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Introduction

Supply chain management is a large and ever growing business, in 2020 its market value was already
at $18.7 billion and it is estimated to increase to $52.6 billion by 2030 [30]. It is a large field that
encompasses many components, ranging from forecasting sales at the supplier, to detailed planning
of production and transportation of goods to the end customer. Many of these services have moved
some of the manual labour from experts to automated processes. In this thesis we will focus on the
component of supply planning, a crucial part of the supply chain management that ensures that we get
our products to where the demand lies. Proper planning is crucial for a manufacturing company, lack
of this can lead to increase in production cost, operational cost, and customer dissatisfaction [1]. The
available inventory might not be enough to meet the demand of the customer, leading to empty shelves
in the shop or last minute production at a higher production cost.

In situations where there is only a single product, a single location, and a single resource it can be
relatively easy to find an optimal planning. However, when an additional product is added, conflicts
can arise. Planning one product can lead to the other product missing out on a perfect opportunity for
production. When an additional location is added, products could be shared between different locations
to meet some demand and transportation needs to be considered. When different resources are added,
choices need to be made between which resource to use for production as they may conflict. Especially
if these resources have different properties such as the speed at which they produce or the efficiency
they have. These problems in reality often have even more layers of complexity: multiple production
methods, constraints on time, uncertainties in the input, and much more. Because of all of this supply
planning is a difficult combinatorial problem.

Outperform has a framework to solve this problem with many constraints using an algorithm called
the Heuristic Planner (HP). HP takes the products and sorts them based on their priority defined
by the customer. Each product is then planned one at a time, by trying different possibilities. This
algorithm uses heuristics to both improve the quality of the planning for the customer, as well as the
performance of the algorithm. These heuristics are hand-tuned. HP is run often by the customers of
Outperform to get planning for the upcoming duration. In each of the runs the input does not vary dras-
tically. The demand and the available inventory will change, but other properties such as the products,
warehouses, resources, and production methods usually do not see large changes.

Because of this similarity of the past and potential future planning problems, a question arises
whether we can improve these heuristics, using information obtained from previous runs. More formally,
the research question can be phrased as: can the execution time of the Heuristic Planner be
decreased by learning new heuristics using ML, without decreasing the quality of the planning?

To answer this question, we will design and develop two different machine learning models that
learn from past executions of HP. These models will be integrated into HP and evaluated on several
data sets provided by Outperform.

This thesis combines the fields of Combinatorial Optimization (CO) and Machine Learning (ML).
Combinatorial Optimization is a field in mathematical optimization that is interested in finding an optimal
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2 1. Introduction

object within a finite set of possible objects. These sets are often relatively large, such that it is not
feasible to exhaustively enumerate the objects within them. The purpose of the work in CO is therefore
to find algorithms that can more efficiently find or approximate the optimal object. These solutions often
require some hand-crafted heuristics and/or models to solve the problem, where the actual computation
would be too expensive or too difficult to define mathematically. Finding a good heuristic is difficult and
requires extensive knowledge of the problem at hand.

On the other hand Machine Learning is the field that studies algorithms that are trained on past data
to make quick decisions in the future. The algorithms observe patterns within the data and uses those
patterns to create new rules for its decisions. This process of creating the rules is automated and can
result in complex models that have a great performance for its task.

The combination of these two fields has seen a lot of interest in the recent years, especially with
the advancement in the ML field. There are two ways in which the techniques from ML can be used to
improve the work in CO [4]. On one hand when expert knowledge is lacking or not existent, the work in
ML can be used to fill in the gap by learning from experience. On the other hand even if expert knowl-
edge is available, some difficult or expensive computations can be replaced with a fast approximation.
A broad overview of recent works in using ML to gain advantages in CO can be found in [4].

1.1. Context

This thesis is done in collaboration with Outperform, a company that specializes in creating software
to optimize the processes within a supply chain. The supply planning algorithm that will be used is
called Heuristic Planner. The algorithm uses heuristics in several locations, out of which two
were identified as possible candidates for improvement using machine learning.

1. The order in which the products are planned. Once the production for a product is decided, this is
set in stone and the latter products will have to work around the decisions made for the previous
products. This is the order of the products at the top of Figure 1.1.

2. For a given product, the order in which possible production or transportation methods are at-
tempted. This determines the order of the possible solutions in the branch and bound tree of a
single product. If a good solution is found earlier, then more parts of this branch and bound tree
can be skipped. This is bottom part of Figure 1.1.

AD] @& =—p O = & 1
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Figure 1.1: Heuristics in HP. At the top (1), the products are put in some order in which they will be planned. Below each product
(2), each product will be planned using a branch and bound approach.

1.2. Problem Statement

We will focus on the sequence in which the products are planned. The reason for choosing this compo-
nent over the alternative is because it was noted that the possible production or transportation methods
for each product was often very limited. In which case ordering these methods will not lead to significant
improvements in the performance of the algorithm.

The main objective of this work is to create a model that learns from previous runs of the Heuristic
Planner to improve the performance of future runs. In this work we will only change the order in which
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the products are planned, no further changes will be made to the algorithm. This is because we want to
investigate the possibility of learning a new heuristic. Making changes to the other parts of the algorithm
would require additional experiments to evaluate the impact of these changes.

The most importance metric in this work will be the execution time of the algorithm, a lower execution
time is desired. Additionally, the resulting plannings after our changes should have a similar or better
quality compared to the plannings obtained with the current heuristic. The quality will be measured in
the form of units of lost sales, as well as the amount of products that are below target on each day.

1.3. Contribution

In this thesis we evaluate two different models for learning a heuristic that decides which products
should be planned first. The datasets used for these models are obtained from supply chains provided
by outperform. Slight alterations to the data are applied to a supply chain to create more varied in-
stances of it. Additionally, a framework is made to enable more efficient data collection of prior problem
solving experiences.

1.4. Structure

The structure of the thesis is as follows: in Chapter 2 relevant background information is provided
and the problem is explained in detail. To which Chapter 3 presents the proposed models to find an
improvement on the sequence for the products. The performance of the proposed models is then
evaluated in Chapter 4. In Chapter 5 some directions for future work is highlighted. Finally, the results
are summarized in Chapter 6.



Problem Background

In this chapter we will discuss the problem at hand, starting with defining the supply planning prob-
lem, then explaining the solution that Outperform provides for supply planning, and ending with what
machine learning can change in that solution.

2.1. Supply Planning

“A detailed formulation of a sequence of plan-tasks and actions associated with the plan-
tasks. These plan-tasks and actions can be executed by agents in order to transform an
initial-world-state into a goal-world-state. The output of the planning task is a plan specified
in accordance with application-specific solution criteria.” [26]

This is the definition that Rajpathak and Motta have given for planning, solving a planning problem
entails finding the sequence of actions that brings one from the initial state to the goal state all while
adhering to some constraints set by the problem and optimizing on some cost-function.

Planning problems have applications in many different fields, such as the medical field where plan-
ning is used to plan operations within a hospital [19, 34], the field of transportation where an example
usage is to determine when and where trains should be on a network to deliver their cargo with min-
imal costs [12]. In this thesis we will focus on the field of supply planning, where planning is used to
determine the optimal moment in time to produce certain items at a supplier to meet the demand at
a customer. This field, similarly, has a lot of real world use cases, such as production at a vehicle
manufacturer [29], food industry [28], or more recently the distribution of vaccines [14]. Interest in this
topic came up as early as 1955 in the work of Modligiani and Hohn [22], where production planning is
tackled using an approach that divides the horizon into successive periods of time that get solved to
optimality.

Outperform works on the problem of supply planning. In their framework the planning problem is
formulated as one that answers the following question:

“How do we, given demands from customers on specific days in the planning horizon, create
aplan that uses the available inventory at the start of the horizon and the available resources
during the horizon to maximize the amount of fulfilled demand of the customers? ”

The planning problem is about making sure that the inventory is kept at a level where incoming de-
mand can be resolved. If the available inventory is always enough to meet the demand, then there is
no need for planning. Unfortunately, this is not the case in reality, inventory does not appear magically
out of thin air. So we need to plan for production or transportation to increase our inventory before the
demand hits us.

There are a few questions that can be used to help in finding such a planning:
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2.1. Supply Planning

* What do we need to produce/transport?

* How do we produce/transport it?

* When do we produce/transport it?

* How much do we produce/transport?

The “what” in this question consists of two parts, the product and the location. This is to differentiate
between the same product at different warehouse or factories, where the demand at each location can
differ. The combination of product and location will be referred to as PL in the rest of this thesis.

Products

Locations

P = {p1, 02, - Pm}, this is a finite set of products that are included in the
Heuristic planner.

L ={l;,1,, .., 1,,}, thisis a finite set of locations that are included in the Heuristic
planner.

“‘How” is answered by selecting a combination of a resource and a bill of materials (BoM) in the
case of production. The resource can be seen as the person or machine that will spend time on the
production, the BoM specifies what materials are needed and in what quantity. For transportation there
is only a BoM that specifies the source and destination location.

Resources

Bill of
Materials
(BoM)

R; = {r,n,.., 1}, this is a finite set of resources that are included in the
Heuristic planner, where i is the index of a location in L. A resource can be
seen as a machine or tool used to produce a product. The resources each
have their own capacity limits. Each resource is associated with a single
location, whereas a location can have multiple resources. resource(l;) =
RiSR,RiUR,U..UR, =R, V1<ij<n(R NR;=0)

Bp € B;, where Bp* — Bzz;roduction U th)ransport. Bgroduction c fP(P x N+),
i.e. set of combinations of products to produce product p with an associ-
ated quantity indicating how much of that material is required. By *"*?°"* c
{(l, L) 1V, 1, €Ll #1,}, i.e. setof pairs of locations to transport product
p between. A BoM B, is either a production, defined as a list of products, or

a transportation, defined as a tuple of locations.

The day on which the PL is produced or transported is the next question, the available days depend

on the planning horizon.

Planning
horizon

T = {ty,t, ., tj}, this is a finite set of days that are included in the Heuristic
planner.

The last question is related to the quantity that will be produced or transported. This quantity is
given as a positive integer using stock keeping units (SKU).

Quantity

N*, the set of natural numbers without 0.

The combined answer of these questions provide an allocation, that is an assignment of production
or transportation by defining clearly the product, the method, the time, and the quantity.

Allocations

A={ala€PxXLXRXBY MO XTXN* vV a€PxLxBy P xTxN*}.
Each allocation is a 5-tuple or 6-tuple, depending on whether it is an allocation
for transportation or production respectively. The common elements in the
two types of tuples are a product, a location, a day, and a quantity. In the case
of production two more elements are added to the tuple, indicating which
resource is used together with which BoM. For transportation only the BoM
of the transportation type is needed.



6 2. Problem Background

The solution to the planning problem is then a set of allocations that we want to include, describing
all the productions and transportations needed during the planning horizon. This planning is one that
should aim to minimize the amount of demand that can’t be resolved, which in turn would lead to
potential revenue being lost.

Plan m C A, aplan is a set of allocations that have been included in the planning.
Note that this is a strict subset of A as the cardinality of Plan has to be finite.

A naive approach would be to simply include all allocations, ensuring that a maximum amount is
produced for each PL. However, not all allocations are feasible at all times, so this idea would obviously
not work. In the case of production, the allocations require materials and will occupy some resource for
a certain amount of time. This leads to two constraints for an allocation to be included in the planning: 1)
The required materials are available at the day of production and 2) the resource used for this allocation
is available for the duration required. The required materials by themselves can be readily available
in inventory or they could require additional production or transportation to be made available. Other
than allocations being infeasible by themselves, the combinations of allocations can also be infeasible.
The inclusion of one allocation in the planning can lead to changes in availability of materials as well
as resources, when dealing with multiple products this can lead to allocations for other products being
made infeasible.

Furthermore, out of all the feasible allocations, not all allocations are considered useful. Alloca-
tions are used to solve issues with the demand that can’t be solved entirely by the available inventory.
Skipping out on some beneficial allocations can lead to a higher amount of unmet demand, whereas
including too many allocations can lead to overproduction. Overproduction is not ideal due to the addi-
tional costs of materials, production, and storage, as well as the limitation when dealing with perishable
products. Instead, the idea is to only produce as much as is necessary and following the philosophy of
just in time, only produce it right when it is needed. Only the allocations that contribute to this purpose
are considered useful for the planning.

Lastly, the feasible and useful allocations can have a different degree of utility. If we require 800
units of a product and we are able to produce this amount in any way we would like, we would ideally
produce it in a single batch of 800, rather than splitting it into several smaller batches. Similarly, if we
are allowed to pick any day to produce it, we would like to be just in time, so not too early but definitely
not too late. To be able to compare the utility of two allocations, a scoring mechanism is used. The
score of a single allocation is computed as follows:

The score for a single allocation is computed by taking the an initial score of 100 and adjusting it
using the following bonuses and penalties:

» Bonus if this allocation extends a previous one, i.e. it increases the quantity to be produced for
an allocation that has not hit the capacity yet. This leads to less changeovers and a higher ac-
ceptance from the planners and staff on the work floor.

6 if allocation a is extended
Be(a) = on a 2.1)
0, otherwise
* Penalty for producing too early or too late.
14+ —t*) ift' >t
P t’,t* = X 2.2
( ) {t* -t otherwise (2.2)

— t' is the day currently being evaluated.

—t"=max({t | t +c; < tigse,t € {0, .., t1a5:1})- This is the optimal day to supply also called
“Just in time” (JIT).

— tigst =max({t|t+h,+1<d,t €{0,..,d —1}}). This is the last day where supply could be
created to meet the demand.
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— d is the day with the unmet demand.

— h; is the holding days on day t, i.e. products produced/transported on day t will require h;
days before they are usable.

— ¢; is the number of days to cover at day t, a cover of N days implies that the inventory
should cover the demand for d as well as N — 1 days before d. Essentially making the
demand required N — 1 days earlier than d. However, this is not a hard constraint, solving
the unmet demand without complying to this cover is better than missing demand.

» Penalty for producing a different amount than the desired quantity, i.e. the amount of unmet

demand. ,
;N _Bra=5 ifg' <g’
P(q',q") = a _ (2.3)
0, otherwise
— q' is the quantity currently being evaluated.
— q" is the desired quantity.
» Penalty for using an allocation that is marked as “should be avoided”.
10 if allocation a should be avoided
Pa(a) =1~ " &locatonasnot vo! (2.4)
0, otherwise
The final score of a single allocation is then:
S(a) =100 + Be(a) — P(t',t") — P(q',q") — Pa(a) (2.5)

2.2. Heuristic Planner

In the previous section we have seen what the supply planning problem looks like, to solve it there are
many ways to do that. Guzman et al. [15] conducted a review of the existing literature on the topic of
production planning, scheduling, and sequencing problems. They have identified four larger categories
of approaches to solve the planning problems used in literature:

Optimiser include the techniques that guarantee to return solutions that are optimal. An
Algorithms example of such an algorithm is one that uses branch and bound.

Heuristic do not have the guarantee for an optimal solution, instead it uses heuristics
Algorithms that are often problem specific to find a relatively good solution.
Metaheuristic similarly does not guarantee that an optimal solution is returned. Compared
Algorithms to heuristic algorithms metaheuristic algorithms are problem-independent and

provide a framework that can be applied to solve multiple problems. Genetic
algorithms are a popular example of metaheuristic algorithms.

Matheuristic combine the approaches from metaheuristics with mathematical program-

Algorithms ming, where a mathematical model is created that can be solved using tech-
niques such mixed-integer programming (MIP). Similar to metaheuristic al-
gorithms, the techniques found in this category are often frameworks that can
be applied to different problems. An introduction to these algorithms can be
found in [10].

The planning algorithm from Outperform is called the Heuristic Planner (HP) and falls under
the category of Heuristic Algorithms. Several heuristics are used in this algorithm to find plannings
that resolve as much demand as possible, while keeping the execution time of the algorithm feasible.
To better understand the areas in this where heuristics play a role, we first need to walk through the
idea of the algorithm. HP takes a single PL and finishes the planning for it before moving on to the
next one. The order of these PLs is important, as the earlier PLs will have more feasible allocations
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available, whereas the latter PLs are getting more and more restricted. An example of this can be seen
in Figure 2.1. Each column represents a single day in the planning horizon and each row represents a
case of unmet demand. The grey shaded squares indicate the day of the demand, the green squares
indicate the JIT days for the different deadlines, the blue squares are the early production days, whereas
the red squares are the late production days. The numbers in the corner of the squares indicate the
order in which HP includes the allocations. In this example we have two products to consider and there
is a single resource, the demands are all of equal size and require 5 days to resolve.

07 =1 [B1 [ [E]
X X X X X .
P1

P2

(a) Product 1 first, 5 units of production are missing

[I5] [EE] [I [IE] [I9]
X X X X X .
Pl

P2

(b) Product 2 first, 1 unit of production is missing

Figure 2.1: Planning of two products

This is the heuristic that we will focus on in this thesis, to be able to find sequences that result in a
faster execution time of HP. In the rest of this section we will continue with explaining how HP and the
other heuristic work, in section 2.3 we will discuss the PL sequence in more detail.

Once the sequence of PLs is decided, the first PL can be planned. Planning a single PL is done
by finding the days on which the demand is strictly higher than the available inventory, starting with
the earliest day with such a problem. A search is made for an allocation that can resolve this demand
fully or partially, the allocation with the highest score is selected first. If the demand is resolved fully,
the algorithm moves on to the next day with unmet demand. If the demand is only resolved partially,
another search is made for the next allocation but with the updated state induced by the previously
selected allocation.

Out of the 4 questions that need to be answered for an allocation, the question related to what we
need to produce is already set in stone. It is the current PL with some unmet demand, this leaves the
“‘how”, “when”, and “how much” left to be answered. The naive idea is to try all possible combinations
and then pick the successful allocation with the highest score, see Algorithm 1. By repeating this
procedure for the entire planning horizon of this PL, we can find the allocations used in the planning.

The naive approach, however, is overly time consuming if the search is done over all possibilities.
Additionally, the success of an allocation depends on the feasibility of it in the current situation. Two
conditions were defined previously for an allocation to be feasible, 1) the required materials should be
available, and 2) the selected resource shouldn’t have its capacity exceeded. Checking the second
condition is relatively straightforward, the desired quantity in this allocation combined with the existing
load on the resource should not exceed the capacity. The first condition, on the other hand, requires
more work. Simply checking whether the available inventory for each material is not sufficient, pro-
duction or transportation can increase the available inventory for these materials as well. So, if the
available inventory for this material is not sufficient for the allocation, we can treat the deficiency as a
new demand for that material that needs to be resolved in a similar manner as the usual PLs. If the
deficiency can be resolved and all the other materials are in the same situation, that there is either
enough inventory or it can be resolved, this allocation is feasible. If a single material is not resolvable,
the allocation is infeasible. This process can be be repeated many times for larger supply chains where
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Algorithm 1 Finding one allocation - Naive

Input: t' - the day of unmet demand, ¢’ - the amount of unmet demand
Output: a - the chosen allocation

1: procedure FindOneAllocation

2 bestScore « —oo

3 bestAllocation

4 fort=0tot'—1do

5 forg=q'to0do

6: allocations « all allocations that match the current product, location, day, and quantity

7.

8

9

10

isPossibleQuantity « false
for a in allocations do
success < TryAllocation(a)
if success A Score(a) > bestScore then
11: bestScore < Score(a)

12: lliestA,llocation —a
return bestAllocation

a lot of products and their materials are entirely produced in house.

As checking a single allocation can already be time consuming, we want to minimize how often this
needs to be done by skipping unnecessary allocations where possible. For this purpose we can use
the score of the allocations. The search process for an allocation of a single PL can be visualized as a
tree with a maximum height of three.

Example:

In Figure 2.2 the first layer of the tree branches on the day (“when”), in the second layer the quantity
(“how much”), and in the last layer the resource and BoM (“how”). The leaves are the allocations
using the values found on the path from the root. This tree can be further expanded above this max-
imum height when dealing with products that have missing materials, in which case the leaf nodes
would be the roots of subtrees for the missing materials.

When?
t=0 [ t=8 )
AN d
“t=0 t=0 7 t=s, " t=s
> ) ) ) .
How much? q=50 q-=800 \\ q-50 ’/‘ ‘\q=800
~t=0, 0 t=0 t=0,\ =8 pat =1 S t=8
=50, ( 50, ) ( 5 [ q=800, ) [ q=800, )

How? (a
\

Figure 2.2: Search Tree for HP, the green path leads to an allocation that is selected. The red nodes do not need to be
considered after the green node, due to the score of the green being higher.

Using a similar approach to branch and bound algorithms, an incumbent solution or in this case an
allocation needs to be found first. This incumbent will then be used to fathom branches where the most
optimistic computation of the score would lead to a strictly lower score than the incumbent. This can be
computed at any layer of the tree, even when branching on the day for example. The highest possible
score for that branch can be simply computed by taking the actual penalty for the day, but no penalties
for the other components. With this, once we have found a good incumbent, the rest of the search can
be completed relatively fast.

To speed up finding the first incumbent HP orders the branches in each layer based on the po-
tential score that the decision made in that layer can lead to. For example, when branching on the
day, the best day would be the day considered JIT, which has no penalty. Whereas the other days
induce a penalty based on how early or how late they are from this JIT day. Similarly, the quantities
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are attempted by checking the desired quantity first. When none of the allocations with quantity are
feasible, a binary search like approach is used to find the best quantity possible. Lastly, the allocations
are ordered by the production rate of the resource, with the idea that those allocations can finish the
quantity in less time. The expanded algorithm can be found in Algorithm 2.

Algorithm 2 Finding one allocation
Input: t' - the day of unmet demand, q' - the amount of unmet demand
Output: a - the chosen allocation

procedure FindOneAllocation
: bestScore « —oo

1:

2

3 maxScore « 106

4 ordinals < [0,..,t" — 1]

5: Sort ordinals based on penalties (Equation 2.2) in ascending order
6: for t in ordinals do

7 maxScoreOrdinal « maxScore — penalty for this day

8 if bestScore = maxScoreOrdinal then

9 continue with next day

0

10:

minQ < 0
11: maxQ « q'
12: q<q
13: while ¢ > minQ do
14: maxScoreQuantity « maxScoreOrdinal — penalty for this quantity (Equation 2.3)
15: quantitySuccess < false
16: if bestScore < maxScoreQuantity then
17: allocations < all allocations that match the current product, location, day, and quantity
18: Sort allocations based on fastest production rate
19: isPossibleQuantity « false
20: for a in allocations do
21: success < TryAllocation(a)
22: if success then
23: quantitySuccess « true
24: if Score(a) > bestScore then
25: bestScore < Score(a)
26: bestAllocation « a
27: if quantitySuccess then
28: minQuantity < quantity
29: q < (maxQuantity + minQuantity)/2
30: else
31: maxQuantity <« quantity
32 q < (minQuantity + minQuantity)/2

return bestAllocation

While the time and quantity are ordered by using the scoring mechanism as a guideline, the alloca-
tions use the rate of production which is not included in the scoring mechanism. A different heuristic for
ordering these allocations can guide the algorithm to allocations that are successful earlier on, whereas
those that would likely be unsuccessful would be attempted last.

2.3. Product Location Sequence

In the rest of this thesis we will focus on the PL sequence as the heuristic that we try to improve using
machine learning.

Each PL is assigned to a priority group, products in a higher priority group will always be planned
first. This makes it more likely for higher priority PL to be able to find satisfiable allocations, whereas
the lower priority ones would have more demand that can’t be met. These assigned priority groups are
obtained from user input and can’t be changed by the algorithm, even if swapping two PLs between
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priority groups would have resulted in a strictly better planning. The order for PLs with the same priority
is defined using the length of a PL’s supply chain called the network level, an example of this is given
in Figure 2.3.
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Figure 2.3: Example supply chain with network level of each stage on top. Materials at the start of the chain have the lowest
network level, whereas the stores at the end of the chain have the highest.

The possible sequences can be represented in a multi-valued decision diagram (see Figure 2.4),
where each path represents a possible product location sequence for HP. Starting at the “root” node
r, a first choice needs to be made between the PLs with a priority of 10. Each branch is a different
choice for the first PL to be planned. Depending on the first choice, the next branches only contains
the remaining PLs. After the three PLs with priority 10, we move on to the PLs with priority 0, where
the same process is repeated. Multi-valued decision diagrams are used in the literature to find ways to
simplify the problem by merging possible branches into one using some generalization. For example, ...

In this case, nodes can’'t be merged because of the dependency between them. Each node rep-
resents the action of planning one PL, the allocations resulting from this decision will change the
state of environment with respect to availability of resources and materials. The action of planning
(p1, P2, P3, P4, Ps) (green) differs from (p4, p3, P2, P4, P5) (blue), such that the nodes for p, and ps are not
equal in both paths and can’t be merged. Despite the order in that priority group not changing at all.

However, this is only the case if two PLs are dependent on each other, if none of the allocations
chosen for the two products conflict with one another then the products can be considered independent
of each other. In which case, the order of the two PLs will not matter and the two paths could be merged.

To check whether two PLs are independent of each other, we can use an undirected graph. Each
PL is a node and there is an edge between two PLs if they share at least one resource or at least one
material for production, see Figure 2.5 for an example. If there is an edge between two PLs they are
related, this relation is transitive, which means that if item a is related to item b, and item b is related
to item c, item a must also be related to item ¢. The connected components within this graph show the
groups of related items, which means that the order for these PLs can be important, whereas the order
between two PLs in different connected components isn’t.

This notion of related PLs can be extended further by only creating edges when the shared resource
or material can be a bottleneck. If a material has a sufficiently high or infinite supply, planning one PL
that uses this material will not affect the other PLs. Similarly, if the demand for the PLs that use this
resource is smaller than the maximum amount that can be produced with the capacity available on
this resource, then there is again no issues that can result from planning one PL. However, to find out
whether this is the case for each PL is more time consuming and in some cases a definite conclusion
can only be drawn by solving the planning problem partially.
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Figure 2.4: Decision Diagram, each level represents a decision where the node states which product is planned. The dashed
lines divide the priority groups, as well as the starting () and ending (t) nodes.
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Figure 2.5: Connected Component, each node is a single item in the planning. The blue edges show a connection between two
items that share a resource. The red edge shows a relation between two items that require a common product as material. The
purple edges indicate that both relations hold.

2.4. Machine Learning in Planning

Different combinations of planning problems with learning approaches are discussed in an early survey
of Zimmerman and Kambhampati [35] back in 2003. In their work they describe several dimensions
along which an automated planning system augmented with learning capabilities can be categorized.

The first dimension defined is the type of planning problem, where the distinction is made between
classical planning and full-scope planning. In classical planning the state of the environment only
changes when an action is done, the state is fully observable, and actions are deterministic and instan-
taneous. In full-scope planning we have more uncertainties in the form of stochastic actions, but also
a dynamic and only partially observable environment.

The second dimension that is defined is the approach in which the planning problem is solved,
Zimmerman and Kambhampati split these approaches into two larger categories, search processes or
model checking. Forthe search processes both state-space search and plan-space search approaches
are considered. In state-space search, an initial state is assumed after which actions or more generally
operators are applied to reach new states, with a final objective of reaching a goal state [2]. In plan-
space search instead of searching through these states, the algorithms would search through partial
plans. On each step the current partial plan is refined, until all conditions are met [25].

The third dimension relates to the goal of the learning component, whether this is to improve the
quality of the plan, to speed up the planning, or to learn more about the environment.

The fourth dimension describes in which phase the learning takes place, before the planning, during
the planning, or during the execution of the plan.

The last dimension defines the type of learning approach used, the distinction is made here between
analytic learning techniques and inductive learning techniques. In analytic learning techniques the
domain theory plays a crucial role in the learning process, it consists of prior knowledge that can be
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used during learning. This includes information such as what effects certain actions will have, as well
as which actions are valid. Analytic learning techniques such as explanation-based learning can learn
a model using a single instance. This is done by inferring rules that align with both the domain theory

and the instance used for training. The domain theory in this case needs to be correct and expansive
to ensure that the rules are correct for the other instances as well.

Inductive learning techniques are the widespread modern machine learning techniques, such as
decision trees, neural networks, and reinforcement learning. These techniques learn from examples
and do not necessarily require the domain theory to function.

Using the dimensions defined by Zimmerman and Kambhampati, we can describe the combination
of machine learning and planning problem that this thesis deals with. It is a classical planning problem,
where the solver uses a state space search, and the goal is to speed up the planning. This leaves two
dimensions left, the learning phase and the type of learning approach, see Figure 2.6. For the learning
phase, the option of learning before the planning starts implies only using information available about
all PLs that are to be planned, as well as the current availability of the resources and materials over
the planning horizon. Whereas the other two options allow for changes to the information provided
after each product is planned. Those two options are in the case of HP the same, as HP creates the

planning and executes it at the same time. HP inherently does not allow for backtracking after one PL
is planned, allocations chosen for the previous PLs are final.

For the type of learning, we have chosen for inductive learning. Analytic learning can be used when
data is scarce, the domain theory is then used to “substitute” for the lack of the data. Analytic learning

requires more prior knowledge, knowledge about how the order of PLs affect the resulting planning.
This knowledge is not available.
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Figure 2.6: Aspects of learning in planning from [35], the black line between dimensions are the options that are set in stone by
the current problem, the dashed lines represent possible options for the solution.
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2.5. Speedup Learning

Learning to speedup algorithms, or better known in the literature as speedup learning is the field where
machine learning is used to improve the performance of problem solvers.

This idea is not new, the concept dates back to Michie in 1968 [21], Natarajan and Tadepalli intro-
duced a formalized framework in 1996 [31]. Fern [8] gives a broader overview of the field of speedup
learning, he describes it as a problem where we take observations of prior experiences to train a learner
to output knowledge that a solver can exploit to find solutions more quickly. In his work he makes a
distinction between several dimensions of speedup learning.

A distinction can be made between offline and online learning. In offline learning the model is trained
on data collected across multiple instances of the problem to learn a generalized concept that can be
used for problem instances it hasn’t seen yet, which is why this type of speedup learner is also known
as inter-problem speedup learner. In online learning, on the other hand, the learning takes place at
the same time as the solving happens. It uses the information obtained from the current instance to
learn specific actions it should take as a next step while solving the instance. The learned model is
generally only used for the instance it was trained on, for this reason this approach is also known as
intra-problem speedup learner.

Another distinction made is in the type of learning process. In deductive learning new rules are
learned through the use of previously known facts, these rules can always be shown to be correct.
This can be seen as taking existing rules and refining them. In inductive learning on the other hand,
the learner tries to find new rules by looking at provided data and finding patterns within them. These
rules do not have the guarantee to always be correct, it is only an approximation that tries to fit the
provided data as much as possible.

Lastly, the difference in the type of knowledge learned is also important. Fern notes that most
problem solvers in this domain can be viewed as search procedures, for which four types of commonly
used knowledge that can be learned are:

Pruning inform a solver which parts of the search space can be ignored. Similarly to
Constraints the process of fathoming branches in a branch and bound algorithm, these
constraints can speed up the search process by ignoring larger parts of the
search space using the knowledge it has obtained during the seach process.

Macros are common sequences of search operators that are used, where an oper-

Operators ator is used to dive deeper down the search space. An example of such
an operator in the planning problem would be planning a single product. In
some cases certain operators are commonly used together in a specific or-
der. Having such a sequence of operators as a single operator can reduce
the amount of time spent in the search process by reducing the action of
choosing the specific operators to a single step. Essentially, the knowledge
learned here would a certain generic patterns used in the search procedure
to reduce the amount of steps required in the process.

Search-Control  dictates how the search process should be continued at each step. It can for
example decide to change the approach from a depth-first search to prefer-
ring specific nodes in the search tree.

Heuristic measure the quality of search nodes. The quality can then be used to steer
Evaluation the search process using the learned heuristics. An example of such an
Functions evaluation function is the scoring mechanism in HP.

In this work we will focus on offline learning or inter problem learning rather than online learning.
Online learning has the disadvantage that the early steps while solving can be poor, in hope that once
the model has learned more the decisions in the latter steps will compensate for this. With HP this
is not a viable option, as a choice will need to be made for which product to plan first, making a poor
choice here could already lead to unresolvable issues for the remaining products.

For the learning process we will use inductive learning, where we take previous examples as input
data and learn a rule that acts as a heuristic for ordering the PL sequence.
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Lastly, the type of knowledge we want to learn falls under the category of heuristic evaluation func-
tions. The current order of the PL sequences can be seen as a ranking based on the priority group and
network level. The objective is to improve this ranking, the resulting model would act as an evaluation
function for the PLs.

In this work we will use imitation learning, by taking PL sequences that resulted in a relatively
fast execution time and using those as training data for our models. Imitation learning is the idea of
teaching a robot to mimic human behaviour, this is done by learning a mapping between observations
and actions [17]. This field is gaining more and more traction because it allows for teaching without
providing deeper knowledge of the problem or a sophisticated model to be made.

An example of imitation learning being used for speedup learning can be found in the work of Pan
and Srikumar [24]. They learn a speedup classifier that acts as a heuristic to replace a more expen-
sive model. In their work they consider two models to work side by side while training, one model is
an already trained black-box classifier that is expensive, whereas the other model is the inexpensive
speedup classifier. The speedup classifier is trained to mimic the black-box classifier by using the
black-box classifiers past decisions as its training data. This approach is related to the idea of imitation
learning, where a model is trained to mimic a reference policy, with as goal to achieve similar results
with a lower cost or possibly better policies using information learnt over multiple scenarios. The ex-
pensive model serves as an oracle that provides accurate answers as training data. Namaki et al. [23]
similarly apply imitation learning to improve the query plans for a state of the art graph query reasoner.
In their work an oracle is also included, this oracle is able to compute query plans of high quality that
can be used as training data for the imitation learning. The DAgger algorithm [27] is included in the
process to further improve the model’s performance past the initial training setup. DAgger includes the
predictions made by the trained model as training data for the next prediction, this way the model is
able to learn from its own past mistakes. In both works the oracles play an important role, it provides
the input data required for training. As the models try to imitate the actions made by these oracles, if
the actions result in a bad solution, the trained model will likely suffer from this as well. Out of these
two works, the second one is more aligned with the circumstances of our problem, as we similarly do
not have access to a perfect oracle.

A different example of a speedup learning problem solved in literature can be found in the works
of Domshlak et al. [7]. In this work imitation learning is not used, but they deal with the problem of
deciding which heuristic to use. They speed up a heuristic state-space search algorithm by using ma-
chine learning to choose the optimal heuristic to compute at each state during the planning process.
When using algorithms such as A", the heuristics play a crucial role in determining the performance of
the algorithm. These heuristics are problem dependent and there is no single heuristic that is optimal
in all situations, picking the correct heuristic is important. Combining multiple heuristics could alleviate
this problem with the downside that at each step more computations need to be done, which could
be detrimental. Domshlak et al. solve this by learning a model that is used as a classifier to predict
whether it is worth to compute a more expensive heuristic at that step or not.

A different field that could help in speeding up algorithms is through the use of surrogate models.
With surrogate models a complex computation can be replaced by a trained model that can accurately
approximate the resulting value from the complex computation in a relatively fast time, the speedups in
this field are often in the orders of magnitude [9, 18, 6]. This approach is especially relevant if there is
a single bottleneck in the process that you would like to speed up. This, for example, could be applied
to the problem at hand to approximate the resulting execution time of HP with a certain PL sequence.
This way you could attempt to find better sequences through this surrogate model.

In this work we will follow the approach of Namaki et al. [23] to use imitation learning with an oracle
to fill in the gap of the expert. By finding better PL sequences and using that as the training data for our
model, we should be able to imitate these PL sequences and obtain better results than the baseline of
using the current heuristic.
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2.6. Planning Evaluation

The resulting plannings can be evaluated in two different dimensions, quality vs time. Quality of a
planning is measured by two metrics, the number of lost sales and the number of times the inventory
goes below a target. Time can be measured as the amount of time required to run the algorithm.
However, an approximate will be used instead to make the measurements less prone to noise. This
approximate is the number of calls to a function in the last stages of checking an allocation. This
function will be called for all possible allocations that haven’t been pruned beforehand. In Figure 2.7
it can be seen that this indicator has a roughly linear relation to the time spent running the algorithm.
More formally, the correlation coefficient between the time spent running the algorithm and the number
of function calls is visualized in Figure 2.8. The histogram contains data of 80 different instances, where
each instance has 250-300 samples. In most instances it can be seen that these two values are highly
correlated with one another.
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Methodology

In ML the process usually follows the same procedure:
1. Collect data
2. Clean/prepare data
3. Train a model
4. Evaluate the model
5. Use the model

In this section we will discuss the first three steps in this procedure. We will discuss the two models
designed to learn which PL sequence leads to faster execution times, as well as an initial model created
while studying the problem.

First we will start with discussing process of collecting data. Depending on the problem, historic
data might be available that can be used for training after some preparation. If this isn’t the case then
data will need to be collected first, during which we need to think about what features we want to use
for our models. But before talking about the features, we need to know what the aim is for our ML
models. The models all follow the idea of imitation learning. Imitation learning is not an algorithm or
model by itself, it is rather a collection of different techniques that follow a similar approach. The goal
is to learn and mimic the behaviour of an expert that is demonstrating their actions on a certain task.
Examples of imitation learning in practice can be found in [17], the use cases include fields such as self-
driving vehicles and assistive robots, as well as use cases in the field of combining ML and CO [16, 33].

Attia et al. [3] have given an overview of some of the most used approaches for imitation learn-
ing. One of them being supervised learning, where the expert’s actions create labels for the training
data that the model can then use. Often this data consists of a sequence of observations as well as
a sequence of actions that the expert has taken. The trained model will then need to pick the same
action as the expert when given the same observation. Attia et al. point out that this approach lacks the
ability to recover from failures, that is once an incorrect action has been picked during the sequence,
the model will not be able to adapt to this. Other algorithms have been mentioned in their work that
aim to solve this issue. In this work we will focus on the simpler approach of supervised learning. The
reason for choosing this is because in HP once a poor choice is made for a PL, this decision is set
in stone. HP itself has no way to recover from this, unlike the more common use cases of imitation
learning such as self-driving vehicles.

With this approach of using supervised learning to do imitation learning, we aim to train the models
such that they are able to give optimal PL sequences with respect to the execution time of HP. The
training data will, thus, need to contain the sequences that improve upon the current heuristic, but
ideally it would contain the optimal sequences for the planning problem at hand. This leads to the first
step in the process, data collection.

17
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3.1. Data Collection

Finding an optimal sequence is certainly non-trivial, as otherwise, one could simply use that approach
before running HP. The search space for these sequences depends on two factors, the number of PLs
and the number of priority groups. The number of possible sequences in the search space is equal to
[1,epr k]!, where P’ is the set of priority groups, each priority group in itself is a set of PLs. In the worst
case, if there is only a singly priority group, the number of sequences is simply n!, where n is the total
number of PLs.

Example:
Given an instance with 3 priority groups and 5, 3,and 4 PLs in each priority group respectively, the
size of the input space will be equalto 5x4*3x2%3%2%4+3%2 = 17280 possible sequences in total.

Evaluating all sequences is generally not advisable, for the example given if each sequence requires
10 seconds for its evaluation, the time required would be exactly a full day. The instances used in
practice are often much larger and thus have a larger search space but also require more time to
evaluate a single sequence.

To give a better idea of what this search space looks like, all possible sequences for different in-
stances are visualized in Figure 2.7. The circles represent different (groups of) PL sequences, whereas
the orange x is the PL sequence obtained from the current heuristic. It can be seen that the current
heuristic is often much better than a lot of other random sequences, but there is definitely still room for
improvement especially in cases such as instance A.

3.1.1. Equal Sequences

There are some ways to reduce the possible number of sequences that need to be evaluated, one such
way is to use the notion of related PLs introduced in section 2.3. When two PLs are not related, the order
between these two does not matter. Only the order of the PLs that are related to each other matters. As
an example we take the the PLs shown in Figure 2.5, with a more detailed version in Table 3.1. Using
those PLs, 4 example sequences are provided that are equal. The orders for each PL within a group of
related PLs stays consistent, thus the results of running HP with any of of the 4 sequences will be the
same for the others. Because each group of related PLs does not have any relations with the others, it
is possible to treat each of those groups as a separate sequence. For the example given, you could run
HP twice, first with the sequence containing the PLs of group A and then a second run with the PLs of
group B. Combining the results will have no conflicts and will give a complete planning. The alternative
is to simply group up the related PLs within a priority group, avoiding the situations in sequence 2 and
sequence 4 of the example, where unrelated PLs are intertwined within a priority group. Additionally,
adhering to a strict order in which group of related PLs to plan first in a priority group will reduce these
equal sequences to a single sequence to be evaluated.

Depending on the supply chain, this can drastically reduce the number of possible sequences. To
give an example, one of the datasets used in this work contains 52 PLs spread over 7 priority groups.
The total number of possible sequences is roughly 3.6 million, from which only 1440 sequences remain
after removing all sequences that are equal. However, in the worst case if all PLs are related, no
sequences can be eliminated with this approach.

3.1.2. Local Search
Despite reducing the total amount of sequences that need to be evaluated, it is still not feasible to
enumerate the remaining sequences to find our candidates for the training data. To speed up the
process of finding such candidates in a reasonable amount of time, we use the observation that the
current sequence obtained from the heuristic is relatively good as can be seen in Figure 2.7, but in the
neighbourhood of this sequence there are still better options. To find better sequences we use a local
search approach. The idea is to make small changes to the current sequence to create a new candidate,
this candidate will be evaluated and depending on the result we will continue with this candidate as the
current sequence or discard it, see Figure 3.1. By repeatedly taking the best sequences found and
continuing with those, the process should take us to better sequences in the search space.

The process for local search can be found in Algorithm 3. The idea is to take the PL sequence
obtained from the current heuristic as the first sequence evaluated in the search space. This sequence
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PL Priority | Related

Group | Group
P1 | 10 A
P2 | 10 A 1 2 3 4 5 6 7 8 9
P3| 0 A Sequence1 | P1 P2 P6 (P38 P4 P5 P7 P8 P9
P4 | 0 A Sequence2 | P1 P6 P2 | P3 P4 P5 P7 P8 P9
P5| 0 A Sequence3 |[P6 P1 P2 | P38 P4 P5 P7 P8 P9
P6 | 10 B Sequence4 | P1 P2 P6| P3 P7 P4 P8 P5 P9
P7 | O B
P8 | O B
P9 | O B

Table 3.1: Left: PLs with their associated priority group and group of related PLs. Right: 4 sequences (read from left to right)
that are equal, because the order of the PLs within a group of related PLs stays the same. Note that the PLs with a priority of 10
are always planned before those with a priority of 0.

is then modified to create new sequences. The new sequences each need to be evaluated and we
keep the sequences with the lowest number of function calls for the next iteration. In the next iteration
we do the same modification of sequences for each sequence that we have kept. This process is then
repeated d times, with each time modifying k sequences per priority group, and keeping m sequences
after evaluating all new sequences. Which means that the algorithm for local search only terminates
when a certain number of sequences have been evaluated. Another stopping criterion can be used
such as time. This way the local search can be run during the weekends when the system is idle.
However, it has the disadvantage that the experiments will become dependent on the system used, but
more importantly comparisons between different supply chains become more complex. Some supply
chains finish a single run of HP within a minute, whereas others could require more than an hour.

TN
’\ sxan/;
Run standard HP
sequence

Create k alternative
sequences

Evaluate new
sequences

/ End \ Satisfy stop
N criterion?
o Yes
No
Pick m best [3,1.2]
sequences [4,56.7,8]

Figure 3.1: Local Search Process Figure 3.2: Local Search Example

[1,2,3]
[45678]
[1,3,2] [2,1,31 1.2,3] [1.2,3]
[4,5,6,7.8] [4,5,6,7.8] [4,6.5,7.8] [4,5.6,8,7]

[2,1.3]
[456.87]

New PL sequences are created by swapping two adjacent PLs in a priority group. The simple idea
is to pick a random PL in the sequence and swapping its place with the next related PL within the
priority group. However, a single swap will not be sufficient on larger sequences, it will take too many
iterations before the first and last PL in a priority group will be swapped. Instead, we allow for multiple
swaps at once. This is done by taking a sequence of indices where the swap starts instead of only a
single PL. Then by going over the indices we make the swaps between adjacent PLs one at a time,
resulting in the new candidate PL sequence, see Figure 3.3. By further keeping track of sequences
that have already been evaluated we can avoid running HP when it's not needed. Pseudocode for the
algorithm can be found in Algorithm 4.

Applying local search to a test instance shows that it is able to steadily find better sequences, the
result of each successive sequence is visualized in Figure 3.4. It is important to note that this approach
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Algorithm 3 Local Search

Input: k - the number of new sequences per priority group, m - the number of sequences to keep
after each iteration, d - the number of iterations, seq - the first sequence where local search starts

1. procedure LocalSearch

2 S « {seq}

3 fori=0tod do

4 fors e Sdo

5: for p € Priority Groups do
6: forj=0tok do

7 Create new sequence from s and evaluate it in HP
8

Store m best sequences in S

Algorithm 4 Swapping adjacent PLs
Input: pg - the priority group where the swap needs to take place, S - the set of sequences already
evaluated, g - the number of swaps to make
Output: seq - the new sequence for this priority group
1. procedure CreateNewSequence
2 n < |pgl
3 [ < [0,..,n]
4 re<0
5: while r < 5 and seq € S do
6: Shuffle
7.
8
9
0

seq < pg

fori=0tok do

: p1 < pgli]

10: p2 « first PL in pg between i and n that p1 is related to
1: seq < seq with p1 and p2 swapped

12: rer+1
return seq

is prone to getting stuck in a local optimum, especially if the number of swaps done in a single iteration
is limited. If a large change in the PL sequence is required to get to a better neighbourhood, then
increasing the number of swaps could help out. However, this will depend on the supply chain in
question. Creating larger changes in the sequences could also lead to spending more time exploring
sequences with worse performance.

3.1.3. Synthetic instances

The previous approaches support the data collection process in obtaining good training samples for
the current state of the supply chain, a single instance. However, the supply chain is not a static object,
over time changes are to be expected. These changes can range from ones that happen over time,
such as the demands for products fluctuating and the degradation of resources, to more instantaneous
changes such as the inclusion or removal of items, as well as locations. If these changes were never
to happen then simply reproducing the best solution found by the local search process, would solve the
problem. This means that we need to make the model robust against the changes that we can expect
to happen, only exploring the current instance and using that as training data is not sufficient. We need
to collect data from different instances of this supply chain, where we can observe the behaviour of the
PL sequences when the supply chain is changed.

While it's possible to combine the training data obtained from different supply chains to create one
large set of training data, the performance of this is unknown. Supply chains from different companies
can vary drastically, for example, some might. The heuristics that are beneficial for one company,
might not have the same effect for the other. Additionally, even with combining the training data from
the companies available, the amount of data might not be sufficient. We will need to prepare a different
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Figure 3.3: Adjacent Swap in the red priority group. A random order for the indices is created and based on that the red adjacent
swap on index 1 is performed first, followed by the blue adjacent swap on index 2. If more swaps would have taken place, the
next swap would be on index 0.
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Figure 3.4: Total calls over each successive sequence in the local search process. The instance contains 52 PLs spread over 7
priority groups. The parameters used for the local search process are: d = 6, m = 4, k = 2, and for the adjacent swap: q = 4

approach that can provide us with more training data.

The approach in mind is to alter the existing instance to reflect changes that we would like the model
to be robust against. The changes chosen for this work are the daily demand of each PL, as well as the
production rate of the different resources. Other changes such as varying the spread of the demand
and changing the existing supplies for the PLs are not included in this work, but should be considered
for future work. The daily demand of each PL is varied by picking a factor in the range [0.85, 1.15] for
each day and multiplying it with the current demand. For the production rate of the machines we pick
a factor in the range [0.95,1.05]. These changes can cause new PLs to be introduced to the problem,
because their demand is now higher than the available inventory. The reverse holds true as well, where
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previously included PLs do not need to be included in the planning anymore. Furthermore, production
that could be solved in one batch, might now require to be split due to a lower production rate, or the
other way where planning the production for a PL might become easier with a higher production rate.

Some changes are not considered for this work, such as varying the PLs that need to be planned,
essentially changing the structure of the supply chain. This change does not happen often and could be
an indicator to train a new model instead. However, some initial experiments were run with a few PLs
left out in the training data. These experiments showed a possibility for learning from smaller subsets
of PLs. Similar experiments were run with PLs included in the training data, but not in the validation
set. Collecting training data from smaller instances could be an approach to further improve the data
collection process, by reducing the search space of a single instance and allowing for more instances
to be explored.

3.2. Stepwise Expert Model

The first model created in this work is the stepwise expert model, it revolves around the idea of imitation
learning, where we attempt to mimic an expert when deciding which PL to plan next. At the start of
HP we predict what the best starting PL is out of all available options, we take this PL and solve the
planning problem for it. After each PL we create a new observation for the current state, recording
features such as:

* The remaining demand of each PL
* The remaining demand in total
» The number Function calls made

e The number of lost sales

The current inventory of each PL

* The number of PLs left

This information is then used to update all the PLs that haven’t been planned yet. Once the state is
updated a new prediction is made for the next PL. Using this approach we create a new PL sequence
step by step.

3.2.1. Features

In supervised learning the training data will consist of two types of information: the features and the
label(s). The goal is to use the features to predict what the label will be. Each sample in the training
data will be a single PL.

The training features used in this model can be splitinto two groups: PL features, and state features.
The PL features are the features that encode the current PL and it generally stays consistent at each
step. The state features, on the other hand, are those that encode information on the current state and
will be altered at each step by the previous PL that was included in the planning. The idea is to find out
which PL with its accompanying PL features suit the current state features the best.

Aside from the input features an important aspect of the training data will be the label. The objective
is to take the candidate PLs and mark them as either a good or a poor choice when considering them
as the next PL to be included in the planning. One approach is to use a binary classification, where
a sample is marked as expert if planning this sequence with the current state would be part of a good
sequence. There are several options when it comes to choosing which sequences are good:

» Take top k sequences as expert
» Take top I percentage of the sequences as expert

» Combine the previous two
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Feature Explanation

Priority The priority of this PL

Network Level Network Level as defined in section 2.3

Rank The rank of this PL within its priority group, first PL to be planned
has a value of 1, incrementing with each successive PL

Priority Group Size The size of the priority group this sample belongs to

Number of Violations Total number of PLs that requires planning

Violation Progress The current number of planned PLs

Days The number of days in this planning

First Violation Ordinal The first day with a violation for this PL

Max Violation Ordinal The (currently known) last day with a violation for this PL

Demand The demand of this PL in SKU

Total Demand The sum of demands for all PLs

Fraction of Total Demand Solved | The percentage of total demand solved so far, between 0 and 1.

Starting Inventory Starting inventory of this PL in SKU

Lost Sales Priority Amount of sales lost for this priority group in SKU

Lost Sales Total Amount of sales lost over all priority groups so far

Table 3.2: Features for step-wise expert model

To take the top k sequences you simply need to sort all the sequences found during the local
search process. Finding the optimal value for k, however, is a lot trickier. Keeping it low means that
the training data will likely contain a higher fraction of sequences that are relatively fast, but the amount
of sequences will then be small. Whereas increasing the value for k makes more data available, but
with the added consequence that the quality of the data could see a drop. There is another argument
for making this value for k larger, which is that it can lead to a more robust model as it has seen more
varied sequences.

A similar approach is to label a percentage of the found sequences as expert. This has the benefits
that it is easier to balance the two classes of expert and non-expert regardless of the data.

However, both approaches are prone to incorrectly classifying the sequences. In the scenario that
the local search process finds a large amount of sequences of a high quality, the k or top (% best
sequences might not include all these sequences. Which means that some of them will be labeled as
not an expert despite having similar quality to those that have been labeled as experts. Similarly, if
the sequences found show no sign of improvement, the labels assigned using these approaches could
cause more harm. This can be partially solved by taking all top k sequences, but also those that are
really close in performance to the top. Essentially, taking all sequences that have a number of function
calls below the function call of the k-th sequences with some margin.

Example:
For example, if the k-th sequence has 1000 function calls and the margin is set to 5%, then we will
label all sequences with a number of function calls below 1050 as an expert.

3.2.2. Prediction

A PL sequence is created using a trained model by predicting one step at a time, at each step we
take all the remaining PLs in the current priority group and compute the features for them. These are
all given as input to the model, while the output will be a label for each PL as well as the probability
of it being in that class. Out of all PLs that are labelled as experts we take the one with the highest
probability as our next PL. This process is then repeated for all the remaining PLs in this group, the
algorithm moves on to the next priority group once the current one is empty.
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3.2.3. Discussion
The stepwise expert model was a first iteration at experimenting with using ML to predict a new PL
sequence. The results for this approach were not too promising due to several factors, the first being
a lack of good features.

In the process of experimenting with this approach it was noted that the difference between a fast
PL sequence and a slow one usually comes down to a single or a few PLs taking up a majority of the
time. This is because they run into the issue where they are unable to find a successful allocation in
a relatively short time, which is required to be able to eliminate large parts of the search space when
solving one violation. This is further made worse when these PLs require several materials that are
scarce, where an allocation is only shown to be infeasible when trying to resolve the materials required.
These scenarios can happen when two PLs are contesting for limited resources, if one of these PLs
has very limited possibilities then prioritising that PL could be beneficial as it will be easier for the other
PLs to find other resources to use. The current features, however, do not capture these contentions
between PLs. Other issues with the features show up in the demand and inventory. These features
can be useful to give an idea of how much work needs to be done to create a planning for a certain PL.
However, a single SKU for one PL is not equal to a SKU for another, in the case of production this will
also depend on how fast the production for this PL can be, so we will need to use that to scale these
features. Lastly, a high demand for one product does not necessarily mean that it will be an immediate
issue. If one PL only has a high demand in a limited time frame where no other PLs have demands,
then this would not cause any issues at all. So we will need to look at how often and how much demand
between different PLs overlap with each other.

Another issue lies with the fact that the data does not capture the dependencies between the PLs
it has already planned and those that are coming up next. Currently, if a sequence is labelled as a
good sequence, all the steps in that sequence are considered as an example of an expert’s action,
but this also works the other way around. If a sample is marked as bad, all the actions are similarly
considered as poor choices. This is, however, not practical. A single PL in the sequence could have
caused the sequence to be relatively slow, whereas the majority of the actions taken in that sequence
were optimal. While it's easy to find out which PL runs into such issues by simply looking at the time
they require, it is not trivial to find the steps that caused the issue. It could be a single step that by
itself did not have any issues while running, but only caused it for another PL later down the line, or it
could even be some combination of steps that caused the issues. A good sequence must contain only
(relatively) good actions, whereas a bad sequence could only contain a single bad action. In this case
it is easier to learn from good examples, than to learn from bad examples.

The last issue lies with computation time required for this approach. To create a single sequence
we now need to evaluate a lot of steps one at a time, at each step we need to update the features for
the remaining PLs and predict the label for these new samples.

3.2.4. Implementation
The last implementation for this model was made in Python and uses a random forest implementation
from the library scikit-learn'. Alternative implementations have been experimented with, using

neural networks from the library AutoKeras?.

3.3. Learning to Rank Model

The second approach we try uses learning to rank (LTR). LTR refers to the broad domain of ML models
that are used for ranking tasks, the applications of these can be found in Information Retrieval, Natural
Language Processing, and Data Mining [20]. The idea behind LTR is often explained in the setting of
information retrieval, for example, when searching for websites in a search engine. The query specifies
what you are searching for, whereas the documents are the results that match this query. The task for
LTR is to sort these documents based on the relevance to the query. A simple example would be, when
searching for “chocolate recipes”. If the three documents retrieved are:

» “Making chocolate 101”

"https://scikit-learn.org/stable/
2https://autokeras.com/



3.3. Learning to Rank Model 25

* “Charlie and the chocolate factory”

» “Chocolate truffles recipe”

The document for “Charlie and the chocolate factory” will likely have a lower relevance for our query,
whereas the other two documents would be more relevant and thus needs to be ranked higher. The
models need to learn which document is the most relevant for the query that is provided, for this each
document will have their own features that can provide more information for the model. These features
in the example of information retrieval could be: the page rank, number of clicks, the number of match-
ing words to the query, etc.

Garret et al. [13] have applied LTR in the field of planning problems, where they frame the problem
of learning heuristics for large planning problems as an LTR problem. In their work they consider the
STRIPS planning problem that can be solved by a forward state-space greedy heuristic search, where
the heuristics are used to approximate how far a state is from the goal. The states with a higher score
are then more likely to be expanded first. While the use of heuristics differs from the one used in this
thesis, we will similarly apply LTR to train a new heuristic.

3.3.1. Features

In the example of information retrieval the documents with the highest relevance scores are the first
to be shown to the user. In our case the PLs with the highest relevance score will be planned first. In
both cases the training data should act as a demonstration of the correct order between the different
items to be ranked. Which means that we will need to provide good PL sequences as our training data.
The actual relevance score for each PL does not matter, as long as the order for the PL sequence will
remain when sorted on this relevance in descending order. This means that the first PL to be planned
in this sequence needs to have the highest relevance, while the last PL has the lowest relevance score
as its label. However, as indicated previously the order between two unrelated PLs does not matter. If
we train the model with the false knowledge that this order does matter it could lead to degradation of
the performance due to this noise. For this reason, we split each group of related PLs as a separate
sequence that is used as training data. So each group of related PLs would have their own ranking
and relevance scores.

The trained model will be used to predict the entire PL sequence in one go, unlike the previous
model. Which means that many of the previous features are not feasible with this model, as we can
only use features that are already available before running HP. So nothing changes to features such
as the demand, but features that are related to the progress of HP, such as the amount of lost sales so
far, would not be usable with this approach. The features used in this model can be found in Table 3.4.
The issues mentioned in subsection 3.2.3 have been taken into account while choosing these features.
These changes can be divided into three categories:

» The demand is now scaled by the production rate of the PL. For each PL the minimum production
rate out of all usable resources is taken as an estimate of the effort required to resolve the demand
in the worst case. This is not always an accurate estimate and should be used with caution. A
counterexample for the minimum rate is when an old machine is still kept available but is in fact
rarely used. This could lead to the PLs having a much lower minimum rate. In the case of a PL
that only has transportation this scaling is not done because transportation does not impose a
limit on the quantity, only on the number of days required.

» The spread of the demand over the planning horizon is considered. The demand of a single PL
over the planning horizon can be seen as a n-dimensional vector (see Table 3.3), where n is the
number of days in the planning horizon. The sparsity (or lack of it) in this vector can be used to
distinguish PLs that could require more effort in planning.

» The overlap between the demands of PLs is considered. The overlap for two PLs can be com-
puted by taking the daily demand of a PL and turning it into a vector, see Table 3.3 for an example
of such demands. The dot product between two of such demand vectors will be an indicator of
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how much overlap there is between two PLs. This can be computed for each pair of related PLs
and the sum of these dot products will be used as a metric of how much overlap one PL has
with the other PLs that need to be planned. For example, for p; the dot products with p, and p;
are 18 and 42 respectively, the sum is then 60. The same computations can be done for p, and
p3 to get 20 and 44 as the sum of dot products. A higher value means that this PL can cause
more issues for other PLs, whereas a value of 0 would imply that there is no overlap between the
demands. In this case p; has the highest sum, due to the high demand it has and the overlap
that exists for these high demands. This will more likely cause issues during planning as the
resources will run out of capacity earlier. On the other hand, p, has a lower sum than p; despite
having more demand. This is because the demand of p, has less overlap with the other PLs.
This simple feature currently only uses the day of the demand. While in practice a demand on
day t means that any day from 0 to t — 1 could be used to resolve this demand, with days closer
to t having a higher likelihood. So one way to improve this feature is by using a sliding window
for computing the overlap between two PLs, instead of only a dot product. For example, if using
a sliding window of 2 days, then the demand of day t is its own demand plus the demand of t — 1
and t + 1 if they are within the planning horizon.

» The contention for resources between PLs is considered. This feature that is related to how often
a PL is competing for resources, as well as what fraction of the desired capacity it would take. For
the count we take the number of days where the PL has demand while at least one other PL that
shares the same resources does as well. For each day we can then compute what fraction of the
total demand belongs to this PL. For example, using the demands in Table 3.3 we can compute
both features for p,. The count of tight days would be 4, despite there being demand for p, on
day 4, it is not included in the count because no other related PL has demand on that day. The
sum of the fractions would then be roughly 2.06 (0.6 + 0.5 + 0.71 + 0.25). For p; and p5 it would
be roughly 1.52 and 2.42 respectively.

Time 0|1]2 3/4|5|6
pr 12102 |2|]0]2)|2

Demand | p, |3|1|0 |5|3|1]|0
p3 | 01|10, 0]|0]1/10

Table 3.3: Example of demands for three PLs with a planning horizon of 7 days.

3.3.2. Prediction

Similar to the training data we will split the PLs by their group of related PLs. Each group is given as
input to the training data separately, this results in several disjoint sequences which need to be merged
back together. The order in which this happens does not matter, we do however adhere to the priority
groups when merging the sequences, despite it not having an impact on the results. This is to stick
to the rule imposed that PLs of different priorities should not be swapped. While the model does not
guarantee this, it is possible that the last PL of a higher priority and the first PL of a lower priority get
relevance scores that are close to one another, such that the PL with a higher priority is ranked lower.
This needs to be checked when creating the final PL sequence, which can be done by separating the
PLs on their priority first, before sorting the PLs in a priority group on the predicted relevance.

3.3.3. Implementation

Initial experiments for the LTR model used an implementation for LTR called LambdaMART [5], the
implementation was in Python using the code found in an online repository®. Whereas the final LTR
model uses the algorithm called FastTreeRanking from the library ML .NET*, a library made by Mi-
crosoft for C#. FastTreeRanking is similarly based on Multiple Additive Regression Trees (MART).

3https://github.com/lezzago/LambdaMart
“https://dotnet.microsoft.com/en-us/apps/machinelearning-ai/ml-dotnet
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Feature

Explanation

Priority

The priority of this PL

Network Level

Network Level as defined in section 2.3

Directly Related PLs

The number of PLs that are directly related to this PL, that is those that
share resources or materials

Resources

The number of resources that this PL has access to

Related Resources

The number of PLs that (in)directly share resources with this PL

Directly Related Resources

The number of PLs that directly share resources with this PL

Minimum Production Rate

If the PL has production: The minimum production rate of this PL, con-
sidering all resources + BoM combinations , this is essentially a worst
case scenario
Else: Always 0

Starting Inventory

Starting inventory of this PL in SKU

Demand

The total demand of this PL in SKU

Scaled Demand

If the PL has production: The total demand of this PL is scaled by dividing
by the minimum rate
Else: Same as demand

Relative Demand

The PL’s own scaled demand divided by the total scaled demand of the
entire group of related PLs

Average Demand

Average of the demands of this PL in the entire planning horizon

Standard Deviation Demand

Standard deviation of the demands of this PL in the entire planning hori-
zon

Coefficient of Variation Demand

Coefficient of variation of the demands of this PL in the entire planning
horizon, average demand divided by standard deviation demand

SumDots Sum of dot products between the demands of this PL with its related PLs
Count of Tight Days The number of days where it has demand that overlaps with at least one
related PL that shares a resource
Share of Tight Days The sum of the fractions of demand that it has with respect to the other

PLs that it competes against

Table 3.4: Features for LTR model

MARTs use multiple regression trees and train in a sequential order. At each step we take the result
from the previous trees and we fit a new function on our data, such that the sum of the previous result
and the result from the new function minimizes some loss [11]. Essentially, each additional tree tries
to improve the previous result further.

This library has a severe limitation for the LTR model as the labels needs to be an integer from 0 to
4. This means that we will not be able to cleanly separate all related PLs when we have more than 5
PLs, we will only be able to separate them into 5 different groups, where the model will not be able to
distinguish the order between PLs within one such group.

3.4. Pairwise Model

The idea behind the pairwise model is to take a step back from learning an entire sequence immediately,
instead we consider only pairs of PLs. For each pair of PLs p; and p, we create two samples as training
data. One sample will be created for the option of planning p; before p, and one sample will be created
for the reverse, planning p, before p;. We can create a binary classification problem with this data, the
samples with the correct order will get a label of 1, whereas the other will get the label 0.

The idea for this approach comes from the fact that the current heuristic, where the products are
first ordered based on the priority group and then ordered based on the network level, can be modelled
using a simple decision tree. This decision tree only uses two features to classify each sample: priority
group and network level. A comparison is made between each PL based on these two features resulting
in a PL sequence. In Figure 3.5, such a decision tree is visualized with some test data.

The previous decision tree can be expanded with these features, as well as more layers with the
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idea that the current heuristic used in HP is still in there as a fallback if the other features end up not
contributing much. In Figure 3.7, the decision tree is expanded with an additional feature. In the first
decision tree we can see that the priority group creates clean splits in the data, resulting in leaf nodes
with a single class. This is because it is a hard constraint on the sequence and any sequence in the
training data satisfies this constraint. The network level, however, can provide some split in the data.
When the feature is less than or equal to -0.5 according to the splitting rule in the node, 76% of the
samples have a label of 1. This rule can be interpreted as if a PL p; has a higher network level than a
PL p, then p, should be planned before p,, which is exactly what the current heuristic uses. However,
in the other cases, where the network level of the two PLs are equal or the network levels of the two are
swapped, the distinction between the classes is less clear. In Figure 3.7 an additional level is added
with which it can be seen that in most leaf nodes the split in the classes is quite clear, except for one
leaf, where it is roughly 50% split for both classes. This is the case when the network level of two PLs
are exactly the same. Additional information will be required to create a better split in these situations,
an example of such can be found in Figure 3.7. An additional feature is added in this decision tree, that
uses the number of directly related PLs. The idea is to use these additional features to further improve
the accuracy of a simple model.
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Figure 3.5: Decision Tree with priority and network

R e Figure 3.6: An additional level added to the decision tree
level as features, imitating the current heuristic

3.4.1. Features

The pairwise model uses similar features to the learning to rank model. The differences between the
two lies in the fact that pairwise combines the values of both PLs for its own features. For example,
instead of only the demand of one PL, we take the difference of demand between the two PLs. A
different option is to simply create binary features that indicate whether the demand of the first PL is
higher than the second one. However, this would remove some information that the model could use
to learn. The difference between the two values could provide useful information, especially in cases
where the difference is so little that it is insignificant.

3.4.2. Prediction
Similar to the previous model of learning to rank, only related PLs are considered. In this case that
means we only take pairs of related PLs as the samples that need to be predicted.

The trained model predicts whether the two PLs in a sample are in the correct order or not, this
means that if the model outputs a 1 for a sample that puts p, in front of p,, then the resulting PL
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Figure 3.7: Decision Tree with an additional feature
using the number of directly related PLs

sequence should have p; planned before p,. One way to get a PL sequence out of these predictions
is by summing up how often a PL is predicted to be planned ahead of another PL. For example, when
looking at a p,, we have all the samples that include p; as the first PL in the partial order, we count how
many of these samples result in a label of 1. This is done for every single PL and then we sort these
PLs in descending order.

This simple idea can be improved by using the confidence score of a prediction. A score closer
to 1 means that the model is more confident of the label being 1, and a score closer to 0 means it is
confident of the label being 0. We can sum up these confidence scores instead of simply the number of
predicted labels being 1. A PL that has high scores in its predictions is then more likely to be planned
ahead of one that has an equal amount of predicted labels being 1, but with lower confidence scores.
This reduces the influence from predictions that hover around 0.5, where the model is uncertain of
which class it belongs to. This can be further altered such that the predictions of which the model is
uncertain is not taken into account at all. Only the scores above a certain threshold are summed up,
those below it are ignored.

3.4.3. Implementation

The first iteration of this model used a simple decision tree in Python from the library scikit-learn.
The final pairwise model uses the same library as the LTR model and the algorithm has a similar name,
FastTreeBinary. It uses the same approach with MARTSs, but now used for binary classification
rather than ranking.



Experiments

In this section we will evaluate the performance of the two heuristics obtained from using the ML ap-
proaches. First we will take a look at the performance of the current heuristic and compare it to the
alternative sequences. Then we will create an experimental setup for evaluating the ML approaches,
which we will use on several datasets. The first dataset will be a synthetic dataset used by Outperform,
the other datasets will be real supply chains provided by Outperform. The real supply chains will be

referred to as “Supply chain A”, “Supply chain B”, etc.

4.1. Datasets

4.1.1. Synthetic Supply Chain

This is a supply chain that is created by Outperform to showcase their products. The supply chain is
relatively small with only three locations and a limited amount of products per location. The experiments
were run with 52 PLs that need to be ordered for the sequence, these are splitinto 7 priority groups, the
distribution can be found in Table 4.1. The execution time of HP for this input is roughly 50 seconds.

Priority Group | Number of PLs | Groups of Related PLs
10
7
10
10
8
5
2

o|lalN|w| Mo~
alwlbddlw|w|-

Table 4.1: Properties of the synthetic supply chain

In this setting the three locations are largely disjoint, but within one location most PLs are related
to each other. The dataset has been further modified to decrease the available resources, such that
there is less capacity for production and PLs run into more unsolvable demand. This change is done
because the order for the PL sequence does not matter if there is more capacity than is needed.

4.1.2. Supply Chain A

This is a real supply chain with a much larger size than the synthetic one, but the execution time of HP is
much faster at about 10 seconds per run. It has 410 PLs that need to be planned with HP, not including
any materials that these PLs can depend on. These 410 PLs are separated into 15 locations and 4
priority groups, the distributions for the priority groups can be found in Table 4.2. This supply chain is
a more complex one compared to the synthetic supply chain. It has a larger mix between production
and transportation, due to several locations acting as warehouses or stores.
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Priority Group | Number of PLs | Groups of Related PLs
3 1 1

2 109 10

1 13 3

0 287 23

Table 4.2: Properties of supply chain A

4.1.3. Supply Chain B

Supply chain B comes from the same customer as supply chain A, but with a year between the two and
some changes in the supply chain. This dataset now contains 444 PLs that need to be planned. They
are separated into 18 locations and 4 priority groups. The new distributions for the priority groups can
be found in Table 4.3. The changes in this supply chain are quite varied, from the inclusion/removal
of PLs to changes in the resources. With these changes the time required to run HP measured on my
machine changed from roughly 10 seconds to about 14 minutes.

Priority Group | Number of PLs | Groups of Related PLs
3 1 1

2 109 8

1 15 4

0 319 21

Table 4.3: Properties of supply chain B

4.1.4. Supply Chain C

Supply chain C is another large supply chain, but one where the time required to run HP is similar
to supply chain B. It requires roughly 10 minutes on the same machine to finish the planning. The
planning includes 346 PLs, separated into 4 locations and 10 priority groups. However, out of the 10
priority groups only 2 are mainly used, as can be seen in Table 4.4.

Priority Group | Number of PLs | Groups of Related PLs
9 28 3
8 1 1
7 1 1
6 1 1
5 1 1
4 1 1
3 1 1
2 1 1

1 2 1
0 309 46

Table 4.4: Properties of supply chain C

4.1.5. Supply Chain D

The last supply chain is a bit smaller than the previous ones with 253 PLs, for which HP requires about
1-2 minutes to solve. This supply chain has a clear structure for which PLs to prioritize, as it has 225
priority groups. Essentially, each PL has its own priority, which means that the number of possible
sequences is heavily limited in this supply chain. This supply chain only has a single location and
almost all PLs are related to each other, similar to the synthetic supply chain.
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4.2. Baseline Performance

Before we evaluate the performance of the ML models, we need to look into the performance of the
current heuristic for the different datasets. Ideally, we would be able to compare the performance
of the PL sequence obtained from the current heuristic with an optimal sequence. However, doing
this is not feasible due to the size of the search space, so instead we compare the current heuristics
with the best obtained sequences from local search. For each instance a score is computed for the
possible improvement by taking the number of function calls for the current sequence and divide it by
the minimum number of function calls of any sequence for this instance. Resulting in a value of 1 if there
is no improvement possible, and a score above 1 where the higher the value the more improvement
there has been found. The results can be found in Figure 4.1.

4.2.1. Synthetic Supply Chain

The local search is run with the following parameters: d = 6, m = 4, k = 2. For this supply chain 80
instances are evaluated with the local search. For this supply chain we can see that there are multiple
instances with a lot of room for improvement.

4.2.2. Supply Chain A

The local search is run with the following parameters: d = 6, m = 4, k = 2. For this supply chain 80
instances are evaluated with the local search. For this supply chain not a lot of improvement has been
found from running local search with the chosen parameters.

4.2.3. Supply Chain B

The local search is run with the following parameters: d = 3, m = 2, k = 1. However, only 50 instances
were collected. We can see that this supply chain now has more room for improvement compared to
the supply chain A. Especially, the one instance with a score above 1.6 can be promising.

4.2.4. Supply Chain C

The local search is run with the following parameters: d = 6, m = 2, k = 1, the change in values
compared to the other supply chains is to reduce the amount of time required for exploring a single
instance. Furthermore, only 13 instances were collected for this. The exploration of a single instance
took between 6 to 8 hours. These changes, however, mean that the exploration of each instance is
less thorough and the estimation for improvement is less accurate. From the obtained information we
can see that the situation for this supply chain is similar to that of supply chain A, where there isn’t a
lot of improvement found.

4.2.5. Supply Chain D

The local search is run with the following parameters: d = 10, m = 2, k = 1. The depth of the local
search is increased for this supply chain due to a limitation found in the implementation of the local
search. Only a single priority group is considered while swapping adjacent PLs for a new sequence.
This means that the parameter of the depth for the search d will need to scale with the number of priority
groups in the current supply chain. The increase of the parameter d is to mitigate some of the issues
introduced by this, but it should be resolved properly by adjusting the local search approach to allow
for changes in multiple priority groups in one go.
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Figure 4.1: Possible improvements for the different supply chains

4.3. Evaluation

The experiments will be run locally, with most of the experiments being run on the same machine.
Some smaller experiments such as hyper parameter tuning have been run on a different machine. All
final experiments involve running HP, so these processes are integrated in the code of Outperform
with the usage of C# for the machine learning models.

4.3.1. Performance

To evaluate the performance of a model we can compare the function calls required for the PL sequence
obtained from the model’s output with the current heuristic. A comparison is made between the two
and a score can be computed as follows:

_ #Function_calls_HP
' #Function_calls_ML

@.1)

A score of 1 means that there is no improvement from the ML model, a score higher than 1 signifies
improvement, whereas a score below 1 means that the ML model results in worse performance for this
instance.

This score is then computed for all synthetic instances in the validation set, resulting in a distribution
that gives an idea of what to expect from the ML model with regards to the performance on this supply
chain.

Additionally, a check is done for each instance that the ML model does not result in worse quality for
the resulting planning. The scores for these metrics is computed in the same way as in Equation 4.1.

4.3.2. Hyperparameter Tuning

Other than collecting the right data, ML also benefits from training the right model that fits the data and
the problem. For both the models the underlying algorithm used is the FastTree from the ML .NET
library. It has four parameters that you can freely set when training the model:

The number of is the maximum number of leaves each tree is allowed to have, increasing

leaves this will allow more complex trees that are able to split the samples better.
However, making this too high will increase the cost of training the model, as
well as possibly leading to overfitting on the training data. The default value
for this is 20.

The number of is the maximum number of regression trees to use, increasing this will allow

trees the model to fine-tune its decisions better. This is because each additional
tree is boosted by its predecessors, this allows the new tree to make small
adjustments to its predecessors’ prediction to further optimize the model. The
default for this is 100.
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The learning rate is used to change how much each successive regression tree affects the
prediction. With MARTSs it is often the case that the first few trees will be the
most dominant in the prediction, with each additional tree having less control
[32]. The default value for this is 0.2.

The minimum can be used to avoid overfitting when the number of leaves per tree is too
number of high. The default value for this is 10.
examples per leaf

In this work we will focus the hyperparameter tuning on the number of leaves and the number of trees,
this is because changing the other two hyperparameters did not result in significant changes to the
prediction of the trained models. The default values will be used for those two. This also reduces the
time required for finding and training the final model used for evaluation.

A grid search will be used to find the optimal parameters for the number of leaves and trees. For the
number of leaves the values used are 10, 20, 30, 50, 100, and 200. For the number of trees, the values
are 50, 100, 150, 200, and 300. Each combination of these values is then evaluated on a validation
dataset consisting of 20 synthetic instances. An example of the results from such a grid search can be
found in Figure 4.2. For the pairwise model it is evident that a higher number of leaves leads to a higher
score when evaluating it on HP, the numer of trees does not result in much improvement after some
point. From this we can, for example, choose the configuration with at most 200 leaves and 150 trees.
On the other hand, we can see that with the LTR model it is not advisable to continuously increase the
hyperparameters. The optimal model was found around 10 leaves per tree and 200 or 300 trees in
total.

- 097
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Figure 4.2: Heatmap showing the average scores for 20 evaluated instances per configuration. On the left we have the LTR
model and on the right we have the pairwise model.

4.3.3. Experiment Design

We have a total of 5 supply chains with varying properties. For each supply chain we will conduct an
experiment to test how well the designed models work as a new heuristic for the PL sequence. Due to
the different sizes of the supply chains the amount of training data that each experiment uses will vary,
as well as the number of instances used in the validation of the model, see Table 4.5.

The amount of training data for these instances were chosen to be on the larger side and often
required multiple days to collect. One experiment that will be conducted is with regards to the amount
of training data used. For this we will explore the options of only using a subset of the 80 collected
instances for the synthetic supply chain. The sizes for the subsets are: 5, 10, 20, 40, 60, 80.

A different experiment is related to the robustness of the models to changes in the supply chain.
This is partially covered by the use of the synthetic instances, however, they only cover a small portion
of the possible changes. Due to the relation between supply chain A and B we can create a model
trained on the data of the older supply chain A and evaluate it on the newer supply chain B. This gives
an idea of whether the model stays robust despite some larger changes in the supply chain.
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Dataset | Training Instances | Test Instances
Synthetic | 80 500

A 80 500

B 50 25

C 10 26

D 30 200

Table 4.5: Setup for the performance evaluations

A similar experiment is done by adjusting the range for the factors used in the creation of synthetic
instances. This is done by training a model using data gathered from instances with the current fac-
tors, but we evaluate the model on instances created with a smaller or larger range for these factors.
The current range for the daily demand is [0.85, 1.15] and the range for the production rate is [0.95,
1.05]. For the experiment with smaller changes we will use the ranges [0.925, 1.075] and [0.975, 1.025]
respectively. For the experiment with larger changes we will use the ranges [0.7, 1.3] and [0.9, 1.1]
respectively.

The last experiment is on using the models trained on one supply chain to predict the PL sequences
for an entirely different supply chain, not like the experiment with supply chain B where the trained model
is still on a previous iteration of the supply chain. We will train a model on the synthetic supply chain
and evaluate it on supply chain A, and vice versa.

4.4. Discussion

In this section we will discuss the results from each experiment, the results are visualized in Appendix A
and a summary of the results can be found in Table 4.6.

Model | Dataset Score - Function Calls | Score - Lost Sales
Synthetic 0.9663 0.9950
A 0.7649 0.8802
LTR B 81.5193 0.8292
C - -
D 1.0000 1.0000
Synthetic 1.0876 0.9986
A 1.0010 1.0578
PW B 0.2286 0.8716
C 0.9167 0.9189
D 1.0000 1.0000

Table 4.6: Results for each model and supply chain. The scores are the median in terms of function calls and lost sales.

4.4.1. Performance

Synthetic Supply Chain, see subsection A.1.1

The synthetic instance is one with reasonable room for improvement, the sequences collected in the
training data managed to capture this and the trained model should thus be able to reproduce that
behavior. From the results we can see that the LTR model is worse in performance than the baseline
heuristic, whereas the pairwise model shows a slight improvement on average.

The decrease of performance of the LTR model can likely be attributed to the limitation mentioned
in subsection 3.3.3. Only using 5 values for the relevance score is a severe limitation for the model.
The idea behind a different relevance score for each PL is to properly distinguish the order between
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each PL in the sequence used as training data. The current implementation only allows for a less fine-
grained order to be used, while it has been mentioned that a single swap between two successive PLs
could make or break the entire PL sequence for HP.

The performance of the pairwise model on the other hand shows some promise for the approach.
While a large part of the instances hover around a score of 1, it has a second peak around 1.4.

Supply Chain A, see subsection A.1.2

Supply chain A is one where the execution time of HP was relatively fast. However, this was very little
room for improvement found using the local search approach. The results from the LTR model show
two large spikes, in some instances the results are similar to the current heuristic, while in other cases
the results are much worse. This model in its current state was unable to learn a better heuristic.

The pairwise model on the other hand shows that for some instances it was able to find a much
better PL sequence. When zoomed in on the instances where the score was below 1.2, we can see
that for the majority of the instances there wasn’t much improvement found.

It is important to note, however, that the quality of the results has been affected as well. In terms
of lost sales we can see that there is an improvement in some of the instances. In terms of below
target inventories and changeover we can see that there is a slight decrease in quality. In both cases
the decrease isn’t too much and can likely be explained. A better PL sequence often results in more
opportunities for production/transportation being found, this is because not finding an opportunity and
having to do backtracking in the branch and bound part of the algorithm is what takes the most time
in HP. With more supply being planned we also have to use more materials, which can then go below
target. HP by default is configured to optimize for lost sales, which means that it does not care that
inventories go below target and will not try to fix that issue. This can explain the small decrease in
quality of the resulting planning from the perspective of below target inventories. Changeover follows
a simpler reasoning, where more production opportunities can lead to more time being required to
change from producing one product to another.

Supply Chain B, see subsection A.1.3

Supply chain B shares the same source as supply chain A, the two supply chains share a majority of
their PLs. This supply chain showed slightly more room for improvement compared to supply chain
A. However, this is not reflected in the results of this experiment. The LTR model is able to find some
instances where its new PL sequence contributes to a significant improvement, while the majority of
the instances are slightly worse than the current heuristic. However, the quality of the plannings are
much worse, especially the amount of lost sales.

The pairwise model has a significantly worse performance in this experiment, where not even a
single instance had a better PL sequence than the current heuristic. This behaviour was not expected
from the pairwise model as this model had a decent performance on supply chain A.

The most likely explanation for the poor performance of the models on this supply chain is related
to the training data collected. The range of the local search process was reduced to deal with the
increased execution time of HP for this supply chain. This leads to a lower quality for the training data.
More experiments need to be run with this supply chain to identify the issue. A simple start would be
to run the local search process for a longer duration for the same experiment, despite the increase in
the time required. A similar experiment can be run with supply chain A, but decreasing the range of
the local search there. This experiment can be used to get an idea whether the issue stems from the
quality of the training data or not.

Supply Chain C, see subsection A.1.4

For this experiment only the pairwise model was evaluated as the performance of the LTR model was
too low. Evaluating the LTR model on a single instance could require several hours. The performance
of the pairwise model is similar to the performance of the LTR model for supply chain B. The new
PL sequences have a better performance but are not ideal to the decrease in quality of the resulting
planning.
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Supply Chain D, see subsection A.1.5
Both the LTR model and the pairwise model had similar results for this supply chain. The results are
similar to what was found when initially investigating the room for improvement for this supply chain.
The reason for this is likely due to the small size of each group of related PLs, which allows the LTR
model to avoid its limitation of only separating the PLs into 5 classes.

In some instances there is a significant decrease in the quality in terms of lost sales. Change over
is not included in the evaluation as this supply chain does not use this metric.

4.4.2. Robustness

Later Supply Chain, see subsection A.2.2

The experiment with a model trained on supply chain A evaluated on supply chain B shows promising
results for the pairwise model. It shows a similar result as that of supply chain A, as well as the results
found when investigating the room for improvement of supply chain B. Furthermore, all metrics for the
quality show little to no significant decrease. The metric for lost sales shows an increase in quality on
average, but it does have a tail where instances show a decline.

This evaluation outperformed the evaluation of the model trained with data from supply chain B, as
collecting data there was much more difficult. This leads to the idea for the future of investigating the
use of simpler versions of a supply chain to collect training data that can be used on the more complex
supply chains.

Different Sizes for Training Data, see subsection A.2.1
For this experiment we have evaluated both the synthetic supply chain and supply chain A with varying
sizes for the training data used. The resulting models were evaluated on 100 instances.

For the synthetic supply chain we can see that the LTR model hits its optimal results around 40
instances used for training, after which it starts to show a decline at the end. A similar behaviour can
be found for the pairwise model albeit to a lesser extent. For the pairwise model the optimal amount
is around 20, after which there is a small decrease in the score. This leads to the conclusion that the
results from these models might not suffer from insufficient data and that the quality.

For supply chain A, the LTR model shows a roughly stable score for the different training sizes
chosen. The pairwise model, on the other hand has its optimal score when only 5 instances are used,
after which there is a steep decline at 10 instances and a recovery at 20 instances. This might be an
indication that the quality of the instances used for the experiment with 10 instances had some issues,
which was recovered by including another 10 instances of higher quality.

In conclusion, the quality of the training data might be more important than the amount of training
data. This conclusion is in line with the results found in subsection 4.4.1, where the quality of the
training data was sacrificed for quantity.

Different Supply Chain, see subsection A.2.4

This experiment is split into two parts, one where a model trained on data from the synthetic supply
chain is used to evaluate new instances from supply chain A (subsection A.2.4), and the reverse of this
(Figure A.2.4).

For the experiment of applying the model trained with data from supply chain A, the results are
similar to that of the experiment using data from the synthetic supply chain but a little bit lower.

For the reverse of applying the model trained with data from the synthetic supply chain, the score
with regards to the performance of the PL sequence has increased compared to the experiment where
training data from supply chain A was used. However, the amount of lost sales has increased as well.
This decrease in quality means that the model would not be usable. This is likely due to the model
learning some patterns with which it can reduce the execution time, while keeping the lost sales stable
for the synthetic supply chain. However, the stability might be because the synthetic supply chain is
made such that there is already a large amount of lost sales, due to the tight capacity of the resources.
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On the other hand, supply chain A has a more realistic situation where the amount of lost sales is
largely limited. This means that in the data from the synthetic supply chain the changes were unlikely
to make it much worse than it already was.

This shows that it might be possible to transfer training data from one supply chain to another or
even combine training data. There might be general patterns that are shared along supply chains that
the models can learn. However, as was seen the metrics for the quality in the current state are not
guaranteed and more work should put into this aspect.

Synthetic Instances, see subsection A.2.3

The experiments with the changes in the synthetic instances are split into two, one where the changes
are made larger than in the trained model and the other where the changes are smaller. The results of
the experiment with the larger changes can be found in subsection A.2.3 and the experiment with the
smaller changes can be found in Figure A.2.3. The results of these experiments can be compared to
that of the synthetic supply chain in subsection A.1.1.

We can see that the distribution for the scores stays relatively equal in both cases, especially for the
LTR model. The main difference lies in a shift in the score, where the experiment with the larger changes
has an obvious lower score than the one with smaller changes. This is in line with the expectations,
as the experiment with smaller changes is more in line with the data that is collected. Furthermore, if
the changes are sufficiently small, the resulting planning problem will not change a lot. For example,
if previously some missing demand would need to be resolved by 2 batches of production, a small
change in the demand can still be resolved with these 2 batches.

It is advised to pick the range for the changes in the synthetic instances to be larger than practically
usable in the supply chain at hand. This increases the robustness of the trained model by decreasing
the chance of overfitting on the current instance. This can be seen as an additional hyperparameter
that needs to be tuned for these models.

4.4.3. Feature Importance

The ML models used require not only good sequences to learn from, but also properties with which the
models can distinguish the different PLs in this sequence. This information needs to be used to learn
which properties are relevant when trying to reproduce the PL sequences. These features are col-
lected based on the assumptions that they contain patterns for PLs that are difficult to plan. However,
the assumptions might not be correct and the feature might have no (significant) contribution to the
prediction of a new PL sequence. Furthermore, for the pairwise model the features are an aggregation
of the values for two different PLs. The usefulness of this aggregated feature might differ from the initial
feature in the LTR model. By looking at the importance feature we can investigate which features had
the most impact on the results of the models.

An approach that can be used for computing the feature importance is done by using Permutation
Feature Importance (PFI). This approach permutes the values for a feature before training a new model,
which is then used to compute a score for a chosen metric. The difference in the scores between the
initial model and the model with the permuted data can then be used to give an approximation of how
important each feature is. This process is implemented in the library ML . NET, the resulting scores for
each feature for the LTR and pairwise model can be found in Table 4.7.

Both models contain features that when permuted did not change the score of the models, this im-
plies that these features were simply not used in the model at all. One possible explanation for this
behaviour is when a feature is not useful, essentially the feature has no predictive power at all not
even when combined with other features. Another explanation for this could be that the information in
this feature is already stored in another feature. This is the likely explanation for a feature such as the
average demand. The features for the average demand, standard deviation of demand, and coefficient
of variation of demand are all related to each other. With two out of three values you can compute the
remaining one.
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This approach, however, only gives an idea of what the model has used during learning. It is difficult
to interpret the change in the NDCG and F1-Score in terms of change to the results on the validation
in HP. A different approach for looking at the feature importance is by simply leaving a feature out
and training a model with it, this model can then be used in HP to compute a score for each synthetic
instance. The importance of a feature can then be estimated as the decrease in score of the model
without this feature compared to the baseline model with all features included. The results can be found
in the last two columns of Table 4.7.

The changes to the score with the pairwise model follows the same trends as the change in the
F1-score. Some features are not used at all and can thus be safely removed from the model. For the
other features we can get a rough indication of which features are the most important by sorting them
based on the change to the scores. The results from the LTR model show a picture where most features
are actually not used or in fact make the results worse. This is likely because the model makes fewer
adjustments when some features are not used. This in turn leads to the results of the model staying
closer to the baseline of the current PL sequence used in HP.

Feature

Mean Change NDCG

Mean Change F1-Score

Mean Change LTR

Mean Change PW

Network Level

-0,0019 +1.83E-04

-0.0044 +1.65E-04

00

-0.0403 +0.1678

Directly Related PLs

-0.0749 +1.35E-04

-0.0159 +2.48E-04

0.0001 +0.0029

-0.0317 +0.1704

Relative Demand

-0.0192 +1.12E-04

-0.0064 +2.46E-04

0.0963 +0.1453

-0.0383 +0.1533

Starting Inventory

2.47E-05 +8.21E-0.5

-0.0145 +1.29E-04

0.1434 +0.2425

-0.0357 +0.1832

Demand 00 -0.0075 +2.49E-04 00 00
Resources 00 -0.0001 +1.27E-04 00 -0.0175 +0.1372
Minimum Production Rate 00 -0.0171 +5.90E-04 0.1025 +0.1373 -0.0461 +0.1581
Average Demand 00 00 00 00
Standard Deviation Demand 00 -0.0202 +8.99E-05 0.0004 +0.0021 -0.0397 +0.1099

Coefficient of Variation Demand

-0.0549 +0.0012

-0.0072 +1.43E-04

0.1897 +0.2686

-0.0128 +0.0807

Scaled Demand

-0.0064 +1.80E-04

-0.0413 +3.45E-04

0.0684 +0.1365

0.0093 +0.1595

SumbDots -4.59E-0.6 +2.63E-0.6 -0.0696 +7.78E-04 -0.0080 +0.0247 -0.0270 +0.1235
Count of Tight Days -0.1138 +3.68E-04 -0.0188 +7.73E-04 00 -0.0307 +0.1621
Share of Tight Days -0.0054 +4.15E-04 -0.0052 +1.77E-04 -0.0080 +0.0677 -0.0308 +0.1557
Related Resources 3.81E-05 +2.79E-05 00 00 00
Directly Related Resources -3.40E-04 +7.09E-05 00 00 00

Table 4.7: Feature importance for the LTR model and the pairwise model. NDCG is the metric used while training the LTR model
and F1-Score is used for the pairwise model. The last two columns contain the change to the actual score when evaluated in
HP on 100 instances.



Conclusion

In this thesis we have looked into learning a new heuristic for the supply planning algorithm Heuristic
Planner. The learned heuristic should order the PLs that need to be planned such that the execution
time of HP is decreased, while keeping the quality of the planning stable. To do this we have designed
two ML models that use previous runs of the algorithm to learn which PL sequence results in a faster
execution time: the LTR model that learns how to rank the PL sequences in its entirety and the pairwise
model that learns the same but taking smaller steps by only learning the relations between pairs of PLs.

To train these models a process for collecting data from previous runs is created, as well as an initial
setup for creating different instances for a supply chain. The trained models are evaluated using sev-
eral experiments which shows that the LTR model in its current state is not useful but shows promise if
its limitation is fixed, while the pairwise can be a feasible approach to learning a new heuristic for HP.
The pairwise model is able to transfer the improvement found in the training data to improvement in
new instances of the same supply chain. All while keeping the quality of the resulting mostly stable.

However, some issues were found when the quality of the training data is less ideal. In which case
both the performance of the algorithm as well as the quality of the resulting planning suffers significantly.
In the literature the works are often evaluated on well-studied problems that have existing datasets to
work with, or some oracle is included that has access to the optimal solution for the given input. Eval-
uations of the quality of the training data is often not included, while this is an important factor for the
performance of the resulting model or algorithm.

This work uses imitation learning, which in hindsight might not have been the most suitable choice.
The performance of imitation learning is limited by the performance of the expert. Similar to the work of
Namaki et al [23], we create an oracle to fill in the missing expert for our training data. This means that
we are limited to the best solutions found in the local search process. Compared to the work of Namaki
et al., our oracle has a lower performance in terms of improvements found on the baseline. Their oracle
is able to find speedups ranging from 4.5 to 62.5 times for the different datasets they tested. Whereas
the speedup of our oracle is generally below 1.2. Using imitation learning in such a situation leads to a
much lower upperbound for the possible improvement that can be learned.

Furthermore, for imitation learning only a few sequences of each instance are useful for training.
The other sequences evaluated during the process are discarded afterwards. Other approaches that
could make use of these discarded sequences can turn out to be more efficient. A possible direction
could be a surrogate model that is trained to compute the cost of a PL sequence in terms of execution
time. In this case all sequences involved during the local search process can be of interest for training
the model.

Another change to the approach lies with the scope of the work. In this work the changes were
limited to only changing the order of the PL sequence in the algorithm. This decision made the focus
clear during the early stages of this thesis and for the synthetic supply chain it was noticed that the
changes in this aspect of the algorithm could lead to significant improvement in the execution time.
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However, the large amount of instances where no significant improvement was found was ignored.
Attempting to speedup HP by making changes in a different component of the algorithm could prove to
be more successful. An example of such a component would be planning of a single PL.

5.1. Future Work

In this section we discuss some of the future directions that can be investigated to continue this work,
starting with an issue with LTR model. The LTR model uses the learning to rank approach, where each
PL is given a relevance score used when sorting the entire sequence of PLs. However, this model is
currently limited by the library used, where the relevance score can only range between 0 and 4. This
results in the model only being able to categorize each PL in one of the 5 classes of relevance. When
labelling training data with more than 5 PLs in the PL sequence, some PLs will obtain the same label.
An implementation with a different library should be considered to escape from this limitation, after
which similar experiments can be run with the new model. An adaptation for the process could also be
considered, where the LTR model is first used to separate the related PLs into 5 smaller groups, after
which another model could be used to again rank the PLs within these smaller groups. This approach,
however, still suffers from the problem when the number of PLs is larger, so a different library is sug-
gested, such as this Python implementation of LambdaMart .

Another improvement to the existing process is related to the creation of the synthetic instances.
In the current work this process only contains some basic changes and there is no guarantee that the
instances within the training data or the validation data are sufficiently different. From the experiment
with the different sizes for the training data, it was seen that the model performance of the models
showed a decrease or stagnation with more instances used for the training data. This means that
the additional instances were of no use for training, which could be due to this lack of variation in the
new instances. The inclusion of more variables that are altered within these synthetic instances can
increase the robustness of the model when used in practice. For the training data this variation could
lead to learning more general patterns, whereas in the validation data the variation can contribute to
more accurate scores for the model.

A large bottleneck of the whole process lies with the process of collecting of training data, where
the local search process helps reduce the time required. However, the local search process has high
likeliness to get stuck in a local optimum. Larger changes to the PL sequences benefit the search
process in finding more varied results, while smaller changes can help in exploring the neighborhood.
Initially, the local search process was created as a tool to help understand which small adjustments
to a PL sequence contribute to a faster execution time. This lead to the local search process being
designed with small changes at each iteration as the focus. However, this idea does not work well
with the larger supply chains with many priority groups. An initial exploration into simply removing all
these restrictions was done, by comparing the search process of the current local search with one
where the order within a priority group is randomized for the new PL sequence, see Figure 5.1. The
performance of the local search with the randomized orders is relatively similar to the current process
for the synthetic supply chain as it is quite small. The only noticeable difference would be the higher and
more frequent spikes, where the execution time would soar drastically, which the current local search
process generally manages to avoid. Applying this to the larger instances resulted in the evaluation
of PL sequences that required upwards of a few hours to resolve when such a spike is found. An
approach needs to be found to figure out how large the changes within the local search process should
be for a particular instance.

An additional change to the local search process could be to integrate the model training with the
local search process. Once a small pool of training data has been collected, we could train a model on
this data and use the trained model to predict a PL sequence for a new instance. This PL sequence
would ideally be in a better neighbourhood than the initial PL sequence for this instance. This would
speedup the local search process for subsequent instances.

Lastly, the model currently has no guarantee for the quality of the resulting planning. The only
measure taken to nudge the model in the right direction is during the selection of training data. Only

"https://github.com/lezzago/LambdaMart
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Figure 5.1: Results of the current Local Search (red) and the local search with randomizing the order within a priority group (blue)

PL sequences that do not result in significantly lower quality are selected. A possible future direction
would be to treat the problem as multi-objective and selecting the PL sequences that optimize over
the different objectives. The scoring function used in the evaluation to be multi-objective, rather than a
single scoring function.
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Figure A.84: Results for a LTR model trained on supply chain A
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Figure A.81: The change in number lost sales, comparing
the current heuristic with the LTR model
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Figure A.83: The change in amount of change over, com-
paring the current heuristic with the LTR model

and evaluated on instances from the synthetic supply chain.
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Figure A.85: The score for all 200 evaluated instance with  Figure A.86: The change in number lost sales, comparing
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Figure A.89: Results for a pairwise model trained on supply chain A and evaluated on instances from the synthetic supply chain.
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Figure A.90: The score for all 200 evaluated instance with
the LTR model
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Figure A.92: The change in number below target invento-
ries, comparing the current heuristic with the LTR model
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Figure A.91: The change in number lost sales, comparing
the current heuristic with the LTR model
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Figure A.93: The change in amount of change over, com-
paring the current heuristic with the LTR model

Figure A.94: Results for a LTR model trained on the synthetic supply chain and evaluated on instances from supply chain A.
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Figure A.97: The change in number lost sales, comparing Figure A.98: The change in number below target inven-
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Figure A.99: The change in amount of change over, com-
paring the current heuristic with the pairwise model

Figure A.100: Results for a pairwise model trained on the synthetic supply chain and evaluated on instances from supply chain
A
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