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Abstract

Human perception and behavior are affected by the situational context, in particular during

social interactions. A recent study demonstrated that humans perceive visual stimuli differ-

ently depending on whether they do the task by themselves or together with a robot. Specifi-

cally, it was found that the central tendency effect is stronger in social than in non-social task

settings. The particular nature of such behavioral changes induced by social interaction,

and their underlying cognitive processes in the human brain are, however, still not well

understood. In this paper, we address this question by training an artificial neural network

inspired by the predictive coding theory on the above behavioral data set. Using this compu-

tational model, we investigate whether the change in behavior that was caused by the situa-

tional context in the human experiment could be explained by continuous modifications of a

parameter expressing how strongly sensory and prior information affect perception. We

demonstrate that it is possible to replicate human behavioral data in both individual and

social task settings by modifying the precision of prior and sensory signals, indicating that

social and non-social task settings might in fact exist on a continuum. At the same time, an

analysis of the neural activation traces of the trained networks provides evidence that infor-

mation is coded in fundamentally different ways in the network in the individual and in the

social conditions. Our results emphasize the importance of computational replications of

behavioral data for generating hypotheses on the underlying cognitive mechanisms of

shared perception and may provide inspiration for follow-up studies in the field of

neuroscience.
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1 Introduction

Prediction is a fundamental function of the human brain underlying various cognitive func-

tions [1, 2], including visual perception [3]. Learning about the world by collecting experience

helps us to process incoming visual stimuli in a more cost-effective manner, as we can reuse

previous observations to make sense of new sensations. Predictive coding [4, 5] is a widely

accepted neuro-cognitive theory that aims to explain human cognitive functions by prediction

making. It claims that perception and sensorimotor responses stem from the brain’s ability to

constantly generate predictions about its environment and the internal states of the body. Sub-

stantial neuro-physiological evidence is consistent with the interpretation that prediction

inference happens at all levels of perception [6]. It seems that most actions can be explained as

aimed at minimizing prediction error: from learning basic skills [7] to interacting with peers

[8].

The main assumption of the predictive coding theory is that humans use near-optimal

Bayesian inference, and draw their motor-sensory decisions from combining sensory informa-

tion with prior experience. They then update their prior distribution with the new information

and use the updated prior distribution for generating the next prediction about the world. In

Bayesian inference [9], the posterior perception depends not only on the values of the sensory

and prior perceptions, but also on the precision of these signals. Specifically, signals with low

variance (i.e. high precision) affect the posterior more strongly whereas signals with a higher

variance (i.e. a lower precision) are less taken into account (see Bayesian inference module in

Fig 1). This integration of prior and sensory information, depending on the relative precision

of these two signals, improves the robustness to noise in the environment.

Central tendency, also known as context dependency or regression to the mean [10], is a

well-known perceptual phenomenon revealing the use of prior experience in perception and

refers to the human tendency to generalize their perceptual judgments towards the mean of

the previously perceived stimuli. This phenomenon has been recently explored in the field of

visual and auditory perception of time intervals [9, 11–13] and spatial distances [14, 15]. It has

been demonstrated that following Bayesian criteria in the integration between information

coming from prior experience and sensory stimuli in a near-optimal way well accounts for

human behavior [9, 11]. For instance, to test the central tendency effect in spatial perception,

participants were asked to estimate and reproduce the distances between two points. Results

showed that participants tended to reproduce them closer to the average length that they per-

ceived across trials. In other words, they underestimated longer stimuli and overestimated

Fig 1. An overview of the computational model used in the present paper: A recurrent neural network serves as the internal model that learns to

predict future time steps of a one-dimensional trajectory whose length represents the length of the stimuli.

https://doi.org/10.1371/journal.pone.0273643.g001

PLOS ONE A neural network analysis of human experimental data in a social context

PLOS ONE | https://doi.org/10.1371/journal.pone.0273643 August 30, 2022 2 / 24

Funding: This research was supported by JST

CREST ‘Cognitive Mirroring’ (Grant Number:

JPMJCR16E2), Institute for AI and Beyond at the

University of Tokyo, and World Premier

International Research Center Initiative (WPI),

MEXT, Japan and by the Starting Grant wHiSPER

(G.A. No 804388) from the European Research

Council (ERC) under the European Union’s Horizon

2020 research and innovation programme. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0273643.g001
https://doi.org/10.1371/journal.pone.0273643


shorter ones. The degree to which a person gravitated towards the mean differed between

individuals.

Recently, the phenomenon of central tendency has been connected to predictive coding

theories, suggesting that differences in the relative reliance on priors compared to their reli-

ance on sensory information could account for the central tendency effect [16, 17]. The closer

subjects tend to the mean, the more they relatively rely on prior experience (high central ten-

dency); the closer they stick to the specific sensory input, the lower is their relative prior reli-

ance (low central tendency). Previous studies have shown that central tendency is dependent

on the developmental stage of a person [12, 14]. Interestingly, however, it also has been dem-

onstrated that the extent to which humans generalize towards the mean can change rapidly

depending to the context, such as whether a person is completing the task alone (or with a

mechanically behaving, non-social agent) or together with another agent [15]. In particular,

when interacting with a social human-like robot, participants exhibited lower central tendency

and produced sensory stimuli more accurately than when they interacted with the same robot

behaving mechanically, and than when they performed the task by themselves [15].

As social agents, human perceptual processes are inherently shaped by social interactions.

For instance, humans engage in joint attention with co-attendants since childhood [18–21], a

phenomenon which has been suggested to be at the basis for the development of perspective-

taking ability, that is, the ability to intuit another person’s perception, perspective, attitudes,

knowledge, and so on [22]. Furthermore, sociality impacts gaze movements [23], memory pro-

cesses and information encoding at different levels [23–27]. It also affects the processes of per-

ception-action underlying joint-action [28, 29], and the adoption of different game strategies

[30]. Finally, it influences perception of space [15, 31, 32].

The effect of the social context on perception found in [15] indicates that social interactive

context might modify perception and, specifically, the relative reliance on prior and sensory

information while processing perceptual information. It is known that sociality widely affects

behavior and cognition [33–36]. While the exact mechanisms are still unknown, neurobiologi-

cal mechanisms such as neuromodulators could link the social context to perception and

behavior. Specifically, there is evidence that neuromodulators which play an important role in

social behavior [36] can alter perception, for instance, in the example of psychosis [5, 37].

Social interactions could increase the level of dopamine and, as a result, modulate the precision

between sensory and prior information [5, 38]. An alternative mechanism is attention. Social

interaction could highlight signals from the external world and, thus, highlight the sensory

information in contrast to prior information.

A major problem in investigating social effects is to isolate the effect of sociality in experi-

mental studies. Manipulating experimental conditions does not only affect the sociality but

also has many side-effects such as differences in the attention and cognitive load of the partici-

pants. The question about the underlying neural mechanisms cannot be easily answered using

a behavioral experiment since it would require an analysis of the neural activation of the

human brain—a challenging task given its complexity. However, one way to investigate the

potential underlying mechanisms of the observed behaviors is by using a computational model

that replicates the human behavioral data using a simplified neural system—an approach that

is commonly used to investigate broad behavioral phenomenons which lack clear hypotheses

applicable at a neural level [39]. Such neural network approaches which replicate the human

behavioral data using a simplified neural system may provide a tool for exploring the role of

various neural mechanisms on human perception and generating new hypotheses to be tested

in neurobiological as well as psychological studies.

From this perspective, here, we train an artificial neural network on the human experimen-

tal data from [15] to better understand the neural mechanisms underlying the context-
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dependent variation of reliance on the prior that were found in the human behavior. Specifi-

cally, we are interested in the mechanisms that play a role in how humans differentiate

between individual and social task conditions. The neural network we use for this purpose was

originally introduced in [40] and integrates a recurrent neural network model that learns to

make predictions about the world, functioning as an internal model, and a Bayesian inference

module that combines sensory input and the predictions of the internal model based on the

precision of these two signals. We conduct two experiments using this model. In the first

experiment, we manipulate the hyperparameters of the model to modify the network’s reliance

on sensory and prior information. This allows us to investigate how such alterations affect the

behavioral output of the network. Second, we analyze the neural dynamics that emerge in the

neural network during training to evaluate which mechanisms the network might be using to

differentiate the three conditions using its neural encoding.

Using this design, we aim at answering the question which neural mechanisms might

explain the change of the reliance on the prior and sensory signals found in the social condi-

tion. Our hypothesis is inspired by the Bayesian perspective on predictive coding that behav-

ioral differences may be caused by an altered precision of the sensory and the prior signals. For

example, a more precisely perceived stimulus would cause a sharper perception and, conse-

quently, a higher reliance on the sensory input when performing perceptual inference. We

demonstrate that changes in the precision of prior and sensory information can replicate the

central tendency effect as hypothesized in previous studies [16, 17], and discuss implications

that this could have on social perception based on the results of [15].

2 Background

In this section, we first explain the human behavioral experiment conducted by [15] in detail.

We then introduce the computational model used here, describe the training procedure and

confirm that it is able to replicate the human data.

2.1 Summary of the human behavioral experiment

Mazzola and colleagues [15] investigated whether the level of social involvement into the task

can affect the perceptual phenomenon of central tendency that had already been explored in

previous experiments and described in Bayesian terms [9, 11, 12, 14]. The central tendency

effect refers to a phenomenon where, given a series of stimuli of the same type, the perception

of one stimulus is influenced by the stimuli perceived before. Specifically, when the observer

has to reproduce the magnitude of a stimulus (here, the spatial distance between two points),

the reproduction gravitates to the average of all the stimuli perceived before. Thus, in line with

predictive coding theories, the reproduced length is affected both by sensory information and

the participant’s prior, with the balance between these two signals determined by their individ-

ual precision.

In [15], participants were exposed to visual stimuli of different lengths and asked to repro-

duce them. To test how social context affects the visual perception of space, the experiment

was conducted in three different conditions that only varied in the way stimuli were presented

to the participants:

1. Individual condition: Participants performed the reproduction task by themselves. In each

trial, two points indicating the endpoint of the stimulus were subsequently shown on a tab-

let touch screen. After the last point disappeared, the participant had to reproduce the

length of the stimulus by touching the screen at a distance from the last point equal to the

distance between the two presented points.
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2. Mechanical robot condition: The same task as in the previous condition was used but now

the endpoints of the lengths were indicated by a humanoid robot iCub [41] that touched

the tablet in front of the participant with its index finger. Throughout the whole task, the

robot appeared as a mechanical agent: it looked away from the participant and did not pro-

duce any additional verbal or non-verbal cues.

3. Social robot condition: The same setup as in the mechanical robot condition was used,

except that the behavior of the robot was modified to appear more social and human-like.

This included saying hello to participants and explaining them the task, making eye contact,

smiling and uttering encouraging phrases.

The individual condition was used as a baseline condition to measure the central tendency

of the participants. The mechanical and social robot conditions were designed to control them

for potentially confounding factors such as the cognitive load of the participants or differences

in the spatial distances. The task design of these two conditions was identical and only differed

in factors that were directly related to the experimental manipulation affecting the “socialness”

of the situation.

During the task, a series of 11 different lengths from 6 to 14 cm was shown to participants,

each series repeated 6 times throughout the task in a randomized order. While in the individ-

ual condition the lengths were shown by two dots appearing on the screen, in the other two

conditions, these two points were shown directly by the robot touching the screen with its

right index finger to foster the interaction between participants and iCub. The contact between

the robot’s finger with the screen caused though some imprecision in the stimuli demonstra-

tion. Therefore, in some trials, the touch screen did not successfully feel the touch of iCub so

that in the final data set there is a mean of 62.66 trials (SD = 3.83) for the robot condition.

Also, the distances recorded as stimuli in the robot conditions slightly differed from the ones

of the individual condition since they were not computed as the ideal lengths sent to the robot,

but as the real ones recorded by the touch screen after the touch of the robot (mean variation:

M = 0.62 cm, SD = 0.13). In this way, it has been possible to record what had been factually

seen by participants and give a more precise measure of the regression index of participants.

Considering the phenomenon of central tendency, the regression index is a measure of the

degree to which participants tend towards their prior [11, 12, 14, 15], where the prior is calcu-

lated as the average of all the stimuli perceived during one condition, while the regression

index is computed as the difference in slope between the best linear fit of the reproduced values

plotted against the corresponding stimuli and the identity line, which would correspond to the

ideal perfect perception of the exact lengths of the stimuli. Thus, a regression index close to 1

reveals a strong influence of priors, while a regression index close to 0 reflects a weak influence

of the prior and a strong tendency to perfectly reproduce the presented stimulus length. All the

participants gave their written informed consent before participating. The regional ethical

committee approved the study (Comitato Etico Regione Liguria).

Mazzola and colleagues [15] found that the reliance on priors was stronger in the individual

task compared with the two robot conditions. As the difference of the individual to the robot

conditions might have been caused by confounding factors, importantly, the results also

revealed a variation in human perception between the two conditions with the robot: partici-

pants were less influenced by their priors when performing the task with the social robot and

thus reproduced the stimuli more accurately. This change was only induced by the modifica-

tion of the socialness of the situation. That the experimental manipulations actually affected

the social perception of the participants could be confirmed via the scores of an anthropomor-

phism questionnaire filled out by the participants which indicated that the more participants

perceived the robot as human-like, the higher was the difference of the regression index

PLOS ONE A neural network analysis of human experimental data in a social context

PLOS ONE | https://doi.org/10.1371/journal.pone.0273643 August 30, 2022 5 / 24

https://doi.org/10.1371/journal.pone.0273643


between the two conditions, resulting in a greater accuracy for the condition with the social

human-like robot. For a recent paper providing more in-depth analyses of the experimental

results see [42].

2.2 The computational model

The computational model used in this study is made of two components: a stochastic continu-

ous-time recurrent neural network (S-CTRNN) [43] that serves as the internal model which

learns to make predictions about the world, and a Bayesian inference (BI) module that inte-

grates sensory input with the priors generated by the internal model. This network model was

first presented by [40] and was used to predict how people and chimpanzees would perform a

drawing completion task in [44]. We chose this particular model since it both follows the prin-

ciples of predictive coding and allows us to modify the precision of the model’s prior as well as

the precision of sensory perception.

The S-CTRNN network is able to recurrently predict the mean and the variance of the next

time step of a time-dependent signal, where the mean is the estimated next values and the vari-

ance expresses the uncertainty of this estimation. As a higher variance means that the precision

of the signal is lower, and vice versa, the estimated variance may also be described as inverse

precision. Formally, given input xt, the S-CTRNN predicts the mean μprior and the variance

s2
prior of the sensory perception of the next time step xt+1 (Following standard conventions, we

denote scalars as x and vectors as x. However, note that for this experiment, the input dimen-

sion D = 1.).

The context layer consists of 25 neurons which we found to be sufficient for well learning

the 1-dimensional task. All network connections are linear mappings with weights and no bias

terms. The input is mapped to the context layer via weights 2 R1�25
, recurrent weights are

defined 2 R25�25
, and the context layer is mapped to the mean and to the variance output unit,

respectively, via a weight matrix 2 R25�1
.

To train the network to reproduce human behavior, the backpropagation through time

algorithm is used as described by [43]. Specifically, during training, which proceeds in epochs,

the likelihood that the output mean and output variance of the network resembles the human

data is maximized by updating the network weights. In other words, the prediction error,

scaled by the estimated variance, is minimized.

The likelihood L that is maximized consists of two terms L = ln Lout + ln Linit. Lout is the like-

lihood that the network’s estimated mean μprior and variance s2
prior account for the observed

input x:

ln ðLoutÞ ¼
XT

t¼1

XD

i¼1

� ln ð2ps2

priort; iÞ �
ðxtþ1;i � m

t;i
priorÞ

2

2s2
priort; i

 !

; ð1Þ

where T is the total number of time steps (here, T = 22), and D is the dimensionality of the

input vector (here, D = 1).

The term Linit is used as introduced in [43] and optimizes the distance between the initial

activations of the recurrent layer, the so-called initial states:

ln ðLinitÞ ¼
XS� 1

s¼0

XN� 1

n¼0

� ln ð2ps2

initÞ �
ðu0;n
ðsÞ � ûnÞ

2

2vdist

 !

; ð2Þ

where N is the number of neurons in the context layer (here, N = 25) and S is the number of

initial states that the network should differentiate (here, one initial state per condition and per
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participant is used, resulting in S = 3 � 25 = 75 initial states). u0;n
ðsÞ refers to the initial state (e.g.,

neuron activation vector at time step t = 0 for the s-th initial state of the n-th neuron. ûn is the

(learnable) mean of all initial states and vdist (set here to s2
init ¼ 1e7) is the predefined variance

of the initial states.

Initial states are required because the S-CTRNN is a deterministic system, therefore, given

one set of activations of the recurrent layer neurons and a specific input signal, the network

would, once it is trained, always produce the same output. However, we want to train the

model to replicate the behavior of various study participants in different experimental condi-

tion in a single model, such that we can directly compare between the way that different condi-

tions and different participants are represented in the neural system. By representing different

participants and different conditions with different initial states, the separation of different

types of behaviors within the network dynamics can be achieved automatically during the

training process. In this way, different participants and different conditions can be represented

in the network with different neural dynamics, while reusing the same neurons and weight

matrices. Note that summarizing all participants and conditions in a single neural network is

done here for convenience purposes to easily compare and switch between the conditions to

fairly compare between the neural representations of different conditions and participants

independently of confounding network parameters as they may result from training. Impor-

tantly, we do not intend to use the neural network here as a biologically plausible simulation of

the participant’s brain but instead as a computationally tool. Specifically, the network is pro-

vided with the information of which training trajectory belongs to which initial state during

training. Using the two likelihood terms, the network gradually differentiates the initial states

during training. Linit defines a target variance s2
init that determines the desired variance

between different initial states (see [43] for details). Generally, a higher variance between initial

states leads to a stronger separation of the neural dynamics of different participants and

conditions.

At each time-step, the output mean and variance predicted by the internal model is fed into

the Bayesian inference module where it is combined with the raw sensory input and the corre-

sponding precision (Fig 1) depending on the ratio of sensory and prior precision. Specifically,

the mean and the variance of the posterior distribution is calculated as:

s2
post ¼

ðHsensor � s
2
sensorÞ � ðHprior � s

2
priorÞ

ðHsensor � s
2
sensorÞ þ ðHprior � s

2
priorÞ

; ð3Þ

mpost ¼ s
2
post �

mprior

ðHprior � s
2
priorÞ
þ

x
ðHsensor � s

2
sensorÞ

 !

: ð4Þ

The distinguishing feature of this computational model is that it allows us to manipulate

the reliance on the prior and the sensory signal via parameters Hprior and Hsensor to simulate a

stronger or weaker reliance on either the prior or the sensory input. These two parameters

function as a factor that is multiplied with the variance of the prediction s2
prior or with the vari-

ance that is associated with the sensory signal s2
sensor.

During training of the network, Hprior = Hsensor = 1 is used such that the network learns to

correctly replicate human data. Different conditions of Hprior and Hsensor during training are

not considered here because we are interested in the relative changes of the network’s behavior

when switching between the different conditions, and not on the effects of the parameters on

the developmental processes. These parameters can later on be changed to higher or lower val-

ues to modify the reliance of the model on prior or sensory signals. Specifically, choosing Hprior
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> 1 increases the expected variance of the prior, leading the network to rely less on the prior.

In contrast, choosing Hprior < 1 decreases the variance and causes the network to rely more on

its learned prior while performing the task. Hprior and Hsensor can be set independently from

each other to increase or decrease the precision of either prior or sensory information. Both

affect the ratio between the precision of sensory and prior information and, thus, have compa-

rable effects on the model (an increase of prior precision has similar effects as the decrease of

sensory information). Still, the effect of both parameters is investigated here as also the abso-

lute values affect perception, namely they determine the variance of the posterior. For example,

if the precision of both signals is low, the posterior mean would be the same, but the variance

is much higher than when both signals are rather precise, even when the ratio between sensory

and prior precision is the same.

3 Training the model to replicate human data

The main goal of this study was to verify whether the differences between individual and social

perception between experimental conditions can be replicated by continuous modification of

one parameter (e.g, prior reliance), and whether there might be multiple mechanisms causing

behavioral differences. As a first step to investigate these issues in Sections 4 and 5, first the

model has to be trained with the human experimental data from [15]. In this section, we

describe how the network was trained and verify that the performance of the network repli-

cates human performance with sufficient accuracy.

3.1 S-CTRNN training

In contrast to [40, 44] where the network was trained to directly reproduce the presented

input trajectories (i.e. input equals output of the network), we train the network by providing

the stimuli presented to human participants as input while the output corresponds to the par-

ticipants’ reproduction of these stimuli. As such the training mimics human learning of the

task as closely as possible.

The network was trained with all the data from the human experiment which involves the

data of 25 participants who performed the task in three different conditions.

3.1.1 Training data. The training data were taken from the behavioral experiment of

Mazzola and colleagues [15] as described in Section 2.1. Since the S-CTRNN model is designed

to learn the next time-step of trajectories, the lengths from the human data had to be modified

into one-dimensional trajectories consisting of multiple time-steps. Each trajectory started at

location 0 and ended at the particular length of the stimulus. 20 equally spaced points were

inserted between the start and the end points of each line, resulting in trajectories consisting of

22 time steps. An example is shown for a stimulus of 10cm on the left side of Fig 1. Before

using the data for network training, the trajectories were normalized such that all trajectory

points fall within the range [−1, 1]. Hence, after normalization, all trajectories start at −1. The

representation of stimuli as a trajectory alters the setting from the human experiment where

participants just pointed at the final position, but including intermediate points may also pro-

vide new opportunities. As we will see later in Section 5, this design allows us to look into the

length reproduction task as a dynamical process.

Both the presented stimuli and the lengths reproduced by participants were converted into

multi-step trajectories in the same way. While the presented trajectories served directly as net-

work input, the reproduced lengths were used for the prediction error computation during

network training.

3.1.2 Training parameters. As motivated above, the model had different initial states for

each participant and condition, resulting in 75 = 25 � 3 initial states. These initial states were
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automatically determined during training, using a high maximum initial state variance

(s2
init ¼ 1e7) to ensure that the neural dynamics of different conditions and participants are

sufficiently separated from each other.

The parameters Hprior and Hsensor were set to 1 during network training while the number

of neurons in the recurrent network layer was set to 25. The network was trained for 15000

epochs.

Ten networks were trained independently from each other, using different randomly cho-

sen sets of initial weights. By investigating the performance of a set of networks, we can ensure

that the results that we find are reliable and not caused by random effects.

3.1.3 Network behavior generation. Similar to the way that the human experiment was

conducted, we tested the performance of the network by providing it with trajectories of differ-

ent lengths. This test set corresponded to the data that was presented to the human partici-

pants. To generate the behavior for a specific participant and experimental condition, the

corresponding initial state of the network was used to initialize the activations of the recurrent

network layer. Then, the network’s output, given the input, was computed to generate the

model’s behavior. From the trajectories that the network produced in response to the pre-

sented stimuli, the reproduced lengths were computed as the absolute difference between the

start and end points of the reproduced trajectory. A linear model was fit to the reproduced

lengths in order to compute the regression index. Additionally, the neural activation history of

the recurrent layer was recorded and used for neural representations analysis in Section 5. The

resulting neural activation data consisted of the activation for each neuron of the model for

each trajectory time-step for each trajectory for each participant and condition.

3.2 Network performance

A comparison between the human experimental data and the performance of a trained net-

work for six randomly chosen participants in the three different conditions is presented in

Fig 2. The x-axis shows the presented lengths, the y-axis the length reproduced by the human

participants (left) or by the model when using the corresponding initial state (right). Lines in

the right plot show the result of the linear regression that was performed in order to calculate

the regression index.

It can be observed that the model is able to accurately replicate the mean of the human

data. Note that for generating the results in this figure only the mean without the uncertainty

was generated by the model to get a better impression of the model’s behavior. Therefore, the

variability of the human data is not replicated on the right side of Fig 2.

A direct comparison of the regression indices of the model behavior with the corresponding

regression indices of the human behavior is shown in Fig 3 including the data of all ten net-

works. It can be observed that the model’s behavior slightly diverges from human behavior,

however, the large majority of stimulus replications accurately correspond to the regression

index of the corresponding human participant. It can also be seen that in the individual condi-

tion, a stronger regression towards the prior is taking place than in the other conditions in the

human data as well as in the model data.

Black dots in Fig 4 show the subject-wise difference between individual–mechanical, indi-

vidual–social and mechanical–social conditions, an important measure to visualize differences

between conditions also used by Mazzola and colleagues [15]. This distance is the highest for

individual–social, indicating that the regression index is significantly higher in the individual

condition compared to the social condition. The mechanical–social difference is smaller, but

significantly higher than zero, indicating that the regression indices of the mechanical and the

social condition lie closer together.
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Fig 2. The reproduced lengths plotted against the presented lengths, where lengths were calculated in the normalized space of trajectories. Original

human data (left) is compared with the corresponding mean predictions produced by one example network (right) for six randomly chosen participants.

Lines in both plots correspond to the regression lines extracted from the human data or the model data, respectively. The black line shows the identity line.

https://doi.org/10.1371/journal.pone.0273643.g002

Fig 3. The regression indices of the human plotted against the regression indices of all trained networks for reproducing all training data.

https://doi.org/10.1371/journal.pone.0273643.g003
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Purple dots in Fig 4 show the same analysis conducted for the model results. It can be

observed that the trends in the model behavior well replicate the human behavior, but the vari-

ability is slightly reduced in the model data compared to the human data. Specifically, the stan-

dard deviation of the model data is on average 7% smaller than in the human data.

Furthermore, there is a small significant difference between the model and the human data in

the individual–mechanical condition difference.

The p-values, computed on all ten networks, are shown in Fig 4 in detail and were deter-

mined using linear mixed effect models, describing the subject-wise difference by either the

conditions (e.g. individual–mechanical vs. individual social) or by the agent (i.e. human vs.

model) with the subject ID as a random effect.

Overall, this analysis demonstrated that the model is able to replicate the important trends

that are present in the human data. Based on the trained models, we conducted two sets of

analyses we call here experiment 1 (section 4) and experiment 2 (section 5). Experiment 1

aims to answer the question whether it is possible to replicate the human results in different

conditions with a continuous change of one parameter in the model. In short, experiment 1

looks at how the model performs in the length reproduction task depending on its prior reli-

ance. Experiment 2 investigates how the differences between conditions are represented in the

neural activations of the network. It allows us to look deeper into the mechanisms behind the

differences in model performance and verify whether there are other processes at stake.

Fig 4. Subject-wise differences between different conditions, compared for human data (black) and model data (magenta) for one trained example

network. Boxes indicate the mean, and 80% confidence intervals of the data, fliers indicate standard deviation. Model data reproduce the main trends of the

data, but with slightly lower variability. The p-values were computed using the results of all ten networks, i.e. on 25 samples from the human participants,

and 250 (= 10 � 25) samples from the models.

https://doi.org/10.1371/journal.pone.0273643.g004
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4 Experiment 1: Changes in the reliance on prior and sensory

information

In the human experiment [15], it was found that participants tended more strongly towards

the prior in the individual condition, and more accurately replicated the stimuli in the social

robot condition, while the mechanical robot condition lied in between. This finding suggests

that there might exist a continuum between the three conditions from the individual condition

to the social condition via the mechanical condition.

The parameters Hprior and Hsensor of the computational model we are using here (see Sec-

tion 2.2) can be used to implement such a continuous change as they modify the ratio to which

sensory information and predictions are integrated while replicating the perceived lengths.

In this section, we test the hypothesis that a continuous change of Hprior or Hsensor respec-

tively can replicate changes in the human behavior between the individual, mechanical robot,

and social robot condition. We first modify only Hprior in Section 4.1; then, we test whether

modifying Hsensor has analogous effects (Section 4.2).

4.1 Experiment 1A: Modifying the reliance on prior predictions

In the human experiment, the weakest reliance on the prior was found in the social robot con-

dition. Therefore, our expectation is that when gradually increasing the model’s reliance on

the prior, a network behavior that was formerly replicating the social robot condition would

produce behavioral results which would be closer first to the mechanical robot (with moderate

increase of prior reliance) and then to individual conditions (strong increase of prior reliance).

If this hypothesis is correct, it should be possible to find values of Hprior such that the network

behavior replicates the human behavior in the individual and mechanical robot condition,

while only using the initial states of the social robot condition.

To test this idea, in this experiment, we use only a subset of the trained network dynamics,

namely, the 25 initial states that are associated with the social robot condition. Then, we test

whether it is possible to replicate the results of the other two conditions by adjusting Hprior.

The network’s behavior was tested by using a wide range of values between 0.5 and 0.05 for

the Hprior parameter. For each of the different values of Hprior the network behavior was

recorded. Similarly to Fig 4, subject-wise differences between conditions were computed as a

measure of how well the replicated lengths fit human data. Specifically, the difference was

computed between the replicated length of the initial state of the social robot condition with

Hprior = 1, and the replicated length of the initial state of the social robot condition with Hprior

= x where x 2 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05. These values

were selected in an iterative way based on how variable the behavior changed in a certain

parameter region.

Fig 5a shows the median difference of all ten networks (different colors refer to different

networks). The horizontal dashed lines in Fig 5 indicate the subject-wise difference between

the social robot condition and the mechanical robot condition in the human data and the dif-

ference between the social robot condition and the individual condition in the human data. It

can be observed that a stronger prior (i.e. a smaller value of Hprior) gradually increases this

ratio, that is, with the increased prior reliance the produced lengths tend more strongly

towards the mean of the data. The nonlinear decay is a consequence of the mathematical for-

mulation of Bayesian inference. See appendix for further information. A value of Hprior = 0.4

closely matches the social–mechanical difference of the human data, and Hprior = 0.1 closely

replicates the social–individual difference of the human data.

Fig 5b shows the subject-wise differences between conditions for a few selected values of

Hprior for the data from a single network. This plot allows us to inspect not only the median
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but also the variability between different participants. It can be observed that although the

median for Hprior = 0.4 and Hprior = 0.1 match the median of the human data, the standard

deviation is much larger in the human data. However, the further away the value of Hprior is

from the standard value of Hprior = 1, the larger the standard deviation becomes. We tested sta-

tistically whether there is a difference between the subject-wise difference reproduced by the

model in the different conditions and the corresponding human data. For this purpose, we

used linear mixed effect models describing the subject-wise difference as a function of the

identity of the agent (i.e. whether it is human data or model data) using the subject ID and the

network ID as random effects. The subject-wise difference between Hprior = 1 and Hprior = 0.4

and between Hprior = 1 and Hprior = 0.1 showed no significant difference when compared to

the social–mechanical difference or the social–individual difference in human data,

respectively.

The results demonstrate that it is possible to replicate the tablet and the mechanical condi-

tion using the initial states of the social condition, i.e. we can switch from weak towards strong

prior reliance. Theoretically, we could also go into the opposite direction, trying to modify the

network behavior by moving from a strong towards a weak prior, i.e., replicate the mechanical

and the social condition, starting from the tablet condition. However, executing the experi-

ment showed that the subject-wise differences of the tablet condition did not change regardless

of the Hprior. Specifically, even when changing Hprior to a value close to 0, the subject-wise dif-

ference remains the same (results can be found in the github repository, https://github.com/

mmtsfasman/TheCentralTendency_model). The reason for this finding is that the networks

were trained to replicate human data and not to replicate the actual presented stimuli. Human

subjects do not have perfect precision, thus, the human data that the network was trained with

also does not reflect the actual presented stimuli. Therefore, the network is not able to achieve

higher accuracy than the human subjects even if the attention is shifted to the sensory signal.

Demonstrating the shift from a stronger towards a weaker prior, thus, is not possible with the

current experimental design. In contrast, it is always possible to shift towards a more strong

prior as this does not require any knowledge about the presented stimuli but is implicitly

Fig 5. Difference between the regression index of networks produced using the 25 initial states of the social condition with regular prior reliance

(Hprior = 1) and the regression index produced with the same initial states using increased (Hprior < 1) prior reliance. (a) For all ten networks the

median of the subject-wise difference is displayed. Horizontal lines mark the zero line, the average subject-wise difference in the regression index between

the social and the mechanical condition in human data, and the average subject-wise difference in regression index between the social and the individual

condition. (b) Detailed results including all subject data for a single network. The subject-wise differences between the behavior using social initial states of

H = 1 vs. H = x for different x values is displayed.

https://doi.org/10.1371/journal.pone.0273643.g005

PLOS ONE A neural network analysis of human experimental data in a social context

PLOS ONE | https://doi.org/10.1371/journal.pone.0273643 August 30, 2022 13 / 24

https://github.com/mmtsfasman/TheCentralTendency_model
https://github.com/mmtsfasman/TheCentralTendency_model
https://doi.org/10.1371/journal.pone.0273643.g005
https://doi.org/10.1371/journal.pone.0273643


known in the model. Therefore, we focus in this section on demonstrating the shift from a

weak to a strong prior.

4.2 Experiment 1B: Modifying the reliance on sensory information

Section 4.1 demonstrated that changing Hprior can replicate the behavioral differences between

the conditions. This parameter can be intuitively interpreted as the inverse precision of the

network’s prior. However, modifying the inverse precision of the sensory input Hsensor could

yield similar results. To test whether a change in Hprior or Hsensor better explain the human

data, we repeated experiment 1A, modifying Hsensor instead of Hprior. As explained above, the

result of the Bayesian inference is mainly affected by the ratio of Hsensor and Hprior, but the

absolute values of the two parameters change the variance of the posterior.

To evaluate whether changes of Hsensor equally allow us to change the behavioral output of

the network according to the human conditions, we selected values of Hsensor such that the

ratio between sensory and prior precision is the same as in experiment 1A. For example, set-

ting Hprior = 0.5 leads to a ratio between Hprior and Hsensor of 0.5: 1 = 0.5. The same ratio of 0.5

can be achieved by keeping Hprior = 1 but increasing Hsensor to a value of 2. Thus, the corre-

sponding value of Hsensor that produces the same ratio as the Hprior value that was used in

experiment 1A can be computed as Hsensor ¼ Hprior
� 1.

The results are displayed in Fig 6a. Like in experiment 1A, the figure shows the median dif-

ference of all ten networks (different colors refer to different networks) between the produced

lengths observed with Hsensor = 1 and with Hsensor set to the values displayed on the x-axis of

Fig 6. Again, the horizontal dashed lines indicate the difference between the social robot condi-

tion and the mechanical robot condition in the human data and the difference between the

social robot condition and the individual condition in the human data. While in Fig 5a the

value of H was gradually decreased to increase the reliance on the prior signal, in Fig 6a the

value of Hsensor is gradually increased to decrease the reliance on the sensory signal.

Fig 6. Difference between the regression index of networks produced using the 25 initial states of the social condition with regular reliance on

sensory information (Hsensor = 1) and the regression index produced with the same initial states using decreased (Hprior > 1) sensory reliance. (a) For

all ten networks the median of the subject-wise difference is displayed. Horizontal lines from top to bottom mark as indicated the zero line, the average

subject-wise difference in the regression index between the social and the mechanical condition in human data, and the average subject-wise difference in

regression index between the social and the individual condition. (b) Detailed results including all subject data for a single network. The subject-wise

differences between the behavior using social initial states of H = 1 vs. H = x for different x values is displayed for Hsensor.

https://doi.org/10.1371/journal.pone.0273643.g006
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The results show a similar change of the difference with gradual modification of the param-

eter. The human data differences are replicated with Hsensor = 2.5 for social––mechanical and

with Hsensor = 10 for social––individual. With these values, the exact same precision ratio

between prior and sensory precision is achieved as with the corresponding values found in

experiment 1A. The corresponding plot of a single network Fig 6b shows identical results to

Fig 5b, indicating that in the present experiment a modification of Hsensor or Hprior lead to

equivalent behavior changes.

We tested whether the difference between human and model data is significant for the indi-

vidual parameter conditions analogously to the procedure described in Section 4.1. Also here,

no significant differences were found for the above parameter values (p> .05), indicating that

the model data well describe human data.

4.3 Discussion

The results of experiment 1 indicated that reliance on the prior could account for the differ-

ences we see in the behavioral differences between the three conditions. Specifically, we tested

whether it is possible to gradually modify the network’s behavioral output from weak prior

reliance as it was found in the social robot condition of the human data towards a strong prior

reliance as it was found in the individual condition of the human data. We found that a gradual

shift of Hprior as well as of Hsensor could switch the network’s behavior from the social condi-

tion to the other two conditions, indicating that all observed behaviors could be explainable

based on the same underlying mechanism.

Notably, the same behavior could also be achieved by changing the reliance on sensory

information instead of prior information. Further, while experiment 1A and 1B could in prin-

ciple yield differences in the variances of the behavioral output, no significant difference could

be observed between the two mechanisms. Thus only the ratio, not the absolute values of Hprior

and Hsensor, influenced the behavioral outcomes.

One reason why we did not find any differences depending on the absolute amplitudes of

Hprior and Hsensor might be the fact that the task was too simple and thus easily learned by the

network. A more complex encoding of the experimental data, which also takes into account

the variability of the generated output could help to make differences between experiment 1A

and 1B visible. Here, the variance is estimated but not explicitly modeled in the data as a sam-

ple is drawn from the estimated posterior distribution. Modifying the input encoding to

explicitly model the variance of the signal, using for example population coding [45], could

help to investigate whether differences between changes in prior and sensory reliance might

exist. For the purpose of our investigation, however, the current implementation is sufficient

as we were rather interested in the possibility to model the differences using a single parameter

than in the differences between modifying prior or sensory precision.

In conclusion, experiment 1 demonstrated that a gradual change of the reliance on prior or

sensory information can replicate the changes that we observed in the human data. Therefore,

it seems possible that human cognition makes use of the same underlying cognitive mecha-

nism regardless of the situational context, but modifies this mechanism along a continuum to

fit situational constraints. Specifically, the precision associated with the sensory and prior sig-

nal might be modified depending on the amount of social information that is present in the

experienced situation.

These experiments demonstrated that changes of the precision of sensory and prior signals

might be directly connected to the observed behavioral changes. However, this is only one pos-

sible explanation. In the following subsection, we explore the alternative hypothesis, namely,
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that there are fundamentally different cognitive mechanisms underlying the behavioral change

observable between the three experimental conditions.

5 Experiment 2: Analysis of internal network dynamics

While the results obtained in experiment 1 render it plausible that the same cognitive mecha-

nisms might underlie the behaviors observed in all conditions of the human experiment, the

differences among conditions in the human experiment might be caused by fundamentally dif-

ferent underlying cognitive mechanisms. For example, the difference between the individual

condition and the two robot conditions seems to be of different nature than the change

between the mechanical and social robot condition. It is not only a change in the social, but

also in the perceptual domain: whether a point simply appears on a screen or is indicated by a

moving robot affects the whole experience of the participant. The difference between the

mechanical and the social robot condition, by contrast, is more subtle as it is not so much a

change in the visual perception, but in a change of the social context of the situation. Humans

might thus use fundamentally different cognitive mechanisms to switch between the individual

and robot condition in particular.

In this section, we investigate how the trained network model differentiates the three condi-

tions, looking specifically at change in activations of neurons in the recurrent layer while repli-

cating data of the three conditions. Notably, differences between the experimental conditions

are coded in our model only in terms of the behavior (i.e. the reproduced lengths). Differences

in the way of presentation that were present in the human experiment (e.g. whether points

appear on a screen or a robot touches the screen) were not explicitly modeled in the network.

Thus, if we find that the network codes differences between the conditions differently in the

three conditions, this indicates that these information must have been coded in the behavioral

data of the human experiment, and the network automatically extracted them in order to solve

the learning task.

Unlike experiment 1, this analysis does not require us to modify any hyperparameter.

Instead, we directly observe how the network self-organizes its structure to accommodate the

dynamics caused by the three different experimental conditions. Since these are all trained

within the same network, we can directly compare their corresponding network dynamics.

The core question is thus whether the network dynamics reflect the differences between the

individual and the robot conditions and between the two robot conditions, respectively, in dif-

ferent ways.

We therefore investigate how different conditions are represented in the internal activa-

tions of the neurons of the neural networks over the course of the trajectory (i.e. from time

step 0 to time step 21). The activations at one point in time are a 25-dimensional vector con-

taining the activation values of all the neurons in the recurrent network layer of the internal

model. These vectors were generated for each time step, and for all human experimental data,

using the corresponding initial state of the participant and the condition in which the behavior

was presented.

5.1 Results

An illustration of the network activations of time step 0 and time step 21 can be found in Fig 7.

The activations are shown in the two-dimensional space generated via principal component

analysis (PCA) from the original 25-dimensional vectors. In the left plot, the activations at

time step 0 are shown, which correspond to the 75 initial states. colored symbols label different

experimental conditions, the black symbols and ellipses show the mean and the covariance of

the three conditions. The right plot shows the activations at time step 21. Note that more
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points are visible in the right plot compared to the left plot because at t = 0 the trajectories still

cannot be differentiated depending on their length whereas this differentiation is reflected in

the network activations at t = 21.

Qualitatively, it can be observed that the mean and the covariances are similar for the

mechanical and social robot conditions, in the first as well as in the last time step. This result is

to be expected because the behavior in these two conditions was more similar to each other.

However, a difference between the first and the last time step can be observed in the covari-

ances: in the first time step, the covariance is larger in the individual condition than in the

robot conditions, whereas in the last time step the covariance appears relatively smaller in the

individual conditions.

This covariance indicates how variable the internal activations are in each of the three

experimental conditions. A higher variability at time step t indicates that the differences that

arise between participants in this condition are coded more strongly in the network dynamics

at this point in time.

Fig 7 shows only the results of a single trained network. To investigate whether there is a

systematic change of variability over the course of time, we quantitatively measured the vari-

ability in the network activations of the three experimental conditions for all the ten networks

across time.

To compute the variability between the activations of different participants in the network,

we calculated the distances of the networks’ activations within the three conditions as visual-

ized in the scheme in Fig 8. In essence, activations were grouped into different categories

depending on the length of the stimuli (eleven length categories were selected by identifying

the most common presented lengths in the human data, namely, lengths which were presented

more than 100 times during the experiment) and distances are computed only within the

length categories. The reason for this procedure is that we want to measure the differences in

how different participants are represented in the network, but not differences in the

Fig 7. The first two principal components of the network activation traces of one example network (capturing 83% of the variance), at the first time

step (left) and at the last time step (right). The black symbols show the mean, ellipses the covariances of the points of the corresponding experimental

conditions.

https://doi.org/10.1371/journal.pone.0273643.g007
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reproduced lengths that also affect the network activations. Thus, the distances between all two

activation vectors x and y of the same length category and experimental condition are com-

puted as 1=N �
P

ið

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � yiÞ
2

q

Þ. The results are shown in Fig 9. This plot shows the mean and

standard error across the ten networks of the variability between activations of the same exper-

imental condition. In line with the qualitative results in Fig 7, it can be observed that the indi-

vidual condition has the highest variability in the beginning and the lowest variability in the

end of trajectory generation.

The differences between the variability of the individual condition and the social condition

are statistically significant in time step t = 0 (p< .05, Rm2 = .16) as well as in time step t = 21

Fig 8. Explanation of how the pairwise distances across participants were computed from the neural activation traces. Each circle represents

one trajectory of 25 × 22 where 25 is the number of neurons and 22 is the number of time steps. Data is split into 11 length categories and the

pairwise distances within conditions are computed for each length category individually and later averaged, such that differences between lengths

do not affect the final measure. The final measure, thus, shows for each time step the average distance between participants (cf. Fig 9).

https://doi.org/10.1371/journal.pone.0273643.g008
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(p<.05, R2 = .16) when modeling the reproduced distance with linear mixed effect models and

condition as fixed effect and network ID as random effect.

5.2 Discussion

Results from this experiment provide access to the differences that exist among the individual,

the mechanical and the social conditions in the generation of the trajectories. In particular, we

suggest that the variability of network activations for the three conditions throughout the

22-time steps allows for a deeper understanding of how different the encoding of the network

is across the three conditions for the entire generation process of the trajectories. Specifically,

if the variability is high at time step 0, this indicates that the network mainly used differences

in the encoding of the initial state of the network for differentiating the conditions when start-

ing with the trajectory generation. On the contrary, if the variability is high at the last time step

of the trajectory generation, this suggests that the differences between the conditions were

mainly affected by the differences in the input data.

We observe that at the beginning, the individual condition shows higher variability than

the social condition. In contrast, at the end, the variability is higher for the social as compared

to the tablet condition. Therefore, for replicating the individual condition, the network mainly

relies on information about the initial state, i.e., the network’s prior information. In contrast,

the social condition is affected more strongly by the input data that is presented during trajec-

tory generation. This finding suggests that the neural network used different mechanisms to

differentiate between the participants, depending on the condition.

Whereas experiment 1 demonstrated that the differences between the conditions could be

explainable via a single unified mechanism, experiment 2 hints at that the network might have

used two fundamentally different strategies to encode the individual vs. the social condition,

indicating that also multiple distinct mechanisms could be at play. Firstly, the network relied

Fig 9. Mean and standard error across networks of the average pairwise distances between the neural activation

traces of the three different conditions (cf. Fig 8). Activations were normalized to [0, 1] independently for each

network beforehand.

https://doi.org/10.1371/journal.pone.0273643.g009
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on the differences in the initial states. In the experiment, this strategy could correspond to

using context information about the perceptual task (top-down strategy). The second mecha-

nism that the network used was the input signal (bottom-up strategy). In the perceptual exper-

iment, the sensory information was richer in the case of the the social situation compared to

the individual condition (the robot’s finger movements vs. a dot on the screen). It is, therefore,

plausible that the participant relied more strongly on this richer information in the case of the

social interaction. Interestingly, the network shows a similar trend using more information

about the input signal for generating the trajectories in the social condition compared to the

other conditions. This finding makes it plausible that such an interplay of two mechanisms

could explain the behavioral differences. However, note that the input signal provided to the

network input solely included the behavioral output, i.e., there was no difference in the rich-

ness of the signal in the computational study depending on the conditions. This limitation,

however, is at the same time a strength of the computational model: the results hint at differ-

ences in the behavioral trajectories of the different although no confounding factors were pres-

ent in the input signal. Still, it would be important in the future to verify this finding,

extending the experiment to explicitly include factors such as the perceptual richness of the

signal.

6 Conclusion

The aim of this study was to investigate how behavioral differences caused by differences in

the social context can be replicated in a neural system, in order to generate hypotheses about

the underlying cognitive mechanisms. For this purpose, we trained a neural network with

human behavioral data of an experiment studying visual perception of space where three dif-

ferent conditions were tested ranging from an individual to a social task setting.

First, we demonstrated that the hyperparameters of the computational model that control

the precision of the sensory and prior signal, respectively, can account for the differences

among the experimental conditions (experiment 1). Specifically, we found that altering the

precision of the prior as well as the precision of sensory input can replicate the behavioral dif-

ferences between the three conditions: a stronger reliance on the prior, as well as a weaker reli-

ance on sensory input, equally shifted the behavioral output of the network from the human

behavior in the social condition towards the behavior in the individual condition, in line with

the finding of [15] that participants tended more towards the mean in the individual condi-

tion. This finding makes it plausible that the same cognitive mechanism could be underlying

the perceptual differences between the three conditions. Alternatively, different mechanisms

could be intervening jointly in the same inferential process of perception.

The advantage of the network modeling study is that we can analyze the network’s internal

representation in order to understand how it performs the task at the level of neuron activities.

Therefore, in a second experiment we analyzed how the differences between the conditions

were coded in the neural dynamics of the network, independently of the current context.

Therefore, in this second experiment we did not artificially modify the network’s mechanics

(as in experiment 1), but directly explored how the network internally represented and differ-

entiated the three experimental conditions. The findings support the hypothesis of a plurality

of phenomena affecting visual perception of space. We found that the variations between the

three conditions emerged at different moments in time, suggesting that different mechanisms

are at play. At the beginning of trajectory reproduction, more information about the non-

social conditions affected the network representation. At the end of the reproduction, the

representation is strongly driven by the differences in the social conditions, potentially due to

the richer visual input that was present in this task.
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The findings of this second experiment indicate that the balance between sensory and prior

information which we demonstrated in experiment 1 only tells a part of the story. All three

experimental conditions were differentiated in the neural encoding in ways that are intuitively

explainable by the design of the human behavioral experiment (i.e. the richer sensory informa-

tion provided in the robot conditions, see Section 5.2). The network solves the different condi-

tions in different ways although it did not know what differentiated the individual and the

robot conditions in the first place. This finding is interesting because it indicates that the

human behavior alone was sufficient to let network dynamics emerge differently between the

conditions, although the task design was exactly the same in all three conditions in the compu-

tational study.

As already emphasized in [15], “shared perception” indeed seems to be an important aspect

affecting our perception of the world. In this context, the word “shared” might mean both

‘‘communicated or disclosed to others’’ or “held and experienced in common” (see [26]) and

refers to the stimulus that was shared between the social robot and the study participant. Rely-

ing more on the shared sensory information instead of individual experiences in shared per-

ception is an important prerequisite for solving a task in cooperation.

In this study, we could add to the findings of [15] thanks to the use of a computational

model of which we cannot only observe the behavior, but also the internal dynamics of the net-

work, that is, how the network came to the decisions it made. Specifically, the neural represen-

tation of the stimuli in the network allowed us to look into the time dynamics during the

replication of the stimuli—something that remained hidden in the human behavioral experi-

ment in [15]. The proposed model simplifies cognition significantly, but still might capture

something important about shared perceptions, that is, how humans perceive their environ-

ment in a social context. The development of computational models for testing potential

underlying mechanisms of specific behaviors found in human experiments, thus, may be an

important means to form new hypotheses that may be tested in future experiments.

A further potential step for this research is to provide cognitive robotics with a computa-

tional model of shared perception. This can be developed on a robotic platform in order to

endow it with human cognitive mechanisms of perception that can take into account three dif-

ferent parameters: the sensory information, the prior, and the sociality of the context which

impacts on the balance between the other two parameters. Such socially perceiving robots

might indeed be used for further experiments in human-robot interaction to understand

which social mechanisms would strengthen or reduce the phenomenon of shared perception.

Also, it could be interesting to repeat the experiment of [15] while looking at the dynamic

changes of human behavior, by either changing the task design to a dynamic task, or by track-

ing human behavior over a longer time window.

Another important direction of future research is to strengthen the connection of the

computational study to the field of neuroscience. Such a stronger focus on computational stud-

ies for investigating neural phenomena is advancing significantly in recent decades, and a sub-

stantial amount of this work has focused on a topic that is also relevant for this study, namely,

the relevance of top-down and bottom-up processing on human cognition [4, 5, 39]. Our anal-

yses showed that human behavior in social context might be affected by the precision of sen-

sory and prior information, and that two temporally separated mechanisms might be involved.

Neurobiological studies are required to understand which precise neural mechanism are

underlying such differences. There is in fact evidence of neurobiological differences that can

be measured in the human brain in social context. The most prominent finding is that social

context affects the concentration of neuromodulators in the human brain [36, 46]. Interest-

ingly, neuromodulators also have been connected to the Bayesian framework. Specifically,

studies suggest that neuromodulators might affect perception by changing the reliance on
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prior and sensory information [5, 37]. Nevertheless, our study can only provide a potential

explanation but not verify the neurophysiological plausibility at this point. Further investiga-

tions are required to better understand the neurobiology underlying social behavior in the

context of a task like the one we investigate for gaining deeper insights into cognitive mecha-

nisms of shared perception.
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