainties of delivery request volumes, driver
availability, and drivers’ order acceptance behaviors. How
to achieve effective and efficient matching while accounting
for these uncertainties has attracted widely focus of interest.
Specifically, in academia, the uncertainty on the demand side
of CDS is typically relaxed through assuming demand dis-
tributions or addressed by employing data-driven predictive
analysis [17]. Regarding the unknown availability of drivers,
as highlighted by [10], a significant portion of current liter-
ature tends to solve matching problems by requiring crowd-
sourced drivers to declare their available period in advance
[11]–[13]. Another uncertainty arises from the freedom of
crowd-sourced drivers, they may not accept system assigned
orders. While some studies attempt to restrict the freedom by
setting service areas [14] [5] or limiting detour distances [15]
[16], the assumption of drivers automatically accepting orders
is unrealistic in real-world scenarios. To address the issues [4]
[2] quantify the order acceptance behavior of crowd-sourced
drivers and, through compensation mechanisms, incentivize
drivers to accept system-assigned orders. In summary, al-
though various studies have addressed the matching problems
in uncertain and stochastic environments at different levels,
research that simultaneously considers uncertainties on both
the supply and demand sides remains a gap.

Meanwhile, some studies employ such as event-driven
[5], [6], [8] and time-driven [7] rolling horizon approaches
to achieve effective matching through cyclically executing

2https://drive4spark.walmart.com/
3https://flex.amazon.ca/
4https://ir.jd.com
5https://www.piggybee.com/
6https://postmates.com/
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Dynamic Stochastic
Studies Event-driven Time-driven Demand uncertainty Supply uncertainty

[17] ✓
[5], [11]–[16] ✓

[2], [4] ✓ ✓
[5], [6], [8] ✓

[7] ✓
[5] ✓ ✓

This paper ✓ ✓ ✓

TABLE I: The differences between this paper and the most
relevant literature

the proposed algorithms in dynamic environments. Specially,
Dayarian et al. [5] take into account the dynamic variations
in transport capacity, as well as the potential for improved
dynamic matching outcomes through the postponement of
delivery orders. However, as the main actors in CDS, crowd-
sourced drivers’ dynamic behaviors, such as logging into the
system, logging out, accepting, or rejecting orders, signifi-
cantly affect the system’s matching efficiency. Researches,
focusing on dynamic decision-making grounded in individ-
ual behaviors, is relatively rare. Our work focuses on the
development of an event-driven dynamic system considering
the uncertainties of both supply and demand sides. Table.
I summarize the differences between this paper and most
relevant state-of-the-art works.

In this paper, we consider a classic CDS system that uti-
lizes in-store customers to deliver orders, the main contribu-
tions include the following three aspects: first, we propose an
event-driven dynamic matching framework that considers the
uncertainties in both sides of demand and supply. Based on
the prediction of supply-demand relation over a certain future
time interval, by postponing the matching processes of certain
orders and in-store customers, this framework computes op-
timal matching outcomes throughout a day. Additionally, two
compensation models are introduced to generate customized
compensation schemes. Based on the probability information
of each in-store customer’s order acceptance behavior, the
customized compensation motivates each in-store customer
to accept the system-assigned matching outcome, thereby
enhancing the reliability of the matching results; second, we
propose a discrete event system simulation (DES) model to
validate the feasibility of the proposed framework; third, a
comparative study is presented to evaluate the performance
of the proposed framework against benchmark methods under
two compensation policies.

The rest of this paper is organized as follows. Section
II describes the CDS problem and formulates the dynamics
of order matching by using a discrete-event system model.
Section III presents the designed matching and compensation
optimization models. The performance of the proposed ap-
proach is evaluated through a computational study in Section
IV. Finally, Section V concludes the paper and states future
research directions.

II. PROBLEM DESCRIPTION

In this section, initially, we present a comprehensive
overview of a CDS platform. Subsequently, a DES simulation
model is developed to capture the system dynamics and
assess the performance of the proposed framework (present in
Sec. III). Moreover, some major events that have significant
impacts on the system are introduced in details.

A. Overview

The CDS platform is a typical two-sided market, consisting
of three components: the platform operators (retailers), the
in-store customers, and the online orders. Their interrelation-
ships among each other is presented in Fig. 1

Fig. 1: Overview of the crowd-sourced delivery system

1) Retailer: A retailer provides both in-store and online
shopping and delivery services for the residents of surround-
ing communities. The retailer undertakes the responsibility of
managing registered in-store customers, assigning them ap-
propriate orders, and offering monetary compensation in ex-
change for their delivery capabilities. To ensure the delivery
service quality, the retailer equips itself with a professional
fleet (PF), guaranteeing the punctual delivery of orders not
handled by in-store customers. The objective for the retailer
is to minimize delivery costs and reduce the employment
of professional drivers. Moreover, the retailer documents the
number of online orders and in-store customers from diverse
communities within various intervals throughout a day.

2) In-store customers: In-store customers refer to shop-
pers willing to share spare space within their vehicles to
participate in order deliveries. These individuals enlist, via
mobile applications, as potential crowd-sourced drivers, vol-
untarily disclosing details such as their home addresses and
anticipated arrival time to the store. Furthermore, each in-
store customer is expected to specify their maximum permis-
sible shopping duration (or waiting time) to the retailer. This
provides the retailer with a window of opportunity to allocate
orders to them. Specifically, upon receipt of orders assigned
to them by the retailer, in-store customers will decide either

1175
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accept or reject these assignments. Upon acceptance, they
pick up the parcels and undertake its delivery prior to reach-
ing their designated destinations. Conversely, they proceed
directly to their residences.

3) Online orders: Online orders refer to those generated
by online customers within neighboring communities en-
gaging in digital shopping. Their addresses are transmitted
to the retailer via mobile applications. Furthermore, each
online order is stipulated with a definitive latest delivery
time, mandating that the retailer’s delivery for that order must
not exceed this temporal constraint. For simplification, we
assume that the latest delivery time for an order is a fixed
interval post the order placement.

B. Dynamic system modeling

We construct a discrete-event system model, considering
each in-store customer within the CDS platform as an indi-
vidual entity. Key events influencing the state transitions of
in-store customers includes: ea, er, ed, en, el, and eg . Let
Y be the state space which consists of the set of possible
values of the vector y(k) = [y1(k) ... yi(k) ... y|I|(k)]

T ,
where yi(k) represents the state of the in-store customer i
after the occurrence of the kth event. The value of the state
variable yi(k) indicates if the in-store customer i:

• is unavailable: yi(k) = y0;
• is available to be matched at the retailer: yi(k) = y1;
• is evaluating a delivery request: yi(k) = y2;
• is delivering a parcel: yi(k) = y3;
The state transitions diagram of a in-store customer i is

shown in Fig.2.

Fig. 2: Events transition diagram

1) In-store customer arrival event and departure event:
An arrival event of an in-store customer eai means a transition
in its state, subsequently notifying the system of the shift
from an “unavailable” y0 to an “available” y1 state for that in-
store customer. Additionally, this event, occurring at time τ ,
triggers the solution of the proposed strategy depicted in Sec.
III. And, the arrival rate of in-store customers is time-variant.
For convenience and without loss of generality, we assume
that over a fixed time interval T , the distribution of arrival

events for in-store customers of which destination z ∈ Z
follows a Poisson distribution with parameter λI

z (similar to
the order distribution λJ

z ). Hence, for each locations z ∈ Z,
the cumulative anticipated quantities of drivers and orders
over an imminent period [τ, τ + T ] are represented as Eq.
(1).

|Ĵz(τ)| = (τh+1− τ)λJ
z (τh)+(τ +T − τh+1)λ

J
z (τh+1) (1)

where |Ĵz(τ)| denotes the estimated number of online orders
of which destinations are z in a near future [τ, τ + T ]. τh
denotes the sequences of the time when the demand/supply
is updated (every time interval T ). λJ

z (τh) denotes the near
future demand rate of zone z in the interval [τh, τh+1].
Additionally, a graphic representation illustrating a time-
weighted amount of future demand is presented in Fig. 3.
With respect to the computation of estimated number |Îz(τ)|
of in-store customers destined for location z in a near future
[τ, τ + T ], it is analogous to the one described in Fig. 3 as
well.

Fig. 3: Time dependence of the order arrival rate

Additionally, the departure event of an in-store customer
eli is assumed to occur at πi = τ + δi, being δi ∼ N (µ, σ2),
a Gaussian stochastic variable with expectation µ equal to
the average waiting time of in-store customers.

2) In-store customer order receive, acceptance, and rejec-
tion events: The occurrence of the “order receive” event er

results in a delivery request being presented to the in-store
customer. The in-store customer is then asked to determine
whether they are willing to accept or reject the assigned
order, given a calculated compensation. Moreover, each in-
store customer operates as an autonomous entity, is free to
determine whether to accept an assigned order j ∈ J . The
occurrence of receipt event eri transits the state from y1 to
y2. And let Pi,j be the acceptance probability of in-store
customer, meanwhile the rejection probability is defined as
1− Pi,j , scheduling the occurrence of event eni .

III. DYNAMIC PREDICTIVE MATCHING FRAMEWORK

In this section, we propose a dynamic predictive matching
framework (DP-MF). In the first stage, we determine the
postponed orders and drivers, and the present matching
solution to achieve maximizing order satisfaction during a
look-ahead time interval. In the second phase, given the
present matching solution, with the objective of minimizing

1176
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system expected delivery costs, we compute the customized
compensation scheme for in-store customers. The matching
and compensation optimization procedures are triggered by
the event er, occurring at τ , defined in Sec. II-B. Table. II
lists the notations used in this paper.

A. Matching and postponement model (MP-OPT)

Given sets I and J of available in-store customers and
orders, respectively, of which the in-store customers’ states
are y1, the optimization objective at this phase is to maximize
the satisfaction of both current orders and estimated future
orders that are delivered by in-store customers. Let xi,j serve
as the decision variable, representing the matching between
in-store customer i and order j. Let ιi,z be the decision
variable whether in-store customer i’s matching decision
is delayed and reserved for the next decision epoch, let
ϱj denote the postponement of the order j. The objective
function can be represented as follows Eq.(2), where the
first term Eq. (3) denotes the satisfaction of estimated future
orders plus the satisfaction of current orders; and the second
term Eq. (4) represent the detour distance.

min
xxx,ιιι,ϱϱϱ

G1(xxx, ιιι,ϱϱϱ) +G2(xxx) (2)

G1(xxx, ιιι,ϱϱϱ) =
∑
∀z∈Z

|Ĵz(τ)||νz−ηz|+|J |(|J |−
∑
∀i∈I

∑
∀j∈J

xi,j)

(3)
G2(xxx) =

∑
∀i∈I

xi,jDi,j (4)

subject to:

ηz =
∑
∀i∈I

ιi,z, ∀z ∈ Z (5)

νz = |Ĵz(τ)|+
∑

∀j∈Jz

ϱj , ∀z ∈ Z (6)

Di,j = Do,dj
+Ddi,dj

−Do,di
(7)

πj = ρj −
Do,dj

V0
(8)

τ − πj < M(1− ϱj), ∀j ∈ J (9)

τ − πi < M(1−
∑
∀z∈Z

ιi,z), ∀i ∈ I (10)

∑
∀j∈J

xi,j +
∑
∀z∈Z

ιi,z ≤ 1, ∀i ∈ I (11)

∑
∀i∈I

xi,j + ϱj = 1, ∀j ∈ J (12)

xi,j = {0, 1} , ∀i ∈ I, ∀j ∈ J (13)

ιi,z = {0, 1} , ∀i ∈ I, ∀z ∈ Z (14)

ϱj = {0, 1} , ∀j ∈ Jz,∀z ∈ Z (15)

In this model, Eq. (3) equalizes, as much as possible, the
number of in-store customers in each zone with respect to the
estimated number of orders in the near future. Zones with
a higher estimated number of orders are assigned a higher
weight. Moreover, the latter term of Eq. (3) allocates a larger
proportion of orders to in-store customers. The second term
of the objective function, expressed by Eq. (4), minimize the
total detour distances. Eq. (5) defines the number of deferred
matching in-store customers, reserved for each zone, in the
near future. Eq. (6) define the number of orders of each
zone in the near future. Eq. (7) define the detour distance
of in-store customer i to deliver order j. Eq. (8) defines the
latest departure time of order j. Eq. (9) ensure that orders
must be matched before their latest departure time. Eq. (10)
guarantees that in-store customers must be matched before
their latest departure time. Eq. (11) guarantee that each driver
can only be deferred to next decision epoch or be matched
with at most one order, and Eq. (12) constrains each order
can only be postponed to next decision epoch or be matched
with at most one driver. Eq. (13), Eq. (14), and Eq. (15)
define the decision variables.

Solving the optimization problem determines the optimal
customer-order matchings, reported by a mapping µ : Ĩ −→
J̃ , where Ĩ ⊆ I is the set of in-store customer who actually
assigned orders. Let J̃ ⊆ J be the set of the orders to actually
be assigned to in-store customers. For example, if an order
j ∈ J̃ is determined to be delivered by an in-store customer
i ∈ Ĩ , then µ(i) = j. If an in-store customer is not assigned
with any online orders, µ(i) = ∅.

B. Compensation optimization (C-OPT)

Given matched in-store customers Ĩ and online orders J̃ ,
as well as the present matching solution µ, the optimization
objective of this phase is to minimize the expected cost for
the current decision epoch. Considering that each in-store
customer has the freedom to decide whether or not to accept
the order allocated to them, we define the probability of each
in-store customer accepting the assigned order as Pi,j , and
the probability of rejecting it as 1 − Pi,j . When an order is
declined by an in-store customer, it is subsequently assigned
to a professional driver for delivery.

min
s

∑
∀i∈Ĩ

[siPi,j + cµ(i)(1− Pi,j)] (16)

1177
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Notation Description
I Set of all in-store customers, indexed by i
J Set of all online orders, indexed by j
I, J Sets of available in-store customers and online orders

|Ĵz(τ)| Estimated number of online orders in near future
Ĩ, J̃ Sets of matched in-store customers and online orders by CDS platform
J̇ Set of accepted online orders
J̄ Set of rejected online orders
τ Decision epoch time point

πi, πj Latest departure time of in-store customer i, and online order j
ρj Latest delivery time of order j

Da,b Distance between two locations a and b
Di,j Detour distance of in-store customer i to deliver online order j
V0 Constant indicating the velocity of drivers
cj Original delivery costs of online order j by PF
Pi,j Probability that an in-store customer i accepts to deliver online order j
M A larger number
xi,j Decision variable, indicating the matching between in-store customer i and online order j
ιi,z Decision variable, indicating the deferred matching of in-store customer i to next decision epoch
ϱj Decision variable, indicating the postpone of online order j to next decision epoch
si Decision variable, indicating the compensation paid to in-store custoemr i
M A large number

TABLE II: Notation and description

(a) Event-driven dynamic matching framework

Fig. 4: An illustration of the dynamic predictive matching framework

subject to:

cµ(i) = c0 + α0Do,µ(i), ∀i ∈ Ĩ (17)∑
∀i∈Ĩ

si ≤ ω
∑
∀i∈Ĩ

cµ(i) (18)

si ≤ ω3cµ(i), ∀i ∈ Ĩ (19)

si ≥ 0, ∀i ∈ Ĩ (20)

In the formulation, expressed by Eq. (16), the objective is
to minimize the expected total delivery costs. Eq. (17) defines
the delivery costs of professional drivers. The constraints in
Eq. 18 and Eq. 19 define two different compensation policies,
Group decision policy (DP-MF GDP) and Single decision
policy (DP-MF SDP). The difference lies in that the Eq. (18)
constrains the compensation amount allocated to each single
in-store customer to not exceed a certain percentage ω of

1178
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the original delivery cost, whereas Eq. (19) restricts the total
compensation amount to not surpass a specific percentage
ω of the cumulative original delivery cost. While Constraint
(20) defines the decision variables.

C. Dynamic optimization framework

As what we mentioned, the occurrence of event ea triggers
the solution of our proposed optimization models. After run-
ning MP-OPT and C-OPT, we obtain the set of matched in-
store customers Ĩ and orders J̃ , along with their correspond-
ing compensation schemes S. Subsequently, these in-store
customers are removed from the available in-store customer
set I . Thereafter, we assign the orders J̃ to in-customers Ĩ .
Accepted orders J̇ are removed from the available order set I
and are delivered by these in-store customers İ . Conversely,
orders rejected by the in-store customers were transferred to
PF for delivery fulfillment. Additionally, should the wait time
of an in-store customer surpass the stipulated latest departure
time πi, they are removed from the available set I and leave
the retailer. Similarly, if an order reaches its latest departure
time πj without assignment, it is mandatorily dispatched by
PF, and is removed from J . It is worth noting that due
to the deferred matching of the in-store customers and the
postponement of orders, there is no alteration in the available
in-store customer and order sets. Consequently, we do not
showcase these changes in the update information module.

IV. COMPUTATIONAL STUDY

In this section, we conduct a numerical study to verify the
performance of the proposed dynamic predictive matching
framework in terms of the cost reduction rate, order rejection
rate, and order successfully matched rate. First we present
the simulated dataset used to conduct the experiment. Then,
we evaluate the proposed DP-MF, varied by two compensa-
tion policies (namely DP-MF GDP, and DP-MF SDP), by
comparing its performance with an alternative optimization
approaches, proposed by [2], named Myopic GDP and My-
opic SDP respectively, which re-executes the matching and
compensation models upon the occurrence of an in-store
customer arrival event ea. The experiment were executed
on a computer with an Intel Core i7 6-core CPU with 16
GB of RAM, running at 2.6 GHz, using Mac OS X version
12.0.1. The two-stage optimization models were implemented
in Gurobi 10.0.

A. Parameter settings and scenarios generations

For the sake of generality, we randomly generate a central
retailer and ten distinct zones within a 10km radius utilizing
the Google Maps API,. Moreover, drawing upon the work of
[2], we assume that the decision-making behavior of in-store
customers is predominantly influenced by the compensation

price and the detour distance. The probability function is
represented as Eq.(21).

Pi,j =
1

1 + e−(β0+βcompsi+βdetourDi,j)
(21)

where Pi,j denotes the probability that an in-store customer
accepts the assigned order j. β0 denotes the alternative
specific constant (ASC), βcomp, and βdetour are suitable
coefficients to be estimated. si and Di,j denote the cus-
tomized compensation paid to in-store customer i and detour
distance of in-store customer i to deliver order j, respectively.
For additional details regarding the parameters mentioned in
previous sections, kindly refer to Table III.

Parameter Description Value
ω Weight of order satisfaction 10
c0 Base delivery cost of professional fleet 5$
α0 Delivery cost of professional fleet per kilometer 1$
β0 Intercept of utility function -4.8359

βcomp Coefficient of attribute “Compensation” 0.7337
βdetour Coefficient of attribute “Detour distance ” -0.8522

µ Mean waiting time of in-store customers 30
σ Standard deviation of waiting time 10

TABLE III: Parameter values

Moreover, we conclude three different scenarios as follows.
• Scenarios 1: Within a unit of time, the arrival rate

of in-store customers and online orders with different
destinations is the same. This scenario simulates a
general supply-demand distribution.

• Scenarios 2: Within the same unit of time, some desti-
nations have a higher arrival rate for in-store customers
and online orders, while other destinations have a lower
rate. This situation simulates the difference in regional
consumption capacity.

• Scenarios 3: Within the same unit of time, some des-
tinations have an in-store customer arrival rate greater
than the online order rate, whereas in other destinations,
the in-store customer arrival rate is less than the online
order rate. This situation simulates the difference in
online and in-store shopping behaviors.

Next, we will compare the performance of two different
approaches under various scenarios, varied by the mean driver
and order arrival rate and different evaluation metrics.

B. Cost reduction rate (CR) comparison in three scenarios
Cost reduction rate (CR) directly responses to the feasibil-

ity and effectiveness of proposed approach, which is defined
as:

CR =

∑
∀j∈J cj − (

∑
∀j∈J̇ sj +

∑
∀j∈J̄ cj)∑

∀j∈J cj
(22)

Where cj denotes the original cost of order j delivered by
PFs. sj denotes the computed compensation paid to in-store
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customer µ(i) to deliver order j. And J , J̇ , and J̄ denote the
set of all online orders throughout a day, the accepted set of
orders, and the rejected set of orders by in-store customers
respectively.

Refer to Fig. 5, we can observe that the value of CR
increases with the growth of the average order and driver
arrival rate for each sample time interval. The performance of
the two methods of DP-MF is superior to the Myopic method
under three different scenarios. However, the advantage of
the SDP over the GDP is not very pronounced under the CR
metric. Furthermore, the CR of these four methods is not
significantly affected by scenario changes. To be specific, the
DP-MF method generally outperforms the Myopic method by
approximately 15 percentage points.

C. Order rejection rate in three scenarios

Order rejection rate (OR) reflects the feasibility of the CDS
platform and the quality of service on the supply side. If OR
is too high, it indicates a low matching quality; customers
who arrive at the store are unwilling to accept the orders
allocated to them. Its calculation formula is as follows:

OR =
|J̄ |
|J̃ |

(23)

where |J̃ | and |J̄ | denote the number of matched orders and
set of rejected orders by in-store customers.

From the Fig. 6, we can observe that the OR trends for
Scenario 1 and Scenario 3 are roughly the same, decreasing
as the average arrival rate increases. In contrast, Scenario
2 shows a superior OR performance compared to the other
two scenarios. Furthermore, we find that the DP-MF method
consistently outperforms the Myopic method. Notably, the
GDP compensation mechanism has evidently reduced the OR
by approximately 5 to 10 percentage points.

D. Order successfully matched rate comparison in three
scenarios

The Order Successful Matching Rate refers to the propor-
tion of orders delivered by in-store customers to all orders.
This metric reveals some hidden attributes of the system,
namely, how many orders can be completed by in-store cus-
tomers rather than hired professional delivery personnel. On
another level, it can save hidden costs similar to maintenance
and hiring. Its calculation formula is as follows:

OM =
|J̇ |
|J |

(24)

where |J | and |J̇ | denote the number of all online orders
throughout a day and the number of accepted orders by in-
store customers.

The experimental results (Fig. 7) show that the growth
trends of the four methods under the three scenarios are

essentially consistent. OM increases with the growth of the
average arrival rate per unit time. The DP-MF method is
significantly superior to the Myopic method, allowing more
orders to be handed over to in-store customers for delivery,
with an increase of up to nearly 15%. Furthermore, the GDP
method still outperforms the SDP method on this front.

V. CONCLUSION AND FUTURE WORKS

This paper introduces a dynamic predictive matching
framework designed to address the matching problems in a
crowd-sourced delivery system under stochastic environment.
The innovation of this paper lies in considering the uncertain-
ties from both the supply and demand sides simultaneously.
Firstly, taking into account the variability in arrival rates
of orders and drivers, the goal of optimality in subsequent
matches is achieved through deferring matching for some
orders and drivers. Furthermore, the uncertainty in the be-
havior of in-store customers is relaxed through a customized
compensation incentive strategy. In the future, data-driven
predictive analysis of supply and demand sides, as well as
the dynamic acceptance behavior of in-store customers, such
as the impact of waiting time on their behavior, are also
worthwhile directions for exploration.
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approaches as a function of the mean arrival rate of drivers orders (= [1, 3, 5, 7, 9] per 15 minutes) in three scenarios
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approaches as a function of the mean arrival rate of orders (= [1, 3, 5, 7, 9] per 15 minutes) in three scenarios
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