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Abstract

Nowadays, the rise in energy consumption and the integration of renewable energy resources (RES)
have introduced significant challenges to the existing power grid, making it necessary to upgrade the
current power system. However, considering the high variability in load and RES and the large number
of possible investment options, the power system expansion planning problem results in a large mixed
integer linear problem (MILP), or in some cases, a non-linear problem, impractical to solve for real-
world scenarios. Time-series aggregation (TSA), capturing representative load and RES patterns, has
emerged to reduce the temporal complexity, making the power system expansion planning model much
easier to solve while providing similar final results.

Current TSA methods mainly rely on passive clustering, focusing on the statistical proximity between
the representative periods and the full-space time-series. However, this approach does not guarantee
a satisfactory solution for the final expansion planning problem in general cases, even with predefined
extreme periods implemented such as days with maximum load and minimum available RES. The
operation of the power system and extreme conditions are highly sensitive to the specific power system
configurations, making the standalone TSA method unreliable in practical applications.

To improve the time-series aggregation in terms of the power system operation, firstly, the methods
of assessing the performance of the estimated investment decision are explored directly in terms of
the objective function. By introducing the full-space operational cost model for the power system with
the estimated investment decision, the operational cost error made by representative periods can be
obtained, referred to as the operational estimation error. The actual objective difference between the
estimated investment decision and the optimal investment decision found by the full-space expansion
planning model can also be evaluated, denoted as the optimality gap. It is found that the optimality
gap is bounded by the difference in the operational estimation error of representative periods for the
power system with the two investment decisions. As the operations of the power system with the
estimated and optimal investment decisions are better estimated, the simplified model can provide a
closer investment decision.

Subsequently, looking into the operational estimation error, the performance of representative peri-
ods in estimating the full-space operational cost is highly unevenly distributed among the full-space
time-series. Representative periods fail to accurately estimate a minor portion of the full-space time-
series, causing extremely high operational estimation errors that contribute to the majority of the total
operational estimation error. This uneven distribution remains as the number of representative periods
increases, indicating that standalone TSA methods are not capable of capturing the extreme conditions
of the specific power system operation.

Therefore, to improve the time-series aggregation in terms of its ability to better estimate the operation
of the power system, bad-performing representative periods and original periods with high operational
estimation error can be identified and prioritized, forming a feedback enhancement loop. Case studies
show that the feedback enhancement with re-clustering on the bad-performing representative periods
improves the optimality gap by more than 50% compared with the standard mean-based clustering
method.

Keywords: Power system expansion planning; Optimization; Time-series aggregation; Clustering; Op-
erational cost.
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1
Introduction

1.1. Overview
1.1.1. Background
The electric power system is the largest machine ever built by human beings, serving as the fundamen-
tal infrastructure of modern society. Transmission networks and distribution grids reach nearly every
house and factory worldwide, supplying the energy essential for daily work and living needs [1]. The
capacity and reliability of the electric power system are crucial for the development of modern society,
attracting significant attention from decision-makers. Recently, the electric power system has gathered
even more focus due to climate change.

In the 2015 Paris Agreement, countries around the world committed to reducing greenhouse gas emis-
sions to net-zero in the second half of this century [2]. This commitment aims to limit the global tem-
perature rise to below 2°C above pre-industrial levels. To achieve this ambitious climate target, the
excessive use of fossil fuels in electricity generation must be replaced by renewable energy sources
(RES) [3]. RES are capable of generating electricity with zero greenhouse gas emissions and minimal
air pollutants. The variety of RES, including solar, wind, hydro, biomass, geothermal, and hydrogen,
makes it possible for all nations around the world to undertake the energy transition [4]. The Inter-
national Renewable Energy Agency estimates that 90% of the world’s energy can be supplied from
RES by 2050 [5]. On the demand side, the emergence of electric vehicles (EVs) [6] and heat pumps
[7] is electrifying traditional fossil fuel usage, thereby contributing to the reduction of greenhouse gas
emissions.

However, the current power system, built decades ago, is not yet ready for the energy transition. Figure
1.1 illustrates the current available load and generation capacity in the Netherlands that can be inte-
grated into the power grids. The colored regions indicate areas where capacity is limited or completely
exhausted. Much of the Netherlands is heavily congested, indicating that the current power system
cannot support either new or expanded load or generation facilities.

The attractive electrification of cars into EVs, gas heaters into heat pumps, and the deployment of
RES is hindered by the limited capacity of the existing system. Additionally, unlike stable coal-based
thermal generators, the generation profile of RES is highly variable, aggravating the congestion issues.
Therefore, to meet the ambitious targets of the energy transition, upgrading and reforming the current
power system is imminent.

1.1.2. Power system expansion planning
The performance of generation facilities and transmission lines is highly dependent on their location, ca-
pacity, type, and flexibility. A significant investment in generation facilities may face heavy congestion,
extremely reducing the operational benefits relative to the investment cost. Therefore, optimization
models are widely used by system operators and decision-makers to determine the optimal invest-
ment decisions [9]–[11]. These models balance the investment costs against the benefits derived from

1



1.1. Overview 2

(a) Available load connection (b) Available generation connection

Figure 1.1: Power system capacity map in the Netherlands [8]

reduced operational costs, ensuring that the power system remains reliable and cost-effective.

As an increasing number of renewable generation resources are integrated into the power system, it
is vital to consider the variability in load and RES in the expansion of the current power system [12].
To capture this high variability, high-resolution time-series data of load and RES generation profiles
(e.g., hourly) have been implemented in newly developed power system expansion planning models
[12]–[14].

In power system planning models, the actual operation of power systems is estimated using economic
dispatch at each time point throughout the planning horizon while accounting for various operational
constraints [15]. The typical planning time horizon is 10 to 30 years [16]. Historical data on load demand
and RES availability are applied to predict the situation, especially the worst condition, that power
systems will face throughout the multi-decade time span [17]. The uncertainties in load requirements
and RES production are covered in planning models by considering as much historical data as possible
[15]. However, considering one decade of time-series data with hourly resolution results in millions of
constraints and variables. Additionally, the control variables for investment options are binary, making
the power system expansion planningmodel amassivemixed-integer linear (MILP) or even a non-linear
optimization model [18].

Such an optimization model, which simultaneously considers high temporal resolution and large time
scale, exceeds the capacity of current computers, especially with the multi-dimensional variability in-
troduced by multiple RES technologies [19]. Simplification is in high need to make the optimization
problem solvable in practice.

1.1.3. Time-series aggregation
To reduce the temporal scale while preserving the characteristics of load and RES profiles, a much
smaller set of representative time periods can be obtained from the large full-space time-series through
time-series aggregation (TSA) methods. The power system expansion planning model using aggre-
gated representative periods acts as a surrogate model of the planning model using the full-space
time-series, making it much easier to solve while providing similar results.

Conventionally, modelers applied heuristic approaches based purely on expert knowledge and expe-
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rience of power system operation to capture the magnitude and variability of RES and load demand
profiles. Short et al. [20] and Mallapragada et al. [21] separated the annual time series into four sea-
sons and acquired representative days by averaging all days within each season. These were further
partitioned into four 8-hour periods, each represented by its average value. Belderbos et al. selected
days with extreme load demand level and variability throughout the year as representative days [22].

Aside from heuristic approaches, clustering and optimization approaches, including k-means [23], k-
medoids [24], and hierarchical clustering [12], have been applied to better capture the patterns of load
and RES profiles. These methods aim to minimize the dissimilarity, usually measured by Euclidean
distance [25], between time periods within each cluster, and the centroid of each cluster is selected as
the representative period for all time periods within the cluster. In addition to statistical dissimilarities,
general patterns of the full-space time-series, such as the total load duration curve error, are considered
for the estimation of load and RES capacity profiles [26], [27].

It is worth noting that, the introduced time-series aggregation methods apply a one-size-fits-all ap-
proach, aggregating similar time periods over the total time-series under the assumption that reducing
the dissimilarity between the representative periods and the full-space time-series leads to a simplified
planning model with similar outcomes [28]. However, the standalone consideration of variability without
accounting for the specific power system might make the results unreliable. Representative periods
inevitably lose information on the capacity and variability patterns of RES and load demand after ag-
gregation from the original full-space time-series [19]. The impact of mis-estimation of RES and load
time-series is highly related to the configuration of the power system and the magnitude of the load
and RES capacity. Decreasing the total time-series error does not necessarily lead to better results in
the planning objective, resulting in inconsistent performance of TSA methods in estimating the correct
investment decision [19], [28]. This suggests that the time-series aggregation can be enhanced by
implementing the information of the power system.

Based on the expert knowledge and experience in power system operation, some a priori time pe-
riods with extreme conditions are preserved in the time-series aggregation process. These periods,
which contain extreme conditions, may trigger large operational costs and therefore potential invest-
ment. Domínguez-Muñoz et al. preserved peak demand days as representative days in the k-medoids
TSA method [29]. García-Cerezo et al. modified the k-means methods to capture the minimum and
maximum values of available RES capacities [30]. Moradi-Sepahvand et al. [12] and Ali Yeganefar et
al. [31] preserved days with the largest difference between load requirements and available RES (net
load) in the TSA process.

However, the extreme conditions are determined with heuristics and based on the features of time-
series itself. While these information might be capable of improving the final objective, no guaranteed
improvement can be observed for all cases [28]. The extreme conditions are highly sensitive to the
specific power system configuration, and therefore the correct periods with extreme conditions are
unknown before running the optimization model, reducing the reliability of TSA methods in the practical
application [32], [33].

1.2. Research goal and contribution
1.2.1. Main research objective
Due to the complex power system structures and highly variable RES and load profiles, solving the
power system expansion planning problem within a practical time frame is infeasible. Time-series
aggregation methods can capture the variation patterns of these highly variable RES and load profiles,
thereby reducing the complexity of the expansion planning model. However, the impact of RES and
load variation is highly depended on the specific power system to which it is applied. Consequently, the
performance of time-series aggregation methods varies across different power systems, making these
methods less reliable in practice even though they have been validated on small-scale test systems.
Therefore, understanding the actual operation of the specific power system is crucial when applying
time-series aggregation, forming the motivation of this thesis project:

How to enhance the accuracy of the reduced-space expansion planning with the knowledge of
the studied power system?
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By incorporating the knowledge of the specific power system’s operational situation, the aggregation
of time-series can be adapted to the unique characteristics of the system. This adaptive approach
ensures that the time-series aggregation method provides a reliable estimated objective value with high
accuracy for all applied power systems, enhancing the effectiveness of the power system expansion
planning process.

1.2.2. Research questions
To be able to sufficiently address the research objective, the analysis will be focused on the following
three research questions:

1. How to evaluate the performance of representative periods in terms of the error of invest-
ment decision and corresponding operational cost?
The primary interest regarding the studied power system is the impact of RES and load time-
series on the operational cost. By analyzing the power system expansion planning model with
both representative periods and the full-space time-series, the relationship between the impact of
mis-estimation of operation and the final investment decision can be examined. This relationship
can be potentially utilized as the specific “expert knowledge” of the power system.

2. What is the performance of time-series aggregation methods for power system expansion
planning in terms of the final investment decision?
In response to the high temporal resolution of time-series, many TSA methods have been pro-
posed. For power system expansion planning problems, the final objective is to find an estimated
investment decision that is close to the optimal decision. Therefore, the performance of TSA
methods directly in terms of the final investment decision should be assessed.

3. What are methods to make use of the operation related knowledge obtained from the sim-
plified model to improve the selection algorithm of representative periods?
Once a set of representative periods is obtained, the actual extreme periods can be identified
by comparing the representative-period-based simplified model with the full-space model. These
actual extreme periods can then be implemented into the TSA process, forming a feedback en-
hancement mechanism. Given that the computational burden is a primary concern in TSA-based
planning problems, the efficient utilization of these extreme conditions is required.

1.3. Structure of the thesis
To reach the proposed objective and answer all research questions, this thesis is structured following
the outline shown in Figure 1.2. After the overall background, motivation and objectives of this thesis
are introduced in Chapter 1, Chapter 2 introduces general formulations of power system planning and
reviews typical TSA methods used for planning problems, focusing on their application and suitability.
Chapter 3 provides the formulation of the power system expansion co-planning problem and the test
system used in the thesis, as well as the RES and load factor profile datasets. Chapter 4 introduces
and analyzes three metrics: simplification error, operational estimation error, and optimality gap. These
metrics measure the error in the estimated investment decision made by the simplified planning model
compared to the actual optimal decision calculated using the full-space expansion model (highlighted
in red in Figure 1.2). Chapter 5 then further analyzes the distribution of operational estimation error
among the whole time-series, locating time periods with extreme conditions. With the obtained extreme
conditions of the studied power system, Chapter 6 explores several feedback enhancement methods
aimed at reducing the operational estimation error and discusses its influence on the final objective
difference. Finally, the conclusion and future work will be discussed in Chapter 7.
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Figure 1.2: Thesis project outline



2
Time-series aggregation for power

system expansion planning

The efficient operation of power system depends on coordinating various components with different
constraints, such as transmission lines, generators, non-flexible and flexible loads, and RES facilities.
Optimization models are extensively applied for planning the upgrading and expansion of power sys-
tems, aiming to determine the optimal capacity and location for new investments based on predicted
climate and load demand profiles in the future. This chapter introduces general formulations for building
power system planning optimization problems.

In power system planning, particularly with the integration of a substantial amount of RES, a large histor-
ical dataset on climate and load demand profiles is required to adequately capture their characteristics
over the near future, covering the entire planning time span. However, the high temporal scale signifi-
cantly increases the computational burden of the planning optimization problem, making it impractical
to solve for complex power systems. Therefore, TSA methods are proposed to reduce the temporal
scale while preserving the key information of load and RES profiles. In this chapter, widely applied
TSA methods are then reviewed, and typical methods will be evaluated based on the operation of the
power system in later chapters.

List of symbols

Symbol Definition

Sets
B Index set of the number of bins for estimating the duration curve
O Time periods in the original full time-series set
F Feature set of load and RES capacity factors
T Index set of the number of data point within each time period
R Representative time periods
Objective variables
ERRO

R Difference between the representative set and the full time-series
set

tserr Normalized time-series error based on squared Euclidean dis-
tance

dcerr Normalized total duration curve error based on mean squared er-
ror

Decision variables

6



2.1. Power system expansion planning 7

Symbol Definition

U [i] Decision variable on the selection of a given time period in the full
time-series set [Binary], ∀i ∈ O

MO
R [i, j] Decision variable on whether a given time period i in the full time-

series set is represented by the representative time period j [Bi-
nary or [0,1]], i ∈ O, j ∈ O

W [i] Weight of each representative time period, ∀i ∈ O
Parameters
NRD Number of representative time periods
Ntotal Number of time periods in the full time-series set

2.1. Power system expansion planning
2.1.1. Overview
In most power systems worldwide, Transmission System Operators (TSOs) are responsible for main-
taining and upgrading transmission networks to prevent loss of load and therefore maximize social
welfare with minimal investment expenses [34]. To address the urban growth and the increasing power
congestion caused by rising demand, Transmission Expansion Planning (TEP) models are frequently
applied to guide the reinforcement and expansion of current transmission grids [15], [35]. Thesemodels
use pre-defined generation mixes and load demand to identify the optimal combination of transmission
line investments needed to meet all load requirements at the lowest possible cost [36].

Generation providers, on the other hand, are responsible for supplying sufficient generation capacity to
meet load requirements at the lowest cost, thereby generating profit [34]. Generation Expansion Plan-
ning (GEP) models, similar in structure to TEP but with multiple generation technologies as investment
options [22], [37], [38], are applied to determine the optimal generation mix within the constraints of the
existing transmission system [10].

Not only the generation facilities and transmission networks, but also the potential of decentralized
energy supply systems [18] and auxiliary services such as reactive power compensation devices [39],
[40] in power system can be maximized through optimization models by simulating their performance
in the power system operation.

However, solving the expansion planning of different components in separate models may lead to
sub-optimal investment decisions and inefficiencies in the overall power system operation in the fu-
ture [41]. The trade-offs, for example, between generation and transmission investments cannot be
sufficiently addressed by solving independent TEP and GEP models. Large capacities of RES are
mainly distributed in remote regions, far from residential and industrial areas. These remote regions of-
ten lack adequate transmission infrastructure, requiring significant upgrades to integrate RES facilities
[42]. Consequently, the economic benefits of RES heavily depend on the investment costs associated
with upgrading the transmission system.

Therefore, several co-optimization models have been proposed considering investments in multiple
components simultaneously [12], [30], [43], trying to capture the full potential benefits of transmission
expansion and energy storage systems (ESS) implementation in increasing the effective capacity of
RES [34]. This approach provides an investment solution closer to real-world cases, despite the in-
creased complexity of the optimization problem [36], which can be managed by applying a reduced
representative-period time set.

2.1.2. General formulation of power system expansion planning
In various power system expansion planning models involving highly variable RES, the optimization
problem is generally structured into three layers, as shown in Figure 2.1.

• Investment layer: highlighted in red, involves the expansion-decision control variables related to
investments in new generation facilities, transmission lines, and other power system components.
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It forms one half of the objective function, determining the capacity and location of new assets.

• Operational cost layer: highlighted in blue, calculates the accumulated operational cost across
the time span. It considers various factors such as generation costs, penalties for potential load
shedding, and maintenance. It forms the other half of the objective function, and the optimization
problem tries to balance these costs with investment costs and determine the optimal combina-
tion of investments.

• OPF layer: highlighted in green, deals with the dispatch of generators and power flow through
the transmission network. It can be achieved through AC and DC optimal power flow (OPF)
calculations, balancing supply and demand at each bus while respecting operational constraints
such as ramp and line capacity limits.

Figure 2.1: Overall structure of a power system expansion planning model

Investment layer
In the power system expansion planning, power system facilities, such as transmission lines [17], wind
farms [44], solar panels [33], reactive compensation devices [39], and ESS [14], can be applied as po-
tential investments. All potential investment options with different capacities and locations are consid-
ered in the calculation of the operational cost, with their participation in the power system controlled by
expansion-decision binary variables. The benefits of these investments, in terms of reduced operational
costs, are balanced against their associated investment costs in the objective function. Consequently,
the best combination of investments, which minimizes the total cost comprising both investment and
operational expenses, is selected.

Operational cost layer
The operational cost of the studied power system, including potential investments, is calculated based
on the input time-series of load demand and RES availability patterns. The accuracy of power system
expansion planning models is heavily dependent on precise representations of load and the dynamic
capacities of RES in the time-series. It is assumed that a large amount of historical data profiles is avail-
able with high resolution (e.g., hourly), adequately capturing the variations in load and RES patterns
for near-future predictions [14], [16].
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With the acquired time-series of load and RES profiles, the generation dispatch of generators, as well
as potential load shedding at each time point, can be obtained through OPF calculations. Assuming the
power system operates statically within each time interval (between consecutive time points), the load
and generation levels are considered as the averaged value between the beginning and ending time
points of each interval, demonstrated in Figure 2.2. By multiplying these values by the standard length
of the time intervals (e.g., 1 hour), the operational cost for each time interval, and subsequently for
the entire time span, can be determined. This most common method of calculating operational costs is
referred to as the piece-wise constant approach, or energy-based approach, due to the constant length
of the time intervals [17], [22], [24], [37].

Figure 2.2: Representation of piece-wise constant and linear approximation for generator power output

However, averaging the power trajectories within each time interval may lead to the over-estimation of
the actual flexibility capacities of power system operation, as the power variability in demand and gen-
eration is smoothed as its average value. The ramping constraints in OPF calculations are considered
based on the smoothed generation variability, leading to unfeasible dispatches in real cases [45].

Therefore, the piece-wise linear approximation method has been introduced in [46], [45], [12], approxi-
mating the power trajectories within each interval as a linear function between the value of the starting
time point to the value of the ending point, shown in Figure 2.2.

Compared to the piece-wise constant method, in the piece-wise linear method, the instantaneous power
is considered to change smoothly instead of being fixed at average power levels. This approach allows
for more accurate tracking of ramping requirements and peak values of dispatched generation levels
[46]. Consequently, the more accurately measured flexibility of power system operation is considered,
reducing the risk of infeasible operation results. Additionally, it has been shown that the piece-wise lin-
ear method does not increase the computational burden compared to the piece-wise constant method,
making it a better approach for application in planning models with linear constraints and objectives
[45].

OPF layer
The third and also the innermost layer of the power system expansion planning model is the OPF layer,
which determines the dispatch of all generators at each time snapshot to meet the required load while
respecting unit commitment constraints, such as power balance at each bus, generators and RES ca-
pacities, thermal generator’s ramp limit, and transmission lines loading limits [15], [17], [43], [47]. At
each time point (e.g., 8760 points for a one-year hourly dataset), OPF calculations are performed to min-
imize the total operational cost over the time span, including AC-OPF [48] and DC-OPF [49]. AC-OPF
simulates both the active and reactive power flow in the power system, considering voltage magnitudes
and transmission line losses [48]. Torres et al. [39] and Luburić et al. [40] proposed expansion plan-
ning models for transmission lines and reactive compensation devices using AC-OPF. However, the



2.2. Time-series aggregation in power system expansion planning 10

computational burden is substantial due to the non-linear characteristics of AC-OPF, especially when
a large number of time points is involved. Tao et al. applied supervised learning to predict AC power
flow in the planning optimization, reducing computing time by 90% [43]. Still, the non-linear character-
istics of AC-OPF make the planning model a non-linear and non-convex optimization model, with no
guaranteed global optimal solution.

When no reactive power focused components are considered as potential investment options, DC-
OPF, because of its linear characteristics, is widely applied in the power system expansion planning
[12], [14], [15], [24], [37]. In DC-OPF, the resistance of transmission lines is negligible, resulting in
zero active losses. Additionally, the voltage magnitude at all buses is assumed to be constant at 1
per unit (p.u.), and the voltage angle difference across connected buses is considered small enough,
neglecting the reactive power [49]. These simplifications make the planning model linear, easier to
solve, and guarantee a global optimal solution [50].

2.2. Time-series aggregation in power system expansion planning
Due to the significant computational burden of power system planning models, time-series aggregation
methods can be employed to simplify the planning models. The objective of time-series aggregation
is to identify a small set of time periods to replace the original large time-series in power system ex-
pansion planning models, making the planning model much easier to solve. This small set of time
periods should be similar to the original large time-series, capturing all characteristics of the full-space
time-series so that the planning model with the small set can provide similar investment decisions com-
pared to the results of the full-space planning model [19]. In terms of the objective of the planning
optimization problems, the TSA-based simplified planning optimization aims to find an investment deci-
sion that closely approximates the operational and investment cost compared to the cost for the actual
optimal decision. Therefore, the provided investment decisions and corresponding costs can serve
as references for regulators, decision-makers, and stakeholders as the actual optimal decision is not
accessible.

For all characteristics of the full-space time-series, which characteristics are important to keep in the
planning model during time-series aggregation? Modelers have applied several features based on
expert knowledge and experience as metrics for time-series aggregation, such as time-series dissimi-
larities [12], load duration curve mismatch [26], and single-day investment decision differences [44].

Based on the inherent assumption of similarity between the aggregated time periods and the original
time-series, time-series aggregation in power system expansion planning has two branches:

• Input-based TSA methods
Assuming that representative periods with similar statistical characteristics (e.g., variability, load
duration curve) lead to similar optimization models with closer objective functions, input-based
time-series aggregation aims to identify representative time periods that are statistically similar
to the original time-series.

• Cost-based TSA methods
The underlying assumption for cost-based approaches, on the other hand, is that periods with
similar investment decisions, as determined by single-period expansion planning models, can
be considered similar in terms of expansion planning and should therefore be clustered together
[44].

2.2.1. Heuristic time-series aggregation
The most intuitive and simplest method of time-series aggregation for power system optimization is
the manual heuristic approach based on seasons and calendar periods. Short et al. [20] analyzed
the Regional Energy Deployment System (ReEDS) in the United States from 2006 to 2050. Each
year of loads is represented by four days, one for each season. The value of each representative day
is obtained by averaging all days within each season, and each representative day is further divided
into four periods (10PM-6AM; 6AM-1PM; 1PM-5PM; 5PM-10PM). Mallapragada et al. [21] applied a
similar season-based aggregation approach to annual grid operations of load and generation capacity
for capacity expansion planning. The representative days for four seasons are averaged into four
different periods with different definitions (7AM-2PM; 2PM-6PM; 6PM-11PM; 11PM-7AM).
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However, the pure heuristic aggregation methods based on experience in power system operation
and human activities tend to average the time-series over a large time span, failing to capture the
variability and missing peaks of RES and load profiles [27]. In addition, the predefined criteria do not
guarantee effectiveness for general application, as power system operation and human activities are
highly variable and differ significantly among different locations.

2.2.2. Unsupervised learning: Clustering
Nowadays, as the development of machine learning models, unsupervised learning approaches [51],
particularly clustering methods [52], are widely applied for aggregating time-series, including partition-
ing techniques (e.g., k-means [23]; k-medoids [24]) and hierarchical clustering methods [12]. The
complete time-series throughout the time-span is separated into unit time periods (e.g., hours, days,
weeks), and each of these time periods is treated as a high-dimensional data point. All these data
points are then aggregated into a small number of clusters based on the Euclidean distance between
them and one representative time period is selected from each cluster based on different definitions of
its centroid [23], [38], [53].

Among different clustering algorithms, their performance in aggregating time-series for power system
planning problems has been reviewed in [25], [32], [54], and no obvious winner can be observed in
general. Therefore, hierarchical clustering is studied in this project as it does not depend on the initial
parameters, providing the same result every run, which is convenient for analysis.

The general hierarchical clustering algorithm is shown in Algorithm 1. Initially, each time period is as-
signed to an individual cluster. The number of clusters is reduced iteratively by merging the nearest
neighbor clusters until the desired number of clusters (NRD) is reached. Once this number is reached,
each time period in the original dataset is mapped to one of the clusters, and the centroid of each
cluster is selected as the representative time period for all time periods within the cluster. After the rep-
resentative time periods are selected, their weights are naturally assigned based on the number of time
periods within the corresponding cluster, ensuring that the total combined weights for all representative
time periods equal to the length of the original full-space time-series.

Algorithm 1 Hierarchical clustering method for representative time periods Selection
1: Consider all initial input data points as individual clusters with itself as its centroid
2: rd← Ntotal

3: while rd > NRD do
4: Calculate the dissimilarity matrix D ∈ Rrd×rd between each cluster pair applying Equation 2.1
5: Locate a pair of two clusters that has the lowest dissimilarity
6: Merge the located two closest clusters
7: Calculate the centroids x of updated clusters (Medoid: Equation 2.3; Mean: Equation 2.2)
8: rd← rd− 1
9: end while
10: Output Centroids of the final NRD number of clusters as representative time periods
11: OutputWeights of all representative time periods are assigned based on the number of time periods

inside each cluster
12: Output Create the time mapping matrixMO

R ∈ R|O|×|R| by linking representative time periods with
corresponding represented original time periods inside each cluster

The key part of hierarchical clustering is the determination of dissimilarities between clusters at each
iteration. For a multi-dimensional time-series containing both load and RES variations, Ward’s method
is widely applied [55]. In this approach, the dissimilarity D[A,B] between two clusters, A and B, is
defined as:

D[A,B] =
2|A||B|
|A|+ |B|

∥xA − xB∥2 (2.1)

where |A| and |B| are the number of time periods assigned to clusterA andB; x represents the centroid
of the cluster, which varies as different methods are applied.
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In the mean-based hierarchical clustering, the mean of all time periods within each cluster is regarded
as the centroid of each cluster, as shown in Equation 2.2.

xA =
1

|A|
∑
i∈A

xi (2.2)

where xi is the time period aggregated into cluster A.

The load and RES values at each time point in all time periods belonging to the cluster are represented
by their mean value. Therefore, this centroid time period is a synthetic time period, not necessarily
identical to any real time period in the original time series.

In the medoid-based hierarchical clustering, the medoid, instead of the mean, of all time periods within
each cluster is regarded as the centroid of the cluster, as shown in Equation 2.3.

xA = argmin
i∈A

∑
i,j∈A

∥xi − xj∥2 (2.3)

The medoid is the time period that has the smallest dissimilarity to all other time periods within the
cluster. Compared to the mean-based approach, the selected centroid time period in the medoid-based
approach is a real time period existing in the original time-series. Therefore, the variation of load and
RES within the time period is preserved.

Consideration on extreme conditions
In the pure clustering-based TSA methods, representative periods are selected based on the centroid
of each cluster (e.g., mean, medoid). Therefore the time periods with extreme conditions, serving as
outliers of the full-space time-series, are often ignored and represented by their averaged centroids
[16], [47]. In the power system operation, the operational cost of one time period is not linearly re-
lated to its magnitude and variability of the load and available RES capacity [19]. Time periods with
extreme conditions, such as minimum RES and maximum load, may trigger power congestion issue,
leading to significant operational cost. Therefore, if these time periods with extreme conditions are not
sufficiently considered, the potential benefits of investments on mitigating power congestion might be
under-estimated, leading to insufficient investment decisions.

Therefore, several studies have been done to modify the stand-alone clustering methods by preserving
the time periods with extreme conditions in the clustering process, such as peak load [29], [53], peak
difference between load and RES [56], [57], and peak ramping [33]. Two main branches of addressing
periods with extreme conditions have been proposed: preserving as centroid and appending after
clustering [19], [32].

In the “appending” method, time periods with pre-defined extreme conditions are separated from the
full-space time set and set as representative periods with weight one. The remaining representative
periods are determined from the dataset without extreme conditions. The extreme periods are excluded
from the TSA process [31], [53], [58]. However, the predefined limited number of extreme periods with
weight one may not be sufficient to address all extreme periods in the full-space time series, as they
do not participate in the TSA process and are selected by heuristic approaches.

As for the “preserving” method, time periods with pre-defined extreme conditions are preserved during
the TSA process, fixed as the centroids of clusters. The weights of these extreme periods are deter-
mined similarly to non-extreme representative periods, based on the number of periods mapped to their
clusters [29], [33], [59]. In [12], [32], the hierarchical clustering method is applied and the merging policy
is modified, shown in Table 2.2, to preserve the time periods with peak load or maximum difference in
load and RES as the representative periods.

At each iteration step of the hierarchical clustering, the dissimilarity between all pairs of clusters are
calculated and the pair with the minimum dissimilarity is located. If both clusters include pre-defined
extreme time periods, the extreme period with the highest priority (based on the pre-defined relative
priority) is selected to represent the merged cluster. All other time periods in these clusters are replaced
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by this selected extreme period, ensuring that the merged cluster contains only this extreme period,
which will be selected as the centroid. Similarly, if only one of the clusters contains an extreme period,
the entire merged cluster is replaced by this extreme period. Lastly, if neither cluster contains an
extreme period, the centroid of the merged cluster is determined based on the definition of the centroid
(e.g., mean, medoid).

Cluster A Cluster B Merging action

Extreme periods Extreme periods Merge them with higher priority
Extreme periods Non-extreme periods Merge them with centroid equal to A

Non-extreme periods Non-extreme periods Merge them with the centroid of the combined set

Table 2.2: Merging policy when extreme periods are considered

On the other hand, time periods with extreme conditions typically occur infrequently in the full-space
time series. The extreme conditions present in these periods may make them as outliers, significantly
different from non-extreme periods. Setting them as centroids can result in non-extreme periods being
represented by these extreme periods, leading to an over-estimation of the weights of those extreme
periods.

2.2.3. Chronological Time Period Clustering
In standard clustering methods, the full-space time-series is separated into unit time periods (e.g., days,
weeks, years) and the time periods are considered independently, preserving the intra-period chronol-
ogy but ignoring the inter-period chronology. This approach makes it extremely hard to properly track
the operation of long-term storage systems [57]. In addition, while load demand and solar radiation
exhibit strong daily variation patterns, available wind power does not. Pre-cutting the full-space time-
series into unit time periods may not capture the actual variability of wind power [60]. To address the
inter-temporal constraints for long-term storage facilities, Chronological Time Period Clustering (CTPC)
was proposed, modifying the merging policy of hierarchical clustering [61]. CTPC starts with the full-
space time-series without cutting into unit periods. Instead of merging the two closest clusters based
on similarity, CTPC considers only the dissimilarities between neighbouring clusters, preserving the
chronology during the clustering process. All selected representative periods are chronological con-
nected, making it possible to direct track inter-temporal constraints, as well as to capture the midterm
and long-term variation patterns of wind power.

Considering the extreme days in the time-series, CTPC was further enhanced into Priority-CTPC (P-
CTPC) by prioritizing the defined extreme time periods with peak load or minimum available RES,
ensuring these periods are never merged during clustering [30].

However, merging only adjacent clusters tends to smooth out short-term dynamics, even though it
preserves long-term chronology. This process can exaggerate the effects of long-term storage while
undermining short-term facilities, leading to over-investment in long-term storage systems [14].

2.2.4. Optimization-based time-series aggregation
The clustering-based representative time period selection can be considered as a greedy algorithm of
the optimization problem trying to find a given number of time period clusters with the smallest dissimi-
larities between time periods within each cluster, providing a sub-optimal solution but with significantly
reduced computation time [14], [32]. Naturally, the representative time period can be selected directly
from an optimization problem. Additionally, overall characteristics throughout the time span, such as
the duration curve, can be tracked within the optimization problem [26], [27].

The optimization-based representative time period selection follows a general formulation:

arg min

U [i],MO
R [i, j]

ERRO
R (2.4a)

subject to Constraints 2.8− 2.11 (2.4b)



2.2. Time-series aggregation in power system expansion planning 14

where U [i] is the binary indicator variable for all time periods showing whether the original day i is se-
lected as one of representative periods;MO

R [i, j] is the mapping indicator of the representative period j
and original period i, showing whether the original period i is represented by the selected representative
period j.

When MO
R [i, j] is defined as a binary variable, original periods can only be mapped to a single repre-

sentative period. When MO
R [i, j] ∈ [0, 1], defined as a real value, original periods are allowed to be

mapped to multiple representative periods.

The objective of the optimization on selecting representative periods is to locate a set of time periods
from the full-space time series such that all time periods in the full-space time-series are represented by
the selected periods with the minimal difference, ERRO

R, such as time-series dissimilarity and duration
curve estimation error:

ERRO
R = tserr + dcerr (2.5)

Time-series dissimilarity
Similar to clustering methods, each time period is considered as a multi-dimensional vector, and the
mean squared error, also referred as squared Euclidean distance, between time periods is used to
measure dissimilarity, as shown in Equation 2.6. The squared Euclidean distance is further normalized
and denoted as the time-series error, tserr. Given that the normalized load and RES capacity factors
range from 0 to 1, we have tserr ∈ [0, 1].

tserr =
1

|O|
1

|F|
1

|T |
∑
i∈O

∑
f∈F

∑
t∈T

[(
∑
j∈R

MO
R [i, j] · xj[f, t])− xi[f, t]]

2 (2.6)

where xi[f, t] is the load or RES factor value of the time period i at each time point t, and
∑

j∈R MO
R [i, j]·

xj[f, t] represents the weighted representative time periods selected for representing the original period
i.

Duration Curve estimation
In addition to the variability of load and RES capacity captured by the time-series error, the actual
magnitude of load and RES capacity also plays an important role in the power system operation [38].
As the load demand is high, the risk of power congestion rises, potentially leading to high operational
costs [27]. The distribution of load and RES factors can be measured by the duration curve throughout
the time series, and the difference between the full-space time series duration curve and the one based
on representative periods can be tracked in the optimization problem as the objective, as shown in
Equation 2.7.

dcerr =
1

|B|
1

|F|
∑
b∈B

∑
f∈F

(dcR[b, f ]− dcO[b, f ])2 (2.7)

The duration curve of the full-space time-series in terms of each feature of load and RES factors, dcO,
and the representative periods, dcR, are segmented into unit bins based on the magnitude of these
factors. For instance, with four bins, the magnitude levels could be 0.25, 0.5, 0.75, and 1. These levels
are marked as green dashed lines in Figure 2.3.

The error of the duration curve is calculated based on the frequency difference in factor levels for each
bin. For example, with the number of bins set to 4, the frequency level difference between the actual
and estimated duration curve is evaluated at the factor magnitudes of 0.25, 0.5, 0.75, and 1, shown
in Figure 2.3. Similar to the time-series error, the duration curve error is also normalized such that
dcerr ∈ [0, 1].
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Figure 2.3: Diagram of duration curve error calculation [27]

In [26], the residual load duration curve, which represents the difference between load and available
RES, is used as the objective for selecting representative weeks. However, the duration curve itself
contains no chronology of the time series and cannot capture the high variability of RES, making it
unsuitable for planning RES facilities. Therefore, in [14], both the time-series error and the duration
curve error are considered in the objective function. Since the normalized time-series error and the
normalized duration curve error both range from 0 to 1, they can be directly combined.

Constraints
The selection of representative periods involves the following six constraints:∑

i∈O
U [i] ≤ NRD (2.8)

ensuring at most the desired number (NRD) of representative time periods can be selected.

∑
j∈O

MO
R [i, j] = 1, ∀i ∈ O (2.9)

For any time period in the full time-series set, the total contribution of all representative time periods is
one.

∑
i∈O

MO
R [i, j] = W [j], ∀j ∈ O (2.10)

For any representative time period, its weight is defined as its contribution to all the original time periods
in the full time-series set.

MO
R [i, j] ≤ U [j], ∀i, j ∈ O (2.11)

ensuring that the non-representative time periods are not mapped to any other non-representative time
periods.

Consideration on extreme conditions
Similar to clustering methods, time periods with extreme conditions can be particularly addressed in
terms of the “appending” and “preserving” strategies. In the optimization-based TSA process, whether
a time period i is selected as the representative period is determined by the decision variable U [i].
The “preserving” strategy can be implemented by fixing the decision variable U for time periods with
extreme conditions as 1 to ensure that they are selected in the optimization.
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Mapping between representative periods and original periods

Figure 2.4: Mapping between the representative periods and the full-space time-series set [14]

In clustering-based TSA methods, all time periods are aggregated into clusters, with each cluster rep-
resented by its centroid, forming a one-to-one mapping between the actual time periods and represen-
tative periods. In optimization-based TSA methods, the mapping between representative periods and
original periods is tracked by MO

R [i, j], representing whether the actual time period i is mapped to the
representative period j. WhenMO

R [i, j] is defined as a binary variable, a one-to-one mapping is formed,
similar to the clustering-based TSA methods.

In [14], MO
R [i, j] is relaxed into a real number between [0, 1], allowing for a linear combination of repre-

sentative periods to contribute to the representation of an original period, as shown in Figure 2.4. The
binary variable MO

R [i, j] can be considered as a subset of the positive real variable MO
R [i, j] ∈ [0, 1].

Therefore, the optimization applying the linear combination mapping can generate representative peri-
ods with smaller time-series error.

However, due to the high computational burden, the optimization applying the linear combination map-
ping can only be solved sequentially in practice: firstly, a one-to-one mapped TSA optimization model
withMO

R [i, j] set as binary is solved to find out the set of representative periods; secondly, by fixing U [i]
for all selected representative periods, an mapping optimization model withMO

R [i, j] set as real values
between 0 to 1 is solved to find out the mapping matrix and weights of the selected representative
periods [14].

The subsequent optimization, with fixed selection of representative periods, tries to determine the op-
timal weights and mapping of the selected representative periods to the original days, as shown in
Equation 2.12.

arg min

W [i],MO
R [i, j]

tserr + dcerr (2.12a)

subject to
∑
i∈O

W [i] = Ntotal, (2.12b)∑
j∈O

MO
R [i, j] = 1, ∀i ∈ O, (2.12c)

∑
i∈O

MO
R [i, j] = W [j], ∀j ∈ R (2.12d)

Moreover, this optimization for determining the linear combination mapping of representative periods
can be applied not only to optimization-based TSA methods but also to all TSA methods using actual
time periods as representative periods, such as the medoid-based clustering method.
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2.2.5. Cost-based time-series aggregation
Input-based TSA methods focus on the statistical similarity of input features between representative
periods and the original time series, requiring external expert knowledge of power system operation to
ensure the reliability of the simplified expansion planning model. To incorporate in the power system
operation, cost-based TSAmethods have been proposed in which the time-series aggregation is based
on aggregating time periods with similar investment decisions made by single-period planning [16].
The power system expansion planning model is implemented for each individual unit period, and the
investment decisions for transmission lines and RES capacities based on each period are normalized
into a multi-dimensional vector. Periods with similar investment decisions are then aggregated into
clusters based on the projected multi-dimensional vectors.

However, midterm and long-term storage systems are inherently impossible to be considered in the
single-period cost-based TSA methods because the input features, RES and load factors, are trans-
formed into single-period cost-based features, resulting in the loss of inter-period chronology [16].

In the input-based TSA methods, all actual time periods are mapped to one or multiple statistically
similar representative periods. A synthetic time series covering the complete time-span is constructed
using these representative periods, as shown in Figure 2.4. The inter-period variation of long-term
storage can be simulated by the synthetic time series, assuming the charging and discharging behavior
of each actual time period can be represented by its representative periods [62].

2.3. Conclusion
In this chapter, general formulations of power system expansion planning optimization models are in-
troduced, consisting of three layers: investment layer controlling different investment options, opera-
tional cost layer calculating the operational cost of the power system considering various investment
combinations, and OPF layer determining the economic dispatch of each time snapshot throughout
the time span with minimum operational cost. By fixing the outer investment layer, the operational cost
model and economic dispatch model from the inner layers can be obtained. In the later evaluation
of representative periods, introduced in 4 and 5, the operational cost model will be used, providing
insightful information on the power system operation.

To reduce the computation burden of solving large-scale planning models, typical time-series aggre-
gation methods are reviewed, including heuristic, input-based, and cost-based methods. Heuristic
methods, which are purely based on expert knowledge, cannot sufficiently capture the variability of
load and RES capacities. Input-based clustering TSA methods try to select statistically similar time
periods without considering power system operation. The current practice of adding extreme periods
to input-based TSA methods, based on heuristic knowledge, does not always show improvement in all
cases [28], [33]. As for cost-based TSA methods, while the operation of the power system can be cap-
tured within each time period, the inherent limitation of not considering inter-period variation prevents
their widespread application.

In the following chapters, hierarchical clustering using mean and medoid centroids, as well as optimiza-
tion methods considering both time-series error and duration curve error, will be evaluated in terms of
power system operation looking for potential enhancements. Additionally, the enhancement of linear
combination mapping between representative periods and the original time series will be assessed.



3
Model formulation and Test system

setup

To evaluate the performance of typical time-series aggregation methods in power system planning, a
power system co-planning model is built according to [12].

A coding platform for time-series aggregation methods and the power system expansion co-planning
is presented. This platform is structured in a modular manner, allowing different layers of the power
system expansion planning model to function independently. This modular design also enables the
implementation of various time-series aggregation methods without requiring any modifications to the
existing structure.

As for the input data of the planning optimization and time-series aggregation models, the power system
utilized for running the expansion planning model is introduced. Three one-year historical time-series
datasets of load and RES factors are individually applied to evaluate the general performance of typical
time-series aggregation methods.

List of symbols

Symbol Definition

Sets
B Buses
G Thermal generators
W Wind farm investment options
EL Existing transmission lines
NL New transmission line investment options
D Days
T D Time intervals within each day (i.e. 24 hours for hourly data)
T P Time points within each day (i.e. 25 points for hourly data)
K Number of linear function for estimating the generation cost of

thermal generators
Decision variables
INL[nl] Investment decision on new line [Binary], ∀nl ∈ NL
P cap
W [w] Investment decision on the capacity of new wind farm [MW], ∀w ∈

W
Objective variables

18
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Symbol Definition

CG [g, d, t] Generation cost of thermal generator within a given time interval
[$], ∀g ∈ G, d ∈ D, t ∈ T D

Cshed
L [l, d, t] Load shedding cost within a given time interval [$], ∀l ∈ L, d ∈

D, t ∈ T D
State variables
PG [g, d, t] Dispatched generation of thermal generator at a given time point

[MW], ∀g ∈ G, d ∈ D, t ∈ T P
PW [w, d, t] Dispatched generation of wind farm at a given time point [MW],

∀w ∈ W , d ∈ D, t ∈ T P
PEL[el, d, t] Power flow of an existing line at a given time point [MW], ∀el ∈

EL, d ∈ D, t ∈ T P
PNL[nl, d, t] Power flow of a new line at a given time point [MW], ∀nl ∈ NL, d ∈

D, t ∈ T P
θ[b, d, t] Bus voltage angle at a given time point [radius], ∀b ∈ B, d ∈ D, t ∈

T P
Cost parameters
CNL[nl] Investment cost on a new line [$], ∀nl ∈ NL
CW [w] Investment cost per unit capacity of a new wind farm [$ / MW],

∀w ∈ W
V OLL Value of lost load [$ / MW]
Thermal generator
parameters
AG [b, g] Mapping matrix pointing the located bus of a thermal generator,

∀b ∈ B, g ∈ G
P cap
G [g] Maximum capacity of a thermal generator [MW], ∀g ∈ G

PR
G [g, d, t] Reserve capacity of a thermal generator at a given time point

[MW], ∀g ∈ G, d ∈ D, t ∈ T P
RG [g] Ramp limit of a thermal generator [MW/min], ∀g ∈ G
Wind farm parame-
ters
AW [b, w] Mapping matrix pointing the located bus of a wind farm, ∀b ∈

B, ∀w ∈ W
FW [w, d, t] Wind factor of a wind farm at a given time point, ∀w ∈ W , d ∈

D, t ∈ T P
Pmax
W [w] Maximum possible investment on the capacity of a new wind farm

[MW], ∀w ∈ W
Load parameters
AL[b, l] Mapping matrix pointing the located bus of a load, ∀b ∈ B, l ∈ L
FL[l, d, t] Load factor of a load at a given time point, ∀l ∈ L, d ∈ D, t ∈ T P
PL[l, d, t] Required load at a given time point [MW], ∀l ∈ L, d ∈ D, t ∈ T P
P shed
L [l, d, t] Load shedding at a given time point [MW], ∀l ∈ L, d ∈ D, t ∈ T P

P peak
L [l] Maximum magnitude of a load throughout the time domain [MW],

∀l ∈ L
Line parameters
BEL[el] Susceptance of an existing transmission line [p.u.], ∀el ∈ EL
BNL[nl] Susceptance of a new transmission line [p.u.], ∀nl ∈ NL
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Symbol Definition

Pmax
EL [el] Maximum allowed power flow of an existing transmission line

[MW], ∀el ∈ EL
Pmax
NL [nl] Maximum allowed power flow of a new transmission line [MW],

∀nl ∈ NL
AFrom

EL [b, el] Mapping matrix pointing the starting point of an existing transmis-
sion line, ∀b ∈ B, el ∈ EL

ATo
EL[b, el] Mapping matrix pointing the end point of an existing transmission

line, ∀b ∈ B, el ∈ EL
AFrom

NL [b, nl] Mapping matrix pointing the starting point of a new transmission
line, ∀b ∈ B, nl ∈ NL

ATo
NL[b, nl] Mapping matrix pointing the end point of a new transmission line,

∀b ∈ B, nl ∈ NL
Time parameters
∆t Length of the time interval [h]
τ Delivery time required for the capacity reserve of all thermal gen-

erators [min]

3.1. Formulation of the power system co-planning model
Considering the optimality of co-planning models, this project studies a modified power system ex-
pansion co-planning model that incorporates both wind farms and transmission lines. The formulation
is based on [12]. The model is constructed following the general three-layer structure, as shown in
Figure 2.1: investment layer, which forms the objective function considering wind farms and transmis-
sion lines as investment options; operational cost layer, which calculates the operational cost over
the time span with piece-wise linear approximation; and DC-OPF layer, which estimates the generation
dispatch at each time point.

3.1.1. Investment layer
The objective of the power system expansion planning model is to determine the optimal investment
decision set ID∗ among all feasible investment options that minimizes the total cost TC. The total cost
consists of both the investment cost IC and the corresponding total operational cost OC. In this thesis
project, the investment cost IC consists of two parts: wind farms and transmission lines, considered
as possible investment options:

IC =
∑

nl∈NL

INL[nl] · CNL[nl] +
∑
w∈W

P cap
W [w] · CW [w] (3.1)

where the investment cost of new wind farms is calculated as the decided-to-build capacity multiplied
with its unit investment cost.

Due to physical limitations, the decided-to-build capacity of each potential wind farm is constrained by
its maximum possible capacity Pmax

W [w]:

0 ≤ P cap
W [w] ≤ Pmax

W [w], ∀w ∈ W (3.2)

Additionally, to accelerate the energy transition, a baseline investment requirement is set for new wind
farms such that the total capacity of all newly built wind farms should reach at least 10% of the summa-
tion of the peak values of all loads:
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∑
w∈W

P cap
W [w] ≥ 10% ·

∑
l∈L

P peak
L [l] (3.3)

3.1.2. Operational cost layer
The second part of the objective function is the operational cost OC of the new power system, which
includes the invested components required to meet all the load demands throughout the time span:

OC =
∑
d∈D

∑
t∈T D

∑
g∈G

CG [g, d, t] +
∑
l∈L

Cshed
L [l, d, t]

 (3.4)

The total operational cost consists of the operational cost for each day d ∈ D, and the operational cost
for each day is calculated by accumulating the operational cost of all time intervals t ∈ T D (24 hours
in this project) within the day.

The generation cost of thermal generators is the main contributor to the operational cost, assuming the
operational cost of wind farms is negligible. In cases where power system congestion occurs, the sys-
tem may not be capable of satisfying the required load demand. To account for this, load shedding with
a high penalty cost is introduced in the operational cost OC to ensure that the power system dispatch is
solvable at all time points and to minimize load shedding in the optimization process. Therefore, com-
bining Equation 3.1 and 3.4, the objective function of the studied power system expansion co-planning
is formulated as follows:

TC = IC +OC

=
∑

nl∈NL

INL[nl] · CNL[nl] +
∑
w∈W

P cap
W [w] · CW [w]

+
∑
d∈D

∑
t∈T D

∑
g∈G

CG [g, d, t] +
∑
l∈L

Cshed
L [l, d, t]

 (3.5)

Piece-wise linear operational cost estimation
Typically, the generation cost of thermal generators is quadratic [63]:

cg [PG [g, d, t]] =
1

2
agPG [g, d, t]

2 + bgPG [g, d, t], ∀d ∈ D, t ∈ T P (3.6)

where ag and bg are the quadratic parameters of the quadratic function of thermal generators.

In the piece-wise linear estimation, within each unit time interval, the power system’s behavior linearly
changes from the state at the beginning of the interval to the state at the end of the interval, providing
better estimation on the operation compared to the conventional piece-wise constant estimation [46].
Two time indices are introduced: time point T P tracking time points in each day and time interval T D
tracking time intervals in each day. This allows the utilization of the beginning and end of each time
interval. Therefore, the cost function of thermal generators within a given time interval is:

CG [g, d, t] =
∆t

2
cgg[PG [g, d, t] + PG [g, d, t+ 1]] +

ag∆t

24
(PG [g, d, t]− PG [g, d, t+ 1])2,

∀g ∈ G, d ∈ D, t ∈ T D (3.7)
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The quadratic cost function of thermal generators makes the planning model less easy to solve in
practice. Therefore, the optimization model is often simplified by maintaining the cost functions for
load shedding and thermal generation as linear, approximating by a set of linear inequality constraints,
referred to as linear lower convex envelope formulation [12].

CG [g, d, t] = Ca
G [g, d, t] + Cb

G [g, d, t], ∀g ∈ G, d ∈ D, t ∈ T D
Ca

G [g, d, t]

∆t
≥ (agπg,k + bg) ·

1

2
(PG [g, t] + PG [g, t+ 1])− 1

2
agπ

2
g,k, ∀k ∈ K, g ∈ G, d ∈ D, t ∈ T D

Cb
G [g, d, t]

∆t
≥ agπg,k

12
(PG [g, t]− PG [g, t+ 1])− 1

24
agπ

2
g,k, ∀k ∈ K, g ∈ G, d ∈ D, t ∈ T D

Cb
G [g, d, t]

∆t
≥ −agπg,k

12
(PG [g, t]− PG [g, t+ 1])− 1

24
agπ

2
g,k, ∀k ∈ K, g ∈ G, d ∈ D, t ∈ T D

πg,k =
k − 1

|K| − 1
Pmax
G [g], ∀k ∈ K, g ∈ G

(3.8)

Where k ∈ K is the number of linear functions providing lower bounds of the quadratic function. As the
number of linear functions increases, the quadratic function is estimated more accurately, but at the
cost of more computation burden. In this project, |K| = 10 is applied.

The total lost energy for a given time interval because of load shedding is approximated with its average
value of the initial load shedding power at the start of the time period and the value at the end of the
time period, as no ramp limit is involved in load shedding. At each time interval, the cost of lost load is
defined as:

Cshed
L [l, d, t] =

V OLL

2
·
(
P shed
L [l, d, t] + P shed

L [l, d, t+ 1]
)
, ∀l ∈ L, d ∈ D, t ∈ T D (3.9)

Load demand profile
The original load profile and RES characteristic profiles (e.g., solar radiation for solar panels, and wind
speed for wind farms) are on completely different scales, making direct time-series aggregation im-
practical. By normalizing these load and wind factors, time-series aggregation methods that account
for both load and wind characteristics can be effectively applied.

In this project, wind generation is considered as the RES, and the variations in load and wind power
are captured by load and wind factor profiles. At each time point, the required load at each time point
is calculated by multiplying its peak magnitude with the corresponding load factor for that specific time
point:

PL[l, d, t] = P peak
L [l] · FL[d, t], ∀l ∈ L, d ∈ D, t ∈ T P (3.10)

3.1.3. DC-OPF layer
Due to the high computational burden, DC-OPF is chosen over AC-OPF in this thesis. Only constraints
related to active power balance are included. Together with reserve and ramp limit constraints for
thermal generators, and capacity limits for transmission lines and wind farms, as well as requirements
for load shedding, the DC-OPF layer is formed.

Power balance
Firstly, at each bus b ∈ B, the active power balance must always be maintained, ensuring that the inflow
active power equals the outflow active power:
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∑
l∈L

AL[b, l] ·
[
PL[l, d, t]− P shed

L [l, d, t]
]
+Outflow[b, d, t] =

∑
g∈G

AG [b, g] · PG [g, d, t]

+
∑
w∈W

AW [b, w] · PW [w, d, t] + Inflow[b, d, t], ∀b ∈ B, d ∈ D, t ∈ T P (3.11)

Outflow[b, d, t] =
∑

el∈EL

AFrom
EL [b, el] · PEL[el, d, t] +

∑
nl∈NL

AFrom
NL [b, nl] · PNL[nl, d, t] (3.12)

Inflow[b, d, t] =
∑

el∈EL

ATo
EL[b, el] · PEL[el, d, t] +

∑
nl∈NL

ATo
NL[b, nl] · PNL[nl, d, t] (3.13)

All existing and new transmission lines are defined as directional pointing from the starting bus towards
the ending bus. The bi-directional power flow is achieved by allowing both positive and negative flow
along the lines. In addition, the power flow between connected buses through transmission lines is
determined by the voltage angles of the two connected buses and the line susceptance:

PEL[el, d, t] = BEL[el] ·
∑
b∈B

(AFrom
NL [b, nl] · θ[b, d, t]−ATo

NL[b, nl] · θ[b, d, t]), ∀el ∈ EL, d ∈ D, t ∈ T P

(3.14)

As for the new lines, the constraint 3.14 is modified using the big-M method since the decision binary
variables INL are involved, leading to:

−(1− INL[nl]) ·MNL[nl] ≤ Pmax
NL [nl, d, t]

−BNL[nl] ·
∑
b∈B

(AFrom
NL [b, nl] · θ[b, d, t]−ATo

NL[b, nl] · θ[b, d, t])

≤ (1− INL[nl]) ·MNL[nl], ∀nl ∈ NL, d ∈ D, t ∈ T P (3.15)

where MNL[nl] is the big-M.

Transmission line capacity limit
For both new and existing transmission lines, the power flow through these lines is constrained by their
capacity limits. Given that power flow through the lines can be bi-directional, the transmission line
capacity limit is formulated as follows:

−Pmax
EL [el] ≤ PEL[el, d, t] ≤ Pmax

EL [el], ∀el ∈ EL, d ∈ D, t ∈ T P (3.16)

−INL[nl] · Pmax
NL [nl] ≤ PNL[nl, d, t] ≤ INL[nl] · Pmax

NL [nl], ∀nl ∈ NL, d ∈ D, t ∈ T P (3.17)

Thermal generator reserve requirement
As for thermal generators, their generation output power at each time point is constrained to ensure
it never exceeds their maximum capacity. In addition, with the implementation of more RES facilities,
increased uncertainty is introduced into the system. To ensure the reliability of the power system,
operating reserves of thermal generators are considered:

∑
g∈G

PR
G [g, d, t] = 3%

∑
l∈L

PL[l, d, t] + 5%
∑
w∈W

PW [w, d, t], ∀d ∈ D, t ∈ T P (3.18)
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such that the total operating reserve of thermal generators at each time point
∑

g∈G PR
G [g, d, t] is the

summation of 3% of the total load demand and 5% of the total wind generation power at the same time
point.

Since PR
G ≥ 0, the generation output power constraint at each time point for individual thermal genera-

tors can be expressed as:

0 ≤ PR
G [g, d, t] ≤ PG [g, d, t] ≤ P cap

G [g, d, t]− PR
G [g, d, t], ∀g ∈ G, d ∈ D, t ∈ T P (3.19)

Thermal generator ramp limit
In addition, the generation output power of thermal generators are constrained by their ramp limit such
that the changing rate of output power is limited. Together with the reserved flexibility of operating
reverses, the thermal generator ramp limit at each time point is:

∣∣∣∣PG [g, d, t+ 1]− PG [g, d, t]

∆t

∣∣∣∣+ PR
G [g, d, t]

τ
≤ RG [g]∣∣∣∣PG [g, d, t+ 1]− PG [g, d, t]

∆t

∣∣∣∣+ PR
G [g, d, t+ 1]

τ
≤ RG [g], ∀g ∈ G, d ∈ D, t ∈ T P (3.20)

where ∆t is the time duration of each time interval, and τ is the delivery time required for the capacity
reserve.

The maximum variation of thermal generators between consecutive time points (within each time inter-
val), together with their up and down spinning reserve flexibility at both time points, cannot be larger
than the corresponding ramp limit.

Maximum load shedding tolerance
In case of power congestion, load shedding is permitted to ensure that the power flow calculation is
solvable at all time points. However, the interference with power supply is constrained so that the
essential loads at all buses remain available. At each time point, the maximum allowed load shedding
is limited to its 50% of the required load magnitude to simulate the non-flexible essential load:

P shed
L [l, d, t] ≤ 50%PL[l, d, t], ∀l ∈ L, d ∈ D, t ∈ T P (3.21)

In addition to the allowed load shedding at each time point, the total energy curtailed across all loads
throughout the time span is constrained to 15% of the total ideal energy consumption if all load require-
ments are satisfied:

∑
l∈L

∑
d∈D

∑
t∈T P

P shed
L [l, d, t] ≤ 15%

∑
l∈L

∑
d∈D

∑
t∈T P

PL[l, d, t] (3.22)

Wind generation dispatch
Compared to the traditional thermal generators, wind farms are considered as flexible energy resources,
with generation outputs that can be dispatched freely up to their maximum available capacity. On the
other hand, the available wind generation capacity is highly variable, depending on weather conditions.
Therefore, the wind generation dispatch at each time point is bounded by the corresponding available
wind generation capacity, obtained by multiplying its installed capacity with the wind factor at that time
point:

0 ≤ PW [w, d, t] ≤ P cap
W [w] · FW [d, t], ∀w ∈ W , d ∈ D, t ∈ T P (3.23)
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3.2. Developed code platform
In this project, a structured test platform was developed using Python to evaluate and improve the time-
series aggregation methods in the application of power system co-planning model introduced in the
previous section. The code structure, as shown in Figure 3.1, is designed to implement and analyze
various aggregation methods and their impact on power system performance.

Figure 3.1: Developed code platform structure

The entire test platform consists of four modules with defined input and output formats, and each ca-
pable of operating independently with the corresponding input.

• Time-series aggregation
In this module, the original full-space profiles of load and wind factors are aggregated, and the
weights of representative days (RD) are determined using time mapping based on one-to-one
or linear combination mapping. The implemented methods include hierarchical clustering and
optimization-based RD selection.
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• Optimization on planning
The power system expansion co-planning problem is a MILP problem, formulated based on the
three-layer structure. In this thesis, the planning model is implemented using Pyomo. Pyomo is a
Python-based open-source software package that specializes in formulating and solving optimiza-
tion problems [64], [65]. Pyomo supports the integration of various solvers, and in this project,
Gurobi [66] is used to solve the optimization problems.

• Cost-based RD evaluation
From the obtained optimization results, cost-based evaluation is performed, and extreme periods
are identified based on operational estimation error discussed in Chapter 5, which also serves as
the input for the feedback enhancement process.

• Feedback enhancement
The extreme periods obtained are implemented into the time-series aggregation as the “expert
knowledge” of power system operation, trying to enhance the performance in terms of the final
investment decision.

For the result analysis in later chapters, the bins for calculating the duration curve error is set as 10 in
optimization-based RD selection and mapping models, and the number of linear functions for the linear
lower convex envelope method is set as 10.

Since the computation time for both time-series aggregation and solving the planning model is a key
interest in this project, an analysis of the computation time is conducted. All computations are executed
on a MacBook Pro 14-inch with an Apple M1 Pro (16GB RAM) processor.

3.3. Test power system network

Figure 3.2: Diagram for the modified IEEE 24bus test system

The test power system applied in this project is based on [12], which is modified from the IEEE 24-bus
test system, originally published by the IEEEReliability Subcommittee in 1979 for reliability analysis [67].
The topology is shown in Figure 3.2, and the essential power system configurations are listed in Table
3.2. The detailed parameters of the modified IEEE 24-bus test system, including the unit generation
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cost of thermal generators, investment cost of potential lines and wind farms, and parameters of all
components, can be found in [68].

Components Bus Load Thermal Wind farm Line Line
generator investment investment

Quantity 24 22 10 6 34 5∑
peak value N/A 7386.75MW 7000MW 2400MW N/A N/A

Table 3.2: Components in the modified IEEE 24-bus test system

Figure 3.2 illustrates the modified IEEE-24 bus system, where five transmission lines and six wind
farms are introduced as possible investment options. Buses with relatively high peak load demands
are selected as potential locations for wind farm investment.

3.4. Dataset of time-series samples
The performance of time-series aggregation methods is evaluated using three one-year hourly datasets
of load and wind factor profiles in 2019 based on the Netherlands [69], [70], Belgium [71], [72], and
France [72], [73] respectively. For each time series, the load and RES factors are derived from the raw
datasets of RES and load profiles, and the complete dataset can also be found in [68].

The original source datasets contain the actual hourly load consumption and wind generation in MW
throughout the year. Within each dataset, the load factor and wind factor values are obtained by normal-
izing with their respective maximum values over the year. The resulting load and wind factor duration
curves for the three scenarios across the entire year and each season are shown in Figure 3.3. During
winter, the load duration curve is the highest among the four seasons.

The one-year time series is divided into 365 time periods, each containing 24 hours of a day. The
time-series aggregation is performed on these 365 days, preserving intra-day variability while remain-
ing feasible to solve. Specifically, in the power system expansion planning model, piece-wise linear
estimation is applied, involving 25 time points within each day. These time points include the load and
wind factor values at each hour from 00:00 to 23:00 and an additional point at 00:00 of the next day.
For the last day of the year, December 31st, the added time point (00:00 next day) is assigned as the
first time point of the dataset (00:00, January 1st).
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(a) Normalized load factor duration curve (scenario 1: Netherlands) (b) Normalized wind factor duration curve (scenario 1: Netherlands)

(c) Normalized load factor duration curve (scenario 2: Belgium) (d) Normalized wind factor duration curve (scenario 2: Belgium)

(e) Normalized load factor duration curve (scenario 3: France) (f) Normalized wind factor duration curve (scenario 3: France)

Figure 3.3: Duration Curve of the normalized load and wind factors in four seasons for the three scenarios: Netherlands,
Belgium, and France
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Error of applying representative

periods

While applying representative days (RDs) to simplify the planning model, information is inevitably lost,
leading to statistical errors in the time-series aggregation process. These errors result in variations
in the optimization models and, ultimately, sub-optimal investment decisions. However, the difference
between the RD-based simplified planning model and the full-space planning model is influenced not
only by the statistical error in the time-series but also by the specifics of the power system, such as
network topology and component parameters. These factors are crucial in finding the closest sub-
optimal investment decision.

In this chapter, the error of applying representative periods is analyzed in terms of statistical error and
the objective value of the planning model. A bound on the model difference is proposed based on the
operational estimation performance of RDs. The operational estimation of RDs can be further utilized to
enhance the performance of the simplifiedmodel. Additionally, typical time-series aggregationmethods,
including hierarchical clustering and optimization-based selection with different settings, are evaluated
and compared in relation to the proposed error metrics.

List of symbols

Symbol Definition

Objective values
OCFull[ID] Full-space operational cost throughout the time span
TCFull[ID] Total cost of the full-space operational cost throughout the time

span and pre-defined investment cost
OCRD[ID] RD estimated operational cost throughout the time span
TCRD[ID] Total cost of the RD estimated operational cost throughout the

time span and pre-defined investment cost
IC[ID] Investment cost corresponding to a given investment decision
Objective metrics
∆TCRD[ID] Simplification error for any given investment decision
∆TCRD[ID] Relative simplification error subject to the actual optimal total cost

TCFull[ID
∗]

∆OC[ID] Operational estimation error for any given investment decision
∆OC[ID] Relative operational estimation error subject to the actual optimal

total cost TCFull[ID
∗]

29
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Symbol Definition

∆TCFull[ID] Optimally gap for any given investment decision
∆TCFull[ID] Relative optimally gap subject to the actual optimal total cost

TCFull[ID
∗]

Investment decision
ˆID Optimal investment decision made by the RD-based simplified

planning model
ID∗ Actual investment decision made by the full-space expansion

planning model (reference model)

4.1. Overview
In the input-based time-series aggregation process, the representative periods of the normalized load
and RES factor time-series are selected solely based on the statistical similarities, assuming that similar
load and RES factors lead to similar operational cost [44]. However, the operational cost of the power
system is also highly dependent on the network topology and the power system components, such as
the total required load, transmission lines and generators with limited capacities [19]. In case of power
system congestion, a small difference in load and RES factors may leads to very different operational
cost, which will in the end trigger sub-optimal investment decisions. As the enhancement of the power
system into the input-based time-series aggregation process, extreme conditions determined from the
power system are implemented. However, the verified-to-work extreme conditions on one test system
are not reliable if they are transferred to other test system, as power systems are complex and their
operational situation is highly dependent on their configurations [28]. It is difficult to find a universal
definition of extreme condition.

In practice, considering different power systems, an adaptive “expert knowledge” related to the oper-
ational situation of each specific power system is necessary. For that, the actual error we made for
estimating the real operational situation of the power system is needed.

4.2. Full-space operational cost model
The objective function of expansion planning models consists of the operational cost over the time
span and the investment cost of the selected investment decisions. The investment cost of available
investment options is pre-defined and is directly applied in the full-space expansion planning model
and the RD-based simplified planning model. However, the RD-based planning model estimates the
actual total operational cost by using the operational cost of a combination of representative days. This
approach leads to errors in the operational cost for all investment options and eventually results in
sub-optimal investment decisions.

In order to evaluate the actual operational cost of the investment decision ˆID made by the RD-based
planning model, the investment decision variables can be fixed as ˆID in the full-space expansion
planning model. The total cost obtained then becomes the full-space actual operational cost based
on the new network with ˆID and the pre-defined investment cost of ˆID, denoted as TCFUll[ ˆID] in
Equation 4.1.

In this way, the actual operational cost associated with ˆID can be determined, and the full-space
planning model with the fixed investment decision is referred to as the full-space operational cost model.

From the definition of optimization problems, for any feasible investment decision set ID including ˆID,
based on the full-space expansion planning model, we have:

TCFull[ID
∗] ≤ TCFull[ID]

OCFull[ID
∗] + IC[ID∗] ≤ OCFull[ID] + IC[ID] (4.1)

where TCFull[ID] is the total cost (objective function value) for any ID of the full-space expansion
planning model; OCFull[ID] is the corresponding full-space operational cost; IC[ID] is the pre-defined
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investment cost; ID∗ is the actual optimal investment decision made from the full-space expansion
planning model.

The performance of TSA methods in power system planning is evaluated using reference results from
the full-space model of a test system [14], [53], [54], [57], [61]. However, in real-world cases, the results
of the full-space planning model are not available. Due to the highly non-linear relationship between
the time-series data and the studied power system, the performance of the simplified model, which
although proven in test cases, is not guaranteed [28]. Based on Equation 4.1, TCFull[ ˆID], the full-
space total cost linked to ˆID, provides an upper bound of the optimal total cost, serving as an
important reference for the decision makers’ consideration [16], [74], [75].

4.3. Relationship between the simplified models and the full-space
model

Figure 4.1: Relationship between the three optimization models: RD-based expansion planning model, full-space operational
cost model, and the reference full-space expansion planning model

By running the full-space operational cost model, we acquired the actual operational cost corresponding
to ˆID, the optimal investment decision made from the RD-based expansion planning model. Three op-
timization models with different time-domain settings are introduced in the expansion planning problem,
shown in Figure 4.1:

• RD-based expansion planning model: The expansion planning model with the RD-based time
set, finding the estimated optimal investment decision ˆID based on the estimated total cost.

• Full-space operational cost model: The full-space planning model with fixed investment deci-
sion ˆID made by the RD-based expansion planning model, obtaining the actual operational cost
corresponding to ˆID.

• Full-space expansion planning model: The full-space expansion planning model, obtaining
the actual optimal investment decision ID∗ together with its total cost, but infeasible to solve in
real life.

The performance of the simplified RD-based expansion planning model is evaluated by comparing
with the two full-space models. The three metrics based on the objective functions of these models:
simplification error, operational estimation error, and optimality gap, are introduced in the following
sections.

4.3.1. Simplification error
The investment decisions ˆID and ID∗ of the simplified planning model and the full-space planning
model, respectively, are determined based on their corresponding objective function values, the total
cost of operation and investment. Naturally, the difference in total cost between the two planningmodels
is considered as one metric in evaluating the RD-based ˆID [24], [61], [76]. This is referred as the
simplification error in this thesis, highlighted in green in Figure 4.1:
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∆TCRD[ ˆID] ≡ TCRD[ ˆID]− TCFull[ID
∗]

= IC[ ˆID]− IC[ID∗] +OCRD[ ˆID]−OCFull[ID
∗] (4.2)

where TCRD[ ˆID] is the total cost calculated in the RD-based planning model, consisting of the pre-
defined investment cost IC[ ˆID] and the estimated operational cost OCRD[ ˆID]; TCFull[ID

∗] is the
optimal total cost calculated in the full-space planning model, consisting of the pre-defined investment
cost IC[ID∗] and the full-space operational cost OCFull[ID

∗].

Therefore, as shown in Equation 4.2, ∆TCRD[ ˆID] is a real value where a negative sign represents
under-estimation and a positive sign represents over-estimation. The two contributors to the simplifica-
tion error ∆TCRD[ID] are the investment cost error and the operational cost error.

However, because the operational cost for ˆID is estimated using the RD-based set, a small value of
∆TCRD[ ˆID] does not guarantee a small error in terms of full-space total cost used in the full-space
planning model. In cases where the operational cost is under-estimated, a falsely low total cost for ˆID
might occur, resulting in a misleadingly small error when compared to the optimal total cost of ID∗.

The difference between the decision made by the simplified model, ˆID, and the real optimal ID∗ is
still unclear, making the simplification error a compromised metric for modelers and decision-makers
to consider.

4.3.2. Optimality gap
In the previous section, the simplification error was not a robust metric due to the estimated operational
cost of ˆID. To eliminate the effects of operational cost estimation, the full-space operational cost model
is used in [12], [16], [27], [47], [59] so that the actual, uncompromised operational cost OCFull[ ˆID]
becomes available. Therefore, for the operational cost part of the simplification error, the actual full-
space operational cost OCFull[ ˆID] instead of the estimated OCRD[ ˆID] can be applied, leading to a
new metric, optimality gap, defined as:

∆TCFull[ ˆID] ≡ IC[ ˆID]− IC[ID∗] +OCFull[ ˆID]−OCFull[ID
∗]

= TCFull[ ˆID]− TCFull[ID
∗] ≥ 0 (4.3)

where TCFull[ ˆID] is denoted as the full-space total cost corresponding to ˆID.

In contrast to the simplification error, which utilizes the estimated OCRD[ ˆID], as shown in Equation 4.2,
the optimality gap applied OCFull[ ˆID] in the evaluation, highlighted in red in Equation 4.3. The total
cost error, ∆TCFull[ ˆID], represents the difference between ˆID and the optimal ID∗, both using the
full-space time set. This corresponds to the objective function of the original full-space planning model.
Essentially, the optimality gap denotes the difference in the objective function between the full-space
operational cost model and the full-space planning model, as highlighted in red in Figure 4.1.

As the result, ∆TCFull[ ˆID] represents the actual objective difference between the optimal investment
decision. For any given feasible investment option including ˆID, its total cost is always greater or
equal to the cost linked to ID∗. A smaller value of ∆TCFull[ ˆID], by definition, represents a better
performance of the simplified planning model.

4.3.3. Operational estimation error
In the previous section, the optimality gap was obtained from the simplification error by replacing the full-
space OCFull[ ˆID] with the estimated OCRD[ ˆID]. In this process, for the power system implemented
with ˆID, the error of RDs in representing the full-space operational cost is compensated, achieving an
concrete upper bound for the total cost. This eliminated error in operational cost estimation can then
be defined as the operational estimation error [77], [78], denoted as ∆OC[ ˆID]:
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∆OC[ ˆID] ≡ OCRD[ ˆID]−OCFull[ ˆID]

= ICRD[ ˆID] + IC[ ˆID]− (OCFull[ ˆID] + IC[ ˆID])

= TCRD[ ˆID]− TCFull[ ˆID] (4.4)

Similar to the simplification error, the operational estimation error is defined as a real value, and its sign
indicates whether the operational cost is under-estimated or over-estimated. It reflects how well the
RDs represent the actual operational situation for a given network with investment ˆID.

In addition, based on the fact that the investment cost function is pre-defined, shown in Equation 4.4,
the difference between the RD-based expansion planning model and the full-space operational cost
model is actually the operational estimation error since the same ˆID is considered in both models,
highlighted in blue in Figure 4.1.

4.3.4. Summary
By looking into the objective function of the planning model, three defined metrics: simplification er-
ror, optimality gap, and operational estimation error are defined, and the three models, RD-based
expansion planning model, full-space operational cost model, and the reference full-space expansion
planning model can be linked by the three metrics, shown in Figure 4.1.

From the relationship among three models, the simplification error can be represented in terms of the
optimality gap and operational estimation error:

∆TCRD[ ˆID] = ∆OC[ ˆID] + ∆TCFull[ ˆID] (4.5)

It represents that the simplification error, the difference between the RD-based planning model and
the full-space planning model, is composed of two components: operational estimation error of ˆID
reflecting the accuracy of RDs in representing the operational situation for the network implemented
with ˆID, and optimality gap quantifying the actual cost error due to selecting a sub-optimal ˆID.

4.4. Bounding for the error of applying representative days
In the previous section, three metrics, simplification error, operational estimation error and optimality
gap, were analyzed to evaluate the performance of using RDs in the expansion planning model. It
is worth noting that, for the RD-based expansion planning model, it is also an optimization problem
and ˆID is its optimal decision based on the minimal RD-based total cost TCRD[ ˆID]. In this section,
the property of this optimality is explored to find further relationships between the three metrics and
optimization models.

4.4.1. Bounding for the optimality gap
Given that ˆID is the optimal investment decision made by the RD-based expansion planning model,
for any investment decision ID, we have:

TCRD[ ˆID] ≤ TCRD[ID]

TCRD[ ˆID] ≤ TCRD[ID∗] (4.6)

The total cost of ˆID calculated based on RDs is smaller than or equal to the total cost of any feasi-
ble investment decisions ID. Specifically, this inequality also holds for the actual optimal investment
decision ID∗.

Therefore, considering that the RD-based total cost consists of the RD-based estimated operational
cost and the pre-defined investment cost, and together with the definitions of optimality gap and oper-
ational estimation error, the inequality in Equation 4.6 can be further derived into:
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TCRD[ ˆID] ≤ TCRD[ID∗]

IC[ ˆID] +OCRD[ ˆID] ≤ IC[ID∗] +OCRD[ID∗]

IC[ ˆID] +OCRD[ ˆID]−OCFull[ ˆID] +OCFull[ ˆID] ≤ IC[ID∗] +OCRD[ID∗]

−OCFull[ID
∗] +OCFull[ID

∗]

IC[ ˆID] + ∆OC[ ˆID] +OCFull[ ˆID] ≤ IC[ID∗] + ∆OC[ID∗] +OCFull[ID
∗]

TCFull[ ˆID] + ∆OC[ ˆID] ≤ TCFull[ID
∗] + ∆OC[ID∗]

TCFull[ ˆID]− TCFull[ID
∗] ≤ ∆OC[ID∗]−∆OC[ ˆID]

∆TCFull[ ˆID] ≤ ∆OC[ID∗]−∆OC[ ˆID] (4.7)

such that the optimality gap from ˆID to ID∗ is always smaller than or equal to the difference of the
operational estimation error between ˆID and ID∗.

In addition, from the definition of the reference full-space expansion planning model, for any feasible
investment decision, including ˆID, we have:

TCFull[ ˆID]− TCFull[ID
∗] ≥ 0 (4.8)

Therefore, the optimality gap is bounded by:

0 ≤ ∆TCFull[ ˆID] ≤ ∆OC[ID∗]−∆OC[ ˆID] (4.9)

Based on the definition of operational estimation error, the optimality gap is a non-negative metric
upper bounded by the difference of RDs in representing the operational situation for the network with
ˆID investment and ID∗ investment.

4.4.2. Bounding for the simplification error
As for the simplification error, it is the combination of the operational estimation error and the optimality
gap of ˆID. By applying the bounding of optimality gap into the simplification error, we have:

∆TCRD[ ˆID] = ∆OC[ ˆID] + ∆TCFull[ ˆID]

≤ ∆OC[ ˆID] + ∆OC[ID∗]−∆OC[ ˆID]

≤ ∆OC[ID∗] (4.10)

such that the simplification error is smaller than or equal to the operational estimation error for ID∗,
which is an unbounded real value.

4.5. Cost-based evaluation on typical TSA methods
In the previous sections, the evaluation methods for assessing the performance of RD-based planning
models in terms of their objectives were analyzed. In this section, based on the operational estimation
error, optimality gap, and its upper bound, the performance of typical input-based TSA methods are
analyzed, including:

1. Hierarchical clustering with mean as centroids
2. Hierarchical clustering with medoid as centroids
3. Medoid-based hierarchical clustering with additional optimization on one-to-one mapping
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4. Medoid-based hierarchical clustering with additional optimization on linear combination map-
ping

5. Optimization-based representative day selection with inherent one-to-one mapping
6. Sequential optimization-based representative day selection with initial one-to-one mapping to

identify RDs followed by linear combination mapping to determine weights

In order to acquire the scale of the cost error so as to demonstrate the general performance of RD
selection methods across different test systems and time-series sets, the three cost-based metrics
are further normalized using the calculated actual optimal total cost TCFull[ID

∗] of the corresponding
optimal investment decision ID∗:

∆OC[ ˆID] =
∆OC[ ˆID]

TCFull[ID∗]
(4.11)

∆TCRD[ ˆID] =
∆TCRD[ ˆID]

TCFull[ID∗]
(4.12)

∆TCFull[ ˆID] =
∆TCFull[ ˆID]

TCFull[ID∗]
(4.13)

4.5.1. Hierarchical clustering
For the hierarchical clustering methods, based on the selection of the centroid of each cluster, the hier-
archical clustering methods have twomain branches, clustering with mean as its centroid and clustering
with medoid as its centroid.

The two hierarchical clustering methods applied in this project are formulated based on Algorithm 1,
and their performance as the number of RDs (NRD) increases is shown in Figure 4.2.

Shown in the three figures on the left side of Figure 4.2, the operational estimation error of ˆID and
ID∗ follows a very similar trend, and in general, the operational estimation error and the optimality gap
approach zero as NRD increases. At the same time, their difference also decreases. Specifically, the
operational estimation error of the medoid-based HC method approaches zero much faster than the
mean-based method as NRD increases, and a very good investment decision can be obtained with
fewer RDs. However, the variation in operational estimation error as NRD increases, as well as the
differences among the three scenarios, are also larger compared to the mean-based method. In some
cases, an increasing NRD leads to worse operational estimation and investment decisions. In contrast,
the mean-based approach is less sensitive to the specific power system and the time-series dataset
used, providing much more stable improvements as NRD increases.

As discussed previously in Section 4.4, the optimality gap is bounded by the difference between the
operational estimation error of ˆID and ID∗, this diminishing difference indicates a more consistent
performance on the operational estimation of the power system with the two investment decisions,
and therefore to a tighter bound and a better investment decision. In addition, looking across the
performance based on the three time-series datasets, variations in specific values can be observed,
but a similar asymptotic behavior is evident. The operational estimation error gradually approaches
zero with decreasing rate.

Firstly, in the mean-based HC method, the mean of all days within each cluster is assigned as its
centroid for calculating the distance between clusters and selecting the final RDs. The resulting centroid
is not a real day that exists in the original time set and the load and wind factor values at each time
point are the average value of the linked original days.

The operational estimation error is always negative for all three cases with mean-based HC method.
This indicates that the RD-based time-series systematically underestimates the actual operational cost.
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(a) Operational estimation error and simplification error
(scenario 1: Netherlands)

(b) Optimality gap and its upper bound
(scenario 1: Netherlands)

(c) Operational estimation error and simplification error
(scenario 2: Belgium)

(d) Optimality gap and its upper bound
(scenario 2: Belgium)

(e) Operational estimation error and simplification error
(scenario 3: France)

(f) Optimality gap and its upper bound
(scenario 3: France)

Figure 4.2: Performance of the RD-based expansion planning model applying the time set of three scenarios, selected by
mean-based and medoid-based hierarchical clustering with clustering-based one-to-one mapping
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Before the input-based RD selection, no extreme days are specifically assigned. Clustering methods
focus on minimizing dissimilarity between clusters considering days with different load levels equally.
In the mean-based HC method, setting the mean value of each cluster as its centroid averages and
discards the peak values within the cluster. However, days with higher load normally have higher risk of
congestion with very high penalty of potential load shedding. In addition, the generation cost of thermal
generators is quadratic. The impact of the time-series error on these days are extremely different.
Averaging high levels with low levels linearly ignores the non-linear operational impact, leading to the
always negative operational estimation error for the mean-based HC method. In [16], the objective
value obtained from the k-means clustering based simplified expansion model is proved as the lower
bound of the actual optimal total cost.

As for the medoid-based HC method, the medoid of each cluster is selected as the centroid, which is
a real day with full variability patterns. A mostly negative operational estimation error can be observed,
since the extreme conditions are not prioritized. Treating all days equally is likely to ignore days with
extreme conditions and under-estimate the actual operational cost. However, peaks within the RD are
preserved in the selection and the extreme conditions are partially addressed. Therefore, the overall
under-estimation is mitigated for the medoid-based cases.

On the other hand, selecting the medoid as centroid is very sensitive to the distribution of the data
points. The selected RDs may not sufficiently represent the overall situation within their cluster, for
example for a less spherical distribution of data points, leading to inconsistent improvements as NRD
increases. Therefore, the performance of the medoid-based HCmethod varies dramatically as different
time-series sets are applied.

Conversely, the mean-based method, which averages all days within each cluster, attempts to cap-
ture the overall performance of all days but fails to address extreme conditions, consistently under-
estimating the actual operational situation. Since the overall performance is better captured, a much
more stable improvement is observed as NRD increases. Therefore, for both clustering methods, es-
pecially for the mean-based method, the further introduction of extreme days, directly in terms of power
system operation, can be applied to enhance their performance.

4.5.2. Optimization-based representative day selection
In addition to the clustering-based time-series aggregation methods, optimization is also widely applied
in the RD selection. The optimization-based RD selection approach applied in this project is formulated
as Equation 2.4 with binary one-to-one mapping between original days and RDs. Its performance, in
terms of operational estimation error and optimality gap, is shown in Figure 4.3. The curves for the
medoid-based HC method are also shown for comparison.

Similar to HC methods, the operational estimation error for the optimization-based RD selection is also
mostly negative, under-estimating the actual operational cost. The reason is also that the optimization-
based RD selection does not specifically preserve days that triggers extreme operational cost situa-
tions. This variability in the dataset is not particularly captured as NRD increases. However, as NRD
increases, the general variation of the operational estimation error and the optimality gap across the
three scenarios are mild for the optimization-based method compared to HC(medoid) method. The
optimization-based case exhibits more consistent performance across the three scenarios, less sensi-
tive to the distribution of the time-series. A relatively good result can be observed when NRD is low. It is
because that RDs are selected using an optimization problem rather than a heuristic iterative process,
as in HC.

However, in terms of the final optimality gap, no general improvements are observed for the optimization-
basedmethod compared to HCmethods, as the optimization-basedmethod only considers input-based
similarity, without accounting for its non-linear relationship with operational cost.

4.5.3. Day-to-RD mapping
For time-series aggregation methods with real days as RDs, both the selection of RDs and the determi-
nation of which original days they represent are accomplished in an integrated manner. In hierarchical
clustering methods, the centroid of each cluster is selected as the RD, and all original days within the
cluster are mapped to this selected RD. Similarly, the optimization-based RD selection determines both
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(a) Operational estimation error and simplification error
(scenario 1: Netherlands)

(b) Optimality gap and its upper bound
(scenario 1: Netherlands)

(c) Operational estimation error and simplification error
(scenario 2: Belgium)

(d) Optimality gap and its upper bound
(scenario 2: Belgium)

(e) Operational estimation error and simplification error
(scenario 3: France)

(f) Optimality gap and its upper bound
(scenario 3: France)

Figure 4.3: Performance of the RD-based expansion planning model applying the time set of three scenarios, selected by
medoid-based hierarchical clustering with clustering-based one-to-one mapping and Optimization-based selection with

one-to-one mapping
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the RDs and their mapping to original days within a single optimization model.

Compared to HCmethods, optimization-based RD selection performs better in minimizing the statistical
distance between RDs and their mapped days, which will be discussed in Section 4.6. However, the
computation time needed for solving the MILP problem for RD selection is significantly longer than
for HC methods, especially when NRD is low. Nonetheless, the optimization-based RD selection can
be more easily solved if the selection of RDs is fixed and the optimal mapping of original days to
these fixed RDs is determined separately. Therefore, in terms of the input-based error, once RDs are
selected using the medoid-based HC method, their mapping to original days can be reassigned using
time-mapping optimization to reduce time-series error and also consider the duration curve.

What’s more, [14] proposed setting the mapping matrix from binary values to real values ranging from
0 to 1 in optimization-based RD selection, allowing for linear combination mapping between RDs and
original days, significantly reducing the time-series error. Due to the high computational burden, this
linear combination mapping is implemented as an additional step, determining the mapping after RDs
are selected through optimization-based selection with one-to-one mapping. This approach can also
be applied to the medoid-based HC method.

Therefore, the additional day-to-RD mapping optimization, including one-to-one and linear combination
mapping (formulated based on Equation 2.12), are applied to the medoid-based HC method. The
optimization with the linear mapping process is also applied to the optimization-based RD selection
method. The performance of this additional time-mapping process will be analyzed in this section.

One-to-one mapping
Firstly, the performance of implementing an additional one-to-one mapping optimization for the medoid-
based HC method in terms of the operational estimation error and the optimality gap is shown in Figure
4.3. The curves for the medoid-based HC method with default cluster-based mapping are also shown
for comparison.

In this additional one-to-one mapping process, the weights of RDs are re-assigned based on the mini-
mum within-cluster difference, resulting in a slight reduction in the time-series error, as shown in Figure
4.7. Still, extreme conditions are not specifically addressed in terms of the operational situation. For all
three scenarios, the variation of the operational estimation error as NRD increases is similar before and
after the additional mapping process. No general improvement can be observed in the operational esti-
mation error and the final optimality gap. This indicates that the introduced variability from the reduced
time-series error does not contribute to a better representation of the actual operational situation.

Linear combination mapping
Shown in Figure 4.7, relaxing the mapping variables from binary to real values can significantly reduce
the time-series error. Its performance on the operational estimation error and the final optimality gap
for the standard medoid-based HC and optimization based RD selection method are examined and
shown in Figure 4.5 and Figure 4.6.

In the linear combination method, the RES and load factors of each original day is represented by a
combination of RDs, and the operational cost of the original day is then calculated from the weighted op-
erational cost of the linked RDs. Compared with the standard HC and one-to-one mapped optimization-
based RD selection where the operational estimation error is mostly negative, under-estimating the
actual operational cost, the operational estimation error significantly increases to positive values after
applying the linear combination mapping, leading to an over-estimation of the actual operational cost.

As discussed in Section 4.5.1, because of the high cost of load shedding and the quadratic cost of ther-
mal generators, the impact of the input-based error is non-linear, making days with a high risk of power
congestion and high load levels more sensitive to time-series errors. Representing the operational cost
of an original day with a linear combination of RDs overlooks this non-linearity and minimizes the time-
series error without prioritizing critical days. As the result, days with high power congestion risks are
assigned too much weight to days with lower risks. Therefore, the operational estimation error of apply-
ing linear combination mapping is much higher than the standard one-to-one mapping, even though the
same sets of RDs are used. What’s more, the over consideration on high peak days enlarges the oper-
ational difference between the power system with ˆID and ID∗, increasing the operational estimation
error difference between ˆID and ID∗, resulting in a larger upper bound.
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(a) Operational estimation error and simplification error
(scenario 1: Netherlands)

(b) Optimality gap and its upper bound
(scenario 1: Netherlands)

(c) Operational estimation error and simplification error
(scenario 2: Belgium)

(d) Optimality gap and its upper bound
(scenario 2: Belgium)

(e) Operational estimation error and simplification error
(scenario 3: France)

(f) Optimality gap and its upper bound
(scenario 3: France)

Figure 4.4: Performance of the RD-based expansion planning model applying the time set of three scenarios, selected by
medoid-based hierarchical clustering with clustering-based one-to-one mapping and Optimization-based one-to-one

mapping
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(a) Operational estimation error and simplification error
(scenario 1: Netherlands)

(b) Optimality gap and its upper bound
(scenario 1: Netherlands)

(c) Operational estimation error and simplification error
(scenario 2: Belgium)

(d) Optimality gap and its upper bound
(scenario 2: Belgium)

(e) Operational estimation error and simplification error
(scenario 3: France)

(f) Optimality gap and its upper bound
(scenario 3: France)

Figure 4.5: Performance of the RD-based expansion planning model applying the time set of three scenarios, selected by
medoid-based hierarchical clustering with optimization-based one-to-one mapping and optimization-based linear

combination mapping
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(a) Operational estimation error and simplification error
(scenario 1: Netherlands)

(b) Optimality gap and its upper bound
(scenario 1: Netherlands)

(c) Operational estimation error and simplification error
(scenario 2: Belgium)

(d) Optimality gap and its upper bound
(scenario 2: Belgium)

(e) Operational estimation error and simplification error
(scenario 3: France)

(f) Optimality gap and its upper bound
(scenario 3: France)

Figure 4.6: Performance of the RD-based expansion planning model applying the time set of three scenarios, selected by
optimization-based selection with one-to-one mapping and linear combination mapping
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In summary, although the additional linear combination mapping process significantly reduces the input-
based error between RDs and the original days, the operational situation is not effectively estimated
as the non-linear impact of time-series error is not properly prioritized.

4.5.4. Summary
In this section, from the analysis of typical TSA methods, it is found that:

• Hierarchical clustering with mean as centroids systematically under-estimates the actual opera-
tional cost, heuristically providing a lower bound of the actual operational cost.

• Optimization-based RD selection implements an optimization process tominimize the dissimilarity
between RDs and original days, providing more stable results in operational estimation as NRD
increases. However, no general improvements in optimality gap are observed since the operation-
related information is not considered.

• While allowing linear combination mapping between RDs and original days can reduce input-
based error, the non-linear impact of time-series error on operational cost makes this approach
unsuitable for application in power system planning.

4.6. Input-based error
The inherent assumption of input-based time-series aggregation is that similar aggregated time-series
lead to similar final objective values. Minimizing the input-based error between the aggregated and
original time-series is, therefore, the goal of input-based time-series aggregation. The input-based
error metrics of the studied time-series aggregation methods, including time-series error (Equation 2.6)
and overall duration curve error (Equation 2.7) introduced in Chapter 2, are tested and shown in Figure
4.7.

Firstly, as NRD increases, both the time-series error and the duration curve error decrease in general for
all input-based time-series aggregation methods, aligning with their objectives. Shown in Figure 4.7a,
Figure 4.7c and Figure 4.7e, the time-series error curves for all methods monotonically and gradually
decrease, with the rate of decrease diminishing as NRD increases. In contrast, the duration curve error
for all methods, as shown in Figure 4.7b, Figure 4.7d and Figure 4.7f, does not always monotonically
decrease, but in some cases, it increases with NRD.

For hierarchical clusteringmethods without further optimization-basedmapping, the primary objective is
to minimize the distance between all time periods within one cluster and its centroid, directly affecting
the time-series error. Although in general the duration curve error decreases with decreasing time-
series error, it is overlooked during the selection process, resulting in peaks on the curve.

As for the optimization-based methods and hierarchical clustering methods with optimization-based
time mapping, the duration curve error is tracked in the objective function of the time mapping process.
However, the scale of the time-series error is much larger than the duration curve error, approximately
ten times greater, as shown in 4.7. To achieve the overall minimum input-based error, the time-series
error is prioritized in the time mapping process, leading to monotonically decreasing time-series error
curves.

Looking into the time-series error curves for all time-series aggregation methods, shown in Figure 4.7a,
Figure 4.7c and Figure 4.7e, the aggregation methods using optimization-based time mapping support-
ing linear combination representation perform significantly better than those where original days and
RDs are one-to-onemapped. However, as discussed in Section 4.5, introducing the optimization-based
linear combination time mapping does not improve the performance of RDs in terms of operational esti-
mation error and the final optimality gap, which are the objectives of power system expansion planning.

The second-best performing time-series aggregation method regarding input-based error is the mean-
based hierarchical clustering method. Compared to all other methods using real original days as RDs,
the mean-based method performs better in minimizing the average distance of all days within each
cluster. However, as discussed in Section 4.5.1, the drawback of applying the mean within each clus-
ter may curtail the peaks within each day, under-estimating the variability of the time-series. It will
eventually lead to the under-estimation of the operational cost.
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(a) Time-series error with different time-series aggregation methods
(scenario 1: Netherlands)

(b) Duration curve error with different time-series aggregation methods
(scenario 1: Netherlands)

(c) Time-series error with different time-series aggregation methods
(scenario 2: Belgium)

(d) Duration curve error with different time-series aggregation methods
(scenario 2: Belgium)

(e) Time-series error with different time-series aggregation methods
(scenario 3: France)

(f) Duration curve error with different time-series aggregation methods
(scenario 3: France)

Figure 4.7: Performance of the time series aggregation methods on the input-based error: time-series and duration curve on
the time set of three scenarios
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As for the rest threemethods with real days as centroids with RDs and original days one-to-onemapped,
the optimization-based RD selection performs the best, while the medoid-based hierarchical clustering
performs the worst in terms of time-series error. In fact, hierarchical clustering methods with and without
additional time mapping can be seen as relaxations of the optimization problem of finding centroids with
minimum total distance. Therefore, the solution of hierarchical clustering methods is actually the sub-
optimal solution of the optimization model. Again, the performance difference of these three methods
in operational estimation and final optimality gap does not proportionally reflect the differences in input-
based error.

Therefore, from the analysis of input-based error of all time-series aggregation methods, one conclu-
sion can be drawn that lower input-based error does not necessarily lead to lower cost-based
error. The relationship between the input-based error of RDs and the original time-series and the final
optimality gap is system-specific. While zero input-based error guarantees zero cost-based error, no
general relationship can be drawn in between. It underscores that the operational characteristics of the
studied power system should be also considered in the time-series aggregation.

The possible factors that influences time-series error and the final operational estimation have been
discussed in [19], [44]. Firstly, the RES and load factors in the time-series dataset lack information on
the actual scale of available RES power and required load at each time point. The aggregation of both
RES and load variability profiles uses normalized factors, ignoring actual values of RES capacity and
load. However, the impact of RES and load variation is highly related to their actual values. Focusing
solely on the normalized factor will lead to less effective result in the objective decisions.

Furthermore, the impact of RES and load variability also depends on the topology of the applied power
system and its electrical components, such as transmission lines, thermal generators, and storage.
With different characteristics of transmission capacity limitation and flexibility provided by storage and
thermal generator ramp rates, RES and load variability have varying impacts on power dispatch and
congestion risks. This can trigger investments to mitigate high costs caused by power congestion, if
feasible.

In conclusion, without the actual operational features of the studied power system, the impact of vari-
ability in the time-series can not be properly addressed.

4.7. Computation time
The initial reason of introducing time-series aggregation into power system expansion planning prob-
lems is that the computation burden considering the complete time span is too high to handle in real
world cases. Therefore, evaluating the computation time for time-series aggregation methods and the
time used for the RD-based simplified planning model is crucial to verify their feasibility and effective-
ness in practical applications.

Computation time for representative day selection
Firstly, the average computation time of selecting RDs among the three scenarios of time-series dataset
using the six time-series aggregation methods are tested and shown in Figure 4.8.

The computation time used for the two hierarchical clustering based methods with no additional time
mapping process is relatively low compared to all other methods with optimization involved. This aligns
with the nature of the hierarchical clustering algorithm, where the iterations of clustering are limited
by the number of RDs. The clustering-based methods can be considered as heuristics for solving
the optimization problems. They provide sub-optimal RDs for estimating the full-space time-series in
terms of time-series error while maintaining a much lower computational burden, making them always
accessible even for large time-series datasets [32].

For the HC methods with additional one-to-one or linear combination mapping optimizations, the com-
putation time increases significantly as NRD increases. This is primarily due to the mapping process.
The increased complexity arises as more RDs are considered for potential mapping to each original
day, therefore increasing the computational burden.

For the optimization-based TSAmethods, as introduced in Chapter 2, the optimization-based RD selec-
tion with linear combination time mapping is implemented sequentially by first running the optimization-
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Figure 4.8: Average time used for time-series aggregation for three scenarios with different methods

based RD selection with one-to-one mapping and then running the linear combination mapping opti-
mization problem with the fixed selected RDs. The computation time required for direct linear combi-
nation mapping based optimization is infeasible. Fixing the selection of RDs simplifies the complex
MILP to a pure LP model, making it much easier to solve. However, the linear combination mapping
model failed to find the linear mapping for 20 RDs in scenario 2: Belgium after computing for 12 hours.
The value shown in Figure 4.8 is the average time for solving scenario 1: Netherlands and scenario 3:
France.

When the number of RDs is low, the computation time for solving the optimization of RD selection, which
is a large MILP problem, is much higher compared to the hierarchical clustering algorithm. Additionally,
linear combination mapping requires more time compared to one-to-one mapping, as multiple days can
potentially be mapped to one original day.

Computation time for planning

Figure 4.9: Average time used for running the RD-based power system co-planning model

In addition, the computation time used for solving the simplified expansion planning models with RDs
selected by different methods are tested and shown in Figure 4.9.

The computation time for solving the simplified planning model gradually increases as more RDs are
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considered, with no significant differences observed among different time-series aggregation methods.
Compared to the reference model (8h 56min 36s), shown in Table 6.1, applying 20 up to 120 RDs can
reduce the computation time in solving the planning model by 96.9% to 99.7%, making the planning
model practically solvable.

4.8. Conclusion
In this chapter, by introducing the full-space operational cost model, the actual operational situation of
the power system with the estimated investment decision ˆID is obtained. Therefore, directly in terms of
the investment and operational cost, three metrics in evaluating the error of applying RDs are analyzed,
including the simplification error, operational estimation error and optimality gap.

The optimality gap ∆TCFull[ ˆID] serves as an important metric for assessing the error when imple-
menting the estimated RDs in the planning model. It represents the objective gap of the sub-optimal
ˆID compared to the optimal investment decision ID∗, thereby providing a reliable measure of the effec-
tiveness of the RDs in the planning process. Importantly, it is found that the optimality gap is bounded
by the difference between the operational estimation errors for ID∗ and ˆID. This relationship under-
scores the significance of operational estimation accuracy in influencing the performance and reliability
of RD-based planning models.

Therefore, operational estimation error is introduced, as a metric to evaluate the performance of RDs in
representing the actual operational cost, highlighting the correlation between the applied power system
and the selected RDs. A large negative ∆OC[ID] represents that the actual operational cost is greatly
under-estimated, while a large positive ∆OC[ID] indicates over-estimation.

Then, the performance of typical input-based RD selection methods are evaluated in terms of both
input-based error and objective-based error. No clear winner emerged across all tested input-based
RD selections in general considering the three time-sets.

• The performance of RD selection methods varies significantly with changes in RES and load
profiles.

• HC with medoid centroids improves relatively fast as NRD increases, obtaining good results when
NRD is large. However, more variation is observed because the preserved intra-day variability
might not be capable of always capturing the overall variation of linked original days, sensitive to
the time-series itself.

• HC with mean centroids consistently under-estimates the actual operational cost as it averages
data with different levels, leading to an under-estimation of the non-linear operational impact. On
the other hand, it converges uniformly as NRD increases, less sensitive to the distribution of
time-series.

• Optimization-based RD selection exhibits less variation compared to medoid-based HC, showing
relatively good operational estimation error when NRD is very low. However, no general improve-
ments in the optimality gap are observed as NRD increases.

• The reduced input-based error by linear combination ignores the non-linear impact of operational
cost, making it not suitable for application in power system planning.

All methods focus onminimizing the statistical distance betweenRDs and original days, trying to capture
the RES and load variability. However, it is verified that the input-based errors of selected RDs, such
as time-series error and duration curve error, does not fully reflect RDs’ performance in estimating the
operational situation and the final total cost in the objective function. The impact of input-based error
is highly sensitive to the operation of the specific power system such that reducing time-series error
does not always lead to a reduced optimality gap. This underscores the importance of considering the
correlation between the power system and the time-set to properly address the variability in terms of
the objective.

In summary, the variability within the original time-series cannot be effectively captured solely by mini-
mizing the similarity between days. The performance of RDs in estimating the actual operational cost
should be implemented as the correlation between time-series and the power system. Therefore, the
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operational estimation error of both ˆID and ID∗ should be further investigated to improve the perfor-
mance of RDs in power system expansion planning.



5
Distribution of operational estimation

error

From Chapter 4, it is evident that the operational estimation error is a crucial metric for evaluating the
performance of simplified planning models. This metric reflects the overall efficacy of representative
days in replicating the full-space operational situation of the studied power system and is closely re-
lated to the optimality gap. To enhance the performance of RDs in representing the actual operational
situation, it is necessary to analyze the characteristics of the operational estimation error.

During the time-mapping stage of representative day selection, each original day in the full-space set
is mapped to one or multiple RDs. The operational scenario for each original day is estimated using
the mapped RDs, and the performance of RDs for each original day is assessed by comparing the RD-
based estimated operational cost to the actual full-space operational cost for that day. This operational
cost error, when accumulated for all original days, contributes to the total operational estimation error
discussed in Chapter 4.

On the other hand, each RD is associated with a cluster of original days, representing their cumulative
operational situation. The performance of a given RD can be evaluated by comparing the weighted
estimated operational cost of that RD against the sum of the actual operational costs of all mapped
original days. This operational cost error, when accumulated for all RDs, also contributes to the total
operational estimation error.

Therefore, in this chapter, the total operational estimation error is analyzed by decomposing it into the
operational estimation error for each original day and each RD. This decomposition allows for a detailed
evaluation of the RD’s performance.

5.1. Operational estimation error in terms of each original day in
the full-space set

5.1.1. Definition
For each original day, its operational cost with a given ID is estimated using the operational cost of
one or multiple RDs. Then, the original day based operational estimation error is defined as:

∆OCRtoO[ID][i] =
∑
j∈R

MO
R [i, j] ·OCR[ID][j]−OCO[ID][i], ∀i ∈ O (5.1)

where OCR[ID][j] is the operational cost with ID for each representative day; OCO[i] is the actual
operational cost with ID for each original day calculated using the full-space operational cost model;
MO

R [i, j] is the mapping matrix indicating whether the original day i is mapped to the representative day
j.

49
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This original day based daily operational estimation error stands for the performance of RDs on captur-
ing the actual operational situation of a given original day in the full-space set, and its summation over
all original days is the total operational estimation error:

∆OC[ID] =
∑
i∈O

∆OCRtoO[ID][i] (5.2)

5.1.2. Case study
The distribution of operational estimation error in terms of each original day for the three scenarios
using three methods are studied, including the medoid-based hierarchical clustering, mean-based hi-
erarchical clustering, and optimization-based RD selection with linear combination mapping.

A similar distribution of operational estimation error is observed among the three time-series. Therefore,
the performance of TSA methods on Scenario 1: Netherlands is analyzed. The results for Scenarios 2
and 3 are presented in Appendix A.

Medoid-based hierarchical clustering
For the medoid-based hierarchical method, shown in Figure 5.1, it is observed that the operational esti-
mation error is extremely unevenly distributed. A few days have extremely large operational estimation
errors, contributing to the majority of the total operational estimation error, while the other days are well
estimated with relatively low operational estimation error. As NRD increases, the total operational esti-
mation error drops, and the magnitude of the extremely high operational estimation errors is mitigated.
However, these errors remain significantly higher than those on other days. On the other hand, the
operational estimation error for certain days becomes highly over-estimated, still resulting in an uneven
distribution of estimation error throughout the year. Thus, the issue of extreme error situations remains
inadequately addressed.

Comparing the operational estimation error of the two investment decisions, ˆID and ID∗, the distribu-
tion for two cases are very similar, with both sharing most of the days with high operational estimation
error. However, differences can be observed in the error levels for those days with high operational
estimation errors. From Chapter 4, it is understood that the difference between the two decisions ˆID
and ID∗ represents the upper bound of the actual optimality gap. Therefore, days with high operational
estimation errors, compared to other days, contribute more significantly to the final optimality gap.

It is noteworthy that days with high operational estimation errors are primarily located between days 0
to 50 and days 300 to 365, corresponding to late Fall and Winter. As described in Chapter 3, the load
and wind duration curves for Winter are higher than those for the other three seasons. In the selection
of representative days, the difference in capacity factors between days is the objective, but the actual
levels of load and wind factors are not considered. However, the operational cost is not linearly related
to the time-series error. When the actual load factor is high, the power system operates closer to its
operational limits to meet the load requirements. Therefore, the time-series error may either overlook
or incorrectly trigger power congestion, resulting in a much higher operational cost error compared to
normal cases.

Shown in the last three figures (b, d, f) of Figure 5.1, the time-series error of each original day, has
very different distributions compared to the distribution of operational estimation errors. It is because
that the operational estimation error is not only related to the time-series error, but also to the operation
of the particular power system such that the impact of time-series error in the power system can be
completely different.

Figure 5.2 shows the original day with the highest absolute value of operational estimation error and an
original day with a very similar time-series error. For day 23, which has the highest operational error,
the actual load at noon is under-estimated at around 0.7 instead of around 0.9, and the wind factor
throughout the day is over-estimated by 0.15 on average. As a result, the operational cost of day 23
is extremely under-estimated. For day 221, which has a very similar time-series error to day 23, the
actual load is over-estimated by 0.2 from around 0.6, and the wind factor is under-estimated by 0.15
on average. However, the final operational estimation error for day 221 is significantly lower than for
day 23, as day 23’s representative day overlooks the power congestion issue.
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(a) ∆OCRtoO in terms of ˆID (NRD = 20) (b) ∆OCRtoO in terms of ˆID (NRD = 40)

(c) ∆OCRtoO in terms of ID∗ (NRD = 20) (d) ∆OCRtoO in terms of ID∗ (NRD = 40)

(e) Time series error distribution for each original day (NRD = 20) (f) Time series error distribution for each original day (NRD = 40)

Figure 5.1: Distribution of operational estimation error and time-series error on original days - RDs are selected by
Medoid-based hierarchical clustering with clustering-based one-to-one mapping (scenario 1: Netherlands)
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(a) Original day 23 (with highest absolute value of operational estimation
error) with its RD 8 [time-series error = 0.0135]

(b) Original day 221 (with similar time-series error of day 23) with its RD
9 [time-series error = 0.0137]

Figure 5.2: Load and wind factor profile of the worst-performed original day in terms of the operational estimation error and a
day with similar time-series error - RDs are selected by Medoid-based hierarchical clustering with clustering-based one-to-one

mapping (scenario 1: Netherlands)

Therefore, because these very different impacts of time-series errors on the power system are over-
looked and treated as equal in the RD selection, increasing NRD does not necessarily reduce the
operational estimation error. More RDs are needed to achieve an investment decision that is close to
the optimal solution.

Optimization-based RD selection with linear combination mapping
The distribution of operational estimation error and time-series error in terms of each original day for
Scenario 1 is shown in Figure 5.3. A similar trend is observed where the operational estimation error
is highly unevenly distributed, with the original days in January being significantly under-estimated.
Additionally, the distribution of time-series error is very different compared to operational estimation
error.

The original day 23, which has the highest under-estimated error, along with its associated RDs, is
shown in Figure 5.4a and Figure 5.4c. The load and wind factor profiles for the original day 23 are
composed of 22% of RD 12 and 78% of RD 19. RD 19 closely estimates the load factor profile but over-
estimates the wind factor by 0.2 during the first half of the day. To compensate for the wind factor error,
22% of RD 12 is introduced, which accurately matches the wind factor but significantly under-estimates
the load factor. As a result, the wind factor profile is better estimated but at the cost of reduced accuracy
in the load factor estimation. However, on the original day 23, wind availability is minimal, while the
average load factor is high, approaching 1 at noon. The reduced accuracy in the load factor estimation
significantly impacts the operational cost, leading to an extremely large under-estimated operational
estimation error.

Original day Weighted summation of
operational cost

operational cost for the
synthetic day

Actual operational cost

23 (most under-
estimated)

$ 23,978,990 $ 14,206,411 $ 69,635,796

26 (most over-
estimated)

$ 2,304,753 $ 2,215,883 $ 1,875,066

Table 5.1: Operational cost of the worst-performed original day in terms of the under-estimated and over-estimated operational
estimation error - RDs are selected by optimization-based RD selection with linear combination mapping (scenario 1:

Netherlands)

Compared to methods employing one-to-one mapping, the scale of operational estimation error for the
under-estimated days is mitigated. This mitigation is due to the relaxation in the linear combination,
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(a) ∆OCRtoO in terms of ˆID (NRD = 20) (b) ∆OCRtoO in terms of ˆID (NRD = 40)

(c) ∆OCRtoO in terms of ID∗ (NRD = 20) (d) ∆OCRtoO in terms of ID∗ (NRD = 40)

(e) Time series error distribution for each original day (NRD = 20) (f) Time series error distribution for each original day (NRD = 40)

Figure 5.3: Distribution of operational estimation error and time-series error on original days - RDs are selected by
optimization-based RD selection with linear combination mapping (scenario 1: Netherlands)
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(a)Wind factor profile for Original day 23 (with highest under-estimated
∆OC[ ˆID]) with its RDs [time-series error = 0.0067]

(b)Wind factor profile for Original day 26 (with highest over-estimated
∆OC[ ˆID]) with its RDs [time-series error = 0.01042]

(c) Load factor profile for Original day 23 (with highest under-estimated
∆OC[ ˆID]) with its RDs [time-series error = 0.0067]

(d) Load factor profile for Original day 26 (with highest over-estimated
∆OC[ ˆID]) with its RDs [time-series error = 0.01042]

(e) Load and wind profile for Original day 23 (with highest
under-estimated ∆OC[ ˆID]) with the linear combined RD [time-series

error = 0.0067]
(f) Load and wind profile for Original day 26 (with highest over-estimated
∆OC[ ˆID]) with the linear combined RD [time-series error = 0.01042]

Figure 5.4: Load and wind factor profile of the worst-performed original day in terms of the under-estimated and
over-estimated operational estimation error - RDs are selected by optimization-based RD selection with linear combination

mapping (scenario 1: Netherlands)
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allowing RDs with higher levels of load and wind factors to contribute to each original day. Compared
to the medoid-based HC method, RD 19 in the linear combination scenario better approximates the
peaks of the load factor. The resulting load factor profile of the synthetic linear combined RD is closer
to the original day, although it still falls below the actual curve.

Moreover, the impact of the time-series error for high load levels is greater than that for low load levels
due to the quadratic generation cost of thermal generators and the high cost of load shedding. For each
original day, the operational cost of high load levels cannot be linearly compensated by the operational
cost of low load levels, unlike the averaged time-series error. Therefore, the estimated operational cost
for one original day by linearly combining the operational costs of linked RDs is larger than the result of
directly calculating the operational cost based on the synthetic day created by the linear combination
of the linked RDs. As shown in Table 5.1, for both original days 23 and 26, their estimated operational
costs based on the operational cost combination are higher than the operational costs based on the
linear-combined synthetic RD. This generally increases the estimation of the operational cost, mitigating
the under-estimation issue but introducing an over-estimation issue for many other days.

Figures 5.3 also shows that many original days become over-estimated, leading to an overall over-
estimation. The original days with the highest over-estimated error, along with their linked RDs, are
shown in Figures 5.4b, 5.4d and 5.4f. From 4:00 AM to 11:00 AM, the resulting linearly combined RD
over-estimates the available wind power and the load peak at the same time. For the rest of the day, the
load factor is well addressed, but the wind factor is over-estimated by 0.1 on average. Given that the
total installed load is 7386.75 MWwhile the total possible capacity of wind farms is 2400MW, the impact
of the load factor is larger than the wind factor in this power system, leading to an over-estimation of
the operational cost. Additionally, four RDs with different weights are linked to the original day 26. As
discussed, the linear combination of the operational cost is even larger than the operational cost based
on the combined RD, making the over-estimation issue worse.

In summary, as discussed in Chapter 4, the relaxation of linear combination mapping increases the
contribution of RDs with higher load and wind factor values, compensating with other RDs that have
lower values in the corresponding factor. However, the impact of the time-series error on operational
estimation differs between the two factors and is related to their actual levels. Linearly combining
capacity factors of both high and low values overlooks this differential impact of time-series error, often
leading to an over-estimation of the actual operational cost.

5.2. Operational estimation error in terms of each representative
day

5.2.1. Definition
On the other hand, the total operational estimation error throughout the time-span can also be decom-
posed into the combination of the operational cost error for each weighted RD, defined as:

∆OCOtoR[j] = OCR[j] ·WR[j]−
∑
i∈O

MO
R [i, j] ·OCO[i], ∀j ∈ R (5.3)

where WR[j] is the assigned weight for each RD.

The operational estimation error in terms of each RD stands for its overall performance in representing
all of its mapped original days in the full-space set, and its summation over all RDs is the total operational
estimation error:

∆OC[ ˆID] =
∑
j∈R

∆OCOtoR[j] (5.4)

5.2.2. Case study
The distribution of operational estimation error in terms of each RD across the three scenarios using
three methods are studied, including the medoid-based hierarchical clustering, mean-based hierarchi-
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cal clustering, and optimization-based RD selection with linear combination mapping. All figures cover
the full range of the shown data.

Medoid-based hierarchical clustering
As shown in Figure 5.5, the performance of RDs in estimating the actual operational cost is highly
unbalanced. A few RDs significantly under-estimate the actual operational cost, contributing to the
majority of the total operational estimation error. As NRD increases, the performance of the poorly
estimated RDs improves, and the total operational estimation error approaches zero. However, the
distribution of the operational estimation error among RDs remains unbalanced.

Regarding the difference between the two investment decisions, ˆID and ID∗, significant differences
can be observed for the RDs with relatively large operational estimation errors. Different investment
decisions result in different configurations of transmission lines and wind farm capacities. Consequently,
the impact of wind and load factor differences on the operational cost varies. For days with a higher
risk of power congestion and higher load factors, they are in general sensitive to differences in power
system configuration, leading to relatively large differences in operational estimation error.

Mean-based hierarchical clustering
Compared to the medoid-based method, the overall operational estimation error of the mean-based
method for each representative day is negative, as shown in Figure 5.6, indicating that the averaged
RD consistently under-estimates the actual operational cost. The centroid of each cluster is set as its
mean, averaging days with higher factor values and days with lower factor values. However, due to
the influence of the actual load level on the operational cost, the over-estimated operational cost of the
days with lower load levels cannot compensate for the under-estimated operational cost of the other
days, leading to an overall under-estimation for each cluster.

Optimization-based RD selection with linear combination mapping
Aligning with the discussion on the operational estimation error for each original day, fewer RDs are
generally under-estimated, but some RDs becomes over-estimated.

It is noteworthy that as NRD increases, significant differences between the two investment decisions
can be observed. This is because, with more RDs available, the time-series variability of each orig-
inal day is better approximated due to the contribution of additional RDs. However, the relationship
between the time-series error and the final operational cost of the original day is non-linear and sen-
sitive to the configuration of the power system. As more RDs are involved, the difference caused by
different investment decisions has a higher risk of being enlarged. Consequently, the final optimality
gap becomes larger.

5.3. Conclusion
In this chapter, the characteristics of the operational estimation error across original days and repre-
sentative days are analyzed. Firstly, it is observed that the operational estimation error is unevenly
distributed. While small errors can be observed for the majority of original days, a few original days
are extremely ill-estimated, contributing significantly to the total operational estimation error. These
ill-estimated original days are mainly distributed during winter months (December, January, and Febru-
ary). As detailed in Chapter 3, the load duration during winter is on average larger than the cases
for other seasons. Since the impact of the time-series error on different RES and load factor levels
are non-linear in terms of the operational cost, the sole input-based RD selection overlooks these non-
linearity and perform inadequately in estimating the operational costs. In addition, as NRD increases,
although the total operational estimation error drops in general, the days with extremely large error are
not effectively addressed. As the result, a large number of RDs is required to capture those variability
that is sensitive to the operation of the studied power system.

In the other point of view, for the total operational error of each RD in estimating all mapped original
days, a similar extremely uneven distribution can be observed, specifically when NRD is low. A small
subset of RDs contribute to the majority of the total operational estimation error. While increasing
NRD generally reduces overall operational error, the error distribution among all RDs remains poorly
distributed. It is also worth noting that, for all RDs, the mean-based clustering under-estimates their
linked original days on average.
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(a) ∆OCOtoR of scenario 1: Netherlands (NRD=20) (b) ∆OCOtoR of scenario 1: Netherlands (NRD=40)

(c) ∆OCOtoR of scenario 2: Belgium (NRD=20) (d) ∆OCOtoR of scenario 2: Belgium (NRD=40)

(e) ∆OCOtoR of scenario 3: France (NRD=20) (f) ∆OCOtoR of scenario 3: France (NRD=40)

Figure 5.5: Distribution of operational estimation error on the representative days - RDs are selected by Medoid-based
hierarchical clustering with clustering-based one-to-one mapping
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(a) ∆OCOtoR of scenario 1: Netherlands (NRD=20) (b) ∆OCOtoR of scenario 1: Netherlands (NRD=40)

(c) ∆OCOtoR of scenario 2: Belgium (NRD=20) (d) ∆OCOtoR of scenario 2: Belgium (NRD=40)

(e) ∆OCOtoR of scenario 3: France (NRD=20) (f) ∆OCOtoR of scenario 3: France (NRD=40)

Figure 5.6: Distribution of operational estimation error on the representative days - RDs are selected by Mean-based
hierarchical clustering with clustering-based one-to-one mapping
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(a) ∆OCOtoR of scenario 1: Netherlands (NRD=20) (b) ∆OCOtoR of scenario 1: Netherlands (NRD=40)

(c) ∆OCOtoR of scenario 2: Belgium (NRD=25) (d) ∆OCOtoR of scenario 2: Belgium (NRD=40)

(e) ∆OCOtoR of scenario 3: France (NRD=20) (f) ∆OCOtoR of scenario 3: France (NRD=40)

Figure 5.7: Distribution of operational estimation error on the representative days - RDs are selected by optimization-based
RD selection with linear combination mapping
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Comparing the operational estimation errors of ˆID and ID∗, a very similar distribution can be observed,
with both sharing bad-performing RDs and poorly estimated original days. As for the difference between
the two cases, the majority of differences also comes from the extremely bad-performing RDs, which
fail to capture the input-based error that is sensitive to the power system operation and perform incon-
sistently in different investment scenarios. These substantial differences contribute to the upper bound
and the final value of the optimality gap.

In summary, by analyzing the distribution of operational estimation errors amongRDs, the bad-performing
RDs and the extremely ill-estimated original days can be specifically identified, which represent the
days that the input-based error is sensitive to the operation because of the high risk of power conges-
tion and high production of thermal generators. These RDs and original days can then be considered
as critical “expert knowledge” of the studied power system, and treated with high priority over a solely
overall minimization of input-based errors. Therefore the operational estimation performance and the
final optimality gap of RDs can be more efficiently improved in the time-series aggregation process.



6
Feedback enhancement of

representative day selection in terms
of the operational cost

In the previous chapters, it has been demonstrated that with the introduction of the full-space opera-
tional cost model, the actual optimality gap of the estimated investment decision can be obtained, which
is bounded by the operational estimation error. Additionally, it has been observed that the operational
estimation error is highly unevenly distributed, with a small number of RDs contributing to the majority
of the total operational estimation error. These days with high operational estimation errors directly
represent the extreme conditions in power system operation and can be implemented into time-series
aggregation as “expert knowledge” of the studied power system, forming a feedback loop of time-series
aggregation.

Since computation time is a key interest of RD-based power system expansion planning problems, it is
essential to fully and effectively utilize this information. In this chapter, several methods for iteratively
implementing the identified extreme conditions directly from the studied power system operation are
proposed to effectively improve input-based representative day selection methods.

6.1. Feasibility of the full-set operational cost model

Full-space
Investment options Full-space planning operational cost RD-based planning (NRD=30)

4 wind farms 5h 11min 34s 6min 23s 50s4 transmission lines
6 wind farms 8h 56min 36s 6min 4s 1min 30s5 transmission lines

Table 6.1: Average computation time applying the time-series of three scenarios for running the optimization models

Firstly, the operational estimation error requires the calculation of the full-space operational cost of the
power system with the investment decision ˆID. The final goal of the RD-based simplified expansion
planning model is to obtain an estimated solution that is as close to the actual optimal investment de-
cision as possible, while ensuring that the computation remains feasible in practice. Therefore, before
introducing the feedback loop based on the operational estimation error, it is important to analyze the
computation time required to obtain the full-space operational cost to test its feasibility in real cases.

The computation time for running the RD-based and full-space expansion planning models, as well as
the full-space operational cost model, is explored using two investment sets with different numbers of in-
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Figure 6.1: Diagram of the proposed feedback enhancement of TSA methods

vestment options. Time-series datasets from three scenarios are applied, and the average computation
time for the three optimization models with the two investment sets is shown in Table 6.1.

Firstly, the time required for running the RD-based planning model is significantly less compared to
the full-space expansion planning model. By approximating the full-space time-series set with 30 RDs,
the computation time for solving the expansion planning model decreases by approximately 99.7% for
both potential investment options. This indicates that time-series aggregation effectively reduces the
complexity of the planning model.

Regarding the full-space operational cost model, fixing the investment decision also reduces the solving
time. When four potential wind farms and four potential lines are considered, the full-space operational
cost model takes only 2.1% of the time required for the full-space planning model. What’s more, since
the investment decision is fixed in the full-space operational cost model, the increased number of in-
vestment options does not significantly affect the system’s complexity. Adding one more line and two
more wind farms results in minor changes in the time required to solve the full-space operational cost
model, while the time for the full-space expansion planning model increases dramatically. As the result,
the full-space operational cost model takes only 1.1% of the time required for the full-space planning
model.

Therefore, for more complex power systems in practice, it is feasible to iteratively evaluate the opera-
tional estimation error in the RD selection process while keeping the total computation timemanageable.
This approach allows for a practical balance between model accuracy and computational efficiency,
making the RD-based method a feasible option for large-scale power system expansion planning.

In the following sections, two approaches of feedback enhancement are explored, as shown in Figure
6.1, based on the two perspectives of the distribution of operational estimation error introduced in
Chapter 5:

• Re-clustering on the worst-performing representative days: focuses on improving the per-
formance of a certain number of bad-performing RDs in estimating all linked original days within
their clusters, while preserving all other RDs.

• Time-series aggregation with preserved extreme days: identifies specific original days that
RDs fail to represent accurately. These extreme days are preserved as RDs in the TSA process.
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6.2. Re-clustering on the worst-performing representative days
6.2.1. Methodology
In Chapter 5, it is observed that the performance of RDs in estimating the operational cost is highly
uneven, and the differences between the two investment decisions ˆID and ID∗ are also mainly located
at the poorly performing RDs. As the number of RDs increases, original days that are sensitive to time-
series errors (extreme conditions involved) are not adequately addressed in the time-series aggregation
process and tend to be assigned into the same cluster, resulting in an unbalanced error distribution.

By running the full-space operational cost model, the RDs with high operational estimation errors and
their linked original days can be located. These poorly performing RDs fail to represent the actual
operational situation of the linked original days accurately, while the majority of other RDs perform
much better. As the expert knowledge of the studied power system’s operation, these linked original
days can be identified as highly sensitive on the time-series errors and can therefore be specifically
addressed, while keeping the other well-performing RDs and their linked original days.

Therefore, an iterative re-clustering enhancement process of the time-series aggregation can be de-
veloped to create a new set of RDs, consisting of the initial well-performing RDs and new RDs further
clustered from the identified original days linked to the poorly performing RDs. The structure of the
iterative re-clustering enhancement process is shown in Algorithm 2.

The re-clustering enhancement process begins with a standard input-based time-series aggregation
using a low number of RDs. The obtained RDs are applied in the RD-based expansion planning model
to obtain the initial investment decision, ˆID, and the corresponding operational cost. The initial ˆID is
then assessed using the full-space operational cost model to calculate the operational estimation error.

In the next step, the distribution of this error is analyzed and a pre-defined number of poorly performing
RDs (e.g., the worst-performing one or two) are identified along with their linked original days. These
linked original days are then subjected to another round of standard input-based time-series aggrega-
tion, but with a larger number of clusters. The new RDs obtained from this process are then integrated
into the initial set of RDs. A new ˆID is obtained by implementing the updated set of RDs into the
simplified expansion planning model.

Algorithm 2 Re-clustering on the worst-performing representative days
1: Set the number of feedback loops: Nfeed

2: Set the number of poorly performing RDs Next

3: Set the feedback step Nstep

4: Set the initial number of representative days N0

5: nrd← N0

6: Run the standard time-series aggregation with nrd number of representative days
7: Set the initial set of representative days: R{nrd} with nrd number of RDs
8: while nrd < N0 +Nstep ×Nfeed do
9: Run the RD-based power system expansion planning model with R{nrd} to obtain ˆID and

OCRD[ ˆID]
10: Run the full-space operational cost model to obtain OCFull[ ˆID]
11: Locate poorly performing RDs from j ∈ R based on the largest Next values of |W [j] ·

∆OCOtoR[j]|
12: Run the standard time-series aggregation only for the original days linked to the located Next

number of worst-performing RDs with Next +Nstep RDs
13: Replace the located worst-performing RDs with the newly obtained Nstep +Next RDs
14: Update the mapping variable for RDs and original days
15: R{nrd} ← R{nrd+Nstep}
16: nrd← nrd+Nstep

17: end while
18: Output Representative day set R{N0 +Nstep ×Nfeed} with N0 +Nstep ×Nfeed number of RDs
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6.2.2. Case study
To evaluate the performance of the re-clustering feedback loop, the hierarchical clustering methods
using two types of centroids: mean and medoid are studied. The feedback loop starts with the standard
HC method, setting the number of RDs initially to 20 and 30. The worst-performing RD is then further
clustered into two sub-clusters, thereby increasing the NRD by one at each step.

Medoid-based hierarchical clustering
The performance of the re-clusteringmethod for the three scenarios is shown in Figure 6.2. For scenario
1 (Netherlands) and 2 (Belgium), focusing on the worst-performing cluster significantly reduces the
operational estimation error for both ˆID and ID∗ compared to the case without feedback, especially
as the feedback loop starts to be implemented. A similar improved trend in the final optimality gap is
observed in general. The optimality gap significantly reduces as NRD increases and a smaller optimality
gap can be achieved using the feedback loop.

Looking into the distribution of operational estimation error for all RDs for scenario 1 (Netherlands),
shown in Figure 6.3, it is evident that initially, with NRD set to 20 or 30, one RD performs significantly
worse than the others, leading to a highly uneven error distribution. As the feedback loop is imple-
mented, this uneven distribution is effectively mitigated compared to the case without feedback.

However, this re-clustering based feedback enhancement does not show improvement for scenario 3
(France) compared to the case without feedback. As NRD increases, the underestimated operational
estimation error of both ˆID and ID∗ increases towards zero and then exceeds zero, causing overes-
timation. In addition, the operational estimation error of ID∗ increases at a different rate, causing a
larger difference between ˆID and ID∗. As shown in Figure 6.2f, the upper bound of the optimality gap
is not improved, resulting in a worse investment decision compared to the case without feedback.

Its distribution of operational estimation error for all RDs, shown in Figure 6.4, reveals a highly uneven
distribution of operational estimation error with the initial 20 RDs. One RD significantly underestimates
the actual operation, similar to scenario 1. When the worst-performing cluster is further divided into
more clusters, the overall underestimation is significantly mitigated, but the difference between the two
investment decisions, ˆID and ID∗, is not reduced. In cluster 4, the operational estimation error for
ID∗ is much larger than the error for ˆID. The overestimation of ˆID for cluster 4 is relatively low and,
therefore, overlooked in the feedback process.

As discussed in previous chapters, the medoid-based HC method, which selects the medoid (real day)
of each cluster as its centroid, preserves the intra-period variability for the RD but may not represent
the overall variability of all days within the cluster. This method is highly sensitive to the distribution of
original days within each cluster. Therefore, for a given time-series set, increasing NRDmay not neces-
sarily yield smaller operational estimation errors or reduce the difference between the two investment
decisions, ˆID and ID∗.

Therefore, although the feedback enhancement is capable of re-clustering the worst-performing RD in
terms of ˆID, the inherent unguaranteed performance of the medoid-based HC method makes it unreli-
able for general use. In real-world cases, it is impossible to directly obtain the optimality gap since ID∗

is unknown. However, the full-space total cost corresponding to ˆID, TCFull[ ˆID], is calculated in the
feedback enhancement process, and the variation of TCFull[ ˆID] is exactly the same as the optimality
gap since the actual optimal cost TCFull[ID

∗] is a fixed value. Therefore, when no improvement can
be observed in TCFull[ ˆID], the feedback enhancement has failed, requiring alternative methods.

Mean-based hierarchical clustering
Compared to the medoid-based HC method, the mean-based HC method uses the mean (synthetic
day) of each cluster as its centroid, averaging over all original days within each cluster. The inherent
averaging feature of the mean-based method provides a lower bound of the actual objective value,
consistently underestimating the actual operation [16]. With more RDs, the mean-based HC method
performs better in terms of operational estimation and the final optimality gap. However, due to the
smoothed variability, the mean-based method requires more RDs to achieve a satisfactory final opti-
mality gap.

The performance of the re-clustering method using the mean-based HC method is shown in Figure 6.5.
Compared to the case without feedback, implementing the re-clustering method significantly improves
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(a) Operational estimation error (scenario 1: Netherlands) (b) Optimality gap and its upper bound (scenario 1: Netherlands)

(c) Operational estimation error (scenario 2: Belgium) (d) Optimality gap and its upper bound (scenario 2: Belgium)

(e) Operational estimation error (scenario 3: France) (f) Optimality gap and its upper bound (scenario 3: France)

Figure 6.2: Performance of expansion expansion planning applying the time set of three scenarios - RDs are iteratively
selected by re-clustering the worst-performing medoid-based cluster
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(a) ∆OCOtoR (NRD = 20) (b) ∆OCOtoR (NRD = 25)

(c) ∆OCOtoR (NRD = 30) (d) ∆OCOtoR (NRD = 35)

Figure 6.3: Distribution of operational estimation error on the representative days - RDs are iteratively selected, from
scenario 1: Netherlands, by re-clustering the worst-performing medoid-based cluster
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(a) ∆OCOtoR (NRD = 20) (b) ∆OCOtoR (NRD = 25)

(c) ∆OCOtoR (NRD = 30) (d) ∆OCOtoR (NRD = 35)

Figure 6.4: Distribution of operational estimation error on the representative days - RDs are iteratively selected, from
scenario 3: France, by re-clustering the worst-performing medoid-based cluster
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(a) Operational estimation error (scenario 1: Netherlands) (b) Optimality gap and its upper bound (scenario 1: Netherlands)

(c) Operational estimation error (scenario 2: Belgium) (d) Optimality gap and its upper bound (scenario 2: Belgium)

(e) Operational estimation error (scenario 3: France) (f) Optimality gap and its upper bound (scenario 3: France)

Figure 6.5: Performance of expansion expansion planning applying the time set of three scenarios - RDs are iteratively
selected by re-clustering the worst-performing mean-based cluster
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(a) ∆OCOtoR (NRD = 20) (b) ∆OCOtoR (NRD = 25)

(c) ∆OCOtoR (NRD = 30) (d) ∆OCOtoR (NRD = 35)

Figure 6.6: Distribution of operational estimation error on the representative days - RDs are iteratively selected, from
scenario 1: Netherlands, by re-clustering the worst-performing mean-based cluster
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(a) ∆OCOtoR (NRD = 20) (b) ∆OCOtoR (NRD = 25)

(c) ∆OCOtoR (NRD = 30) (d) ∆OCOtoR (NRD = 35)

Figure 6.7: Distribution of operational estimation error on the representative days - RDs are iteratively selected, from
scenario 3: France, by re-clustering the worst-performing mean-based cluster
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the operational estimation error for both ˆID and ID∗ across all three scenarios. As NRD increases,
both the operational estimation error and the final optimality gap improve at a faster rate, comparable
with standard medoid-based HC method but with guaranteed improvements.

On the other hand, as more rounds of the feedback loop are applied, the performance enhancement
from the feedback loop diminishes. For scenario 1 and 3, the error distribution among RDs during the
feedback loop process, as shown in Figure 6.6 and 6.7, indicates that the uneven error distribution of
RDs is effectively mitigated by the feedback loop. Once the error distribution becomes more balanced,
the effect of the feedback loop becomes less significant, similar to the medoid-based HC method.

6.2.3. Discussion
By applying the re-clustering feedback enhancement to both the medoid-based and mean-based HC
methods, it is observed that the uneven distribution of operational estimation error can be effectively
mitigated compared to the case without feedback. This leads to a more balanced distribution and a
smaller total error value. Consequently, the optimality gap also becomes smaller in general, indicating
a closer investment decision. Specifically, the mean-based HC method shows stable improvements
across all three scenarios. For the medoid-based HC method, it is less reliable to apply as it does
not function in all cases, although better performance can be observed in general compared to the
mean-based method.

Therefore, if computational burden is a significant concern, the mean-based HC method is recom-
mended as it provides reliable results. If there is room to explore two methods, the medoid-based HC
method is recommended at the first place since it generally requires fewer RDs to generate a very good
result. If no improvement is observed in the feedback process, the mean-based method can be used
as its effectiveness is guaranteed.

In addition, the effect of feedback enhancement is also related to the number of RDs. As NRD increases,
the total operational estimation error approaches zero but with a decreasing rate of change. As the
uneven distribution is resolved, the feedback enhancement becomes less functional on the already
small total operational estimation error. This is because the number of original days within each RD
reduces as more RDs are applied, making further re-clustering less effective. Additionally, as the error
distribution becomes more balanced, focusing on the worst-performing cluster becomes less efficient.

Moreover, comparing the feedback loop starting with NRD set to 20 and 30, the performance in terms of
operational estimation error and final optimality gap is better with NRD set to 20. This finding aligns with
the discussion in Chapter 5, indicating that increasing NRD without incorporating specific knowledge of
the power system does not effectively capture extreme conditions. When NRD is limited, focusing on
RDs sensitive to operational costs is more efficient for estimating the actual operational situation and
obtaining a close investment decision.

Therefore, it is recommended that the feedback loop should stop when no major improvement is ob-
served. Additionally, the feedback enhancement requires a starting set of RDs to evaluate and locate
the worst-performing RD. Implementing the re-clustering feedback loop when NRD is small is recom-
mended to prioritize RDs with high operational estimation errors.

6.3. Time-series aggregation with preserved extreme days
6.3.1. Methodology
As introduced in Chapter 2, modelers incorporate expert knowledge and experience in power system
operation to identify extreme days. These days are characterized by high load levels, low availability
of RES, and extreme variations, and are preserved during the time-series aggregation process. It
is assumed that incorrect estimation of these extreme days can have a significant impact, thus they
are prioritized as representative days. However, the operation of power systems is highly sensitive
to specific network configurations, including available RES capacities and load demand. Testing the
performance of these extreme conditions on various small-size test systems has shown varying effects.
In practice, this approach does not guarantee satisfactory results for all power systems [28].

From the analysis in Chapter 5 on the operational estimation error distribution among all original days,
a small number of original days with extremely high operational estimation errors can be identified.
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These days trigger extreme operational situations, leading to significant inaccuracies in operational
estimations. Standard input-based RD selection methods fail to capture these extreme operational
situations effectively, requiring a larger number of RDs to address them and reducing the efficiency of
applying RDs. Therefore, instead of making assumptions on the extreme conditions in advance, the
actual days with high operational cost errors can be identified and prioritized as the extreme days of
the specific power system.

Therefore, similar to the re-clustering approach, a feedback enhancement can be formed by iteratively
implementing the identified cost-based extreme days into the time-series aggregation process. The
structure of the feedback enhancement is shown in Algorithm 3.

Firstly, identical to the re-clustering approach, an initial set of RDs together and the initial ˆID are ob-
tained from a standard time-series aggregation process with a low number (N0) of RDs and the RD-
based expansion planning model. The ˆID is implemented into the full-space operational cost model
and the operational estimation error is obtained.

In the next step, the distribution of operational estimation errors among all original days, rather than
among all RDs, is analyzed, and the original days with high operational estimation errors are identified.
These days are then integrated into the modified extreme-day “preserving” time-series aggregation
process introduced in Chapter 2, yielding a new set of RDs and a new ˆID determined by the updated
RD-based expansion planning model. As the number of iterations increases, the list of extreme days
expands such that the final set of RDs contains all extreme days in the list and the other N0 number of
RDs.

Algorithm 3 Time-series aggregation with feedback implementation of the cost-based extreme days
1: Set the number of feedback loop Nfeed

2: Set the number of extreme original days at each feedback step Next

3: Set the initial number of representative days N0

4: nrd← N0

5: Run the standard time-series aggregation with nrd number of representative days
6: Set the initial set of representative days: R{nrd} with nrd number of RDs
7: i← 0
8: Initialize an empty set of extreme days: E{i}
9: while nrd < N0 +Next ×Nfeed do
10: Run the RD-based power system expansion planning model with R{nrd} to obtain ˆID and

OCRD[ ˆID]
11: Run the full-space operational cost model to obtain OCFull[ ˆID]
12: LocateNext number of extreme days among original days from k ∈ O based on the largestNext

values of |∆OCRtoO[k]|
13: Form E{Next} containing its location and value of |∆OCRtoO[i]|
14: E{i} ← [E{i}, E{Next}]
15: i← i+Next

16: Run the time-series aggregation with nrd+Next number of RDs including E{i}
17: Update the mapping variable for RDs and original days
18: R{nrd} ← R{nrd+Next}
19: nrd← nrd+Next

20: end while
21: Output Representative day set R{N0 +Next ×Nfeed} with N0 +Next ×Nfeed number of RDs

6.3.2. Case study
As introduced in Chapter 2, both hierarchical clustering methods and optimization-based methods can
be adapted to preserve pre-defined extreme days. In this case study section, the feedback enhance-
ment regarding extreme original days is tested for both approaches.

In terms of the test setting, consistent with the re-clustering method, the feedback loop begins with the
standard TSA method with no extreme conditions, initially setting the number of RDs to 20. The original
day with the largest absolute value of operational estimation error is then added to the extreme day list
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and implemented into the next round of time-series aggregation with one additional RD. The resulting
set of RDs contains 20 RDs together with the fixed extreme days.

Hierarchical clustering with high priority days
For the clustering-based methods, the extreme days are preserved by modifying the merging policy
during the clustering process. Specifically, the extreme days are always assigned as the centroid of
the merged cluster. If multiple extreme days exist in the merged cluster, the extreme day with the
largest absolute value of operational estimation error is preserved.

Specially, since actual days must be preserved in the clustering process, the mean-based HC method,
which uses synthetic days as centroids, is not applicable for the extreme-day preserving enhancement.
Therefore, the medoid-based HC method is applied to evaluate the performance of preserving extreme
days in terms of operational cost. Additionally, the extreme days with the highest net load (the difference
between load and wind factors) are also included as a control group.

The performance of preserving the days with the largest net load or the worst-performing original days
is shown in Figure 6.8. For all three scenarios, the standard medoid-based HC method with 20 RDs
underestimates the total operational estimation error. As the two types of identified extreme days are
implemented respectively, the error significantly increases towards and, in some cases, exceeds zero,
leading to overestimation. As more extreme days are included, higher variation in the operational
estimation error but no improvements in the optimality gap can be observed compared to the case
without extreme days. This indicates that while extreme days have a significant impact on power system
operation estimation, they are not properly addressed in the current methodology.

In the hierarchical clustering process with extreme days preserved, extreme days are set as the centroid
of their cluster regardless of the distribution of other days within the cluster. This ensures that the
extreme days are preserved. However, these extreme days, determined by very different operational
costs or extreme weather conditions, tend to exhibit patterns that are not representative of typical
days. In the medoid-based method, these variabilities of extreme days are 100% preserved, which
does not necessarily represent the overall variability of all represented days. Forcing these extreme
days as centroids may cause some normal days to be represented by these extreme days, thereby
assigning too much weight to the extreme days and generally overestimating the operational cost of
the corresponding cluster. This overestimation compensates for the total underestimation of operational
estimation error but does not actively contribute to mitigating the unbalanced error distribution.

The too much considered extreme days also increases the operational difference between the power
system with ˆID and ID∗ because the extreme conditions are particularly sensitive to the power system
configuration. This sensitivity magnifies the difference in operational estimation error between ˆID and
ID∗, resulting in no overall improvement. Additionally, comparing the performance of extreme days
selected based on operational estimation error and days with high net load, no significant improvement
is observed, emphasizing that the extreme days are not properly addressed.

Therefore, while the time-series aggregationmethods preserving extreme days as RDs can significantly
solve the underestimation of operational estimation error, setting those days as centroids enlarges their
impact on total operational estimation. This leads to overestimation and a larger difference between the
two investment decisions. The increased difference between the two investment decisions ultimately
results in a worse optimality gap compared to time-series aggregation without extreme days.

Optimization-based RD selection with extreme days
As for the optimization-based RD selection methods, pre-defined extreme days can be preserved as
RDs by fixing the corresponding control variables U [j] in the constraints of the RD selection optimiza-
tion, leaving the rest RDs to be determined in the optimization process [14]. The fixed extreme days
participate in the optimization process, establishing a one-to-one mapping with original days and deter-
mining their weights.

As analyzed in Chapter 4 and 5, the linear combination mapping does not necessarily improve the
performance of time-series aggregation. Therefore, the optimization-based method with one-to-one
mapping is studied for the extreme-day-based feedback enhancement, and the results are shown in
Figure 6.9.
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(a) Operational estimation error (scenario 1: Netherlands) (b) Optimality gap and its upper bound (scenario 1: Netherlands)

(c) Operational estimation error (scenario 2: Belgium) (d) Optimality gap and its upper bound (scenario 2: Belgium)

(e) Operational estimation error (scenario 3: France) (f) Optimality gap and its upper bound (scenario 3: France)

Figure 6.8: Performance of expansion expansion planning applying the time set of three scenarios - RDs are iteratively
selected by medoid-based HC method implementing the day with largest net-load or the worst-performing original day
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(a) Operational estimation error (scenario 1: Netherlands) (b) Optimality gap and its upper bound (scenario 1: Netherlands)

(c) Operational estimation error (scenario 2: Belgium) (d) Optimality gap and its upper bound (scenario 2: Belgium)

(e) Operational estimation error (scenario 3: France) (f) Optimality gap and its upper bound (scenario 3: France)

Figure 6.9: Performance of expansion expansion planning applying the time set of three scenarios - RDs are iteratively
selected by one-to-one mapping optimization-based method implementing the day with largest net-load or the

worst-performing original day
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Similar to the medoid-based hierarchical clustering methods, as the extreme days are fixed, both in
terms of operational estimation error and in terms of the largest net load, the initial underestimation of
operational cost is significantly mitigated and then moves into the overestimation region, but no general
improvements can be observed in the final optimality gap compared to the case without extreme days
across all three scenarios. The extreme days are assigned too much weight, which is not always
beneficial for the overall performance of RDs.

6.3.3. Discussion
The objective of time-series aggregation methods in the power system expansion planning is to iden-
tify a set of RDs which can best capture the operational situation throughout the time-series. Extreme
operational situations tend to occur infrequently but contribute significantly to the total operational esti-
mation error [47], and can trigger incorrect investment decisions. Therefore, it is crucial to specifically
address these extreme days in TSA to achieve accurate results in the planning model.

When a small number of extreme days are implemented into both medoid-based and optimization-
based RD selection algorithms, the issue of underestimation can be mitigated. When NRD is low and
the underestimation is severe, the total operational estimation error approaches zero as extreme days
are involved, and in some cases, the optimality gap also improves. However, the implementation of
extreme days as centroids does not show reliable improvements in all cases. The mitigated underes-
timation is achieved through the overestimation of clusters related to extreme days, and the overall
performance of RDs in estimating power system operation is not necessarily improved.

Therefore, while it is essential to specifically address original days with extreme conditions due to their
significant impact on power system operation estimation, their implementation should be approached
with caution. Implementing extreme days as centroids in RD selection is not recommended, as they
represent extreme conditions rather than the overall variability of other original days. Their impact
tends to be excessively magnified, leading to overestimation and unreliable improvements in the TSA
performance.

6.4. Conclusion
In this chapter, the two perspectives of the operational estimation error distribution are utilized, as
introduced in Chapter 5, namely the error distribution in terms of each RD and each original day, trying
to improve the selected RDs using information specific to the studied power system in a feedback
manner.

Firstly, considering that the computation burden is a primary concern for RD-based power system ex-
pansion planning problems, the computational requirements of the full-space operational cost model
used for assessing the operational estimation error distribution was analyzed. This model has a very
low computational requirement compared to the full-space expansion planning model. Additionally,
the computation of the full-space operational cost model is independent of the number of investment
options, whereas the time required for the full-space expansion model rises dramatically with an in-
creasing number of investment options. Therefore, it is feasible to iteratively evaluate the set of RDs
in terms of operational estimation error in complex power system planning scenarios.

Next, a re-clustering method is proposed, focusing on improving bad-performing RDs based on their er-
ror distribution. Implementing HC methods with re-clustering shows that this approach can effectively
reduce operational estimation error and improve the final optimality gap compared to cases without
feedback. Specifically, while the medoid-based HC method shows better results overall, it is not func-
tional in all cases. Conversely, the mean-based HC method is less effective requiring more number of
RDs but demonstrates reliable improvements across various scenarios.

Additionally, the original days with extreme operational estimation errors are fixed as RDs in the time-
series aggregationmethods. Including a small number of extreme days inmedoid-based and optimization-
based RD selection algorithms can mitigate underestimation errors when the number of RDs is low.
However, using extreme days as centroids can assign too much weight to these days, leading to over-
estimation. The overall performance of RDs in estimating power system operations and final optimality
gap does not reliably improves. Thus, while it is crucial to address extreme conditions, implementing
them as centroids should be avoided due to it tend to distort the overall variability and lead to unreliable
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TSA performance.



7
Conclusion

As shown in Chapter 6, by properly implementing the information from the operational estimation er-
ror distribution, input-based time-series aggregation methods can be enhanced, obtaining investment
decisions that are closer to the optimal decision with fewer RDs.

In this chapter, the main findings of this thesis project are concluded, addressing all research questions
and the final objective raised in Chapter 1. Following this, in Section 7.2, the limitations of the proposed
metrics and feedback enhancement methods are discussed, together with the recommendations for
future research.

7.1. Research objective
The main research objective of this thesis project is to enhance the accuracy of the reduced-space
expansion planning with the knowledge of the studied power system. To address this objective,
three research questions are proposed and then explored in the previous chapters.

1. How to evaluate the performance of representative periods in terms of the error of invest-
ment decision and corresponding operational cost?
In the optimization of power system expansion planning, the optimal investment decision is ob-
tained by minimizing both the investment cost and the corresponding operational cost. Due to
computational complexity, the full-space operational cost is estimated using a set of represen-
tative periods and the simplified model assesses the optimal investment decision based on the
estimated operational cost for all potential options.

This project analyzed the error in the investment decisionmade by the simplified planningmodel in
terms of the total cost. Optimality gap, defined as the difference between the total cost of the real
optimal investment decision and the estimated investment decision made by the simplified model,
can be obtained from the full-space operational cost model (full-space expansion planning model
with a fixed investment decision). This gap provides a reliable metric for evaluating investment
decisions by reflecting the actual difference in terms of the planning model’s objective.

A novel theoretical result was obtained stating that the optimality gap between two investment
decisions is always positive and bounded by the operational estimation error between two invest-
ment decisions, which is defined as the difference in the operational cost when using represen-
tative periods compared to the full-space time-series. The implication is that if representative
periods more accurately estimate the operation of the power system for both investment deci-
sions, the simplified model can provide a closer approximation to the optimal investment decision.

2. What is the performance of time-series aggregation methods for power system expansion
planning in terms of the final investment decision?
With the proposed metrics, operational estimation error, typical input-based time-series aggrega-
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tionmethods, including hierarchical clustering withmean andmedoid as centroids, and optimization-
based methods with one-to-one and linear combination mapping, are explored.

First of all, the operational estimation error in terms of each original day shows a completely
different distribution compared to the distribution of time-series error between each original day
and the mapped representative day. This indicates that the impact of the time-series error on
power system operation is highly non-linear, and reducing time-series error may not lead to better
investment decisions.

Secondly, selecting the medoid as the centroid of clustering preserves the intra-period variability
of the representative periods, performing better as NRD increases, compared to the mean-based
clustering method, which averages all original days within the cluster. However, the medoid-
based method is highly sensitive to the time periods’ distribution in the cluster. The preserved
variability for the representative period may not be capable of representing other original periods,
leading to no guaranteed improvements in all cases as NRD increases. On the other hand, the
mean-based method always underestimates actual power system operation, heuristically provid-
ing a lower bound, and shows much more stable improvements as NRD increases.

Thirdly, no significant difference is observed between the optimization-based and HCmethods, as
clustering can be considered a heuristic approach to optimization, providing a sub-optimal set of
representative periods in terms of time-series error. Since the relationship between time-series
error and operational estimation error are not linear, the compromised time-series error of HC
methods does not necessarily result in worse investment decisions.

Furthermore, the relaxation of linear combination mapping, allowing multiple representative peri-
ods to estimate one original day, although significantly reducing the time-series error, still over-
looks the different impacts of time-series error on power system operation. Therefore, it is not
beneficial for improving the decision on investment in general.

Without the information of the studied power system, the aggregated representative periods per-
form extremely unevenly throughout the time-span, with a small number of time periods con-
tributing to the majority of operational estimation error. This uneven distribution remains as NRD
increases, indicating that there are time periods with extreme conditions that are sensitive to time-
series error but not specifically addressed, requiring more representative periods. Therefore, to
effectively select representative periods, the operation-related information of the studied power
system is necessary in the TSA process.

3. What are methods to make use of the operation related knowledge obtained from the sim-
plified model to improve the selection algorithm of representative periods?
It is shown that the operational estimation performance of representative periods, which captures
the operational situation of the studied power system, is highly relevant to the accuracy of the fi-
nal investment decision. Therefore, this “expert knowledge” should be implemented into the TSA
methods.

Firstly, to evaluate the operational estimation performance of representative periods, the full-
space operational cost model is required in real life applications. This model requires significantly
less computation compared to the full-space expansion planning model and remains unaffected
by the number of investment options, making it feasible for iterative evaluations in complex sce-
narios.

Then, in terms of the distribution of operational estimation error among representative periods,
a re-clustering method is then proposed to improve bad-performing RDs by further clustering
on them. Case studies on HC methods with re-clustering reduce operational estimation errors
and improve the final optimality gap, with medoid-based HC generally performing better but not al-
ways functional, whereas mean-based HC shows less effective but reliable improvements across
scenarios.

Regarding the distribution among original days, fixing original days with a small number of extreme
errors as RDs in TSA methods can mitigate underestimation errors. However, using extreme
days as centroids can lead to overestimation and unreliable improvements as the weights of



7.2. Limitations of the study and potential future research 80

extreme days are overestimated. Thus, while addressing extreme conditions is crucial, using
them as centroids should be avoided to prevent distorting overall variability and compromising
TSA performance on the final objective.

7.2. Limitations of the study and potential future research
1. Implementation of storage

Energy storage systems are capable of providing flexibility to the RES-dominated power system,
mitigating energy congestion issues and making better use of the highly variate RES throughout
the time-span [57]. The cost-based TSA method aggregates time periods based on the invest-
ment decision made for single time period, making it inherent impossible to consider long-term
inter-period ESS [14]. However, the proposed operational estimation error is calculated directly
based on the full-space time-series, representing the operational situation throughout the time-
span. Therefore, it can be further analyzed for the improvement of TSA methods.

2. Better similarity metrics between time periods
The highly non-linear relationship between the statistical similarities and the operational cost of
time periods makes the pure input-based time-series aggregation method unreliable.

In the re-clustering feedback enhancement, the standard input-based RD selection method is ap-
plied to the bad-performing representative periods, leading to improved estimation performance.
However, since the RD selection still relies on time-series error, the full potential of the relationship
between the time-series and the power system operation is not fully realized. The characteristics
of both operational estimation error and input-based error can be further studied to develop a
more effective clustering method combining the two features.

3. Stop criteria for the feedback enhancement
Feedback enhancement improves pure input-based TSA methods, yielding better results with
fewer representative periods. Its performance is most effective when the operational estimation
error is ill-distributed, and it diminishes as this distribution becomes more balanced and the num-
ber of representative periods increases.

A proper number of representative periods and the optimal number of feedback enhancement
iterations have not been determined. It is suggested that the feedback enhancement can be
stopped once no significant improvements are observed. However, since the improvement is
not necessarily linear with the number of feedback iterations, particularly for medoid-based TSA
methods, a clear stop criterion has yet to be established.

Given the importance of computation burden and the relatively significant cost of evaluating the
full-space operational cost model, a quantitative study of computation time can be performed and
the stop criteria can be explored considering both the accuracy and the computation burden.

4. Wider application in the energy system optimization
In this thesis project, the power system expansion planning problem is simplified using represen-
tative periods, and the operational estimation error is proposed as the “expert knowledge” of the
studied power system to improve the selection of representative periods.

The proposed operational estimation error and the upper bound for the optimality gap are valid for
any optimization problem involving time-series aggregation. This approach provides specifically
relevant information about the studied power system and can be applied to other domains within
the optimization of energy systems.
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A
Appendix: Distribution of operational

estimation error in terms of original
days

In this thesis project, three time-series datasets are individually implemented to assess the general
performance of time-series aggregation methods in terms of operational estimation error. A similar
distribution of operational estimation error in terms of original days is observed among the three time-
series. Therefore, Chapter 5 focuses on Scenario 1: Netherlands. The results for Scenarios 2 and 3
are presented in this appendix.
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(a) ∆OCRtoO in terms of ˆID (NRD = 20) (b) ∆OCRtoO in terms of ˆID (NRD = 40)

(c) ∆OCRtoO in terms of ID∗ (NRD = 20) (d) ∆OCRtoO in terms of ID∗ (NRD = 40)

(e) Time series error distribution for each original day (NRD = 20) (f) Time series error distribution for each original day (NRD = 40)

Figure A.1: Distribution of operational estimation error and time-series error on original days - RDs are selected by
Medoid-based hierarchical clustering with clustering-based one-to-one mapping (scenario 2: Belgium)
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(a) ∆OCRtoO in terms of ˆID (NRD = 25) (b) ∆OCRtoO in terms of ˆID (NRD = 40)

(c) ∆OCRtoO in terms of ID∗ (NRD = 25) (d) ∆OCRtoO in terms of ID∗ (NRD = 40)

(e) Time series error distribution for each original day (NRD = 25) (f) Time series error distribution for each original day (NRD = 40)

Figure A.2: Distribution of operational estimation error and time-series error on original days - RDs are selected by
OPT-based RD selection with linear combination mapping (scenario 2: Belgium)
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(a) ∆OCRtoO in terms of ˆID (NRD = 20) (b) ∆OCRtoO in terms of ˆID (NRD = 40)

(c) ∆OCRtoO in terms of ID∗ (NRD = 20) (d) ∆OCRtoO in terms of ID∗ (NRD = 40)

(e) Time series error distribution for each original day (NRD = 20) (f) Time series error distribution for each original day (NRD = 40)

Figure A.3: Distribution of operational estimation error and time-series error on original days - RDs are selected by
Medoid-based hierarchical clustering with clustering-based one-to-one mapping (scenario 3: France)
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(a) ∆OCRtoO in terms of ˆID (NRD = 20) (b) ∆OCRtoO in terms of ˆID (NRD = 40)

(c) ∆OCRtoO in terms of ID∗ (NRD = 20) (d) ∆OCRtoO in terms of ID∗ (NRD = 40)

(e) Time series error distribution for each original day (NRD = 20) (f) Time series error distribution for each original day (NRD = 40)

Figure A.4: Distribution of operational estimation error and time-series error on original days - RDs are selected by
OPT-based RD selection with linear combination mapping (scenario 3: France)
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