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Abstract: Model predictive control (MPC) has been widely employed to control a large variety of water
systems, such as dams, irrigation canals, inland waterways, drinking water networks and wastewater
treatment plants. Its predictive capabilities and the possibility to incorporate constraints make MPC well
suited to address several, and sometimes opposite, management objectives linked to water systems. The
design of MPC for water systems is usually performed via dedicated software (e.g., Matlab) and tested
in simulation using dedicated hydraulic software. However, the implementation of MPC strategies in
real systems requires additional development to allow for its embedding within the information systems
that are used by system managers. A possible solution is to create a tool based on Python that can be
easily integrated with the information systems of managers, and within which existing Matlab solutions
can be incorporated. In this paper, the development a ready-to-use Python tool using a hierarchical MPC
approach designed for the management of the Calais Canal is presented.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Model predictive control (MPC) is a predictive control strategy
that uses a process model to determine the control actions that
yield optimal system performance with respect to a set of op-
erational objectives while respecting constraints (Camacho and
Bordons, 2013). MPC has been used in different applications
including water systems, which are large-scale networked sys-
tems consisting of multiple interacting components, and which
used to answer human’s needs in terms of irrigation, transport,
water supply, energy generation, industrial production, sanita-
tion and leisure. Several paper deal with the predictive control
of irrigation networks (Nguyen et al., 2017; Zheng et al., 2019;
Guo and You, 2019; Chen et al., 2021), drinking water networks
(Grosso et al., 2017; Baunsgaard et al., 2017; Karimi Pour et al.,
2018; Karimi Pour and Puig, 2021; Segovia et al., 2021), inland
waterways (Horvéth et al., 2015; Segovia et al., 2017, 2019;
Guekam et al., 2021) and sewer networks (Svensen et al., 2021;
Sun et al., 2021; Sheik et al., 2021).

Segovia et al. (2020) design a hierarchical MPC to regulate
the water levels in inland waterways taking into account the
discrete states of the system, which are defined by the switching
between low and high tides. Tidal periods are taken into account
at the higher layer to modify the constraints and the hydraulic
devices that can be used: while outlet sea gates can be opened
to discharge water by gravity during low tide, the gates are
no longer available during high tide, and only pumps can be
used. However, the use of pumps leads to high electricity costs.

* This work has been supported by ARMINES through the contract n°
1908V/1700661 and the ITW (Institution Intercommunale des Wateringues).

Hence, an optimal control strategy should minimize the use of
pumps by playing with the tidal range of the canal, i.e., accumu-
late water in the canal during high tide and release it during the
next low tide period using the gates. At the same time, the con-
trol strategy must incorporate the main management objective,
i.e., avoid flooding by keeping the level of the canal below a
safety limit. The MPC strategy has been designed and validated
using a simulation architecture between Matlab ! and SIC"22
software. Two hydraulic softwares have been investigated: on
the one hand, HEC-RAS 3, which allows to use a dynamical
model of canals using an accurate topographical and technical
survey (Deshays et al., 2021); on the other hand, SIC"2, for
which digital twins of real canals have been created (Ranjbar
et al., 2020). The Matlab-SIC”'2 architecture has been found to
be more appropriate in terms of computational burden, and has
been used for the canal of Calais located in the north of France.

The control strategy is designed to be used in real time to
assist the Calais canal managers. Given the fact that the MPC
developed in Matlab cannot be directly used in real time with-
out the right license, a solution consisting in coding the MPC
strategy in Python* is proposed. To this end, it is necessary to
(i) install all the required libraries, (ii) transcode the Matlab files
into Python, (iii) synchronize the execution of the code with
the information systems used by managers, and (iv) provide
optimal control values to the managers. There are some papers
in the literature dealing with similar problems. Takdcs et al.

https://www.mathworks.com
http://sic.g-eau.net/?lang=en
https://www.hec.usace.army.mil/software/hec-ras/

1
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3
4 https://www.python.org/
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Fig. 1. Map of the watersheds in northern France and the
Wateringues territory (red triangle)

(2015) implemented an MPC in Python, and demonstrate its
suitability to control a quadrocopter and an artificial player in
a video-game. Gehbauer (2019) build a package as a back-
end for multi-layer and multi-time domain controller, with an
application to weather forecast. Therefore, Python can be used
to build simulation environments.

The main contribution of this paper is the transcoding of a
hierarchical MPC approach (originally developed in Matlab)
into Python for its embedding within the information system
of the Calais canal managers. The main objective is to allow
for a real-time deployment of the the hierarchical MPC, which
allows to determine control actions for gates and pumps taking
the time-varying tidal periods into account, and reject unknown
disturbances.

The rest of the paper is organized as follows: the management
of the Calais canal is described in Section 2. The design of
the hierarchical MPC is detailed in Section 3. Transcoding of
the hierarchical MPC into Python and its embedding in the
information system are presented in Section 4. Conclusions and
future research are discussed in Section 5.

2. MANAGEMENT OF THE CALAIS CANAL

The Calais canal is located in the north of France and belongs to
the Wateringues territory, which is characterized by lowlands in
maritime plains below high sea level > and forms a triangle with
an area of 100,000 hectares (see Figure 1). The Calais canal
is mainly used for navigation purposes, but also to release the
excess of water in the waterways into the sea. It is principally
supplied by pumping stations (PS) that are controlled by the
Wateringues sections, and also by the canal upstream and three
secondary canals along its course, namely the Audruicq, Ardres
and Guines canals.

The canal is 28 km long and stretches from the Hennuin lock
to the sea at Calais (see Figure 2). It is equipped with 18 PS,
although only four of them are monitored, i.e., Nouvelle Eglise,
Les Attaques, Balinghem and 3 Cornets. Moreover, two outlet
sea gates can be opened to release water into the sea by gravity.
In addition to the gates, four pumps (two in Calais and two in
Batellerie) can be used to dispose of water excess. Furthermore,
the canal is equipped with three level sensors: one upstream and
close to the Hennuin lock, another 8 km away from Calais and

5 http://www.floodcom.eu/
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Fig. 2. Schematic representation of the Calais canal
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Fig. 3. Data corresponding to the Calais canal (Nov 4 to Nov
8). (a) Control of sea outlet gates. (b) Control of pumps.
(c) Water level.

close to Les Attaques, and another downstream in Calais. An
additional sensor provides sea level measurements.

Figure 3 depicts real data sequences corresponding to the
Calais canal management, recorded from November 4, 2019
to November 8, 2019. It can be observed that gate opening
increased until delivering the maximum discharge values (see
Figure 3a). The gates cannot be opened during low tide, and this
change in terms of tidal period can be easily noticed. Pumps,
whose usage is not constrained by the tide, were first switched
on in November 5 to limit the canal level increase (see Figure
3b). The level oscillated according to the control actions, but
flooding episodes were not avoided (see Figure 3.c). The high
navigation limit and the flooding limit are depicted in red solid
and red dashed lines in Figure 3c, respectively. This episode
constitutes an illustrative example of the operational objectives
and constraints linked to the management of the Calais canal.

The management of the Calais canal is based on Logic Control
Regulation (Duviella and Hadid, 2019), i.e., if-then-else rules.
This type of control leads to a satisfactory management, except
for some extreme rainy events. Therefore, an MPC-based strat-
egy has been investigated to improve operational performance,
and is presented in the next section. However, it must be noted
that the optimal control actions are provided to managers as
guidelines, who then decide whether to apply them.

3. DESIGN OF THE PREDICTIVE CONTROL STRATEGY
3.1 State-space model

The discrete-time control-oriented inland waterway model, pro-
posed by Segovia et al. (2019), is simplified by considering a
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unique delay 7. This assumption can be made because a single
delay is sufficient to characterize the system dynamics. The
model is described for all time instant £ € Z_ by the following
equations:

x(k+1) =Ax(k) + Byu(k) + Bgd (k) + Arx(k— )+ (la)
uru(k r)+Bde(k 1),
y(k) =Cx(k) + Dyu(k) +Dgd (k) + Cex(k— 1)+ (1b)

Dycu(k— ’L') +Dyrd(k—1),

where x(k) € R" are the water volumes, u(k) € R™ represents
the manipulated inputs, y(k) € R denotes the outputs of the
system and d(k) € R" are the lock operations, the flow from
the PS and secondary canals, which can be regarded as distur-
bances. Moreover, u(k — ) and d(k — 7) describe the delayed
effect of the control actions and disturbances, respectively. Fur-
thermore, AaA‘L'aBuaBu‘L',BdaBdT,Ca CTaDuaDuTaDd and Dy are
time-invariant matrices of suitable dimensions.

The Calais canal is equipped with hydraulic devices whose
operating range is constrained, and the water levels must be
kept within an appropriate interval. Therefore, the constraints
on the system variables in (1) are defined as follows:

u<u(k) <, (2a)
Yoy = (k) < 3(k) < Fyep + @(k), (2b)
a<ak) <a, (2¢)

where u and u are the upper and lower operating limits of
the actuators; y,,, and Yref denote the upper (HNL) and lower

(LNL) bounds of the normal navigation level (NNL) values, re-
spectively. Besides, ot(k) is a relaxation variable that is bounded
with @ and ¢, to consider the flooding limits.

3.2 Moving horizon estimation formulation

The system states x(k) are not directly measurable. Therefore,
an MHE approach is designed to estimate the values of these
states by solving a quadratic program using a moving estima-
tion window of constant size (Rao et al., 2001). The moving
window of size N, contains only the most recent inputs and
outputs. The formulation of the MHE is given below:

min W' (k— N, + 1[k)P~'W (k— N, + 1[k)+ (3a)
X
k
y (WT<i|k>Q-1w<i|k>+vT<i|k>R—1v<i|k>),
i=k—N,+1
subject, fori € {k—N,+1,...,k}, to:
W(k—N,+1|k) = £(k—N,+1|k) —x(k—N,+1)  (3b)
W(ilk) = £(i+ 1]k) — (Aﬁ(i|k)+Buu(i|k)+ (3¢c)
de(i|k)+BMu(i—rk)+Bde(i—rk)>,
V(ilk) = y(ilk) — (c;e(ik) + Dyu(ilk)+ (3d)
Ddd(i|k)—|—DMu(i—r|k)+Dde(i—r|k)>,
y(ilk) = y(i), (3e)
x< (]\k)<x]€{k N,+1,..k+1} (3f)
2(1|k) = £y k), 1 € {k— Ne—f—s—l,...,k—Ne}, (3g)
u(m |k): ugp(mlk), m e {k—N, —t+1,...,k}, (3h)

where R~! and Q! are the weighting inverse matrices of
appropriate dimensions specifying the confidence in the mea-
surements and quality of the model, respectively, and W (k —
N, + 1]k) in (3b) is the error between x(k — N, + 1), i.e., the
most probable initial state, and £(k — N, + 1]k), i.e., the first
value of the optimal state sequence, estimated by the MHE at
time instant k. This error is weighted by matrix P~!, which
indicates the confidence into the initial state, and its tuning
allows to satisfy estimation boundedness (Copp and Hespanha,
2017). Moreover, y(i) are the measured water levels and u;, are
the controls applied to the system, which are recorded in the
database of managers. It is worth stressing again that the values
ugp can differ from the optimal solution, as managers have the
last word on the control actions that are applied.

The optimal sequence X*(k) = {xA(j|k)}jEZ[k—Ne+l.k+l] is deter-
mined by solving (3), and only the last value of the sequence
X(k+ 1|k) is retained. Then, the problem is solved at the next
time instant by shifting the moving window forward in time,
i.e., exploiting the most recent information.

3.3 Model predictive control strategy

MPC is a well suited control approach for the management
of canals, as it is characterized by predictive capabilities and
determines the optimal control law (Camacho and Bordons,
2013). Therefore, a prediction model, given by the control-
oriented model (1), is used to determine optimal control actions
that minimize a certain criterion, e.g., multi-objective function,
by solving an optimization problem over a prediction horizon
N, considering a set of physical and operational constraints.
With all this, the MPC formulation reads as follows:

k4N, —1
: V(; e Au o
min. ;k (z (ilk) + £¢ k) + £2 (il k) + ¢ (l|k)), (4a)
subject to, and for i € {k,....,k+N, —1}:
x(i+ 1|k) = Ax(i|k) + Bu(i|k) + Byd (il k)+ (4b)
Byzu(i — t|k) 4 Bg.d (i — 7|k),
y(ilk) = Cx(ilk) 4+ Dyu(ilk) + Dad (il k)+ (4¢)
Dyzu(i — T|k) + Dgd (i — tlk),
y = a(ilk) < y(ilk) <y+af(ilk), (4d)
u < u(ilk) <, (4e)
a < a(ilk) <a, (4f)
u(llk) =ugp(l|k), 1 € {k—1,....,k—1}, (4g)

where k € Z>¢ is the current time instant, i € Zx>g is the time
instant during the prediction horizon, (k + i|k) indicates the
predicted value of the variable at instant k + 7 using information
available at instant k, and j € Z>o and [ € Z> indicate the use
of past actions applied to the system and stored in the manager’s
database (u45) and information computed by the MHE (£y5E),
respectively.

The different operational objectives included in (4a) are defined
as follows:

e Keep water levels close to the navigation objective NNL:

(k) £ (y(k) = yrer) "Wo(y(k) = yrep), Q)
where y,.r is the vector of NNL values and W, is a
diagonal positive definite matrix.
e Minimize cost of operating equipment:

(k) £ u" (k)Weu(k), (6)
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where W, is a diagonal positive definite matrix, whose
entries linked to pumping actions are much larger than
those linked to the gates.

e Consider smoothness of control actions:

(k) £ AuT (k) WauAu(k), (7
where Au(k) £ u(k) —u(k—1), and Wy, is a diagonal posi-
tive definite matrix. The control actions should be smooth,
i.e., Au should be minimized, to extend the lifespan of
component.

e Penalize relaxation of navigability condition:

(% (k) & a' (k)yWyo(k), (8)
where W, is a diagonal positive definite matrix. The
relaxation is useful to obtain optimal control actions even
when the navigation conditions cannot be satisfied, but
this situation is penalized.

Resolution of the MPC at time instant & yields the optimal se-
quences u* () = {u(ilk)}iczy,,y, oY (6) = 010 biezygy,
and a* (k) = {a(i|k)}iez[k.k+Np—l]' However, only the first value
uppc(k) = u*(k|k) from the sequence of optimal inputs is pro-
vided to the managers as optimal setpoint, and a new problem
is solved at the next time instant.

3.4 Hierarchical control architecture

The hierarchical MPC proposed by Segovia et al. (2020) con-
sists of three layers.

e The upper layer specifies the available hydraulic compo-
nents according to the discrete state of the system. In low
tide, pumps and gates are available; in high tide, the gates
cannot be utilized. The manipulated inputs 1 are modified
according to the tide.

e The intermediate layer is concerned with the resolution of
the MHE and MPC. While the same MHE can be used
for both tidal periods, a different MPC must be designed
for each mode to account for the available hydraulic
components.

e The lower layer is tasked with determining feasible flows
that can be delivered by the hydraulic devices, and which
are as close to the optimal control references (computed at
the intermediate layer) as possible. In this work, a lookup
table connecting flows and gate openings is proposed to
determine the actions to be applied by managers.

4. HIERARCHICAL CONTROL STRATEGY
TRANSCODING INTO PYTHON

The hierarchical control strategy presented in the previous sec-
tion is designed using Matlab, and later transcoded into Python
3.9 The selected Integrated Development Environment is Py-
charm”, and the solver Gurobi 8 must be installed. Additional
required libraries are given below; pip install {scipy, numpy,
pandas, xlrd, cvxpy}. Using this tool and libraries, all layers
and problem have been coded as functions, following the ar-
chitecture depicted in Figure 4. The database query collects
the measurements from the database using a sampling time
Ty =2 minutes. The data are summarized in Table 1, with binary
variables at PS, and measurement values for levels.

6 https://www.python.org/downloads/release/python-390/
7 https://www.jetbrains.com/fr-fr/pycharm/
8 https://www.gurobi.com/
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Fig. 4. Architecture of the Python code
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Designation Tag Description
CA3C_PIMA PUMP 1
PS 3 Cornets CA3C_VI-MA SCREW 1
CA3C_V2.MA SCREW 2
CA_LA_VI_.MA SCREW 1
PSLesAttaques | ) 1A v2 MA | SCREW2
. CA_BA_PI_MA PUMP 1
PS Balinghem CABAP2MA | PUMP2
. CANE_VI_MA SCREW 1
PS Nouvelle Eglise CA_NE_V2_MA SCREW 2
Level Les Attaques | CA_LA_NIV_PV MEASUREMENT
Level Hennuin VN_HE_NIV_PV MEASUREMENT
Level Calais CANIV_.AM_PV | MEASUREMENT
Level Sea CANIV_AV_PV MEASUREMENT

Table 1. Required measurements from the database
of French managers

From the measurements y(k), the levels of the canal in Calais
and of the sea are provided to the upper layer. The sea level is
compared to the canal level in Calais at each step time k. If the
sea level is inferior to the canal level during three consecutive
step times, the state of the system, denoted with S(k), is low
tide; otherwise it is high tide. The measurements y(k) and the
control actions sent to the hydraulic devices ug; (k) are used by
the MHE at the intermediate layer to estimate the state of the
system £y (k) every Ty time units, with N, = 12 hours. The
MPC function is executed with a control period 7. = 2 hours
by considering N, = 12 hours (covering 2 types of tide), but its
value can be easily modified. Then, and based on the system
state S(k) and the estimated state £y (k), the MPC is solved,
providing control setpoint uypc (k) every T, time units.

The control setpoint uypc (k) provides binary (On/Off) control
setpoints for the pumps, and a certain flow (m?/s) for gate Gj.
The low layer aims at determining the control based on the
Table 2, which determines the corresponding opening of the
gate u.(k) according to the desired flow. This table is provided
by the managers. The mean value of the discharge depends on
the level in the canal and the sea level. This difference in terms
of level and the time of gate opening depend on the type of tide.
Three types can be considered according to the tidal coefficient
Ciide: spring tide for Gz, > 90, neap tide for Gy, < 45, and
mean tide for 45 < G4, < 90.

Finally, the control setpoints for the gate and pumps are pro-
vided to the managers every 7. time units. The corresponding
values are sent to the database using the following tags:

- Setpoint for Gate: CA_G1_SP,
- Setpoint for Pump: CA_PUMP_SP.
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Spring Tide | Neap Tide | Mean Tide Gate
Mean flow | Mean flow | Mean flow | G| [dm]
0 0 0 0
1,9 1.4 1,7 1
2,7 22 2,4 2
4,2 34 38 3
6,6 54 6 4
7,6 6,3 7 5
8,6 7 7.8 6
9.4 79 8,7 7
11,1 8,9 10 8
11,6 9,4 10,5 10
12,3 9,8 11,1 11
12,7 10,3 11,5 12
13,2 10,6 11,9 13
13,9 11,1 12,5 14
14 11,3 12,7 15
14,3 11,5 12,9 16
14,5 11,7 13,1 17
14,7 12 13,4 18
14,8 12,2 13,5 20
14,9 12,3 13,6 22
15,1 12,4 13,7 24
15,2 12,5 13,8 25

Table 2. Gate opening G; as a function of mean
flow [m3/s], and according to the type of tide

An interface has been created to provide the optimal control
setpoints u.(k)) to the managers and tune the MHE and MPC
parameters, and is depicted in Figure 5. Default values for
weights in low/high tides are given. However, the managers can
modify these values if the performance of the control strategy
is not as expected. The horizon time can also be modified.

o IMT HMPC App - o x

Weights for low tide: Weightsfor high tde.

[T TR — [T T — o %
ot | [sop | [ciom |
L Tme Gateopenvale
Pumps dischage:

Fig. 5. Human Machine Interface for the predictive control
architecture.

The complete Python code cannot be shown in this paper due to
lack of space and relevance. However, the MHE code is given
below to illustrate the approach:

# MHE
def MHEN(Ne,y_-in,yf_in ,u_.in,wf.in,xo,x_prev ,T_Sim, distf):

# def MHE(y_in , yf_in ,u_in , wf_in ,xo,x_prev):
coef_red = 0.001

P = coef_red * ((xmax[0] =% 2) =% sel2)

Q = coef_red * ((xmax[0] =x 2) = sel2)

R = coef_red * ((y-HNL[O] =% 2) =% sel2)
w_in = wf_in[:, n — 1:2 = n]

x_est = Variable ((size_Af, Ne + n + 1+1))

obj-MHE = (quad_form ((x-est[:, n + 1] - x0), \
np.linalg.inv(P)))

constraints = []

T_Sim=T_-Sim

for i in range(l, Ne+n+1):

if i

== n:
obj-MHE +=(quad_form ((x_est[:, i + 1] =\

(Af @ x_est[:, i] + Bf @ w_in[:, i] + \
Bdf @ distf[:, i + n + T_Sim — Ne] + \
sell @ (Bfon @ wf_in[:, i] + \

Bdf.n @ distf[:, i + T_.Sim — Ne]) + \
sel2 @ (Bfon @ w_in[:, 1] + \

Bdf.n @ distf[:, i + T.Sim — Ne + 11))),\
np.linalg.inv(Q))) + \

(quad_form ((yf_in[:, 5] -\

(Cf @ x_est[:, i] + Df @ w_in[:, i] + \
Ddf @ distf[:, i + n + T_Sim - Ne] + \
sell @ (Dfon @ wf_in[:, i] + \

Ddf-n @ distf[:, i + T_-Sim — Ne]) + \
sel2 @ (Dfon @ woin[:, 1] + \

Ddfon @ distf[:, i + T_-Sim - Ne + 1]))),\
np.linalg.inv(R)))

elif i < 2 =% n and i>n:

obj-MHE += (quad_form ((x-est[:, i + 1] =\

(Af @ x_est[:, i] + Bf @ u_in[:, i — n] +
Bdf @ distf[:, i + n + T_Sim - Ne] + \
sell @ (Bfon @ w_in[:, i - n] + \

Bdf.n @ distf[:, i + T.Sim - Ne]) + \
sel2 @ (Bfon @ w_in[:, i — n + 1] + \
Bdf.n @ distf[:, i + T.Sim - Ne + 1]))),\
np.linalg.inv(Q))) + \

(quad_form ((y-in[:, i — n] =\

(Cf @ x_est[:, i] + Df @ u_in[:, i - n] + \
Ddf @ distf[:, i + n + T_Sim - Ne] + \
sell @ (Dfon @ w_in[:, i - n] + \

Ddf-n @ distf[:, i + T.Sim — Ne]) + \
sel2 @ (Dfon @ w_in[:, i — n + 1] + \
Ddf-n @ distf[:, i + T.Sim — Ne + 1]))),\
np.linalg.inv(R)))

elif i == 2 = n:

obj-MHE += (quad_form( (x-est[:, i + 1] —\

(Af @ x_est[:, i] + Bf @ u_in[:, i - n] + \
Bdf @ distf[:, i + n + T_Sim - Ne] + \

sell @ (Bfon @ w_in[:, i - n] + \

Bdf.n @ distf[:, i + T_Sim — Ne]) + \

sel2 @ (Bfon @ u_in[:, 1] + \

Bdf.n @ distf[:, i + T_Sim — Ne + 1]))),\
np.linalg.inv(Q))) + \

(quad_form ((y-in[:, i — n] =\

(Cf @ x_est[:, i] + Df @ u_in[:, i - n] + \
Ddf @ distf[:, i + n + T_-Sim - Ne] + \

sell @ (Dfon @ wiin[:, i - n] + \

Ddf-n @ distf[:, i + T_-Sim — Ne]) + \

sel2 @ (Dfon @ u_in[:, 1] + \

Ddf-n @ distf[:, i + T-Sim - Ne + 1]))),\
np.linalg.inv(R)))

elif i> 2=xn:

obj-MHE += (quad_form ((x.est[:, i + 1] =\

(Af @ x_est[:, i] + Bf @ u_in[:, i — n] + \
Bdf @ distf[:, i + n + T_Sim — Ne] + \
sell @ (Bfon @ u_in[:, i — 2 % n] + \

Bdf.n @ distf[:, i + T.Sim — Ne]) + \
sel2 @ (Bfon @ u_in[:, i — 2 % n + 1] + \
Bdf.n @ distf[:, i + T.Sim — Ne + 1]))),\

np.linalg.inv(Q))) + \

(quad_form ((y-in[:, i — n] =\

(Cf @ x_est[:, i] + Df @ u_in[:, i — n] +\
Ddf @ distf[:, i + n + T_-Sim - Ne] + \
sell @ (Dfon @ u_in[:, i — 2 % n] + \
Ddf-n @ distf[:, i + T.Sim — Ne]) + \
sel2 @ (Dfin @ u_in[:, i — 2 % n + 1] + \
Ddf.n @ distf[:,i + T_-Sim — Ne + 11))).\
np.linalg.inv(R)))

constraints += [x_est >= np.matlib.repmat(\
np.reshape (xmin, (2, 1)), 1, Ne + n + 1+1)]
constraints += [x_est <= np.matlib.repmat(\
np.reshape(xmax, (2, 1)), 1, Ne + n + 1+1)]

# constraints += [x_est[:,i] >= xmin]

\



# constraints += [x_est[:,i] <= xmax]
constraints += [x.est[:, n + Ne] == x_prev]

prob = Problem (Minimize (obj-MHE), constraints)
prob.solve (solver=GUROBI, warm_start=True)

x_est_out = x_est[:, Ne + n + 1].value

return x_est_out

5. CONCLUSION

In this paper, the transcoding of a hierarchical MPC strategy
for the Calais canal into Python is proposed. The original con-
trol strategy is based on MHE and MPC, and was designed
using Matlab. Transcoding is carried out with the objective to
implement this solution within the information system of the
managers, which allows to test the designed predictive control
strategy on the real system. Next steps regard its implemen-
tation on the information system of the managers to obtain
feedback (which will be used to improve the solution) and gain
insight on its performance. In particular, performance obtained
during extreme weather situations, e.g., flooding periods, is of
great relevance, and will lead to future research on strategies to
mitigate their effects.
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