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H I G H L I G H T S

• Citizen observatories can provide
valuable information for investigating
urban pluvial flooding.

• A 10-year database composed of
70,000 citizen flood reports is used for
analysis.

• Three decision tree learning models
are built to predict flood occurrences.

• Dominating features are further iden-
tified based on a principal component
analysis.
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A B S T R A C T

Urban pluvial flooding is one of the most costly natural hazards worldwide. Risks of flooding are expected
to increase in the future due to global warming and urbanization. The complexity of the involved processes
and the lack of long-term field observations means that many crucial aspects related to urban flood risks
still remain poorly understood. In this paper, the possibility to gain new insight into urban pluvial flood-
ing using citizen flood observations is explored. Using a ten-year dataset of radar rainfall maps and 70,000
citizen flood reports for the city of Rotterdam, we derive critical thresholds beyond which urban pluvial
flooding is likely to occur. Three binary decision trees are trained for predicting flood occurrences based on
peak rainfall intensities across different temporal scales. Results show that the decision trees correctly pre-
dict 37%–52% of all flood occurrences and 95%–97% of all non-flood occurrences, which is a fair performance
given the uncertainties associated with citizen data. More importantly, all models agree on which rainfall
features are the most important for predicting flooding, reaching optimal performance whenever short- and
long-duration rainfall peak intensities are combined together to make a prediction. Additional feature selec-
tion using principal component analysis shows that further improvement is possible when critical rainfall
thresholds are calculated using a linear combination of peak rainfall intensities across multiple tempo-
ral scales. The encouraging results suggest that citizen observatories, although prone to larger errors and
uncertainties, constitute a valuable alternative source of information for gaining insight into urban pluvial
flooding.

© 2019 Elsevier B.V. All rights reserved.

* Corresponding author.
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1. Introduction

Urban pluvial flooding occurs when stormwater produced by
intense or long-lasting rainfall exceeds the capacity of urban
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drainage or sewerage systems (Kolsky, 1999; Butler and Davies,
2004; ten Veldhuis, 2010). It is one of the most common and costly
natural hazards worldwide, posing a great threat to human safety
and economic growth (Spekkers et al., 2015). The risks and impact
of urban pluvial flooding are expected to increase with time as a
result of rapid urbanization, aging infrastructure and climate change
(Huong and Pathirana, 2013; Akter et al., 2018; Zhou et al., 2019),
making the topic a very active field of research in urban water
management (Rosenzweig et al., 2018).

For the purpose of flood risk management, one key issue remains
the ability to predict the occurrence of flooding based on exist-
ing stormwater infrastructure and rainfall inputs (Douglas et al.,
2010; Gaitan et al., 2015; Cherqui et al., 2015; Jiang et al., 2018).
Accordingly, a variety of studies have focused on determining critical
rainfall thresholds beyond which pluvial flooding is likely to occur
(Martina et al., 2005). The thresholds are defined either in terms
of rainfall intensities or total accumulations (Montesarchio et al.,
2011). The inferred thresholds can be used to predict local flooding
or design early warning systems (Martina et al., 2005). To deter-
mine the critical rainfall values, two main approaches have been
proposed: (i) physically-based hydrological modeling (Norbiato et
al., 2008; Yang et al., 2016) and (ii) statistical, data-driven analyses
(Carpenter et al., 1999; Martina et al., 2005; Golian et al., 2010; Mon-
tesarchio et al., 2011). Both approaches require long-time records of
spatially distributed high-quality hydrometeorological observations
across various temporal and spatial scales. Initially, studies used
rain gauges and simulated inundations to represent the rainfall and
flooding data. However, rain gauges can be scattered very heteroge-
neously and sparsely across catchments, making it impossible to get
a full picture of the spatial variability. This is a serious problem in
urban areas where the hydrological response can be very sensitive
to spatiotemporal rainfall variability (Schellart et al., 2012; Cristiano
et al., 2017). Hydraulic inundation models also come with their own
challenges, requiring a large number of field observations for calibra-
tion and validation, many of which are likely not to be available in
practice (Eggimann et al., 2017).

In recent years, substantial improvement in terms of rainfall
observations has been made thanks to the increased use of weather
radar in hydrology. By merging radar and gauges, accurate and
detailed characterization of the spatiotemporal variability of rainfall
becomes possible. This has resulted in an improved understanding of
flood responses (Thorndahl et al., 2017; Wright et al., 2014; Wang et
al., 2015; Zhu et al., 2013). The gap in terms of high-resolution hydro-
logical observations remains, however, a crucial limiting factor. To
bridge this gap, various studies have been proposed to replace pro-
fessional hydrological measurements by citizen observations (Smith
et al., 2017; Overeem et al., 2016, 2013; Yang and Ling Ng, 2017;
Mazzoleni et al., 2018; Weeser et al., 2018). Previous studies have
shown that such an approach can potentially benefit hydraulic and
hydrological modeling (Herman Assumpção et al., 2017; Starkey et
al., 2017) and flood risk monitoring and management (Wang et al.,
2018; Wehn et al., 2015; Liu et al., 2011), provided that the data are
of sufficient quality. For a more detailed review of the potential of
citizen observations applied to hydrology and water resources, see
Buytaert et al., 2014, Muller et al., 2015, See, 2019 .

Although citizen observations can contribute to hydrologi-
cal monitoring and modeling, they have not yet been explicitly
employed to predict urban pluvial flooding, partly because long-
term citizen datasets remain scarce. The present study aims to
address this issue by exploring the potential of citizen flood obser-
vations for deriving critical rainfall thresholds and predicting the
occurrence of urban pluvial flooding. The results are based on a 10-
year database of citizen flood observations collected in Rotterdam, a
pilot city in the Netherlands and very active in developing climate-
adaptation and resilience strategies (Dunn et al., 2017). The dataset
comprised about 70,000 citizen flood reports received via telephone,

mobile app, email, and webpage. The reports are correlated to 5-
min, 1×1 km spatial rainfall maps from the Dutch national C-band
weather radar network (Overeem et al., 2009b). The data are used to
train three different decision tree models for predicting the number
of flood reports based on maximum rainfall intensities at different
time scales, providing the basis for a simple early warning system for
urban pluvial flooding.

The paper is organized as follows. Section 2 describes the mate-
rials, including the study area, radar-based rainfall observations,
citizen flooding observations, and decision tree models. Section 3
presents the fitted decision trees and evaluates their performance.
In Section 4, the advantages and limitations of the approach are
discussed together with some ideas for future improvement. The
conclusions are given in Section 5.

2. Materials and methods

2.1. Study area

The study focuses on the city of Rotterdam, which is located in
a low-lying area in the delta of the Rhine and Meuse rivers in the
Netherlands (see Fig. 1). The city counts more than 640,000 inhabi-
tants spread over a heavily urbanized area of 257.6 km2, with more
than half of the total area being paved or semi-paved. Most areas
of the city are drained by a combined sewer system ( 1800 km)
whereas the remaining areas are drained by a separate sewer system
(500 km) (Solomon, 2013). Historically, stormwater systems in Rot-
terdam have been designed to be able to cope with rainfall intensities
of approximately 20 mm/h over short time windows of 10–15 min
with an estimated in-sewer storage capacity of 10–12 mm (RIONED
Foundation, 2017). However, the original infrastructure has aged
considerably and some parts had to be renewed which means that
the exact capacities are largely unknown. The city experiences a tem-
perate oceanic and humid climate with prevailing westerly winds
and regular precipitation throughout the year. The average annual
precipitation in the area is about 850 mm (Royal Netherlands Mete-
orological Institute (KNMI), 2019) with 90% of the most intense rain
events (at the 15–60 min time scales) occurring in summer, between
June and September (Overeem et al., 2009b). Convection plays an
important role in the development of heavy localized rain, with peak
intensities predominantly occurring between 13:00 and 21:00 UTC
(Overeem et al., 2009b).

2.2. Citizen observations of urban pluvial floods

In 2001, the municipality of Rotterdam established a citizen
observatory database with the objective to improve the monitor-
ing and management of urban sewerage and drainage systems (as
well as other public services which are irrelevant and not included
in this study). In the following years, a system was set up to col-
lect reports by means of phone, email, mobile app, and webpage.
Individual reports were stored in a database along with their date,
location (geotagging) and a short description of the event. Each cit-
izen report was attributed to one of seven different categories, five
of which are related to flooding (see Fig. 2). In this study, we used a
dataset of about 70,000 citizen reports collected between 2008 and
2017. The latter were subjected to basic quality control during which
all incomplete reports (i.e., without a valid date, geotagging, category
or description) and reports not directly pertaining to flooding were
removed prior to analysis.

The fact that many reports were collected by human operators
over the phone during working hours implies that weekends tend
to be characterized by a lower number of reports compared to
weekdays. Consequently, only the reports collected during the week-
days were considered for this study. The total number of reports
after quality control and removal of weekends was approximately
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Fig. 1. The study area in Rotterdam, located in the delta of the Rhine and Meuse rivers. A large area of the city is highly urbanized and (semi-)paved.

38,300 over 2609 days. The large number of reports (i.e., ≈ 3830 per
year) clearly highlights the extent to which Rotterdam suffers from
water-related nuisances and how frequent these incidents are.

It is important to clarify that not all flood reports in the dataset are
directly attributable to rainfall. Even on days without precipitation,
citizens will call in to report flooding in their house or neighbor-
hood associated with other causes not directly related to rain (e.g.,
high groundwater levels, bursts of water supply pipes). However,
evidence shows that the average number of reports received during
dry days tends to be much lower than on rainy days. To better dis-
tinguish between the two, a dry-weather baseline was established.
Inspired by the work of Spekkers et al. (2013) , we derived the

97.5th percentile of the number of reports received on days with
less than 0.1 mm of precipitation. This resulted in a baseline value
of 20 reports/day on dry days, which is above the average number of
reports per day in the database (≈ 14.7 reports/day). Using this base-
line, 443 weekdays with urban pluvial flooding and 2166 days with
non-pluvial flooding were identified.

2.3. Radar rainfall observations

Information about rainfall intensity on days with pluvial flooding
was obtained from the Royal Netherlands Meteorological Institute
(KNMI). Rainfall estimates were obtained from radar reflectivities

Fig. 2. Citizen reports about water nuisance, collected from 2008 to 2017 for the city of Rotterdam. Note that the categories “odor” and “pump malfunction” (in green) are not
related to urban flooding and are not considered in this study. A word cloud of the remaining five categories (in blue) presents the most frequently mentioned words. Font size
indicates the frequency of a given word.
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False positive (FP)
Actual: #Rep < 20

Predicted: #Rep >= 20

Non-flooding is predicted as flooding
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Predicted: #Rep >= 20
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False negative (FN)
Actual: #Rep >= 20

Predicted: #Rep < 20
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True negative (TN)
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Predicted: #Rep < 20
Non-flooding is correctly predicted

Positive predictive rate = TP/(TP+FP)
(the ratio in which predicted flooding events are

really flooding events)

True positive rate = TP/(TP+FN)
(the ratio in which flooding events can

be correctly predicted from all flooding

events)

Negative predictive rate = TN/(TN+FN)
(the ratio in which predicted non-flooding events

are really non-flooding events)

True negative rate = TN/(FP+TN)
(the ratio in which non-flooding events

can be correctly predicted from all non-

flooding events)

Inaccuracy = (FN+FP)/(TP+TN+FN+FP)
(the overall error rate of mislabeled events over all
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Fig. 3. Confusion matrix used to assess the performance of a decision tree. Only several indicators are included and others can be computed accordingly, e.g., false alarm/positive
rate = 1 – positive predictive rate and miss rate = 1 – true positive rate.

measured by the C-band radars in De Bilt (52.103◦N, 5.179◦E) and
Den Helder (52.955◦N, 4.79◦E) starting on January 1st of 2008. Note
that the radar in De Bilt stopped contributing to the composite in the
course of January 2017, at which point it was replaced by a new radar
in Herwijnen (51.837◦N, 5.138◦E). All radar composites are adjusted
and validated at hourly and daily time scales using the complete rain
gauge network from KNMI (33 automatic stations and 326 manual
gauges). Data are available for free in HDF5 format through KNMI’s
FTP server or in netCDF4 format via the Climate4Impact website. An
extensive description and references can be found in Overeem et al.
(2009a,b) .

For the purpose of this study, a ten-year time series of radar rain-
fall maps (from 2008 to 2017) over the study region at temporal
and spatial resolutions of 5 min and 1 km, has been retrieved. This
was used to compute areal-averaged rainfall intensities for each 5-
minute time step of the entire municipal area (i.e., 257.6 km2). To
investigate the effect of temporal resolution, the data were aggre-
gated from 5 min to eight coarser temporal scales (10, 15, 30, 60, 120,
360, 720 and 1440 min). Maximum rainfall accumulations Rdx (in
mm) were retrieved for all x-min aggregation time scales and used
for further analysis:

Rdx = max
j

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x/5∑
k=1

R5(k), . . . ,
( j+1)∗x/5∑

k=1+j∗x/5

R5(k), . . . ,
1440/5∑

k=(1441−x)/5

R5(k)

︸ ︷︷ ︸
Aggregation of 5-min rainfall to x-min rainfall

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1)

where j = 0,1,. . . ,1440/x − 1, x ∈ {5, 10, 15, 30, 60, 120, 360, 720, 1440},
and R5 is 5-min rainfall intensity.

2.4. Binary decision tree model

To represent the relationship between peak rainfall amounts (at
different time scales) and the occurrence of pluvial flooding, a binary
decision tree learning (DTL) model was selected (Breiman, 1984).
The latter implements an easy to interpret tree-shaped hierarchical
model to predict a binary outcome (yes/no) based on a set of fea-
tures. In our case, “yes” means pluvial flooding (i.e., more than 20
reports per day) while “no” means non-pluvial flooding (i.e., fewer
than 20 reports per day). The features used to make the decisions
along the different branches of the tree are given by the peak rainfall
amounts (expressed in mm) for each day, at nine different temporal
aggregation scales.

The decision tree model is trained on the radar-rainfall and citizen
report data and the model with the highest predictive performance

is used to derive critical rainfall thresholds for urban pluvial flood-
ing. The training part is done using the “fitctree” function in Matlab,
starting at the root and moving to the leaves. At each node, all possi-
ble splits are examined and the one that minimizes the Gini impurity
index of the two sub-populations is kept (Jost, 2006). The splitting
stops when (i) a node only contains observations of a single class
or (ii) any further split produces a child node with fewer than three
observations. Performance is assessed by means of cross-validation,
focusing on the following indicators:

• The confusion matrix: a 2×2 table in which each row rep-
resents a predicted outcome (i.e., more or less than 20
reports/day) while each column represents the actual observed
outcome (Fawcett, 2006). This is used to count the number
of true positives TP (i.e., correct flood warnings), true nega-
tives TN, false positives FP and false negatives FN (i.e., missed
flood events). From there, several performance indexes can be
computed, as shown in Fig. 3. Note that a good flood warning
system should have both low false negative rates and low false
positive rates.

• The re-substitution error, which is the inaccuracy of the DTL
model based on the training data (Schiavo and Hand, 2000). The
inaccuracy is defined as the false alarms over all the alarms,
i.e., (FN+FP)/(TP+TN+FN+FP). The re-substitution error rate
measures how well the model performs on the training data.
It tends to underestimate the true error rate that one would
obtain by applying the tree to new unseen data, especially if
the model is overfitted (i.e., tuned too tightly to the training
dataset).

• The 10-fold cross-validation error, which is obtained by ran-
domly partitioning the training dataset into ten equal-sized
subsets and computing the mean value of the re-substitution
error rates for all subsets. This provides a rough estimate of the
error when applying the model to new data (Bengio Bengioy
and Grandvalet Yvesgrandvalet, 2004). When the 10-fold cross-
validation error is significantly larger than the re-substitution
error, the tree is likely to be overfitted. Note that this approach
is more robust than splitting the data into two independent
training and testing datasets due to the low number of total
flood days (443) in the dataset.

2.5. List of models

The number and variety of features used to train a decision
tree model play an important role in determining its performance
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(Guyon and Elisseeff, 2003). To investigate this aspect and get more
insight into the most important rainfall features needed to predict
urban pluvial flooding in Rotterdam, three different decision tree
models were trained.

• Model 1: uses all nine available rainfall features at tempo-
ral aggregation scales from 5 min up to 24 h. During training,
the algorithm automatically chooses the most relevant features
and thresholds for classification.

• Model 2: is trained using only two rainfall features: Rd5 and
Rd1440 representative of the small-scale and large-scale peak
intensities. Because of the lower number of features, this model
is expected to perform slightly worse than the full model. How-
ever, since it only relies on two features for making its classi-
fication, it is operationally more straightforward to implement
and also easier to interpret.

• Model 3: is trained using two alternative multiscale rainfall fea-
tures determined by applying a principal component analysis
(PCA) to the original 9 rainfall features (Jolliffe, 2002; Guyon
and Elisseeff, 2003) and only keeping the two most meaning-
ful components. The main purpose of this model is to assess
whether linear combinations of peak rainfall intensities across
different time scales are more useful predictors of urban pluvial
flooding than Rd5 and Rd1440 alone.

3. Results

3.1. Model 1: all nine rainfall features

The first trained decision tree model is shown in Fig. 4-(a).
Although all nine rainfall features were available for training, only
three of them (5 min peak, 60 min peak, and daily total) were needed
to make the final classification, based on the algorithm described
in Section 2.4. This was expected, as many of the rainfall features
are highly redundant (i.e., correlated to each other) and only a
few of them are needed to make the predictions. According to this
tree, the first and most important rainfall threshold for distinguish-
ing flood days is the total daily rainfall amount Rd1440. Days with
Rd1440 < 12.7 mm are labeled as non-flood days (i.e., fewer than
20 reports/days), resulting in a classification accuracy of 89% (2,98
correctly predicted days out of 2368). All days for which the daily
rainfall accumulation was above 21.19 mm were labeled as flood
days (likelihood of 89%), therefore providing a first straightforward
way of predicting floods in cases where the only available data are
daily rainfall accumulations. However, this is clearly not a good strat-
egy as a unique daily rainfall threshold of 21.19 mm would result in
a large number of flood events being missed. To address this issue,
the tree considers two additional bifurcations depending on whether
the hourly maxima Rd60 is larger than 6 mm and the 5-min rainfall
amount Rd5 larger than 0.35 mm (4.2 mm/h). These additional two
thresholds increase the overall classification performance, although
the last bifurcation based on the 5 min peak intensity does not seem
to improve the results by much, resulting in rather large overall
misclassification rates of 45% and 34% respectively. By contrast, the
6 mm threshold at the hourly scale clearly helps the classification
by separating long-lasting low-intensity events with large accumula-
tions from those with higher peak intensity and low to modest daily
accumulations (e.g., localized thunderstorms).

Fig. 5-(a) shows the confusion matrix associated with the first
decision tree. Among the 443 flood events in the database, only 163
were successfully predicted by the model, resulting in a high miss
rate of 63%. On the other hand, the non-flood days were predicted
very well (2110 out of 2166 or 97%). Note that the predictive rates
for both cases are relatively good: among the 219 predicted flood

Rd1440>=12.7

Rd1440>=21.2
#Rep<20

0.89

2098/2368

Rd5>=0.35

Rd60>=6
#Rep>=20

0.89

50/56

#Rep>=20

0.91

21/23

#Rep<20

0.55

12/22

#Rep>=20

0.66

92/140

No Yes

No Yes

No Yes

No Yes

* Displays in the box:
1st row: predicted class

2nd row: estimated class

probability

3rd row: the number of

members satisfying the

condition / the number of all

members

Rd1440>=12.7

Rd1440>=21.2

#Rep>=20

0.89

50/56

No Yes

Rd5>=0.3

No Yes

#Rep<20

0.69

9/13

#Rep>=20

0.69

119/172

No Yes

Feat1>=13.7

Feat1>=24.2
#Rep<20

0.92

1991/2175

Feat2<1.23
#Rep>=20

0.78

127/162

#Rep>=20

0.66

57/86

No Yes

No Yes

No Yes

#Rep<20

0.55

103/186

(a) Classification tree using rainfall intensities of nine temporal resolutions

(b) Classification tree using 5-min and daily rainfall intensities

(c) Classification tree using two principal components

#Rep<20

0.89

2098/2368

Fig. 4. Binary decision trees trained by using (a) rainfall intensities at nine selected
temporal resolutions; (b) Maximum 5-minute (Rd5) and 24-hour (Rd1440) rainfall
depths, and (c) two principal components by conducting a PCA. The decision tree pre-
dicts flooding and non-flooding by checking whether the number of reports exceeds
the dry-days baseline of 20 reports per day. Note that the symbol ‘#Rep’ stands for the
number of reports.

events, 163 were actual flood days (positive predictive rate of 74%)
and among the 2380 predicted non-flood days, 2110(88%) were cor-
rect. The inaccuracy, which is the overall error rate for both flood
and non-flood days, is 13%. The 10-fold cross-validation error rate is
13.8% which indicates that the tree is probably not overfitted.

3.2. Model 2: 5-min peak intensity and daily accumulation

The second fitted decision tree model is shown in Fig. 4-(b). It
was trained using only two of the nine available rainfall features:
Rd5 and Rd1440. The first two bifurcations in the tree are identical to
model 1 (Fig. 4-(a)). The main difference concerns the third bifurca-
tion on Rd5 ≥ 0.3 which replaces the previous one based on hourly
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(a) The decision tree trained by using rainfall intensities of nine temporal resolutions

(b) The decision tree trained by using 5-min and daily rainfall intensities

(c) The decision tree trained by using two principal components

Fig. 5. The confusion matrix of the trained decision trees based on (a) rainfall intensities at nine selected temporal resolution; (b) Maximum 5-minute (Rd5) and 24-hour (Rd1440)
rainfall depths, and (c) two principal components by conducting a PCA.

peak intensity. In model 2, this branch is replaced by two nodes with
identical likelihoods of 0.69. The confusion matrix associated with
this new tree is shown in Fig. 5-(b). Among the 443 flood events,
169 events (+6 with respect to model 1) were correctly predicted,
resulting in a slightly lower miss rate of 62%, compared to model
1. The true negative rate remains almost the same, with 2107 cor-
rectly predicted days among 2166(−3 compared to model 1). The
overall inaccuracy is 13% and the 10-fold cross-validation error of
14% suggests that the tree is probably not overfitted. Since the over-
all performance remains almost unchanged between model 1 and
model 2, this suggests that there is little added value in including
more than 2 temporal aggregation scales in the rainfall data when
making the predictions. In other words, additional information about
rainfall intensities at intermediate time scales does not significantly
help the detection of flood events.

A two-dimensional diagram with the decision regions corre-
sponding to model 2 is shown in Fig. 6-(a). The two colors are used
to indicate the labels attributed to the observations as a function of
Rd5 and Rd1440. Based on this diagram, a system operator or manager
can rapidly estimate the likelihood of urban pluvial flooding based
on the 5-min peak rainfall intensity and daily accumulations during
the past 24 h. Alternatively, rainfall forecasts for the next 24 h can be
used to help identify potentially dangerous situations and issue an
early warning.

3.3. Model 3: features based on principal component analysis

The third and last model is trained using two new features
obtained by principal component analysis (PCA). The new features
are linear combinations of the nine daily peak rainfall intensities at
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(a) Predictions from the classification tree that uses 5-min and daily rainfall

(b) Predictions from the classification tree that uses two principal components

p = 0.89 p = 0.89

p = 0.69

p = 0.69

p = 0.92 p = 0.78

p = 0.55

p = 0.66

Fig. 6. Predictions made by two decision tree models based on their respective critical
rainfall thresholds: (a) Rd5 and Rd1440, and (b) two principal components following
from a principal component analysis. The letter p stands for probability of a correct
model prediction.

5, 10, 15, 30, 60, 120, 360, 720, and 1440-min temporal resolutions
with coefficients given in Table 1. The first feature corresponds to the
first principal component, explaining 95% of the total variance while
the second explains 3.1%. Note that the total variance in the case of
PCA is the trace of the covariance matrix, i.e., the sum of eigenvalues,
and the explanation rate is a ratio of a given eigenvalue to the trace.
In other words, eigenvalues corresponding to the first two principal
components take up 95% and 3.1% of the sum of all eigenvalues. Since
they are uncorrelated, the two features taken together explain 98.1%
of the total variance in the rainfall data. The interpretation of the new
features is rather straightforward: feature 1 is a weighted sum of
rainfall amounts at different time scales, with larger scales receiving
more weight, therefore favoring total accumulation and persistence
over peak intensity (e.g., large frontal systems). The second com-
ponent puts more weight on scales between 60 and 120 min with

total daily amounts only playing a minor role. It therefore specifi-
cally targets localized convective storms (e.g., thunderstorms) with
high peak intensities but low to medium daily accumulations. The
latter are less common than large frontal systems but obviously very
relevant for local urban flooding, which has been reported in the
literature (Daniels et al., 2014; Overeem et al., 2009a,b). Additional
analyses (not shown) were also carried out to investigate the val-
ues of two features for every month, indicating that large feature 2
occurs exclusively in the summer ( June–September) and is likely to
be associated with summer thunderstorms.

The fitted decision tree with the two new rainfall features is
shown in Fig. 4-(c). Its structure is identical to model 2, with feature
1 (weighted accumulation) taking over the role of Rd 1440 and fea-
ture 2 the role of Rd 5. The main difference concerns the values of
the critical thresholds used to make the decisions which are obtained
by combining rainfall data at different scales and therefore harder to
interpret physically. The decision regions of the tree as a function of
the feature values are shown in Fig. 6-(b) and the confusion matrix
is provided in Fig. 5-(c). Of the 443 actual flood days, 230 events
were correctly predicted (52%). This is significantly larger than for
the first two models. On the downside, the number of true negatives
has decreased ( 2048 out of 2166) and the positive predictive rate has
dropped to 66% (i.e., the model has a false alarm rate of 34%). Overall,
the inaccuracy is 13% and 10-fold cross-validation error is 14%, which
are comparable to the first two models. The comparison between
model 2 and 3 suggests that a linear combination of rainfall intensi-
ties at different scales can improve the prediction. However, the gain
in performance is only marginal and mostly concerns the prediction
of non-flood events. When it comes to positive predictive rates, all
models seem to suffer from large false alarm rates in the order of
26–34 %. Possible explanations for why the models fail to correctly
predict the many flood events are discussed in the next section.

4. Discussion

4.1. Interpretation of critical rainfall thresholds for urban pluvial flood
prediction

The trained decision trees show that a fair distinction between
flood and non-flood days can be made using either a combination of
5-min peak rainfall intensity and daily accumulation (model 2) or a
linear combination of rainfall intensities at nine different temporal
scales (model 3). Model 2 is simpler and easier to interpret in terms
of physical quantities but model 3 has a slightly better balance in
terms of false positive and negative rates. In both cases, the combi-
nation of short-duration rainfall peaks at hourly or sub-hourly scales
together with information about the total daily accumulations was
necessary to achieve reasonable performance. The derived threshold
values of 0.3 mm/5 min(equivalent to 3.6 mm/h) and 12.7 mm/day
are consistent with the guidelines followed by the city of Rotter-
dam in the 1950–1980s (RIONED Foundation, 2017), when most of
the currently existing stormwater and drainage systems were built.
At that time, the system was designed for approximately 5 mm of
rain over 15 min(i.e., 20 mm/h) and 10–12 mm of in-system stor-
age capacity associated with longer time durations (e.g., 24 h). The
short-duration value corresponded to a rainfall return period of
approximately 1 year in the 1950–1980s ’ standard (RIONED Founda-
tion, 2017). The threshold of 12.7 mm daily accumulation in model
1 or 2, below which no flooding is expected to occur, is likely to be

Table 1
The coefficients for the two first principal components as a function of the maximum rainfall amounts at nine different scales.

Coefficients Rd 5 Rd 10 Rd 15 Rd 30 Rd 60 Rd 120 Rd 360 Rd 720 Rd 1440 Explained

Feature 1 0.03 0.05 0.08 0.12 0.18 0.27 0.42 0.53 0.65 95%
Feature 2 0.09 0.17 0.22 0.33 0.42 0.45 0.30 −0.03 −0.58 3.1%



X. Tian, M-Marie-claire. ten Veldhuis, M. Schleiss, et al. / Science of the Total Environment 689 (2019) 258–268 265

Fig. 7. Scale-dependent maximum rainfall intensities of top six events with the
largest numbers of reports. Rainfall return periods are shown across the range of
time-scales, for current climate (KNMI, 2018).

associated with the 10–12 mm storage design guidelines. The short-
duration threshold of 3.6 mm/h in 5 min is much lower than the
design value, indicating that the effective transport capacity can be
lower, locally, than the design value, triggering local flooding. Possi-
ble causes of this are blockages of sewer pipes or inlets, as discussed
in ten Veldhuis (2010) .

Fig. 7 summarizes the characteristics of rain events responsi-
ble for the top 6 largest daily report numbers in the database (>
150 reports/day). In all cases, daily rainfall accumulations were above
the 10–12 mm storage capacity. However, only four out of six events
exceeded the critical threshold of 21.2 mm at the daily timescale,
identified as the second split of the decision tree models 1 and
2. Event 1, associated with the largest number of reports, exhibits
the highest peak intensities among all 6 events across all sub-daily
time-scales, staying well above the 1-year return period value and
reaching above 2-year return period at the half hour, hourly and
2-hour time-scales. Event 2 was also very intense at the hourly
and 2-hour time-scales (rainfall accumulations ≥ T=1 year). Event
3 was characterized by high long-duration accumulations, exceed-
ing T=10 years at the daily accumulation scale. Event 4 shows high
long-duration accumulations too, in particular at the 6- and 12-hour
time-scales. Events 5 and 6, despite having generated large num-
bers of reports, show low rainfall intensities and daily accumulations.
Both rain events stay well below the critical thresholds and half-year
return period across all time-scales. This suggests that flooding was
associated with other types of failure mechanisms, such as blockages
of sewer pipes, pumps or sewer inlets (ten Veldhuis, 2010).

4.2. False positives and negatives

To get a better understanding of the performance of the deci-
sion tree models, boxplots of the number of flood reports for all TPs,
TNs, FPs, and FNs are shown in Fig. 8, for decision tree model 2.
The boxplots clearly show that the majority of false negatives and
false positives occur when the number of citizen reports is close to
the baseline value of 20 reports/day used to distinguish pluvial flood
reports from other non-rainfall related flood reports.

Clearly, the absence of information about the origin of the flood-
ing in citizen data appears to be a limiting factor here. Indeed, in

Fig. 8. Boxplots showing the number of reports for TP, TN, FN,and FP events, based on
Model 2. Boxes indicate 75th and 25th percentiles and whiskers show minimum and
maximum values.

many cases, a mixture of rainfall-related flooding and other failure
mechanisms are likely to play a role. Fig. 9 shows rainfall intensities
associated with FP and FN events. Many of the FP events are asso-
ciated with rainfall intensities in the range of 0.3 < Rd5 < 1 and
12.7 < Rd1440 < 21.2 mm/h. Plausible explanations for this are (i)
under-reporting when flooding happened in an area of lower popula-
tion density, (ii) under-reporting due to public holidays, lost records
or simply a lack of time or staff to attend the phones, and (iii) the
possibility that flood reports may have been filed later, on the days
following the rain event. In fact, this is hard to verify as citizen flood
reports do not come with a precise time stamp except for the day
when the report was filed and make no distinction between the time
of the incident itself and the day on which it was reported. On the

Fig. 9. Erroneously predicted events with the number of their corresponding reports,
i.e., false negatives (274) and false positives (59), from Model 2, which is built based
on Rd5 and Rd1440 critical rainfall thresholds.
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other hand, there were also many FNs in the model, which corre-
sponded to days with no or little rain (e.g., Rd1440 < 5 mm). The most
likely explanation for the flooding in these cases is a blockage in the
stormwater system rather than excess rainfall (ten Veldhuis et al.,
2011, 2010). Alternative explanations are (i) an underestimation of
rainfall by radar, and (ii) large amounts of antecedent rainfall on the
days prior to the flooding. Concerning the first point, it is important
to remind that the radar rainfall estimates have been bias-corrected
using gauge data at the hourly and daily time-scales which means
that underestimation at daily time-scales rarely exceeds 10–20 %
(Overeem et al., 2009a,b). Underestimation at shorter time-scales is,
however, more likely to occur. The antecedent rainfall scenario is
difficult to verify as citizen flood reports do not contain a precise
time stamp, making it impossible to determine the exact amount of
rain that fell on the days leading to the flood event. Another impor-
tant fact to keep in mind is that reporting rates vary geographically
depending on population density and sociodemographic factors such
as age, education and cultural background. Also, one has to keep in
mind that citizen observations are made by non-experts, which often
evaluate situations differently than trained professionals.

4.3. Data quality from citizen observatory

Results of this study imply that citizen flood reports can be a
valuable source of information for studying flood incidents and their
link to rainfall inputs. However, the way that information is col-
lected means that many practical limitations remain. The first is a
general lack of details about what caused the floods (e.g., broken
pipe, blocked sewer, malfunctioning pump, excess rain or a combi-
nation thereof), which would support a better distinction between
pluvial floods and other non-rainfall related incidents. In this study,
all days with more than 20 reports were assumed to be pluvial flood
events. This baseline was established by taking the 97.5 percentile
of the number of reports during non-rainy days. Results show that
many days with flood report numbers close to the baseline were mis-
classified. Apart from that, cases of FPs and FNs (e.g., large rainfall
amounts but small numbers of reports or vice-versa) may be a result
of imperfect matching between rainfall and reports caused by the
poor temporal resolution of citizen data (i.e., the only available infor-
mation is the day on which the report was filed). For example, if a

heavy rain event occurs late in the evening, the reports are likely to
be logged on the next day only. If a rain event extended over two
days or more, it is unclear how the reports will be distributed over
time. To further investigate these timing issues, additional analyses
(not shown) were carried out by expanding the time window for the
rainfall inputs to 48 h prior to the reports. However, this new strat-
egy did not improve the performance of the decision trees nor did it
increase the correlation between rainfall and the number of reports.

Another potential limitation is that critical rainfall thresholds in
this study were derived using the full datasets, without account-
ing for possible trends across years or seasons. The occurrence of
blockages may have a seasonal signature, associated with blossom
or leaf fall in spring and autumn, respectively. To examine the sea-
sonality of the reports and predicted flooding/non-flooding events, a
stacked bar chart is shown for all TPs, TNs, FPs and FNs of Model 2
with respect to their percentages in each month of a year (Fig. 10).
It shows that the true positive rate appears to be correlated with
the number of monthly reports, reaching a low in the relatively dry
months of March, April and May and a high in July, August, and
September. This makes sense as the flooding that happened during a
relatively dry month is less likely to be a pluvial one. Similarly, the
model also appears to be better at predicting non-flooding events in
relatively dry months, as shown by the higher true negative rates and
lower false negative rates between the months of March and May. On
the other hand, the wetter months, e.g. January (with frontal rainfall)
and August (with summer storms), contain significantly more pluvial
flood events and also more TPs and fewer TNs. These seasonal vari-
ations in performance are not a shortcoming of the model itself but
more likely the result of a general lack of information about the type
of reported flood events. The possibility to distinguish between plu-
vial and non-pluvial flood reports would probably help significantly
in achieving a lower false positive rate during the drier months. In
the absence of this information, the model will naturally tend to fit
better on months with more reports. The same comment applies to
the distribution of model performance across weekdays, although
differences there appear to be much smaller than over the months.

Lastly, it is worth pointing out that the results presented in this
study are based on observations spanning a relatively long time
period of ten years. Classification and tree training were performed
on the entire dataset neglecting annual variations, which may not be

Fig. 10. Average true positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false negative rate (FNR) of model 2, with respect to each month of the year based
on 10 years of data from 2008 to 2017. The blue line shows the average number of reports per month.
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the case in reality and does not account for the growth in popula-
tion nor possible shifts in the ways citizens report flood incidents. For
example, a growing number of reports are now submitted through
mobile apps in addition to the phone, resulting in approximately
1000 more reports per year since 2014. Reports submitted via the
webpage and the app generally contain more details, including (very
recently), the possibility to upload photos of the incident. This is
an encouraging development that hopefully will help increase the
overall quality and consistency of the reports.

5. Conclusion

In this study, we used a ten-year dataset of 70,000 citizen
flood reports for the city of Rotterdam and radar rainfall maps
at 1 km, 5-minute space-time resolution to derive critical thresh-
olds beyond which urban pluvial flooding is likely to occur. Three
decision tree models were trained to predict the occurrence of flood-
ing based on peak rainfall intensities across a range of different
temporal scales. Results show that the decision tree models cor-
rectly predict 37%–52% of all flood occurrences and 95%–97% of
all non-flood occurrences. All models reach the best performance
when short- and long-duration rainfall peak intensities are com-
bined. Further improvement can be achieved when critical rain-
fall thresholds are calculated using a linear combination of peak
rainfall intensities across multiple temporal scales, using principal
component analysis.

Our results suggest that citizen observatories, although prone
to larger errors and uncertainties, constitute a valuable alternative
source of information for gaining insight into urban pluvial flood-
ing. The study also highlighted a number of issues related to citizen
flood observations which need to be improved. The first concerns the
lack of information about the type and origin of the flooding, mak-
ing it difficult to distinguish between events triggered by intense
rain and those triggered by other failure mechanisms (in particular,
sewer blockages). The second concerns timing between rainfall and
flood reports; a more precise time stamp of flood occurrence (e.g.,
up to the minute) would enable better identification of rainfall con-
ditions associated with the flood generation. Despite all these issues,
results are highly encouraging, clearly highlighting the possibility to
infer physically plausible critical rainfall thresholds responsible for
urban pluvial flooding. And although the derived rainfall thresholds
are specific to Rotterdam, the approach and methods are sufficiently
general to be transferable to other urban catchments as well, where
a citizen flood reporting system is in place.
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