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Quantum enhanced non-interferometric
quantitative phase imaging
Giuseppe Ortolano 1,2✉, Alberto Paniate 1,2, Pauline Boucher1, Carmine Napoli 1, Sarika Soman3, Silvania F. Pereira3,
Ivano Ruo-Berchera 1 and Marco Genovese 1

Abstract
Quantum entanglement and squeezing have significantly improved phase estimation and imaging in interferometric
settings beyond the classical limits. However, for a wide class of non-interferometric phase imaging/retrieval methods
vastly used in the classical domain, e.g., ptychography and diffractive imaging, a demonstration of quantum advantage is
still missing. Here, we fill this gap by exploiting entanglement to enhance imaging of a pure phase object in a non-
interferometric setting, only measuring the phase effect on the free-propagating field. This method, based on the so-
called “transport of intensity equation", is quantitative since it provides the absolute value of the phase without prior
knowledge of the object and operates in wide-field mode, so it does not need time-consuming raster scanning.
Moreover, it does not require spatial and temporal coherence of the incident light. Besides a general improvement of the
image quality at a fixed number of photons irradiated through the object, resulting in better discrimination of small
details, we demonstrate a clear reduction of the uncertainty in the quantitative phase estimation. Although we provide
an experimental demonstration of a specific scheme in the visible spectrum, this research also paves the way for
applications at different wavelengths, e.g., X-ray imaging, where reducing the photon dose is of utmost importance.

Introduction
Quantum imaging1–3 and sensing4–6 have provided

genuine and valuable advantages in many measurement
applications ranging from fundamental physics7,8 to
biology9–11 from microscopy12–15 to optical sensors16,17.
In particular, given the importance of optical phase

measurement, appearing in all the science fields, a con-
siderable effort has been made to exploit quantum
entanglement or squeezing for this task. Quantum phase
estimation through first-order interference involving the
mixing of two optical modes in a linear18,19 or non-
linear20,21 interaction is well understood. The ultimate
uncertainty bound with quantum optical states is known
to scale with the number of probing particles N as N−1,
the so-called `Heisenberg scaling'. In contrast, for the

classical probing state, it is limited to N�1
2, referred to as

the standard quantum limit (SQL) or shot-noise limit.
Although the quantum advantage would, in principle, be
disruptive for N≫ 1 in a realistic scenario, the gain over
the SQL is rather in the form of a constant depending on
the optical losses19. Proofs of principle of quantum-
enhanced linear interferometry with the so-called entan-
gled NOON states have been achieved, for example, in
phase contrast22 and polarization scanning microscopy23,
usually limited to the case of N= 2. However, the gen-
eration and preservation of NOON states involving a
higher number of particles are extremely demanding, so
their usability in a real-world application is questionable.
More practical is the use of squeezed states7,24–27. The so-
called SU(1,1) non-linear interferometer, involving para-
metric amplifiers instead of beam splitters for mixing the
light modes, is promising for some applications, especially
because the detection can be done at a wavelength dif-
ferent from the probing one28 and the quantum advantage
is robust to the detection noise and losses29. However,
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apart from some proof of principle study30, SU(1,1)
interferometric schemes do not provide spatial resolution,
that is, they do not operate in full-field mode. Conversely,
there are other kinds of non-linear interferometric
schemes that, if operated in very low gain, namely in the
two-photon regime, can produce wide-field images31,32

but do not retain sub-shot-noise features.
Thus, in general, apart from some remarkable excep-

tions33, quantum interferometry fails to provide quantum
enhancement in multi-parameter wide-field mode,
requiring raster scanning for extended samples.
We mention that a fully classical interferometric

scheme, exploiting homodyne detection have been
recently used to retrieve wide-field phase information
with low illumination34.
Other phase-imaging methods born in the quantum

domain exploit second-order intensity correlation mea-
surement (or two-photon coincidence) among signal and
idler beams of SPDC to retrieve the phase information. In
contrast, the first-order intensity measurement of either
the signal or the idler arm does not show interference35.
These techniques include ghost imaging and diffrac-
tion36–40 quantum holography41–43, quantum Fourier
ptychography44 and phase reconfigurable contrast
microscopy45. In general, the accumulation of a very large
number of frames is required to estimate the second-
order momenta; thus, they are not suitable for real-time
applications. For the same reason, the signal-to-noise
ratio (SNR) is smaller than direct shot-noise-limited first-
order measurement. However, some advantages can be
found in some cases at few photon illumination levels, for
example, the rejection of independent external noise46–48,
robustness through turbulence and scattering49,50.

Here, we present a quantitative non-interferometric
quantum-enhanced phase-imaging (NIQPI) scheme
exploiting quantum correlations that do not belong to any
of the techniques mentioned above since it does not
involve neither interference nor measurements of second-
order momenta of the joint photon number distribution.
In fact, only first-order momenta (intensities) in both
branches are measured, so the full-field phase retrieval is
obtained in real-time by quasi-single-shot measurement,
as described in the following. We will demonstrate, the-
oretically and experimentally that, thanks to the quantum
correlations, the method can provide a clear advantage
compared to the corresponding classical direct imaging at
a fixed number of photons interacting with the sample.
The NIQPI protocol exploits the scheme depicted in

Fig. 1. We consider two quantum correlated beams pro-
duced by the spontaneous down-conversion process
(SPDC), usually dubbed as signal beam (s) and idler (i)
beam, with intensity patterns that are perfectly identical in
the far-field, point-by-point. Even the shot-noise fluctua-
tion is, in principle, perfectly reproduced in the two
beams, which is impossible in the classical domain. The
far field of SPDC is imaged at the sensors of a highly
efficient and low-noise CCD camera. Only the signal
beam probes the object, while the idler one is used as the
reference for the noise. When the object is placed close to
the far field but not exactly there, it produces an intensity
perturbation on the signal photons propagation that is
registered at the CCD camera. In particular, by measuring
the signal intensity pattern I x; ± dzð Þ at the detection
plane for two different `defocused' object positions along
the z-axis, namely, +dz and −dz, it is possible to recon-
struct the phase profile ϕ x; z ¼ 0ð Þ, by solving the

Far field

SPDC

PUMP

CCD

FF

–dz

IF L1 L2
x2

x1 z

(s)

(i )

dz

Fig. 1 Scheme of the NIQPR. Two correlated beams labeled signal (s) and idler (i) are generated by the spontaneous parametric down conversion
(SPDC) pumped by a CW laser @405 nm and propagate through an imaging system composed of two lenses (L1 is the far field lens with focal length
F= 1 cm and L2 is the imaging lens with focal length of 3 cm) and a test object. An interference filter (IF) is used to select a bandwidth of 40 nm
around the degenerate wavelength (@810 nm) and to block the pump. L2 images the far field plane on the camera chip with a magnification factor
of about 8. The object is placed near to the far field of the source, and only the probe beam interacts with it. Phase information can be retrieved53,66

from intensity measurements taken at some out of focus (±dz) planes
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so-called transport of intensity equation (TIE)51:

�k
∂

∂z
I x; zð Þ ¼ ∇x � I x; 0ð Þ∇ϕ x; 0ð Þ½ � ð1Þ

where the derivative is approximated by the finite
difference of two measurements out of focus, ∂

∂z I x; zð Þ �
I x; dzð Þ � I x;�dzð Þ½ �= 2dzð Þ and I x; z ¼ 0ð Þ is the far field
intensity of the source. In this sense, the technique is
`quasi-single-shot' since only two intensity measurements
performed at each plane are needed.

TIE is experimentally easy and computationally efficient
as compared to the conventional phase retrieval techniques
and, under suitable hypotheses described in the M&M, the
method leads to a unique and quantitative wide-field image
of the phase profile51–53. However, the reconstruction
obtained in the signal arm can be strongly affected by the
detection noise and by the shot noise if low illumination is
used (see M&M for a detailed discussion). On the one
hand, a faithful reconstruction through Eq. (1) requires a
small defocus distance |dz| in order to well approximate
the derivative on its right-hand side. But, on the other
hand, if |dz| is too small, the effect of the phase gradient on
the measured intensity becomes negligible and can be
covered entirely by the shot noise. Here, we show that the
techniques of TIE can be combined with the well-
established sub-shot-noise imaging protocol14,54,55. In
fact, we show that the noise pattern acquired on the idler
beam can be used to reduce the effect of the shot noise in
the signal beam, enhancing the overall phase image
reconstruction and reducing the uncertainty on the quan-
titative spatially resolved phase retrieval56. Note that ref. 57

exploits TIE in a two-photon interferometric approach but,
in that case, both photons travel through the sample, and
the phase signal is improved thanks to the double accu-
mulation of the phase of the two interacting photons.
NIQPI can work with partially coherent light and has

some advantages compared to interferometric schemes: it
can be directly applied to wide-field transmission micro-
scopy settings and it is intrinsically more stable than an
interferometric setup53. Moreover, since NIQPI is based
on free propagation effect, it can be realized without using
lenses and optical components, thus being particularly
suitable in extreme UV or X-Ray imaging, where optical
components are not efficient but where SPDC sources are
available and quantum-enhanced detection has been
already demonstrated58,59.

Results
In our experiment, the number of photons per pixel per

frame is about n ≈ 103, so that for the purpose of this work
we can substitute the continuous quantity I(x) appearing in
Eq. (1) with the number of photons detected by the pixel at
the coordinate x. Actually, before the TIE algorithm, we

apply an averaging filter of size d= 4 to the intensity image,
that consists in replacing the count in each pixel by the
average count of a neighborhood of size 4 × 4 pix2 around
it, so that the final image conserves the same number of
pixels. However, the averaging filter does not have any
influence on the classical reconstructions, neither positive
nor negative, while it improves the quantum reconstruc-
tion (see discussion inM&M and related Fig. 9). From now
on we will refer to I(x) with that meaning, namely after the
application of such averaging filter.
It is essential to point out that the SPDC source operates

in the regime of very low photon number per spatio-
temporal mode. In this limit, the photon statistics follows a
Poisson distribution (see M&M Sec. for details). So, aside
from the negligible contribution of electronic readout noise,
the measurement on the single beam is shot-noise limited.
We image pure phase objects reported in Fig. 2 with

66 ± 3 nm thickness estimated by profilometer (Dek-
takXT, Bruker). It corresponds to a phase shift of
0.230 ± 0.012 rad @ 810 nm, the central degeneracy fre-
quency of the SPDC photons. The samples have been
realized by etching structures on a UV-fused Silica glass
window using buffered oxide etch.
Figure 3 shows the experimental reconstructions of the

“π”-shaped phase sample of Fig. 2 as a function of the
defocussing distance dz. Each pixel of the phase image
corresponds to a transverse resolution of about 5 μm in the
object plane. As a reference, the first row of Fig. 3 shows the
phase retrieved averaging 100 shots, so the shot-noise effect
is estimated to be negligible compared to the other sources
of disturbance. However, even in this case, the recon-
struction at small dz is not perfect because of the well-
known sampling error due to the discretization of the
image, while at large defocussing the finite approximation
of the derivative in z fails, essentially producing blurred
images. These two opposite trends determine a defocussing
distance for which the reconstruction is optimal. The sec-
ond row of Fig. 3 shows the reconstructions obtained by
single-frame intensities Is xs; ± dzð Þ measured at the CCD

66 nm66 nm

310 µm356 µm

343 µm

310 µm

Fig. 2 Sample. Pure phase objects used in the experiment are
sketched
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camera in the signal arm. In this case, the shot-noise
dominates and yields a drop in the reconstruction quality
for all values of dz. How the noise on the intensity propa-
gates to the phase reconstruction through the TIE is dis-
cussed in M&M. In particular, the region of smaller dz is
the most affected since the intensity variation produced by
the phase gradient is still small and is almost completely
hidden in the shot noise.
In order to take advantage of the quantum correlations,

here we propose to replace into the Eq. (1) the single
beam intensity with the following one55,60,61:

Is�i x; zð Þ ¼ Is xs; zð Þ � koptδIi xi; 0ð Þ ð2Þ
where δX � Xh i � X represents the quantum fluctuation
of the operator X, and 〈⋅〉 is the quantum expectation value.
In fact, the second term on the right-hand side of Eq. (2) is
meant to compensate for the quantum fluctuation of the
signal pattern exploiting the local correlation between
probe and reference beams. The factor kopt is a parameter
chosen to minimize the residual fluctuation δ2Is�i

� �
and

can be evaluated experimentally by a calibration of the
system since it is related to the detection efficiency. A
phenomenological model describing noise reduction is
discussed in M&M. It turns out that the fluctuation of the
quantity in Eq. (2) is reduced with respect to the shot noise
according to the following expression:

δ2Is�i
� � ¼ 1� 1� αð Þ2η2� �

I 0ð Þh i ð3Þ
where 0 ≤ η ≤ 1 is the heralding efficiency, namely the
probability of detecting an idler photon in the pixel in xi
conditioned to the detection of the correlated signal
photon in the pixel in xs (see M&M section). The

parameter α is the average fraction of photons that deviate
from the original path due to the phase object and
depends on the average phase gradient. It can be
experimentally evaluated as the spatial average of the
quantity α xð Þ � I xs; 0ð Þ � I xs; dzð Þj jh i= I xs; 0ð Þh i. Equa-
tion (3) states that the intensity fluctuation is reduced
below the shot noise by a factor that depends on the
efficiency in detecting quantum correlation and that it is
effective if the object is weakly affecting the intensity
distribution, namely when α≪ 1. In our experiment,
following the absolute calibration method reported in14,62,
we estimate η= 0.57 for the particular case of averaging
filter size d= 4. The value of α for the faint object
considered is very small, for example we estimated
α= 7 · 10−3 for dz= 0.1 mm.
The third row of Fig. 3 reports the reconstructions when

the shot noise has been reduced using quantum correla-
tions between probe and reference, according to Eq. (3). A
general improvement of the reconstruction can be
appreciated. As expected, the noise reduction is more
evident at smaller dz leading to an improvement in the
reconstruction of higher spatial frequency.
A quantitative analysis of the quality of the recon-

structions and of the quantum advantage can be per-
formed by evaluating the Pearson correlation coefficient
between the reference phase image and the reconstructed
one. The Pearson coefficient is defined as,

C¼
P

x ϕr xð Þ � ϕr

� �
ϕ xð Þ � ϕ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ϕr½ �Var ϕ½ �p ð4Þ

where ϕ and Var[ϕ] denote the spatial mean and variance
of the phase image ϕ, and provides a simple and

0.025

One
frame

Quantum

0.05 0.075

dz [mm]

0.1 0.25 0.5

One
frame

Classical

100
frames
Average

Fig. 3 Experimental reconstruction of the “π” sample as a function of the defocusing distance. First row presents the phase reconstruction
when 100 intensity patterns are used. Second and third rows show the single-frame reconstructions for the classical and the quantum case,
respectively. The classical reference is realized by the measurement performed using only the signal beam of the SPDC source. The size of each
image is 80 × 80 pix2
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commonly used figure of merit to quantify the similarity
between the two images.
Figure 4, shows the Pearson coefficient as a function of

the defocusing. Each curve has a correspondence with
each image strip in Fig. 3. The red curve corresponds to
the reconstruction using 100 frames, where shot noise is

negligible (corresponding to the first strip in Fig. 3). The
lower curves present the performance of single-frame
experimental reconstructions, both quantum and classi-
cal, obtained from a simulation. Experimental points are
well in agreement with these simulations. As expected,
according to this figure of merit, an optimal reconstruc-
tion is reached for the intermediate value of defocusing.
The quantum advantage is confirmed in terms of corre-
lation with the reference image.
Besides the correct reconstruction of the complex phase

profile assessed by the correlation coefficient, in many
cases, it is of utmost importance to achieve a quantitative
estimation of the phase. Figure 5a reports the phase value
estimated as a function of dz, where, for the analysis, we
have selected the region indicated in the red rectangle in
the insets. The results indicate that the phase step is
reconstructed without bias compared to the nominal
value (red horizontal line) up to dz= 100 μm for both the
classical and the quantum case. The experimental points
and their error bars agree with the confidence bandwidths
provided by the simulations. Note that, the uncertainty on
the estimated value is smaller for the quantum case. The
quantum advantage, reported in Fig. 5b, is relatively
constant in the range considered up to a 40%. From
Fig. 5a is evident that a larger defocusing dz leads to an
inconsistent phase estimation, indicating that the
approximation of the derivative in Eq. (1) is no longer
valid. This is consistent with the blurring of the images
observed in the last two columns of Fig. 3 for large dz.
We have also tested a different object, the pattern of

regular squares represented in Fig. 2. In Fig. 6a we report
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two examples of reconstructions, at dz= 50 μm and
dz= 100 μm, respectively. In Fig. 6b, the Pearson coeffi-
cient is reported alongside the simulations. The quantum
advantage is comparable to the one obtained for the “π”,
showing its robustness and independence from the par-
ticular spatial shape of the sample. Although the quanti-
tative analysis of the Pearson coefficient confirms a similar
quantum advantage as the one reported in Fig. 4, by
looking at the images, it appears that the quantum
advantage in the localization of dots could be even larger,
indicating the possibility of significant advantages for
specific tasks related to the recognition of finer spatial
details.
In summary, these results demonstrate, for the first

time, a significant advantage of quantum phase imaging,
that can be further extended in the future with various
potentially significant applications.

Discussions
Here, we have demonstrated a genuine quantum

enhancement in non-interferometric quantitative phase
imaging, showing that the spatially multimode quantum
correlations can be used to reduce the detrimental effect
of quantum noise in phase reconstruction. The present
NIQPI scheme exports the classical methods known as
the transport of intensity equation to the quantum
regime, which provides real-time wide-field phase ima-
ging and the quantitative local estimation of the phase.
The last aspect is fundamental for many applications,
providing reliable information on the object’s internal
parameters related to the phase.
We point out that, compared to the imaging of an

amplitude object14,54,55,61, the propagation of the shot

noise of the intensity measurement to the retrieved phase
in the NIQPI is not as trivial. On the one side, the noise
reduction allows reaching smaller defocusing distances
for a better approximation of the derivative in the TIE,
thus providing a more faithful reconstruction of the phase
details. On the other side, artifacts due to the noise appear
at low spatial frequencies (see discussion in M&M and
Fig. 3) and are known to affect mainly the reconstruction
of slow phase curvature, which produces weaker intensity
signals63. In this work, in order to obtain a quantitative
validation of the protocol, we studied binary phase objects
with sharp borders. However, it is expected that for an
object with smoother phase changes, e.g., biological
samples, the quantum advantage can be even more
significant.

Materials and methods
Phase retrieval by TIE
A non-interferometric method51 to retrieve the phase of

an object consists of probing the object with a light beam
and measuring the intensity I(x, z= 0) at the object plane
of coordinate x and its derivative along the propagation
axis z. The derivative is computed by a finite difference of
two measurements out-of-focus of a distance dz,
∂
∂z I x; zð Þ � ΔI x; dzð Þ= 2dzð Þ with ΔI x; dzð Þ ¼ I x; dzð Þ �
I x;�dzð Þ. Under paraxial approximation, the phase is
retrieved using the TIE reported in Eq. (1).
Using energy conservation considerations, this equation

has been proven valid even with partially coherent sour-
ces52. This feature makes the TIE approach perfectly
suited for being used with light from SPDC, where
transverse and longitudinal coherence lengths can be
much smaller than the object size and the whole
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illuminating beam. This is not a secondary aspect since it
is exactly due to the multimode nature of the emission
that correlation shows a local character and shot noise can
be removed pixel-by-pixel in the image. The solution of
the Eq. (1) is unique provided that the on-focus intensity
I(x, 0) and the intensity derivative along z are known and
the phase is continuous.
In our experiment the validity conditions for the TIE

mentioned above, i.e., the paraxial approximation and the
partial coherence, are satisfied.
Following the analysis in63, we assume that the intensity

is varying sufficiently slowly that the effects of phase
curvature dominate the intensity derivative, so that the
right side of Eq. (1) can be safely approximated as
I0∇2ϕ x; 0ð Þ. Then, we consider for a moment that the
only contribution to the finite difference ΔI x; δzð Þ is the
noise fluctuation on the intensity measurement, σ(x). In
this case, substituting the latter in Eq. (1), one has that the
phase artifacts in the reconstruction due to the noise are:

�k
σ xð Þffiffiffi
2

p
I0δz

¼ ∇2
xϕnoise xð Þ ð5Þ

The noise is assumed independent in the two planes
+δz and −δz, so it has been combined in quadrature. The
Eq. (5) can be solved by taking the Fourier transform on
both sides, leading to

k
eσ qð Þ

4π2
ffiffiffi
2

p
I0δz qj j2 ¼

eϕnoise qð Þ ð6Þ

where the tilde indicate the Fourier transform and q is the
spatial frequency. The damping factor |q|2 of the higher
frequencies at the denominator of Eq. (6) and the fact that
the quantum noise (shot noise) has a flat white spectrum
σSN qð Þ ¼ σSN , indicate that the effect of shot noise is to
generate artifacts especially at lower frequencies, which are
not intrinsically suppressed by the phase retrieval algorithm.
This noise at low-frequencies is evident in the single-frame
images reported in Fig. 3. Moreover, in the direct
propagation problem, higher frequencies of the phase
object generate a stronger effect on the intensity. Thus,
based on these remarks, the regions with rapid changes in
the phase (higher frequency) are better reconstructed than
the ones characterized by slow curvature.

Experimental details: source, sample, detection
Source
In the experiment, we use SPDC in the low gain regime in

which a photon of the pump beam (p) (CW laser
@405 nm), thanks to the interaction with a bulk beta-
barium borate non-linear crystal as long as 15mm, have a
small probability of converting in a couple of photons,
usually called signal (s) and idler (i), subject to conservation

of energy, ωp ¼ ωs þ ωi, and of momentum, kp ¼ ks þ ki.
Thus, under the plane wave pump approximation, signal
and idler photons are perfectly correlated in frequency and
direction qs ¼ �qi (assuming qp ¼ 0), although their
individual spectrum is broadband both in space and fre-
quency. In the far field, obtained at the focal plane of a thin
lens in a f − f configuration, a transverse mode q is mapped
in a single transverse position x according to the transfor-
mation 2cf =ωð Þq ! x, so that momentum correlation
translate in a position correlation, xs ¼ �xi (for degenerate
frequency ωs � ωi). Signal and idler photons generate two
symmetrical intensity noise patterns, and pairs of symmetric
pixels of a camera will detect the same number of photons
in the ideal lossless scenario in the same time window.
Thus, quantum fluctuation at the object plane in the signal
beam can be measured independently on the idler beam.
The coherence time of the SPDC sources is typically of
hundreds of fs and the spatial coherence in the far field is
proportional to the inverse of the pump transverse size. The
number of photons per spatial-temporal mode is very low,
~10−8 and in general, the time bandwidth of the detector is
orders of magnitude smaller than the inverse of the
coherence time. Although the single SPDC mode is ther-
mal, in the limit above, the detected multi-thermal photon
statistics are indistinguishable from a Poisson distribution64.
For a Gaussian distributed pump with angular full-

width-half-maximum (FWHM) of Δq the spatial cross-
correlation is also Gaussian with FWHM of Δx ¼
2

ffiffiffiffiffiffiffiffiffiffiffi
2log2

p
σ ¼ 2cf =ωp

� �
Δq: if a signal photon is detected in

the position xs the twin idler photon will be detected
according to that Gaussian probability centered in xi ¼
�xs. In the experiment we have estimated Δx ≈ 5 μm at
the far-field plane.

Test sample
The structures are etched on to a fused Silica glass

window (WG41010-A, Thorlabs) with an anti-reflection
coating on one side. The window is coated with positive
PMMA resist and the design is exposed using electron
beams. The exposed structures are developed using a
MIBK-IPA solution. After development, the window is
submerged in a buffered oxide etch for 30 seconds to etch
the structures into the window. The etch depth is deter-
mined by the submergence time. The unexposed resist is
then removed using acetone solution.
The sample is fabricated to have negligible absorption

difference between signal and idler beams. In fact, the two
beams pass through the same glass and the only difference
between the two beams path is the 66 nm extra glass that
introduces a negligible transmission difference (of the
order of 10−8(ref. 65). In Fig. 7, we report the intensity
measurement at three different distances. When the
sample is in the conjugate plane of the CCD camera,
dz= 0, it is not possible to recognize the presence of the
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object, while with dz= ±0.1 mm the structure becomes
visible due to the propagation effects.

Detection
We measure the SPDC emission and the effect of the

phase object by imaging the far field of the source at the
sensor of a CCD camera (Princeton Pixis 1024 Excelon BR)
operated in the conventional linear mode. Each pixel deli-
vers a count proportional to the number of incident pho-
tons. The proportionality coefficient (electronic gain g) has
been carefully estimated (g= 0.97) and the quantum effi-
ciency of the camera is nominally above 95% @810 nm. The
electronic readout noise is 4e−/(pix · frame). The number of
photons detected per pixel per frame is 103, where the
integration time of the camera is set to 100 ms. Thus, the
photon flux per pixel is 104 photons/(pix · s).
Because of the finite cross-correlation area defined in

the previous section of the M&M, in order to collect most
of the correlated photons, two symmetrically placed
detectors (or pixels) must have areas larger than the cross-
coherence area. Pixel size is 13 μm and a binning of 3 × 3
is performed to set the resolution to 5 μm at the object
plane, considering the magnification of about 8x, which
matches the measured cross-coherence area. Actually, the
heralding efficiency η, i.e., the probability of detecting an
idler photon conditioned to the prior detection of the twin
signal photon, depends on the pixel size L and possible
misalignment Δ of the two pixels compared to the optimal
positions, according to this expression:

η L;Δð Þ ¼ η0L
�2
Z

L ´ L
dxs

Z
L ´ L

dxi
1ffiffiffiffiffiffi
2π

p
σ
e�

xiþxsþΔð Þ2
2σ2

ð7Þ
where, η0 is the single photon detection efficiency. As the
the pixel size L increases with respect to the coherence
area Δx, we have that η 7�! η0.

As a consequence of that, in Eq. (3), the noise reduction
depends on the pixel size used for the measurement. This
trade-off between the quantum advantage and the spatial
resolution of the intensity measurement has been repor-
ted and analyzed in the context of sub-shot-noise imaging
of amplitude objects14,64.
In the experiment, in order to increase the heralding

efficiency, and thus the quantum enhancement, we apply
an averaging filter to the intensity image that substitutes
the count in each pixel by the average of a square of size
d × d pix2 in which the original pixel is on the left-up
corner. The quantum correlations are then enhanced
because the effective integration area is larger, while the
number of pixels in the final image is unvaried. The
photon number correlation between the signal and idler
beams can be evaluated by measuring the noise reduction

factor (NRF) defined as NRF ¼ δ2 Ii�Isð Þh i
IiþIsh i . It is worth not-

ing that NRF ≥ 1 for any classical state of light while for
SPDC it is NRFSPDC= 1− η, indicating the non-classical
character of the correlation. In Fig. 8, we report the NRF
as a function of the resolution, i.e., the size of the aver-
aging filter. Note that, the photon statistics of the single
beam is indeed Poissonian as expected. This is witnessed
by values of the Fano factor (F), which is compatible with

the unity, where the Fano factor is defined as F ¼ δ2Ih i
Ih i (see

Fig. 8). So, using the signal beam of the SPDC source for
the intensity measurement and then for phase recon-
struction represents the best, i.e., shot-noise-limited,
classical approach in this non-interferometric context.

We underline that in the present imaging of pure phase
objects, a certain resolution loss in the intensity pattern is
well tolerated. In fact, as it is described in the first section
of this M&M, the solution of the TIE tends by itself to
suppress the higher frequency component of the intensity
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Fig. 7 Intensity images at different defocus. At dz= 0 the intensity-induced changes are negligible, while structures become visible for
displacement of dz= ±0.1 with respect to the conjugate plane. The color-bar refers to the number of photon per pixel
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perturbation. Thus, to some extent, a reduction of reso-
lution in the intensity measurement does not affect the
phase reconstruction of the classical scheme. In Fig. 9, we
report the quality of the phase reconstruction, evaluated
in terms of the Pearson correlation with the reference
image in Fig. 2, as a function of the averaging size. On the
one hand, the quantum reconstruction is enhanced as
expected when the effective resolution in the intensity
measurement decreases (d increases). On the other hand,
the classical reconstruction is unaffected, confirming that
classically we do not have any negative issue related to the
poorer resolution in the intensity pattern. In summary,
moderate use of the averaging filter to enhance the
quantum effects is perfectly legitimate in this context.

Model for the noise reduction
According to the scheme in Fig. 1, the signal beam of

SPDC probes the object, while the idler beam is used as a
reference for the noise. When the object is inserted with a
defocusing distance dz, the photons in the signal beam are
deflected, creating local depletion or accumulation of
photons at the detection plane, and the perturbed inten-
sity can be written as:

Is x; zð Þ ¼ Is x; 0ð Þ � ΔI� xð Þ þ ΔIþ xð Þ ð8Þ
where Is x; 0ð Þ is the unperturbed pattern and x indicates
the position of a pixel. The quantity ΔI� xð Þ ΔIþ xð Þð Þ
represents the photons that are deflected out from (into)
the position x. From now on, to simplify the notation, the
spatial average of the quantities is simply indicated by
dropping the spatial dependence on x. Since the total
number of photons is conserved, the spatial average of the
number of photons per pixel is unchanged, i.e., Is zð Þ ¼

Is 0ð Þ and thus ΔI� ¼ ΔIþ. The loss of photons can be
described as the action of a beam splitter of transmittance
1− α (average value) so that, the quantum expectation
value for the ΔI� is simply ΔI�h i ¼ α Is 0ð Þh i ¼ ΔIþh i64. In
this work, we are interested in small perturbations that
can be hidden or strongly affected by the quantum noise,
so we will assume α≪ 1.

In order to reduce spatial intensity fluctuation, we
replace in the TIE the quantity in Eq. (8) with the one in
Eq. (2) involving the idler measurement.
The optimal factor kopt appearing there is chosen to

minimize the residual fluctuation, by imposing
∂
∂k δ2Is�i x; zð Þ� � ¼ 0. We obtain,

kopt xð Þ ¼ δIs xs; zð ÞδIi xi; 0ð Þh i
δ2Ii xi; 0ð Þ� �

δ2Is�i x; zð Þ� � ¼ δ2Is xs; zð Þ� �� δIs xs; zð ÞδIi xi; 0ð Þh i2
δ2Ii xi; 0ð Þ� �

ð9Þ

According to the Poisson distribution of the detected
photon, we can replace the variance of the intensities
appearing in Eq. (9) with the respective quantum mean
values. In particular, by performing the spatial averaging,
one gets δ2Ii 0ð Þ� � ¼ Ii 0ð Þh i ¼ δ2Is zð Þ� � ¼ Ii zð Þh i. For the
calculation of the covariance in Eq. (9), note that Is xs; zð Þ
and Ii xi; 0ð Þ are correlated only for the fraction of photons
that are not lost, namely not deviated from the path due to
phase effect on the propagation along z. Thus, after spatial
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averaging64:

δIs zð ÞδIi 0ð Þh i ¼ 1� αð Þ δIs 0ð ÞδIi 0ð Þh i ð10Þ

¼ η 1� αð Þ Is 0ð Þh i ð11Þ

The last equality is justified again using the Poisson
hypothesis, and introducing the heralding efficiency η that
spoils the otherwise perfect signal-idler correlation. By
using Eq. (11), and the Poisson hypothesis above, we can
rewrite Eq. (9) as,

kopt ¼ 1� αð Þη

δ2Is�i
� � ¼ 1� 1� αð Þ2η2� �

Is 0ð Þh i
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