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Summary 
 
With the arrival of the Eurocode, the calculations regarding shear resistance, have 
become increasingly conservative compared to former concrete standards. For 
example in Voorschriften Beton 1974 (VB 74), a former concrete standard, a shear 
resistance combination of concrete, stirrups and prestress was allowed. Whereas 
the Eurocode assumes the shear resistance of the concrete is zero if it’s standalone 
contribution is insufficient. Meaning that once stirrups are required, the total 
applied shear stress is controlled by the stirrups.  
Prorail is the party in the Netherlands which is responsible for the construction and 
maintenance of the railway infrastructure. The change in regulations results in 
concerns for parties like Prorail and in particular to the shear resistance of concrete 
railway bridges constructed according to the VB 74.  
 
A through railway bridge consists of a relatively thin floor and two prestressed 

girders. Whenever a train drives over the floor, a great deal of the loading is spread 
in transverse direction, causing large shear forces and torsion in the two 
prestressed girders. Because this combination can be critical for the shear 
resistance, two prestressed through railway bridges, constructed according to the 
VB 74, are investigated in this master thesis.  
It is verified with hand calculations whether or not these existing structures can 
guarantee structural safety by considering three shear resistance checks; the risk of 
shear tension failure, capacity of the stirrups and resistance against fatigue. 
Ultimately it is concluded, that the largest unity check is 1,01 and that both bridges 
can guarantee structural safety regarding shear resistance.  
 
The reassessment of an through bridge, is an typical assignment for engineering 
firm such as Witteveen+Bos. But because hand calculations are too time 
consuming, the design loads are determined with SCIA Engineer (FEA program).  
However in the earlier days FEA programs were not available and torsion in the 
girders was derived from a set of differential equations (analytical solution). Because 
structural engineers from today completely rely on programs like SCIA, a 
comparison is drawn up between SCIA and the analytical solution for torsion in the 
girder. 
 
The plate, beam model 1A and 1B are the three types of models available in SCIA to 
model a through bridge. The plate model consists of a 2D-floor and 2D-girder, 
where the beam models form a combination of a 2D-floor and 1D-girder. But the 
plate and beam model 1B have in common that rigid connections are applied every 
¼ meter between the girder and floor. 
The analytical solution is derived with the assumption that the bridge is divided 
into strips with a length of 1,0 meter, which is implemented in the plate and beam 
models by reducing the E-modulus of the floor to roughly a third (cracked floor). For 
the governing load combination, this leads to values for torsion, which remain 10-
15%, 40% and 10% behind the analytical solution for respectively the plate and 
beam model 1A and 1B. The large deviation of beam model 1A is remarkable and 
can be explained from the fact that no rigid connections between the girder and 
floor are applied, resulting in a loss of bending and torsional stiffness of the girder. 
 
To conclude, the analytical solution is based on a number of assumptions, like no 
load distribution of the floor in longitudinal direction. In reality loads will be as well 
distributed in longitudinal as transverse direction and the analytical solution 
therefore needs to be considered as an safe upper limit. 
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1 Introduction 
 

1.1 Background 
The Dutch Department of Waterways and Public Works (Rijkswaterstaat) is 
responsible for the maintenance and construction of traffic infrastructure in the 
Netherlands. A large number of Rijkswaterstaat’s concrete bridges were built 
between 1960 and 1980. The typical concrete standards used at the time to 
construct these bridges are the Gewapend Betonvoorschriften (GBV 1962) and the 
Voorschriften Beton (VB 1974). Compared to the current concrete standard (the 
Eurocode), the GBV and the VB are less conservative and strict.  
 
A similar conclusion was drawn by recent research conducted by TNO, TU Delft and 
Rijkswaterstaat (1). This research showed that concrete traffic bridges, constructed 
before 1974, may have insufficient shear resistance due to a difference in load 
models and shear resistance calculations adopted at that time. Since shear failure 
is a brittle mechanism which shows no warning up to the point of failure, a solution 
needed to be found. As a result a number of investigations were conducted on 
existing structures and the most important findings were bundled by 
Rijkswaterstaat in the form of a guideline. This guideline, Richtlijnen Beoordeling 
Kunstwerken (2), is an addition to the Eurocode specifying a set of rules that is 
applicable to Rijkswaterstaat’s existing structures.  
 
Prorail is the party in the Netherlands that is responsible for the maintenance and 
construction of railway infrastructure. With the Eurocode shifting towards more 
conservative regulations, Prorail may expect issues with their existing railway 
structures. In order to investigate this effect, two prestressed through railway 
bridges are analysed in this master thesis.  
 

1.2 Research objective 
As mentioned earlier, the load models and the shear resistance calculations have 
become more conservative with the arrival of the Eurocode. Provided that the 
critical stresses in a through bridge results from a combination of shear, torsion 
and bending, these type of structures may have insufficient shear resistance. The 
loads are determined analytically and the structural safety is verified based on a 
number of Eurocode checks (Figure 1). 
 
 

  

Figure 1: Overview of the research process 
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The reassessment of an existing through railway bridge could be a typical 
assignment for an engineering firms such as Witteveen+Bos. Due to the availability 
of finite element models (FEM) and computers with necessary computational power, 
it is expected a structural engineering will execute the reassessment using a FEA 
program (SCIA engineer in the case of Witteveen+Bos).   
In the earlier days these models didn’t exist yet and through bridges were designed 
with hand calculations. The difficulty back then lied within in establishing torsion 
in the prestressed girders, for which a number of differential equations needed to be 
derived (analytical solution). The second part of this research will therefore focus on 
the comparison between SCIA and the analytical solution with respect to torsion in 
the girder. The ultimate goal is to establish the deviation between SCIA and the 
analytical solution (w.r.t. to torsion) for the governing load combination.   
 

1.3 Assumptions 
Since the shear resistance of the through bridge is assumed to be governing, the 

checks performed on the bridge will be limited to shear related checks only. 
Concludingly the risk of shear tension failure, the capacity of the stirrups and the 
resistance against fatigue are assumed to be the governing checks in the 
reassessment of the bridge.  
 
The comparison between SCIA and the analytical solution only focuses on torsion 
and clamping moments in the girder. The explanation for this is two folded. The 
first reason for this is, as mentioned above, the fact that torsion and the 
corresponding clamping moment are important design loads in the through bridge. 
The second reason is that a number of differential equations, for torsion and the 
clamping moment, are derived which are based on a number of assumptions. It will 
be interesting to compare with SCIA, whether these assumptions are realistic or too 
conservative. An overview of these assumptions can be found in paragraph 3.3.2. 
  

1.4 Research questions 
 

1. What is the shear resistance of a fully prestressed through railway bridge, 
designed according to the VB 74, when applying the load models and the 
calculation procedures of the Eurocode?  
 

a. What are the differences in applied loads and combinations? 
b. What is the risk of shear tension failure in the girder? 
c. What is the shear capacity of the applied stirrups? 
d. What is the concrete and reinforcement resistance against fatigue? 

 
2. What is the difference between a SCIA model and the analytical solution 

with respect to torsion in the girder? 
 

a. What type of models in SCIA are possible for a through bridge? 

b. Which assumptions (of the analytical solution) have to be taken into 
account when modelling? 

c. What is the deviation between SCIA and the analytical solution with 
respect to torsion in the girder? 
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1.5 Methodology 
The research questions will be answered on the basis of a literature study, an 
analytical solution and three SCIA models. 
 
The literature study discusses the following topics: 

• The difference between the load models of the Eurocode and VOSB. 

• The difference between load combinations at ultimate and serviceability 
limit state in the Eurocode and the VB 74. 

• The manner in which the Eurocode and the VB 74 deal with shear 
resistance calculations. 

• The mechanisms of shear failure. 
 
The analytical solution deals with: 

• An approach to determine bending, shear and torsion in the through girder 
analytically. 

• The calculation of the maximum principal stress, in order to verify whether 
or not shear tension failure will occur. 

• A reinforcement capacity calculation to verify if an adequate number of 
stirrups is applied in the girder.  

• A fatigue resistance calculation on concrete, reinforcement and prestress 
steel. 

 
SCIA focuses on the following topics: 

• The different type of models that can be used to model a through bridge. 

• Processing the assumptions of the analytical solution into the SCIA models. 

• Comparing SCIA and the analytical solution for torsion and the clamping 
moment in the girder. 

• Establishing the deviation (for torsion), due to the governing load 
combination, between SCIA and the analytical solution.  
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1.6 Case study 
The case study considers two simply supported single track fully prestressed 
through bridges which are positioned below the emplacement of train station the 
Hague HS. They were built in 1994 in order to construct a tram tunnel which 
passes underneath the train station. In the Netherlands the railway track is 
classified with a geocode and an accompanying kilometre set. The bridges are 
classified as geocode 536 and lie on km 61.4.    
 
This case study considers one short and one long bridge, which from now on are 
indicated as bridge A and B. Even though both bridges are simply supported, they 
are constructed with a small cantilever of 1,0 meter at both sides. The most 
important properties were found in the design reports (3) and a summary is 
presented in Table 1. 
 
 

 

Figure 2: Cross section of bridge A (left) and bridge B (right) 

  
Table 1: Properties of concrete, reinforcement and prestress steel of bridge A and B 

Property Bridge A Bridge B 

Support system Simply supported Simply supported 

Span 21 m 31,5 m 

Total width  5,8 m 7,4 m 

Total height 1,75 m 2,2 m 

Reinforced concrete (floor) B35         (C25/30)  B35         (C25/30)  

Prestressed concrete (girder) B45         (C35/45) B45         (C35/45) 

Reinforcement FeB500    (S435) FeB500    (S435) 

Longitudinal Prestress system Type:            Cona Multi 

Strands:       ∅12,9 

Quality:        FeP1860 
Tendon:       19 strands 

Total:           6 tendons 

Ap:               1900 mm2 

Type:            Cona Multi 

Strands:       ∅15,7 

Quality:        FeP1770 
Tendon:       18 strands 

Total:           8 tendons 

Ap:               2700 mm2 

Transverse Prestress system 

(near the supports) 

Type:            Dywidag 

Diameter:     ∅36 

Quality:        FeP1230 

Tendon:        4 

Type:            Dywidag 

Diameter:     ∅36 

Quality:        FeP1230 

Tendon:        6 
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2 Literature study 
 

2.1 Through bridge 
A single track through bridges consist of two prestressed girders which span in 
longitudinal direction. The bottom side of the girders are connected with a floor, on 
which a railway track is mounted. The floor transfers the majority of the applied 
loading in the transverse direction towards the girders. The girders then transfer 
the load towards the supports.  
 
Usually the girders are prestressed in longitudinal direction and thereby indirectly 
prestress the floor in longitudinal direction. High anchor forces at the end of the 
bridge can lead to large local tensile splitting forces. But bridge A and B are 
therefore equipped with splitting reinforcement and transverse prestressing near 
the supports. Besides prestress the girders are equipped with stirrups and 
longitudinal reinforcement in order to transfer shear forces and bending moments. 
The floor is subjected to significantly smaller loads and is therefore equipped with 
longitudinal reinforcement only, which spans in as well transverse as longitudinal 
direction.  
 
The usage of a through bridge has a number of advantages (4): 

• The bridge has a very limited construction height which is independent of 
the span. The main reason for this is the low-lying floor. This has a major 
advantage, namely the elevation of the railway track remains limited, 
meaning the length of the entrance and exists towards the bridge can be 
reduced.  

• The supports can be applied asymmetrically, this enables one to realise a 
difficult junction with infrastructure below.  

• The main girders have a noise protecting ability, making the bridge suitable 
for rural areas.  

• When the bridge is subjected to an upward bending moment, the floor will 
function as a compression flange, making the structure suitable for 
continuous spans.  

 
The usage of a through bridge also has a number of disadvantages (4): 

• Because most of the concrete is in the lower section, the concrete will not be 
used to an optimum when the bridge is subjected to a downward bending 
moment at midspan. 

• End-cross members can be applied to increase the effective width of the 
bridge near the supports. However, these end-cross members also cause 
additional torsion in the girders. As mentioned earlier the combination of 
shear, torsion and bending can be very critical for a through bridge. 
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2.2 Shear failure mechanisms 
Since the shear resistance calculations, in the VB 74 and the Eurocode, are based 
on failure mechanisms, it is important to have a basic understanding of them. This 
paragraph will elaborate on the different types of shear failure.   
 

2.2.1 Flexural shear failure 

When a reinforced concrete member is subjected to a shear force and a bending 
moment, a flexural-shear crack can occur. Initially a bending moment causes 
vertical cracks in the cross-section which under the influence of a shear force start 
to grow under a certain angle. Four different zones can be distinguished in this type 
of failure (Figure 3). 
 

 
Figure 3: Flexural-shear crack 

 
1. Uncracked compression zone: Due to the high compressive stresses this 

zone is capable of transferring large shear stresses. Hence zone 1 has a large 
contribution to the total shear resistance. 

2. Small crack width: The upper part of the curved crack (close to the 
uncracked section) shows little deformation, which enables the concrete to 
resist relatively large tensile stresses.  

3. Frictional forces in the cracked concrete: The development of a flexural-
shear crack leads to a parallel shift of the cracked faces, which causes 
frictional stresses. This mechanism contributes to the shear resistance. 

4. Stirrups and longitudinal reinforcement: Due to the parallel shift of these 
faces, vertical displacement leads to tension in the stirrups and activation of 
the dowel effect in the longitudinal reinforcement. 

 
When the cracks keep on growing, the stirrups will start to yield, the height of the 
uncracked compression zone decreases and vertical equilibrium can no longer be 
guaranteed. Ultimately a brittle failure mechanism occurs. (5) 
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2.2.2 Shear tension failure 

In a section without shear reinforcement or with limited bending stresses (e.g. a 
prestressed section), shear tension failure is likely to occur. In order to explain this 
an element with a normal and shear stresses acting on it needs to be considered. 
The combined effect of these stresses can be expressed by a tensile and compressive 
principal stress. When the tensile principal stress exceeds the tensile strength of 
the concrete, a shear tension crack will develop. (6) 
 

 
 

Figure 4: Shear tension crack in the through girder 

 

2.2.3 Shear compression failure 

A concrete beam can be strengthened by applying stirrups. In case the beam is 
loaded with a shear force, diagonal cracks will develop and intersect with the 
applied stirrups. This changes the internal force distribution, which can be 
approximated by the truss analogy. 
 
 

 
 

Figure 5: Truss analogy in the girder (left) and shear compression failure (right) 

The analogy assumes an equilibrium of compressive and tensile struts. The stirrups 
and longitudinal reinforcement become tensile struts, whereas the diagonal and the 
compression zone become compressive struts. Before the stirrups get to yield, the 
compressive capacity of the diagonal is reached, causing a brittle failure 
mechanism. In the through bridge, the compressive diagonal is formed in the girder 
which means the maximum shear loading on the bridge is governed by the 
dimensions of the girder. This failure mechanism forms the upper limit of the shear 
capacity and definitely needs to be checked in the reassessment.   
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2.3 Shear resistance calculations 
One of the main reasons for this research topic was the change in concrete 
regulations, in particular with respect to shear resistance. This paragraph will 
elaborate on the differences in shear resistance calculations between the Eurocode 
and VB 74 for prestressed structures. 
 

2.3.1 VB 74 

According to the VB 74 the total shear stress in a section is computed using a 
combination of torsion and shear (equation [1]). The shear force is reduced by the 
vertical component of the prestress and torsion is divided by the torsional constant 

(𝜓/(𝑏2ℎ) in order to get a stress.  
 
 

𝜏𝐸𝑑 =
𝑉𝐸𝑑 − 𝑃∞ ∗ sin ∝

𝑏 ∗ ℎ
+ 𝜓

𝑇𝐸𝑑

𝑏2ℎ
 

 

[1] 

The total shear resistance depends on a combination of concrete, prestress and 
stirrups (7). The contribution of each depends on whether the structure is subjected 
to fatigue. The shear resistance calculations are performed at ultimate limit state 
(Table 2). 
 
Table 2: Overview shear resistance calculations for prestressed structures (VB 74) 

Structure Shear resistance 

Prestressed element without 

shear reinforcement 

𝝉𝑬𝒅 ≤ 𝝉𝟏 

No Fatigue Fatigue 

 

𝜏1 = 0,5 ∗ 𝑓𝑏 + 0,15 ∗
𝑃∞

𝐴𝑏

 

 

 

𝜏1 = 0,15 ∗
𝑃∞

𝐴𝑏

 

 

Prestressed element with shear 

reinforcement 

𝝉𝑬𝒅 ≤ 𝝉𝟏 + 𝝉𝒔 

No Fatigue 

 

Fatigue 

 

𝜏1 = 𝜏𝑠 + 0,5 ∗ 𝑓𝑏 + 0,15 ∗
𝑃∞

𝐴𝑏

 

 

 

𝜏1 = 𝜏𝑠 + 0,15 ∗
𝑃∞

𝐴𝑏

 

 

Maximum shear resistance 

(capacity compressive diagonal) 

𝝉𝑬𝒅 ≤ 𝝉𝟐 
 

 

𝜏2 = 0,25 ∗ 𝑓𝑏𝑘 ≤ 9,0 𝑁/𝑚𝑚2 
 

 

Where: 
𝑓𝑏 =         Characteristic tensile strength concrete 
𝑓𝑏𝑘 =        Characteristic compressive strength concrete 
𝜏𝑠 =        Shear resistance stirrups 
𝑃∞/𝐴𝑏 =  Compressive prestress 
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Notable is the resistance of concrete, which is equal to half the tensile strength. It 
may be taken into account whenever a structure is not subjected to fatigue. Besides 
this an additional 15% of the prestress is added to the shear resistance, 
independently of a structure being loaded in fatigue. The ultimate shear resistance 
is limited by the capacity of the concrete diagonal, which in case of the VB 74 is 
taken as 25% of the characteristic compressive strength.  
 
The check on shear tension failure is performed at serviceability limit state. This 
type of failure mechanism leads to pure tension in the concrete and no tension in 
the stirrups. As a result the maximum principal stress is checked against the 
concrete shear resistance (0,5 ∗ 𝑓𝑏). 
 
An overview of the checks and their corresponding limit states is provided in 
paragraph 2.4.3 and 2.4.4 for the VB 74 and Eurocode respectively.  
 

2.3.2 Eurocode  

In contradiction to the VB 74 the Eurocode does not allow a combination of 
concrete and steel in the resistance calculations. Initially the shear resistance of the 
concrete is considered. As long as loads do not exceed this capacity, only minimum 
shear reinforcement is required. It is even allowed, for structures with bending 
stresses smaller than the tensile design strength (𝑓𝑐𝑡𝑑), to determine the concrete 
shear resistance using the shear tension failure mechanism. For structures with 
larger bending stresses, the flexural shear failure mechanism is governing.  
The resistance against torsion is based on a thin walled beam, where the maximum 
shear stress is equal to the tensile design strength (𝑓𝑐𝑡𝑑). The Eurocode converts this 
maximum stress, by using the cross-sectional area and an internal lever, into a 
maximum torsional moment.  
 
For the case where concrete shear capacity is insufficient, stirrups need to be 
applied. The capacity of all the stirrups intersected by the compressive diagonal 
should be in balance with the applied shear force and torsion. Ultimately the 
maximum resistance is determined by the capacity of the compressive diagonal.  
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Table 3: Overview shear resistance calculations for prestressed structures (Eurocode) 

Structure Total shear resistance 

Prestressed element 

without shear 

reinforcement 

Shear Torsion 

𝜎𝑏 ≤ 𝑓𝑐𝑡𝑘;0,05/𝛾𝑐  

 
 

 

 

 

 
 

𝑇𝑅𝑑,𝑐 = 2𝑡𝑒𝑓𝑓𝑐𝑡𝑑𝐴𝑘 

 

Shear tension failure: 

 

𝑉𝑅𝑑,𝑐 =
𝐼 ∗ 𝑏

𝑆
√(𝑓𝑐𝑡𝑑

2 + 𝛼𝑙𝜎𝑐𝑝𝑓𝑐𝑡𝑑) 

 

𝜎𝑏 > 𝑓𝑐𝑡𝑘;0,05/𝛾𝑐 

 

Flexural shear failure: 

 

𝑉𝑅𝑑,𝑐 = (𝐶𝑅𝑑,𝑐𝑘(100𝜌𝑙𝑓𝑐𝑘)
1
3 + 0,15𝜎𝑐𝑝) 𝑏𝑑 

 

𝑉𝑅𝑑,𝑚𝑖𝑛 = [𝑣𝑚𝑖𝑛 + 0,15𝜎𝑐𝑝]𝑏𝑑 

 

Prestressed element 
with shear 

reinforcement 

 
𝑉𝐸𝑑

𝑉𝑅𝑑,𝑐

+
𝑇𝐸𝑑

𝑇𝑅𝑑,𝑐

= 

 

≤ 1,0: Min. Reinforcement 

 
> 1,0: 𝑉𝐸𝑑  transferred by stirrups 
 

≤ 1,0: Min. Reinforcement 

 
> 1,0: 𝑇𝐸𝑑  transferred by stirrups 

 

 

Maximum shear 

resistance (capacity 

compressive diagonal) 

 

𝑉𝑅𝑑,𝑚𝑎𝑥 =
∝𝑐𝑤 𝑏𝑤𝑧𝜈1𝑓𝑐𝑑

cot 𝜃 + tan 𝜃
 

 

 

𝑇𝑅𝑑,𝑚𝑎𝑥 = 2𝜈𝛼𝑐𝑤𝑓𝑐𝑑𝐴𝑘𝑡𝑒𝑓 sin 𝜃 cos 𝜃 

 

 
𝑉𝐸𝑑

𝑉𝑅𝑑,𝑚𝑎𝑥

+
𝑇𝐸𝑑

𝑇𝑅𝑑,𝑚𝑎𝑥

≤ 1,0 

 

 
Note: The contribution of prestress is taken into account for as well the shear 
tension as the flexural-shear failure mechanism. 
 
Where: 

𝜎𝑐𝑝 =            Compressive prestress 

𝑓𝑐𝑡𝑑 =           Concrete tensile design strength 
𝑉𝑅𝑑,𝑚𝑎𝑥 =    Maximum shear capacity 

𝑇𝑅𝑑,𝑚𝑎𝑥 =    Maximum torsional capacity 

 
In the Eurocode the check on shear tension failure is performed at ultimate limit 
state. As mentioned before this type of failure purely leads to tension in the 
concrete. By rewriting the equation in Table 3, it can be concluded that the 
maximum tensile principal stress cannot grow larger than the concrete tensile 
design strength (paragraph 4.4). 
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2.4 Loads 
This paragraph elaborates on the different type of load models for train traffic 
considered by the VB 74 (which refers to the VOSB 1963) and the Eurocode. 
Besides load models an overview of load factors and combinations is presented.  
 

2.4.1 Load models VOSB 1963 

The VOSB (8) defines the load models for railway traffic. The VOSB 150 is a 
combination of an distributed load of 80 kN per meter and three grouped 150 kN 
concentrated loads with 1,5 m spacings. This group of concentrated loads is 
repeated with an interval of at least 17 meters. Respectively the concentrated and 
distributed loads represent the axle loads of a locomotive and loaded carriages. In 
contrast to the VOSB 150, the VOBS 250 and 270 only consider axle loads. 
 

  
Figure 6: Load model VOSB 150 

 

Figure 7: Load model VOSB 250 

 
Figure 8: Load model VOSB 270 
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The characteristic values need to be multiplied with a dynamic factor, which takes 
into account the dynamic loading due to passing traffic. The factor is determined 
with equation [2], which originates from NS-guideline 1008 (9), and is different from 
the dynamic factor in the Eurocode. For bridge A and B a value of respectively 
1,195 and 1,155 is found. 
 
 

1,10 ≤ 1 +
10 ∗ (1,2 − 𝑑)

20 + 𝐿
≤ 1,50 

 

[2] 

Where: 
𝐿 = Span of the bridge between the supports 
𝑑 = Height of the ballast bed measured from the bottom of the sleeper 

 
According to the design reports the VOSB 150 is the governing load model and the 
other two load models do not need to be considered. By using influence lines, the 
most unfavourable position of VOSB 150 on the bridge is established.  
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2.4.2 Load models Eurocode 

Eurocode 1 (10) specifies three different load models for railway traffic that can be 
applied on a bridge: 

• Load model 71: Represents loading on the bridge due to normal railway 
traffic. 

• SW/0: Represents normal traffic on a bridge with a continuous span.  

• SW/2: Represents heavy railway traffic on a bridge. 
 
Because the two considered bridges are simply supported, only load model 71 and 
SW/2 are applicable.  

 

Figure 9: Load model 71 

 

Figure 10: Load model SW/0 

 

Figure 11: Load model SW/2 

The dynamic factor for a carefully maintained railway track is determined with 
equation [3]. For bridge A and B a dynamic factor of respectively 1,136 and 1,077 is 
found. Relatively seen this leads to a decrease in dynamic loading of 5-7% 
compared to the VB 74.  
 

Φ =
1,44

√𝐿Φ − 0,2
− 0,82 

 

[3] 

 

Where: 
𝐿Φ = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒 6.2 𝑖𝑛 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 1 

Besides dynamic loading, load model 71 and SW/0 are multiplied with a factor 𝛼. 
This factor takes into account the traffic that is either heavier or lighter than 
normal traffic. A value of 1,21 for 𝛼  is specified in the Dutch National Annex to 
Eurocode 1 (11).  
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The finite element program SCIA Engineer is used to find the most unfavourable 
position of LM71 and SW/2 on both bridges (Appendix C). The influence lines for 
bending, shear and torsion are presented in Figure 12 for a section at 0,8d. The 
most unfavourable position of LM71 and SW/2 on bridge A are as follows: 
 

• LM71: Positioning the group of concentrated loads at the start of the bridge 
generates maximum torsion. The distributed load of 80 kN/m is then best 
positioned between the end of the concentrated loads and the other support, 
in order to maximize shear and bending. 

• SW/2: The minimum length of this load model is 25 meters and is therefore 
best positioned at the start of the bridge to maximize torsion and until the 
end support to maximize bending and shear.  

 
 

 
 

Figure 12: Bridge A: Most unfavourable position of LM71 (left) and SW/2 (right) at a section 0,8d 
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2.4.3 Load combinations in the VB 74 

Part A of the VB 74 (12) defines the load combinations at serviceability and ultimate 
limit state: 
 

𝑄𝑑,𝑡𝑜𝑡 = 𝛾 ∗ 𝑄𝑘,𝑡𝑜𝑡 = 1,0 ∗ 𝑄𝑘,𝑡𝑜𝑡 

 
𝑄𝑑,𝑡𝑜𝑡 = 𝛾 ∗ 𝑄𝑘,𝑡𝑜𝑡 = 1,7 ∗ 𝑄𝑘,𝑡𝑜𝑡 

Serviceability limit state 

 

Ultimate limit state 

 
The design load (𝑄𝑑,𝑡𝑜𝑡) is a product of the safety factor and a combination of all 

loads (𝑄𝑘,𝑡𝑜𝑡). The value for the safety factor at serviceability and ultimate limit state 

is respectively 1,0 and 1,7. In addition to the load combination it is important to 
know which limit state is considered for the performed checks. An overview of the 
checks and their corresponding limit states is therefore presented in Table 4.   
 
Table 4: Limit states of the three shear resistance checks (VB 74) 

Shear resistance check State 

Shear tension failure SLS 

Reinforcement capacity ULS  

Fatigue SLS 

 
 

2.4.4 Load combinations in the Eurocode 

A fundamental difference between the Eurocode and the VB 74 lies within the usage 
of safety factors. The Eurocode maintains a combination of partial load and 
material safety factors. For example at ultimate limit state, the material factors for 
concrete, reinforcement and prestress steel can be derived from the Dutch National 
Annex to Eurocode 2 (13), see Table 5.  
 
Table 5: Partial material factors (ULS) 

Concrete Reinforcement Prestress steel 

𝛾𝑐 = 1,50 𝛾𝑠 = 1,15 

 
𝛾𝑝 = 1,10 

 

 
The risk of shear tension failure and the capacity of the reinforcement are checked 
at ULS. Eurocode 0 (14) considers two load combinations in this state, one where 
permanent loads are governing (6.10a) and another where the variable actions on 
the structure are governing (6.10b).  
 
 

𝛾𝐺 ∗ 𝐺𝑘 + 𝛾𝑄 ∗ 𝜓0 ∗ 𝑄𝑘 + 𝛾𝑃 ∗ 𝑃𝑘 

 

𝜉𝛾𝐺 ∗ 𝐺𝑘 + 𝛾𝑄 ∗ 𝑄𝑘 + 𝛾𝑃 ∗ 𝑃𝑘 

 
 

[6.10a] 

 
 

[6.10b] 
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The Dutch National Annex to Eurocode 0 (15) contains a table which defines the 
partial load factors for a number of different load cases at ULS. The values for a 
railway bridge in consequence class 3 are summarized in Table 6. The only missing 
factor is the one that accounts for simultaneous action, table A2.3 in Eurocode 
shows that a value of 0,80 may be taken for 𝜓0. 
 
Table 6: Partial load factors for a railway bridge in CC3 (ULS) 

Type of loading Load factor 6.10a Load factor 6.10b 

Self-weight 

LM71 

SW/2 

Prestress 
Support-settlement 

𝛾𝐺 = 1,40 

𝛾𝑄 = 1,50 

𝛾𝑄 = 1,25 

𝛾𝑃 = 1,00 

𝛾𝑠𝑝 = 1,20 

𝜉𝛾𝐺 = 1,25 

𝛾𝑄 = 1,50 

𝛾𝑄 = 1,25 

𝛾𝑃 = 1,00 

𝛾𝑠𝑝 = 1,20 

 
The fatigue resistance calculation is performed at ULS, but in this case all partial 
load factors are taken equal to 1,0. Additionally the OVS (regulations from Prorail) 
requires that the factor 𝛼, which takes deviations from normal traffic into account, 
should be taken equal to 1,0 as well. Ultimately, a characteristic load combination 
is considered in the fatigue resistance calculation: 
 

𝛾𝐺 ∗ 𝐺𝑘 + 𝛾𝑄 ∗ 𝑄𝑘 + 𝛾𝑃 ∗ 𝑃𝑘 

 
= 𝐺𝑘 + 𝑄𝑘 + 𝑃𝑘 

 
 

ULS Characteristic  

An overview of the checks and their corresponding limit states is presented in  
Table 7.  
 
Table 7: Limit states of the three shear resistance checks (Eurocode) 

Shear resistance check State 

Shear tension failure ULS 

Reinforcement capacity ULS  

Fatigue ULS characteristic 

(𝛾𝐺 = 𝛾𝑄 = 𝛾𝑃 = 1,0) 

 

 
Evidently the difference in load models, factors and combinations justifies a 
reassessment on the shear resistance of the through girder.  
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3 Analytical solution 
One of the main objectives of this master thesis is to understand the force 
distribution in the through bridge. The best way to explain this is by determining 
the forces analytically. The first part of this paragraph elaborates on the forces one 
can expect in a through bridge and second part explains in detail how torsion, 
suspension forces and clamping moments can be evaluated.  
 

3.1 Distribution of forces 
Its assumed a concentrated load is applied on the middle of the floor. The load 
spreads at an angle of 45° outwards towards the girders and becomes a distributed 
load. The interaction between the floor and the girder creates a reactional force 
which is called the suspension force. This force transfers the applied vertical 
loading of the floor into the girder. The girder subsequently transfers the applied 
vertical loading in the longitudinal direction towards the supports, which means the 
suspension force generates a shear force and a bending moment in the girder 

(Figure 13).  
   

 

Figure 13: Suspension force due to concentrated load 

Because the floor is assumed to be fully restrained by the girder, a second 
reactional force is present. Due to the rigid connection a bending moment is 
generated called the clamping moment. As the girder is free to rotate around the 
longitudinal axis, this moment causes a rotation of the girder and the floor (Figure 
14).  

 

Figure 14: Clamping moment due to concentrated load 
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The self-weight of the bridge causes a continuous constant loading. Every part of 
the girder will undergo exactly the same rotation. As the girder is nowhere restricted 
to rotate about its longitudinal axis, no torsion is induced.  
 
But if a train passes over the bridge, the loaded parts of the floor will deflection and 
the girder will undergo a certain rotation. Conversely, the unloaded parts of the 
bridge will hardly deflect nor rotate. This effect, where the unloaded parts of the 
bridge counteract the rotation of the loaded parts, generates torsion in the girder.   
 
Analytically determining the shear force and bending moment is basic knowledge of 
mechanics and is not further explained. Yet the derivations of torsion, suspension 
force and clamping moment are somewhat more complex and are therefore 
discussed in the next paragraphs. 
 

3.2 Suspension force 
Figure 15 presents the top view of a through bridge. Clearly visible are the girder, 

the floor and the railway track which is mounted on the floor. When a train passes, 
the track is loaded with axle loads (in this case taken as a distributed line loads) 
which spread at angle of 45° outwards towards the girders. 
 

 

Figure 15: Top view of a through bridge, indicating the distribution of loads 
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The bending stiffness of the floor is assumed to be insignificant in longitudinal 
direction, but significant in transverse direction. The floor can therefore be divided 
into strips with a length of 1,0 meter. Figure 16, a typical cross-section of the 
bridge, depicts a typical strip of length 1,0 meter. The suspension force is found by 
dividing the applied loading on the track by the distributed length of the suspension 
force.  
 

𝑄𝑦𝑦 =
0,5𝑞 ∗ 𝑙𝑙𝑜𝑎𝑑

𝑙 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒

 
 

[4] 

 

 

Figure 16: Transverse section of through bridge with loading on the railway track 

 

3.3 Torsion 
3.3.1 Primary load 

The applied vertical load on the strip causes besides a suspension force an 
additional load, namely the primary load denoted by 𝑚𝑝𝑙. If no loading is present at 

the strip, the primary load goes to zero. Yet the clamping moment, which is the 
reactional moment between the girder and the floor, does not go to zero.  
This difference is explained by Figure 17; section A has a primary load whereas 
section B does not. The primary load is only present for strips with loading, where 
the clamping moment is the reactional force in the girder and spreads over the 
entire length of the bridge.  
 

 
 

Figure 17: Primary load (left) and  clamping moment (right) due to loading on the bridge 
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3.3.2 Differential equation and general solution 

By using the master thesis of R.T.J. de Groot (4) a differential equation for torsion 
in the through girder is derived. The floor is divided into elements with a length 𝑑𝑥 
and the following assumptions are made: 
 

1. The torsional stiffness of the floor is neglected in both the longitudinal and 
transverse direction. 

2. The load on the floor is distributed predominately in the transverse direction. 
Hence only the bending stiffness of the floor in transverse direction is 
assumed to be significant. 

3. The connection between the floor and the main girder is assumed to be in the 
centre line of the main girder. The floor prevents the girder from bending in 
the transverse direction. 

4. The supports are considered in the centre of the girder and they do not 
restrain a rotation about the longitudinal axis. 

5. There is no difference in deflection between the two girders. 

6. Only pure torsion is considered, no warping. 
 
Figure 18 considers an element with length 𝑑𝑥, where a load on the floor generates 

a clamping moment (𝑚𝑥𝑥) which leads to a change in rotation (𝑑𝜑). A set of 
kinematic, constitutive and equilibrium equations is combined to derive a general 
differential equation for torsion.  

 
Figure 18: Element with length dx 

 
𝑑2𝑀𝑡

𝑑𝑥2
− 𝜔2𝑀𝑡 −

𝑑𝑚𝑝𝑙

𝑑𝑥
= 0 

[5] 

 

Where: 
𝑀𝑡 =              Torsion 

𝑚𝑝𝑙 =            Primary load 

𝜔2 = 𝑠𝑝𝑙/𝐺𝐼𝑡    Ratio between bending stiffness of the floor and torsional stiffness of the girder 
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The differential equation is solved by using a homogeneous and particular solution. 
The function contains constants which can be solved by determining the boundary 
conditions for specific cases.  
 

𝑀𝑡(𝑥) = 𝐺𝐼𝑡𝜔 ∗ (𝐶1 sinh 𝜔𝑥 + 𝐶2 cosh 𝜔𝑥) [6] 

 

 

3.3.3 Torsion due to a train 

Imagine a train which is about to leave the bridge, but the last carriage is still 
positioned on the bridge. Schematically this would look like Figure 19. In order to 
derive a function for torsion in girder I and II, two transitional conditions and two 
boundary conditions are needed.  
 

 
 

Figure 19: Train positioned at the right end of the bridge 

 
Directly above the supports, the girder is not restricted and free to rotate. This 
means that torsion always equals zero above the supports. Thus the two boundary 
conditions for girder I and II, are respectively zero torsion at 𝑥 = 0 and 𝑥 = 𝑙. 
 
BC1: 𝑀𝑡,𝐼(0) = 0 

 
BC2: 𝑀𝑡,𝐼𝐼(𝑙) = 0 

 
Because the girder is split into two, transitional conditions are needed as well.  
In the transitional section (𝑥 = 𝑙1), torsion and rotation in girder I should equal 
torsion and rotation in girder II. 
 
TC1: 𝜑𝐼(𝑙1) = 𝜑𝐼𝐼(𝑙1) 
 
TC2: 𝑀𝑡,𝐼(𝑙1) = −𝑀𝑡,𝐼𝐼(𝑙1) 

 
Torsion in girder I (0 ≤ 𝑥 ≤ 𝑙1) and II (𝑙1 < 𝑥 ≤ 𝑙) are defined by: 
 

𝑀𝑡,𝐼(𝑥) =
𝑚𝑝𝑙

𝜔
(

tanh 𝜔𝑙1 ∗ tanh 𝜔𝑙2

tanh 𝜔𝑙1 + tanh 𝜔𝑙2

) (
sinh 𝜔𝑥

sinh 𝜔𝑙1

) 

 

𝑀𝑡,𝐼𝐼(𝑥) =
𝑚𝑝𝑙

𝜔
(

tanh 𝜔𝑙1 ∗ tanh 𝜔𝑙2

tanh 𝜔𝑙1 + tanh 𝜔𝑙2

) (cosh 𝜔(𝑥 − 𝑙1) −
sinh 𝜔(𝑥 − 𝑙1)

tanh 𝜔𝑙2

) 

 

 

[7] 

 

 

[8] 
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The course of the torsion is graphically presented by Figure 20. The horizontal axis 
represents the x-coordinate along the girder whereas the vertical axis holds an 
expression for the ratio between the actual present torsion (𝑀𝑡(𝑥)) and the applied 
primary load (𝑚𝑝𝑙). From equation [7] and [8] it can be derived that the maximum 

torsion, found at midspan, goes to: 𝑚𝑝𝑙/2𝜔. This also becomes visible from the 

envelope in Figure 20 which is plotted with 𝑚𝑝𝑙 = 1 and 𝜔 = 0,24.  

 

 
 

Figure 20: Torsion in the girder due to a train load at the right end 

 

3.4 Clamping moment 
A clamping moment generates a change in rotation and thus a change in torsion. In 
other words the derivative of torsion is equal to the clamping moment. 
  

𝑚𝑥(𝑥) =
𝑑𝑀𝑡(𝑥)

𝑑𝑥
 

 

[9] 

 

 
The function for a train load at the right edge of the bridge, can be derived by taking 
the derivatives of equation [7] and [8]. 
 
 

𝑚𝑥,𝐼(𝑥) =
𝑑𝑀𝑡,𝐼(𝑥)

𝑑𝑥
= 𝑚𝑝𝑙 (

tanh 𝜔𝑙1 ∗ tanh 𝜔𝑙2

tanh 𝜔𝑙1 + tanh 𝜔𝑙2

) (
cosh 𝜔𝑥

sinh 𝜔𝑙1

) 

 

𝑚𝑥,𝐼𝐼(𝑥) =
𝑑𝑀𝑡,𝐼𝐼(𝑥)

𝑑𝑥
= 𝑚𝑝𝑙 (

tanh 𝜔𝑙1 ∗ tanh 𝜔𝑙2

tanh 𝜔𝑙1 + tanh 𝜔𝑙2

) (sinh 𝜔(𝑥 − 𝑙1) −
cosh 𝜔(𝑥 − 𝑙1)

tanh 𝜔𝑙2

) 

 

 

[10] 

 

 

[11] 
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The clamping moment in the girder is graphically presented by Figure 21. The 
vertical axis is the ratio between clamping moment (𝑚𝑥𝑥(𝑥)) and the primary load 
(𝑚𝑝𝑙). Remarkable is that the clamping moment is negative under loading and has a 

sign switch at the interface loaded-unloaded. This can be explained from the fact 
that the negative clamping moment under loading is counteracted by the unloaded 
parts of the bridge. Therefore the difference between the maximum and minimum 
clamping moment is equal to the applied primary load. 
 

 
 

Figure 21: Clamping moment in the girder due to train load at the right end 

 
The derivation of the differential equation and the corresponding graphs for torsion 
and clamping moment are discussed in detail in Appendix A.  
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4 Shear tension failure 
In chapter 4 to 6 the shear resistance of the two fully prestressed through bridges, 
designed according to the VB 74, are investigated based on a number of Eurocode 
shear resistance checks. The final goal is to check whether the structural safety of 
these existing structures is comprised by the change in load models and calculation 
procedures of the Eurocode. This particular chapter will focus on the risk of shear 
tension failure.  
 
Characteristic for the through bridge is the combination of shear, torsion and 
bending. At a section, just above the connection between the floor and the girder, 
the combination of normal and shear stresses is expected to be governing (Figure 
22). This combination of stresses is called the principal stress and the maximum 
tensile principal stress can cause shear tension failure. The normal and shear 
stresses are induced by the following loads: 
 

• Horizontal normal stress (𝜎𝑥𝑥): Due to normal forces and bending from 
external loads, prestress and restrained deformations. 

• Vertical normal stress (𝜎𝑦𝑦): Due to suspension forces and clamping moments 

originating from loads on the floor.  

• Shear stress (𝜏𝑥𝑦): Due to torsion and shear from external loads, prestress 

and restrained deformations.  
 

 
Figure 22: Critical location for shear tension failure 

This chapter focuses on determining the normal and shear stress and eventually 
finding the maximum tensile principal stress. Ultimately the maximum stress is 
checked against the tensile design strength of concrete to assess the risk of shear 
tension failure. 
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4.1 Horizontal normal stress 
The horizontal normal stress is due to bending and prestress. Using the formula’s 
in Figure 23 the forces are converted into a normal stress, causing a compressive 
stress at the critical location. One should keep in mind that the horizontal prestress 
force is introduced above the supports and from there spreads at angle of 45°. When 
determining horizontal normal stress one should take into account the position of 
the considered section and the load spread of the prestress over the cross-section of 
the bridge (chapter 3, Appendix C). 
 

 
 

Figure 23: Horizontal normal stress due to bending and prestress 

 

4.2 Vertical normal stress 
The vertical normal stress is caused by the suspension force and the clamping 
moment. Because the transfer of forces takes places at the point where the floor is 
connected to the girder, both forces get a certain eccentricity with respect to the 
centre of the girder. The suspension force generates an additional bending moment, 
whereas the clamping moment can be freely moved to the centre of the girder. 
Consequently the maximum vertical normal stress can be found at the inside of the 
girder due to the additional bending moment.  
 

 

Figure 24: Vertical normal stress due to suspension force and clamping moment  

 
 



4.3 Shear stress  Shear tension failure 

26 
 

This is a linear elastic calculation in which the girder is assumed to remain 
uncracked. The entire cross-section will therefore contribute to the load transfer of 
the suspension force and clamping moment. A ratio is introduced which describes 
the distribution of vertical normal stress over a section above (𝐴1) and below (𝐴2) 
the throat. Once the girder is cracked, for example in a stirrup calculation, this 
distribution is no longer valid. 
 

 
 

Figure 25: Load distribution of vertical normal stress in LE calculation 

 

4.3 Shear stress 
Shear stress in the girder is caused by shear forces and torsion from external 
loading. The shear forces generates a stress which is zero at the top and the bottom 
and has a maximum at the neutral axis. But from the outside to the inside of the 
girder the stresses remain uniform.  
The stress due to torsion is determined by simplifying the girder into a thin walled 
box girder. Unlike the shear force, this shear stress is constant with height and 
rotates with the direction of the applied torsional moment. Ultimately the maximum 
shear stress for the critical section is found at the inside of the girder. 
 

 

Figure 26: Shear stress due to shear and torsion 
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4.4 Principal stress 
An element under stress has at least three planes, called the principal planes. At 
each plane a normal vector acts called the principal direction. The stresses acting 
parallel to the normal vectors are the so called principal stresses. Each stressed 
element has three principal stresses, namely the tensile and compressive principal 
stress and the maximum shear stress (where the normal stresses equal zero). The 
principal stresses are determined using Mohr’s circle. Respectively the tensile and 
compressive stress are expressed by equations [12] and [13]. 
 

𝜌1 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦

2
+ √(

𝜎𝑥𝑥 − 𝜎𝑦𝑦

2
)

2

+ 𝜏𝑥𝑦
2 

 

𝜌2 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦

2
− √(

𝜎𝑥𝑥 − 𝜎𝑦𝑦

2
)

2

+ 𝜏𝑥𝑦
2 

 

 

[12] 

 

 

[13] 

 

 

 
Equation 6.4 in Eurocode 2 (16) expresses the resistance of a structure against 
shear tension failure as: 
 
 

𝑉𝑅𝑑,𝑐 =
𝐼 ∗ 𝑏𝑤

𝑆
√(𝑓𝑐𝑡𝑑)2 + 𝜎𝑐𝑝 ∗ 𝑓𝑐𝑡𝑑 

[14] 

The maximum allowable principal stress is not explicitly mentioned in the 
Eurocode. By replacing the compressive prestress (𝜎𝑐𝑝) with the normal stress (𝜎) 

and converting the shear force (𝑉𝑅𝑑,𝑐) into a stress (𝜏𝑥𝑦), a maximum allowable 

tensile principal stress can be found: 
 

𝑓𝑐𝑡𝑑 =
𝜎

2
+ √(

𝜎

2
)

2

+ 𝜏𝑥𝑦
2 

 

[15] 

 

 
The girder is constructed with B45, which according to the design report has a 
characteristic tensile strength of 2,0 𝑁/𝑚𝑚2. Consequently the maximum allowable 
tensile stress at ultimate limit state is equal to 𝑓𝑐𝑡𝑑 = 2,0/1,5 = 1,33 𝑁/𝑚𝑚2.  
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4.4.1 Eurocode 

In the design reports the maximum tensile principal stress is found at 0,8d from 
the support for bridge A and above the support for bridge B. For the calculation in 
the Eurocode, the same locations are assumed to be critical. Additionally the 
combination of shear force and torsion are quite likely to be at a maximum at these 
locations. 
 
Paragraph 2.4.2 presents SCIA generated influence lines in order to establish the 
most unfavourable position of LM71 and SW/2. The top left and right images of 
Figure 27 summarize the positions for respectively LM71 and SW/2 that result in 
maximum loading (at a section 0,8d) in bridge A. The bottom image corresponds 
with the maximum negative load case (SW/2 min.). By fully loading the cantilevers, 
negative torsion and shear is generated, which in combination with the prestress 
load case may lead to a critical principal stress. 
  

 
 

Figure 27: Bridge A: Position of LM71 and SW/2 generating the most unfavourable loading at section 0,8d 

 
Table 8 shows the maximum tensile principal stresses and the unity checks for 
bridge A and B. For both bridges, load model 71 in combination 6.10b is governing. 
Respectively a unity check of 0,97 and 0,77 for bridge A and B is found. These 
values are acceptable and according to the Eurocode there is no risk of shear 
tension failure. A more detailed version of this calculation is presented in Appendix 
C. 
 
Table 8: Eurocode tensile principal stresses and unity checks for a section at 0,8d (A) and above the support (B) 

 

  

 ρ1 [N/mm2] U.C.  ρ1 [N/mm2] U.C.

LM71 Max. 1,29 0,97 1,02 0,77

SW/2 Min. 0,97 0,73 0,88 0,66

Self-weight + prestress 0,11 0,08 0,13 0,10

SW/2 Max. 1,24 0,93 0,96 0,72

Bridge B

6.10b | support
Load combination

Bridge A

6.10b | 0,8d
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4.4.2 VB 74 

The design reports considers multiple positions of load model VOSB 150. But only 
two positions are governing for the check on shear tension failure. The maximum 
loading due to VOSB 150 is found, when the group of concentrated loads is 
positioned at 1/3𝐿 and the distributed load runs between the supports. The 
maximum negative load combination (VOSB 150 min.) is found, when the 
cantilevers and the run-up plates are fully loaded by the concentrated and 
distributed loads (Figure 28). Eventually the loads in the design reports are 
evaluated with an ANSYS model.  
 
 

 
 

Figure 28: Bridge A: Positions of VOSB 150 causing maximum and minimum loading at 0,8d 

As mentioned in paragraph 2.3.1 a structure is able to resist shear tension failure 
(according to the VB 74) when the maximum tensile principal stress remains 
smaller than half the characteristic tensile strength: 0,5 ∗ 𝑓𝑐𝑡𝑘;0,05 = 1,0 𝑁/𝑚𝑚2. As 

presented in Table 9 the unity check’s for shear tension failure stay well within the 
acceptable limits.  
 
Table 9: VB 74  tensile principal stresses and unity checks for a section at 0,8d (A) and above the support (B) 

 
 
In contrast to the Eurocode calculation, the maximum tensile principal stress in 
both bridges is found when the cantilevers are fully loaded. An explanation for this 
is found in the design report. The introduction of prestress load in ANSYS leads to 
large tensile stresses and strains in the first part of the floor, causing rotations of 
the girder. This rotation generates torsion of a much larger magnitude than 
expected in reality. Now because torsion due to prestress and the minimum load 
combination act in the same direction, the governing tensile principal stress is 
found when the cantilevers are fully loaded by VOSB 150. Even though it is 
acknowledge in the design report that the values for torsion due to prestress are 
unrealistically high, it is assumed the values will form an safe upper limit (Appendix 
B). 
 
It appears the two through bridges are designed with possible conservative values 
for torsion. It may therefore be interesting to verify the risk of shear tension failure 
in a VB 74 bridge which is designed more accurately.  

Load combination  ρ1 [N/mm2] U.C.  ρ1 [N/mm2] U.C.

VOSB 150 Max. 0,60 0,60 0,59 0,59

VOSB 150 Min. 0,93 0,93 0,88 0,88

Self-weight + Prestress 0,51 0,51 0,67 0,67

0,8d supportLocation

Bridge A Bridge B
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5 Reinforcement 
A crucial difference between the VB 74 and the Eurocode is the possibility to 
combine the shear resistance of concrete and stirrups. In the days of the VB 74 this 
was allowed, but with the arrival of the Eurocode it was no longer. The Eurocode 
assumes the shear resistance of the concrete is zero if it’s standalone contribution 
is insufficient. Meaning that once stirrups are required, the total applied shear 
stress is controlled by the stirrups.    
 

𝑉𝐸𝑑

𝑉𝑅𝑑,𝑐

+
𝑇𝐸𝑑

𝑇𝑅𝑑,𝑐

 
< 1,0 
 

> 1,0 

Minimum amount of stirrups suffices 

 
Total shear stress controlled by the applied stirrups 

 
 

𝑉𝐸𝑑

𝑉𝑅𝑑,𝑚𝑎𝑥

+
𝑇𝐸𝑑

𝑇𝑅𝑑,𝑚𝑎𝑥

 
< 1,0 

 

> 1,0 

Capacity of the compressive diagonal sufficient 

 

Capacity of the compressive diagonal insufficient 

 
 
The first rule determines, for a combination of shear and torsion, whether or not 
shear reinforcement is necessary. The second one checks if the capacity of the 
diagonal is sufficient. Paragraph 5.1 and 5.2 determine the required amount of 
shear and longitudinal reinforcement (in the two bridges) according to the 
Eurocode. Paragraph 5.3 presents an overview of the VB 74 reinforcement 
calculations and the corresponding unity checks. And a detailed version of these 
calculations can be found in appendix D. 
 

5.1 Shear reinforcement 
With the application of stirrups the internal force distribution changes and is best 
described by the truss analogy. A compressive diagonal forms under an angle 𝜃 
intersecting multiple stirrups. The vertical component of the diagonal is taken up 
by the stirrups, whereas the horizontal components result in a compression zone in 
the concrete and a tensile force in the longitudinal reinforcement.   
 

 

Figure 29: Truss analogy – Compressive diagonal intersecting multiple stirrups 
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Bridge A is equipped with an outer and inner stirrup, whereas bridge B only has 
one stirrup. The NS-guideline 1015 (17) defines a number of zones in the girder 
which have a specific load transferring function: 
 

• Zone I:   Shear and torsion 

• Zone II:  Shear 

• Zone III: Shear, torsion and suspension loads 
 

 
Figure 30: Shear reinforcement zones for bridge A (left) and bridge B (right) 

 
The shear force causes a constant stress over the width of the critical section. In 
line with the guideline it is expected that 50% of the load goes through the outer 
stirrup and the other 50% through the inner stirrup.  
 
Torsion creates a constant shear stress which rotates with the direction of the 
applied torsional moment. Since the girder is simplified to a structure with thin 
walls, the accompanying stresses are only present in zone I and III. For bridge A, 
this means only the outer stirrups transfers the shear stress due to torsion.  
 

 

Figure 31: Shear stress in the stirrups due to shear and torsion 

The required amount of shear reinforcement is determined per unit length, by 
dividing the load with the horizontal length of the diagonal (𝑧 ∗ cot 𝜃). Respectively 
the required amount of reinforcement (according to the Eurocode) is defined by 
equation [16] and [17] for shear and torsion.  

 
𝐴𝑉

𝑠
=

𝑉𝐸𝑑

𝑧 ∗ cot 𝜃 ∗ 𝑓
𝑦𝑤𝑑

 

 
𝐴𝑇

𝑠
=

𝑇𝐸𝑑

2 ∗ 𝐴𝑘 ∗ 𝑓
𝑦𝑤𝑑

∗ cot 𝜃
 

 

 

[16] 

 
 

 

[17] 
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The NS-guideline 1015 assumes all load transfer from the floor to the girder occurs 
in zone III. Therefore one leg of the outer stirrup should be able to withstand the 
vertical normal stresses caused by the suspension force and the clamping moment.  
Additionally the guideline sets that the suspension reinforcement should be 
designed using a yield strength of 220 MPa, even though stirrups of FeB500 are 
applied. The explanation for this lies in the fact that a great part of the loading in 
the suspension reinforcement is due to mobile loading, making the reinforcement 
more sensitive to fatigue. By limiting the maximum yield stress to 220 MPa there 
should be sufficient resistance against fatigue loading. 
 

 
 

Figure 32: Vertical normal stress in the stirrups due to suspension force and clamping moment 

The suspension force and clamping moment act at the upper side of the connection 
between the floor and the girder. At ultimate limit state, the girder is assumed as 
cracked, meaning the stirrups should be able to transfer 100% of the suspension 
loads from the floor into the girder. Initially it is assumed that the suspension loads 
are transferred by the outer stirrup leg only. But if the capacity is insufficient, the 
ductile outer stirrup (FeB500) will start to yield and a part of the loading is 
transferred to the inner stirrup leg. In that case a distribution over the outer and 
inner stirrup leg may be taken into account for the suspension loads. 
 
Equation [18] and [19] can be used to determine the required amount of shear 
reinforcement for the suspension force and the clamping moment. Since the loads 
are obtained using strips with a length of 𝑑𝑥 = 1,0 𝑚, the required amount of 

reinforcement is found by dividing the loads by a 1000 𝑚𝑚 and the reduced yield 
strength. Additionally the clamping moment is divided by internal lever 𝑧1, to 
transfer the bending moment into a shear force.   
 

 
𝐴𝑄

𝑠
=

𝑄𝑦𝑦

1000 ∗ 𝑓
𝑦𝑘

 

 
𝐴𝑚

𝑠
=

𝑚𝑥𝑥/𝑧1

1000 ∗ 𝑓𝑦𝑘

 

 

 

 

[18] 

 

 

[19] 

 

The angle of the diagonal (𝜃) can be freely chosen between 21,8° and 45°. Increasing 
the angle maximizes the load on the shear reinforcement and minimizes the load on 
the longitudinal reinforcement. Decreasing the angle has the opposite effect. For 
both bridges a section near the supports and at midspan are considered. The 
critical loading near the supports is mainly due to torsion and shear, whereas at 
midspan it is due to bending. The optimal capacity of the shear and longitudinal 
reinforcement is reached when an angle of 21,8° is used near the support and an 
angle of 45° is used at midspan. 
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The outer stirrup in bridge A does not have sufficient capacity to transfer all 
suspension loads. Therefore the calculations on the shear reinforcement are 
performed with a distribution of 65% and 35% of the suspension loads over the 
outer and inner stirrup respectively. By comparing the total required amount of 
shear reinforcement according to the Eurocode to the applied amount of shear 
reinforcement (VB 74), a unity check is established. Bridge A holds a value of 1,01 
and 1,00 for respectively the outer and inner stirrup, where bridge B only has one 
stirrup which fulfils the requirements with a unity check of 0,90 (Table 10).  
 
Even though the shear reinforcement is subjected to larger loads in the Eurocode, 
the checks for the applied amount of shear reinforcement stay just within the 
acceptable limits. Especially the possibility to vary the angle of the compressive 
diagonal and redistribute the suspension loads over the outer and inner stirrup, 
gives the opportunity to maximize the capacity of the present reinforcement. 
 
Table 10: Eurocode unity checks for shear reinforcement in bridge A and B 

 

Type of reinforcement 
 

Bridge A Bridge B 

U.C. @ 0,8d 

 

U.C @ 0,5L U.C. @ support 

 

U.C @ 0,5L 

𝜃 = 21,8° 𝜃 = 45° 𝜃 = 21,8° 𝜃 = 45° 

Outer stirrup 1,01 0,16 0,90 0,36 

Inner stirrup 1,00 0,28  

 
 

5.2 Longitudinal reinforcement 
In paragraph 5.1 the truss analogy explained how a shear force creates a tensile 
force in the longitudinal reinforcement. Besides shear the girder is subjected to a 
prestress and an applied bending moment due to external loading. The bending 
moment causes an additional tensile force in the longitudinal reinforcement, 
whereas the prestress increases the tensile capacity of the reinforcement in two 
ways. Firstly, the prestress subjects the reinforcement to a compressive stress 
leading to larger loads before the reinforcement starts to yield. Secondly, when 
tendons are present in a tension zone, they contribute to the tensile capacity by 
withstanding tensile forces until yielding (𝑓𝑝𝑑).  

 
 

Figure 33: Shear and bending cause a tensile force in the longitudinal reinforcement and tendons 
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Since this check is performed at ultimate limit state, the girder is assumed to be 

cracked. Due to cracking the tensile strength of the concrete reduces to zero and 

possible tensile stresses need to be transferred by a combination of tendons and 

longitudinal reinforcement. This approach changes the internal force distribution as 

explained by the next section.  

A section at 0,8d from the support is considered where the prestressing tendons are 
located at various heights across the section (Figure 34). When the girder cracks the 
compression zone will get a certain height (𝑥) and compressive strain (𝜀𝑐). The 
strains in prestressing tendons and reinforcement are rewritten and expressed in 
terms of 𝑥 and 𝜀𝑐. With the Young’s Modulus and cross-sectional area these strains 
are converted into forces. Eventually two equations guaranteeing equilibrium of 
horizontal forces and bending moments are solved in order to find suiting values for 
the two unknowns. 
 

 
 

Figure 34: Stress and strain diagram for a section at 0,8d loaded in the elastic stage (top) and              
elastic-plastic stage (bottom) 

 
Based on the obtained concrete strain and height of the compression zone, three 
stress-strain diagrams are possible: 

1. Elastic (𝜀𝑐,𝑡𝑜𝑝 ≤ 1,75‰): Up to a strain of 1,75‰ concrete behaves linearly elastic. 

The stresses and strains have a linear course and the maximum stress is equal 
to the compressive design strength (𝑓𝑐𝑑). 

2. Elastic-plastic (1,75‰ < 𝜀𝑐,𝑡𝑜𝑝 ≤ 3,5‰): Beyond a strain of 1,75‰ the concrete 

starts to deform plastically and the maximum stress remains equal to the 
concrete design strength. A strain of 3,5‰ is the value for which a structure is 
about to fail. For this strain the height of the compression zone is limited by 

the Eurocode and the rotational capacity should be ensured. But because the 
prestress and reinforcement are most likely to yield at a lower strain, the yield 
strain of steel is maintained as the maximum allowable. 

3. Compression only (𝑥 > ℎ𝑔𝑖𝑟𝑑𝑒𝑟): When the height of the compression zone 

exceeds the height of the cross-section, only compressive stresses are present 
in the girder. Naturally the unity check for longitudinal reinforcement goes to 
zero.  
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Ultimately the concrete strain and height of the compression zone are used to 
calculate the additional tensile force in the longitudinal reinforcement and tendons. 
The unity checks according to the Eurocode are presented in Table 11 and are well 
within the acceptable limits. Noteworthy is the constant value for prestressing steel. 
This is due to the fact that the additional tensile stress is relatively small compared 
to the yield stress. Hence the unity check holds a base value which is roughly equal 
to: 𝜎𝑝∞/𝑓𝑝𝑑. 

 
Table 11: Eurocode unity checks for longitudinal reinforcement and prestress in bridge A and B 

 

Type of reinforcement 

 

Bridge A Bridge B 

U.C. @ 0,8d 

 

U.C @ 0,5L U.C. @ support 

 

U.C @ 0,5L 

𝜃 = 21,8° 𝜃 = 45° 𝜃 = 21,8° 𝜃 = 45° 

Longitudinal reinforcement 0,26 0,18 0,09 0,56 

Prestressing steel 0,71 0,71 0,67 0,71 

 
In paragraph 2.2.3 concerns are addressed regarding the capacity of the 
compressive diagonal. This capacity, depending on the dimension of the girder, 
determines the maximum shear resistance of the through bridges and is therefore 
important to check in the reassessment. Table 12 presents the Eurocode unity 
checks for the capacity of the compressive diagonal, which is most critical for a 
section near the support, but with a maximum of 0,59 stays well within the 
acceptable limits.    
 
Table 12: Eurocode unity checks on the compressive diagonal capacity in bridge A and B 

 

Capacity 

 

Bridge A Bridge B 

U.C. @ 0,8d 

 

U.C @ 0,5L U.C. @ support 

 

U.C @ 0,5L 

𝜃 = 21,8° 𝜃 = 45° 𝜃 = 21,8° 𝜃 = 45° 

Compressive diagonal 0,59 0,11 0,57 0,05 

 
 
 
  



5.3 VB 74  Reinforcement 

36 
 

5.3 VB 74 
This paragraph presents an overview on the VB 74 reinforcement calculations and 
unity checks. With the help of Table 13 a couple of differences, with respect to the 
Eurocode, can be explained:  

• A combination of prestress and stirrup shear resistance is taken into account 
in the VB 74 for the prestressed through bridges. Conversely the Eurocode 
assumes the total applied shear stress is controlled by the stirrups.  

• The VB 74 assumes that only torsion generates an additional tensile forces 
which needs to be transferred by longitudinal reinforcement. The Eurocode 
assumes that this additional tensile force is due to a combination of shear 
and torsion.  

• In case torsion and shear act on a structure simultaneously, the VB 74 
allows one to reduce the combined amount of reinforcement to 85% of the 
separately required amount of reinforcement. The Eurocode does not allow 
such a reduction. 

 
Table 13: Reinforcement calculations in the VB 74  

Design load 
 

Type of reinforcement Formula 

Shear Stirrup  

𝐴𝑉 =
(𝜏𝑉,𝑒𝑑 − 𝜏1𝑝) ∗ 𝑏 ∗ ℎ ∗ 0,9

0,9 ∗ ℎ ∗ 𝑓𝑦𝑤𝑑

 

 

𝜏1𝑝 = 0,15 ∗
𝑃∞

𝐴
 

 

Torsion Stirrup  

𝐴𝑇 =
(𝜏𝑇,𝑒𝑑 − 𝜏1𝑝) ∗ 2 ∗ 𝐴𝑘 ∗ 𝑡

2 ∗ 𝐴𝑘 ∗ 𝑓𝑦𝑤𝑑

 

 

Longitudinal reinforcement  

𝐴𝑇 =
(𝜏𝑇,𝑒𝑑 − 𝜏1𝑝) ∗ 2 ∗ 𝐴𝑘 ∗ 𝑡 ∗ 𝑢𝑘

2 ∗ 𝐴𝑘 ∗ 𝑓𝑦𝑤𝑑

 

 

Shear + Torsion Stirrup  

𝐴𝑉,𝑉+𝑇 = 0,85 ∗ 𝑉𝐸𝑑 −
𝜏𝑉,𝑒𝑑

𝜏𝑉,𝑒𝑑 + 𝜏𝑇,𝑒𝑑

∗ 𝑉1𝑝 

 

𝐴𝑇,𝑉+𝑇 = 0,85 ∗ 𝑇𝐸𝑑 −
𝜏𝑉,𝑒𝑑

𝜏𝑉,𝑒𝑑 + 𝜏𝑇,𝑒𝑑

∗ 𝑇1𝑝 

 

Suspension force Stirrup  

𝐴𝑄 =
𝑄𝑦𝑦

𝑓𝑦𝑘

 

 

Clamping moment Stirrup  

𝐴𝑚 =
𝑚𝑥𝑥

𝑏 ∗ 𝑓𝑦𝑘
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Where: 
𝜏𝑉,𝑒𝑑 

𝜏𝑇,𝑒𝑑 

𝜏1𝑝 

𝐴𝑘 

𝑡 
𝑢𝑘 

𝑉1𝑝 

𝑇1𝑝 

= 
= 
= 
= 
= 
= 
= 
= 

Shear stress due to shear force 

Shear stress due to torsion 

Shear resistance contribution of prestress 

Area enclosed by the fictitious box girder 

Wall-thickness of the fictitious box girder 

Perimeter of the fictitious box girder 

Resistance against shear due to prestress 

Resistance against torsion due to prestress 

 
Table 14 compares the required amount of reinforcement according to the VB 74 
and the applied amount of reinforcement in the form of a unity check. It can be 
concluded that as well the outer stirrup as the longitudinal reinforcement are not 
designed with a large overcapacity, whereas the inner stirrup does have a lot of 
extra capacity. But one should understand that these unity checks do not say 
much. The reinforcement is designed based on the VB 74, which means the applied 

amount of reinforcement will always exceed the required amount. The results from 
the Eurocode are therefore compared to the applied amount of reinforcement rather 
than to these unity checks.   
 
Table 14: VB 74 Unity checks for reinforcement 

 

Type of reinforcement 

Bridge A Bridge B 

U.C. Location U.C.  Location 

Outer stirrup 0,96 0,8d 0,82 support 

Inner stirrup 0,19 0,8d N/A 

Longitudinal reinforcement 0,96 0,8d 0,96 0,5L 
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6 Fatigue 
The bridge is at rest when no train or other variable loads are present. In that case 
the maximum stress in the bridge is formed by a combination of self-weight and 
prestress. But when a train passes over the bridge, the maximum stress increases 
significantly. During the life span of the bridge thousands of trains pass over the 
bridge subjecting it to an even larger number of stress fluctuations. These 
fluctuations can cause small cracks in materials such as steel and concrete. With 
an increasing number of load cycles, small cracks will develop into larger ones 
eventually leading to failure of the structure. This phenomenon is called fatigue.  
 
During the design of the bridges there was little knowledge on fatigue, however a 
stress range limitation on the longitudinal and shear reinforcement was included. 
Compared to the allowable stress ranges in the Eurocode, the recorded values in 
the design reports are significantly higher. Additionally the Eurocode holds a fatigue 

resistance check for concrete, something which is not considered in the design 
reports.  
 
The difference in fatigue resistance calculations methods calls for a reassessment of 
the fatigue resistance of the through girders according to the Eurocode. This 
calculation is briefly explained in paragraph 6.1 to 6.4 and a more detailed version 
can be found in appendix F. In the final paragraph (6.5) of this chapter, the fatigue 
resistance calculations according to the NS-guideline 1016 (18), which is used in 
addition to the VB74, are presented.   
 

6.1 Cracking of the girder 
According to the OVS (19) a prestressed structure should remain uncracked at 
serviceability limit state. The maximum tensile bending stresses in the girders are 
therefore checked for a characteristic, frequent and quasi-permanent load 
combination and should remain below the following limits: 
 

• Quasi-permanent: No tension is allowed in the entire cross-section. 
 

• Frequent: No tensile stresses are allowed in the tendon zone and for the non-
tendon zone the stresses should be limited to: 𝜎𝑏 < 0,5 ∗ 𝑓𝑐𝑡𝑘;0,05 = 1,0 𝑁/𝑚𝑚2. 

 

• Characteristic: In the tendon zone the tensile stresses are limited to            
𝜎𝑏 < 0,5 ∗ 𝑓𝑐𝑡𝑘;0,05 = 1,0 𝑁/𝑚𝑚2 and in the non-tendon zone the tensile stresses 

should remain smaller than: 𝜎𝑏 < 0,75 ∗ 𝑓𝑐𝑡𝑘;0,05 = 1,5 𝑁/𝑚𝑚2 
 
In appendix E the tensile bending stresses at midspan are determined at 
serviceability limit state. It turns out that girder A fulfils the requirements of the 
OVS, meaning the girder is uncracked and no additional checks on crack width are 
necessary. Girder B however does not fulfil the requirements for the characteristic 
and frequent load combination (due to larger loads from LM 71) and therefore has 
to be assumed as cracked.  
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Now that girder B is cracked not only the crack width needs to be verified, but also 
a different approach is used in the fatigue resistance calculations (paragraph 6.3 
and 6.4). The cracked girder approach (Appendix D) is used to determine the 
concrete strain and height of the compression zone for a characteristic load 
combination on girder B. Ultimately it is concluded that the compression zone is 
larger than the height of the cross-section, meaning the checks on crack width are 
no longer necessary. Yet the cracking does have an influence on the way the fatigue 
resistance calculations are performed, this is discussed in more detail later on. 
 

6.2 Fatigue Loading 
At the start of this research, fatigue verification according to annex NN in Eurocode 
2 (20) was allowed by the OVS. But with the arrival of the new version of the OVS, 
the fatigue verification needs to be performed according to the general part of 
Eurocode 2. Because the new OVS was published towards the end of this research, 
the calculations are performed according to annex NN.  
 

Because the load combination for fatigue verification is not explicitly mentioned in 
Eurocode 0 it is derived from annex NN.3. The maximum, minimum (due to LM71) 
and permanent load combination at ultimate limit state need to be considered. But 
even though this is an ultimate limit state check all partial load factors and factor 𝛼 
(LM71) are equal to 1,0. The characteristic load combinations are expressed as: 
 

∑ 𝐺 + 𝑃 

 

∑ 𝐺 + 𝑃 + 𝑄𝐿𝑀71,𝑚𝑎𝑥 

 

∑ 𝐺 + 𝑃 + 𝑄𝐿𝑀71,𝑚𝑖𝑛 

 

Permanent 

 

 

Maximum LM71 

 

 
Minimum LM71 

 
The positions for the maximum and minimum load combination of LM71 are 
presented at 0,8d and midspan by Figure 35. 
 

 
 

Figure 35: Maximum and minimum load combination at 0,8d (left) and 0,5L (right) 
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6.3 Concrete  
Regardless of whether a structure is cracked or uncracked, the Eurocode states 
fatigue resistance calculations on concrete under compression need to be 
performed. The first step is to combine torsion, clamping moment, suspension and 
shear force into one total shear force (Appendix D). Considering that the total shear 
force has two reactional forces at the start and the end of the diagonal (Figure 36) 
the total bending moment can be expressed by: 
 

𝑀𝐸𝑑,𝑡𝑜𝑡 = 𝑀𝐸𝑑 + 0,5 ∗ 𝑉𝐸𝑑 ∗ 𝑧 ∗ cot 𝜃𝑓𝑎𝑡  [20] 

 

 
According to Eurocode 2 (16) the angle of the compressive diagonal used in the 
ultimit limit state calculation maybe converted into 𝜃𝑓𝑎𝑡 with equation [21]. 

  
 

tan 𝜃𝑓𝑎𝑡 = √tan 𝜃  [21] 

 

 
The angle of the compressive diagonal, under fatigue loading, becomes respectively 
32,3° and 45° for a section near the support and at midspan. 
 

 

Figure 36: Total bending moment in the girder and angle of the compressive diagonal under fatigue loading 

 
For the uncracked girder A, the maximum compressive stress is found at the top 
fibre. With equation [22] the stresses are computed for the maximum, minimum 
and permanent characteristic load combination.  
 

𝜎𝑐,𝑡𝑜𝑝 = −
𝑃∞

𝐴𝑐
−

𝑀𝐸𝑑,𝑡𝑜𝑡

𝑊𝑡𝑜𝑝
 

 [22] 

 

 
 
 
 
 
 
 



6.3 Concrete  Fatigue 

41 
 

Girder B is cracked meaning the tensile strength of the concrete is reduced to zero 
and the additional tensile forces are transferred by the longitudinal reinforcement 
and prestressing steel. The cracked girder approach maintains two unknown 
variables, the height of the compression zone and the concrete strain. Based on the 
height two solutions are possible: 
 

1. 𝑥 < ℎ: A part of the cross-section is loaded in compression and the other in 
tension. The tensile stresses are transferred by the prestress and 
longitudinal reinforcement. Based on the concrete strain the stress 
fluctuations in the concrete, longitudinal reinforcement and tendons can be 
determined.  

 

  
Figure 37: Compression zone smaller (left) or larger (right) than the cross-sectional height 

2. 𝑥 > ℎ: The entire cross-section is under compression and there are no 
(additional) tensile forces in the prestress and longitudinal reinforcement. By 
interpolating on the graph in Figure 38 the compressive stress in the top 
fibre is obtained.  

 

 
 

Figure 38: Stress-strain diagram for C35/45 

 
Ultimately the maximum, minimum and permanent load combinations of the 
fatigue verification result in the second solution for girder B. In other words, when 

the girder is loaded in fatigue the entire cross-section is under compression, like 
girder A. No fatigue calculation has to be performed on the prestressing steel and 
longitudinal reinforcement because for both girders they are under compression. 
Yet the concrete stress fluctuation in the top fibre of the girder still need to be 
determined by interpolating on the stress-strain diagram in Figure 38.  
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Eventually the damage equivalent stress method from annex NN.3.2 in Eurocode 2 
is applied. The stress range due to mobile loading is determined and corrected with 
a factor 𝜆𝑐. This factor takes into account the annual traffic volume, life span, 
number of railway tracks and the length of the bridge. The final check is presented 
in the form of equation [23]. 
 
 

14 ∗
1 − 𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

√1 − 𝑅𝑒𝑞𝑢

≥ 6 
 [23] 

 

 
 
The results of the fatigue verification calculations are presented in Table 15, from 
which it can be concluded that the most critical section is at midspan in bridge B. 
This section is subjected to large bending moments, which causes large 
compressive stress fluctuations at the top of the girder, which ultimately leads to 
the most critical unity check.  

 
Table 15: Concrete fatigue resistance of girder A and B  

 

Unity Check 

Bridge A Bridge B 

U.C. @ 0,8d  U.C. @ 0,5L  U.C. @ support U.C. @ 0,5L  

14 ∗
1 − 𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

√1 − 𝑅𝑒𝑞𝑢

> 6 
 

13,71 > 6 

 

9,36 > 6 

 

22,82 > 6 

 

7,46 > 6 
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6.4 Shear reinforcement 
In principle, the strains in the shear reinforcement of uncracked girder A remain 
zero, making the reinforcement non-sensitive to fatigue. However for cracked girder 
B the opposite is true. But girder A could crack due to other external loading, such 
as thermal actions. For this calculation both girders are assumed to be cracked and 
the resistance against stress fluctuations in the shear reinforcement are 
investigated.  
 
The NS-guideline 1015 defines a number of zones which have a specific load 
transferring function. Zone III (outer stirrup) transfers a combination of shear, 
torsion and the suspension loads, where zone II (inner stirrup) only transfers shear 
forces. But from paragraph 5.1 it is learned that a part of the suspension loads is 
transferred by the inner stirrup as well. With the maximum and minimum 
characteristic load combinations, the stress range in the outer and inner stirrups is 
determined.   
 

 
 

Figure 39: Stress in the outer and inner stirrup due to shear, torsion, suspension force and clamping 
moment 

Annex NN.3.1 in Eurocode 2 is used to compute the damage equivalent stress in 
the stirrups. The stress range is multiplied with the dynamic factor and a correction 
factor. This last factor accounts for the annual traffic volume, life span, number of 
railway tracks and the length of the bridge. 
 

∆𝜎𝑠,𝑒𝑞𝑢 = 𝜆𝑠 ∗ Φ ∗ ∆𝜎𝑠,71  [24] 

 

 
The stress range is verified against a critical stress range at 𝑁∗ cycles. The S-N 
curve of S435 steel is composed with help of section 6.8.4 in Eurocode 1. It 
becomes clear from the graph that the stress range should remain smaller than 

∆𝜎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 113,6 𝑁/𝑚𝑚2. 
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Figure 40: S-N curve for S435 steel 

 
The unity check is determined by dividing the damage equivalent stress with the 
critical stress range. Additionally a partial load an material factor for fatigue are 
included. 
  

𝑈. 𝐶. =
𝛾𝐹,𝑓𝑎𝑡 ∗ ∆𝜎𝑠,𝑒𝑞𝑢(𝑁∗)

Δ𝜎𝑅𝑠𝑘(𝑁∗)/𝛾𝑠,𝑓𝑎𝑡

 
 [25] 

 

 
 
The unity checks for shear reinforcement stay well within the acceptable limits 
(Table 16) and there is no risk of fatigue failure of the stirrups. The largest unity 
check is found at the inner stirrup at 0,8d. This can be explained from the fact that 
this stirrup is loaded with 35% of the suspension loads. These loads are mainly due 
to mobile loading, which impose a large stress fluctuation on the stirrup.  
 
Table 16: Bridge A & B: Unity checks for fatigue in the shear reinforcement 

 

Type of reinforcement 

 

Bridge A Bridge B 

U.C. @ 0,8d 

 

U.C @ 0,5L U.C. @ support 

 

U.C @ 0,5L 

𝜃 = 21,8° 𝜃 = 45° 𝜃 = 21,8° 𝜃 = 45° 

Outer stirrup 0,50 0,22 0,51 0,19 

Inner stirrup 0,75 0,21  
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Since it can be confusing which calculation procedure is applied on the bridges, an 
overview is presented in Figure 41. The difference between bridge A and B is that 
the latter one has to be assumes as cracked, because it does not fulfil the 
requirements of the OVS. Consequently this changes the approach on determining 
the stress fluctuations in concrete and reinforcement.  
 

 

Figure 41: Overview of Eurocode fatigue calculations on bridge A and B 
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6.5 VB 74 & NS-Guideline 1016 
The NS-Guideline 1016 (18) is used in addition to VB 74 and focuses on fatigue 
resistance calculations in railway structures. As described by this guideline, back in 
the day there was little knowledge on fatigue and especially on concrete fatigue 
resistance. This paragraph gives a brief overview of the available calculations in the 
guideline and the ones that are applied in the design reports.  
 

6.5.1 Shear and longitudinal reinforcement 

The calculations are supposed to be performed with real train loads. However a 
couple of coefficients are introduced, in order to keep on using the same load 
models as in the strength verification calculations (VOSB 150). Ultimately the stress 
fluctuation due to the VOSB load model should remain smaller than the critical 
stress range: 
 

∆𝜎𝑉𝑂𝑆𝐵 ≤ ∆𝜎𝑐𝑟𝑖𝑡  [26] 

 

 
The critical stress range for a VOSB load model is determined by equation [27]: 
 

∆𝜎𝑐𝑟𝑖𝑡 =
∆𝑓𝑎𝑘 ∗ 𝑘𝐴 ∗ 𝑘𝑁

𝛾𝑓𝑎𝑡
∗

1

𝑘𝑇 ∗ 𝜆𝑇 ∗ 𝛽𝑇
 

 [27] 

 

 
Where: 

Δ𝑓𝑎𝑘               

𝑘𝐴                    
𝑘𝑁    
              

𝛾𝑓𝑎𝑡     
𝜆𝑇  

𝑘𝑇 
𝛽𝑇 

= 
= 
= 
 
= 
= 
= 
= 

The steel fatigue resistance determined with experiments    

Reduction factor for welds and arcs      

Factor accounting for the number of axle loads that deviate from the 

total number of axle loads 

Safety material factor (for steel equal to 1,4) 

Factor that takes the span of the bridge into account 

Factor that takes into account either heavier or lighter railway traffic 

Factor accounting for the number of railway tracks 

 

In the design report, equation [27] results in a critical stress range of 182,2 𝑁/𝑚𝑚2, 
which is significantly higher than the acceptable critical stress range in the Eurocode 

which holds a value of 113,6 𝑁/𝑚𝑚2. Furthermore the fatigue calculation in the 
Eurocode is performed at ultimate limit state, but with all partial load factors taken 
equal to 1,0, whereas the VB 74 determines the stress range due to the VOSB load 
model at serviceability limit state.   
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6.5.2 Concrete 

As mentioned before, the knowledge on the behaviour of concrete under fatigue 
loading, was at the time of the VB 74 very limited. The result is a limitation of the 
maximum tensile and compressive concrete stress at serviceability limit state (by 
the NS-guideline): 
 
Maximum tensile principal stress under fatigue loading: 
 

𝜌1 ≤ 0,6𝑓𝑏  [28] 

Where: 
𝜌1                     

𝑓𝑏 
= 
= 

Maximum tensile principal stress 

Concrete tensile strength 

 
Maximum compressive stress under fatigue loading: 
 

𝑓′𝑏𝑓𝑎𝑡 = 0,4 ∗ 𝑓 ′
𝑏 + 0,35 ∗ 𝜎 ′

𝑏,𝑚𝑖𝑛 ≤ 0,6 ∗ 𝑓′𝑏  [29] 

 
Where: 

𝑓′𝑏𝑓𝑎𝑡 

𝜎′𝑏𝑚𝑖𝑛 

                     

𝑓′𝑏 

= 
= 
 
= 

Maximum compressive stress under fatigue loading 

Minimum compressive stress in the considered fibre, in case of cracking 

take 𝜎′𝑏𝑚𝑖𝑛 = 0 

Concrete compressive strength 

 
There are two differences between the Eurocode and the NS-Guideline. Firstly, the 
guideline assumes that concrete under fatigue loading has some resistance against 
tension, whereas the Eurocode assumes it has none. Secondly, the fatigue 
resistance of concrete under compression in the guideline is a simple stress 
limitation (due to a lack of knowledge), whereas the Eurocode holds a damage 
equivalent stress check. And even though a stress limitation for compression is 
defined by the NS-guideline, it is not checked in the design reports.  
 
The overall conclusion which can be drawn is that, due to more knowledge on 
fatigue, the Eurocode has more extensive and conservative fatigue resistance 
calculations than a combination of the VB 74 and the NS-guideline.    
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7 SCIA & Analytical Solution 
The design or reassessment of a concrete through railway bridge is a typical 
assignment for an engineering firm such as Witteveen+Bos. Nowadays the design 
loads on a bridge are determined using finite element programs rather than 
performing time-consuming hand calculations. The risk however with FE models is 
that one needs as well a proper understanding of the program as the structural 
behaviour, in order to obtain correct results. Additionally a good structural engineer 
has a critical attitude against FEA-generated results.  
 
In the case of Witteveen+Bos, the FEA program SCIA Engineer is used to determine 
the critical design loads in the bridge. Because engineers rely on the results 
generated by SCIA, this chapter holds a comparison between SCIA and the 
analytical solution with a focus on torsion in the girder.  The ultimate goal is to 
establish the deviation between SCIA and the analytical solution (w.r.t. to torsion) 

for the governing load combination. A more detailed version of this comparison can 
be found in appendix G.  
 

7.1 Earlier research 
R.T.J. de Groot (4) compared the results from the analytical solution with a 2D and 
3D DIANA model. Based on this research the following can be concluded: 
 

• Torsion in the girder strongly depends on the E-modulus of the floor in 
transverse direction. By reducing the E-modulus of the floor, torsion in the 
girder is increased. 

• When the girder is connected to the floor, there is a vertical eccentricity 
between the two corresponding nodes. This eccentricity causes an additional 
torsional moment which influences the results. A horizontal connection 
between these two elements is advised.  

• Fully prestressed structures are hardly exposed to torsion due to self-weight. 
This is because prestress counteracts the deflections and rotations caused by 
self-weight. But for structures with partial prestressing, torsion due to self-
weight may become an issue.  

• The connection between the girder and the floor turns out to have a large 
influence on the results. By using solid-elements (3D) the exact geometry can 
be modelled and this problem is excluded. Under a double line load of 
80 𝑘𝑁/𝑚, the values for torsion in a 3D and 2D model remain respectively 
30% and 50% behind the analytical solution.  

 
 
  



7.2 Plate model  SCIA & Analytical Solution 

49 
 

7.2 Plate model 
Three types of models are possible when modelling a through bridge in SCIA. The 
first one is a plate model, which is entirely constructed of 2D-elements. The floor 
and the voute are modelled in XY-plane and because these elements have 
overlapping nodes they are automatically connected by SCIA. The girder is modelled 
in XZ-plane, which means the centreline runs in a different direction than the 
centreline of the floor and voute. To solve this problem, NS-Guideline 1015 advises 
to use rigid connections between the centreline of the girder and the edge of the 
voute. In order to establish smooth graphs for torsion, the rigid connection is 
applied every 0,25 m to let it coincide with the mesh, which consists of squares of 
0,25 m. 
 

 
Figure 42: Cross-section and 3D-view of the plate model 

A rigid connection in SCIA means rotations of the connected nodes are identical. 
Additionally the rotation determines the orientation of the connection line. The 
deformation of the nodes are identical as well, but due to the rotation node 2 
undergoes an additional deformation of 0,5𝑏 ∗ 𝜑. 
 

 

Figure 43: Deformation behaviour of a rigid connection 
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7.3 Beam model 1A 
Beam model 1A consists of a floor, modelled as a 2D-element, which spans between 
the centrelines of the girder. The girder is modelled as a 1D-element on the long 
edge of the floor. The 2D-element has 4 nodes (one on each corner), whereas the 
1D-element has 2 nodes (one at the start and the end of the girder). SCIA 
automatically connects overlapping nodes, which means a connection between the 
girder and floor is established at each corner of the structure. The concern however 
arises that the rotations and deformations of the floor and girder are only coupled 
at the corners of the structure and not along the entire length. To verify whether 
this is the case or not, an alternative beam model is introduced in paragraph 7.4 
which applies rigid connections between the 1D and 2D-element. 
  

 
 

Figure 44: Cross-section and 3D-view of beam model 1A 

 
The dimensions entered in SCIA are simplified compared to the original cross-
section. A simple calculation (in appendix G) shows that the cross-sectional area is 
exactly the same in SCIA and the sectional modulus is an insignificantly 5,6% 
smaller than the original cross-section. Yet the torsional stiffness of the girder is 
29,7% less in SCIA than the original torsional stiffness. Therefore the shear 
modulus of the girder is manually adjusted in SCIA. 
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7.4 Beam model 1B  
Beam model 1B forms a combination of the plate model and beam model 1A. The 
floor and voute are modelled as in the plate model (2D) where the girder is modelled 
as a line-element (1D). But in contrast to model 1A, the centreline of the girder does 
not coincide with the centre of the floor. This means that rigid connections between 
the 1D and 2D-element need to be applied to form a connection between these two 
elements. To do so, internal nodes are added to the 1D and 2D-elements and rigid 
connections are formed every ¼ meter. An advantage of this model is that the 
geometry is no longer simplified compared to the real cross-section and that the 
shear modulus does not need to be increased manually. However a disadvantage is 
that the connections formed have a vertical eccentricity, which according to de 
Groot can induce additional bending and torsional moments.  
 

 
 

Figure 45: Cross-section and 3D-view of beam model 1B 

 
All three models are evaluated using the Mindlin theory for 2D-elements. In 
contrast to Kirchhoff, the Mindlin theory is applicable to thick plates and takes 
shear deformation into account. In order to get correct values for torsion it is 
essential that shear deformation in the 2D-elements is taken into account. 
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7.5 Torsion 
In this paragraph torsion in the girder is established for the analytical solution, 
plate and beam models. A number of load cases are reviewed for a bridge with a 
span of 20 meters and the cross-sectional properties of bridge A.   
 

7.5.1 Distributed mobile load 

In Figure 46 torsion along the length of the girder is plotted for the analytical 
solution, plate and beam model 1A and 1B.  Noteworthy is that beam model 1B and 
the plate model follow roughly the same course, where beam model 1A stays a bit 
behind. Even more controversial is the maximum torsion found by the analytical 
solution is more than twice as large as the maximum value obtained by SCIA. 
 

 
 
 
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 34.000 𝑀𝑃𝑎 
 

 

 

Figure 46: Double line load of 100 kN/m (left) and torsion graphs with uncracked floor (right) 

During the derivation of the analytical solution a number of assumptions are made 
(paragraph 3.3.2). One of the most important ones is that the floor is divided into 
strips with a length 𝑑𝑥 = 1,0 𝑚. This assumption is processed in the SCIA models by 
reducing the E-modulus of the floor to 11.200 𝑀𝑃𝑎. The floor could thereby be 
considered as cracked, resulting in a load distribution in the floor comparable with 
the strip method. This results in graphs for torsion presented by Figure 47. In order 
to keep a fair comparison the girder and floor will have an E-modulus of 34.000 𝑀𝑃𝑎 
and 11.200 𝑀𝑃𝑎 from this point forward. 
    
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 
 

 

 

 

 

 

 

 
Figure 47: Torsion graphs for a double line load of 100 kN/m (cracked floor) 
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7.5.2 Local mobile load 

A double local line load causes torsion in the girder as displayed by Figure 48. The 
plate and beam model 1B compare rather well to the analytical solution and the 
maximum torsion obtained is roughly the same. Contrastingly beam model 1A stays 
behind and has a maximum which is 40% lower. It is expected that the connection 
established between the 1D and 2D-element in model 1A results in a loss of 
stiffness. 
 

 
 

 

 
 

 
 

Figure 48: Torsion graphs for a double local line load of a 100 kN/m (cracked floor) 

 

7.5.3 Self-weight 

The analytical solution assumes there is no torsion due to self-weight. The driving 
idea behind that is that a constant load generates a constant deflection and 
rotation. Consequently no change in rotation means no torsion. SCIA however 
shows there is torsion due to self-weight, which can be explained by the fact that at 
midspan the deflections and rotations are larger than near the supports. An 
alternative load case, which results in the same deflection behaviour, is applied for 
the analytical solution.  
 

 
 

Figure 49: Torsion graphs for self-weight (cracked floor) 
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Figure 49 indicates that the plate model and analytical solution follow the same 
course and have roughly the same maximum. On contrary beam model 1A remains 
far behind, where beam model 1B presents a graph which exceeds the analytical 
solution. This last phenomenon is remarkable, as model 1B is expected to follow the 
same course as the plate model. But because point supports are applied, large 
reactional forces are present near the end of the bridge increasing the values for 
torsion. Unfortunately strip methods are no better solution, because they induce a 
large counteracting bending moment near the supports which influence the 
rotations and therefore torsion in the girder. 
 

7.5.4 Prestress 

Prestress consists of a horizontal force, an upward acting distributed load and a 
bending moment due to an eccentricity of the tendons. Because torsion is only 
generated by deflection of the bridge and rotation of the girders, the horizontal force 
is excluded from this calculation. Similar to self-weight, an alternative load case 

needs to be applied in order to find an analytically determined graph for torsion.  
 
Figure 50 presents the graphs for torsion due to prestress. The results are quite 
similar to torsion due to self-weight, but with an opposite sign. The conclusion 
earlier drawn by R.T.J. de Groot can be confirmed; fully prestressed structures are 
hardly exposed to torsion due to self-weight. 
 

 
 

Figure 50: Torsion graphs for prestress (cracked floor) 
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7.5.5 Support settlement 

It can be likely that one of the supports settles more than others. Therefore a load 
case is introduced which takes a settlement of 5 𝑚𝑚 into account. The analytical 
solution assumes no load distribution in longitudinal direction and considers a 
strip with length 𝑑𝑥 = 1,0 𝑚 and a deflection ∆. From the plate and beam models it 
becomes clear that the support settlement is not only distributed in transverse 
direction but also in longitudinal direction. The analytical solution is thus too 
simplistic and therefore too conservative (Figure 51). 
 

 
 

 

 

 

 

Figure 51: Transverse section support settlement (left) and torsion graphs modelled with cracked floor (right) 
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7.6 Clamping moment 
Besides torsion the clamping moment is an important design load. In the case of 
Witteveen+Bos SCIA is used to determine the clamping moments in the girder. With 
the functions derived in appendix A, a comparison between the analytical solution 
and SCIA is drawn up. 
 

7.6.1 Distributed mobile load 

A load case as depicted by Figure 52 is considered. Due to this load case the 
clamping moment shows a sign switch at the end of the distributed mobile load. 
The explanation for this lies in the fact that the clamping moment under loading is 
counteracted by the unloaded part of the bridge, which causes the sign switch. 
From the right image of Figure 52 it can be concluded that the plate and beam 
model 1A contain this jump as well, but that the maximum values for the clamping 
moment remain behind. Contrastingly beam model 1B shows a different course for 
the clamping moment, which can be explained from the manner in which this 
model is constructed.   
 
 

 

 

 

Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 
 

Figure 52: Double line load of 100 kN/m (left) and clamping moment graphs (right) 

Since the clamping moment can only be derived from a 2D-element, section A-A 
(Figure 53) in the plate model and section B-B in the beam model 1B are used to 
find values for the clamping moment. However the analytical solution assumes the 
floor is fully restrained in the centre of the girders, which means the clamping 
moment in model 1B is not derived from the correct location resulting in a different 
course.   
 

 

Figure 53: Sections used in plate model and beam model 1B to determine clamping moments 
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The assumption of the analytical solution, that the bending stiffness of the floor in 
longitudinal direction is negligible, is incorporated in the SCIA models. The floor is 
modelled orthotropic with an E-modulus in transverse and longitudinal direction of 
respectively 11.200 MPa and 100 MPa. The jump becomes better visible and the 
maximum clamping moment corresponds better with the analytical solution 
(Figure 54).  
 
 
Property Girder Floor 

 𝐸𝑙𝑜𝑛𝑔 34.000 𝑀𝑃𝑎 100 𝑀𝑃𝑎 

𝐸𝑡𝑟𝑎𝑛𝑠 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 

 

 

 

 

 

 
Figure 54: Clamping moment graphs for a double line load of 100 kN/m (orthotropic) 

 

7.6.2 Local mobile load 

A local mobile load generates graphs for the clamping moment as presented by 
Figure 55. Similar to the previous load case, the floor is modelled orthotropic with a 
longitudinal bending stiffness of a 100 𝑀𝑃𝑎. Under loading the clamping moments in 
the plate and beam model 1A are larger than in the analytical solution. 
Unfortunately no direct explanation is found for the fact that these models deliver 
larger values than the analytical solution. But in practice, the bending stiffness of 
the floor (in a SCIA model) will not be reduced to a 100 𝑀𝑃𝑎. Which means there will 
always be some load transfer in longitudinal direction, resulting in less conservative 
values for the clamping moment. From this point of view the analytical solution will 
form a safe upper limit. Beam model 1B results in values which remain smaller 
than the analytical solution, but no conclusions can be drawn from this fact since 
the results are obtained at a different location. 
 

 

 

Property Girder Floor 

 𝐸𝑙𝑜𝑛𝑔 34.000 𝑀𝑃𝑎 100 𝑀𝑃𝑎 

𝐸𝑡𝑟𝑎𝑛𝑠 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 

 

 
Figure 55: Clamping moment graphs for a local line load of 100 kN/m (orthotropic) 
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7.7 Deviation of SCIA 
The objective of this chapter is to draw up a comparison between the analytical 
solution and SCIA, with a focus on torsion in the through girder. The deviation of 
SCIA (w.r.t. the analytical solution) is established by considering the governing load 
combination of self-weight, ballast, LM71 and prestress acting on bridge A and B. 
Since the support settlement load case gives unrealistically high values for torsion 
in the analytical solution, it is not taken into account in this calculation. 
Additionally the cross-sectional properties remain constant throughout this 
research. Which means the girder is assumed uncracked (𝐸 = 34.000 𝑀𝑃𝑎) and the 
floor is assumed cracked (𝐸 = 11.200 𝑀𝑃𝑎). 
 
The difference in torsion between SCIA and the analytical solution is established at 
a section at 0,8d. But the values for torsion in this section can deviate, due to the 
influence of the supports. Therefore it is decided to also take into account the 
maximum torsion in the through girder, which is not bound to a specific location. 
 
Table 17: Bridge A: The total deviation of maximum torsion in the plate and beam model 1A & 1B 

 
 
The results in Table 17 describe the difference in maximum torsion between the 
analytical solution and the plate, beam model 1A and 1B in bridge A. To find these 
percentages, one needs two values per load case. Namely the difference in 
maximum torsion (w.r.t. the analytical solution) of each single load case and the 
contribution to the total amount of torsion. By multiplying these two factors an 
weighed average is found, which can be summoned to a total deviation per model.  
 
Table 18: Bridge A & B: The total deviation of torsion in the plate and beam model 1A & 1B at 0,8d 

 
 
Table 18 presents the deviations per model at 0,8d whereas Table 19 presents the 

deviations per model for maximum torsion (in bridge A & B). The first impression 
one gets, is that the results from the plate model and beam model 1B are closer to 
the analytical solution than the results from the beam model 1A. One can also 
conclude, by taking a closer look at Table 18, that there is a large difference 
between the analytical solution and beam model 1B for the prestress load case. 
Because the results in this table are generated at 0,8d, the supports are likely to 
have an influence. Therefore more value is attached to Table 19 which considers 
maximum torsion in the girder and is therefore not bound to a specific location.  

1A 1B

1 Self-weight 20,7% -10% -14% -7%

2 Ballast 19,3% -5% -9% -4%

3+5a Load model 71 48,4% 0% -10% -2%

9 Prestress 11,6% 0% -5% 2%

100,0% -16% -38% -11%Total

LC Type % of Total loading

Deviation to analytical solution (%)

Plate
Beam

1A 1B 1A 1B

Self-weight -9% -15% -4% -10% -23% -8%

Ballast 0% -5% 0% 0% -7% 1%

Load model 71 -9% -17% -3% 6% -5% 13%

Prestress 5% -1% 11% 1% -4% 11%

Total deviation [%] -14% -39% 4% -4% -39% 17%

LC

Bridge B - Deviation in torsion (%)Bridge A - Deviation in torsion (%)

Plate
Beam

Plate
Beam
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Table 19: Bridge A & B: The total deviation of maximum torsion in the plate and beam model 1A & 1B 

 

Respectively the total deviation of the plate, beam model 1A and 1B goes to 10-15%, 
40% and 10% (as seen in Table 18 and Table 19). At first it looks like beam model 
1B approximates the analytical solution slightly better than the plate model. But 
with the knowledge from paragraph 7.5 the contrary can be concluded. This is due 
to the fact that for self-weight and prestress beam model 1B exceeds the analytical 
solution and thereby compensates for its exactly larger deviation from the analytical 
solution.  
 
Beam model 1A shows a deviation of 40% from the analytical solution. The most 
plausible explanation for this lies in the fact that no rigid connections are applied in 
beam model 1A, resulting in a loss of bending and torsional stiffness at the 1D 
(girder) and 2D (floor) interface.  
 
R.T.J. de Groot concluded that 2D and 3D models of a through bridge remain 
respectively 50% and 30% behind on the analytical solution. However it should be 
noted that de Groot considered statically undetermined structures with end-cross 
members, where this thesis focuses on statically determined structures without 
end-cross members. Additionally de Groot was looking for the best possible FE 
model for a through bridge rather than the deviation between the theory and a FE 
model. Which means both researches have a different scope and purpose and 
cannot be compared one on one.  
 
Finally one should realize that the analytical solution forms a safe upper limit when 
calculating torsion in a through bridge. The strip method and the negligence of the 
longitudinal bending stiffness of the floor are quite conservative assumptions. In 
reality a load on the floor will not only spread in transverse but also in longitudinal 
direction.  
 
 

 

1A 1B 1A 1B

Self-weight -10% -14% -7% -9% -17% -4%

Ballast -5% -9% -4% -2% -6% -2%

Load model 71 0% -10% -2% 2% -9% 1%

Prestress 0% -5% 2% -1% -9% 1%

Total deviation [%] -16% -38% -11% -9% -41% -4%

LC

Bridge A - Deviation in torsion (%) Bridge B - Deviation in torsion (%)

Plate
Beam

Plate
Beam
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8 Conclusions & recommendations 
 

8.1 Conclusions 
The first research question of this master thesis focuses on the shear resistance of 
two fully prestressed through bridges, which are designed according to the VB 74. 
Three shear resistance calculations, according to the Eurocode, are performed to 
verify whether or not the structural safety of the two existing through bridges is 
compromised: 
 
Shear tension failure:  

• The Eurocode verifies the risk of shear tension failure at ultimate limit state 
by determining the maximum tensile principal stress. If this stress exceeds 
the concrete tensile design strength (𝑓𝑐𝑡𝑑), shear tension failure in the girder 
will occur. It turns out the governing unity check is found for a section at 
0,8d in bridge A. In this section the maximum load combination due to LM71 

is governing and leads a unity check of 0,97. Especially the combination of 
shear and torsion becomes critical for a section which is close to the 
supports.  

 
Reinforcement capacity: 

• In the Eurocode the capacity of the reinforcement is verified at ultimate limit 
state. During the reassessment it is concluded that the outer stirrup of 
bridge A at a section 0,8d turns out to hold the governing unity check of 
1,01. According to NS-Guideline 1015 this stirrup should be able to 
withstand a combination of shear, torsion and suspension loads, which at 
0,8d reaches a maximum. The unity check is assumed to be just within the 
acceptable limits and therefore it is concluded that sufficient shear 
reinforcement is applied in both bridges.  

• During the ULS reinforcement calculation the girder of the bridge is assumed 
to be cracked. This changes the internal force distribution, where the tensile 
strength of concrete is reduced to zero, and possible tensile stresses are 
transferred by a combination of longitudinal reinforcement and tendons. 
Ultimately a maximum unity check for the longitudinal reinforcement is 
found in bridge B at midspan. With a value of 0,56 it can be concluded 
sufficient longitudinal reinforcement is applied in both bridges.  

• The maximum shear resistance of the through bridge is governed by the 
capacity of the compressive diagonal in the girders. With the arrival of the 
Eurocode it is possible to vary the angle of the diagonal between 21,8° and 

45°, which means large loads can be applied on the diagonal when small 
angels are chosen. From the maximum unity check of 0,59 in bridge A, it can 
be concluded that the compressive diagonals in both bridges have sufficient 
capacity.  

 
The OVS holds a number of stress limitations in serviceability limit state which are 
applicable to newly constructed railway bridges. These stress limitations are applied 
on the two existing through bridges, in order to verify whether the girder is cracked 
or not. Bridge A turns out to fulfil the requirements and remains uncracked, where 
bridge B must be assumed as cracked. 
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Fatigue: 

• The fatigue resistance calculations in the Eurocode focus on the compressive 
and tensile stress fluctuations in the concrete and reinforcement 
respectively. But if the girders remain uncracked, no strains are present in 
the reinforcement, meaning only fatigue resistance calculations need to be 
performed on concrete. But girder A is assumed to be cracked as well, in 
order to verify if the reinforcement has enough fatigue resistance in case the 
girder cracks due to other external loads (e.g. thermal actions). Using the 
damage equivalent stress approach and an ULS characteristic load 
combination, the following can be concluded: 

o Concrete: The maximum unity check for concrete is obtained in bridge 
B at midspan. The large bending moments in this section generate 
large compressive stress fluctuations in the top fibre of the girder. 

o Shear reinforcement: The inner stirrup in bridge A, mainly loaded due 
to suspension loads, holds with a value of 0,75 the largest unity check 
for fatigue. Evidently the suspension loads are mainly due to mobile 
loading, increasing the stress fluctuations on these stirrups. 

o Longitudinal reinforcement: Bridge A is uncracked, meaning no 
strains and therefore tensile stress ranges are present in the 
longitudinal reinforcement. Bridge B is cracked but since the entire 
cross-section is under compression, the longitudinal reinforcement is 
not sensitive to fatigue as well.  

 
Table 20: Unity checks for shear resistance calculations performed according to the Eurocode (A&B) 

Shear resistance calculation Eurocode Unity Check 

Bridge A Bridge B 

A. Shear tension failure 0,97 0,77 

B. Reinforcement capacity   

Shear reinforcement 

Longitudinal reinforcement 

Compressive diagonal 

1,01 

0,26 

0,59 

0,90 

0,56 

0,57 

C. Fatigue Uncracked Cracked 

Concrete 

Shear reinforcement 

Longitudinal reinforcement 

9,36>6 

0,75 

0,00 

7,46>6 

0,51 

0,00 

 
The heavier load models and more conservative shear resistance calculations in the 
Eurocode, created the expectancy at the start of this research that a problem would 
arise concerning the shear resistance. The following two reasons explain why this 
not the case: 

• Angle of the compressive diagonal (𝜃): In the Eurocode one has the freedom 
to vary the angle of the compressive diagonal between 21,8° and 45°, enabling 
one to optimize the capacity of the applied amount of concrete, reinforcement 

and prestress.  

• Redistribution: The suspension loads need to be transferred by the outer 
stirrup (zone III) according to NS-guideline 1015. But since this is an 
ultimate limit state calculation, plasticity of the stirrups may be taken into 
account. Which means that if the ductile outer stirrup (FeB500) has 
insufficient capacity, it will start to yield and loading is transferred to the 
inner stirrup. The calculations in bridge A are therefore performed with a 
suspension load distribution of 65% and 35% over the outer and inner 
stirrup respectively.   
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The second research question focuses on drawing up a comparison between the 
analytical solution and SCIA, with a focus on torsion in the through girder. Based 
on the results in appendix G, the following conclusions can be drawn: 
 

• Modelling the floor as cracked, by reducing the E-modulus to roughly a third 
(𝐸𝑓𝑙𝑜𝑜𝑟 = 11.200 𝑀𝑃𝑎), makes the plate and beam models approximate the 

strip method of the analytical solution.  

• As opposed to the analytical solution, self-weight and prestress do cause 
torsion in the girder. By making use of an alternative load case, a graph for 
torsion can even be found for the analytical solution. But one should keep in 
mind that for fully prestressed structures the deflections and rotations of 
these two load cases cancel each other out, resulting in hardly any torsion.  

• A support settlement leads to maximum torsion at the location of settling 
which gradually decreases towards the unloaded support. In contrast to 
SCIA the analytical solution assumes no load spread in longitudinal direction 
for this load case, resulting in values for torsion which are too conservative.  

• One of the assumptions during the derivation of the analytical solution is 
that the bending stiffness of the floor in longitudinal direction is negligible. In 
SCIA the floor is modelled as orthotropic with hardly any bending stiffness in 
longitudinal direction. This results in values for the clamping moment which 
compare rather well to the analytical solution for the plate and beam model 
1A.  

• A simply supported through bridge, loaded over half the length, shows 
increasing values for torsion up to a span of 30 meters.  

• Increasing the girder height or width, makes it a relatively stiffer part of the 
structure. Stiffer parts of a structure attract more load, resulting in an 
(almost) linear relation between these dimensions and maximum obtained 
torsion.  

• Applying a governing combination of self-weight, ballast, LM71 and prestress 
on bridge A and B, results in values for torsion which are 10-15%, 40% and 
10% smaller than the analytical solution for respectively the plate, beam 
model 1A and 1B. However beam model 1B exceeds the analytical solution 
for the self-weight and prestress load case due to large reactional forces at 
the supports and therefore compensates for its deviation. 

• R.T.J. de Groot concluded that a 2D and 3D model of a through bridge 
results in values for torsion which remain respectively 50% and 30% behind 
the analytical solution. However de Groot focussed on the best possible FE 
model and considered statically undetermined structures with end-cross 
members. 

• There is a clear difference in deviation between beam model 1A and 1B. 
Because model 1A is constructed without rigid connections, there is a loss in 
bending and torsional stiffness of the girder, which results in a larger 
deviation from the analytical solution than model 1B. 

• The analytical solution assumes the bridge to be divided into small strips 
and neglects the longitudinal bending stiffness of the floor. In reality loads 

will be as well distributed in longitudinal as transverse direction and the 
analytical solution therefore needs to be considered as a safe upper limit.  

 
 
 
 
 
 



8.2 Recommendations  Conclusions & recommendations 

63 
 

 

8.2 Recommendations 
When SCIA Engineer is used to model a through bridge, it is recommended that the 
plate model is used. The reason for this is three folded. Firstly it only deviates 10-
15% from the analytical solution. Secondly it has the ability to compute clamping 
moments at the centre of the girder, resulting in more accurate graphs for the 
clamping moment than beam model 1B (which obtains these values at the 
connection between girder and floor). And thirdly the plate model takes much less 
time to construct than beam model 1B.  
But a 3D-model is the ultimate recommendation when modelling a through bridge, 
because the exact geometry can be modelled, leading to the most accurate results 
for torsion.  
 
Because the scope of this research is limited to two fully prestressed through 
bridges which are simply supported, a number of recommendations is given below 
for further research: 

 

• Statically undetermined bridge: This research completely focuses on a 
statically determined bridge. But a statically undetermined structure has an 
intermediate support which changes the course of the bending moment, 
shear force and torsion. Additionally the statically undetermined bridges 
usually have longer spans than the maximum span of 31,5 meters 
considered in this research. For further research it may be interesting to 
investigate the shear resistance of a fully prestressed statically undetermined 
through bridge. Furthermore it is advised to investigate the deviation 
between SCIA and the analytical solution and compare the result with 
statically determined bridges.    
 

• GBV 1962: The GBV 1962 is the precursor of the VB 74. At the time of the 
GBV there was little knowledge on steel/concrete resistance against fatigue. 
Additionally the shear resistance calculations in the GBV are very different 
from the Eurocode. Since there are still several through railway bridges in 
the Netherlands which are designed according to the GBV 1962, it may be 
interesting to reassess the shear resistance of these structures in a research. 
Especially fatigue is ought to be critical in this reassessment.   

 

• 3D modelling: As concluded by R.T.J. de Groot, a 3D-model of a through 
bridge obtains the best results for torsion. It is highly recommended that, 
another graduate student models a simply supported fully prestressed 
through bridge in 3D and compares this to the analytical solution. Evidently 
it will be interesting to see if a 3D-model has indeed a better accuracy than a 
2D-model. But one should keep in mind that it is not possible to create a 3D-
model in SCIA, meaning a program like DIANA or ANSYS needs to be used.  

 
 



 
64 

 

9 References 
1. TNO; Tu Delft; Rijkswaterstaat. Aanpak dwarskrachtproblematiek met vereende 

krachten (studiedag). 2012. 

2. Rijkswaterstaat Bouwdienst. Richtlijnen Beoordeling Kunstwerken, RBK 1.1. 

2013. 

3. BV Articon. Korte trogbrug - Statische berekening (Den Haag HS Tramtunnel). 

1994. 

4. de Groot, R.T.J. Afstudeerverslag: Wringing in trogbruggen. s.l. : TU Delft, june 

1996. 

5. Technische Universiteit Delft. Ditctaat Beton en Staalconstructies. 2013. 

6. Vergoossen, ir. R.P.H. Het afschuifdraagvermogen volgens Nederlandse 

ontwerpnormen.  

7. Stichting Commissie Voorschriften Beton. VB 74 Deel F: Voorgespannen beton 

(NEN 3866). 1974. 

8. Nederlands Normalisatie Instituut. V.O.S.B. 1963; Voorschriften voor het 

ontwerp van Stalen Bruggen. 1963. 

9. NS Railinfrabeheer. Richtlijn 1008: Belasting en belastingscombinaties op door 

spoorverkeer belaste betonconstructies. 1997. 

10. NEN-EN 1991-2+C1. Eurocode 1: Actions on structures - Part 2: Traffic loads on 

bridges. 2015. 

11. NEN-EN 1991-2+C1/NB. National Annex to Eurocode 1: Action on structures - 

Part 2: Traffic loads on bridges. 2011. 

12. Stichting Commissie Voorschriften Beton. VB 74 Deel A: Gemeenschappelijke 

gedeelte (NEN 1009). 1974. 

13. NEN-EN 1992-1-1+C2/NB. National annex to Eurocode 2: Design of concrete 

structures - Part 1-1: General rules and rules for buildings. 2016. 

14. NEN-EN 1990+A1+A1/C2. Eurocode 0: Basis of structural design. 2011. 

15. NEN-EN 1990+A1+A1+C2/NB. National Annex to Eurocode 0 - Basis of 

structural design. 2011. 

16. NEN-EN 1992-1-1+C2. Eurocode 2: Design of concrete structures - Part 1-1: 

General rules and rules for buildings. 2005. 

17. NS Railinfrabeheer. Richtlijn 1015: Uitgangspunten voor het ontwerp van 

trogbruggen. 1997. 

18. Railinfrabeheer, NS. Richtlijn 1016: Controle van de vermoeiing van door spoor 

belaste betonconstructies. 1996. 

19. Prorail. OVS00030-6: Ontwerpvoorschrift: Kunstwerken - Deel 6 - Aanvullingen 

en wijzigingen op NEN-EN Normen. 2012. 



 

65 
 

20. NEN-EN 1992-2+C1. Eurocode 2: Design of concrete structures - Concrete bridge 

- Design and detailling rules. 2011. 

21. BV Articon. Lange trogbrug - Statische berekening (Den Haag HS Tramtunnel). 

1993. 

22. Hoogenboom, dr. ir. P.C.J. Aantekeningen over wringing. s.l. : TU Delft, 2014. 

23. Walraven, prof. dr. ir. J.C. and Braam, dr. ir. drs. C.R. CIE4160: Prestressed 

concrete. s.l. : TU Delft, 2012. 

 



Appendix A - Torsion and clamping moment 
 

  



Appendix A  Torsion and clamping moment | 1  
 

1 Introduction 
A passing train on a through bridge will lead to a local deflection of the floor. 
Because of the stiff connection between the floor and the girder, the loaded parts of 
the bridge will get a certain rotation. Yet the unloaded parts of the bridge have no 
intention to rotate and will counteract this rotation. This causes torsion in the 
through girder.  
 
In chapter 2 a differential equation for torsion is derived. The solution to the 
equation is in a general form, containing two constants. In order to find a value for 
these constants, chapter 4 focuses on establishing the boundary conditions for a 
couple of basic load cases. Torsion along the length of the girder is presented in a 
number of graphs for these basic cases. 
Because the floor is ought to be fully restrained in the heart of the girder, a 
reactional force and moment in the centre will be the result. The moment is the so-
called clamping moment and is also of great importance in order to assess the 
critical loads in the through girder. A function for the moment can be found by 
taken the derivative of the torsional function. Chapter 5 considers the same basic 
load cases (as chapter 4) and shows a number of graphs for the clamping moment 
along the length of the girder. 
The load cases on the bridge, such as load model 71, are different from the 
mentioned basic load cases. Therefore chapter 6 searches for a combination of basic 
cases, which have the same effect as the original load case.  
 
A great deal of the essential knowledge in this appendix, such as the derivation of 
differential equation and the graphs for torsion, was collected through a master 
thesis by R.T.J. de Groot (4). 
 

2 Derivation of the differential equation for torsion 
A single track through bridge is considered which is simply supported and has a 
constant cross-section. The bridge is symmetrically supported and doesn’t have any 
end cross members.  
 
The distribution of torsion along the length of the main girder depends on the 
torsional stiffness of the girder, the bending stiffness of the floor and the presence 
of an end cross member. Before the differential equation can be derived a couple of 
assumptions need to be made. 
 

2.1 Assumptions 
 
The method of Liptak is used to derive the differential equation. The floor is divided 

into elements with a length 𝑑𝑥 and the following assumptions are made: 
 

1. The torsional stiffness of the plate is neglected in as well longitudinal as 
transverse direction. 

2. The load on the floor is mainly distributed in transverse direction. Hence only 
the bending stiffness of the floor in transverse direction is assumed to be 
significant. 

3. The connection between the floor and the main girder is assumed to be in the 
centre line of the main girder. The floor prevents the girder from bending in 
the transverse direction. 
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4. The supports are considered in the centre of the main girder and they do not 
restrain a rotation about the longitudinal axis. 

5. There is no difference in deflection between the two girders. 
6. Only pure torsion is considered, no torsional warping.  

 
 

2.2 The bending stiffness coefficient 
Because the connection between the floor and the girders is assumed to be 
infinitely stiff, the floor can only deflect between the two girders. The stiff 
connection causes a restraining moment, called the clamping moment (𝑚𝑥).  
 

 

Figure A-1: Bending moment and deflection due to the clamping moment 

 
Using basic mechanics the rotation at the supports can be written as  
(assume symmetrical loading 𝑚𝑥,𝑎 = 𝑚𝑥,𝑏): 

 
 

𝜑𝑏 =
𝑚𝑥,𝑎 ∗ 𝑙𝑓𝑙

6𝐸𝐼
+

𝑚𝑥,𝑏 ∗ 𝑙𝑓𝑙

3𝐸𝐼
=

𝑚𝑥 ∗ 𝑙𝑓𝑙

2𝐸𝐼
 

 

𝑚𝑥 =
2𝐸𝐼

𝑙𝑓𝑙
∗ 𝜑𝑏 = 𝑠𝑝𝑙 ∗ 𝜑𝑏 
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The bending stiffness coefficient is found by rewriting the rotational stiffness with 
the moment of inertia per meter. 
 

 

𝑠𝑝𝑙 =
2𝐸 ∗

1
12

∗ 1 ∗ 𝑡3

𝑙𝑓𝑙
=

𝐸𝑡3

6𝑙𝑓𝑙
 

 

 

[ A.1 ] 

 

 
Equation [ A.1 ] present the bending stiffness coefficient, where 𝑡 is the thickness of 
the floor. 
 
 

2.3 Differential equation for torsion 
Before starting the derivation of the differential equation, one must understand the 
difference between the clamping moment 𝑚𝑥 and the primary load 𝑚𝑝𝑙. The latter 

one is a bending moment resulting from load on a strip with length 𝑑𝑥, if no loading 
is present at the element, the primary load goes to zero. Yet the clamping moment is 
the actual moment between the girder and the floor.  
The difference between the two is clearly indicated by Figure A-2, section A has a 
primary load and section B doesn’t. Even though the primary load is absent in 
section B, the clamping moment is still present.  
 

 
 

Figure A-2: Primary load (left) and clamping moment (right) due to loading on the 

bridge 
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Now let’s consider an element with length 𝑑𝑥. 
 

 

Figure A-3: Element with length dx 

The following equations are applicable to the main girder: 
 

Kinematic equation: 
 

𝜙 =
𝑑𝜑𝑚𝑔

𝑑𝑥
 

 

 

Constitutive equation: 
 

𝑀𝑡 = 𝐺𝐼𝑡 ∗ 𝜙 

 

 

Equilibrium equation: 
 

𝑀𝑡 + 𝑚𝑥𝑑𝑥 = 𝑀𝑡 + 𝑑𝑀𝑡 
 

𝑚𝑥 =
𝑑𝑀𝑡

𝑑𝑥
 

 

 

 

 
 

[ A.2 ] 

 

 
 

 

 

[ A.3 ] 

 

 

 

 

 

 
 

 

[ A.4 ] 

 

Kinematic boundary condition: 
 

𝜑𝑚𝑔 = 𝜑𝑓𝑙 = 𝜑 

 

 

Equilibrium boundary condition: 
 

𝑚𝑥,𝑚𝑔 = 𝑚𝑥,𝑓𝑙 = 𝑚𝑥 

 

 

[ A.5 ] 

 
 

 

 

[ A.6 ] 

 

 

Meaning of the used symbols: 
𝑀𝑡 = 𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑔𝑖𝑟𝑑𝑒𝑟 (𝑁𝑚𝑚) 

𝜑𝑚𝑔 = 𝜑𝑥 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑔𝑖𝑟𝑑𝑒𝑟 (𝑟𝑎𝑑) 

𝜑𝑓𝑙 = 𝜑𝑥 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑜𝑜𝑟 (𝑟𝑎𝑑) 

𝐺𝐼𝑡 = 𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑔𝑖𝑟𝑑𝑒𝑟 (𝑁𝑚2) 
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Let’s assume a constant distributed load, 𝑞, acts on the floor. 
 

 
 

Figure A-4: Primary moment for a distributed load acting on the floor 

 
 

𝜑𝑓𝑙 =
𝑚𝑥 ∗ 𝑙𝑓𝑙

2𝐸𝐼
−

𝑞 ∗ 𝑙𝑓𝑙
3

24𝐸𝐼
=

𝑚𝑥 ∗ 𝑙𝑓𝑙

2𝐸𝐼
−

(
1

12 ∗ 𝑞 ∗ 𝑙𝑓𝑙
2) ∗ 𝑙𝑓𝑙

2𝐸𝐼
 

 

        =
𝑚𝑥 ∗ 𝑙𝑓𝑙

2𝐸𝐼
−

𝑚𝑝𝑙 ∗ 𝑙𝑓𝑙

2𝐸𝐼
 

 

 

𝑚𝑥 = 𝑚𝑝𝑙 +
2𝐸𝐼

𝑙𝑓𝑙
∗ 𝜑𝑓𝑙 = 𝑚𝑝𝑙 + 𝑠𝑝𝑙 ∗ 𝜑𝑓𝑙 

 

 
 

 

 

 

 
 

 

[ A.7 ] 

 

 

Substituting equation [ A.2 ] and [ A.3 ] into equation [ A.4 ]: 
 

𝑚𝑥 = 𝐺𝐼𝑡 ∗
𝑑2𝜑𝑚𝑔

𝑑𝑥2
 

 

[ A.8 ] 

 

Equation [ A.7 ] must be equal to equation [ A.8 ], the differential equation for the 
rotation is derived: 
 

𝑑2𝜑

𝑑𝑥2
− 𝜔2𝜑 −

𝑚𝑝𝑙

𝐺𝐼𝑡
= 0 

 

𝑑2𝑀𝑡

𝑑𝑥2
− 𝜔2𝑀𝑡 −

𝑑𝑚𝑝𝑙

𝑑𝑥
= 0 

 

 

[ A.9 ] 

 

 

 

[ A.10 ] 

 

 

Rewriting equation [ A.9 ] with the torsional moment gives equation [ A.10 ]. The 
ratio of the bending stiffness and torsional stiffness is expressed by 

𝜔2 = 𝑠𝑝𝑙/𝐺𝐼𝑡    (1/𝑚2). 
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2.4 Solution to the differential equation 
The second order differential equation is solved by using a homogeneous solution 
and a particular solution. The general solution for rotation and torsion have now 
been derived. Both functions contain two constants which can be solved by 
determining the boundary conditions. 
 
 

𝜑(𝑥) = 𝐶1 sinh(𝜔𝑥) + 𝐶2 cosh(𝜔𝑥) +
𝑚𝑝𝑙

𝑠𝑝𝑙

 

 

 
𝑀𝑡(𝑥) = 𝐺𝐼𝑡𝜔 ∗ (𝐶1 sinh(𝜔𝑥) + 𝐶2 cosh(𝜔𝑥)) 

 

 

[ A.11 ] 

 
 

 

[ A.12 ] 
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3 Primary moment and load distribution 
 
Because the bending stiffness of the floor is only significant in transverse direction, 
it can be divided into strips with a length 𝑑𝑥. A load acting on the strips results in a 
primary load in the girder. This chapter holds an explanation on how to determine 
the primary load for the different load cases.   
 

3.1 Primary load 
Five different types of loading are distinguished: 

1. A constant distributed area load, for example self-weight 
2. A concentrated load, for example the axle load of a train.  
3. An evenly distributed line load, for example an empty carriage.  
4. An uneven displacement of the girder, for example the settlement of one 

support. 
5. The reactional forces of run-up plates which act at the start and end of the 

bridge.  
 

3.1.1 Distributed area load 

 
 

 

Figure A-5: Constantly distributed area load 

Let’s assume the length 𝑑𝑥 = 1,0 𝑚. At the point where the floor is connected to the 
girder, the rotation should equal zero. With this knowledge the primary moment can 
be derived.   
 

1

24
∗

𝑞𝑝𝑙 ∗ 𝑙𝑓𝑙
3

𝐸𝐼
−

1

2
∗

𝑚𝑝𝑙 ∗ 𝑙𝑓𝑙

𝐸𝐼
= 0 

 

𝑚𝑝𝑙 =
1

12
∗ 𝑞𝑝𝑙 ∗ 𝑙𝑓𝑙

2
 

 

 

 
 

[ A.13 ] 
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3.1.2 Concentrated load 

The same approach is applicable for a concentrated load. The rotation at the centre 
of the girders is ought to be zero. Use the forget-me-nots for a cantilevering beam. 
 

𝑃 ∗ 𝑙𝑒
2

2𝐸𝐼
+

𝑃 ∗ 𝑙𝑡𝑟 ∗ 𝑙𝑒

𝐸𝐼
−

𝑚𝑝𝑙 ∗ 𝑙𝑏

2𝐸𝐼
= 0 

 

𝑚𝑝𝑙 =
𝑃 ∗ 𝑙𝑒 ∗ (𝑙𝑒 + 2 ∗ 𝑙𝑡𝑟)

𝑙𝑏

 

 
 

 

 

[ A.14 ] 

 

 
The lengths 𝑙𝑡𝑟 and 𝑙𝑏 are, the typical track width of 1,50 𝑚 and the centre to centre 
distance of the girders respectively.  

 

Figure A-6: Concentrated load 

 

3.1.3 Distributed line load 

The derivation of the evenly distributed line load is exactly the same as for the 
concentrated load. The value for the concentrated load 𝑃 is replaced with the line 

load value 𝑝.  
 

𝑚𝑝𝑙 =
𝑝 ∗ 𝑙𝑒 ∗ (𝑙𝑒 + 2 ∗ 𝑙𝑡𝑟)

𝑙𝑏

 
 

[ A.15 ] 
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3.1.4 Support settlement 

For a through bridge a settlement of one of the supports can be very likely. Now 
let’s assume a settlement of ∆ of one of the supports.  
 

 

Figure A-7: Transverse section for the settlement of one support 

 
The rotation between A and B: 
 

𝜃𝐴𝐵 =
1

𝐸𝐼
(𝐴𝑟𝑒𝑎𝐴𝐵) =

1

2
∗ 𝑅𝐴 ∗ 𝑙2 − 𝑀𝐴𝐿 = 0 

 

𝑅𝐴 = +
2𝑀𝐴

𝐿
 

 

 
 

 

 

 
Deflection in point B: 
 

𝜃𝐴𝐵 =
1

𝐸𝐼
(𝐴𝑟𝑒𝑎𝐴𝐵) ∗ 𝑋𝐵

̅̅̅̅ =
1

2
∗ 𝑅𝐴 ∗ 𝑙2 ∗ (

1

3
𝐿) − 𝑀𝐴𝐿 ∗ (

1

2
∗ 𝐿) = −∆ 

 

𝑅𝐴𝐿3 − 3𝑀𝐴𝐿2 = −6𝐸𝐼∆ 

 
Substitute 𝑅𝐴 by earlier found expression: 
  

𝑚𝑝𝑙 = 𝑀𝐴 = 𝑀𝐵 = 6𝐸𝐼∆/𝐿2 [ A.16 ] 
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3.1.5 Run-up plate reactional force 

At either side of the bridge two run-up plates are applied with a width 𝑙2. The 
assumption is made that each run-up plate generates two reactional forces on the 
bridge, which results in a transverse section as in Figure A-8. 
 

 

Figure A-8: Reactional forces of two run-up plates 

 
Using forget-me-nots once again the primary load is derived: 
 

𝑚𝑝𝑙 = 𝐹 ∗ (
𝑙1

2 + 2 ∗ 𝑙1𝑙2 + 0,25 ∗ 𝑙2

𝑙
) 

[ A.17 ] 

 

 

 

3.2 Load distribution of a concentrated load 
Because the floor is divided into strips with length 𝑑𝑥  (= 1,0 𝑚), the primary load for 
concentrated loads becomes rather large. The strip approach doesn’t allow any 
distribution of the concentrated loads in longitudinal direction.  To solve this 
problem, this paragraph will search for a standard distribution length for relevant 
concentrated loads. In the master thesis of R.T.J. de Groot (4), a standard function 
for concentrated loads is found: 
 

𝑚𝑝𝑙(𝑥) =
𝑚𝑝𝑙,0

2
∗ (cos

𝜋𝑥

𝑐
+ 1) 

 

[ A.18 ] 

 

Where 𝑐 (= 4,5 𝑚) is the distribution length for a concentrated load acting on a 
single track bridge.  
 
Taking the integral of this function leads to: 
 

∫
𝑚𝑝𝑙,0

2
∗ (cos

𝜋𝑥

𝑐
+ 1) 𝑑𝑥 =

𝑚𝑝𝑙,0

2
∗ [−

𝜋

𝑐
(sin (

𝜋𝑥

𝑐
) + 𝑥]

+𝑐

−𝑐
=

𝑚𝑝𝑙,0

2
∗ [0 + 2𝑐 − 0 − 0] = 𝑚𝑝𝑙,0 ∗ 𝑐

+2𝑐

0

 

 

 

Figure A-9: Load model 71 
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It is desirable to convert the four concentrated loads from LM71 into a distributed 
line load. To do this, a function describing the total effect of the four loads is 
necessary. The area under the graph should equal 4 ∗ 𝑚𝑝𝑙,0 ∗ 𝑐  and the distance 

between the first and last concentrated load is 4,8 meters.  
 

∫   𝐴 ∗ 𝑚𝑝𝑙,0 ∗ (cos
𝜋𝑥

𝑐 + 2,4
+ 1) 𝑑𝑥 = 𝐴 ∗ 𝑚𝑝𝑙,0 ∗ [−

𝜋

𝑐 + 2,4
(sin (

𝜋𝑥

𝑐 + 2,4
) + 𝑥]

+2𝑐 + 4,8

0

+2𝑐+4,8

0

 

 
                = 𝐴 ∗ 𝑚𝑝𝑙,0 ∗ [0 + 2𝑐 + 4,8 − 0 − 0] = 𝐴 ∗ 𝑚𝑝𝑙,0 ∗ (2𝑐 + 4,8) = 4𝑚𝑝𝑙,0 ∗ 𝑐 

 

The function for the total load goes to: 
 

𝑚𝑝𝑙(𝑥) = 1,30 ∗ 𝑚𝑝𝑙,0 ∗ (cos
𝜋𝑥

𝑐
+ 1) 

 

[ A.19 ] 

 

 

Figure A-10: Load distribution of LM71 

 
Figure A-10 present a visualisation of the mentioned graphs. The combination of 
the four forces leads to a maximum load of 2,60 ∗ 𝑚𝑝𝑙0 and acts over a length of 2𝑐 +

4,8 = 2 ∗ 4.5 + 4.8 = 13,8 𝑚. The total effect can be simplified to a constant distributed 
load, which has the same area under the graph. Hence the four concentrated loads 
of LM71 are replaced by a constant distributed load of 2,60𝑚𝑝𝑙0 over 6,9 𝑚𝑒𝑡𝑒𝑟𝑠.  
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4 Torsional moment in the main girder 
In chapter 2 the differential equation for torsion is derived and a general solution is 
presented. This chapter will focus on deriving the boundary conditions for different 
basic load cases.  
 
Before one can continue, a sign convention must be established. Let’s consider a 
through girder which is divided into two. The sign convention depends on the 
section that is regarded. For example if torsion acts on the right section, a moment 
from z to y is positive and from y to z is negative.   

 

 

Figure A-11: Sign convention for torsion 

 

4.1 Torsional moment at the edge of the bridge 
If a torsional moment is applied at the start or end of a simply supported bridge 
with no end cross members, the primary moment (𝑚𝑝𝑙) equals zero. The solution to 

the differential equation reduces to a homogeneous one. Two situations are 
considered, one with a torsional moment at 𝑥 = 0 and one with a torsional moment 
at 𝑥 = 𝑙. 
 
Boundary conditions if 𝑀𝑝𝑙 acts at 𝑥 = 𝑙: 

 
𝑥 = 0             𝑀𝑡 = 0           →                  𝐶1 = 0 

 

𝑥 = 𝑙             𝑀𝑡 = 𝑀𝑝𝑙         →                  𝐶2 =
𝑀𝑝𝑙

𝐺𝐼𝑡𝜔 sinh 𝜔𝑙
 

 

 

The equations for rotation and torsion go to: 
 

𝜑(𝑥) =
𝑀𝑝𝑙

𝐺𝐼𝑡𝜔
∗

cosh 𝜔𝑥

sinh 𝜔𝑙
 

 

𝑀𝑡(𝑥) = 𝑀𝑝𝑙 ∗
sinh 𝜔𝑥

sinh 𝜔𝑙
 

 

 

[ A.20 ] 

 
 

[ A.21 ] 
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Boundary conditions if 𝑀𝑝𝑙 acts at 𝑥 = 0: 

 

𝑥 = 0             𝑀𝑡 = 𝑀𝑝𝑙   →                  𝐶1 = −
𝑀𝑝𝑙

𝐺𝐼𝑡𝜔
 

 

𝑥 = 𝑙             𝑀𝑡 = 0        →                  𝐶2 = −
𝑀𝑝𝑙

𝐺𝐼𝑡𝜔
∗

1

tanh 𝜔𝑙
 

 

 
The equation for rotation and torsion goes to: 
 

𝜑(𝑥) =
𝑀𝑝𝑙

𝐺𝐼𝑡𝜔
∗ (sinh 𝜔𝑥 −

cosh 𝜔𝑥

tanh 𝜔𝑙
) 

 

𝑀𝑡(𝑥) = 𝑀𝑝𝑙 ∗ (cosh 𝜔𝑥 −
sinh 𝜔𝑥

tanh 𝜔𝑙
) 

 

 

[ A.22 ] 

 

 

[ A.23 ] 

 

 

Figure A-12 displays the course of torsion along the length of the girder. The y-axis 
expresses which fraction of the originally applied primary load is present. Torsion at 
one side of the bridge leads to a very local rotation which is counteracted by the 
entire through girder. This explains that the maximum torsion is found at the edge 
of loading and no torsion if found at the other side.    

 

 

Figure A-12: Torsion applied at the start/end of the bridge 
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4.2 Concentrated torsional moment at an arbitrary position 
The axle load of the train can cause a torsional moment at an arbitrary position. 
The situation is simplified, by splitting the girder into two and applying a torsional 
moment at the edge of the girder 1 and 2.  
 

 

Figure A-13: Torsional moment spreads over two girders with length 𝑙1 and 𝑙2 

 
The derivation in paragraph 4.1 is used to find an expression for torsion. 
  
For the girder I with 0 ≤ 𝑥 ≤ 𝑙1: 
 

𝑀𝑡,𝐼(𝑥) = 𝑀𝑝𝑙,𝑙𝑒𝑓𝑡 ∗ (
sinh 𝜔𝑥

sinh 𝜔𝑙1
) 

 

[ A.24 ] 

 

 

For the girder II with 𝑙1 < 𝑥 ≤ 𝑙: 
 

𝑀𝑡,𝐼𝐼(𝑥) = 𝑀𝑝𝑙,𝑟𝑖𝑔ℎ𝑡 ∗ (cosh 𝜔(𝑥 − 𝑙1) −
sinh 𝜔(𝑥 − 𝑙1)

tanh 𝜔𝑙2
) 

[ A.25 ] 

 

 

The transitional condition between the two girders is equal to: 
 

 

𝑀𝑝𝐼 = 𝑀𝑝𝑙,𝑙𝑒𝑓𝑡 − 𝑀𝑝𝑙,𝑟𝑖𝑔ℎ𝑡 
 

 
Using the transitional condition, the distribution of the concentrated torsional 
moment over the two girders can be determined: 
 

 

𝑀𝑝𝐼,𝑙𝑒𝑓𝑡 =
tanh(𝜔𝑙1)

tanh(𝜔𝑙1) + tanh(𝜔𝑙2)
∗ 𝑀𝑝𝑙 

 

𝑀𝑝𝐼,𝑟𝑖𝑔ℎ𝑡 =
tanh(𝜔𝑙2)

tanh(𝜔𝑙1) + tanh(𝜔𝑙2)
∗ 𝑀𝑝𝑙 

 

 

 

[ A.26 ] 

 

 

 

[ A.27 ] 
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Figure A-14 shows the way torsion is distributed over the girder if a concentrated 
torsional moment is applied at 𝑥 = 5,0 𝑚𝑒𝑡𝑒𝑟𝑠.  
 

 

Figure A-14: Torsion for a concentrated torsional moment at an arbitrary position 
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4.3 Constant distributed load 
The self-weight of the bridge causes a constant distributed load on the girder, which 
means the primary load 𝑚𝑝𝑙 is constant. This causes a constant rotation of the 

girder and since there are no parts of the girder counteracting this rotation, the 
torsional moment is expected to be zero.  
Yet in reality the self-weight leads to a larger deflection at midspan compared to a 
section near the supports. A difference in deflection leads to a difference in rotation, 
which means the torsion due to self-weight is not expected to be zero after all. 
Chapter 6 searches for an alternative load case which is not constant.  
 

4.4 Distributed line load at the edge of the bridge 
A train can cause a distributed line load at the beginning or end of the bridge. 
Figure A-15 illustrates such a situation where a train is leaving the bridge.  
 

 

Figure A-15: The bridge with an unloaded length l1 and loaded length l2 

 
Transitional condition: 
 

𝜑𝑙𝑒𝑓𝑡 = 𝜑𝑟𝑖𝑔ℎ𝑡  

  

The general solution is: (see chapter 2.4): 
 

𝜑(𝑥) = 𝐶1 sinh(𝜔𝑥) + 𝐶2 cosh(𝜔𝑥) +
𝑚𝑝𝑙

𝑠𝑝𝑙

 

 
𝑀𝑡(𝑥) = 𝐺𝐼𝑡𝜔 ∗ (𝐶1 sinh(𝜔𝑥) + 𝐶2 cosh(𝜔𝑥)) 

 

 

 
The boundary conditions for girder I with 0 < 𝑥 < 𝑙1: 
 

𝑥 = 0             𝑀𝑡 = 0                          →                  𝐶1 = 0 

 

𝑥 = 𝑙1             𝑀𝑡 = 𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛       →                  𝐶2 =
𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝐺𝐼𝑡𝜔 sinh 𝜔𝑙
 

 
0 < 𝑥 < 𝑙1        𝑚𝑝𝑙 = 0 
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The solution goes to: 
 

𝑀𝑡,𝐼(𝑥) = 𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∗
sinh 𝜔𝑥

sinh 𝜔𝑙1
 

 

𝜑𝑙𝑒𝑓𝑡 =
𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝐺𝐼𝑡𝜔
∗

1

tanh 𝜔𝑙1

 

 

 

 

[ A.28 ] 

 

 

[ A.29 ] 

 
 

The boundary conditions for girder II with 𝑙1 < 𝑥 < 𝑙: 
 

𝑥 = 0             𝑀𝑡 = 𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛        →                𝐶1 = −
𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝐺𝐼𝑡𝜔
 

 

𝑥 = 𝑙             𝑀𝑡 = 0                           →                𝐶2 = −
𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝐺𝐼𝑡𝜔

1

tanh 𝜔𝑙
 

 
𝑙1 < 𝑥 < 𝑙       𝑚𝑝𝑙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

 

The solution goes to: 
 

𝑀𝑡,𝐼𝐼(𝑥) = 𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (cosh 𝜔(𝑥 − 𝑙1) −
sinh 𝜔(𝑥 − 𝑙1)

tanh 𝜔𝑙2

) 

 

𝜑𝑟𝑖𝑔ℎ𝑡 = −
𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝐺𝐼𝑡𝜔
∗

1

tanh 𝜔𝑙2

+
𝑚𝑝𝑙

𝜔2𝐺𝐼𝑡

 

 

 

[ A.30 ] 

 

 

 

[ A.31 ] 

 

 

Since  𝜑𝑙𝑒𝑓𝑡 = 𝜑𝑟𝑖𝑔ℎ𝑡 the transitional moment can expressed as: 

 
 

𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =
𝑚𝑝𝑙

𝜔
(

tanh 𝜔𝑙1 ∗ tanh 𝜔𝑙2

tanh 𝜔𝑙1 + tanh 𝜔𝑙2

) 

 

 

[ A.32 ] 

 

Using the earlier established sign convention, one can understand that an 
oncoming train causes negative torsion and a train leaving the bridge causes 
positive torsion. The black graph in  Figure A-16 is the envelope defining maximum 
torsion, which has an upper limit value of 𝑚𝑝𝑙0/2𝜔. 
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Figure A-16: Torsion for a distributed mobile line load 
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4.5 Local mobile load  
Load model 71 consists of a distributed load and four concentrated loads. The 
concentrated loads could be heavy axle loads of a locomotive. Let’s assume such a 
locomotive enters the bridge. Until the moment the last axle load is above the 
support, the expression for 𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 in chapter 4.4 remains valid. By substituting 

the length 𝑙2 with the length of the mobile load 𝑙𝑏, the expression goes to: 
 
  

𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =
𝑚𝑝𝑙

𝜔
(

tanh 𝜔𝑙1 ∗ tanh 𝜔𝑙𝑏

tanh 𝜔𝑙1 + tanh 𝜔𝑙𝑏

) 

 

 

[ A.33 ] 

 

 

But when the locomotive starts to move away from the support, torsion will no 
longer increase. The parts of the girder which are no longer loaded will now 
contribute to the load transfer.  
In order to establish the torsional moment at midspan, the bridge is simplified to a 
girder with the length 𝑙𝑏. The unloaded parts can then be schematized as end-cross 
member. The expression for girders with end-cross members is obtained from (4). 
 

𝑀𝑡,𝑚𝑖𝑑𝑠𝑝𝑎𝑛 =
𝑚𝑝𝑙

2𝜔
(1 + sinh 𝜔𝑙𝑏 − cosh 𝜔𝑙𝑏) 

 

[ A.34 ] 

 

 

 

 
 

 

Figure A-17: Torsion due to a local mobile load 

 
The graph above describes the torsional moment when a local mobile load with 
length 𝑙𝑏 is applied on the bridge. A peak in the envelope appears at a distance 𝑙𝑏 
from the supports.  
  

𝑙𝑏  

𝑙𝑏  

𝑙𝑏  
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5 Clamping moment 
Loads on the floor will spread in transverse direction towards the main girders. This 
results in a suspension force and a clamping moment.  
 

 

Figure A-18: Reactional forces between girder and floor 

Figure A-19 presents a top view of bridge A, with a line load acting on the floor. 
Because the line load originates from a train loading, it is split into two separate 
line loads with the characteristic track distance of 1,50 𝑚 between them. The load is 
assumed to spread under an angle of 45° towards the girders, meaning the primary 
load is present over a length: 𝑙𝑙𝑜𝑎𝑑 + 1,70 𝑚. Earlier mentioned is that the clamping 
moment can even be present if the primary load is absent. Contrastingly a 
suspension force can only be found for sections at which the primary load is active.  
   

 

Figure A-19: Top view bridge A: Line-load acting on the floor 
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In the derivation of the differential equation one learned that the difference in 
torsion is equal to the clamping moment. In other words the clamping moment is 
the derivative of the torsion function. This chapter focuses on finding the function 
for the clamping moment. But before one can continue, a sign convention must be 
established. 
 

 

Figure A-20: Sign convention clamping moment 

 
Let’s have a look at the positive torsional moment and the corresponding reactional 
force. In the left section the reactional force is a downward bending moment, 
whereas in the right section it is an upward acting bending moment. From here 
onwards, the downward bending moment (from z to y) is a positive clamping 
moment.  
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5.1 Clamping moment due to torsion at the edge 
Let’s consider torsion at the edge of the bridge (chapter 4.1). The 
course of the clamping moment can be found by taking the 
derivative of the torsion function: 
 
 
𝑀𝑝𝑙 acts at 𝑥 = 𝑙 

    

𝑀𝑡(𝑥) = 𝑀𝑝𝑙 ∗
sinh 𝜔𝑥

sinh 𝜔𝑙
 

 

𝑚𝑥(𝑥) =
𝑑𝑀𝑡(𝑥)

𝑑𝑥
= 𝑀𝑝𝑙𝜔 ∗

cosh 𝜔𝑥

sinh 𝜔𝑙
 

 

 

 
  

 

 

[ A.35 ] 

 
 

 

𝑀𝑝𝑙 acts at 𝑥 = 0 

    

𝑀𝑡(𝑥) = 𝑀𝑝𝑙 ∗ (cosh 𝜔𝑥 −
sinh 𝜔𝑥

tanh 𝜔𝑙
) 

 

𝑚𝑥(𝑥) =
𝑑𝑀𝑡(𝑥)

𝑑𝑥
= 𝑀𝑝𝑙𝜔 ∗ (sinh 𝜔𝑥 −

cosh 𝜔𝑥

tanh 𝜔𝑙
) 

 

 

  

 
 

[ A.36 ] 

 

 

 

 

Figure A-21: Clamping moment course due to torsion at the start/end of the bridge 

 
Both edge-moments generate a positive clamping moment with a maximum at the 
position of loading and a gradually decrease towards the opposite support.  
 
 
 
 
 
 

𝑑

𝑑𝑥
cosh 𝜔𝑥 = ωsinh 𝜔𝑥 

𝑑

𝑑𝑥
sinh 𝜔𝑥 = ωcosh 𝜔𝑥 
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5.2 Clamping moment due to a concentrated torsional moment 
The approach in chapter 4.2 is used to find a function for the clamping moment. 
 
For the girder I with 0 ≤ 𝑥 ≤ 𝑙1: 
 

𝑀𝑡,𝐼(𝑥) = 𝑀𝑝𝑙,𝑙𝑒𝑓𝑡 ∗ (
sinh 𝜔𝑥

sinh 𝜔𝑙1
) 

 

𝑚𝑥,𝐼(𝑥) = 𝜔 ∗ 𝑀𝑝𝑙,𝑙𝑒𝑓𝑡 ∗
cosh 𝜔𝑥

sinh 𝜔𝑙1
 

 
  

 

 

[ A.37 ] 

 

 
For the girder II with 𝑙1 < 𝑥 ≤ 𝑙: 
 

𝑀𝑡,𝐼𝐼(𝑥) = 𝑀𝑝𝑙,𝑟𝑖𝑔ℎ𝑡 ∗ (cosh 𝜔(𝑥 − 𝑙1) −
sinh 𝜔(𝑥 − 𝑙1)

tanh 𝜔𝑙2
) 

 

𝑚𝑥,𝐼𝐼(𝑥) = 𝜔 ∗ 𝑀𝑝𝑙,𝑟𝑖𝑔ℎ𝑡 ∗ (sinh 𝜔(𝑥 − 𝑙1) −
cosh 𝜔(𝑥 − 𝑙1)

tanh 𝜔𝑙2
) 

  

 
 

 

[ A.38 ] 

 

 
 

Since the function that is used to determine the distribution of the torsional 
moment over girder I and II (𝑀𝑝𝑙,𝑙𝑒𝑓𝑡 & 𝑀𝑝𝑙,𝑟𝑖𝑔ℎ𝑡) is independent of 𝑥, the distribution 

remains unchanged.  
 

 

Figure A-22: Clamping moment for a concentrated torsional moment at an arbitrary 

position 

 
If a concentrated torsional moment is applied at 5,0 meters from the left support, 
the resulting clamping moment follows the blue graph in Figure A-22.  
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5.3 Clamping moment due to a distributed line load at the edge 
The basis of this derivation can be found in chapter 4.4. 
 
The solution for girder I with 0 < 𝑥 < 𝑙1: 
 

𝑀𝑡,𝐼(𝑥) = 𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∗
sinh 𝜔𝑥

sinh 𝜔𝑙1
 

 

𝑚𝑥,𝐼(𝑥) = 𝜔𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∗
cosh 𝜔𝑥

sinh 𝜔𝑙1
 

 

 
  

 

 

[ A.39 ] 

 
 

The solution for girder II with 𝑙1 < 𝑥 < 𝑙: 
 

𝑀𝑡,𝐼𝐼(𝑥) = 𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (cosh 𝜔(𝑥 − 𝑙1) −
sinh 𝜔(𝑥 − 𝑙1)

tanh 𝜔𝑙2

) 

 

𝑚𝑥,𝐼𝐼(𝑥) = 𝜔𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∗ (sinh 𝜔(𝑥 − 𝑙1) −
cosh 𝜔(𝑥 − 𝑙1)

tanh 𝜔𝑙2
) 

 

 

 

 

[ A.40 ] 

 

 

 
The transitional moment ( 𝑀𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ) is independent of 𝑥 and remains unchanged 

in the derivation for the clamping moment. Respectively a load applied on 𝑙1 or 𝑙2 
leads to a clamping moment according to the red and blue graph in Figure A-23. 
One should notice that the jump of the clamping moment equals the primary load.  
 

|𝑚𝑥,𝑙𝑒𝑓𝑡| + |𝑚𝑥,𝑟𝑖𝑔ℎ𝑡| = 𝑚𝑝𝑙  

 

Figure A-23: Clamping moment due to a distributed load at one end 
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5.4 Clamping moment due to a local mobile load 
Since the application of a local mobile load is a more complex version of the load 
case which considers a distributed line load, equations [ A.39 ] and [ A.40 ]  
from chapter 5.3 can be used. Both functions need to be multiplied with the 
maximum torsional moment (Figure A-17) to find a clamping moment of the right 
order of magnitude.  
 
    

𝑚𝑥,𝐼(𝑥) = 𝜔 ∗ 𝑀𝑡,𝑚𝑎𝑥 ∗ 𝑀𝑝𝑙,𝑙𝑒𝑓𝑡 ∗
cosh 𝜔𝑥

sinh 𝜔𝑙1
 

 

𝑚𝑥,𝐼𝐼(𝑥) = 𝜔 ∗ 𝑀𝑡,𝑚𝑎𝑥 ∗ 𝑀𝑝𝑙,𝑟𝑖𝑔ℎ𝑡 ∗ (sinh 𝜔(𝑥 − 𝑙1) −
cosh 𝜔(𝑥 − 𝑙1)

tanh 𝜔𝑙2
) 

 

[ A.41 ] 

 

 

[ A.42 ] 

 

 

 

 

Figure A-24: Clamping moment due to a local mobile load 
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6 Load cases 
A couple of basic load cases have been discussed throughout this appendix. 
Because the load cases acting on the bridge are more complex, they are broken 
down into a combination of these basic cases. It is recommended to read this 
chapter in combination with appendix G.   
 

6.1 Self-weight 
As mentioned before the theory does not assume torsion due to constant loading 
such as self-weight. But application of a finite element program (appendix G) proves 
that self-weight does cause torsion in the girder. Especially near the supports, the 
structure is relatively stiff and attracts quite some torsion. An alternative load case 
is applied which has the same deflection pattern as self-weight.  
 

 

Figure A-25: Alternative load case for self-weight 

With some trial and error it established that (for bridge A) the alternative load case 
has the same deflection pattern when the length approximates 16 m and the load 
105% of the self-weight. Additionally the values for torsion of the FE model and 
theory compare rather well for this assumption.  
 

6.2 Load on cantilevers 
Load case 4 consists of a double distributed line load (due to a train) and a 
concentrated load (due to the reactional force of two run-up plates). This load case 
needs to be converted into a torsional moment which can be applied at the start 
and end of the bridge. 
 

 

Figure A-26: LC 4: Mobile loading on the cantilevers of the bridge 
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Figure A-27: Loading on the cantilevers converted into torsional moment at the start/end 

The primary load for the distributed and concentrated load are determined with the 
knowledge from paragraph 3.1. The primary loads are added together and applied 
as a torsional moment on the start and end of the bridge (Figure A-27). This 
alternative load case comes down to one of the basic load cases and torsion along 
the length of the girder can now be plotted. 
  

6.3 Settlement of supports 
The occasion where one support settles more than the others it very likely. 
Therefore a load case is taken into account which assumes a support settlement of 
5 𝑚𝑚. The primary load derived in paragraph 3.1 should be used to determine 
torsion in the girder. But because the theory assumes there is no load distribution 
in longitudinal direction, unrealistically high values for torsion are obtained.  
Because the SCIA plate model (appendix G) matches best with the theory, this 
model is used to find the correct values for torsion and the clamping moment.  
 
Note: The support settlement load case is the only case for which SCIA is used to 
find appropriate values for torsion and the clamping moment. For all the other load 
cases in the upcoming calculations the analytical solution is used.  
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6.4 Prestress 
Torsion consists of a horizontal prestressing force, upward distributed load and a 
bending moment due to eccentricity of the tendons. Because torsion is only 
generated by deflection of the floor and rotations of the girder, the horizontal 
prestressing force is excluded from the torsion calculation.  
 

 

Figure A-28: Alternative load case for prestress 

 
Like self-weight and alternative loading is applied on the bridge. From appendix G it 

is learned that by taking 𝑎 = 16 𝑚 and 𝑞𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 = 102% ∗ 𝑞𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 , the same 

deflection pattern is found as the original case. Because the bending moment 
counteracts the upward deflection of the prestressing force, the alternative load 
case has roughly the same distributed load but is present over a shorter length. 
Appendix G also teaches one that the torsional graphs of the alternative case match 
pretty well with results from SCIA.  
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6.5 Bridge A 

Table A-1: Torsion load cases bridge A 

LC Load scheme Longitudinal loading 

 

Transverse loading 

1 - Self weight  
 

 

 

 

A. 

 
 

A & B. 
 

 

 

 

 
B. 
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2-Ballast 
 

 
 

 

 
 

A. 

 

A. 
 

 

B. 

 
 

B. 
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3– Con. Mobile 

Load 
(LM71) 

 

 

 
 

A. 

 

A. & B. 

 
 

 

 

 

 

 

B.  
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4– Cantilever 

fully loaded 
(SW/2) 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

A. 

 
 

B. 
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5a – Contin. 

Mobile load 
(LM71) 

 

 

A. 

 

A. 

 

 

5b – Contin. 

Mobile load 
(SW/2) 

 

 
 
 

 

 

A. 

 
 

A & B. 

 
 

 

 

 

 

 
 

 
 

B. 
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6 – Settlement 

support max. 

 

 

 

Torsion obtained from SCIA Plate Model 

7 – Settlement 
support min. 

 

 
  

 
Torsion obtained from SCIA Plate Model 

8 – Prestress at 

t=0 

 

 

 
 

A. 

 
 

A. 

 

9 – Prestress at 

𝑡 = ∞ 

 

 

 
 

A. 

 
 

 

A. 
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6.6 Bridge B 

Table A-2: Torsion load cases bridge B 

LC Load scheme Longitudinal loading 

 

Transverse loading 

1 - Self weight  
 

 

 
 

 

 

A. 

 
 

A. & B. 
 

 

 

 

 

 
 

B. 
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2-Ballast 

 

 

 

 

 
 

A. 

 
 

A. 

 

 

B. 

 
 

B. 
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3a–  

Mobile Max  
(LM 71) 

 

 
 

 

 

 

 
 

A. 

 
 

A. & B. 

 
 

 

 

 

 
 

B. 

 
 

C. 

 
 

C. 
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3b –  

Mobile Max 
(SW/2) 

 

 
 

A. 

 
 

A. & B. 

 
 

 

 

 

 

 

 
 

B. 
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4– Cantilever 

fully loaded 
(SW/2) 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 
 

 

A. 

 

 
 

B. 

 

 
 

5 – Settlement 
support max. 

 

 

 
 

Torsion obtained from SCIA Plate Model 

6 – Settlement 
support min. 

 

 

 
 

Torsion obtained from SCIA Plate Model 
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7 – Prestress at 

t=0 
 

 

 
 

A. 

 
 

 

A. 

 

 
 

8 – Prestress at 

𝑡 = ∞ 
 

 

 

A. 

 

A. 
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7 Maple sheets 
7.1 Torsion 
  



(1)(1)

Torsion at the edge of the bridge 

Parameters

The torsion spreads ver the entire lengt l:

Torsion:

Ratio between the bending and torsional stiffness:

Functions

Graphs





(1)(1)

Concentrated torsion at an arbitrary position

Parameters

Position of the concentrated torsional moment:

Primary load:

Ratio between the bending and torsional stiffness:

Functions



Graphs



Torsion - Distributed load at the start/end

Parameters

Distributed load has a lenght of a:

Clamping moment:

Ratio between the bending and torsional stiffness:

Functions



Graphs





Torsional due to local load

Parameters

The length of the local mobile load is equal to a:

Primary load:

Ratio between the bending and torsional stiffness:

Functions



Graphs
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7.2 Clamping moment 



(1)(1)

Clamping moment - Torsion at the edge of the bridge 

Parameters

The moments are spread over the entire lengt l:

Primary load:

Ratio between the bending and torsional stiffness:

Functions



Graphs



(1)(1)

Clamping moment - Concentrated torsional moment

Parameters

The moments are spread over the entire lengt l:

Primary load:

Ratio between the bending and torsional stiffness:

Functions



Graphs



Clamping moment - Distributed load at the start/end

Parameters

The  distributed load has a length of a:

Primary load:

Ratio between the bending and torsional stiffness:

Functions



Graphs





Clamping moment due to local load

Parameters

The length of the local mobile load is equal to a:

Primary load:

Ratio between the bending and torsional stiffness:

Functions Torsion



Functions Clamping Moment

Graphs





Appendix B – Shear tension failure VB 74 (SLS)  
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1 Introduction 
Critical for the through bridge is a combination of shear, torsion and bending. At a 
section, just above the connection between the floor and the girder, the combination 
of normal and shear stresses is expected to be governing. This combination of 
stresses is called the principal stress. The tensile principal stress cannot exceed the 
tensile strength of the concrete, but if it does, a shear tension crack will develop. 
This is a very sudden and brittle failure mechanism, which should by avoided by all 
means. 
  

 
Figure B-1: Shear tension crack in a through bridge 

 
Bridge A (3) and B (21) were designed using a combination of the VB 74 (7) and the 
VOSB 1963 (8). The load models used at the time, are quite different from the 
Eurocode load models. One of the objectives in this master thesis is to verify 
whether or not the change in load models enhances the risk of shear tension 
failure. Hence the purpose of this appendix is presenting an overview of the 
maximum tensile principal stresses, which were found in the design reports of 
bridge A and B.   
 
According to the VB 74, the check on shear tension failure, is performed at 
serviceability limit state. Part F of the standard states that the safety factors for 
self-weight (𝛾𝑔), ballast (𝛾𝑟) and mobile loads (𝛾𝑞) are all equal to 1,0. Additionally the 

tensile principal stress cannot grow larger than half the characteristic tensile 
strength. However if it does, a shear tension crack will develop.   
 

𝑈. 𝐶. =
𝜌1

0.5 ∗ 𝑓𝑐𝑡𝑘
≤ 1,0 

 

Where: 
𝜌1 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 

𝑓𝑐𝑡𝑘 = 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

 
 

 

[ B.1 ] 
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2 Load cases 
The VOSB 1963 defines 3 different load models for railway traffic. Yet in the design 
report only the VOSB 150 is considered. It consists of a group of concentrated loads 
(with 150 kN per load) and a distributed load of 80 kN/m. The minimum spacing 
between the group of concentrated loads is 17 meters.  
 
 

 
Figure B-2: VOSB 150 

 
The following remarks can give one a better understanding of the applied load cases 
(presented by Table B-1 and Table B-2): 

• VOSB 150: For bridge A, the concentrated and distributed loads are split 
into LC 3 and LC 5 respectively. 

• Run-up plate: In the run-up to the bridge two plates at either side are 
applied. These plates are supported by the abutment and the bridge. The 
reactional force creates a concentrated load on the bridge.  

• Settlement: The soil on which the structure is founded is heterogeneous. It 
could be likely that one of the supports settles more than the others, 
therefore a settlement of 5 𝑚𝑚 of one of the supports is taken into account.   

• Prestress:  
o The initial prestress reduces over time due to creep, shrinkage and 

relaxation. On average the reduction for construction A and B, is 0,912 
and 0,915.  

o Because the centre of gravity of the applied tendons does not coincide 
with the centre of gravity of the structure, an additional bending 
moment is present.  
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2.1 Bridge A 
 
Table B-1: Load cases bridge A (SLS) 

LC Load parameters 

 

Load Load scheme 

1 - Self weight  

𝐴𝑏 = 5,5 𝑚2 

𝛾𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 25 𝑘𝑁/𝑚3 
 

 
𝑞𝑠.𝑤. = 137,5 𝑘𝑁/𝑚 

 

 

 
 

2- Ballast  

ℎ𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 0,65 𝑚 

𝑏𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 4,0 𝑚 

𝛾𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 18 𝑘𝑁/𝑚3 

 

𝑞𝑠.𝑤.  𝑟𝑢𝑛−𝑢𝑝 = 9,0 𝑘𝑁/𝑚 

𝑙𝑟𝑢𝑛−𝑢𝑝 = 4,0 𝑚 

𝑏𝑟𝑢𝑛−𝑢𝑝 = 1,6𝑚 

 

 

𝑞𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 11,7 𝑘𝑁/𝑚2 
 

𝐹𝑟𝑢𝑛−𝑢𝑝 𝑝𝑙𝑎𝑡𝑒 = 111 𝑘𝑁 
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3 – Con. 

Mobile Load 
(VOSB 150) 

 

𝑙 = 4,2 𝑚   
𝑏 = 2,85 𝑚 

𝐹𝑉𝑂𝑆𝐵 150 = 150 𝑘𝑁 

Φ𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 1,195 

 

 

𝑞𝐹,𝑉𝑂𝑆𝐵 150 =
3 ∗ 150 ∗ 1,195

2,85 ∗ 4,2
= 44,9 𝑘𝑁/𝑚2 

 

 

 
 

4 – Cantilever 

fully loaded 

(VOSB 150) 

 

𝑞𝑉𝑂𝑆𝐵 150 = 80 𝑘𝑁/𝑚 

 

Φ𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 1,195 

 

𝐹𝑟𝑢𝑛−𝑢𝑝 𝑝𝑙𝑎𝑡𝑒 = 191 𝑘𝑁 

 

𝑞𝑞,𝑉𝑂𝑆𝐵 =
1,195 ∗ 80

2,85
= 33,5 𝑘𝑁/𝑚2 

 

 

 

 
 

5 – Contin. 

Mobile load 

(VOSB 150) 

  

𝑞𝑞,𝑉𝑂𝑆𝐵 = 33,5 𝑘𝑁/𝑚2 
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6 – Settlement 

support min. 

  

𝑢𝑎 = −5 𝑚𝑚 
 

 

 
 

7 – Prestress 

at t=0 

  

𝑢𝑏 = −5 𝑚𝑚 
 

 

 
 

8 – Prestress at 

t=0 

 𝑞𝑃0 = 101 𝑘𝑁/𝑚 

𝐹1 = 1115 𝑘𝑁 
𝐹2 = 13200 𝑘𝑁 

𝑀1 = 294 𝑘𝑁𝑚 
 

 

 
 

9 – Prestress at 

𝑡 = ∞ 

 
𝑃∞

𝑃0

= 0,912 

𝑞𝑃0 = 92 𝑘𝑁/𝑚 
𝐹1 = 1017 𝑘𝑁 

𝐹2 = 12038 𝑘𝑁 

𝑀1 = 268 𝑘𝑁𝑚 
 

 
 
  



Appendix B  Shear tension failure VB 74 (SLS) | 6  
 
 

2.2 Bridge B 
 
Table B-2: Load cases bridge B (SLS) 

LC Load parameters Load Load scheme 

1 - Self weight  

𝐴𝑏 = 8,63 𝑚2 

𝛾𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 25 𝑘𝑁/𝑚3 
 

 
𝑞𝑠.𝑤. = 216 𝑘𝑁/𝑚 

 

 

 
 

2- Ballast  

ℎ𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 0,55 𝑚 

𝑏𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 4,0 𝑚 

𝛾𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 18 𝑘𝑁/𝑚3 

 

𝑞𝑠.𝑤.  𝑟𝑢𝑛−𝑢𝑝 = 9,0 𝑘𝑁/𝑚 

𝑙𝑟𝑢𝑛−𝑢𝑝 = 4,0 𝑚 

𝑏𝑟𝑢𝑛−𝑢𝑝 = 1,6𝑚 

 

 

𝑞𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 9,9 𝑘𝑁/𝑚2 
 

𝐹𝑟𝑢𝑛−𝑢𝑝 𝑝𝑙𝑎𝑡𝑒 = 99 𝑘𝑁 
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3 – Mobile 

Max 
(VOSB 150) 

 

𝑙 = 4,2 𝑚   
𝑏 = 3,0 𝑚 

𝐹𝑉𝑂𝑆𝐵 150 = 150 𝑘𝑁 

𝑞𝑉𝑂𝑆𝐵 150 = 80 𝑘𝑁 

Φ𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 1,155 

 

 

 
 

 

 

𝑞𝐹,𝑉𝑂𝑆𝐵 150 =
3 ∗ 150 ∗ 1,155

3,0 ∗ 4,2
= 41,3 𝑘𝑁/𝑚2 

 
 

 

 
 

 

 

 

 

 

𝑞𝑞,𝑉𝑂𝑆𝐵 150 =
80 ∗ 1,155

3,0
= 30,8 𝑘𝑁/𝑚2 

 

 

 
 

4 – Cantilever 
fully loaded 

(VOSB 150) 

 
𝑞𝑉𝑂𝑆𝐵 150 = 80 𝑘𝑁/𝑚 

 

Φ𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 1,155 

 

𝐹𝑟𝑢𝑛−𝑢𝑝 𝑝𝑙𝑎𝑡𝑒 = 185 𝑘𝑁 

 

𝑞𝑞,𝑉𝑂𝑆𝐵 =
1,155 ∗ 80

3,0
= 30,8 𝑘𝑁/𝑚2 
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5 – Settlement 

support max. 

  

𝑢𝑎 = −5 𝑚𝑚 

 

 

 
 

6 – Settlement 

support min. 

  

𝑢𝑏 = −5 𝑚𝑚 

 

 

 
 

7 – Prestress 

at t=0 

  

𝑞𝑃0 = 145,2 𝑘𝑁/𝑚 

𝐹1 = 2290 𝑘𝑁 
𝐹2 = 22826 𝑘𝑁 

𝑀1 = 5045 𝑘𝑁𝑚 

 

 

 

 

 
 

 

 

 

8 – Prestress 

at 𝑡 = ∞ 

 
𝑃∞

𝑃0

= 0,915 

 
𝑞𝑃0 = 132,9 𝑘𝑁/𝑚 

𝐹1 = 1048 𝑘𝑁 

𝐹2 = 20886 𝑘𝑁 

𝑀1 = 4616 𝑘𝑁𝑚 
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3 Principal stresses 
The critical location for shear tension failure is at the upper side of the connection 
between the floor and the main girder (Figure B-3). The critical principal stress 
consists of: 
 

• 𝜎𝑥𝑥: The horizontal normal stress, due to normal force and bending from 
external forces, prestressing and restrained deformations.  

• 𝜎𝑦𝑦: The vertical normal stress, is caused by a suspension force and 

clamping moment from the floor. 

• 𝜏𝑥𝑦: The shear stress, caused by torsion of the mobile load and shear force of 

external forces, prestressing and restrained deformations.   
 

 
Figure B-3: Location of shear tension failure 

 
With Mohr’s circle the normal and shear stresses are combined to a principal 
stress, equation [ B.2 ] and [ B.3 ] define an expression for the two characteristic 
principal stresses.  
 
 

𝜌1 =
𝜎𝑥 + 𝜎𝑦

2
+ √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 

 

[ B.2 ] 
 

 

𝜌2 =
𝜎𝑥 + 𝜎𝑦

2
− √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 

 

[ B.3 ] 
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3.1 Results 
Earlier it has been established that the connection between the floor and girder 
leads to critical stress combinations. Respectively for bridge A and B, the most 
critical location in longitudinal direction, is at 0,8d from the support and right 
above the support. The normal and shear stresses for these two locations are shown 
in Table B-3 and Table B-4.  
 
Table B-3: Bridge A: Normal and shear stresses at 0,8d 

 

 

Table B-4: Bridge B: Normal and shear stress above the support 

 

 
Remarkable are the large shear stresses due to prestress. The large contribution of 
the shear force can be explained. At the support the angle between the prestressing 
tendons and the horizontal is at a maximum, making this the location with the 
largest vertical component. The vertical component is obviously the acting shear 
force. 
 
The large contribution of torsion to the shear stress cannot directly be explained. 
According to the design report, the introduction of the prestress in ANSYS leads to 

large tensile stresses in the first part of the floor. This causes strains of the floor 
and a rotation in the girder. Eventually this rotation generates torsion in the girder 
which is of a much larger magnitude than in reality. According to the design report 
the values for torsion form a safe  upper limit for the design of a through bridge. 
  
 
 
 
 

Shear force Normal force

LC type Mxy τxy τxy σxx Myy σyy Qyy σyy

1 self-weight 5,8 0,06 0,43 -0,31 13,2 0,10 -36,9 -0,04

2 ballast -17,2 -0,17 0,19 -0,11 10,9 0,08 -31,6 -0,04

3 Conc. Mobile Load 8,6 0,08 0,11 -0,08 10 0,07 -3,7 0,00

4 Cant. Mobile Load -53,7 -0,52 -0,02 0,09 21,3 0,16 -32,3 -0,04

5 Contin. Mobile Load -2,3 -0,02 0,32 -0,23 23,7 0,18 -49,8 -0,06

6 Support Settlement max. 26,1 0,25 0,01 0,01 20,9 0,15 10,5 0,01

7 Support Settlement min. -26,1 -0,25 -0,01 -0,01 -20,9 -0,15 -10,5 -0,01

8 Prestress t=0 -120 -1,17 -0,91 -4,82 -20,7 -0,15 -16,5 -0,02

9 Prestress t = ∞ -109 -1,06 -0,82 -4,39 -18,8 -0,14 -15 -0,020,00

LC 1+ LC 2+ LC 3+ LC 5+ LC 6 + LC 8 -88 -0,86 0,24 -5,11 60 0,44 -127 -0,14

LC 1+ LC 2+ LC 3+LC 5+LC 7 + LC 8 -140,2 -1,36 0,22 -5,13 18,1 0,13 -147,5 -0,16

LC 1+ LC 2+ LC 4+ LC 6 +LC 8 -148 -1,44 -0,21 -4,71 47,5 0,35 -105,3 -0,12

LC 1+LC 2+LC 4+LC 7 + LC 8 -200,2 -1,95 -0,23 -4,73 5,7 0,04 -126,3 -0,14

LC 1+ LC 7 -114,2 -1,11 -0,48 -5,13 -7,5 -0,06 -53,4 -0,06

Torsion Bending moment floor Shear force floor

Shear force Normal force

LC type Mxy τxy τxy σxx Myy σyy Qyy σyy

1 self-weight 0,8 0,00 0,62 1,6 0,01 -112 -0,09

2 ballast -12,3 -0,07 0,14 -15,4 -0,06 -40,7 -0,03

3 Mobile Max (VOSB 150) 13,6 0,07 0,31 -27,3 -0,11 -68,5 -0,06

4 Mobile Min (VOSB 150) -76,9 -0,42 -0,01 -8,5 -0,04 -34,1 -0,03

5 Support Settlement max. 29,5 0,16 0,00 -33,3 -0,14 12,7 0,01

6 Support Settlement min. -29,5 -0,16 0,01 33,3 0,14 -12,7 -0,01

7 Prestress t=0 -112 -0,62 -1,10 -5,29 115,6 0,48 -114 -0,10

8 Prestress t = ∞ -102 -0,56 -1,00 -4,84 105,7 0,44 -104 -0,090,00

LC 1+ LC 2+ LC 3+ LC 5+ LC 6 + LC 8 -70 -0,39 0,07 -4,84 31 0,13 -313 -0,26

LC 1+ LC 2+ LC 3+LC 5+LC 7 + LC 8 -129 -0,71 0,08 -4,84 98 0,41 -338 -0,28

LC 1+ LC 2+ LC 4+ LC 6 +LC 8 -161 -0,88 -0,25 -4,84 50 0,21 -278 -0,23

LC 1+LC 2+LC 4+LC 7 + LC 8 -220 -1,21 -0,24 -4,84 117 0,49 -304 -0,25

LC 1+ LC 7 -111 -0,61 -0,48 -5,29 117 0,49 -226 -0,19

Torsion Bending moment floor Shear force floor
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Table B-5: Bridge A: Principal stresses at 0,8d 

 
 
Table B-6: Bridge B: Principal stress above the support 

 
 
The vertical normal stress, consisting of the suspension force and the clamping 
moment, is initially assumed constant with the height of the beam. Yet in reality 
these stresses vary with height, with a maximum at the bottom and zero at the top. 
Because a section just above the throat (Figure B-3) is considered, the vertical 
normal stresses are reduced by using Timoshenko’s theory of elasticity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LC type σyy σxx τxy ρ1 ρ2

1 self-weight

2 ballast

3 Conc. Mobile Load

4 Cant. Mobile Load

5 Contin. Mobile Load

6 Support Settlement max.

7 Support Settlement min.

8 Prestress t=0

9 Prestress t = ∞

LC 1+ LC 2+ LC 3+ LC 5+ LC 6 + LC 8 0,32 -5,11 1,10 0,53 -5,32

LC 1+ LC 2+ LC 3+LC 5+LC 7 + LC 8 0,16 -5,13 1,58 0,60 -5,57

LC 1+ LC 2+ LC 4+ LC 6 +LC 8 0,25 -4,71 1,65 0,75 -5,21

LC 1+LC 2+LC 4+LC 7 + LC 8 0,10 -4,73 2,18 0,93 -5,57

LC 1+ LC 7 0,06 -5,13 1,59 0,51 -5,58

Total Principal stresses

LC type σyy σxx τxy ρ1 ρ2

1 self-weight

2 ballast

3 Mobile Max (VOSB 150)

4 Mobile Min (VOSB 150)

5 Support Settlement max.

6 Support Settlement min.

7 Prestress t=0

8 Prestress t = ∞

LC 1+ LC 2+ LC 3+ LC 5+ LC 6 + LC 8 0,27 -4,84 0,46 0,31 -4,88

LC 1+ LC 2+ LC 3+LC 5+LC 7 + LC 8 0,48 -4,84 0,79 0,59 -4,95

LC 1+ LC 2+ LC 4+ LC 6 +LC 8 0,31 -4,84 1,13 0,55 -5,08

LC 1+LC 2+LC 4+LC 7 + LC 8 0,51 -4,84 1,45 0,88 -5,21

LC 1+ LC 7 0,47 -5,29 1,09 0,67 -5,49

Total Principal stresses
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3.2 Unity check 
In the design reports, three locations are checked for shear tension failure. Only the 
normal and shear stresses leading to the most critical stress combination have been 
presented in the previous chapter. However Table B-7 and Table B-8 show the unity 
check for all three locations of both bridges. 
  
Table B-7: Unity check's bridge A 

Location 𝝆𝟏 𝟎. 𝟓 ∗ 𝒇𝒃 U.C. 

0,8d 0,93 𝑁/𝑚𝑚2 1,0 𝑁/𝑚𝑚2 0,93/1,0=0,93 

2,0d 0,62 𝑁/𝑚𝑚2 1,0 𝑁/𝑚𝑚2 0,62/1,0=0,62 

0,5L 0,48 𝑁/𝑚𝑚2 1,0 𝑁/𝑚𝑚2 0,48/1,0=0,48 

 
Table B-8: Unity check's bridge B 

Location 𝝆𝟏 𝟎. 𝟓 ∗ 𝒇𝒃 U.C. 

Support 0,88 𝑁/𝑚𝑚2 1,0 𝑁/𝑚𝑚2 0,88/1,0=0,88 

0,25L 0,56 𝑁/𝑚𝑚2 1,0 𝑁/𝑚𝑚2 0,56/1,0=0,56 

0,5L 0,52 𝑁/𝑚𝑚2 1,0 𝑁/𝑚𝑚2 0,52/1,0=0,52 

 
 
 
 
 
 



 
 

Appendix C – Shear tension failure  in the Eurocode (ULS)  
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1 Introduction 
Bridge A and B are designed using the load models in VOSB 1963. Nowadays the 
Eurocode is applicable, which uses different load models for railway traffic. The 
objective of this appendix is to check whether or not shear tension failure is an 
issue, if the bridges are subjected to load models from the Eurocode. In order to get 
a proper understanding of the transfer of forces, this check is performed with a 
hand calculation. 
 

1.1 ULS 
The risk of shear tension failure is an ultimate limit state check in the Eurocode. 
Eurocode 0 (14) considers two load combinations, one where the self-weight of the 
structure is governing (6.10a) and another where the variable action on the 
structure is governing (6.10b).   
 

𝛾𝐺 ∗ 𝐺𝑘 + 𝛾𝑄 ∗ Ψ0 ∗ 𝑄𝑘 + 𝛾𝑃 ∗ 𝑃𝑘 

 

𝜉𝛾𝐺 ∗ 𝐺𝑘 + 𝛾𝑄 ∗ 𝑄𝑘 + 𝛾𝑃 ∗ 𝑃𝑘 

[ 6.10a ] 

[ 6.10b ] 

 
Table C-1: Load factors for load combination 6.10a and 6.10b 

Load case Load factor 6.10a Load factor 6.10b 

1- Self-weight 1,40 1,25 

2- Ballast 1,40 1,25 

3- Conc. Mobile load (LM71) 

4- Cantilevers fully loaded (SW/2) 

5a- Cont. Mobile load (LM71) 
5b- Cont. Mobile load (SW/2) 

6a- Settlement support max 

6b- Settlement support min 

7a- Prestress at 𝑡 = 0 

7b– Prestress at 𝑡 = ∞ 

1,20 

1,00 

1,20 
1,00 

1,20 

1,20 

1,00 

1,00 

1,50 

1,25 

1,50 
1,25 

1,20 

1,20 

1,00 

1,00 

 
All load factors are derived from Table NB.14 in the Dutch National Annex to 
Eurocode 0 (15). The factor Ψ0 describes the chance at simultaneous variable 
actions which is equal to 0,80.  
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1.2 Typical cross-section 
Respectively the typical cross-section of bridge A and bridge B are shown in Figure 
C-1 and Figure C-2. The cross-sections are constant along the length of the bridge.  
  

 
 

Figure C-1: Typical cross-section bridge A 

 
Figure C-2: Typical cross-section bridge B 
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2 Load cases 
The railway traffic can be approximated by a couple of load models according to the 
Eurocode. For a simply supported bridge, load model 71 and SW/2 are applicable.  
 

 
Figure C-3: Load model 71 

 

Figure C-4: Load model SW/2 

 
According to the design reports the critical location for shear tension failure is at 
0,8d from the support for bridge A and right above the support for bridge B. For the 
Eurocode calculation the locations are assumed to be the same.  
 
To find the most unfavourable position of load model 71, influence lines are 
generated with SCIA. The influence lines for shear, torsion and bending are 
established for the mentioned critical sections of bridge A and B. Positioning the 
group of concentrated loads at the start of the bridge results in maximum torsion in 
the critical section. Positioning the distributed load between the group of 
concentrated loads and the end support, leads to maximum bending and shear 
force in the critical section and hardly influences the maximum torsion.  
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Figure C-5: : Influence lines for torsion, shear and bending at 0,8d in bridge A (left) and above the 
support in bridge B (right) 

 
A number of remarks are made to give one a better understanding of the applied 
load case (presented by Table C-2 and Table C-3): 
  

• LM 71:  
o The group of concentrated loads is distributed over 6,9 meters 

(Appendix A). 
o To take into account the passing of heavier trains, LM71 is multiplied 

with a factor 𝛼 = 1,21. 
 

• SW/2: Heavy railway traffic is simulated with load model SW/2. Because it 
has a length of at least 25 meters, the model does not fit between the 
supports of bridge A (see LC 5b in Table C-2). 

 

• Dynamic factor: A passing train causes a fluctuation in stresses and gives a 
certain acceleration to the bridge. This causes an additional load that is 
taken into account with the dynamic factor. Section 6.4 in Eurocode 2 – part 
2 (20) is consulted for the dynamic factor.   
 

𝐵𝑟𝑖𝑔𝑒 𝐴:            𝜙2 =
1,44

√21 − 0,2
+ 0,82 = 1,136 

 

𝐵𝑟𝑖𝑔𝑒 𝐵:            𝜙2 =
1,44

√31,5 − 0,2
+ 0,82 = 1,077 
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2.1 Bridge A 
 
Table C-2: Load cases bridge A (ULS) 

LC Load parameters Load 

Factors 

6.10a 6.10b Load scheme 

1 - Self 
weight 

 

𝐴𝑏 = 5,5 𝑚2 

𝛾𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 25 𝑘𝑁/𝑚3 

6.10a 
𝛾𝐺 = 1,4  

 

 
𝑞𝑠.𝑤.  = 193 𝑘𝑁/𝑚 

 

 
𝑞𝑠.𝑤. = 172 𝑘𝑁/𝑚 

 

 

 
 

6.10b 
𝛾𝐺 = 1,25  

 

2- Ballast  

ℎ𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 0,65 𝑚 

𝑏𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 4,0 𝑚 

𝛾𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 18 𝑘𝑁/𝑚3 
 
𝑞𝑠.𝑤.  𝑟𝑢𝑛−𝑢𝑝 = 9,0 𝑘𝑁/𝑚 

𝑙𝑟𝑢𝑛−𝑢𝑝 = 4,0 𝑚 

𝑏𝑟𝑢𝑛−𝑢𝑝 = 1,6𝑚 

 

6.10a 

𝛾𝐺 = 1,4  

 

 

𝑞 = 16,4 𝑘𝑁/𝑚2 
 

𝐹𝑟𝑢𝑛−𝑢𝑝 = 155 𝑘𝑁 

 

𝑞 = 14,6 𝑘𝑁/𝑚2 
 

𝐹𝑟𝑢𝑛−𝑢𝑝 = 139 𝑘𝑁 

 

 
 

6.10b 

𝛾𝐺 = 1,25  

 

3– Con. 

Mobile Load 

(LM71) 
 

 

𝑙 = 6,9 𝑚   
Φ = 1,136   

𝐹𝐿𝑀71 = 250 𝑘𝑁 

 

6.10a 

𝛾𝑄 = 1,2  

∝= 1,21 

 

 
𝑞𝐹,𝐿𝑀71 = 239,1 𝑘𝑁/𝑚 

 

𝑞𝐹,𝐿𝑀71 = 298,8 𝑘𝑁/𝑚 

 

 
 

6.10b 

𝛾𝑄 = 1,5  

∝= 1,21 
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4– Cantilever 

fully loaded 
(SW/2) 

 

 

𝑞𝑆𝑊/2 = 150 𝑘𝑁/𝑚 

Φ = 1,136 

6.10a 

𝛾𝑄 = 1,0  

 

 

 

𝑞 = 170,4 𝑘𝑁/𝑚 

 

𝐹𝑟𝑢𝑛−𝑢𝑝 = 341 𝑘𝑁 

 

𝑞 = 213 𝑘𝑁/𝑚 

 

𝐹𝑟𝑢𝑛−𝑢𝑝 = 426 𝑘𝑁 

 

 
 

6.10b 

𝛾𝑄 = 1,25  

 

5a – Contin. 

Mobile load 

(LM71) 

 

𝑞𝐿𝑀71 = 80 𝑘𝑁/𝑚 
Φ = 1,136 

6.10a 

𝛾𝑄 = 1,2  

∝= 1,21 

 

 
𝑞𝑞,𝐿𝑀71 = 132 𝑘𝑁/𝑚 

 
𝑞𝑞,𝐿𝑀71 = 165 𝑘𝑁/𝑚 

 

 
 

6.10b 

𝛾𝑄 = 1,5  

∝= 1,21 

5b – Contin. 

Mobile load 

(SW/2) 

 

𝑞𝑆𝑊/2 = 150 𝑘𝑁/𝑚 

Φ = 1,136 

6.10a 

𝛾𝑄 = 1,0  

 

 

𝑞 = 170,4 𝑘𝑁/𝑚 

 

 

𝑞 = 213 𝑘𝑁/𝑚 

 

 

 
 

6.10b 

𝛾𝑄 = 1,25  
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6 – Settlement 

support max. 

 6.10a 

𝛾𝑄 = 1,20  

 

 

𝑢𝑎 = −5 𝑚𝑚 
 

 

 
 

6.10b 

𝛾𝑄 = 1,20  

 

7 – Settlement 

support min. 

 6.10a 

𝛾𝑄 = 1,20  

 

 

 
𝑢𝑏 = −5 𝑚𝑚 

 

 

 
 

 

6.10b 

𝛾𝑄 = 1,20  

 

8 – Prestress 
at t=0 

 6.10a 
𝛾𝑃 = 1,00  

 

 
𝑞𝑃0 = 101 𝑘𝑁/𝑚 

𝐹1 = 1115 𝑘𝑁 

𝐹2 = 13200 𝑘𝑁 
𝑀1 = 294 𝑘𝑁𝑚 

 

 

 
 

 

6.10b 

𝛾𝑃 = 1,00  

 

9 – Prestress 

at 𝑡 = ∞ 

𝑃∞

𝑃0

= 0,912 
6.10a 

𝛾𝑃 = 1,00  

 

 

𝑞𝑃0 = 92 𝑘𝑁/𝑚 
𝐹1 = 1017 𝑘𝑁 

𝐹2 = 12038 𝑘𝑁 

𝑀1 = 268 𝑘𝑁𝑚 

 

6.10b 

𝛾𝑃 = 1,00  
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2.2 Bridge B 
 
Table C-3: Load cases bridge B (ULS) 

LC Load parameters Load factors Load 6.10a Load 6.10b Load scheme 

1 - Self 

weight 

 

𝐴𝑏 = 8,63 𝑚2 

𝛾𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 25 𝑘𝑁/𝑚3 
 

6.10a 
𝛾𝐺 = 1,4  

 

 
𝑞𝑠.𝑤. = 302 𝑘𝑁/𝑚 

 
𝑞𝑠.𝑤. = 269,6 𝑘𝑁/𝑚 

 

 
 

6.10b 

𝛾𝐺 = 1,25  

 

2- Ballast  
ℎ𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 0,55 𝑚 

𝑏𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 5,0 𝑚 

𝛾𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 18 𝑘𝑁/𝑚3 

6.10a 
𝛾𝐺 = 1,4  

 

 

𝑞𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 13,9 𝑘𝑁/𝑚2 
 

𝐹𝑟𝑢𝑛−𝑢𝑝 𝑝𝑙𝑎𝑡𝑒 = 139 𝑘𝑁 

 

𝑞𝑏𝑎𝑙𝑙𝑎𝑠𝑡 = 12,4 𝑘𝑁/𝑚2 
 

𝐹𝑟𝑢𝑛−𝑢𝑝 𝑝𝑙𝑎𝑡𝑒 = 124 𝑘𝑁 

 

 
 

6.10b 
𝛾𝐺 = 1,25  

 

3a–  

Mobile Max 
(LM 71) 

 

𝑙 = 6,9 𝑚   
Φ = 1,077   

𝑏 = 3,0 𝑚 

𝐹𝐿𝑀 71 = 250 𝑘𝑁 
𝑞 𝐿𝑀 71 = 80 𝑘𝑁/𝑚 

 

6.10a 

𝛾𝑄 = 1,2  

∝= 1,21 

 

 

𝑞𝐹,𝐿𝑀 71 = 226,6 𝑘𝑁/𝑚 

 

𝑞𝑞,𝐿𝑀 71 = 125,1 𝑘𝑁/𝑚 

 

 

 

𝑞𝐹,𝐿𝑀 71 = 283,3 𝑘𝑁/𝑚 

 

𝑞𝑞,𝐿𝑀 71 = 156,4 𝑘𝑁/𝑚 

 

 

 

 
 

6.10b 

𝛾𝑄 = 1,5  

∝= 1,21 
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3b –  

Mobile Max 
(SW/2) 

 

Φ = 1,077 
𝑏 = 3,0 𝑚 

𝑞𝑆𝑊/2 = 150 𝑘𝑁/𝑚 

 

6.10a 

𝛾𝑄 = 1,0  

 

 

𝑞𝑆𝑊/2 = 161,6 𝑘𝑁/𝑚 

 

𝑞𝑆𝑊/2 = 202 𝑘𝑁/𝑚 

 

 
 

6.10b 

𝛾𝑄 = 1,25  

 

4 – 
Cantilever 

fully loaded 

(SW/2) 

 
Φ = 1,077 

𝑏 = 3,0 𝑚 

𝑞𝑆𝑊/2 = 150 𝑘𝑁/𝑚 

 

6.10a 

𝛾𝑄 = 1,0  

 

 

𝐹𝑟𝑢𝑛−𝑢𝑝 = 323 𝑘𝑁 

 

𝑞𝑆𝑊/2 = 161,6 𝑘𝑁/𝑚 

 

 

𝐹𝑟𝑢𝑛−𝑢𝑝 = 404 𝑘𝑁 

 

𝑞𝑆𝑊/2 = 202 𝑘𝑁/𝑚 

 

 

 
 

6.10b 

𝛾𝑄 = 1,25  

 

5 – 

Settlement 

support 

max. 

 6.10a 

𝛾𝑄 = 1,20  

 

 

𝑢𝑎 = −5 𝑚𝑚 

 

 

 
 

6.10b 

𝛾𝑄 = 1,20  

 

6 – 
Settlement 

support min. 

 6.10a 

𝛾𝑄 = 1,20  

 

 
𝑢𝑏 = −5 𝑚𝑚 

 

 

 
 

6.10b 

𝛾𝑄 = 1,20  
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7 – Prestress  

at t=0 

 6.10a 

𝛾𝑃 = 1,00  
 

 

𝑞𝑃0 = 145,2 𝑘𝑁/𝑚 
𝐹1 = 2290 𝑘𝑁 

𝐹2 = 22826 𝑘𝑁 

𝑀1 = 5045 𝑘𝑁𝑚 
 

 

 

 
 

 

6.10b 

𝛾𝑃 = 1,00  

 

8 – Prestress  

at 𝑡 = ∞ 

𝑃∞

𝑃0

= 0,915 
6.10a 

𝛾𝑃 = 1,00  

 

 

𝑞𝑃0 = 132,9 𝑘𝑁/𝑚 

𝐹1 = 1048 𝑘𝑁 
𝐹2 = 20886 𝑘𝑁 

𝑀1 = 4616 𝑘𝑁𝑚 
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3 Normal and shear stresses  
 

3.1 Horizontal normal stress 
The horizontal normal stress is due to prestressing, external forces and restrained 
deformations. Through an example the procedure to calculate the horizontal normal 
stresses is explained. Let’s consider a section at 0,8d from the supports in bridge A. 
For this particular example load case 3 is considered in load combination 6.10a.  
 
 

 
 

Figure C-6: LC 3 acting on bridge A (combination 6.10a) 

 
First one needs to determine reaction force 𝐴𝑣 (keep in mind that loads are 
distributed over the two girders).  
 

𝐴𝑣 = 0,5 ∗
𝑞 ∗ 𝑎 ∗ (𝑏 +

𝑎
2

)

(𝑎 + 𝑏 − 𝑐)
= 728,7 𝑘𝑁 

 
The bending moment at 𝑥 = 2,36 𝑚: 
 

𝑀𝑥 = 𝐴𝑣 ∗ (𝑥 − 𝑐) − 0,5𝑞 ∗ 𝑥2 ∗ 0,5 = 658 𝑘𝑁𝑚 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Load parameters 

𝑥 = 2,36 𝑚 
𝑎 = 6,9 𝑚 
𝑏 = 15,1 𝑚 
𝑐 = 1,0 𝑚 

𝑞 = 239,1 𝑘𝑁/𝑚 
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In the design report the centre of gravity is calculated for the entire structure. It is 
positioned at 629 mm (𝑧) above the bottom fibre. When loading the cross-section 
with a downward acting bending moment the bottom fibres are subjected to tension 
and the top fibres to compression. The critical section lies 221 mm above the 
neutral axis and is subjected to a compressive stress.  
 
 

 
 

Figure C-7: Horizontal normal stress due to an acting bending moment 

 
It is important to understand that the entire cross-section of the bridge is loaded 
with the bending moment. Which means that the bending moment resistance of the 
floor should also be taken into account. Therefore the moment of inertia for half the 
cross-section is computed:  
 
 

𝐼𝑦𝑦,𝑔𝑖𝑟𝑑𝑒𝑟 =
1

12
∗ 𝑏𝑔𝑖𝑟𝑑𝑒𝑟 ∗ ℎ𝑔𝑖𝑟𝑑𝑒𝑟

3 + 𝑏𝑔𝑖𝑟𝑑𝑒𝑟 ∗ ℎ𝑔𝑖𝑟𝑑𝑒𝑟 ∗ (
ℎ𝑔𝑖𝑟𝑑𝑒𝑟

2
− 𝑧)

2

= 0,497 𝑚4 

 

0,5 ∗ 𝐼𝑦𝑦,𝑓𝑙𝑜𝑜𝑟 = 0,5 ∗ (
1

12
∗ 𝑏𝑓𝑙𝑜𝑜𝑟 ∗ ℎ𝑓𝑙𝑜𝑜𝑟

3 + 𝑏𝑓𝑙𝑜𝑜𝑟 ∗ ℎ𝑓𝑙𝑜𝑜𝑟 ∗ (𝑧 −
ℎ𝑓𝑙𝑜𝑜𝑟

2
)

2

) = 0,166 𝑚4 

 

0,5 ∗ 𝐼𝑦𝑦,𝑏𝑟𝑖𝑑𝑔𝑒 = 𝐼𝑦𝑦,𝑔𝑖𝑟𝑑𝑒𝑟 + 0,5 ∗ 𝐼𝑦𝑦,𝑓𝑙𝑜𝑜𝑟 = 0,663 𝑚4 

 
 
Equation [ C.1 ] is used to calculate the horizontal normal stresses due to bending.  
 
 

 

𝜎𝑥𝑥 =
𝑀 ∗ 𝑧

𝐼𝑦𝑦
 

 

𝜎𝑥𝑥 = −
658 𝑘𝑁𝑚 ∗ 0,221 𝑚

0,663 𝑚4
= −0,22 𝑁/𝑚𝑚2 

 

[ C.1 ] 

 

 

 
 
 

Moment of inertia: 
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Figure C-8 shows a top view of the bridge. The prestressing forces are introduced in 
the girders and spread under an angle of 45°. The truss model shows that these 
large prestressing forces lead to tensile splitting forces, but because transverse 
prestress and tensile splitting reinforcement is applied this will not be a problem. 
When calculating the horizontal normal stress it is important to take into account 
over which width the prestress force is distributed. 
 

 
 

Figure C-8: The distribution of prestress over the bridge (top view) 

 
At a section 0,8d from the support the prestress force is spread over a width which 
is equal to 0,8d (spread 1:1). From the centre of the girder this results in a total 
width of 1,81 𝑚 over which the prestress force is present.  
 

 
 

Figure C-9: Compressive normal stress due to prestress 
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With the corresponding area and equation [ C.2 ] the horizontal normal stress is 
computed: 

 

𝜎𝑥𝑥 =
𝑃

𝐴
 

 

 

[ C.2 ] 

 

 
 
 

𝐴𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑏𝑔𝑖𝑟𝑑𝑒𝑟 ∗ ℎ𝑔𝑖𝑟𝑑𝑒𝑟 + 0,5 ∗ 𝑏𝑣𝑜𝑢𝑡𝑒 ∗ ℎ𝑣𝑜𝑢𝑡𝑒 + 𝑥 ∗ ℎ𝑓𝑙𝑜𝑜𝑟 = 

 

𝐴𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 = 900 ∗ 1750 + 0,5 ∗ 500 ∗ 300 + 910 ∗ 550 = 2,15 ∗ 106 𝑚𝑚2 

 
  

𝜎𝑥𝑥 =
−12038 𝑘𝑁

2,15 𝑚2
= −5,60 𝑁/𝑚𝑚2 

 

 

 
  

Area: 
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The horizontal normal stresses for bridge A and B and both load combinations are 
presented by Table C-4 and Table C-5. Remarkable are the bending stresses in 
bridge B, which are close to zero for a lot of the load case. This has to do with the 
bridge being simply supported and the bending moment being determined above 
the supports.  
 
Table C-4: Horizontal normal stress bridge A (combination 6.10a & 6.10b) – 0,8d 

 

 
Table C-5: Horizontal normal stress bridge B (combination 6.10a & 6.10b) - support 

 

LC type 6.10a 6.10b 6.10a 6.10b 6.10a 6.10b

1 self-weight -0,41 -0,37

2 ballast -0,11 -0,10

3 Conc. Mobile Load -0,22 -0,27

4 Cant. Mobile Load 0,07 0,07

5a Contin. Mobile Load -0,16 -0,20

5b Contin. Mobile Load (SW/2) -0,37 -0,46

6 Support settelement max 0,00 0,00

7 Support settelement min 0,00 0,00

8 Prestress t=0 -6,14 -6,14 0,35 0,35

9 Prestress t = ∞ -5,60 -5,60 0,32 0,32

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 -5,60 -5,60 -0,59 -0,63 -6,19 -6,22

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 -5,60 -5,60 -0,59 -0,63 -6,19 -6,22

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 -5,60 -5,60 -0,14 -0,08 -5,73 -5,67

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 -5,60 -5,60 -0,14 -0,08 -5,73 -5,67

LC 1 + LC 8 -6,14 -6,14 -0,06 -0,02 -6,20 -6,15

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 -5,60 -5,60 -0,57 -0,61 -6,17 -6,21

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 -5,60 -5,60 -0,57 -0,61 -6,17 -6,21

Prestress - σxx [N/mm2] Bending moment - σxx [N/mm2] Total - σxx [N/mm2]

LC type 6.10a 6.10b 6.10a 6.10b 6.10a 6.10b

1 self-weight 0,01 0,01

2 ballast 0,01 0,01

3a Mobile Max. (LM71) 0,00 0,01

3b Mobile Max. (SW/2) 0,00 0,00

4 Mobile Min. (SW/2) 0,02 0,02

5 Support settelement max 0,00 0,00

6 Support settelement min 0,00 0,00

7 Prestress t=0 -8,65 -8,65 -0,41 -0,41

8 Prestress t = ∞ -7,91 -7,91 -0,38 -0,38

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -7,91 -7,91 -0,36 -0,36 -8,27 -8,27

LC 1 + LC 2 + LC 3a + LC 6 + LC8 -7,91 -7,91 -0,36 -0,36 -8,27 -8,27

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -7,91 -7,91 -0,35 -0,35 -8,26 -8,26

LC 1 + LC 2 + LC 4 + LC 6 + LC8 -7,91 -7,91 -0,35 -0,35 -8,26 -8,26

LC 1 + LC 7 -8,65 -8,65 -0,41 -0,41 -9,05 -9,06

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -7,91 -7,91 -0,36 -0,36 -8,27 -8,27

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 -7,91 -7,91 -0,36 -0,36 -8,27 -8,27

Prestress - σxx [N/mm2] Bending moment - σxx [N/mm2] Total - σxx [N/mm2]
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3.2 Vertical normal stress 
In appendix A it is explained how a load on the floor can lead to a clamping moment 
and suspension force in the girder. Both these loads contribute to the vertical 
normal stress. An example is given for load case 3. 
 

 
 

Figure C-10: Clamping moment and suspension force acting on the girder 

 
Firstly the reactional forces, 𝑚𝑝𝑙01 and 𝑅𝑖, are determined by considering a 

transverse section of the bridge. The line load representing LC 3 is distributed over 
the two rails with a spacing of 𝑙𝑡𝑟 = 1,50 𝑚. The floor is assumed to be fully 
restrained in the centre of the girders (𝑙𝑏 = 4,9 𝑚).  
 
 

 
 

Figure C-11: Transverse section of LC 3 acting on bridge A 

 
 

𝑚𝑝𝑙0 =
0,5𝑞 ∗ 𝑙𝑒 ∗ (2 ∗ 𝑙𝑡𝑟 + 𝑙𝑒)

𝑙𝑏
= 195 𝑘𝑁𝑚 

 

𝑄𝑦𝑦 = 𝑅𝑖 = 0,5𝑞 = 120 𝑘𝑁 

 

(Chapter 3.1 Appendix A) 

 
 
The suspension force spreads under angle of 45° towards the girders. Because LC 3 
is present in the considered section (0,8d), the suspension force is taken as       

𝑄𝑦𝑦 = 120 𝑘𝑁. 

 
 
 
 
 
 

𝑙𝑒 = 1,7 𝑚 
𝑙𝑡𝑟 = 1,5 𝑚 
𝑙𝑏 = 4,9 𝑚 
𝑞 = 239,1 𝑘𝑁/𝑚 
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In appendix A it is explained that the clamping moment is the derivative of the 
torsion function. A number of formula’s are derived for a couple of basic load cases. 
In order to establish the clamping moment for the considered example, LC 3 needs 
to be split into two separate cases.    
 

 
 

 
 

Figure C-12: Distributed line load (top) and torsional moment (bottom) representing LC 3 

 
The distributed line load and torsional moment respectively have a contribution of 
−49,8 𝑘𝑁𝑚 and +33,8 𝑘𝑁𝑚 (Figure C-13). The total clamping moment then equals: 
𝑚𝑥𝑥 = −16,0 𝑘𝑁𝑚.  
 
 

  
 

Figure C-13: Clamping moment due to distributed line load (left) and torsional moment (right) 
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A linear elastic calculation is assumed, which means that the girder remains 
uncracked. In that case the entire cross-section will contribute to the load transfer 
of the suspension force and clamping moment. A ratio is therefore introduced which 
describes the distribution of vertical normal stress over a section above and below 
the throat. When the girder is cracked, for example in a stirrup calculation, this 
distribution is no longer valid.  
 

𝐴1 = 𝑏𝑔𝑖𝑟𝑑𝑒𝑟 ∗ (ℎ𝑔𝑖𝑟𝑑𝑒𝑟 − ℎ𝑓𝑙𝑜𝑜𝑟 − 0,3) = 0,81 𝑚2 

 

𝐴2 = 𝑏𝑔𝑖𝑟𝑑𝑒𝑟 ∗ (ℎ𝑓𝑙𝑜𝑜𝑟 + 0,3) + 0,5 ∗ 0,5 ∗ 0,3 + 0,5 ∗ ℎ𝑓𝑙𝑜𝑜𝑟 = 1,115 𝑚2 

 

 
𝐴1

𝐴1+𝐴2
∗ 100% = 42% 

 

 
 

Figure C-14: Area above the throat section (A1) and area below the throat section (A2) 

 
The suspension force could be seen as an eccentric load, acting at the edge of the 
girder. The result is a centric suspension force and additional bending moment due 
to the eccentricity of the force. A maximum tensile stress is therefore obtained on 
the ‘inside’ of the girder.   
 

 
Figure C-15: Vertical normal stress due to the suspension force 

 
 
 
 
 
 

Ratio: 
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The sectional properties are based on a strip with a length 𝑑𝑥 = 1,0 𝑚𝑒𝑡𝑒𝑟𝑠.  
 

𝐴 = 𝑏𝑔𝑖𝑟𝑑𝑒𝑟 ∗ 1 = 0,90 𝑚2 

 

𝑊 =
1

6
∗ 1 ∗ 𝑏𝑔𝑖𝑟𝑑𝑒𝑟

2 = 0,135 𝑚3 

 
The clamping moment acts at the centre of the girder, causing a compressive stress 
left and tensile stress right. The critical location for shear tension failure is 
therefore at the right edge (inside) of the girder. 
 

 
 

Figure C-16: Vertical normal stress due to the clamping moment 

 
 
Equation [ C.3 ] and [ C.4 ] describe the vertical normal stress due to suspension 
force and clamping moment. 
 

𝜎𝑦𝑦,𝑄𝑦𝑦
=

𝑄𝑦𝑦

𝐴
+

𝑄𝑦𝑦 ∗ 0,5 ∗ 𝑏𝑔𝑖𝑟𝑑𝑒𝑟

𝑊
 

 

𝜎𝑦𝑦,𝑚𝑥𝑥
=

𝑚𝑥𝑥

𝑊
 

 

[ C.3 ] 

 

 

[ C.4 ] 

 

 

The vertical normal stress for LC 3 equals: 
 

𝜎𝑦𝑦 = (
−16,0 ∗ 106

1,35 ∗ 108
+

120 ∗ 103

9,0 ∗ 105
+

120 ∗ 103 ∗ 0,5 ∗ 900

1,35 ∗ 108 ) ∗ 42% = 0,17 𝑁/𝑚𝑚2 

 
 
 
 
 
 
 
 
 
 

Area: 

Section modulus: 
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The vertical normal stresses for bridge A and B, are for as well load combination 
6.10a as 6.10b presented in in Table C-6 and Table C-7. 
 
Table C-6: Vertical normal stress bridge A (combination 6.10a & 6.10b) – 0,8d 

 

 
Table C-7: Vertical normal stress bridge B (combination 6.10a & 6.10b) – support 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

LC type 6.10a 6.10b 6.10a 6.10b 6.10a 6.10b

1 self-weight 0,07 0,06 0,06 0,05

2 ballast 0,06 0,05 0,06 0,05

3 Conc. Mobile Load 0,22 0,28 -0,05 -0,06

4 Cant. Mobile Load 0,00 0,00 0,17 0,19

5a Contin. Mobile Load 0,00 0,00 0,09 0,11

5b Contin. Mobile Load (SW/2) 0,16 0,20 0,12 0,15

6 Support settelement max -0,03 -0,03 0,31 0,31

7 Support settelement min 0,03 0,03 -0,31 -0,31

8 Prestress t=0 -0,10 -0,10 0,09 0,09

9 Prestress t = ∞ -0,09 -0,09 0,08 0,08

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 0,24 0,28 0,54 0,54 0,78 0,81

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 0,30 0,34 -0,07 -0,08 0,23 0,27

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 0,01 0,00 0,67 0,68 0,69 0,68

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 0,08 0,06 0,06 0,07 0,14 0,13

LC 1 + LC 8 -0,02 -0,03 0,14 0,14 0,12 0,11

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 0,17 0,20 0,62 0,64 0,79 0,84

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 0,24 0,26 0,01 0,03 0,25 0,29

Suspension force - σyy [N/mm2] Clamping moment - σyy [N/mm2] Total - σyy [N/mm2]

LC type 6.10a 6.10b 6.10a 6.10b 6.10a 6.10b

1 self-weight 0,10 0,09 0,07 0,06

2 ballast 0,06 0,05 0,04 0,04

3a Mobile Max. (LM71) 0,19 0,23 -0,01 -0,01

3b Mobile Max. (SW/2) 0,13 0,17 0,05 0,06

4 Mobile Min. (SW/2) 0,13 0,17 0,12 0,15

5 Support settelement max -0,44 -0,44 0,47 0,47

6 Support settelement min 0,44 0,44 -0,47 -0,47

7 Prestress t=0 -0,09 -0,09 0,06 0,06

8 Prestress t = ∞ -0,09 -0,09 0,05 0,05

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -0,18 -0,15 0,62 0,61 0,44 0,46

LC 1 + LC 2 + LC 3a + LC 6 + LC8 0,69 0,72 -0,31 -0,32 0,38 0,40

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -0,23 -0,22 0,75 0,77 0,52 0,55

LC 1 + LC 2 + LC 4 + LC 6 + LC8 0,64 0,65 -0,18 -0,16 0,46 0,49

LC 1 + LC 7 0,00 -0,01 0,13 0,12 0,13 0,11

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -0,23 -0,22 0,68 0,68 0,44 0,46

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 0,64 0,65 -0,25 -0,25 0,38 0,40

Suspension force - σyy [N/mm2] Clamping moment - σyy [N/mm2] Total - σyy [N/mm2]
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3.3 Shear stress 
Let’s assume a shear force and torsional moment act on the girder as in Figure C-
17. Where the shear force causes a constant shear stress, torsion leads to a flow of 
shear stresses. At the ‘inside’ of the girder, the shear stress due to both loads act in 
the same direction, resulting in the largest shear stress in the critical section. To 
simplify the check on shear tension failure, it is assumed that maximum shear 
stress due to these two forces always appear at the ‘inside’ of the girder.  
 

 
 

Figure C-17: The combined shear stress due to shear force and torsion 

The shear force can be derived from the reactional forces in chapter 3.1.  
At 𝑥 = 2,36 𝑚 the shear force equals: 
 
𝑉𝑥 = 𝐴𝑣 − 0,5 ∗ 𝑞 ∗ 𝑥 = 446,5 𝑘𝑁 
 
In the same way as in chapter 3.2, the load case is split into two separate cases. 
Appendix A can be used to establish torsion in the girder.  
    

      
 

Figure C-18: Torsion due to distributed line load (left) and torsional moment (right) 

 
The distributed line load and torsional moment respectively have a contribution of 
−33,4 𝑘𝑁𝑚 and −140,6 𝑘𝑁𝑚. The total torsion equals: 𝑀𝑥𝑦 = −174 𝑘𝑁𝑚.  
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The girder can be schematized as a tube with thin walls. An effective wall thickness 
of 150 mm is adopted from the design report (3). The shear stresses are computed 
using equation [ C.5 ] and [ C.6 ]. 
 
 

𝜏𝑥𝑦,𝑉𝑥
=

𝑉𝑥 ∗ 𝑆

𝑏 ∗ 𝐼𝑦𝑦
 

 

𝜏𝑥𝑦,𝑀𝑥𝑦
=

𝑀𝑥𝑦

2 ∗ 𝐴𝑚 ∗ 𝑡𝑒𝑓
 

 

[ C.5 ] 

 

 

[ C.6 ] 

 

 

 

Where: 
 

𝑆 = 𝑠𝑡𝑎𝑡𝑖𝑐𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎𝑟𝑒𝑎 (𝑚𝑚3) 

𝑏 = 𝑤𝑖𝑑ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑖𝑟𝑑𝑒𝑟 (𝑚𝑚) 

𝐼𝑦𝑦 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 (𝑚𝑚4) 

𝐴𝑚 = 𝑎𝑟𝑒𝑎 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 ℎ𝑒𝑎𝑟𝑡𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙𝑠 (𝑚𝑚2) 

𝑡𝑒𝑓 = 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙𝑠 (𝑚𝑚) 

 
 

𝑆 = 𝑏𝑔𝑖𝑟𝑑𝑒𝑟 ∗ (ℎ𝑔𝑖𝑟𝑑𝑒𝑟 − ℎ𝑓𝑙𝑜𝑜𝑟 − 0,3)
2

∗ 0,5 = 0,3645 𝑚3 

 

𝐴𝑚 = (𝑏𝑔𝑖𝑟𝑑𝑒𝑟 − 𝑡𝑒𝑓) ∗ (ℎ𝑔𝑖𝑟𝑑𝑒𝑟 − 𝑡𝑒𝑓) = 1,2 𝑚2 

 
 
The total torsional resistance is formed by the combination of the girder and the 
effective part of the floor. Since only torsion in the girder is considered, a ratio is 
introduced that takes this distribution into account. The notes by P.C.J. 
Hoogenboom (22) are used to calculate the torsional constants of the girder and 
floor. 
 
 

Girder Floor 

 

𝑎 =
ℎ𝑔𝑖𝑟𝑑𝑒𝑟

2
= 0,875 𝑚     &    𝑏 =

𝑏𝑔𝑖𝑟𝑑𝑒𝑟

2
= 0,45 𝑚   

   

 

𝑎 =
0.5∗𝑏𝑓𝑙𝑜𝑜𝑟

2
= 1,0 𝑚   &    𝑏 =

ℎ𝑓𝑙𝑜𝑜𝑟

2
= 0,275 𝑚   

 

 

𝛼 = [
16

3
− 3,36 ∗

𝑏

𝑎
∗ (1 −

𝑏4

12𝑎4)] = 3,62 

 

 

𝛼 = [
16

3
− 3,36 ∗

𝑏

𝑎
∗ (1 −

𝑏4

12𝑎4)] = 4,41 

 

 

𝐼𝑡,𝑔𝑖𝑟𝑑𝑒𝑟 = 𝛼 ∗ 𝑎𝑏3 = 0,29 𝑚4 

 

 

𝐼𝑡,𝑓𝑙𝑜𝑜𝑟 = 𝛼 ∗ 𝑎𝑏3 = 0,09 𝑚4 

 

 
 

𝑅𝑎𝑡𝑖𝑜 =
𝐼𝑡,𝑔𝑖𝑟𝑑𝑒𝑟

𝐼𝑡,𝑔𝑖𝑟𝑑𝑒𝑟 + 𝐼𝑡,𝑓𝑙𝑜𝑜𝑟
= 75,9% 

  
 

 

Statical moment of Area: 

Area enclosed by walls: 

Ratio: 
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 Combing equation [ C.5 ] and [ C.6 ] and the ratio, the total shear stress for LC 3 
can be computed: 
 

𝜏𝑥𝑦 = (
446,5 𝑘𝑁 ∗ 0,36 𝑚3

0,663 𝑚4 ∗ 0,9 𝑚
) + (

| − 174 𝑘𝑁𝑚|

2 ∗ 1,2 𝑚2 ∗ 0,15 𝑚
) ∗ 75,9% = 0,64 𝑁/𝑚𝑚2 

 
 
The shear stresses for bridge A and B and both load combinations are presented in 
Table C-8 and Table C-9. 
 
Table C-8: Shear stress bridge A (combination 6.10a & 6.10b) – 0,8d 

 
 
 
Table C-9: Shear stress bridge B (combination 6.10a & 6.10b) – support 

 
 
 
  

LC type 6.10a 6.10b 6.10a 6.10b 6.10a 6.10b

1 self-weight 0,54 0,48 -0,22 -0,20

2 ballast 0,18 0,16 -0,19 -0,17

3 Conc. Mobile Load 0,27 0,34 -0,37 -0,46

4 Cant. Mobile Load 0,00 0,00 -0,47 -0,52

5a Contin. Mobile Load 0,22 0,27 0,04 0,05

5b Contin. Mobile Load (SW/2) 0,48 0,60 -0,21 -0,26

6 Support settelement max 0,00 0,00 -0,45 -0,45

7 Support settelement min 0,00 0,00 0,45 0,45

8 Prestress t=0 -0,56 -0,56 0,08 0,08

9 Prestress t = ∞ -0,51 -0,51 0,07 0,07

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 0,70 0,74 -1,12 -1,16 1,82 1,90

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 0,70 0,74 -0,22 -0,26 0,91 1,00

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 0,21 0,13 -1,26 -1,26 1,46 1,39

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 0,21 0,13 -0,36 -0,36 0,56 0,49

LC 1 + LC 8 -0,03 -0,08 -0,14 -0,12 0,17 0,20

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 0,68 0,72 -1,00 -1,01 1,68 1,73

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 0,68 0,72 -0,10 -0,11 0,78 0,83

Shear force - τxy [N/mm2] Torsion - τxy [N/mm2] Total - τxy [N/mm2]

LC type 6.10a 6.10b 6.10a 6.10b 6.10a 6.10b

1 self-weight 1,08 0,96 -0,33 -0,29

2 ballast 0,25 0,22 -0,16 -0,14

3a Mobile Max. (LM71) 0,57 0,71 -0,23 -0,29

3b Mobile Max. (SW/2) 0,54 0,68 -0,17 -0,21

4 Mobile Min. (SW/2) 0,00 0,00 -0,37 -0,46

5 Support settelement max 0,00 0,00 -0,60 -0,60

6 Support settelement min 0,00 0,00 0,60 0,60

7 Prestress t=0 -1,03 -1,03 0,00 0,00

8 Prestress t = ∞ -0,95 -0,95 0,00 0,00

LC 1 + LC 2 + LC 3a + LC 5 + LC8 0,95 0,95 -1,32 -1,33 2,27 2,27

LC 1 + LC 2 + LC 3a + LC 6 + LC8 0,95 0,95 -0,12 -0,13 1,07 1,08

LC 1 + LC 2 + LC 4 + LC 5 + LC8 0,38 0,23 -1,46 -1,50 1,83 1,73

LC 1 + LC 2 + LC 4 + LC 6 + LC8 0,38 0,23 -0,26 -0,30 0,64 0,53

LC 1 + LC 7 0,04 -0,07 -0,33 -0,29 0,37 0,37

LC 1 + LC 2 + LC 3b + LC 5 + LC8 0,92 0,91 -1,26 -1,24 2,18 2,16

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 0,92 0,91 -0,06 -0,05 0,98 0,96

Shear force - τxy [N/mm2] Torsion - τxy [N/mm2] Total - τxy [N/mm2]
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4 Principal stresses 
An element under stress has at least three planes, called the principal planes. At 
each plane a normal vector acts, perpendicular to the plane, called the principal 
direction. The stresses acting parallel to the normal vectors are the so called 
principal stresses. Each stressed element has three principal stresses, namely the 
tensile and compressive principal stress and the maximum shear stress (where the 
normal stresses equal zero).  
 
 

𝜌1 =
𝜎𝑥 + 𝜎𝑦

2
+ √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 

 

𝜌2 =
𝜎𝑥 + 𝜎𝑦

2
− √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 

 

[ C.7 ] 

 

 

 
 

[ C.8 ] 

 
 
Respectively Table C-10 and Table C-11 present the tensile principal stresses in 
bridge A and B. Remarkable are the lower stresses in bridge B in comparison to 
bridge A. The explanation for this lies in the fact that for a section above the 
supports the horizontal normal stress due to prestress is larger than at a distance 
0,8d from the support. This contribution increases the resistance against shear 
tension failure, meaning that even though bridge B is subjected to larger shear 
stresses it eventually has a lower tensile principal stress.   
 
Table C-10: Tensile principal stresses bridge A (combination 6.10a & 6.10b) – 0,8d  

 

 

 

 

 

 

LC type 6.10a 6.10b

1 self-weight

2 ballast

3 Conc. Mobile Load

4 Cant. Mobile Load

5a Contin. Mobile Load

5b Contin. Mobile Load (SW/2)

6 Support settelement max

7 Support settelement min

8 Prestress t=0

9 Prestress t = ∞

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 1,22 1,29

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 0,36 0,42

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 1,00 0,97

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 0,19 0,17

LC 1 + LC 8 0,12 0,11

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 1,18 1,24

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 0,34 0,39

Tensile princ. stress - ρ1 [N/mm2]
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Table C-11: Principal stresses bridge B (combination 6.10a & 6.10b) – support 

 

In order to study whether or not the correct critical location for bridge B was 
chosen, a section at 0,8d from the support is considered. For this section the 
contribution of prestress to the horizontal normal stress is less than before, but 
likewise are the shear stresses due to torsion. Ultimately the maximum tensile 

principal stress at 0,8d from the support  is 0,98 𝑁/𝑚𝑚2, which is slightly smaller 
than the stress found at a section above the support. This means the correct critical 
location was assumed for bridge B. 
 
In Eurocode 2 (16) a formula for shear tension failure is given in section 6.2.2.  
 
 

𝑉𝑅𝑑,𝑐 =
𝐼 ∗ 𝑏𝑤

𝑆
∗ √(𝑓𝑐𝑡𝑑)2 + 𝜎𝑐𝑝 ∗ 𝑓𝑐𝑡𝑑 

 

[ C.9 ] 

 

 
 

Where:  

𝜎𝑐𝑝 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 (N/𝑚𝑚2) 

𝑓𝑐𝑡𝑑 = 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑁/𝑚𝑚2) 
 
 
The formula can be rewritten by taking 𝜎𝑐𝑝 as the normal stress and 𝑓𝑐𝑡𝑑  as tensile 

principal stress. Equation [ C.5 ] is applied to convert the shear force into a shear 
stress. 
 

𝜏𝑥𝑦 = √(𝜌1)2 + 𝜎 ∗ 𝜌1 

 

𝜌1 = −
𝜎

2
+ √(

𝜎

2
)

2

+ 𝜏𝑥𝑦
2 

 
 

 

 

[ C.10 ] 

 

 

 

 
 

LC type 6.10a 6.10b

1 self-weight

2 ballast

3a Mobile Max. (LM71)

3b Mobile Max. (SW/2)

4 Mobile Min. (SW/2)

5 Support settelement max

6 Support settelement min

7 Prestress t=0

8 Prestress t = ∞

LC 1 + LC 2 + LC 3a + LC 5 + LC8 1,00 1,02

LC 1 + LC 2 + LC 3a + LC 6 + LC8 0,51 0,53

LC 1 + LC 2 + LC 4 + LC 5 + LC8 0,88 0,88

LC 1 + LC 2 + LC 4 + LC 6 + LC8 0,50 0,52

LC 1 + LC 7 0,14 0,13

LC 1 + LC 2 + LC 3b + LC 5 + LC8 0,96 0,96

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 0,49 0,50

Tensile princ. stress - ρ1 [N/mm2]
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To conclude, shear tension failure will not be an issue if tensile stresses remain 
smaller than the concrete tensile design strength. In the Dutch National Annex of 
Eurocode 2 (13), the coefficient for long-term loading and the safety factor for 
concrete are found. 
 
 

𝑓𝑐𝑡𝑑 =∝𝑐𝑡∗
𝑓𝑐𝑡𝑘;0.05

𝛾𝑐
= 1,0 ∗

2,0

1,5
= 1,33 𝑁/𝑚𝑚2 

 

 

 

Where: 
𝛼𝑐𝑡 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 

𝛾𝑐 = 𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 

For both bridges load combination 6.10b of LM71 is governing. The unity check for 

shear tension failure for bridge A and B are as follows: 
 

𝑈. 𝐶. =
𝜌1

𝑓𝑐𝑡𝑑
=

1,29

1,33
= 0,97 

 

𝑈. 𝐶. =
𝜌1

𝑓𝑐𝑡𝑑
=

1,02

1,33
= 0,77 

 
With a maximum unity check of 0,97 and 0,77, there is no risk of shear tension 
failure for both bridges when applying the load models and safety factor from the 
Eurocode.  
  

Bridge A: 

Bridge B: 
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5 Spreadsheets 
5.1 Bridge A - 6.10a – 0,8d 



Total hor. normal stress

LC type P [kN] σǆǆ [N/mmϮ] M [kNm] σǆǆ [N/mmϮ] σǆǆ [N/mmϮ]
1 self-weight 1237 -0,41

2 ballast 344 -0,11

3 Conc. Mobile Load 658 -0,22

4 Cant. Mobile Load -213 0,07

5a Contin. Mobile Load 487 -0,16

5b Contin. Mobile Load (SW/2) 1098 -0,37

6 Support settelement max 0 0,00

7 Support settelement min 0 0,00

8 Prestress t=0 -13200 -6,14 -1055 0,35

9 Prestress t = ∞ -12038 -5,60 -962 0,32

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 -12038 -5,60 1765 -0,59 -6,19

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 -12038 -5,60 1765 -0,59 -6,19

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 -12038 -5,60 406 -0,14 -5,73

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 -12038 -5,60 406 -0,14 -5,73

LC 1 + LC 8 -13200 -6,14 182 -0,06 -6,20

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 -12038 -5,60 1717 -0,57 -6,17

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 -12038 -5,60 1717 -0,57 -6,17

Total ver. Normal stress

LC type Qyy [kN] σǇǇ [N/mmϮ] mxx [kNm] σǇǇ [N/mmϮ] Myy [kNm] σǇǇ [N/mmϮ] σǇǇ [N/mmϮ]
1 self-weight 39 0,02 18 0,06 17 0,05

2 ballast 33 0,02 20 0,06 15 0,05

3 Conc. Mobile Load 120 0,06 -16 -0,05 54 0,17

4 Cant. Mobile Load 0 0,00 55 0,17 0 0,00

5a Contin. Mobile Load 0 0,00 28 0,09 0 0,00

5b Contin. Mobile Load (SW/2) 85 0,04 38 0,12 38 0,12

6 Support settelement max -18 -0,01 98 0,31 -8 -0,03

7 Support settelement min 18 0,01 -98 -0,31 8 0,03

8 Prestress t=0 -52 -0,02 28 0,09 -23 -0,07

9 Prestress t = ∞ -47 -0,02 26 0,08 -21 -0,07
0,00

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 126 0,06 173 0,54 57 0,18 0,78

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 162 0,08 -24 -0,07 73 0,23 0,23

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 6 0,00 216 0,67 3 0,01 0,69

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 42 0,02 19 0,06 19 0,06 0,14

LC 1 + LC 8 -13 -0,01 46 0,14 -6 -0,02 0,12

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 92 0,04 200 0,62 41 0,13 0,79

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 128 0,06 3 0,01 57 0,18 0,25

Normal stresses

Prestress Bending moment

Suspension force Clamping moment Suspension force excen.



Total shear stress

LC type Vz [kN] τǆǇ [N/mmϮ] Mxy [kNm] τǆǇ [N/mmϮ] τǆǇ [N/mmϮ]
1 self-weight 880 0,54 -104 -0,22

2 ballast 300 0,18 -91 -0,19

3 Conc. Mobile Load 447 0,27 -174 -0,37

4 Cant. Mobile Load 0 0,00 -221 -0,47

5a Contin. Mobile Load 358 0,22 18 0,04

5b Contin. Mobile Load (SW/2) 781 0,48 -100 -0,21

6 Support settelement max 0 0,00 -214 -0,45

7 Support settelement min 0 0,00 214 0,45

8 Prestress t=0 -923 -0,56 37 0,08

9 Prestress t = ∞ -842 -0,51 34 0,07

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 1142 0,70 -530 -1,12 1,82

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 1142 0,70 -103 -0,22 0,91

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 338 0,21 -596 -1,26 1,46

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 338 0,21 -169 -0,36 0,56

LC 1 + LC 8 -43 -0,03 -67 -0,14 0,17

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 1118 0,68 -475 -1,00 1,68

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 1118 0,68 -48 -0,10 0,78

LC type σǆǆ [N/mmϮ] σǇǇ [N/mmϮ] τǆǇ [N/mmϮ] ρϭ [N/mmϮ] ρϮ [N/mmϮ]
1 self-weight

2 ballast

3 Conc. Mobile Load

4 Cant. Mobile Load

5a Contin. Mobile Load

5b Contin. Mobile Load (SW/2)

6 Support settelement max

7 Support settelement min

8 Prestress t=0

9 Prestress t = ∞
0,00 0,00 0,00 0,00 0

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 -6,19 0,78 1,82 1,22 -6,63

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 -6,19 0,23 0,91 0,36 -6,31

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 -5,73 0,69 1,46 1,00 -6,05

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 -5,73 0,14 0,56 0,19 -5,79

LC 1 + LC 8 -6,20 0,12 0,17 0,12 -6,20

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 -6,17 0,79 1,68 1,18 -6,56

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 -6,17 0,25 0,78 0,34 -6,26

Total Principal stress

Shear force Torsion

Shear and principal stresses



34000 [N/mm2] 6,63E+11 [mm4]

2,36E+08 3,65E+08 [mm]

900 [mm]

1200000 [mm2]

0,20 150 [mm]

1,42E+04 [N/mm2]

2,88E+11 [mm4]

4,08E+15 [Nmm2]

0,24

900 [mm] 810000 [mm2]

1750 [mm] 1115000,00 [mm2]

550 [mm] 42,1%

4000 [mm] 900000 [mm2]

2150500 [mm2] 135000000 [mm3]

6,63E+11 [mm4] 0,45 [m]

221 [mm]

629 [mm]

0,875 [m] 1,00 [m]

0,45 [m] 0,275 [m]

3,62 [-] 4,41 [-]

0,29 [m4] 0,09 [m4]

75,86% [%]

Parameters

Torsional stiffness floorTorsional stiffness girder

Normal stress parametersSectional properties

Torsional stiffness coefficient

Bending stiffness coefficient Shear stress parameters
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qbridge 192,5 [kN/m] x 2,36 [m] qpl 48,1 [kN/m] lctc 4,0 [m]

0,5q 96,3 [kN/m] c 1,0 [m] mpl01 64,2 [kNm]

Av 96,3 [kN] l 23,0 [m]

Bv 96,3 [kN] lsup. 21,0 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -48,1 [kNm]

mxx,M 11,3 [kNm] (due to torsional moment at both ends)

mxx,subtot. 11,3 [kNm]

Mxy,M -46,0 [kNm] (due to torsional moment at both ends)

Mxy,subtot -46,0 [kNm]

LC 1

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

݈௖௧௖

݉௣௟଴ଵ
ݔ

ݔ ݈ ܿ

ݍ ݍ௣௟ݍ



qbridge 192,5 [kN/m] x 2,36 [m] qpl 48,1 [kN/m] lctc 4,0 [m]

0,5q 96,3 [kN/m] c 1,0 [m] mpl02 64,2 [kNm]

Av 1010,6 [kN] l 23,0 [m]

Bv 1010,6 [kN] lsup. 21,0 [m]

Vz 879,7 [kN] Qyy 38,5 [kN]

Mx 1285,4 [kNm]

mxx, alt 6,4 [kNm] (due to alternative load case)

mxx,subtot. 6,4 [kNm]

Mxy, alt -58,2 [kNm] (due to alternative load case)

Mxy,subtot -58,2 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Midspan loaded

ݔ

ݔ ݈ ܿ

ݍ

݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ



q 16,4 [kN/m2] x 2,36 [m] qpl 16,4 [kN/m] lctc 4,0 [m]

0,5q 32,8 [kN/m] c 1,0 [m] 0,25F 38,8 [kN] l1 0,95 [m]

F 155 [kN] l 23,0 [m] mpl01 21,9 [kNm] l2 1,5 [m]

0,5F 77,5 [kN] lsup. 21,0 [m] mpl02 77,1 [kNm] lb 4,9 [m]

Av 110,3 [kN] MT 99,0 [kNm]

Bv 110,3 [kN]

Vz 0,0 [kN] Qyy 0,0 [kN]

Shear Force Suspension force

LC 2

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

݈௖௧௖

݉௣௟଴ଵ
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Mx -93,9 [kNm] mxx,M 17,5 [kNm] (due to torsional moment at both ends)

mxx,subtot. 17,5 [kNm]

Mxy,M -71,0 [kNm] (due to torsional moment at both ends)

Mxy,subtot -71,0 [kNm]

q 16,4 [kN/m2] x 2,36 [m] qpl 16,4 [kN/m] lctc 4,0 [m]

0,5q 32,8 [kN/m] c 1,0 [m] mpl01 21,9 [kNm]

Av 344,4 [kN] l 23,0 [m]

Bv 344,4 [kN] lsup. 21,0 [m]

Vz 299,8 [kN] Qyy 32,8 [kN]

Shear Force Suspension force

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Bending moment Clamping moment

Torsion

ݔ

ݔ ݈ ܿ

ݍ

݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ



Mx 438,1 [kNm]

mxx,alt 2,2 [kNm] (due to alternative load case)

mxx,subtot. 2,2 [kNm]

Mxy,alt -19,9 [kNm] (due to alternative load case)

Mxy,subtot -19,9 [kNm]

Bending moment Clamping moment

Torsion



q 239,1 [kN/m] x 2,36 [m] p 119,6 [kN/m] le 1,7 [m]

0,5q 119,6 [kN/m] a 6,9 [m] mpl01 194,9 [kNm] ltr 1,5 [m]

Av 728,7 [kN] b 15,1 [m] lb 4,9 [m]

Bv 96,2 [kN] c 1,0 [m]

l 23,0 [m]

lsup. 21,0 [m]

Vz 446,5 [kN] Qyy 119,6 [kN]

Mx 658,1 [kNm] mxx,M 33,8 [kNm] (due to torsional moment at one end)

mxx,q -49,8 [kNm] (due to distributed load)

mxx,tot -16,0 [kNm]

Mxy,M -140,6 [kNm] (due to torsional moment at one end)

Mxy,q -33,4 [kNm] (due to distributed load)

Mxy,tot -174,0 [kNm]

LC 3

Shear Force

Bending moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Suspension force

Clamping moment

݈௘ ݈௧௥ ݈௘
݈௕

ݍ
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q 170,4 [kN/m] x 2,36 [m]

0,5q 85,2 [kN/m] c 1,0 [m]

F 341 [kN] l 23,0 [m] 0,5q 85,2 [kN/m] le 1,7 [m]

0,5F 170,5 [kN] lsup. 21,0 [m] 0,25F 85,3 [kN] ltr 1,5 [m]

Av 255,7 [kN] mpl01 138,9 [kNm] lb 4,9 [m]

Bv 255,7 [kN] mpl02 169,7 [kNm] l1 0,95 [m]

MT 308,6 [kNm] l2 1,5 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -213,1 [kNm] mxx,M 54,5 [kNm] (due to torsional moment at both ends)

mxx,tot 54,5 [kNm]

Mxy,M -221,3 [kNm] (due to torsional moment at both ends)

Mxy,tot -221,3 [kNm]

Torsion

LC 4

Load & Reaction forces Measurements

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

ݍ ݈௘ ݈௧௥ ݈௘
݈௕ݔ

ݔ ݈ ܿ

ܨ ݍ ܨ
݉௣௟଴ଵ

݈ଵ ݈ଶ

݉௣௟଴ଶ

݈ଶ ݈ଵ
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q 132 [kN/m] x 2,36 [m] 0,5q 66,0 [kN/m] le 1,7 [m]

0,5q 66,0 [kN/m] a 5,9 [m] mpl01 107,6 [kNm] ltr 1,5 [m]

Av 358,3 [kN] b 15,1 [m] lb 4,9 [m]

Bv 638,3 [kN] c 1,0 [m]

l 23,0 [m]

lsup. 21,0 [m]

Vz 358,3 [kN] Qyy 0,0 [kN]

Mx 487,3 [kNm] mxx,q 27,5 [kNm] (due to distributed load)

mxx,tot 27,5 [kNm]

Mxy,q 18,4 [kNm] (due to distributed load)

Mxy,tot 18,4 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 5a

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

݈௘ ݈௧௥ ݈௘
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0,5q 85,2 [kN/m] le 1,7 [m]

mpl01 138,9 [kNm] ltr 1,5 [m]

q 170,4 [kN/m] x 2,36 [m] lb 4,9 [m]

0,5q 85,2 [kN/m] c 1,0 [m]

Av 87,2 [kN] l 23,0 [m]

Bv -2,0 [kN] lsup. 21,0 [m]

Vz 2,0 [kN] Qyy 0,0 [kN]

Mx -39,8 [kNm] mxx,M 24,1 [kNm] (due to torsional moment at one end)

mxx,subtot. 24,1 [kNm]

Mxy,M -100,2 [kNm] (due to torsional moment at one end)

Mxy,subtot -100,2 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 5b

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Load & Reaction forces Measurements

ݔ

ݔ ݈ ܿ

ݍ
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݉௣௟଴ଵ 0,ͷq0,ͷq



q 170,4 [kN/m] x 2,36 [m] 0,5q 85,2 [kN/m] lb 4,9 [m]

0,5q 85,2 [kN/m] c 1,0 [m] mpl01 138,9 [kNm] ltr 1,5 [m]

Av 894,6 [kN] l 23,0 [m] le 1,7 [m]

Bv 894,6 [kN] lsup. 21,0 [m]

Vz 778,7 [kN] Qyy 85,2 [kN]

Mx 1137,9 [kNm]

mxx, alt 13,8 [kNm] (due to alternative load case)

mxx,subtot. 13,8 [kNm]

Mxy, alt 0,0 [kNm] (due to alternative load case)

Mxy,subtot 0,0 [kNm]

Torsion

Midspan loaded

Shear Force Suspension force

Bending moment Clamping moment

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

ݔ

ݔ ݈ ܿ

ݍ
݈௘ ݈௧௥ ݈௘

݈௕

݉௣௟଴ଵ ݉௣௟଴ଵ0,ͷq0,ͷq



∆ -5 [mm] x 2,36 [m]

Av 0,0 [kN] a 19,6 [m]

Bv 0,0 [kN] c 1,0 [m]

γ 1,2 [-] l 23,0 [m]

lsup. 21,0 [m]

Qyy -15,0 [kN]

Vz 0,0 [kN] Qyy,tot -18,0 [kN]

Mx 0,0 [kNm] mxx,∆ 82,0 [kNm]

mxx,tot 98,4 [kNm]

Mxy,∆ -178,0 [kNm]

Mxy,tot -213,6 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 6

Loading (long. direction) Loading (transverse direction)

Deflection & Reaction forces Measurements
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F1 1115 [kN] x 2,36 [m]

F2 -13200 [kN] c 1,0 [m]

M1 294 [kNm] l 23,0 [m]

q -101 [kN] lsup. 21,0 [m]

Av 55 [kN]

Bv 55 [kN]

Vz -923,1 [kN]

Mx -1054,9 [kNm]

Measurements

Shear Force

Bending moment

LC 8

Girder loaded

Loading (long. direction)

Load & Reaction forces

ݔ

ݔ ݈ ܿ
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x 2,36 [m] qpl -51,5 [kN/m] lctc 4,0 [m]

a 16,0 [m] mpl01 -68,7 [kNm]

l 23,0 [m]

lsup. 21,0 [m]

Mxy,alt 37,3 [kNm] (due to alternative load case) Qyy -51,5 [kN]

Mxy,tot 37,3 [kNm]

mxx,alt 28,4 [kNm] (due to alternative load case)

mxx,tot 28,4 [kNm]

Suspension force

Floor loaded

Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ
݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ
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F1 1017 [kN] x 2,36 [m]

F2 -12038 [kN] c 1,0 [m]

M1 268 [kNm] l 23,0 [m]

q -92 [kN] lsup. 21,0 [m]

Av 50 [kN]

Bv 50 [kN]

P∞/P0 0,912 [-]

Vz -841,9 [kN]

Mx -962,0 [kNm]

Shear Force

LC 9

Girder loaded

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

ݔ

ݔ ݈ ܿ
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x 2,36 [m] qpl -47,0 [kN/m] lctc 4,0 [m]

a 16,0 [m] mpl01 -62,6 [kNm]

l 23,0 [m]

lsup. 21,0 [m]

Mxy,alt 34,0 [kNm] (due to alternative load case) Qyy -47,0 [kN]

Mxy,tot 34,0 [kNm]

mxx,alt 25,9 [kNm] (due to alternative load case)

mxx,tot 25,9 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ
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5.2 Bridge A - 6.10b – 0,8d 



Total hor. normal stress

LC type P [kN] σǆǆ [N/mmϮ] M [kNm] σǆǆ [N/mmϮ] σǆǆ [N/mmϮ]
1 self-weight 1106 -0,37

2 ballast 306 -0,10

3 Conc. Mobile Load 822 -0,27

4 Cant. Mobile Load -224 0,07

5a Contin. Mobile Load 609 -0,20

5b Contin. Mobile Load (SW/2) 1373 -0,46

6 Support settelement max 0 0,00

7 Support settelement min 0 0,00

8 Prestress t=0 -13200 -6,14 -1055 0,35

9 Prestress t = ∞ -12038 -5,60 -962 0,32

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 -12038 -5,60 1881 -0,63 -6,22

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 -12038 -5,60 1881 -0,63 -6,22

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 -12038 -5,60 226 -0,08 -5,67

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 -12038 -5,60 226 -0,08 -5,67

LC 1 + LC 8 -13200 -6,14 51 -0,02 -6,15

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 -12038 -5,60 1822 -0,61 -6,21

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 -12038 -5,60 1822 -0,61 -6,21

Total ver. Normal stress

LC type Qyy [kN] σǇǇ [N/mmϮ] mxx [kNm] σǇǇ [N/mmϮ] Myy [kNm] σǇǇ [N/mmϮ] σǇǇ [N/mmϮ]
1 self-weight 34 0,02 16 0,05 15 0,05

2 ballast 29 0,01 18 0,05 13 0,04

3 Conc. Mobile Load 149 0,07 -20 -0,06 67 0,21

4 Cant. Mobile Load 0 0,00 61 0,19 0 0,00

5a Contin. Mobile Load 0 0,00 34 0,11 0 0,00

5b Contin. Mobile Load (SW/2) 107 0,05 47 0,15 48 0,15

6 Support settelement max -18 -0,01 98 0,31 -8 -0,03

7 Support settelement min 18 0,01 -98 -0,31 8 0,03

8 Prestress t=0 -52 -0,02 28 0,09 -23 -0,07

9 Prestress t = ∞ -47 -0,02 26 0,08 -21 -0,07
0,00

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 148 0,07 172 0,54 67 0,21 0,81

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 184 0,09 -25 -0,08 83 0,26 0,27

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 -1 0,00 218 0,68 -1 0,00 0,68

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 35 0,02 21 0,07 16 0,05 0,13

LC 1 + LC 8 -17 -0,01 44 0,14 -8 -0,02 0,11

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 105 0,05 205 0,64 47 0,15 0,84

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 141 0,07 8 0,03 64 0,20 0,29

Normal stresses

Prestress Bending moment

Suspension force Clamping moment Suspension force excen.



Total shear stress

LC type Vz [kN] τǆǇ [N/mmϮ] Mxy [kNm] τǆǇ [N/mmϮ] τǆǇ [N/mmϮ]
1 self-weight 786 0,48 -93 -0,20

2 ballast 267 0,16 -81 -0,17

3 Conc. Mobile Load 558 0,34 -218 -0,46

4 Cant. Mobile Load 0 0,00 -246 -0,52

5a Contin. Mobile Load 448 0,27 23 0,05

5b Contin. Mobile Load (SW/2) 976 0,60 -125 -0,26

6 Support settelement max 0 0,00 -214 -0,45

7 Support settelement min 0 0,00 214 0,45

8 Prestress t=0 -923 -0,56 37 0,08

9 Prestress t = ∞ -842 -0,51 34 0,07

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 1217 0,74 -548 -1,16 1,90

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 1217 0,74 -121 -0,26 1,00

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 211 0,13 -600 -1,26 1,39

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 211 0,13 -173 -0,36 0,49

LC 1 + LC 8 -137 -0,08 -56 -0,12 0,20

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 1187 0,72 -479 -1,01 1,73

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 1187 0,72 -52 -0,11 0,83

LC type σǆǆ [N/mmϮ] σǇǇ [N/mmϮ] τǆǇ [N/mmϮ] ρϭ [N/mmϮ] ρϮ [N/mmϮ]
1 self-weight

2 ballast

3 Conc. Mobile Load

4 Cant. Mobile Load

5a Contin. Mobile Load

5b Contin. Mobile Load (SW/2)

6 Support settelement max

7 Support settelement min

8 Prestress t=0

9 Prestress t = ∞
0,00 0,00 0,00 0,00 0

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 -6,22 0,81 1,90 1,29 -6,70

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 -6,22 0,27 1,00 0,42 -6,37

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 -5,67 0,68 1,39 0,97 -5,97

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 -5,67 0,13 0,49 0,17 -5,71

LC 1 + LC 8 -6,15 0,11 0,20 0,11 -6,16

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 -6,21 0,84 1,73 1,24 -6,61

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 -6,21 0,29 0,83 0,39 -6,31

Total Principal stress

Shear force Torsion

Shear and principal stresses



34000 [N/mm2] 6,63E+11 [mm4]

2,36E+08 3,65E+08 [mm]

900 [mm]

1200000 [mm2]

0,20 150 [mm]

1,42E+04 [N/mm2]

2,88E+11 [mm4]

4,08E+15 [Nmm2]

0,24

900 [mm] 810000 [mm2]

1750 [mm] 1115000,00 [mm2]

550 [mm] 42,1%

4000 [mm] 900000 [mm2]

2150500 [mm2] 135000000 [mm3]

6,63E+11 [mm4] 0,45 [m]

221 [mm]

629 [mm]

0,875 [m] 1,00 [m]

0,45 [m] 0,275 [m]

3,62 [-] 4,41 [-]

0,29 [m4] 0,09 [m4]

75,86% [%]

Parameters

Torsional stiffness floorTorsional stiffness girder

Normal stress parametersSectional properties

Torsional stiffness coefficient

Bending stiffness coefficient Shear stress parameters
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qbridge 172,0 [kN/m] x 2,36 [m] qpl 43,0 [kN/m] lctc 4,0 [m]

0,5q 86,0 [kN/m] c 1,0 [m] mpl01 57,3 [kNm]

Av 86,0 [kN] l 23,0 [m]

Bv 86,0 [kN] lsup. 21,0 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -43,0 [kNm]

mxx,M 10,1 [kNm] (due to torsional moment at both ends)

mxx,subtot. 10,1 [kNm]

Mxy,M -41,1 [kNm] (due to torsional moment at both ends)

Mxy,subtot -41,1 [kNm]

LC 1

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

݈௖௧௖

݉௣௟଴ଵ
ݔ

ݔ ݈ ܿ

ݍ ݍ௣௟ݍ



qbridge 172,0 [kN/m] x 2,36 [m] qpl 43,0 [kN/m] lctc 4,0 [m]

0,5q 86,0 [kN/m] c 1,0 [m] mpl02 57,3 [kNm]

Av 903,0 [kN] l 23,0 [m]

Bv 903,0 [kN] lsup. 21,0 [m]

Vz 786,0 [kN] Qyy 34,4 [kN]

Mx 1148,5 [kNm]

mxx, alt 5,7 [kNm] (due to alternative load case)

mxx,subtot. 5,7 [kNm]

Mxy, alt -52,0 [kNm] (due to alternative load case)

Mxy,subtot -52,0 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Midspan loaded

ݔ

ݔ ݈ ܿ

ݍ

݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ



q 14,6 [kN/m2] x 2,36 [m] qpl 14,6 [kN/m] lctc 4,0 [m]

0,5q 29,2 [kN/m] c 1,0 [m] 0,25F 34,8 [kN] l1 0,95 [m]

F 139 [kN] l 23,0 [m] mpl01 19,5 [kNm] l2 1,5 [m]

0,5F 69,5 [kN] lsup. 21,0 [m] mpl02 69,2 [kNm] lb 4,9 [m]

Av 98,7 [kN] MT 88,6 [kNm]

Bv 98,7 [kN]

Vz 0,0 [kN] Qyy 0,0 [kN]

Shear Force Suspension force

LC 2

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

݈௖௧௖

݉௣௟଴ଵ

ݔ

ݔ ݈ ܿ

ܨ ݍ ܨ

௣௟ݍ

݈ଵ ݈ଶ ݈௕
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ݍ
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Mx -84,1 [kNm] mxx,M 15,6 [kNm] (due to torsional moment at both ends)

mxx,subtot. 15,6 [kNm]

Mxy,M -63,5 [kNm] (due to torsional moment at both ends)

Mxy,subtot -63,5 [kNm]

q 14,6 [kN/m2] x 2,36 [m] qpl 14,6 [kN/m] lctc 4,0 [m]

0,5q 29,2 [kN/m] c 1,0 [m] mpl01 19,5 [kNm]

Av 306,6 [kN] l 23,0 [m]

Bv 306,6 [kN] lsup. 21,0 [m]

Vz 266,9 [kN] Qyy 29,2 [kN]

Shear Force Suspension force

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Bending moment Clamping moment

Torsion

ݔ

ݔ ݈ ܿ

ݍ

݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ



Mx 390,0 [kNm]

mxx,alt 1,9 [kNm] (due to alternative load case)

mxx,subtot. 1,9 [kNm]

Mxy,alt -17,7 [kNm] (due to alternative load case)

Mxy,subtot -17,7 [kNm]

Bending moment Clamping moment

Torsion



q 298,8 [kN/m] x 2,36 [m] p 149,4 [kN/m] le 1,7 [m]

0,5q 149,4 [kN/m] a 6,9 [m] mpl01 243,6 [kNm] ltr 1,5 [m]

Av 910,6 [kN] b 15,1 [m] lb 4,9 [m]

Bv 120,3 [kN] c 1,0 [m]

l 23,0 [m]

lsup. 21,0 [m]

Vz 558,0 [kN] Qyy 149,4 [kN]

Mx 822,4 [kNm] mxx,M 42,2 [kNm] (due to torsional moment at one end)

mxx,q -62,3 [kNm] (due to distributed load)

mxx,tot -20,1 [kNm]

Mxy,M -175,8 [kNm] (due to torsional moment at one end)

Mxy,q -41,7 [kNm] (due to distributed load)

Mxy,tot -217,5 [kNm]

LC 3

Shear Force

Bending moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Suspension force

Clamping moment

݈௘ ݈௧௥ ݈௘
݈௕

ݍ
=
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q 213 [kN/m] x 2,36 [m]

0,5q 106,5 [kN/m] c 1,0 [m]

F 341 [kN] l 23,0 [m] 0,5q 106,5 [kN/m] le 1,7 [m]

0,5F 170,5 [kN] lsup. 21,0 [m] 0,25F 85,3 [kN] ltr 1,5 [m]

Av 277,0 [kN] mpl01 173,7 [kNm] lb 4,9 [m]

Bv 277,0 [kN] mpl02 169,7 [kNm] l1 0,95 [m]

MT 343,4 [kNm] l2 1,5 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -223,8 [kNm] mxx,M 60,6 [kNm] (due to torsional moment at both ends)

mxx,tot 60,6 [kNm]

Mxy,M -246,3 [kNm] (due to torsional moment at both ends)

Mxy,tot -246,3 [kNm]

Torsion

LC 4

Load & Reaction forces Measurements

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

ݍ ݈௘ ݈௧௥ ݈௘
݈௕ݔ

ݔ ݈ ܿ

ܨ ݍ ܨ
݉௣௟଴ଵ

݈ଵ ݈ଶ

݉௣௟଴ଶ

݈ଶ ݈ଵ
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q 165 [kN/m] x 2,36 [m] 0,5q 82,5 [kN/m] le 1,7 [m]

0,5q 82,5 [kN/m] a 5,9 [m] mpl01 134,5 [kNm] ltr 1,5 [m]

Av 447,9 [kN] b 15,1 [m] lb 4,9 [m]

Bv 797,9 [kN] c 1,0 [m]

l 23,0 [m]

lsup. 21,0 [m]

Vz 447,9 [kN] Qyy 0,0 [kN]

Mx 609,1 [kNm] mxx,q 34,4 [kNm] (due to distributed load)

mxx,tot 34,4 [kNm]

Mxy,q 23,0 [kNm] (due to distributed load)

Mxy,tot 23,0 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 5a

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

݈௘ ݈௧௥ ݈௘
݈௕

݉௣௟଴ଵݔ

ݔ ܽ ܾ ܿ

ݍ 0,ͷq0,ͷq



0,5q 106,5 [kN/m] le 1,7 [m]

mpl01 173,7 [kNm] ltr 1,5 [m]

q 213 [kN/m] x 2,36 [m] lb 4,9 [m]

0,5q 106,5 [kN/m] c 1,0 [m]

Av 109,0 [kN] l 23,0 [m]

Bv -2,5 [kN] lsup. 21,0 [m]

Vz 2,5 [kN] Qyy 0,0 [kN]

Mx -49,8 [kNm] mxx,M 30,1 [kNm] (due to torsional moment at one end)

mxx,subtot. 30,1 [kNm]

Mxy,M -125,3 [kNm] (due to torsional moment at one end)

Mxy,subtot -125,3 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 5b

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Load & Reaction forces Measurements

ݔ

ݔ ݈ ܿ

ݍ
݈௘ ݈௧௥ ݈௘

݈௕
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q 213 [kN/m] x 2,36 [m] 0,5q 106,5 [kN/m] lb 4,9 [m]

0,5q 106,5 [kN/m] c 1,0 [m] mpl01 173,7 [kNm] ltr 1,5 [m]

Av 1118,3 [kN] l 23,0 [m] le 1,7 [m]

Bv 1118,3 [kN] lsup. 21,0 [m]

Vz 973,4 [kN] Qyy 106,5 [kN]

Mx 1422,3 [kNm]

mxx, alt 17,2 [kNm] (due to alternative load case)

mxx,subtot. 17,2 [kNm]

Mxy, alt 0,0 [kNm] (due to alternative load case)

Mxy,subtot 0,0 [kNm]

Torsion

Midspan loaded

Shear Force Suspension force

Bending moment Clamping moment

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

ݔ

ݔ ݈ ܿ

ݍ
݈௘ ݈௧௥ ݈௘

݈௕

݉௣௟଴ଵ ݉௣௟଴ଵ0,ͷq0,ͷq



∆ -5 [mm] x 2,36 [m]

Av 0,0 [kN] a 19,6 [m]

Bv 0,0 [kN] c 1,0 [m]

γ 1,2 [-] l 23,0 [m]

lsup. 21,0 [m]

Qyy -15,0 [kN]

Vz 0,0 [kN] Qyy,tot -18,0 [kN]

Mx 0,0 [kNm] mxx,∆ 82,0 [kNm]

mxx,tot 98,4 [kNm]

Mxy,∆ -178,0 [kNm]

Mxy,tot -213,6 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 6

Loading (long. direction) Loading (transverse direction)

Deflection & Reaction forces Measurements

ݔ

ݔ ܽ ܿ
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F1 1115 [kN] x 2,36 [m]

F2 -13200 [kN] c 1,0 [m]

M1 294 [kNm] l 23,0 [m]

q -101 [kN] lsup. 21,0 [m]

Av 55 [kN]

Bv 55 [kN]

Vz -923,1 [kN]

Mx -1054,9 [kNm]

Measurements

Shear Force

Bending moment

LC 8

Girder loaded

Loading (long. direction)

Load & Reaction forces

ݔ

ݔ ݈ ܿ

ଵܨ
ଶܨ

ଵܯ ݍ



x 2,36 [m] qpl -51,5 [kN/m] lctc 4,0 [m]

a 16,0 [m] mpl01 -68,7 [kNm]

l 23,0 [m]

lsup. 21,0 [m]

Mxy,alt 37,3 [kNm] (due to alternative load case) Qyy -51,5 [kN]

Mxy,tot 37,3 [kNm]

mxx,alt 28,4 [kNm] (due to alternative load case)

mxx,tot 28,4 [kNm]

Suspension force

Floor loaded

Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ
݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ
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F1 1017 [kN] x 2,36 [m]

F2 -12038 [kN] c 1,0 [m]

M1 268 [kNm] l 23,0 [m]

q -92 [kN] lsup. 21,0 [m]

Av 50 [kN]

Bv 50 [kN]

P∞/P0 0,912 [-]

Vz -841,9 [kN]

Mx -962,0 [kNm]

Shear Force

LC 9

Girder loaded

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

ݔ

ݔ ݈ ܿ

ଵܨ
ଶܨ

ଵܯ ݍ



x 2,36 [m] qpl -47,0 [kN/m] lctc 4,0 [m]

a 16,0 [m] mpl01 -62,6 [kNm]

l 23,0 [m]

lsup. 21,0 [m]

Mxy,alt 34,0 [kNm] (due to alternative load case) Qyy -47,0 [kN]

Mxy,tot 34,0 [kNm]

mxx,alt 25,9 [kNm] (due to alternative load case)

mxx,tot 25,9 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ
݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ
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5.3 Bridge B - 6.10a – support 



Total hor. normal stress

LC type P [kN] σǆǆ [N/mmϮ] M [kNm] σǆǆ [N/mmϮ] σǆǆ [N/mmϮ]
1 self-weight -76 0,01

2 ballast -87 0,01

3a Mobile Max. (LM71) -57 0,00

3b Mobile Max. (SW/2) -40 0,00

4 Mobile Min. (SW/2) -202 0,02

5 Support settelement max 0 0,00

6 Support settelement min 0 0,00

7 Prestress t=0 -22826 -8,65 5045 -0,41

8 Prestress t = ∞ -20886 -7,91 4616 -0,38

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -20886 -7,91 4397 -0,36 -8,27

LC 1 + LC 2 + LC 3a + LC 6 + LC8 -20886 -7,91 4397 -0,36 -8,27

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -20886 -7,91 4252 -0,35 -8,26

LC 1 + LC 2 + LC 4 + LC 6 + LC8 -20886 -7,91 4252 -0,35 -8,26

LC 1 + LC 7 -22826 -8,65 4970 -0,41 -9,05

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -20886 -7,91 4413 -0,36 -8,27

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 -20886 -7,91 4413 -0,36 -8,27

Total ver. Normal stress

LC type Qyy [kN] σǇǇ [N/mmϮ] mxx [kNm] σǇǇ [N/mmϮ] Myy [kNm] σǇǇ [N/mmϮ] σǇǇ [N/mmϮ]
1 self-weight 59 0,02 33 0,07 35 0,07

2 ballast 35 0,01 21 0,04 21 0,04

3a Mobile Max. (LM71) 113 0,05 -3 -0,01 68 0,14

3b Mobile Max. (SW/2) 81 0,03 23 0,05 48 0,10

4 Mobile Min. (SW/2) 81 0,03 59 0,12 48 0,10

5 Support settelement max -265 -0,11 227 0,47 -159 -0,33

6 Support settelement min 265 0,11 -227 -0,47 159 0,33

7 Prestress t=0 -57 -0,02 28 0,06 -34 -0,07

8 Prestress t = ∞ -52 -0,02 26 0,05 -31 -0,06
0,00

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -110 -0,05 303 0,62 -66 -0,14 0,44

LC 1 + LC 2 + LC 3a + LC 6 + LC8 420 0,17 -150 -0,31 252 0,52 0,38

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -143 -0,06 365 0,75 -86 -0,18 0,52

LC 1 + LC 2 + LC 4 + LC 6 + LC8 388 0,16 -88 -0,18 233 0,48 0,46

LC 1 + LC 7 2 0,00 61 0,13 1 0,00 0,13

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -143 -0,06 330 0,68 -86 -0,18 0,44

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 388 0,16 -124 -0,25 233 0,48 0,38

Normal stresses

Prestress Bending moment

Suspension force Clamping moment Suspension force excen.



Total shear stress

LC type Vz [kN] τǆǇ [N/mmϮ] Mxy [kNm] τǆǇ [N/mmϮ] τǆǇ [N/mmϮ]
1 self-weight 2378 1,08 -322 -0,33

2 ballast 547 0,25 -160 -0,16

3a Mobile Max. (LM71) 1258 0,57 -230 -0,23

3b Mobile Max. (SW/2) 1202 0,54 -164 -0,17

4 Mobile Min. (SW/2) 0 0,00 -362 -0,37

5 Support settelement max 0 0,00 -589 -0,60

6 Support settelement min 0 0,00 589 0,60

7 Prestress t=0 -2287 -1,03 0 0,00

8 Prestress t = ∞ -2093 -0,95 0 0,00

LC 1 + LC 2 + LC 3a + LC 5 + LC8 2091 0,95 -1301 -1,32 2,27

LC 1 + LC 2 + LC 3a + LC 6 + LC8 2091 0,95 -123 -0,12 1,07

LC 1 + LC 2 + LC 4 + LC 5 + LC8 833 0,38 -1433 -1,46 1,83

LC 1 + LC 2 + LC 4 + LC 6 + LC8 833 0,38 -255 -0,26 0,64

LC 1 + LC 7 91 0,04 -322 -0,33 0,37

LC 1 + LC 2 + LC 3b + LC 5 + LC8 2035 0,92 -1235 -1,26 2,18

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 2035 0,92 -57 -0,06 0,98

LC type σǆǆ [N/mmϮ] σǇǇ [N/mmϮ] τǆǇ [N/mmϮ] ρϭ [N/mmϮ] ρϮ [N/mmϮ]
1 self-weight

2 ballast

3a Mobile Max. (LM71)

3b Mobile Max. (SW/2)

4 Mobile Min. (SW/2)

5 Support settelement max

6 Support settelement min

7 Prestress t=0

8 Prestress t = ∞
0,00 0,00 0,00 0,00 0

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -8,27 0,44 2,27 1,00 -8,83

LC 1 + LC 2 + LC 3a + LC 6 + LC8 -8,27 0,38 1,07 0,51 -8,40

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -8,26 0,52 1,83 0,88 -8,63

LC 1 + LC 2 + LC 4 + LC 6 + LC8 -8,26 0,46 0,64 0,50 -8,31

LC 1 + LC 7 -9,05 0,13 0,37 0,14 -9,07

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -8,27 0,44 2,18 0,96 -8,79

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 -8,27 0,38 0,98 0,49 -8,38

Total Principal stress

Shear force Torsion

Shear and principal stresses



34000 [N/mm2] 1,73E+12 [mm4]

3,11E+08 9,38E+08 [mm]

1200 [mm]

2000000 [mm2]

0,20 200 [mm]

1,42E+04 [N/mm2]

8,35E+11 [mm4]

1,18E+16 [Nmm2]

0,16

1200 [mm] 1500000 [mm2]

2200 [mm] 1540000,00 [mm2]

650 [mm] 49,3%

5000 [mm] 1200000 [mm2]

2640000 [mm2] 240000000 [mm3]

1,73E+12 [mm4] 0,6 [m]

142 [mm]

808 [mm]

1,1 [m] 1,25 [m]

0,6 [m] 0,325 [m]

3,51 [-] 4,46 [-]

0,83 [m4] 0,19 [m4]

81,35% [%]

Parameters

Torsional stiffness floorTorsional stiffness girder

Normal stress parametersSectional properties

Torsional stiffness coefficient

Bending stiffness coefficient Shear stress parameters
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qbridge 302,0 [kN/m] x 1,00 [m] qpl 60,4 [kN/m] lctc 5,0 [m]

0,5q 151,0 [kN/m] c 1,0 [m] mpl01 125,8 [kNm]

Av 151,0 [kN] l 33,5 [m]

Bv 151,0 [kN] lsup. 31,5 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -75,5 [kNm]

mxx,M 20,4 [kNm] (due to torsional moment at both ends)

mxx,subtot. 20,4 [kNm]

Mxy,M -125,8 [kNm] (due to torsional moment at both ends)

Mxy,subtot -125,8 [kNm]

LC 1

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

݈௖௧௖

݉௣௟଴ଵ
ݔ

ݔ ݈ ܿ

ݍ ݍ௣௟ݍ



qbridge 302,0 [kN/m] x 1,00 [m] qpl 60,4 [kN/m] lctc 5,0 [m]

0,5q 151,0 [kN/m] c 1,0 [m] mpl02 125,8 [kNm]

Av 2378,3 [kN] l 33,5 [m]

Bv 2378,3 [kN] lsup. 31,5 [m]

Vz 2378,3 [kN] Qyy 59,1 [kN]

Mx 0,0 [kNm]

mxx, alt 12,5 [kNm] (due to alternative load case)

mxx,subtot. 12,5 [kNm]

Mxy, alt -196,6 [kNm] (due to alternative load case)

Mxy,subtot -196,6 [kNm]

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

ݔ

ݔ ݈ ܿ

ݍ

݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ



q 13,9 [kN/m2] x 1,00 [m] qpl 13,9 [kN/m] lctc 5,0 [m]

0,5q 34,8 [kN/m] c 1,0 [m] 0,25F 34,8 [kN] l1 1,1 [m]

F 139 [kN] l 33,5 [m] mpl01 29,0 [kNm] l2 2,0 [m]

0,5F 69,5 [kN] lsup. 31,5 [m] mpl02 85,3 [kNm] lb 6,2 [m]

Av 104,3 [kN] MT 114,3 [kNm]

Bv 104,3 [kN]

Vz 0,0 [kN] Qyy 0,0 [kN]

LC 2

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

݈௖௧௖

݉௣௟଴ଵ

ݔ

ݔ ݈ ܿ

ܨ ݍ ܨ

௣௟ݍ

݈ଵ ݈ଶ ݈௕

݉௣௟଴ଶ
ݍ

݈ଶ ݈ଵ



Mx -86,9 [kNm] mxx,M 18,5 [kNm] (due to torsional moment at both ends)

mxx,subtot. 18,5 [kNm]

Mxy,M -114,3 [kNm] (due to torsional moment at both ends)

Mxy,subtot -114,3 [kNm]

q 13,9 [kN/m2] x 1,00 [m] qpl 13,9 [kN/m] lctc 5,0 [m]

0,5q 34,8 [kN/m] c 1,0 [m] mpl01 29,0 [kNm]

Av 547,3 [kN] l 33,5 [m]

Bv 547,3 [kN] lsup. 31,5 [m]

Vz 547,3 [kN] Qyy 34,8 [kN]

Bending moment Clamping moment

Torsion

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

ݔ

ݔ ݈ ܿ

ݍ

݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ



Mx 0,0 [kNm]

mxx,alt 2,9 [kNm] (due to alternative load case)

mxx,subtot. 2,9 [kNm]

Mxy,alt -45,3 [kNm] (due to alternative load case)

Mxy,subtot -45,3 [kNm]

Bending moment Clamping moment

Torsion



q1 226,6 [kN/m] x 1,00 [m]

0,5q1 113,3 [kN/m] a 6,9 [m]

q2 125,1 [kN/m] b 25,6 [m] 0,5q1 113,3 [kN/m] le 2,4 [m]

0,5q2 62,55 [kN/m] c 1,0 [m] 0,5q2 62,55 [kN/m] ltr 1,5 [m]

Av 1371,6 [kN] l 33,5 [m] mpl01 229,8 [kNm] lb 6,2 [m]

Bv 1011,4 [kN] lsup. 31,5 [m] mpl02 126,8 [kNm]

Vz 1258,3 [kN] Qyy 113,3 [kN]

mxx,M 36,8 [kNm] (due to torsional moment at one end)

Mx -56,7 [kNm] mxx,q1 -89,4 [kNm] (due to distributed load)

mxx,q2 49,3 [kNm] (due to distributed load)

mxx,tot -3,3 [kNm]

Mxy,M -229,8 [kNm] (due to torsional moment at one end)

Mxy,q1 0 [kNm] (due to distributed load)

Mxx,q2 0 [kNm] (due to distributed load)

Mxy,tot -229,8 [kNm]

LC 3a

Shear Force

Bending moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Load & Reaction forces Measurements

Suspension force

Clamping moment

݈௘ ݈௧௥ ݈௘݈௕

=

Ͷ,8 ݉ Ͷ ∗ 2ͷ0 ݇ܰ ݉௣௟଴ଵ

ݔ

ݔ ܽ ܾ ܿ
݉௣௟଴ଶ

ଵݍ
ଵݍ0,5 ଵݍ0,5

ଶݍ0,5 ଶݍ0,5
ଶݍ



0,5q 80,8 [kN/m] le 2,4 [m]

mpl01 163,8 [kNm] ltr 1,5 [m]

q 161,6 [kN/m] x 1,00 [m] lb 6,2 [m]

0,5q 80,8 [kN/m] c 1,0 [m]

Av 82,1 [kN] l 33,5 [m]

Bv -1,3 [kN] lsup. 31,5 [m]

Vz 1,3 [kN] Qyy 0,0 [kN]

Mx -40,4 [kNm] mxx,M 26,2 [kNm] (due to torsional moment at one end)

mxx,subtot. 26,2 [kNm]

Mxy,M -163,8 [kNm] (due to torsional moment at one end)

Mxy,subtot -163,8 [kNm]

LC 3b

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

ݔ

ݔ ݈ ܿ

ݍ
݈௘ ݈௧௥ ݈௘

݈௕

݉௣௟଴ଵ 0,ͷq0,ͷq



q 161,6 [kN/m] x 1,00 [m] 0,5q 80,8 [kN/m] lb 6,2 [m]

0,5q 80,8 [kN/m] a 24 [m] mpl01 163,8 [kNm] ltr 1,5 [m]

Av 1200,5 [kN] b 7,5 [m] le 2,4 [m]

Bv 738,7 [kN] c 1,0 [m]

l 33,5 [m]

lsup. 31,5 [m]

Vz 1200,5 [kN] Qyy 80,8 [kN]

Mx 0,0 [kNm]

mxx, alt -3,2 [kNm] (due to distributed load)

mxx,subtot. -3,2 [kNm]

Mxy, alt 0,0 [kNm] (due to distributed load)

Mxy,subtot 0,0 [kNm]

Torsion

Midspan loaded

Shear Force Suspension force

Bending moment Clamping moment

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ ܿ

ݍ
݈௘ ݈௧௥ ݈௘

݈௕

݉௣௟଴ଵ ݉௣௟଴ଵ0,ͷq0,ͷq

ܾ



q 161,6 [kN/m] x 1,00 [m]

0,5q 80,8 [kN/m] c 1,0 [m]

F 323 [kN] l 33,5 [m] 0,5q 80,8 [kN/m] le 2,4 [m]

0,5F 161,5 [kN] lsup. 31,5 [m] 0,25F 80,8 [kN] ltr 1,5 [m]

Av 242,3 [kN] mpl01 163,8 [kNm] lb 6,2 [m]

Bv 242,3 [kN] mpl02 198,2 [kNm] l1 1,1 [m]

MT 362,1 [kNm] l2 2,0 [m]

Vz 0,0 [kN] Qyy 80,8 [kN]

Mx -201,9 [kNm] mxx,M 58,7 [kNm] (due to torsional moment at both ends)

mxx,tot 58,7 [kNm]

Mxy,M -362,1 [kNm] (due to torsional moment at both ends)

Mxy,tot -362,1 [kNm]

Torsion

LC 4

Load & Reaction forces Measurements

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

ݍ ݈௘ ݈௧௥ ݈௘
݈௕

ݔ

ݔ ݈ ܿ

ܨ ݍ ܨ
݉௣௟଴ଵ

݈ଵ ݈ଶ

݉௣௟଴ଶ

݈ଶ ݈ଵ

0,ͷq 0,ͷq



∆ -5 [mm] x 1,00 [m]

Av 0,0 [kN] a 31,5 [m]

Bv 0,0 [kN] c 1,0 [m]

γ 1,2 [-] l 33,5 [m]

lsup. 31,5 [m]

Qyy -221,0 [kN]

Vz 0,0 [kN] Qyy,tot -265,2 [kN]

Mx 0,0 [kNm] mxx,∆ 189,0 [kNm]

mxx,tot 226,8 [kNm]

Mxy,∆ -491,0 [kNm]

Mxy,tot -589,2 [kNm]

LC 6

Loading (long. direction) Loading (transverse direction)

Deflection & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

ݔ

ݔ ܽ ܿ

∆= ͷ ݉݉ ∆
݉௫௫

݈௖௧௖
�௬௬

݉௫௫�௬௬



F1 2290 [kN] x 1,00 [m]

F2 -22826 [kN] c 1,0 [m]

M1 5045 [kNm] l 33,5 [m]

q -145,2 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

Vz -2286,9 [kN]

Mx 5045,0 [kNm]

Measurements

Shear Force

Bending moment

LC 8

Girder loaded

Loading (long. direction)

Load & Reaction forces

ݔ

ݔ ݈ ܿ

ଵܨ
ଶܨ

ଵܯ ݍ



x 1,00 [m] qpl -56,9 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -118,6 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -56,9 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt 28,0 [kNm] (due to alternative load case)

mxx,tot 28,0 [kNm]

Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

Suspension force

Floor loaded

ݔ

ݔ ܽ
݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ

ܾܾ



F1 2095 [kN] x 1,00 [m]

F2 -20886 [kN] c 1,0 [m]

M1 4616 [kNm] l 33,5 [m]

q -133 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

P∞/P0 0,915 [-]

Vz -2092,5 [kN]

Mx 4616,2 [kNm]

Bending moment

Shear Force

LC 9

Girder loaded

Loading (long. direction)

Load & Reaction forces Measurements

ݔ

ݔ ݈ ܿ

ଵܨ
ଶܨ

ଵܯ ݍ



x 1,00 [m] qpl -52,1 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -108,5 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -52,1 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt 25,6 [kNm] (due to alternative load case)

mxx,tot 25,6 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ
݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ

ܾܾ
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5.4 Bridge B - 6.10b - support 
 
 
  



Total hor. normal stress

LC type P [kN] σǆǆ [N/mmϮ] M [kNm] σǆǆ [N/mmϮ] σǆǆ [N/mmϮ]
1 self-weight -67 0,01

2 ballast -78 0,01

3a Mobile Max. (LM71) -71 0,01

3b Mobile Max. (SW/2) -51 0,00

4 Mobile Min. (SW/2) -253 0,02

5 Support settelement max 0 0,00

6 Support settelement min 0 0,00

7 Prestress t=0 -22826 -8,65 5045 -0,41

8 Prestress t = ∞ -20886 -7,91 4616 -0,38

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -20886 -7,91 4400 -0,36 -8,27

LC 1 + LC 2 + LC 3a + LC 6 + LC8 -20886 -7,91 4400 -0,36 -8,27

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -20886 -7,91 4219 -0,35 -8,26

LC 1 + LC 2 + LC 4 + LC 6 + LC8 -20886 -7,91 4219 -0,35 -8,26

LC 1 + LC 7 -22826 -8,65 4978 -0,41 -9,06

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -20886 -7,91 4421 -0,36 -8,27

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 -20886 -7,91 4421 -0,36 -8,27

Total ver. Normal stress

LC type Qyy [kN] σǇǇ [N/mmϮ] mxx [kNm] σǇǇ [N/mmϮ] Myy [kNm] σǇǇ [N/mmϮ] σǇǇ [N/mmϮ]
1 self-weight 53 0,02 29 0,06 32 0,07

2 ballast 31 0,01 19 0,04 19 0,04

3a Mobile Max. (LM71) 142 0,06 -4 -0,01 85 0,17

3b Mobile Max. (SW/2) 101 0,04 29 0,06 61 0,12

4 Mobile Min. (SW/2) 101 0,04 73 0,15 61 0,12

5 Support settelement max -265 -0,11 227 0,47 -159 -0,33

6 Support settelement min 265 0,11 -227 -0,47 159 0,33

7 Prestress t=0 -57 -0,02 28 0,06 -34 -0,07

8 Prestress t = ∞ -52 -0,02 26 0,05 -31 -0,06
0,00

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -92 -0,04 297 0,61 -55 -0,11 0,46

LC 1 + LC 2 + LC 3a + LC 6 + LC8 439 0,18 -157 -0,32 263 0,54 0,40

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -132 -0,05 374 0,77 -79 -0,16 0,55

LC 1 + LC 2 + LC 4 + LC 6 + LC8 398 0,16 -79 -0,16 239 0,49 0,49

LC 1 + LC 7 -4 0,00 57 0,12 -2 -0,01 0,11

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -132 -0,05 330 0,68 -79 -0,16 0,46

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 398 0,16 -124 -0,25 239 0,49 0,40

Normal stresses

Prestress Bending moment

Suspension force Clamping moment Suspension force excen.



Total shear stress

LC type Vz [kN] τǆǇ [N/mmϮ] Mxy [kNm] τǆǇ [N/mmϮ] τǆǇ [N/mmϮ]
1 self-weight 2123 0,96 -288 -0,29

2 ballast 488 0,22 -142 -0,14

3a Mobile Max. (LM71) 1573 0,71 -287 -0,29

3b Mobile Max. (SW/2) 1502 0,68 -205 -0,21

4 Mobile Min. (SW/2) 0 0,00 -453 -0,46

5 Support settelement max 0 0,00 -589 -0,60

6 Support settelement min 0 0,00 589 0,60

7 Prestress t=0 -2287 -1,03 0 0,00

8 Prestress t = ∞ -2093 -0,95 0 0,00

LC 1 + LC 2 + LC 3a + LC 5 + LC8 2092 0,95 -1306 -1,33 2,27

LC 1 + LC 2 + LC 3a + LC 6 + LC8 2092 0,95 -128 -0,13 1,08

LC 1 + LC 2 + LC 4 + LC 5 + LC8 519 0,23 -1472 -1,50 1,73

LC 1 + LC 2 + LC 4 + LC 6 + LC8 519 0,23 -294 -0,30 0,53

LC 1 + LC 7 -164 -0,07 -288 -0,29 0,37

LC 1 + LC 2 + LC 3b + LC 5 + LC8 2021 0,91 -1224 -1,24 2,16

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 2021 0,91 -46 -0,05 0,96

LC type σǆǆ [N/mmϮ] σǇǇ [N/mmϮ] τǆǇ [N/mmϮ] ρϭ [N/mmϮ] ρϮ [N/mmϮ]
1 self-weight

2 ballast

3a Mobile Max. (LM71)

3b Mobile Max. (SW/2)

4 Mobile Min. (SW/2)

5 Support settelement max

6 Support settelement min

7 Prestress t=0

8 Prestress t = ∞
0,00 0,00 0,00 0,00 0

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -8,27 0,46 2,27 1,02 -8,83

LC 1 + LC 2 + LC 3a + LC 6 + LC8 -8,27 0,40 1,08 0,53 -8,40

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -8,26 0,55 1,73 0,88 -8,59

LC 1 + LC 2 + LC 4 + LC 6 + LC8 -8,26 0,49 0,53 0,52 -8,29

LC 1 + LC 7 -9,06 0,11 0,37 0,13 -9,07

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -8,27 0,46 2,16 0,96 -8,78

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 -8,27 0,40 0,96 0,50 -8,38

Total Principal stress

Shear force Torsion

Shear and principal stresses



34000 [N/mm2] 1,73E+12 [mm4]

3,11E+08 9,38E+08 [mm]

1200 [mm]

2000000 [mm2]

0,20 200 [mm]

1,42E+04 [N/mm2]

8,35E+11 [mm4]

1,18E+16 [Nmm2]

0,16

1200 [mm] 1500000 [mm2]

2200 [mm] 1540000,00 [mm2]

650 [mm] 49,3%

5000 [mm] 1200000 [mm2]

2640000 [mm2] 240000000 [mm3]

1,73E+12 [mm4] 0,6 [m]

142 [mm]

808 [mm]

1,1 [m] 1,25 [m]

0,6 [m] 0,325 [m]

3,51 [-] 4,46 [-]

0,83 [m4] 0,19 [m4]

81,35% [%]

Parameters

Torsional stiffness floorTorsional stiffness girder

Normal stress parametersSectional properties

Torsional stiffness coefficient

Bending stiffness coefficient Shear stress parameters
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qbridge 269,6 [kN/m] x 1,00 [m] qpl 53,9 [kN/m] lctc 5,0 [m]

0,5q 134,8 [kN/m] c 1,0 [m] mpl01 112,3 [kNm]

Av 134,8 [kN] l 33,5 [m]

Bv 134,8 [kN] lsup. 31,5 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -67,4 [kNm]

mxx,M 18,2 [kNm] (due to torsional moment at both ends)

mxx,subtot. 18,2 [kNm]

Mxy,M -112,3 [kNm] (due to torsional moment at both ends)

Mxy,subtot -112,3 [kNm]

LC 1

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

݈௖௧௖

݉௣௟଴ଵ
ݔ

ݔ ݈ ܿ

ݍ ݍ௣௟ݍ



qbridge 269,6 [kN/m] x 1,00 [m] qpl 53,9 [kN/m] lctc 5,0 [m]

0,5q 134,8 [kN/m] c 1,0 [m] mpl02 112,3 [kNm]

Av 2123,1 [kN] l 33,5 [m]

Bv 2123,1 [kN] lsup. 31,5 [m]

Vz 2123,1 [kN] Qyy 52,8 [kN]

Mx 0,0 [kNm]

mxx, alt 11,1 [kNm] (due to alternative load case)

mxx,subtot. 11,1 [kNm]

Mxy, alt -175,5 [kNm] (due to alternative load case)

Mxy,subtot -175,5 [kNm]

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

ݔ

ݔ ݈ ܿ

ݍ

݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ



q 12,4 [kN/m2] x 1,00 [m] qpl 12,4 [kN/m] lctc 5,0 [m]

0,5q 31,0 [kN/m] c 1,0 [m] 0,25F 31,0 [kN] l1 1,1 [m]

F 124 [kN] l 33,5 [m] mpl01 25,8 [kNm] l2 2,0 [m]

0,5F 62 [kN] lsup. 31,5 [m] mpl02 76,1 [kNm] lb 6,2 [m]

Av 93,0 [kN] MT 101,9 [kNm]

Bv 93,0 [kN]

Vz 0,0 [kN] Qyy 0,0 [kN]

LC 2

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

݈௖௧௖

݉௣௟଴ଵ

ݔ

ݔ ݈ ܿ

ܨ ݍ ܨ

௣௟ݍ
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Mx -77,5 [kNm] mxx,M 16,5 [kNm] (due to torsional moment at both ends)

mxx,subtot. 16,5 [kNm]

Mxy,M -101,9 [kNm] (due to torsional moment at both ends)

Mxy,subtot -101,9 [kNm]

q 12,4 [kN/m2] x 1,00 [m] qpl 12,4 [kN/m] lctc 5,0 [m]

0,5q 31,0 [kN/m] c 1,0 [m] mpl01 25,8 [kNm]

Av 488,3 [kN] l 33,5 [m]

Bv 488,3 [kN] lsup. 31,5 [m]

Vz 488,3 [kN] Qyy 31,0 [kN]

Bending moment Clamping moment

Torsion

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

ݔ

ݔ ݈ ܿ

ݍ

݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ



Mx 0,0 [kNm]

mxx,alt 2,6 [kNm] (due to alternative load case)

mxx,subtot. 2,6 [kNm]

Mxy,alt -40,3 [kNm] (due to alternative load case)

Mxy,subtot -40,3 [kNm]

Bending moment Clamping moment

Torsion



q1 283,3 [kN/m] x 1,00 [m]

0,5q1 141,7 [kN/m] a 6,9 [m]

q2 156,4 [kN/m] b 25,6 [m] 0,5q1 141,7 [kN/m] le 2,4 [m]

0,5q2 78,2 [kN/m] c 1,0 [m] 0,5q2 78,2 [kN/m] ltr 1,5 [m]

Av 1714,8 [kN] l 33,5 [m] mpl01 287,2 [kNm] lb 6,2 [m]

Bv 1264,5 [kN] lsup. 31,5 [m] mpl02 158,6 [kNm]

Vz 1573,2 [kN] Qyy 141,7 [kN]

mxx,M 46,0 [kNm] (due to torsional moment at one end)

Mx -70,8 [kNm] mxx,q1 -111,7 [kNm] (due to distributed load)

mxx,q2 61,7 [kNm] (due to distributed load)

mxx,tot -4,0 [kNm]

Mxy,M -287,2 [kNm] (due to torsional moment at one end)

Mxy,q1 0 [kNm] (due to distributed load)

Mxx,q2 0 [kNm] (due to distributed load)

Mxy,tot -287,2 [kNm]

LC 3a

Shear Force

Bending moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Load & Reaction forces Measurements

Suspension force

Clamping moment

݈௘ ݈௧௥ ݈௘݈௕

=

Ͷ,8 ݉ Ͷ ∗ 2ͷ0 ݇ܰ ݉௣௟଴ଵ
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0,5q 101,0 [kN/m] le 2,4 [m]

mpl01 204,8 [kNm] ltr 1,5 [m]

q 202 [kN/m] x 1,00 [m] lb 6,2 [m]

0,5q 101,0 [kN/m] c 1,0 [m]

Av 102,6 [kN] l 33,5 [m]

Bv -1,6 [kN] lsup. 31,5 [m]

Vz 1,6 [kN] Qyy 0,0 [kN]

Mx -50,5 [kNm] mxx,M 32,8 [kNm] (due to torsional moment at one end)

mxx,subtot. 32,8 [kNm]

Mxy,M -204,8 [kNm] (due to torsional moment at one end)

Mxy,subtot -204,8 [kNm]

LC 3b

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

ݔ

ݔ ݈ ܿ

ݍ
݈௘ ݈௧௥ ݈௘

݈௕

݉௣௟଴ଵ 0,ͷq0,ͷq



q 202 [kN/m] x 1,00 [m] 0,5q 101,0 [kN/m] lb 6,2 [m]

0,5q 101 [kN/m] a 24 [m] mpl01 204,8 [kNm] ltr 1,5 [m]

Av 1500,6 [kN] b 7,5 [m] le 2,4 [m]

Bv 923,4 [kN] c 1,0 [m]

l 33,5 [m]

lsup. 31,5 [m]

Vz 1500,6 [kN] Qyy 101,0 [kN]

Mx 0,0 [kNm]

mxx, alt -4 [kNm] (due to distributed load)

mxx,subtot. -4,0 [kNm]

Mxy, alt 0,0 [kNm] (due to distributed load)

Mxy,subtot 0,0 [kNm]

Torsion

Midspan loaded

Shear Force Suspension force

Bending moment Clamping moment

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ ܿ

ݍ
݈௘ ݈௧௥ ݈௘

݈௕

݉௣௟଴ଵ ݉௣௟଴ଵ0,ͷq0,ͷq

ܾ



q 202 [kN/m] x 1,00 [m]

0,5q 101,0 [kN/m] c 1,0 [m]

F 404 [kN] l 33,5 [m] 0,5q 101,0 [kN/m] le 2,4 [m]

0,5F 202 [kN] lsup. 31,5 [m] 0,25F 101,0 [kN] ltr 1,5 [m]

Av 303,0 [kN] mpl01 204,8 [kNm] lb 6,2 [m]

Bv 303,0 [kN] mpl02 247,9 [kNm] l1 1,1 [m]

MT 452,7 [kNm] l2 2,0 [m]

Vz 0,0 [kN] Qyy 101,0 [kN]

Mx -252,5 [kNm] mxx,M 73,4 [kNm] (due to torsional moment at both ends)

mxx,tot 73,4 [kNm]

Mxy,M -452,7 [kNm] (due to torsional moment at both ends)

Mxy,tot -452,7 [kNm]

Torsion

LC 4

Load & Reaction forces Measurements

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

ݍ ݈௘ ݈௧௥ ݈௘
݈௕

ݔ

ݔ ݈ ܿ

ܨ ݍ ܨ
݉௣௟଴ଵ

݈ଵ ݈ଶ

݉௣௟଴ଶ

݈ଶ ݈ଵ
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∆ -5 [mm] x 1,00 [m]

Av 0,0 [kN] a 31,5 [m]

Bv 0,0 [kN] c 1,0 [m]

γ 1,2 [-] l 33,5 [m]

lsup. 31,5 [m]

Qyy -221,0 [kN]

Vz 0,0 [kN] Qyy,tot -265,2 [kN]

Mx 0,0 [kNm] mxx,∆ 189,0 [kNm]

mxx,tot 226,8 [kNm]

Mxy,∆ -491,0 [kNm]

Mxy,tot -589,2 [kNm]

LC 6

Loading (long. direction) Loading (transverse direction)

Deflection & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

ݔ

ݔ ܽ ܿ

∆= ͷ ݉݉ ∆
݉௫௫

݈௖௧௖
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F1 2290 [kN] x 1,00 [m]

F2 -22826 [kN] c 1,0 [m]

M1 5045 [kNm] l 33,5 [m]

q -145,2 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

Vz -2286,9 [kN]

Mx 5045,0 [kNm]

Measurements

Shear Force

Bending moment

LC 8

Girder loaded

Loading (long. direction)

Load & Reaction forces

ݔ

ݔ ݈ ܿ

ଵܨ
ଶܨ

ଵܯ ݍ



x 1,00 [m] qpl -56,9 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -118,6 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -56,9 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt 28,0 [kNm] (due to alternative load case)

mxx,tot 28,0 [kNm]

Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

Suspension force

Floor loaded

ݔ

ݔ ܽ
݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ
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F1 2095 [kN] x 1,00 [m]

F2 -20886 [kN] c 1,0 [m]

M1 4616 [kNm] l 33,5 [m]

q -133 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

P∞/P0 0,915 [-]

Vz -2092,5 [kN]

Mx 4616,2 [kNm]

Bending moment

Shear Force

LC 9

Girder loaded

Loading (long. direction)

Load & Reaction forces Measurements

ݔ

ݔ ݈ ܿ

ଵܨ
ଶܨ

ଵܯ ݍ



x 1,00 [m] qpl -52,1 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -108,5 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -52,1 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt 25,6 [kNm] (due to alternative load case)

mxx,tot 25,6 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ
݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ
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5.5 Bridge B - 6.10b – 0,8d 



Total hor. normal stress

LC type P [kN] σǆǆ [N/mmϮ] M [kNm] σǆǆ [N/mmϮ] σǆǆ [N/mmϮ]
1 self-weight 3366 -0,28

2 ballast 712 -0,06

3a Mobile Max. (LM71) 2412 -0,20

3b Mobile Max. (SW/2) 2371 -0,19

4 Mobile Min. (SW/2) -253 0,02

5 Support settelement max 0 0,00

6 Support settelement min 0 0,00

7 Prestress t=0 -22826 -6,64 1347 -0,11

8 Prestress t = ∞ -20886 -6,08 1232 -0,10

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -20886 -6,08 7723 -0,63 -6,71

LC 1 + LC 2 + LC 3a + LC 6 + LC8 -20886 -6,08 7723 -0,63 -6,71

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -20886 -6,08 5058 -0,42 -6,49

LC 1 + LC 2 + LC 4 + LC 6 + LC8 -20886 -6,08 5058 -0,42 -6,49

LC 1 + LC 7 -22826 -6,64 4713 -0,39 -7,03

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -20886 -6,08 7681 -0,63 -6,71

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 -20886 -6,08 7681 -0,63 -6,71

Total ver. Normal stress

LC type Qyy [kN] σǇǇ [N/mmϮ] mxx [kNm] σǇǇ [N/mmϮ] Myy [kNm] σǇǇ [N/mmϮ] σǇǇ [N/mmϮ]
1 self-weight 53 0,02 25 0,05 32 0,07

2 ballast 31 0,01 15 0,03 19 0,04

3a Mobile Max. (LM71) 142 0,06 -17 -0,03 85 0,17

3b Mobile Max. (SW/2) 101 0,04 21 0,04 61 0,12

4 Mobile Min. (SW/2) 0 0,00 56 0,12 0 0,00

5 Support settelement max -24 -0,01 114 0,23 -14 -0,03

6 Support settelement min 24 0,01 -114 -0,23 14 0,03

7 Prestress t=0 -57 -0,02 29 0,06 -34 -0,07

8 Prestress t = ∞ -52 -0,02 27 0,05 -31 -0,06
0,00

LC 1 + LC 2 + LC 3a + LC 5 + LC8 149 0,06 163 0,34 90 0,18 0,58

LC 1 + LC 2 + LC 3a + LC 6 + LC8 197 0,08 -64 -0,13 118 0,24 0,19

LC 1 + LC 2 + LC 4 + LC 5 + LC8 8 0,00 236 0,49 5 0,01 0,50

LC 1 + LC 2 + LC 4 + LC 6 + LC8 56 0,02 9 0,02 33 0,07 0,11

LC 1 + LC 7 -4 0,00 54 0,11 -2 -0,01 0,10

LC 1 + LC 2 + LC 3b + LC 5 + LC8 109 0,04 201 0,41 65 0,13 0,59

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 157 0,06 -26 -0,05 94 0,19 0,20

Normal stresses

Prestress Bending moment

Suspension force Clamping moment Suspension force excen.



Total shear stress

LC type Vz [kN] τǆǇ [N/mmϮ] Mxy [kNm] τǆǇ [N/mmϮ] τǆǇ [N/mmϮ]
1 self-weight 1893 0,86 -242 -0,25

2 ballast 435 0,20 -117 -0,12

3a Mobile Max. (LM71) 1331 0,60 -261 -0,27

3b Mobile Max. (SW/2) 1329 0,60 -159 -0,16

4 Mobile Min. (SW/2) 0 0,00 -343 -0,35

5 Support settelement max 0 0,00 -358 -0,36

6 Support settelement min 0 0,00 358 0,36

7 Prestress t=0 -2039 -0,92 49 0,05

8 Prestress t = ∞ -1865 -0,84 44 0,05

LC 1 + LC 2 + LC 3a + LC 5 + LC8 1793 0,81 -934 -0,95 1,76

LC 1 + LC 2 + LC 3a + LC 6 + LC8 1793 0,81 -217 -0,22 1,03

LC 1 + LC 2 + LC 4 + LC 5 + LC8 463 0,21 -1015 -1,03 1,24

LC 1 + LC 2 + LC 4 + LC 6 + LC8 463 0,21 -299 -0,30 0,51

LC 1 + LC 7 -146 -0,07 -193 -0,20 0,26

LC 1 + LC 2 + LC 3b + LC 5 + LC8 1792 0,81 -831 -0,85 1,66

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 1792 0,81 -115 -0,12 0,93

LC type σǆǆ [N/mmϮ] σǇǇ [N/mmϮ] τǆǇ [N/mmϮ] ρϭ [N/mmϮ] ρϮ [N/mmϮ]
1 self-weight

2 ballast

3a Mobile Max. (LM71)

3b Mobile Max. (SW/2)

4 Mobile Min. (SW/2)

5 Support settelement max

6 Support settelement min

7 Prestress t=0

8 Prestress t = ∞
0,00 0,00 0,00 0,00 0

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -6,71 0,58 1,76 0,98 -7,12

LC 1 + LC 2 + LC 3a + LC 6 + LC8 -6,71 0,19 1,03 0,34 -6,86

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -6,49 0,50 1,24 0,71 -6,71

LC 1 + LC 2 + LC 4 + LC 6 + LC8 -6,49 0,11 0,51 0,15 -6,53

LC 1 + LC 7 -7,03 0,10 0,26 0,11 -7,04

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -6,71 0,59 1,66 0,95 -7,07

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 -6,71 0,20 0,93 0,33 -6,83

Total Principal stress

Shear force Torsion

Shear and principal stresses



34000 [N/mm2] 1,73E+12 [mm4]

3,11E+08 9,38E+08 [mm]

1200 [mm]

2000000 [mm2]

0,20 200 [mm]

1,42E+04 [N/mm2]

8,35E+11 [mm4]

1,18E+16 [Nmm2]

0,16

1200 [mm] 1500000 [mm2]

2200 [mm] 1540000,00 [mm2]

650 [mm] 49,3%

5000 [mm] 1200000 [mm2]

3436500 [mm2] 240000000 [mm3]

1,73E+12 [mm4] 0,6 [m]

142 [mm]

808 [mm]

1,1 [m] 1,25 [m]

0,6 [m] 0,325 [m]

3,51 [-] 4,46 [-]

0,83 [m4] 0,19 [m4]

81,35% [%]

Parameters

Torsional stiffness floorTorsional stiffness girder

Normal stress parametersSectional properties

Torsional stiffness coefficient

Bending stiffness coefficient Shear stress parameters
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qbridge 269,6 [kN/m] x 2,71 [m] qpl 53,9 [kN/m] lctc 5,0 [m]

0,5q 134,8 [kN/m] c 1,0 [m] mpl01 112,3 [kNm]

Av 134,8 [kN] l 33,5 [m]

Bv 134,8 [kN] lsup. 31,5 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -67,4 [kNm]

mxx,M 13,9 [kNm] (due to torsional moment at both ends)

mxx,subtot. 13,9 [kNm]

Mxy,M -85,0 [kNm] (due to torsional moment at both ends)

Mxy,subtot -85,0 [kNm]

LC 1

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

݈௖௧௖

݉௣௟଴ଵ
ݔ

ݔ ݈ ܿ

ݍ ݍ௣௟ݍ



qbridge 269,6 [kN/m] x 2,71 [m] qpl 53,9 [kN/m] lctc 5,0 [m]

0,5q 134,8 [kN/m] c 1,0 [m] mpl02 112,3 [kNm]

Av 2123,1 [kN] l 33,5 [m]

Bv 2123,1 [kN] lsup. 31,5 [m]

Vz 1892,6 [kN] Qyy 52,8 [kN]

Mx 3433,4 [kNm]

mxx, alt 11,1 [kNm] (due to alternative load case)

mxx,subtot. 11,1 [kNm]

Mxy, alt -156,5 [kNm] (due to alternative load case)

Mxy,subtot -156,5 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Midspan loaded

ݔ

ݔ ݈ ܿ

ݍ
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݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ



q 12,4 [kN/m2] x 2,71 [m] qpl 12,4 [kN/m] lctc 5,0 [m]

0,5q 31,0 [kN/m] c 1,0 [m] 0,25F 31,0 [kN] l1 1,1 [m]

F 124 [kN] l 33,5 [m] mpl01 25,8 [kNm] l2 2,0 [m]

0,5F 62 [kN] lsup. 31,5 [m] mpl02 76,1 [kNm] lb 6,2 [m]

Av 93,0 [kN] MT 101,9 [kNm]

Bv 93,0 [kN]

Vz 0,0 [kN] Qyy 0,0 [kN]

Shear Force Suspension force

LC 2

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

݈௖௧௖

݉௣௟଴ଵ
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Mx -77,5 [kNm] mxx,M 12,6 [kNm] (due to torsional moment at both ends)

mxx,subtot. 12,6 [kNm]

Mxy,M -77,1 [kNm] (due to torsional moment at both ends)

Mxy,subtot -77,1 [kNm]

q 12,4 [kN/m2] x 2,71 [m] qpl 12,4 [kN/m] lctc 5,0 [m]

0,5q 31,0 [kN/m] c 1,0 [m] mpl01 25,8 [kNm]

Av 488,3 [kN] l 33,5 [m]

Bv 488,3 [kN] lsup. 31,5 [m]

Vz 435,2 [kN] Qyy 31,0 [kN]

Shear Force Suspension force

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Bending moment Clamping moment

Torsion

ݔ

ݔ ݈ ܿ

ݍ
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Mx 789,6 [kNm]

mxx,alt 2,6 [kNm] (due to alternative load case)

mxx,subtot. 2,6 [kNm]

Mxy,alt -39,9 [kNm] (due to alternative load case)

Mxy,subtot -39,9 [kNm]

Bending moment Clamping moment

Torsion



q1 283,3 [kN/m] x 2,71 [m]

0,5q1 141,7 [kN/m] a 6,9 [m]

q2 156,4 [kN/m] b 25,6 [m] 0,5q1 141,7 [kN/m] le 2,4 [m]

0,5q2 78,2 [kN/m] c 1,0 [m] 0,5q2 78,2 [kN/m] ltr 1,5 [m]

Av 1714,8 [kN] l 33,5 [m] mpl01 287,2 [kNm] lb 6,2 [m]

Bv 1264,5 [kN] lsup. 31,5 [m] mpl02 158,6 [kNm]

Vz 1331,0 [kN] Qyy 141,7 [kN]

mxx,M 35,0 [kNm] (due to torsional moment at one end)

Mx 2412,2 [kNm] mxx,q1 -115,9 [kNm] (due to distributed load)

mxx,q2 64 [kNm] (due to distributed load)

mxx,tot -16,9 [kNm]

Mxy,M -218,4 [kNm] (due to torsional moment at one end)

Mxy,q1 -96,1 [kNm] (due to distributed load)

Mxx,q2 53,1 [kNm] (due to distributed load)

Mxy,tot -261,4 [kNm]

LC 3a

Shear Force

Bending moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Load & Reaction forces Measurements

Suspension force

Clamping moment

݈௘ ݈௧௥ ݈௘݈௕
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0,5q 101,0 [kN/m] le 2,4 [m]

mpl01 204,8 [kNm] ltr 1,5 [m]

q 202 [kN/m] x 2,71 [m] lb 6,2 [m]

0,5q 101,0 [kN/m] c 1,0 [m]

Av 102,6 [kN] l 33,5 [m]

Bv -1,6 [kN] lsup. 31,5 [m]

Vz 1,6 [kN] Qyy 0,0 [kN]

Mx -47,8 [kNm] mxx,M 24,9 [kNm] (due to torsional moment at one end)

mxx,subtot. 24,9 [kNm]

Mxy,M -155,8 [kNm] (due to torsional moment at one end)

Mxy,subtot -155,8 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 3b

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Load & Reaction forces Measurements
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ݍ
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q 202 [kN/m] x 2,71 [m] 0,5q 101,0 [kN/m] lb 6,2 [m]

0,5q 101 [kN/m] a 24 [m] mpl01 204,8 [kNm] ltr 1,5 [m]

Av 1500,6 [kN] b 7,5 [m] le 2,4 [m]

Bv 923,4 [kN] c 1,0 [m]

l 33,5 [m]

lsup. 31,5 [m]

Vz 1327,9 [kN] Qyy 101,0 [kN]

Mx 2418,3 [kNm]

mxx, alt -4,2 [kNm] (due to distributed load)

mxx,subtot. -4,2 [kNm]

Mxy, alt -3,2 [kNm] (due to distributed load)

Mxy,subtot -3,2 [kNm]

Torsion

Midspan loaded

Shear Force Suspension force

Bending moment Clamping moment

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ ܿ

ݍ
݈௘ ݈௧௥ ݈௘

݈௕

݉௣௟଴ଵ ݉௣௟଴ଵ0,ͷq0,ͷq

ܾ



q 202 [kN/m] x 2,71 [m]

0,5q 101,0 [kN/m] c 1,0 [m]

F 404 [kN] l 33,5 [m] 0,5q 101,0 [kN/m] le 2,4 [m]

0,5F 202 [kN] lsup. 31,5 [m] 0,25F 101,0 [kN] ltr 1,5 [m]

Av 303,0 [kN] mpl01 204,8 [kNm] lb 6,2 [m]

Bv 303,0 [kN] mpl02 247,9 [kNm] l1 1,1 [m]

MT 452,7 [kNm] l2 2,0 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -252,5 [kNm] mxx,M 56,1 [kNm] (due to torsional moment at both ends)

mxx,tot 56,1 [kNm]

Mxy,M -342,7 [kNm] (due to torsional moment at both ends)

Mxy,tot -342,7 [kNm]

Torsion

LC 4

Load & Reaction forces Measurements

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

ݍ ݈௘ ݈௧௥ ݈௘
݈௕ݔ

ݔ ݈ ܿ

ܨ ݍ ܨ
݉௣௟଴ଵ

݈ଵ ݈ଶ

݉௣௟଴ଶ

݈ଶ ݈ଵ

0,ͷq 0,ͷq



∆ -5 [mm] x 2,71 [m]

Av 0,0 [kN] a 29,8 [m]

Bv 0,0 [kN] c 1,0 [m]

γ 1,2 [-] l 33,5 [m]

lsup. 31,5 [m]

Qyy -20,0 [kN]

Vz 0,0 [kN] Qyy,tot -24,0 [kN]

Mx 0,0 [kNm] mxx,∆ 94,6 [kNm]

mxx,tot 113,5 [kNm]

Mxy,∆ -298,5 [kNm]

Mxy,tot -358,1 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 6

Loading (long. direction) Loading (transverse direction)

Deflection & Reaction forces Measurements

ݔ

ݔ ܽ ܿ

∆= ͷ ݉݉ ∆
݉௫௫

݈௖௧௖
�௬௬

݉௫௫�௬௬



F1 2290 [kN] x 2,71 [m]

F2 -22826 [kN] c 1,0 [m]

M1 5045 [kNm] l 33,5 [m]

q -145,2 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

Vz -2038,6 [kN]

Mx 1346,7 [kNm]

Measurements

Shear Force

Bending moment

LC 8

Girder loaded

Loading (long. direction)

Load & Reaction forces

ݔ

ݔ ݈ ܿ

ଵܨ
ଶܨ

ଵܯ ݍ



x 2,71 [m] qpl -56,9 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -118,6 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 48,5 [kNm] (due to alternative load case) Qyy -56,9 [kN]

Mxy,tot 48,5 [kNm]

mxx,alt 29,1 [kNm] (due to alternative load case)

mxx,tot 29,1 [kNm]

Suspension force

Floor loaded

Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ
݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ

ܾܾ



F1 2095 [kN] x 2,71 [m]

F2 -20886 [kN] c 1,0 [m]

M1 4616 [kNm] l 33,5 [m]

q -133 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

P∞/P0 0,915 [-]

Vz -1865,3 [kN]

Mx 1232,2 [kNm]

Shear Force

LC 9

Girder loaded

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

ݔ

ݔ ݈ ܿ

ଵܨ
ଶܨ

ଵܯ ݍ



x 2,71 [m] qpl -52,1 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -108,5 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 44,4 [kNm] (due to alternative load case) Qyy -52,1 [kN]

Mxy,tot 44,4 [kNm]

mxx,alt 26,6 [kNm] (due to alternative load case)

mxx,tot 26,6 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

ݔ

ݔ ܽ
݈௖௧௖

݉௣௟଴ଵ ௣௟ݍ ݉௣௟଴ଵ

ܾܾ
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1 Introduction 
A load on the floor of the through bridge, due to for example a passing train, leads 
to torsion, shear force and suspension forces in the girder. The occurring sectional 
forces in the girder need to be transferred, even when the structure is cracked, from 
the floor into the girder. Therefore shear and longitudinal reinforcement is applied. 
During the design of the bridges different rules were valid for the application of 
reinforcement then nowadays.    
 
According to VB 74 (7) the shear resistance of prestressed structures, not prone to 
fatigue, depend on the combined shear resistance of concrete and stirrups. For 
structures that are prone to fatigue, the shear resistance of concrete is neglected. 
The contribution of prestress to the shear resistance is something which is 
unrelated to this and is always taken into account.  
 
 Table D-1: Shear resistance calculations for prestressed structures according to VB 74 and the Eurocode 

 VB 74 Eurocode 

Limit State ULS ULS 

 

Prestressed structure 

without shear 

reinforcement 

No fatigue 

 

No fatigue/fatigue 

 

 

𝜏𝑑 = 𝜏𝑐 +
0,15 ∗ 𝑃∞

𝐴𝑏

 

 

 

A.   𝜎𝑥𝑥 > 𝑓𝑐𝑡𝑘;0,05//𝛾𝑐  Concrete shear capacity limited 

by flexural shear failure. 

 

B.  𝜎𝑥𝑥 < 𝑓𝑐𝑡𝑘;0,05/𝛾𝑐   Concrete shear capacity limited 

by shear tension failure. 

 

Fatigue 

 

 

𝜏𝑑 =
0,15 ∗ 𝑃∞

𝐴𝑏

 

 

 

 

Prestressed structure 

with shear 
reinforcement 

No fatigue 

 

No fatigue/fatigue 

 

 

𝜏𝑑 = 𝜏𝑠 + 𝜏𝑐 +
0,15 ∗ 𝑃∞

𝐴𝑏

 

 

 

All loading transferred by the stirrups, no 

contribution of the concrete taken into account. 
 

Fatigue 

 

 

𝜏𝑑 = 𝜏𝑠 +
0,15 ∗ 𝑃∞

𝐴𝑏

 

 

 
Where: 

𝑓𝑐𝑡𝑘;0,05 = 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑁/𝑚𝑚2) 

𝜎𝑥𝑥 = 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠 (𝑁/𝑚𝑚2) 

𝜏𝑑 = 𝑡𝑜𝑡𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑁/𝑚𝑚2) 

𝜏𝑐 = 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑁/𝑚𝑚2) 

𝜏𝑠 = 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑁/𝑚𝑚2) 

𝑃∞ = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑡 = ∞ (𝑁) 
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It becomes clear from Table D-1 that both concrete standards check the shear 
resistance at ultimate limit state. However a fundamental difference lies in the 
combination of concrete and reinforcement when determining the shear resistance. 
The VB allows such a combination depending on whether or not the structure is 
subjected to fatigue. The Eurocode on the other hand does not allow a combination. 
Whenever the shear resistance of the concrete is exceeded, the entire loading needs 
to be transferred by the stirrups.  
 
The objective of this appendix is to verify if enough stirrups and longitudinal 
reinforcement has been applied in the through girder, according to the load models 
and calculation procedures of the Eurocode.  
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2 Concrete  
The first step in the calculation procedure is to determine the shear and torsional 
resistance of the concrete and whether stirrups are necessary or not. Respectively 
section 6.2 and 6.3 of Eurocode 2 (16) are needed to determine this resistance.  
 
All the calculations in this appendix will be explained using the maximum load 
combination (6.10b) of LM71 acting on bridge A. The considered section is 0,8d 
from the support and the accompanying loads can be found in appendix C.  
 

2.1 Concrete shear resistance 
The shear resistance of a structure without stirrups is limited by either shear 
tension failure or flexural shear failure. For a structure equipped with stirrups, the 
maximum shear resistance is limited by the capacity of the concrete diagonal.  
 

2.1.1 Shear tension failure 

When the tensile bending stresses remain limited (< 𝑓𝑐𝑡𝑘;0,05/𝛾𝑐), the shear tension 

failure mechanism becomes governing.  
 

 
Figure D-1: Bridge A: Maximum tensile bending stress at the bottom of the girder 

 
The maximum tensile bending stresses for LM71 are found in the bottom fibre: 
 

𝜎𝑥𝑥 =
1881 ∗ 106 ∗ 629

0,663 ∗ 1012
−

12038 ∗ 103

2,15 ∗ 106
= −3,82 𝑁/𝑚𝑚2 

 
The stress is actually compressive and remains smaller than the tensile strength: 
 

 𝜎𝑥𝑥 <
𝑓𝑐𝑡𝑘;0.05

𝛾𝑐
= −2,52 < 1,33 𝑁/𝑚𝑚2 

 
 
Hence shear tension failure is governing: 

 

𝑉𝑅𝑑,𝑐 =
𝐼𝑦𝑦 ∗ 𝑏

𝑆
∗ √(𝑓𝑐𝑡𝑑)2 +∝𝑙∗ 𝜎𝑐𝑝 ∗ 𝑓𝑐𝑡𝑑 

 

 [ D.1 ] 

 

 
 
 
 

Parameters 

𝑀𝐸𝑑 = 1964 kNm 
𝐼𝑦𝑦 = 0,663 𝑚4 

𝑧 = 629 mm 
𝑃 = 12038 𝑘𝑁 

𝐴𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 = 2,15 𝑚2 

𝑓𝑐𝑡𝑘;0,05 = 2,0 𝑁/𝑚𝑚2 
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Where: 
∝𝑙= 1,0 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑦𝑠𝑡𝑒𝑚 

𝑓𝑐𝑡𝑑 = 𝑓𝑐𝑡𝑘;0,05/𝛾𝑐  (𝑁/𝑚𝑚2) 

𝐼𝑦𝑦 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑖𝑟𝑑𝑒𝑟 (𝑚𝑚4) 

𝑆 = 𝑠𝑡𝑎𝑡𝑖𝑐𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑒 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 (𝑚𝑚3) 

𝜎𝑐𝑝 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 (𝑁/𝑚𝑚2) 

 
Table D-2: Sectional and material properties of the through girder  

Parameter Value 

ℎ𝑔𝑖𝑟𝑑𝑒𝑟  1,75 𝑚 

𝑏𝑔𝑖𝑟𝑑𝑒𝑟  0,9 𝑚 

𝑓𝑐𝑡𝑑 1,33 𝑁/𝑚𝑚2 

𝑓𝑐𝑘 35 𝑁/𝑚𝑚2 

𝑓𝑐𝑑 23,3 𝑁/𝑚𝑚2 

 
 
 

𝜎𝑐𝑝 =
𝑃

𝐴
< 0,2 ∗ 𝑓𝑐𝑑 =

12038 ∗ 103

2,15 ∗ 106 = 5,60 > 4,66 𝑁/𝑚𝑚2 (𝑢𝑠𝑒 4,66 𝑁/𝑚𝑚2) 

 

𝐼𝑦𝑦 =
1

12
∗ 𝑏𝑔𝑖𝑟𝑑𝑒𝑟 ∗ ℎ𝑔𝑖𝑟𝑑𝑒𝑟

3 = 0,402 𝑚4 

 

𝑆 = (ℎ𝑔𝑖𝑟𝑑𝑒𝑟 − 𝑧𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠)2 ∗ 0,5 ∗ 𝑏𝑔𝑖𝑟𝑑𝑒𝑟 = 0,565 𝑚3 

 

 
Eventually the shear tension failure resistance of the girder goes to: 
 

𝑉𝑅𝑑,𝑐 =
0,402 ∗ 1012 ∗ 900

0,565 ∗ 109
∗ √(1,33)2 + 1,0 ∗ 4,66 ∗ 1,33 = 1806 𝑘𝑁 

 
  

Parameters: 
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2.1.2 Flexural shear failure 

When the tensile bending stresses grow larger than the concrete tensile strength  
(> 𝑓𝑐𝑡𝑘;0,05/𝛾𝑐), the flexural shear failure mechanism becomes governing. This shear 

resistance is expressed by equation [ D.2 ] with a minimum expressed by  
equation [ D.3 ]. 
 

𝑉𝑅𝑑,𝑐 = [𝐶𝑅𝑑,𝑐 ∗ 𝑘 ∗ (100 ∗ 𝜌𝑙 ∗ 𝑓𝑐𝑘)
1
3 + 𝑘1 ∗ 𝜎𝑐𝑝] ∗ 𝑏 ∗ 𝑑 

 
𝑉𝑅𝑑,𝑐 = (𝑣𝑚𝑖𝑛 + 𝑘1 ∗ 𝜎𝑐𝑝) ∗ 𝑏 ∗ 𝑑 

 

[ D.2 ] 

 

 

[ D.3 ] 

 
Table D-3: Applied reinforcement in bridge A at 0,8d & 0,5L 

Type of reinforcement 0,8d 0,5L 

Outer stirrup ∅16 − 150 ∅16 − 150 
Inner stirrup ∅12 − 150 ∅12 − 150 
Longitudinal reinforcement 14∅16 8∅12 

 
 
 
 

𝐶𝑅𝑑,𝑐 = 0,18/𝛾𝑐 = 0,12                                   (according to the Dutch National Annex (3)) 

 
𝑑 = ℎ − ∅𝑠𝑡𝑖𝑟𝑟𝑢𝑝 − 0,5 ∗ ∅𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 − 𝑐 = 1691 𝑚𝑚 

 

𝑘 = 1 + √200/𝑑 = 1,34 ≤ 2,0 

 

𝜌𝑙 =
𝐴𝑠𝑙

𝑏 ∗ 𝑑
=

0,25 ∗ 𝜋 ∗ 14 ∗ 162

900 ∗ 1691
= 0,0018 < 0,02 

 

𝑣𝑚𝑖𝑛 = 0,035 ∗ 𝑘
3

2 ∗ 𝑓𝑐𝑘

1

2 = 0,32                     (according to the Dutch National Annex (3)) 

 

𝑘1 = 0,15                                                      (according to the Dutch National Annex (3)) 

 
 
The flexural shear resistance goes to: 
 

𝑉𝑅𝑑,𝑐 = [0,12 ∗ 1,34 ∗ (100 ∗ 0,0018 ∗ 35)
1
3 + 0,15 ∗ 4,66] ∗ 900 ∗ 1691 = 1516 𝑘𝑁 

 
With a minimum of: 
 
𝑉𝑅𝑑,𝑐 = (0,32 + 0,15 ∗ 4,66) ∗ 900 ∗ 1691 = 1551 𝑘𝑁 

 
 
The eventual flexural shear resistance is 1551 kN. However for this particular 
example the shear tension resistance remains governing.  
 
 
 
 
 
 

Parameters: 
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2.1.3 Maximum shear resistance 

A concrete structure can be strengthen by applying stirrups. In case a beam is 
loaded with a shear force, a compressive diagonal will form which intersects a 
number of stirrups. This internal force distribution can be approximated by the 
truss analogy. 

 
Figure D-2: Truss analogy 

 
The analogy assumes an equilibrium of compressive and tensile struts. The shear 
and longitudinal reinforcement form tensile struts, whereas the diagonal and the 
compression zone form compressive struts. Before the stirrups get to yield, the 
compressive capacity of the diagonal is reached, causing a brittle failure 
mechanism. This paragraph focuses on determining the maximum shear resistance 
based on the capacity of the compressive diagonal.  
 
The maximum shear resistance is given by equation [ D.4 ]: 
 

𝑉𝑅𝑑,𝑚𝑎𝑥 =∝𝑐𝑤∗ 𝑏 ∗ 𝑧 ∗ 𝑣1 ∗ 𝑓𝑐𝑑/(cot 𝜃 + tan 𝜃) [ D.4 ] 

 
 
 

∝𝑐𝑤= (1 +
𝜎𝑐𝑝

𝑓𝑐𝑑
) = 1,20                                         (according to the Dutch National Annex (3)) 

 
𝑧 = 0,9 ∗ 𝑑 = 1522 𝑚𝑚 
 

𝑣1 = 𝑣 = 0,6 ∗ [1 −
𝑓𝑐𝑘

250
] = 0,52                             (according to the Dutch National Annex (3)) 

 
𝜃 = 21,8° 

 
 
 
 
 
 
 

Parameters: 



Appendix D  Reinforcement capacity (ULS) | 7  
 

The angle of the compressive diagonal, expressed by 𝜃, may be chosen between 21,8° 
and 45°. Choosing a small angle will decrease the load on the stirrups and increase 
the load on the longitudinal reinforcement. A large angle has the opposite effect on 
the reinforcement. Because for the example at 0,8d the stirrups are governing over 
the longitudinal reinforcement, an angle of 21,8° is chosen.  
 
The maximum shear resistance, based on the capacity of the diagonal is: 
 
𝑉𝑅𝑑,𝑚𝑎𝑥 = 1,20 ∗ 900 ∗ 1522 ∗ 0,52 ∗ 23,3/(cot 21,8 + tan 21,8) = 6867 𝑘𝑁  
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2.2 Concrete torsion resistance 
Resistance against torsion of a structure without shear reinforcement is limited by 
the torsion resistance of concrete. For a structure with shear reinforcement, the 
torsion resistance is limited by the capacity of the compressive diagonal.  
 

2.2.1 Torsion resistance 

The solid rectangular profile of the girder is simplified to a thin walled tube. The 
thickness of the walls is established by dividing the cross-sectional area by the 
perimeter. 
 

𝑡𝑒𝑓 =
𝐴

𝑢
=

1750 ∗ 900

(2 ∗ 1750 + 2 ∗ 900)
= 297 𝑚𝑚 > 2(ℎ𝑔𝑖𝑟𝑑𝑒𝑟 − 𝑑) = 118 𝑚𝑚 

 

 

 

Figure D-3: Girder simplified to thin walled tube 

 
𝐴𝑘 is the area enclosed by the wall centre-lines: 
 
𝐴𝑘 = (ℎ𝑔𝑖𝑟𝑑𝑒𝑟 − 𝑡𝑒𝑓) ∗ (𝑏𝑔𝑖𝑟𝑒𝑟 − 𝑡𝑒𝑓) = 0,87 𝑚2  

 
The torsion resistance of the concrete is expressed by [ D.5 ]: 
 

𝑇𝑅𝑑,𝑐 = 2 ∗ 𝑡𝑒𝑓 ∗ 𝑓𝑐𝑡𝑑 ∗ 𝐴𝑘 [ D.5 ] 

 

 
Using the previously defined parameters, the resistance goes to: 
 
𝑇𝑅𝑑,𝑐 = 2 ∗ 297 ∗ 1,33 ∗ 2 ∗ 0,87 ∗ 106 = 693 𝑘𝑁𝑚 

 
 

2.2.2 Maximum torsion resistance 

Like the maximum shear resistance, the maximum resistance against torsion is 
limited by the capacity of the compressive diagonal.  
 
 

𝑇𝑅𝑑,𝑚𝑎𝑥 = 2 ∗ 𝑣 ∗∝𝑐𝑤∗ 𝑓𝑐𝑑 ∗ 𝐴𝑘 ∗ 𝑡𝑒𝑓 ∗ sin 𝜃 ∗ cos 𝜃  [ D.6 ] 

 
Using the previously defined parameters, the maximum resistance goes to: 
 
𝑇𝑅𝑑,𝑚𝑎𝑥 = 2 ∗ 0,52 ∗ 1,20 ∗ 23,3 ∗ 0,87 ∗ 106 ∗ 297 ∗ sin 21,8 ∗ cos 21,8 = 2612 𝑘𝑁𝑚 
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2.3 Total concrete resistance 
To determine, for a structure subjected to shear and torsion, whether or not 
stirrups should be applied, equation [ D.7 ] is used.  
 
 

𝑇𝐸𝑑

𝑇𝑅𝑑,𝑐

+
𝑉𝐸𝑑

𝑉𝑅𝑑,𝑐

≤ 1,0 
 [ D.7 ] 

 

 
 
For a value below 1.0, a minimum amount of stirrups suffices (see chapter 3.5). A 
value above 1.0 requires that all the loading is transferred by shear reinforcement. 
With the application of stirrups, the capacity of the compressive diagonal needs to 
be checked as well. This is done with equation [ D.8 ]. 
 
 

𝑇𝐸𝑑

𝑇𝑅𝑑,𝑚𝑎𝑥

+
𝑉𝐸𝑑

𝑉𝑅𝑑,𝑚𝑎𝑥

≤ 1,0 
  

[ D.8 ] 

 

 
 
Before one can continue, it is important to understand that for a through bridge the 
shear force consists of three components. The shear force in longitudinal direction, 
the suspension force and the clamping moment. All three generate a vertical load in 
the girder, which needs to be taken into account when assessing the total shear 
resistance of the concrete. 
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The suspension force is a load per meter (due to the strip method), which is directly 
added to shear force in longitudinal direction.  
 
The clamping moment needs to be split into two forces with an internal lever. Figure 
D-4 shows that the clamping moment is split over the two legs of the outer stirrup. 
The distance 𝑧1 equals: 
 
𝑧1 = 𝑏 − 2 ∗ (𝑐 + 0.5 ∗ ∅𝑠𝑡𝑖𝑟𝑟𝑢𝑝) = 814 𝑚𝑚 

 

 
 

Figure D-4: The clamping moment split into shear force 

 
The total shear force for LM71 becomes: 
 

𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + 𝑄𝑦𝑦 +
𝑚𝑥𝑥

𝑧1

= 1576 𝑘𝑁 

 
Check whether or not stirrups are necessary: 
 
𝑇𝐸𝑑

𝑇𝑅𝑑,𝑐

+
𝑉𝐸𝑑,𝑡𝑜𝑡

𝑉𝑅𝑑,𝑐

=
548

693
+

1576

1806
= 1,66 > 1,00 →    𝐴𝑝𝑝𝑙𝑦 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 

 
 
Because stirrups are applied, the capacity of the concrete diagonal needs to be 
checked. Since the diagonal spreads over a horizontal length of 𝑧 ∗ cot 𝜃, the 
clamping moment and suspension force (which are per meter) are multiplied with 
this horizontal length. 
 

𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + (𝑄𝑦𝑦 +
𝑚𝑥𝑥

𝑧1

) ∗ 𝑧 ∗ cot 𝜃 = 2583 𝑘𝑁 

 
Check if the concrete diagonal has sufficient capacity: 
 

𝑇𝐸𝑑

𝑇𝑅𝑑,𝑚𝑎𝑥

+
𝑉𝐸𝑑,𝑡𝑜𝑡

𝑉𝑅𝑑,𝑐

=
548

2612
+

2583

6867
= 0,59 < 1,00 →    𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 ℎ𝑎𝑠 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

 
  

Loads due to LM71 

𝑉𝐸𝑑 = 1217 kN 

𝑚𝑥𝑥 = 172 𝑘𝑁𝑚/𝑚 

𝑄𝑦𝑦 = 148 𝑘𝑁/𝑚 

𝑇𝐸𝑑 = −548 𝑘𝑁𝑚 

𝑀𝐸𝑑 = 1881 𝑘𝑁𝑚 
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3 Stirrups 
The combination of shear force, torsion, suspension force and the clamping moment 
requires the application of stirrups. This chapter elaborates on the calculation 
procedure that determines the required amount of reinforcement for each individual 
design load. 
 

3.1 Shear force 
Shear force generates a uniform shear stress in the girder. Meaning an equal 
amount of shear stress goes through the inner and the outer stirrup. A distribution 
of 25% shear stress per stirrup leg is assumed.  
 

    
  

Figure D-5: Shear stress in the girder (left) Compressive diagonal intersects multiple stirrups (right) 

When a concrete structure with shear reinforcement is loaded, an equilibrium will 
be set between the compressive diagonal and the stirrups. The compressive 
diagonal intersects a number of stirrups (right Figure D-5). This effect is taken into 
account by dividing the shear force with the horizontal length of the diagonal  
(𝑧 ∗ cot 𝜃). 
 
 

𝐴𝑉 =
𝑉𝐸𝑑

𝑧 ∗ cot 𝜃 ∗ 𝑓𝑦𝑤𝑑

 
 

[ D.9 ] 

 

 
 
 

𝑓𝑦𝑤𝑑 =
𝑓𝑦𝑘

𝛾𝑠
=

500

1,15
= 435 𝑁/𝑚𝑚2                                  

For the considered example the required amount of outer/inner stirrup is: 
 

𝐴𝑣 =
1217 ∗ 103

1522 ∗ cot 21,8 ∗ 435
= 0,74 𝑚𝑚2/𝑚𝑚 

 
 
𝐴𝑣 = 0,25 ∗ 0,74 = 0,18 𝑚𝑚2/𝑚𝑚 (𝑝𝑒𝑟 𝑙𝑒𝑔) 
 
 
 
 
 

Parameters: 
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3.2 Torsion 
The shear stress due to torsion, can be found by simplifying the rectangular cross-
section to a thin walled tube. The shear stress in the walls needs to be taken up by 
the outer stirrup. Equation [ D.10 ] defines the shear stress in the wall. By taking 
the yield strength and the number of stirrups intersected by the diagonal into 
account, the equation can be rewritten to [ D.11 ].  
 

𝜏 =
𝑇𝐸𝑑

2 ∗ 𝑡𝑒𝑓 ∗ 𝐴𝑘

 
 

[ D.10 ] 

 

 

Figure D-6: Shear stress in the girder due to torsion 

 

𝐴𝑇 =
𝑇𝐸𝑑

2 ∗ 𝐴𝑘 ∗ 𝑓𝑦𝑤𝑑 ∗ cot 𝜃
 

  

[ D.11 ] 

 

 
 
For the considered example the required amount of outer stirrup is: 
 

𝐴𝑇 =
548 ∗ 106

2 ∗ 0,87 ∗ 106 ∗ 435 ∗ cot 21,8
= 0,29 𝑚𝑚2/𝑚𝑚 (𝑝𝑒𝑟 𝑙𝑒𝑔) 
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3.3 Suspension force 
The suspension force acts at the upper side of the connection between the floor and 
the girder. At ultimate limit state, the girder could crack, meaning the stirrups 
should be able to transfer 100% of the suspension force from the floor into the 
girder. Initially the suspension force is assumed to be transferred by the outer 
stirrup leg. If it turns out there is insufficient capacity, the capacity of the inner 
stirrup leg is exploited as well.   
 
NS-guideline 1015 (17) used to be the governing guideline for designing through 
bridges. Because a great part of the load in the suspension reinforcement is due to 
mobile loads, the reinforcement is more sensitive to fatigue. Besides crack widths in 
the concrete will be more difficult to control. As a measurement the guideline 
recommends to design suspension reinforcement with a characteristic yield 
strength of 220 MPa, even though stirrups of FeB500 are applied.  
 

𝐴𝑄 =
𝑄𝑦𝑦

1000 ∗ 𝑓𝑦𝑘

 
  

[ D.12 ] 

 

 
  

 
 

Figure D-7: Vertical normal stress in the girder due to a suspension force 

 
The required amount of outer stirrup (per leg) is: 
 

𝐴𝑄 =
148 ∗ 103

1000 ∗ 220
= 0,67 𝑚𝑚2/𝑚𝑚 (𝑝𝑒𝑟 𝑙𝑒𝑔) 
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3.4 Clamping moment 
The clamping moment acts at the heart of the girder. Dividing the moment by 𝑧1 
delivers a vertical force in the leg of the outer stirrup. Like the suspension force, 
this vertical component needs to be transferred entirely by the outer stirrup leg. 
And if the outer stirrup leg has insufficient capacity, a part of the load transfer is 
done by the inner stirrup leg. Ultimately equation [ D.13 ] is used to determine the 
required amount of reinforcement.  
 

𝐴𝑚 =
𝑚𝑥𝑥/𝑧1

1000 ∗ 𝑓𝑦𝑘

 
[ D.13 ] 

 
 

 

Figure D-8: Vertical normal stress in the girder due to a clamping moment 

 
For the considered example the required amount of outer stirrup is: 
 

𝐴𝑚 =
172 ∗ 106/814

1000 ∗ 220
= 0,96 𝑚𝑚2/𝑚𝑚 (𝑝𝑒𝑟 𝑙𝑒𝑔) 

 
 

3.5 Minimum reinforcement 
When a value smaller than 1.0 is found for the combination of shear and torsion 
(equation [ D.7 ]) , a minimum amount of reinforcement needs to be applied. Section 
9.2.1.1 in Eurocode 2 (16) holds a formula that is used to determine this minimum 
amount. 
 

𝜌𝑤,𝑚𝑖𝑛 = (0,08 ∗ √𝑓𝑐𝑘)/𝑓𝑦𝑘 [ D.14 ] 

 

 
With the knowledge that the characteristic yield strength of the reinforcement is 
500 MPa, the minimum amount of reinforcement goes to: 
 

 𝜌𝑤,𝑚𝑖𝑛 = (0,08 ∗ √35)/500 = 0,00095 

 
𝐴𝑠,𝑚𝑖𝑛 = 𝜌𝑤,𝑚𝑖𝑛 ∗ 𝑏 = 0,85 𝑚𝑚2/𝑚𝑚 

 
𝐴𝑠,𝑚𝑖𝑛 = 0,25 ∗ 0,85 = 0,21 𝑚𝑚2/𝑚𝑚 (𝑝𝑒𝑟 𝑙𝑒𝑔) 
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4 Longitudinal reinforcement & Prestress 
The truss analogy explains in what way a shear force can cause a tensile force in 
the longitudinal reinforcement. The shear force generates compression in the 
diagonal, which can be split into a horizontal and vertical component. These 
components have to make equilibrium with reactional tensile forces. Respectively 
the horizontal and vertical tensile forces are taken up by the longitudinal and shear 
reinforcement.  
 
Prestress introduces a compressive stress in the girder and thus in the longitudinal 
reinforcement. This enlarges the resistance of the reinforcement against tensile 
forces. Additionally prestressing tendons are able to take up a part of the tensile 
forces themselves, when there present in a tension zone. Initially the tendons are 
subjected to an average stress (𝜎𝑝∞), but when the tendons are present in a tension 

zone they are able to take up an additional force until they yield (𝑓𝑝𝑑). 

  

 
 

Figure D-9: Shear force causing a tensile force in the longitudinal reinforcement and tendons 

 
Let’s consider a section in bridge A at 0,8d from the support. Figure D-10 present 
the strains and the internal forces for this considered section. Besides a shear force, 
a bending moment is present in the section. The height of the compression zone (𝑥) 
and the compressive concrete strain in the top fibre (𝜀𝑐) are the two unknown 
variables.  
 

 
Figure D-10: Longitudinal section girder (left), cross-section (middle) and strain diagram (right) 
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Before one can start, a magnitude for the shear force and bending moment need to 
be established. In agreement with chapter 2.3 the bending moment equals 
1881 𝑘𝑁𝑚.  
 
The total shear force is a combination of the suspension force, clamping moment, 
shear and torsion. The latter one needs to be rewritten in the form of a shear force: 
 
  

𝑉𝑇𝐸𝑑
=

𝑇𝐸𝑑 ∗ 𝑧

2 ∗ 𝐴𝑘

 
 

[ D.15 ] 

 

 
Total shear force: 
 

𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + (𝑄𝑦𝑦 +
𝑚𝑥𝑥

𝑧1

) ∗ 𝑧 ∗ cot 𝜃 +
𝑇𝐸𝑑 ∗ 𝑧

2 ∗ 𝐴𝑘

 
[ D.16 ] 

 

 
With the values presented in chapter 2.3 the total shear force goes to 3060 𝑘𝑁. 
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With the knowledge in the reader prestressed concrete (23), a set of equations is 
derived for which the height of the compression zone and the maximum strain can 
be determined. The first step is to express the strain in the reinforcement and 
prestress in terms of 𝑥 and 𝜀𝑐. 
 

𝜀𝑠 =
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥) 

 

∆𝜀𝑝1 =  
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥 − 𝑒𝑝1) 

 

∆𝜀𝑝2 =  
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥 − 𝑒𝑝2) 

 

∆𝜀𝑝3 =  
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥 − 𝑒𝑝3) 

 

With the Young Modulus of the reinforcement and prestress steel, the strains are 
converted into stresses. Subsequently the stresses are multiplied with the cross-
sectional areas to find the corresponding forces.  
 
When the concrete is loaded in tension, a part is taken up by the present tendons. 
But the transfer of forces completely depends on the actual bond factor between the 
prestress and concrete, which is expressed as: 
 

𝜉1 = √𝜉 ∗
∅𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

∅𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠

 

 

 

  
 

Where: 

∅𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠 = 1,6√𝐴𝑝        (according to Eurocode 2) 

 𝜉 = 0,5                      (according to table 6.2 in Eurocode 2) 
 
 
The forces can be expressed as: 
 
𝑁𝑠 = 𝐴𝑠 ∗ 𝐸𝑠 ∗ 𝜀𝑠 
 
𝑁𝑝1 = 2 ∗ 𝐴𝑝 ∗ (𝜎𝑝∞ + ∆𝜀𝑝1 ∗ 𝐸𝑝 ∗ 𝜉1) 

 
𝑁𝑝2 = 2 ∗ 𝐴𝑝 ∗ (𝜎𝑝∞ + ∆𝜀𝑝2 ∗ 𝐸𝑝 ∗ 𝜉1) 

 
𝑁𝑝3 = 2 ∗ 𝐴𝑝 ∗ (𝜎𝑝∞ + ∆𝜀𝑝3 ∗ 𝐸𝑝 ∗ 𝜉1) 

 

𝑁𝑐 = 0,5 ∗
𝜀𝑐

1,75 ∗ 10−3
∗ 𝑓𝑐𝑑 ∗ 𝑏 ∗ 𝑥 

 
 
An equilibrium of horizontal forces is required: 
 

∑ 𝐻 = 𝑁𝑐 − 𝑁𝑠 − 𝑁𝑝1 − 𝑁𝑝2 − 𝑁𝑝3 = 0 

 



Appendix D  Reinforcement capacity (ULS) | 18  
 

Additionally an equilibrium of moments is required. Note: Half the shear force is 
being taken into account at the start and end of the compressive diagonal (Figure 
D-10).  
 

∑ 𝑀|𝑆 = 𝑀𝐸𝑑 + 0,5 ∗ 𝑉𝐸𝑑 ∗ 𝑧 ∗ cot 𝜃 − 𝑁𝑠 ∗ (𝑑 −
1

3
𝑥) − 𝑁𝑝1 ∗ (𝑑 −

1

3
𝑥 − 𝑒𝑝1) 

 

−𝑁𝑝2 ∗ (𝑑 −
1

3
𝑥 − 𝑒𝑝2) − 𝑁𝑝3 ∗ (𝑑 −

1

3
𝑥 − 𝑒𝑝3) = 0 

 
The two equations for equilibrium are solved and a solution for 𝑥 and 𝜀𝑐 is found. 
Based on the maximum strain, three stress and strain diagrams are possible as 
depicted by Figure D-11: 
 

1. Elastic stage (𝜀𝑐,𝑡𝑜𝑝 ≤ 1,75‰): A strain of 1,75‰ causes a compressive stress 

equal to the design strength of concrete (𝑓𝑐𝑑). The course of the stress 
diagram is linear. 

2. Elastic-plastic stage (1,75‰ < 𝜀𝑐,𝑡𝑜𝑝 ≤ 3,5‰): Up to a strain of 1,75‰ the course 

of the stress diagram remains linear, beyond this point the concrete will start 
to deform plastically and the maximum stress is equal to the design strength 
of the concrete (𝑓𝑐𝑑). Note: A strain of 3,5‰ is the value for a structure which 
is about to fail. The height of the compression zone is limited by the 
Eurocode and rotational capacity should be ensured. But because the 
prestress and reinforcement yield at a lower strain, the yield strain of steel is 
maintained as the maximum allowable. 

3. Compression only (𝑥 > ℎ): When the height of the compression zone exceeds 
the height of the cross-section, only compressive stresses are present in the 
girder. Naturally the unity check for longitudinal reinforcement goes to zero.  
 

 
 

Figure D-11: Stress and strain diagrams for possible solution of x and 𝜀𝑐 
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For the considered example the height of the compression zone goes to 1263 𝑚𝑚 and 

the concrete strain to 1,61 ∗ 10−3. Meaning the girder is loaded within the elastic 
limits of the concrete.  
 
Longitudinal reinforcement: 
 

𝑁𝑠 = 𝐴𝑠 ∗ 𝐸𝑠 ∗
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥) = 322 𝑘𝑁 

 
Prestressing steel: 
 

𝑁𝑝1 = 2 ∗ 𝐴𝑝 ∗ (
𝑃∞

6𝐴𝑝

+
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥 − 𝑒𝑝1) ∗ 𝐸𝑝 ∗ 𝜉1) = 4093 𝑘𝑁 

 

𝑁𝑝2 = 2 ∗ 𝐴𝑝 ∗ (
𝑃∞

6𝐴𝑝

+
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥 − 𝑒𝑝2) ∗ 𝐸𝑝 ∗ 𝜉1) = 3960 𝑘𝑁 

 

𝑁𝑝3 = 2 ∗ 𝐴𝑝 ∗ (
𝑃∞

6𝐴𝑝

+
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥 − 𝑒𝑝3) ∗ 𝐸𝑝 ∗ 𝜉1) = 3827 𝑘𝑁 

 
 

Ultimately the unity check’s for the longitudinal reinforcement and prestressing steel go to: 

 

𝑈𝐶𝑟𝑒𝑖𝑛𝑓. =
𝑁𝑠

𝐴𝑠 ∗ 𝑓𝑦𝑤𝑑

=
322

0,25 ∗ 𝜋 ∗ 162 ∗ 14 ∗ 435 ∗ 10−3
= 0,26 

 

𝑈𝐶𝑝𝑟𝑒𝑠𝑡𝑟. =
max (𝑁𝑝1; 𝑁𝑝2; 𝑁𝑝3)

2 ∗ 𝐴𝑝 ∗ 𝑓𝑝𝑑

=
4093

2 ∗ 1900 ∗ 1522 ∗ 10−3
= 0,71 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameters 

𝐴𝑝 = 1900 𝑚𝑚2 

𝐴𝑓𝑙𝑒𝑥 = 14∅16 

𝐸𝑠 = 210 𝐺𝑃𝑎 

𝐸𝑝 = 205 𝐺𝑃𝑎 

𝜉1 = 0,34 

𝑃∞ = 12038 𝑘𝑁 

𝑑 = 1691 𝑚𝑚 

𝑒𝑝1 = 189 𝑚𝑚 

𝑒𝑝2 = 584 𝑚𝑚 

𝑒𝑝3 = 979 𝑚𝑚 

𝑓𝑝𝑑 = 1522 𝑁/𝑚𝑚2 
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5 Results 
Bridge A is equipped with an outer and inner stirrup, whereas bridge B only has 
one stirrup. Based on this configuration, the NS-guideline 1015 defines a number of 
zones in the girder, which have a specific load transferring function.  
 

• Zone I: Shear and torsion 

• Zone II: Shear 

• Zone III: Shear, torsion and suspension. 

 
 

Figure D-12: Shear reinforcement zones for bridge A (left) and bridge B (right) 

To find the combined amount of shear reinforcement, the maximum in each zone 
needs to be determined: 
 
Zone I = 0,85 ∗ (0,25 ∗ 𝐴𝑉 + 𝐴𝑇) 

= 0,25 ∗ 𝐴𝑉 

= 𝐴𝑇 

 = 0,25 ∗ 𝐴𝑚𝑖𝑛 

  

Zone II = 0,25 ∗ 𝐴𝑉 

 = 0,25 ∗ 𝐴𝑚𝑖𝑛 

  

Zone III = 0,80 ∗ (0,25 ∗ 𝐴𝑉 + 𝐴𝑇 + 𝐴𝑚 + 𝐴𝑄) 

= 0,25 ∗ 𝐴𝑉 + 𝐴𝑚 + 𝐴𝑄 

= 𝐴𝑇 + 𝐴𝑚 + 𝐴𝑄 

= 0,85 ∗ (0,25 ∗ 𝐴𝑉 + 𝐴𝑇) 

 = 0,25 ∗ 𝐴𝑚𝑖𝑛 

 
Where: 

𝐴𝑉 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 

𝐴𝑇 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

𝐴𝑚 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑐𝑙𝑎𝑚𝑝𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 

𝐴𝑄 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 

𝐴𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 
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Figure D-13 shows the amount of shear and longitudinal reinforcement that is 
applied in the girder of bridge A and B. 
 

 
 

Figure D-13: Shear and longitudinal reinforcement applied in the through girder,                                 
Bridge A (left) and Bridge B (right) 

 
For the considered example the required amount of reinforcement per zone is: 
 
Zone I = 0,40 𝑚𝑚2/𝑚𝑚 (𝑠ℎ𝑒𝑎𝑟 + 𝑡𝑜𝑟𝑠𝑖𝑜𝑛) 

Zone II = 0,21 𝑚𝑚2/𝑚𝑚 (𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑚𝑜𝑢𝑛𝑡) 

Zone III = 1,92 𝑚𝑚2/𝑚𝑚 (𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝑠𝑢𝑝𝑒𝑛𝑠𝑖𝑜𝑛) 

 
 
Unity checks for a section at 0,8d in bridge A: 
 
  
Outer stirrup 

𝑈. 𝐶. =
1,92 ∗ 103 𝑚𝑚2/𝑚

0,25 ∗ 𝜋 ∗ 162 ∗ 1000/150
= 1,43 

  

Inner stirrup 
𝑈. 𝐶. =

0,21 ∗ 103 𝑚𝑚2/𝑚

0,25 ∗ 𝜋 ∗ 122 ∗ 1000/150
= 0,28 

  

Longitudinal 

Reinforcement 
 

Prestressing 

steel 

𝑈. 𝐶. =
322

0,25 ∗ 𝜋 ∗ 162 ∗ 14 ∗ 435 ∗ 10−3
= 0,26 

 

𝑈. 𝐶. =
4093

2 ∗ 1900 ∗ 1522 ∗ 10−3
= 0,71 

 
 

Remarkable is the high unity check for the outer stirrup and the relatively low unity 
check for the inner stirrup. This difference is caused by the fact that the outer 
stirrup has to transfer all suspension loads. Because this is an ultimate limit state 
calculation and steel with ductility class B is applied, one can expect that the outer 
stirrup will start to deform plastically. Consequently a part of the loading will be 
transferred towards  the inner stirrup. Therefore this calculation is performed 
again, but this time with a distribution of 35% and 65% of the suspension loads 
over the inner and outer stirrup. 
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This results in unity checks which are just within acceptable limits: 
   
Outer stirrup 

𝑈. 𝐶. =
1,35 ∗ 103 𝑚𝑚2/𝑚

0,25 ∗ 𝜋 ∗ 162 ∗ 1000/150
= 1,01 

  

Inner stirrup 
𝑈. 𝐶. =

0,755 ∗ 103 𝑚𝑚2/𝑚

0,25 ∗ 𝜋 ∗ 122 ∗ 1000/150
= 1,00 

 
The angle 𝜃 can be freely chosen between 21,8° and 45°. Increasing the angle 
maximizes the load on the stirrups and minimizes the load on the longitudinal 
reinforcement. Decreasing the angle has the opposite effect. For both bridges a 
section near the support and at midspan are regarded. The critical loading near the 
support is mainly due to torsion and shear, whereas at midspan it is due to 
bending. The optimal capacity of the shear and longitudinal reinforcement is 
reached when an angle of 21,8° is used for the sections near the supports and angle 
of 45° is used at midspan. 

 
Table D-4: Bridge A: Unity check for shear and longitudinal reinforcement 

Type of reinforcement 
 

U.C. @ 0,8d 
 

U.C @ 0,5L 

𝜽 = 𝟐𝟏, 𝟖° 𝜽 = 𝟒𝟓° 

Outer stirrup 1,01 0,16 

Inner stirrup 1,00 0,28 

Longitudinal reinforcement 0,26 0,18 

Prestressing steel 0,71 0,71 

 

Table D-5: Bridge B: Unity check for shear and longitudinal reinforcement 

 

 

 

 
 
Table D-4 and Table D-5 present the unity checks for prestress, stirrups and 
longitudinal reinforcement. In light of the results a number of things need to be 
explained: 

• The unity check of the prestressing steel doesn’t range much. The 
explanation for this lies in the fact that the additional tensile stress is 
relatively small compared to the yield stress. The unity check holds a base 
value which roughly equal to: 𝜎𝑝∞/𝑓𝑝𝑑.  

• Even though the Eurocode loads are larger than the design report loads, 
unity checks for the shear and longitudinal reinforcement are just within 

acceptable limits. The possibility to freely choose the angle 𝜃, gives on the 
opportunity to optimize the capacity of the applied reinforcement. 

• The largest unity check for shear reinforcement is found in bridge A, despite 
the larger loads in bridge B. But bridge B is also equipped with 2,3 times 
more stirrups, whereas the loads are not 2,3 times larger.  

 

Type of reinforcement 

 

U.C. @  support 

 

U.C. @ 0,5L 

𝜽 = 𝟐𝟏, 𝟖° 𝜽 = 𝟒𝟓° 

Stirrup 0,90 0,36 

Longitudinal reinforcement 0,09 0,56 

Prestressing steel 0,67 0,71 
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6 Maple sheets 
6.1 Equilibrium of forces – elastic 
  



(1)(1)

Equilibrium of forces in a through girder

Parameters

Concrete

Prestress steel

Reinforcement steel

Load

Dimensions



Strains

Forces



(4)(4)

(5)(5)

(3)(3)

(2)(2)

(6)(6)

(7)(7)

Equilibrium of horizontal forces

Equilibrium of moment

Solution for epsilonc and x

Forces

Reinforcement steel

393
Max. prestress force

4119

3974

3828

Concrete force

12314



(9)(9)

(8)(8)

Unity check

Reinforcement steel

Prestress steel
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6.2 Equilibrium of forces – elastic-plastic 



(1)(1)

Equilibrium of forces in a through girder

Parameters

Concrete

Prestress steel

Reinforcement steel

Load

Dimensions



Strains

Forces



(6)(6)

(4)(4)

(8)(8)

(3)(3)

(7)(7)

(5)(5)

(2)(2)

Equilibrium of horizontal forces

Equilibrium of moment

Solution for epsilonc and x

Forces

Reinforcement steel

454
Max. prestress force

4141

3985

3830

Concrete force

12301

109



(10)(10)

(9)(9)

Unity check

Reinforcement steel

Prestress steel
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7 Spreadsheets 
7.1 Bridge A - 6.10b – 0,8d 
  



Total hor. normal stress

LC type P [kN] σxx [N/mm2] M [kNm] σxx [N/mm2] σxx [N/mm2]

1 self-weight 1106 1,05

2 ballast 306 0,29

3 Conc. Mobile Load 822 0,78

4 Cant. Mobile Load -224 -0,21

5a Contin. Mobile Load 609 0,58

5b Contin. Mobile Load (SW/2) 1373 1,30

6 Support settelement max 0 0,00

7 Support settelement min 0 0,00

8 Prestress t=0 -13200 -6,14 -1055 -1,00

9 Prestress t = ∞ -12038 -5,60 -962 -0,91

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 -12038 -5,60 1881 1,78 -3,81

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 -12038 -5,60 1881 1,78 -3,81

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 -12038 -5,60 226 0,21 -5,38

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 -12038 -5,60 226 0,21 -5,38

LC 1 + LC 8 -13200 -6,14 51 0,05 -6,09

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 -12038 -5,60 1822 1,73 -3,87

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 -12038 -5,60 1822 1,73 -3,87

Suspension force Clamping moment Shear force Torsion

LC type Qyy [kN] mxx [kNm] [kN] [kNm]

1 self-weight 34 16 786 -93

2 ballast 29 18 267 -81

3 Conc. Mobile Load 149 -20 558 -218

4 Cant. Mobile Load 0 61 0 -246

5a Contin. Mobile Load 0 34 448 23

5b Contin. Mobile Load (SW/2) 107 47 976 -125

6 Support settelement max -18 98 0 -214

7 Support settelement min 18 -98 0 214

8 Prestress t=0 -52 28 -923 37

9 Prestress t = ∞ -47 26 -842 34

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 148 172 1217 -548

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 184 -25 1217 -121

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 -1 218 211 -600

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 35 21 211 -173

LC 1 + LC 8 -17 44 -137 -56

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 105 205 1187 -479

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 141 8 1187 -52

Forces

Prestress Bending moment



Suspension force Clamping moment Shear force Torsion

[mm2/mm] [mm2/mm] [mm2/mm] [mm2/mm] Zone I [mm2/mm] Zone II [mm2/mm] Zone III [mm2/mm]

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 0,67 0,96 0,74 0,29 0,40 0,75 1,35

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 0,00 0,00 0,00 0,00 0,21 0,21 0,21

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 0,01 1,22 0,13 0,32 0,32 0,46 1,11

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 0,00 0,00 0,00 0,00 0,21 0,21 0,21

LC 1 + LC 8 0,00 0,00 0,00 0,00 0,21 0,21 0,21

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 0,48 1,15 0,72 0,25 0,37 0,75 1,31

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 0,00 0,00 0,00 0,00 0,21 0,21 0,21

U.C.

1,01

1,00

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9

LC 1 + LC 2 + LC 4 + LC 6 + LC 9

LC 1 + LC 2 + LC 4 + LC 7+ LC 9

LC 1 + LC 8

LC 1 + LC 2 + LC 5b + LC 6 + LC 9

LC 1 + LC 2 + LC 5b + LC 7 + LC 9

Reinforcement

Load combination Longitudinal reinforcement

0,26

1340

Ø12-150 754

Outer stirrup 1349

Inner stirrup 755

Applied reinforcement

Ø16-150

Load combination

Total amount of stirrups

Type of reinforcement Required amount (mm2/m) Applied amount (mm2/m)

0,69

0,69

0,70

0,69

Unity check [-]

Prestress steel

0,71

0,69

0,690,00

0,00

0,00

0,22

0,00

0,04

�ொ �௠ �� ��

Zone III

Zone II

Zone I



900 [mm]

1750 [mm]

550 [mm]

4000 [mm]

2150500 [mm2]

6,63E+11 [mm4]

629 [mm]

629 [mm]

Parameters

Sectional properties

ݖݕ
Ͳ,ͷ ∗ �௕௥�ௗ௚௘

ܾ௚�௥ௗ௘௥ℎ௚�௥ௗ௘௥ݐ௙௟௢௢௥௙ܾ௟௢௢௥
Ͳ,ͷ ∗ �௬௬



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 1217 [kN]

cover = 35 [mm] = 548 [kNm]

effective height = 1691 [mm] = 148 [kN/m]

Area = 1,58 [m2] = 172 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 1881 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2,0 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 14 16 201 110 2815

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 6933 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1522 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0018

= 1516 [kN]

= 1551 [kN]

= 6867 [kN]

= 1806 [kN]

Longitudinal reinforcement

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9

Shear capacity concrete

Materials

Loads

Stirrups

Geometry

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = -3,81 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 1806 [kN] (Concrete shear capacity)

= 6867 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 118 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 2612 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 148 [kN/m] = 211 [kN/m]

= 563 [kN] = 803 [kN]

= 2583 [kN]

148

172

= 0,59 < 1,00 (Capacity of compressive diagonal is sufficient)

= 1,66 > 1,00 (Capacity of concrete insufficient, apply stirrups)

Stirrups due to Shear Force = = 0,74 [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = 0,29 [mm2/mm] = 0,85 [mm2/mm]

Stirrups Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Total capacity concrete

Suspension force Clamping moment

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = 0,67 [mm2/mm]

Stirrups due to clamp. mom. = = 0,96 [mm2/mm]

= 1,61E-03 < 1,75E-03 [elastic stage]

= 1263,3 [mm]

= 2843 [kNm]

= 3060 [kN]

= 1056 [N/mm2]

= 0,339 [-]

= 322 [kN]

= 4093
[kN]

= 189 [mm]

= 0,26 [-]

= 0,71 [-]

Longitudinal Reinforcement

Prestressing steel

Equilibrium of forces

Suspension reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 1217 [kN]

cover = 35 [mm] = 121 [kNm]

effective height = 1691 [mm] = 184 [kN/m]

Area = 1,58 [m2] = 25 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 1881 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 14 16 201 110 2815

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 6933 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1522 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0018

= 1516 [kN]

= 1551 [kN]

= 6867 [kN]

= 1806 [kN]

Stirrups

Geometry Loads
LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9

Materials

Longitudinal reinforcement

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = -3,81 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 1806 [kN] (Concrete shear capacity)

= 6867 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 118 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 2612 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 184 [kN/m] = 31 [kN/m]

= 700 [kN] = 118 [kN]

= 2035 [kN]

184

25

= 0,34 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,97 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,24E-03 < 1,75E-03 [elastic stage]

= 1585,8 [mm]

= 2843 [kNm]

= 2140 [kN]

= 1056 [N/mm2]

= 0,339 [-]

= 49 [kN]

= 3996
[kN]

= 189 [mm]

= 0,04 [-]

= 0,69 [-]

Prestressing steel

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 211 [kN]

cover = 35 [mm] = 600 [kNm]

effective height = 1691 [mm] = 1 [kN/m]

Area = 1,58 [m2] = 218 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 226 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 14 16 201 110 2815

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 6933 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1522 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0018

= 1516 [kN]

= 1551 [kN]

= 6867 [kN]

= 1806 [kN]

Stirrups

Geometry Loads
LC 1 + LC 2 + LC 4 + LC 6 + LC 9

Materials

Longitudinal reinforcement

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = -3,81 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 1806 [kN] (Concrete shear capacity)

= 6867 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 118 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 2612 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 1 [kN/m] = 268 [kN/m]

= 5 [kN] = 1020 [kN]

= 1236 [kN]

1

218

= 0,41 < 1,00 (Capacity of compressive diagonal is sufficient)

= 1,13 > 1,00 (Capacity of concrete insufficient, apply stirrups)

Stirrups due to Shear Force = = 0,13 [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = 0,32 [mm2/mm] = 0,85 [mm2/mm]

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = 0,01 [mm2/mm]

Stirrups due to clamp. mom. = = 1,22 [mm2/mm]

= 9,00E-04 < 1,75E-03 [elastic stage]

= 2139 [mm]

= 1188 [kNm]

= 1759 [kN]

= 1056 [N/mm2]

= 0,339 [-]

= 0 [kN]

= 4013
[kN]

= 189 [mm]

= 0,00 [-]

= 0,69 [-]

Prestressing steel

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 211 [kN]

cover = 35 [mm] = 173 [kNm]

effective height = 1691 [mm] = 35 [kN/m]

Area = 1,58 [m2] = 21 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 226 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 14 16 201 110 2815

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 6933 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1522 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0018

= 1516 [kN]

= 1551 [kN]

= 6867 [kN]

= 1806 [kN]

Stirrups

Geometry Loads
LC 1 + LC 2 + LC 4 + LC 7+ LC 9

Materials

Longitudinal reinforcement

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = -3,81 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 1806 [kN] (Concrete shear capacity)

= 6867 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 118 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 2612 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 35 [kN/m] = 26 [kN/m]

= 132 [kN] = 99 [kN]

= 442 [kN]

35

21

= 0,13 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,40 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 7,10E-04 < 1,75E-03 [elastic stage]

= 2701,5 [mm]

= 1188 [kNm]

= 593 [kN]

= 1056 [N/mm2]

= 0,339 [-]

= 0 [kN]

= 4013
[kN]

= 189 [mm]

= 0,00 [-]

= 0,69 [-]

Prestressing steel

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 137 [kN]

cover = 35 [mm] = 56 [kNm]

effective height = 1691 [mm] = 17 [kN/m]

Area = 1,58 [m2] = 44 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 51 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 14 16 201 110 2815

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 6933 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1522 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0018

= 1516 [kN]

= 1551 [kN]

= 6867 [kN]

= 1806 [kN]

Stirrups

Geometry Loads
LC 1 + LC 8

Materials

Longitudinal reinforcement

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = -3,81 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 1806 [kN] (Concrete shear capacity)

= 6867 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 118 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 2612 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 17 [kN/m] = 54 [kN/m]

= 65 [kN] = 205 [kN]

= 407 [kN]

17

44

= 0,08 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,20 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 6,80E-04 < 1,75E-03 [elastic stage]

= 2813,7 [mm]

= 1013 [kNm]

= 456 [kN]

= 1056 [N/mm2]

= 0,339 [-]

= 0 [kN]

= 4013
[kN]

= 189 [mm]

= 0,00 [-]

= 0,69 [-]

Prestressing steel

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 1187 [kN]

cover = 35 [mm] = 479 [kNm]

effective height = 1691 [mm] = 105 [kN/m]

Area = 1,58 [m2] = 205 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 1822 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 14 16 201 110 2815

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 6933 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1522 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0018

= 1516 [kN]

= 1551 [kN]

= 6867 [kN]

= 1806 [kN]

Stirrups

Geometry Loads
LC 1 + LC 2 + LC 5b + LC 6 + LC 9

Materials

Longitudinal reinforcement

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
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1
7
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0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = -3,81 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 1806 [kN] (Concrete shear capacity)

= 6867 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 118 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 2612 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 105 [kN/m] = 252 [kN/m]

= 400 [kN] = 959 [kN]

= 2546 [kN]

105

205

= 0,55 < 1,00 (Capacity of compressive diagonal is sufficient)

= 1,55 > 1,00 (Capacity of concrete insufficient, apply stirrups)

Stirrups due to Shear Force = = 0,72 [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = 0,25 [mm2/mm] = 0,85 [mm2/mm]

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = 0,48 [mm2/mm]

Stirrups due to clamp. mom. = = 1,15 [mm2/mm]

= 1,55E-03 < 1,75E-03 [elastic stage]

= 1302,2 [mm]

= 2784 [kNm]

= 2963 [kN]

= 1056 [N/mm2]

= 0,339 [-]

= 274 [kN]

= 4076
[kN]

= 189 [mm]

= 0,22 [-]

= 0,70 [-]

Prestressing steel

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 1187 [kN]

cover = 35 [mm] = 52 [kNm]

effective height = 1691 [mm] = 141 [kN/m]

Area = 1,58 [m2] = 8 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 1822 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 14 16 201 110 2815

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 6933 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1522 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0018

= 1516 [kN]

= 1551 [kN]

= 6867 [kN]

= 1806 [kN]

Stirrups

Geometry Loads
LC 1 + LC 2 + LC 5b + LC 6 + LC 9

Materials

Longitudinal reinforcement

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
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m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = -3,81 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 1806 [kN] (Concrete shear capacity)

= 6867 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 118 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 2612 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 141 [kN/m] = 10 [kN/m]

= 537 [kN] = 38 [kN]

= 1762 [kN]

141

8

= 0,28 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,82 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,10E-03 < 1,75E-03 [elastic stage]

= 1737 [mm]

= 2784 [kNm]

= 1807 [kN]

= 1056 [N/mm2]

= 0,339 [-]

= 0 [kN]

= 3974
[kN]

= 189 [mm]

= 0,00 [-]

= 0,69 [-]

Prestressing steel

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ
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7.2 Bridge A - 6.10b – 0,5L 
  



Total hor. normal stress

LC type P [kN] σxx [N/mm2] M [kNm] σxx [N/mm2] σxx [N/mm2]

1 self-weight 4698 4,46

2 ballast 1526 1,45

3 Conc. Mobile Load 4523 4,29

4 Cant. Mobile Load -224 -0,21

5a Contin. Mobile Load 2050 1,94

5b Contin. Mobile Load (SW/2) 5844 5,54

6 Support settelement max 0 0,00

7 Support settelement min 0 0,00

8 Prestress t=0 -13200 -4,80 -5274 -5,00

9 Prestress t = ∞ -12038 -4,38 -4810 -4,56

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 -12038 -4,38 7987 7,57 3,20

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 -12038 -4,38 7987 7,57 3,20

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 -12038 -4,38 1190 1,13 -3,25

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 -12038 -4,38 1190 1,13 -3,25

LC 1 + LC 8 -13200 -4,80 -576 -0,55 -5,35

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 -12038 -4,38 7258 6,88 2,51

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 -12038 -4,38 7258 6,88 2,51

Suspension force Clamping moment Shear force Torsion

LC type Qyy [kN] mxx [kNm] [kN] [kNm]

1 self-weight 34 8 0 0

2 ballast 29 5 0 0

3 Conc. Mobile Load 149 -68 0 0

4 Cant. Mobile Load 0 13 0 0

5a Contin. Mobile Load 0 57 0 0

5b Contin. Mobile Load (SW/2) 107 21 3 -174

6 Support settelement max 1 8 0 140

7 Support settelement min -1 -8 0 -140

8 Prestress t=0 -52 9 0 0

9 Prestress t = ∞ -47 8 0 0

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 167 19 0 140

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 165 2 0 -140

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 18 43 0 140

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 16 26 0 -140

LC 1 + LC 8 -17 17 0 0

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 124 50 3 -33

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 122 34 3 -314

Forces

Prestress Bending moment



Suspension force Clamping moment Shear force Torsion

[mm2/mm] [mm2/mm] [mm2/mm] [mm2/mm] Zone I [mm2/mm] Zone II [mm2/mm] Zone III [mm2/mm]

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9 0,00 0,00 0,00 0,00 0,21 0,21 0,21

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9 0,00 0,00 0,00 0,00 0,21 0,21 0,21

LC 1 + LC 2 + LC 4 + LC 6 + LC 9 0,00 0,00 0,00 0,00 0,21 0,21 0,21

LC 1 + LC 2 + LC 4 + LC 7+ LC 9 0,00 0,00 0,00 0,00 0,21 0,21 0,21

LC 1 + LC 8 0,00 0,00 0,00 0,00 0,21 0,21 0,21

LC 1 + LC 2 + LC 5b + LC 6 + LC 9 0,00 0,00 0,00 0,00 0,21 0,21 0,21

LC 1 + LC 2 + LC 5b + LC 7 + LC 9 0,00 0,00 0,00 0,00 0,21 0,21 0,21

U.C.

0,16

0,28

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9

LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9

LC 1 + LC 2 + LC 4 + LC 6 + LC 9

LC 1 + LC 2 + LC 4 + LC 7+ LC 9

LC 1 + LC 8

LC 1 + LC 2 + LC 5b + LC 6 + LC 9

LC 1 + LC 2 + LC 5b + LC 7 + LC 9

0,69

0,69

0,70

0,70

Unity check [-]

Prestress steel

0,71

0,71

0,690,00

0,00

0,00

0,08

0,10

0,18

Ø16-150

Load combination

Total amount of stirrups

Type of reinforcement Required amount (mm2/m) Applied amount (mm2/m)

Reinforcement

Load combination Longitudinal reinforcement

0,18

1340

Ø12-150 754

Outer stirrup 213

Inner stirrup 213

Applied reinforcement

�ொ �௠ �� ��

Zone III

Zone II

Zone I



900 [mm]

1750 [mm]

550 [mm]

4000 [mm]

2750000 [mm2]

6,63E+11 [mm4]

629 [mm]

629 [mm]

Sectional properties

Parameters

ݖݕ
Ͳ,ͷ ∗ �௕௥�ௗ௚௘

ܾ௚�௥ௗ௘௥ℎ௚�௥ௗ௘௥ݐ௙௟௢௢௥௙ܾ௟௢௢௥
Ͳ,ͷ ∗ �௬௬



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 0 [kN]

cover = 35 [mm] = 140 [kNm]

effective height = 1693 [mm] = 167 [kN/m]

Area = 1,58 [m2] = 19 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 7987 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø12-180    (longitudinal reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2,0 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 8 12 113 180 905

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 2776 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1524 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 45 [◦] (assumed angle comp. diagonal)

= 4,38 [N/mm2]

= 4,66 [N/mm2]

= 1,19 [-]

= 0,0006

= 1315 [kN]

= 1489 [kN]

= 9869 [kN]

= 1763 [kN]

Stirrups

Geometry

Longitudinal reinforcement

LC 1+ LC 2+ LC 3+ LC 5a+ LC 6 + LC 9

Shear capacity concrete

Materials

Loads

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = 3,20 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 1489 [kN] (Concrete shear capacity)

= 9869 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 114 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 3749 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 167 [kN/m] = 23 [kN/m]

= 254 [kN] = 35 [kN]

= 289 [kN]

167

19

= 0,07 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,33 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Stirrups Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Total capacity concrete

Suspension force Clamping moment

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,51E-03 < 1,75E-03 [elastic stage]

= 1351,4 [mm]

= 12796 [kNm]

= 411 [kN]

= 1056 [N/mm2]

= 0,293 [-]

= 72 [kN]

= 6119
[kN]

= 82 [mm]

= 0,18 [-]

= 0,71 [-]

Longitudinal Reinforcement

Prestressing steel

Equilibrium of forces

Suspension reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ͵ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵ͵ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 0 [kN]

cover = 35 [mm] = 140 [kNm]

effective height = 1693 [mm] = 165 [kN/m]

Area = 1,58 [m2] = 2 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 7987 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø12-180    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 8 12 113 180 905

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 2776 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1524 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 45 [◦] (assumed angle comp. diagonal)

= 4,38 [N/mm2]

= 4,66 [N/mm2]

= 1,19 [-]

= 0,0006

= 1315 [kN]

= 1489 [kN]

= 9869 [kN]

= 1763 [kN]

Shear capacity concrete

Stirrups

Geometry Loads
LC 1+ LC 2+ LC 3 + LC 5a + LC 7 + LC 9

Materials

Longitudinal reinforcement∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = 3,20 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 1489 [kN] (Concrete shear capacity)

= 9869 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 114 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 3749 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 165 [kN/m] = 2 [kN/m]

= 251 [kN] = 3 [kN]

= 254 [kN]

165

2

= 0,06 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,31 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,50E-03 < 1,75E-03 [elastic stage]

= 1356,2 [mm]

= 12796 [kNm]

= 376 [kN]

= 1056 [N/mm2]

= 0,293 [-]

= 71 [kN]

= 6116
[kN]

= 82 [mm]

= 0,18 [-]

= 0,71 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ͵ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵ͵ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 0 [kN]

cover = 35 [mm] = 140 [kNm]

effective height = 1693 [mm] = 18 [kN/m]

Area = 1,58 [m2] = 43 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 1190 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø12-180    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 8 12 113 180 905

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 2776 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1524 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 45 [◦] (assumed angle comp. diagonal)

= 4,38 [N/mm2]

= 4,66 [N/mm2]

= 1,19 [-]

= 0,0006

= 1315 [kN]

= 1489 [kN]

= 9869 [kN]

= 1763 [kN]

Shear capacity concrete

Stirrups

Geometry Loads
LC 1 + LC 2 + LC 4 + LC 6 + LC 9

Materials

Longitudinal reinforcement∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = 3,20 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 1489 [kN] (Concrete shear capacity)

= 9869 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 114 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 3749 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 18 [kN/m] = 53 [kN/m]

= 27 [kN] = 81 [kN]

= 108 [kN]

18

43

= 0,05 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,25 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 6,60E-04 < 1,75E-03 [elastic stage]

= 2983 [mm]

= 6000 [kNm]

= 230 [kN]

= 1056 [N/mm2]

= 0,293 [-]

= 0 [kN]

= 6019
[kN]

= 82 [mm]

= 0,00 [-]

= 0,69 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ͵ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵ͵ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 0 [kN]

cover = 35 [mm] = 140 [kNm]

effective height = 1693 [mm] = 16 [kN/m]

Area = 1,58 [m2] = 26 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 1190 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø12-180    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 8 12 113 180 905

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 2776 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1524 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 45 [◦] (assumed angle comp. diagonal)

= 4,38 [N/mm2]

= 4,66 [N/mm2]

= 1,19 [-]

= 0,0006

= 1315 [kN]

= 1489 [kN]

= 9869 [kN]

= 1763 [kN]

Shear capacity concrete

Stirrups

Geometry Loads
LC 1 + LC 2 + LC 4 + LC 7+ LC 9

Materials

Longitudinal reinforcement∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = 3,20 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 1489 [kN] (Concrete shear capacity)

= 9869 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 114 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 3749 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 16 [kN/m] = 32 [kN/m]

= 24 [kN] = 49 [kN]

= 73 [kN]

16

26

= 0,04 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,23 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 6,60E-04 < 1,75E-03 [elastic stage]

= 2990 [mm]

= 6000 [kNm]

= 195 [kN]

= 1056 [N/mm2]

= 0,293 [-]

= 0 [kN]

= 6019
[kN]

= 82 [mm]

= 0,00 [-]

= 0,69 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ͵ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵ͵ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 0 [kN]

cover = 35 [mm] = 0 [kNm]

effective height = 1693 [mm] = 17 [kN/m]

Area = 1,58 [m2] = 17 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = -576 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø12-180    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 8 12 113 180 905

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 2776 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1524 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 45 [◦] (assumed angle comp. diagonal)

= 4,38 [N/mm2]

= 4,66 [N/mm2]

= 1,19 [-]

= 0,0006

= 1315 [kN]

= 1489 [kN]

= 9869 [kN]

= 1763 [kN]

Shear capacity concrete

Stirrups

Geometry Loads
LC 1 + LC 8

Materials

Longitudinal reinforcement∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = 3,20 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 1489 [kN] (Concrete shear capacity)

= 9869 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 114 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 3749 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 17 [kN/m] = 21 [kN/m]

= 26 [kN] = 32 [kN]

= 58 [kN]

17

17

= 0,01 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,03 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 5,70E-04 < 1,75E-03 [elastic stage]

= 3467 [mm]

= 4234 [kNm]

= 58 [kN]

= 1056 [N/mm2]

= 0,293 [-]

= 0 [kN]

= 6019
[kN]

= 82 [mm]

= 0,00 [-]

= 0,69 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ͵ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵ͵ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 3 [kN]

cover = 35 [mm] = 33 [kNm]

effective height = 1693 [mm] = 124 [kN/m]

Area = 1,58 [m2] = 50 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 7258 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø12-180    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 8 12 113 180 905

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 2776 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1524 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 45 [◦] (assumed angle comp. diagonal)

= 4,38 [N/mm2]

= 4,66 [N/mm2]

= 1,19 [-]

= 0,0006

= 1315 [kN]

= 1489 [kN]

= 9869 [kN]

= 1763 [kN]

Shear capacity concrete

Stirrups

Geometry Loads
LC 1 + LC 2 + LC 5b + LC 6 + LC 9

Materials

Longitudinal reinforcement∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = 3,20 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 1489 [kN] (Concrete shear capacity)

= 9869 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 114 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 3749 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 124 [kN/m] = 62 [kN/m]

= 189 [kN] = 94 [kN]

= 286 [kN]

124

50

= 0,04 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,17 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,34E-03 < 1,75E-03 [elastic stage]

= 1505,7 [mm]

= 12067 [kNm]

= 315 [kN]

= 1056 [N/mm2]

= 0,293 [-]

= 32 [kN]

= 6051
[kN]

= 82 [mm]

= 0,08 [-]

= 0,70 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ͵ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵ͵ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 1750 [mm] = -12038 [kN]

width b = 900 [mm] = 3 [kN]

cover = 35 [mm] = 314 [kNm]

effective height = 1693 [mm] = 122 [kN/m]

Area = 1,58 [m2] = 34 [kNm/m] Ø16-150    (outer stirrup)

Area prestressing tendon Ap = 1900 [mm2] = 7258 [kNm]

Ø12-150    (inner stirrup)

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø12-180    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1522 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=900mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 629 mm

Iyy = 4,02E+11 mm4

S = 5,65E+08 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 8 12 113 180 905

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 16 402 150 2,68

Inner stirrups 2 12 226 150 1,51 +

4 628 4,19

= 2776 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1524 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,34 = 24,1 [◦] (angle compr. diagonal)

= 0,32 = 45 [◦] (assumed angle comp. diagonal)

= 4,38 [N/mm2]

= 4,66 [N/mm2]

= 1,19 [-]

= 0,0006

= 1315 [kN]

= 1489 [kN]

= 9869 [kN]

= 1763 [kN]

Shear capacity concrete

Stirrups

Geometry Loads
LC 1 + LC 2 + LC 5b + LC 6 + LC 9

Materials

Longitudinal reinforcement∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
=

1
7

5
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z=
0

,9
*

d
=

1
5

2
2

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = 3,20 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 1489 [kN] (Concrete shear capacity)

= 9869 [kN] (Capacity compressive diagonal)

= 1,58 [m2]

= 5,3 [m]

= 298 [mm]

= 114 [mm]

= 0,87 [m2]

= 4,11 [m]

= 693 [kN] (Concrete torsion capacity)

= 3749 [kN] (Capacity compressive diagonal)

= 814 [mm]

= 122 [kN/m] = 41 [kN/m]

= 186 [kN] = 62 [kN]

= 251 [kN]

122

34

= 0,11 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,56 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 0,85 [mm2/mm]

Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

Stirrups

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef=298 mm

Ak=0,87 m2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1=814 mm

Qyy=

mxx=

z1=814 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,37E-03 < 1,75E-03 [elastic stage]

= 1473,7 [mm]

= 12067 [kNm]

= 524 [kN]

= 1056 [N/mm2]

= 0,293 [-]

= 39 [kN]

= 6063
[kN]

= 82 [mm]

= 0,10 [-]

= 0,70 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ͵ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵ͵ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



Appendix D  Reinforcement capacity (ULS) | 27  
 

7.3 Bridge B - 6.10b - support 
  



Total hor. normal stress

LC type P [kN] σxx [N/mm2] M [kNm] σxx [N/mm2] σxx [N/mm2]

1 self-weight -67 -0,03

2 ballast -78 -0,04

3a Mobile Max. (LM71) -71 -0,03

3b Mobile Max. (SW/2) -51 -0,02

4 Mobile Min. (SW/2) -253 -0,12

5 Support settelement max 0 0,00

6 Support settelement min 0 0,00

7 Prestress t=0 -22826 -8,65 5045 2,36

8 Prestress t = ∞ -20886 -7,91 4616 2,16

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -20886 -7,91 4400 2,06 -5,85

LC 1 + LC 2 + LC 3a + LC 6 + LC8 -20886 -7,91 4400 2,06 -5,85

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -20886 -7,91 4219 1,97 -5,94

LC 1 + LC 2 + LC 4 + LC 6 + LC8 -20886 -7,91 4219 1,97 -5,94

LC 1 + LC 7 -22826 -8,65 4978 2,33 -6,32

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -20886 -7,91 4421 2,07 -5,84

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 -20886 -7,91 4421 2,07 -5,84

Suspension force Clamping moment Shear force Torsion

LC type Qyy [kN] mxx [kNm] [kN] [kNm]

1 self-weight 53 29 2123 -288

2 ballast 31 19 488 -142

3a Mobile Max. (LM71) 142 -4 1573 -287

3b Mobile Max. (SW/2) 101 29 1502 -205

4 Mobile Min. (SW/2) 101 73 0 -453

5 Support settelement max -265 227 0 -589

6 Support settelement min 265 -227 0 589

7 Prestress t=0 -57 28 -2287 0

8 Prestress t = ∞ -52 26 -2093 0

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -92 297 2092 -1306

LC 1 + LC 2 + LC 3a + LC 6 + LC8 439 -157 2092 -128

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -132 374 519 -1472

LC 1 + LC 2 + LC 4 + LC 6 + LC8 398 -79 519 -294

LC 1 + LC 7 -4 57 -164 -288

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -132 330 2021 -1224

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 398 -124 2021 -46

Forces

Prestress Bending moment

Ͳ
ܾ



Suspension force Clamping moment Shear force Torsion Total amount of stirrups

[mm2/mm] [mm2/mm] [mm2/mm] [mm2/mm] [mm2/mm]

LC 1 + LC 2 + LC 3a + LC 5 + LC8 0,42 1,21 1,00 0,41 2,54

LC 1 + LC 2 + LC 3a + LC 6 + LC8 0,00 0,00 0,00 0,00 0,57

LC 1 + LC 2 + LC 4 + LC 5 + LC8 0,60 1,53 0,25 0,46 2,72

LC 1 + LC 2 + LC 4 + LC 6 + LC8 0,00 0,00 0,00 0,00 0,57

LC 1 + LC 7 0,00 0,00 0,00 0,00 0,57

LC 1 + LC 2 + LC 3b + LC 5 + LC8 0,60 1,35 0,97 0,38 2,82

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 0,00 0,00 0,00 0,00 0,57

U.C.

0,90

LC 1 + LC 2 + LC 3a + LC 5 + LC8

LC 1 + LC 2 + LC 3a + LC 6 + LC8

LC 1 + LC 2 + LC 4 + LC 5 + LC8

LC 1 + LC 2 + LC 4 + LC 6 + LC8

LC 1 + LC 7

LC 1 + LC 2 + LC 3b + LC 5 + LC8

LC 1 + LC 2 + LC 3b + LC 6 + LC 8

Reinforcement

Load combination Longitudinal reinforcement

0,06

3142Outer stirrup 2818

Applied reinforcement

Ø20-100

Load combination

Type of reinforcement Required amount (mm2/m) Applied amount (mm2/m)

0,67

0,67

0,67

0,67

Unity check [-]

Prestress steel

0,67

0,67

0,670,00

0,00

0,00

0,09

0,04

0,09

�ொ �௠ �� ��



1200 [mm]

2200 [mm]

650 [mm]

5000 [mm]

2640000 [mm2]

1,73E+12 [mm4]

808 [mm]

808 [mm]

Parameters

Sectional properties

ݖݕ
Ͳ,ͷ ∗ �௕௥�ௗ௚௘

ܾ௚�௥ௗ௘௥ℎ௚�௥ௗ௘௥ݐ௙௟௢௢௥௙ܾ௟௢௢௥
Ͳ,ͷ ∗ �௬௬



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 2092 [kN]

cover = 35 [mm] = 1306 [kNm]

effective height = 2137 [mm] = 92 [kN/m]

Area = 2,64 [m2] = 297 [kNm/m] Ø20-100    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 4400 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2,0 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 20 16 201 110 4021

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 100 6,28

+

2 628 6,28

= 13143 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 25,7 [◦] (angle compr. diagonal)

= 0,31 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0016

= 2508 [kN]

= 2587 [kN]

= 11570 [kN]

= 3102 [kN]

LC 1 + LC 2 + LC 3a + LC 5 + LC8

Shear capacity concrete

Materials

Loads

Stirrups

Geometry

Longitudinal reinforcement∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
 =

 2
2

0
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z 
=

 0
,9

*
d

=
 1

9
2

3
m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = -5,84 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 3102 [kN] (Concrete shear capacity)

= 11570 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 5724 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 92 [kN/m] = 267 [kN/m]

= 442 [kN] = 1284 [kN]

= 3818 [kN]

92

297

= 0,56 < 1,00 (Capacity of compressive diagonal is sufficient)

= 1,65 > 1,00 (Capacity of concrete insufficient, apply stirrups)

Stirrups due to Shear Force = = 1,00 [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = 0,41 [mm2/mm] = 1,14 [mm2/mm]

Stirrups Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Total capacity concrete

Suspension force Clamping moment

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef = 388 mm

Ak = 1,47 m^2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1 = 1110 mm

Qyy=

mxx=

z1 = 1110 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = 0,42 [mm2/mm]

Stirrups due to clamp. mom. = = 1,21 [mm2/mm]

= 1,30E-03 < 1,75E-03 [elastic stage]

= 1952,9 [mm]

= -216 [kNm]

= 4672 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 103 [kN]

= 5218
[kN]

= 200 [mm]

= 0,06 [-]

= 0,67 [-]

Equilibrium of forces

Suspension reinforcement

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 2092 [kN]

cover = 35 [mm] = 128 [kNm]

effective height = 2137 [mm] = 439 [kN/m]

Area = 2,64 [m2] = 157 [kNm/m] Ø20-100    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 4400 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 20 16 201 110 4021

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 100 6,28

+

2 628 6,28

= 13143 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 25,7 [◦] (angle compr. diagonal)

= 0,31 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0016

= 2508 [kN]

= 2587 [kN]

= 11570 [kN]

= 3102 [kN]

LC 1 + LC 2 + LC 3a + LC 6 + LC8

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
2

3
m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = -5,84 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 3102 [kN] (Concrete shear capacity)

= 11570 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 5724 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 439 [kN/m] = 141 [kN/m]

= 2109 [kN] = 678 [kN]

= 4879 [kN]

439

157

= 0,44 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,95 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,36E-03 < 1,75E-03 [elastic stage]

= 1868,8 [mm]

= -216 [kNm]

= 4963 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 165 [kN]

= 5238
[kN]

= 200 [mm]

= 0,09 [-]

= 0,67 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 519 [kN]

cover = 35 [mm] = 1472 [kNm]

effective height = 2137 [mm] = 132 [kN/m]

Area = 2,64 [m2] = 374 [kNm/m] Ø20-100    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 4219 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 20 16 201 110 4021

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 100 6,28

+

2 628 6,28

= 13143 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 25,7 [◦] (angle compr. diagonal)

= 0,31 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0016

= 2508 [kN]

= 2587 [kN]

= 11570 [kN]

= 3102 [kN]

LC 1 + LC 2 + LC 4 + LC 5 + LC8

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
2

3
m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = -5,84 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 3102 [kN] (Concrete shear capacity)

= 11570 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 5724 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 132 [kN/m] = 337 [kN/m]

= 637 [kN] = 1620 [kN]

= 2776 [kN]

132

374

= 0,50 < 1,00 (Capacity of compressive diagonal is sufficient)

= 1,29 > 1,00 (Capacity of concrete insufficient, apply stirrups)

Stirrups due to Shear Force = = 0,25 [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = 0,46 [mm2/mm] = 1,14 [mm2/mm]

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = 0,60 [mm2/mm]

Stirrups due to clamp. mom. = = 1,53 [mm2/mm]

= 1,11E-03 < 1,75E-03 [elastic stage]

= 2266,8 [mm]

= -397 [kNm]

= 3738 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 0 [kN]

= 5221
[kN]

= 200 [mm]

= 0,00 [-]

= 0,67 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 519 [kN]

cover = 35 [mm] = 294 [kNm]

effective height = 2137 [mm] = 398 [kN/m]

Area = 2,64 [m2] = 79 [kNm/m] Ø20-100    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 4219 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 20 16 201 110 4021

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 100 6,28

+

2 628 6,28

= 13143 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 25,7 [◦] (angle compr. diagonal)

= 0,31 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0016

= 2508 [kN]

= 2587 [kN]

= 11570 [kN]

= 3102 [kN]

LC 1 + LC 2 + LC 4 + LC 6 + LC8

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
2

3
m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = -5,84 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 3102 [kN] (Concrete shear capacity)

= 11570 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 5724 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 398 [kN/m] = 72 [kN/m]

= 1913 [kN] = 346 [kN]

= 2778 [kN]

398

79

= 0,29 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,51 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 9,90E-04 < 1,75E-03 [elastic stage]

= 2522 [mm]

= -397 [kNm]

= 2970 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 0 [kN]

= 5221
[kN]

= 200 [mm]

= 0,00 [-]

= 0,67 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 164 [kN]

cover = 35 [mm] = 288 [kNm]

effective height = 2137 [mm] = 4 [kN/m]

Area = 2,64 [m2] = 57 [kNm/m] Ø20-100    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 4978 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 20 16 201 110 4021

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 100 6,28

+

2 628 6,28

= 13143 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 25,7 [◦] (angle compr. diagonal)

= 0,31 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0016

= 2508 [kN]

= 2587 [kN]

= 11570 [kN]

= 3102 [kN]

LC 1 + LC 7

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
2

3
m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = -5,84 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 3102 [kN] (Concrete shear capacity)

= 11570 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 5724 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 4 [kN/m] = 52 [kN/m]

= 20 [kN] = 250 [kN]

= 434 [kN]

4

57

= 0,09 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,26 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 7,70E-04 < 1,75E-03 [elastic stage]

= 3230 [mm]

= 361 [kNm]

= 622 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 0 [kN]

= 5221
[kN]

= 200 [mm]

= 0,00 [-]

= 0,67 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 2021 [kN]

cover = 35 [mm] = 1224 [kNm]

effective height = 2137 [mm] = 132 [kN/m]

Area = 2,64 [m2] = 330 [kNm/m] Ø20-100    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 4421 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 20 16 201 110 4021

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 100 6,28

+

2 628 6,28

= 13143 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 25,7 [◦] (angle compr. diagonal)

= 0,31 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0016

= 2508 [kN]

= 2587 [kN]

= 11570 [kN]

= 3102 [kN]

Shear capacity concrete

Geometry Loads
LC 1 + LC 2 + LC 3b + LC 5 + LC8

Materials

Longitudinal reinforcement

Stirrups

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
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3
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m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
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Max. tensile bending stress = -5,84 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 3102 [kN] (Concrete shear capacity)

= 11570 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 5724 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 132 [kN/m] = 297 [kN/m]

= 637 [kN] = 1428 [kN]

= 4086 [kN]

132

330

= 0,57 < 1,00 (Capacity of compressive diagonal is sufficient)

= 1,60 > 1,00 (Capacity of concrete insufficient, apply stirrups)

Stirrups due to Shear Force = = 0,97 [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = 0,38 [mm2/mm] = 1,14 [mm2/mm]

Stirrups Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = 0,60 [mm2/mm]

Stirrups due to clamp. mom. = = 1,35 [mm2/mm]

= 1,35E-03 < 1,75E-03 [elastic stage]

= 1888,2 [mm]

= -195 [kNm]

= 4886 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 150 [kN]

= 5233
[kN]

= 200 [mm]

= 0,09 [-]

= 0,67 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 2021 [kN]

cover = 35 [mm] = 46 [kNm]

effective height = 2137 [mm] = 398 [kN/m]

Area = 2,64 [m2] = 124 [kNm/m] Ø20-100    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 4421 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-110    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 20 16 201 110 4021

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 100 6,28

+

2 628 6,28

= 13143 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 25,7 [◦] (angle compr. diagonal)

= 0,31 = 21,8 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0016

= 2508 [kN]

= 2587 [kN]

= 11570 [kN]

= 3102 [kN]

LC 1 + LC 2 + LC 3b + LC 5 + LC8

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ
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2
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m
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Max. tensile bending stress = -5,84 [N/mm2] (Concrete capacity is limited by shear tension failure)

= 3102 [kN] (Concrete shear capacity)

= 11570 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 5724 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 398 [kN/m] = 112 [kN/m]

= 1913 [kN] = 539 [kN]

= 4473 [kN]

398

124

= 0,39 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,85 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,26E-03 < 1,75E-03 [elastic stage]

= 2000,6 [mm]

= -195 [kNm]

= 4503 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 73 [kN]

= 5208
[kN]

= 200 [mm]

= 0,04 [-]

= 0,67 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



Appendix D  Reinforcement capacity (ULS) | 28  
 

7.4 Bridge B - 6.10b – 0,5L 



Total hor. normal stress

LC type P [kN] σxx [N/mm2] M [kNm] σxx [N/mm2] σxx [N/mm2]

1 self-weight 16652 7,79

2 ballast 3767 1,76

3a Mobile Max. (LM71) 12769 5,97

3b Mobile Max. (SW/2) 11994 5,61

4 Mobile Min. (SW/2) -253 -0,12

5 Support settelement max 0 0,00

6 Support settelement min 0 0,00

7 Prestress t=0 -22826 -5,26 -12964 -6,07

8 Prestress t = ∞ -20886 -4,81 -11862 -5,55

LC 1 + LC 2 + LC 3a + LC 5 + LC8 -20886 -4,81 21326 9,98 5,17

LC 1 + LC 2 + LC 3a + LC 6 + LC8 -20886 -4,81 21326 9,98 5,17

LC 1 + LC 2 + LC 4 + LC 5 + LC8 -20886 -4,81 8305 3,89 -0,93

LC 1 + LC 2 + LC 4 + LC 6 + LC8 -20886 -4,81 8305 3,89 -0,93

LC 1 + LC 7 -22826 -5,26 3688 1,73 -3,53

LC 1 + LC 2 + LC 3b + LC 5 + LC8 -20886 -4,81 20551 9,61 4,80

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 -20886 -4,81 20551 9,61 4,80

Suspension force Clamping moment Shear force Torsion

LC type Qyy [kN] mxx [kNm] [kN] [kNm]

1 self-weight 53 14 0 0

2 ballast 31 5 0 0

3a Mobile Max. (LM71) 142 -14 0 0

3b Mobile Max. (SW/2) 101 -26 0 0

4 Mobile Min. (SW/2) 0 12 0 0

5 Support settelement max 1 7 0 203

6 Support settelement min -1 -7 0 -203

7 Prestress t=0 -57 -19 0 0

8 Prestress t = ∞ -52 -17 0 0

LC 1 + LC 2 + LC 3a + LC 5 + LC8 175 -5 0 203

LC 1 + LC 2 + LC 3a + LC 6 + LC8 172 -19 0 -203

LC 1 + LC 2 + LC 4 + LC 5 + LC8 33 21 0 203

LC 1 + LC 2 + LC 4 + LC 6 + LC8 31 7 0 -203

LC 1 + LC 7 -4 -5 0 0

LC 1 + LC 2 + LC 3b + LC 5 + LC8 134 -16 0 203

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 132 -31 0 -203

Forces

Prestress Bending moment



Suspension force Clamping moment Shear force Torsion Total amount of stirrups

[mm2/mm] [mm2/mm] [mm2/mm] [mm2/mm] [mm2/mm]

LC 1 + LC 2 + LC 3a + LC 5 + LC8 0,00 0,00 0,00 0,00 0,57

LC 1 + LC 2 + LC 3a + LC 6 + LC8 0,00 0,00 0,00 0,00 0,57

LC 1 + LC 2 + LC 4 + LC 5 + LC8 0,00 0,00 0,00 0,00 0,57

LC 1 + LC 2 + LC 4 + LC 6 + LC8 0,00 0,00 0,00 0,00 0,57

LC 1 + LC 7 0,00 0,00 0,00 0,00 0,57

LC 1 + LC 2 + LC 3b + LC 5 + LC8 0,00 0,00 0,00 0,00 0,57

LC 1 + LC 2 + LC 3b + LC 6 + LC 8 0,00 0,00 0,00 0,00 0,57

U.C.

0,36

LC 1 + LC 2 + LC 3a + LC 5 + LC8

LC 1 + LC 2 + LC 3a + LC 6 + LC8

LC 1 + LC 2 + LC 4 + LC 5 + LC8

LC 1 + LC 2 + LC 4 + LC 6 + LC8

LC 1 + LC 7

LC 1 + LC 2 + LC 3b + LC 5 + LC8

LC 1 + LC 2 + LC 3b + LC 6 + LC 8

Reinforcement

Load combination Longitudinal reinforcement

0,55

1571Outer stirrup 568

Applied reinforcement

Ø20-200

Load combination

Type of reinforcement Required amount (mm2/m) Applied amount (mm2/m)

0,67

0,67

0,70

0,70

Unity check [-]

Prestress steel

0,71

0,71

0,670,00

0,00

0,00

0,45

0,45

0,56

�ொ �௠ �� ��



1200 [mm]

2200 [mm]

650 [mm]

5000 [mm]

4340000 [mm2]

1,73E+12 [mm4]

808 [mm]

808 [mm]

Parameters

Sectional properties

ݖݕ
Ͳ,ͷ ∗ �௕௥�ௗ௚௘

ܾ௚�௥ௗ௘௥ℎ௚�௥ௗ௘௥ݐ௙௟௢௢௥௙ܾ௟௢௢௥
Ͳ,ͷ ∗ �௬௬



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 0 [kN]

cover = 35 [mm] = 203 [kNm]

effective height = 2137 [mm] = 175 [kN/m]

Area = 2,64 [m2] = 5 [kNm/m] Ø20-200    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 21326 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-220    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2,0 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 10 16 201 220 2011

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 200 3,14

+

2 628 3,14

= 2628 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 21,8 [◦] (angle compr. diagonal)

= 0,31 = 45 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0008

= 2361 [kN]

= 2587 [kN]

= 16778 [kN]

= 3102 [kN]

Stirrups

Geometry

Longitudinal reinforcement

LC 1 + LC 2 + LC 3a + LC 5 + LC8

Shear capacity concrete

Materials

Loads

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

h
 =

 2
2

0
0

m
m

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

z 
=
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,9

*
d

=
 1

9
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3
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m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ



Max. tensile bending stress = 5,17 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 2587 [kN] (Concrete shear capacity)

= 16778 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 8300 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 175 [kN/m] = 4 [kN/m]

= 336 [kN] = 8 [kN]

= 344 [kN]

175

5

= 0,04 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,20 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Stirrups Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Total capacity concrete

Suspension force Clamping moment

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

tef = 388 mm

Ak = 1,47 m^2

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �

z1 = 1110 mm

Qyy=

mxx=

z1 = 1110 mm

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 2,10E-03 > 1,75E-03

= 1381,1 [mm]

= 33189 [kNm]

= 477 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 485 [kN]

= 5576
[kN]

= 76 [mm]

= 0,55 [-]

= 0,71 [-]

Longitudinal Reinforcement

Prestressing steel

[elastic-plastic stage]

Equilibrium of forces

Suspension reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 0 [kN]

cover = 35 [mm] = 203 [kNm]

effective height = 2137 [mm] = 172 [kN/m]

Area = 2,64 [m2] = 19 [kNm/m] Ø20-200    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 21326 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-220    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 10 16 201 220 2011

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 200 3,14

+

2 628 3,14

= 2628 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 21,8 [◦] (angle compr. diagonal)

= 0,31 = 45 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0008

= 2361 [kN]

= 2587 [kN]

= 16778 [kN]

= 3102 [kN]

LC 1 + LC 2 + LC 3a + LC 6 + LC8

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
2

3
m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = 5,17 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 2587 [kN] (Concrete shear capacity)

= 16778 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 8300 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 172 [kN/m] = 17 [kN/m]

= 331 [kN] = 33 [kN]

= 364 [kN]

172

19

= 0,05 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,21 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 2,11E-03 > 1,75E-03

= 1379,8 [mm]

= 33189 [kNm]

= 497 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 489 [kN]

= 5579
[kN]

= 76 [mm]

= 0,56 [-]

= 0,71 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

[elastic-plastic stage]

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 0 [kN]

cover = 35 [mm] = 203 [kNm]

effective height = 2137 [mm] = 33 [kN/m]

Area = 2,64 [m2] = 21 [kNm/m] Ø20-200    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 8305 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-220    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 10 16 201 220 2011

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 200 3,14

+

2 628 3,14

= 2628 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 21,8 [◦] (angle compr. diagonal)

= 0,31 = 45 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0008

= 2361 [kN]

= 2587 [kN]

= 16778 [kN]

= 3102 [kN]

LC 1 + LC 2 + LC 4 + LC 5 + LC8

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
2

3
m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = 5,17 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 2587 [kN] (Concrete shear capacity)

= 16778 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 8300 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 33 [kN/m] = 19 [kN/m]

= 63 [kN] = 37 [kN]

= 100 [kN]

33

21

= 0,03 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,15 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Clamping moment

Minimum reinforcement

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 8,90E-04 < 1,75E-03 [elastic stage]

= 2870,7 [mm]

= 20167 [kNm]

= 233 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 0 [kN]

= 5221
[kN]

= 76 [mm]

= 0,00 [-]

= 0,67 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 0 [kN]

cover = 35 [mm] = 203 [kNm]

effective height = 2137 [mm] = 31 [kN/m]

Area = 2,64 [m2] = 7 [kNm/m] Ø20-200    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 8305 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-220    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 10 16 201 220 2011

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 200 3,14

+

2 628 3,14

= 2628 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 21,8 [◦] (angle compr. diagonal)

= 0,31 = 45 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0008

= 2361 [kN]

= 2587 [kN]

= 16778 [kN]

= 3102 [kN]

LC 1 + LC 2 + LC 4 + LC 6 + LC8

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
2

3
m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = 5,17 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 2587 [kN] (Concrete shear capacity)

= 16778 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 8300 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 31 [kN/m] = 6 [kN/m]

= 59 [kN] = 12 [kN]

= 71 [kN]

31

7

= 0,03 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,15 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Clamping moment

Minimum reinforcement

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 8,90E-04 < 1,75E-03 [elastic stage]

= 2874,7 [mm]

= 20167 [kNm]

= 204 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 0 [kN]

= 5221
[kN]

= 76 [mm]

= 0,00 [-]

= 0,67 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 0 [kN]

cover = 35 [mm] = 0 [kNm]

effective height = 2137 [mm] = 4 [kN/m]

Area = 2,64 [m2] = 5 [kNm/m] Ø20-200    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 3688 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-220    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 10 16 201 220 2011

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 200 3,14

+

2 628 3,14

= 2628 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 21,8 [◦] (angle compr. diagonal)

= 0,31 = 45 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0008

= 2361 [kN]

= 2587 [kN]

= 16778 [kN]

= 3102 [kN]

LC 1 + LC 7

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
2

3
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m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = 5,17 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 2587 [kN] (Concrete shear capacity)

= 16778 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 8300 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 4 [kN/m] = 4 [kN/m]

= 8 [kN] = 8 [kN]

= 16 [kN]

4

5

= 0,00 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,00 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Clamping moment

Minimum reinforcement

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 7,10E-04 < 1,75E-03 [elastic stage]

= 3570,6 [mm]

= 15550 [kNm]

= 16 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 0 [kN]

= 5221
[kN]

= 76 [mm]

= 0,00 [-]

= 0,67 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 0 [kN]

cover = 35 [mm] = 203 [kNm]

effective height = 2137 [mm] = 134 [kN/m]

Area = 2,64 [m2] = 16 [kNm/m] Ø20-200    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 20551 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-220    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 10 16 201 220 2011

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 200 3,14

+

2 628 3,14

= 2628 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 21,8 [◦] (angle compr. diagonal)

= 0,31 = 45 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0008

= 2361 [kN]

= 2587 [kN]

= 16778 [kN]

= 3102 [kN]

Shear capacity concrete

Geometry Loads
LC 1 + LC 2 + LC 3b + LC 5 + LC8

Materials

Longitudinal reinforcement

Stirrups

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣

ோܸௗ,௖ = � ∗ ܾ௪ܵ ∗ ௖݂௧ௗଶ+∝௟∗ �௖௣ ∗ ௖݂௧ௗ

∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2

0
0

m
m

z 
=

 0
,9

*
d

=
 1

9
2

3
m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = 5,17 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 2587 [kN] (Concrete shear capacity)

= 16778 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 8300 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 134 [kN/m] = 14 [kN/m]

= 258 [kN] = 27 [kN]

= 285 [kN]

134

16

= 0,04 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,19 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Stirrups Minimum reinforcement

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Total capacity concrete

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,95E-03 > 1,75E-03

= 1442,5 [mm]

= 32413 [kNm]

= 418 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 396 [kN]

= 5508
[kN]

= 76 [mm]

= 0,45 [-]

= 0,70 [-]

Prestressing steel

Suspension reinforcement

Equilibrium of forces

[elastic-plastic stage]

Longitudinal Reinforcement

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
݁௣ଵ



height h = 2200 [mm] = -20886 [kN]

width b = 1200 [mm] = 0 [kN]

cover = 35 [mm] = 203 [kNm]

effective height = 2137 [mm] = 132 [kN/m]

Area = 2,64 [m2] = 31 [kNm/m] Ø20-200    (outer stirrup)

Area prestressing tendon Ap = 2700 [mm2] = 20551 [kNm]

compressive strength fck = 35 [N/mm2] fcd = 23,3 [N/mm2]

yield strength stirrups fyk = 500 [N/mm2] fywd = 435 [N/mm2] Ø16-220    (flexural reinforcement)

yield strength suspension fyk,sup. = 220 [N/mm2] fctd = 1,33 [N/mm2]

char. tensile strength fctk;0,05 = 2 [N/mm2] fpd = 1448 [N/mm2]

safety factor reinf. γs = 1,15 [-] Es = 210000 [N/mm2] b=1200mm

safety factor concrete γc = 1,50 [-] Ep = 205000 [N/mm2]

safety factor prestress γp = 1,10 [-] n.a. = 808 mm

Iyy = 1,06E+12 mm4

S = 1,16E+09 mm3

n

[rebars] [mm] [mm2] [mm] [mm2/mm]

Longitudinal reinfor. 10 16 201 220 2011

n

[sections] [mm] [mm2] [mm] [mm2/mm]

Outer stirrups 2 20 628 200 3,14

+

2 628 3,14

= 2628 [kN]

Coefficient Crd,c = 0,12

Coefficient k1 = 0,15 z = 1923 [mm]

Coefficient v1=v = 0,52 [N/mm2] = 90 [◦] (angle of the stirrups)

Coefficient k = 1,31 = 21,8 [◦] (angle compr. diagonal)

= 0,31 = 45 [◦] (assumed angle comp. diagonal)

= 4,66 [N/mm2]

= 4,66 [N/mm2]

= 1,20 [-]

= 0,0008

= 2361 [kN]

= 2587 [kN]

= 16778 [kN]

= 3102 [kN]

LC 1 + LC 2 + LC 3b + LC 6 + LC 8

Materials

Longitudinal reinforcement

Stirrups

Geometry Loads

Shear capacity concrete

∅௟௢௡௚ �௟௢௡௚ ௟௢௡௚ݏ �௦௟

∅௦௧௣ �௦௧௣ ௙௟௥ݏ �௦௪

௠�௡ݒ = Ͳ,Ͳ͵ͷ ∗ �ଷଶ ∗ ௖݂௞ଵ/ଶ�௖௣,௨௣௣௘௥ ௟�௠�௧�௖௣ = �ܰௗ/ሺܾℎሻ
∝௖௪
ோܸௗ,௖ = �ோௗ,௖ ∗ � ∗ ͳͲͲ ∗ �௟ ∗ ௖݂௞ ଵଷ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀�௟ = �௦௟/ሺܾ ∗ ݀ሻ
ோܸௗ,௠�௡ = ௠�௡ݒ + �ଵ ∗ �௖௣ ∗ ܾ ∗ ݀
ோܸௗ,௠௔௫ = ∝௖௪∗ ܾ௪ ∗ ݖ ∗ ଵݒ ∗ ௖݂ௗcot � + tan�

�௔௦௦௨௠.௔௡௚௟௘.�௦௧௣
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∞ܸܲ�ௗ�ܶௗܳ௬௬�௫௫

ோܸௗ,௦ = ݖ ∗ ௬݂௪ௗ ∗ cot � ∗ �௦௪ݏ
�ௗ�௔௚௢௡௔௟ ʹͳ,8° ≤ � ≤ Ͷͷ°

ௗ�ܯ

h
 =

 2
2
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0
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m

z 
=
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,9
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=
 1
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m

m

compression zone

௦ܰ௧௘௘௟

௖ܰ௢௡௖௥௘௧௘
ܨ

longitudinal reinforcement

stirru
p

s



Max. tensile bending stress = 5,17 [N/mm2] (Concrete capacity is limited by flexural shear failure)

= 2587 [kN] (Concrete shear capacity)

= 16778 [kN] (Capacity compressive diagonal)

= 2,64 [m2]

= 6,8 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

= 1519 [kN] (Concrete torsion capacity)

= 8300 [kN] (Capacity compressive diagonal)

= 1110 [mm]

= 132 [kN/m] = 28 [kN/m]

= 253 [kN] = 54 [kN]

= 307 [kN]

132

31

= 0,04 < 1,00 (Capacity of compressive diagonal is sufficient)

= 0,20 < 1,00 (Minimum amount of reinforcement is allowed)

Stirrups due to Shear Force = = Min. Reinf. [mm2/mm] = 0,000947 [-]

Stirrups due to Torsion = = Min. Reinf. [mm2/mm] = 1,14 [mm2/mm]

Total capacity concrete

Stirrups

Shear capacity concrete

Torsion capacity concrete

Suspension force Clamping moment

Minimum reinforcement

ோܸௗ,௖ோܸௗ,௠௔௫

௘௙ݐ = ௘௙,௟௢௪௘௥ݐݑ/� ௟�௠�௧ = ʹ ∗ ሺℎ − ݀ሻ
ܽ݁ݎ� ሺ�ሻܲ݁ݎ݁ݐ݁��ݎ ሺݑሻ
�௞
ோܶௗ,௖ = ௘௙ݐ ∗ ௖݂௧ௗ ∗ ʹ ∗ �௞
ோܶௗ,௠௔௫ = ʹ ∗ ݒ ∗∝௖௪∗ ௖݂ௗ ∗ �௞ ∗ ௘௙ݐ ∗ sin� ∗ cos�

�ܶௗோܶௗ,௠௔௫ + �ܸௗ,௧௢௧ோܸௗ,௠௔௫
�ܶௗோܶௗ,௖ + �ܸௗோܸௗ,௖

ଵݖ = ܾ − ʹ ∗ ܿ − ʹ ∗ Ͳ,ͷ ∗ ∅௦௧௣
�ܸௗ,௖௟௔௠௣. = �௫௫ݖଵ

�� = �ܸௗݖ ∗ ௬݂௪ௗ ∗ cot � �௪,௠�௡ = Ͳ,Ͳ8 ∗ ௖݂௞௬݂௞�௦,௠�௡�� = �ܶௗʹ ∗ �௞ ∗ ௬݂௪ௗ ∗ cot �

௞ݑ

�ܸௗ,௦௨௣,௧௢௧ = �ܸௗ,௦௨௣ ∗ z ∗ cot � �ܸௗ,௖௟௔௠௣,௧௢௧ = �ܸௗ,௖௟௔௠௣ ∗ ݖ ∗ cot �
Qyy=

mxx=

�ܸௗ,௦௨௣
�ܸௗ,௧௢௧ = �ܸௗ + �ܸௗ,௦௨௣,௧௢௧ + �ܸௗ,௖௟௔௠௣,௧௢௧

tef = 388 mm

Ak = 1,47 m^2

z1 = 1110 mm z1 = 1110 mm



Stirrups due to susp. force = = Min. Reinf. [mm2/mm]

Stirrups due to clamp. mom. = = Min. Reinf. [mm2/mm]

= 1,95E-03 > 1,75E-03

= 1440,9 [mm]

= 32413 [kNm]

= 440 [kN]

= 967 [N/mm2]

= 0,310 [-]

= 398 [kN]

= 5510
[kN]

= 76 [mm]

= 0,45 [-]

= 0,70 [-]

Suspension reinforcement

Equilibrium of forces

Longitudinal Reinforcement

Prestressing steel

[elastic-plastic stage]

�ொ = �ܸௗ,௦௨௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣�௠ = �ܸௗ,௖௟௔௠௣ͳͲͲͲ ∗ ௬݂௞,௦௨௣

௦ܰ = �௦ ∗ ௦ܧ ∗ ௦ߝ
௣ܰଵ = ʹ ∗ �௣ ∗ ሺ�௣∞ + ௣ଵߝ∆ ∗ ௣ܧ ∗ �ଵሻ

ௗ�ܯ ∞௉ܯ−
�ܸௗ = �ܸௗ,௧௢௧ + �ܶௗ ∗ ʹݖ ∗ �௞

ܷ. �.= ௦ܰ�௦ ∗ ݀ݓݕ݂
ܷ. �.= ௣ܰଵʹ ∗ �௣ ∗ ݂�݀

ݔ௖ߝ
�௣∞ߞଵ = ߞ ∗ ∅௟௢௡௚∅௣௥௘௦௧௥௘௦௦
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Appendix E – Concrete stresses (SLS)  
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1 Introduction 
A newly constructed railway bridge should fulfil the requirements set by the OVS. 
At serviceability limit state, the maximum tensile bending stresses in the 
prestressed girders are checked for a characteristic, frequent and quasi-permanent 
load combination. The OVS defines for each load combination the maximum 
allowable stress: 
 

• Quasi-permanent: No tension is allowed in the entire cross-section. 
 

• Frequent: No tensile stresses are allowed in the tendon zone and for the non-
tendon zone the stresses should be limited to: 𝜎𝑏 < 0,5 ∗ 𝑓𝑐𝑡𝑘;0,05 = 1,0 𝑁/𝑚𝑚2. 

 

• Characteristic: In the tendon zone the tensile stresses are limited to            
𝜎𝑏 < 0,5 ∗ 𝑓𝑐𝑡𝑘;0,05 = 1,0 𝑁/𝑚𝑚2 and in the non-tendon zone the tensile stresses 

should remain smaller than: 𝜎𝑏 < 0,75 ∗ 𝑓𝑐𝑡𝑘;0,05 = 1,5 𝑁/𝑚𝑚2 

 
The tensile bending stresses in bridge A and B are determined at midspan (0,5L) 
because here the largest values are expected. Once the requirements of the OVS are 
met, one can assume the girder remains uncracked and that the requirements 
regarding crack width are met. However it could be possible, due to the heavier load 
models from the Eurocode, that the requirements are not met. In that case the 
girder must be assumed as cracked and the concrete tensile strength goes to zero. 
The cracked girder approach from appendix D then needs to be used to verify 
whether the crack widths remain within the acceptable limits.  
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2 Concrete stresses 
Eurocode 0 (14) accounts for the characteristic, frequent and quasi-permanent load 
combination at serviceability limit state (Table E-1). The self-weight and ballast are 
the unfavourable permanent loads, where LM71 forms the leading variable load. In 
SLS all partial load factors can be taken equal to 1,0. 
 
Table E-1: Load combinations at serviceability limit state 

Load Combination 

 

Permanent loading 𝐺𝑑 

 

Variable load 𝑄𝑑 

Unfavourable Favourable Leading  Others 

Characteristic 𝐺𝑘,𝑗,𝑠𝑢𝑝 𝐺𝑘,𝑗,𝑖𝑛𝑓 𝑄𝑘,1 𝜓0,𝑖𝑄𝑘,𝑖 

Frequent 𝐺𝑘,𝑗,𝑠𝑢𝑝 𝐺𝑘,𝑗,𝑖𝑛𝑓 𝜓1,1𝑄𝑘,1 𝜓2,𝑖𝑄𝑘,𝑖 

Quasi-permanent 𝐺𝑘,𝑗,𝑠𝑢𝑝 𝐺𝑘,𝑗,𝑖𝑛𝑓 𝜓2,1𝑄𝑘,1 𝜓2,𝑖𝑄𝑘,𝑖 

 
Table A2.3 in Eurocode 0 defines the factors for simultaneous load action. A 

summary of the relevant factors is presented in Table E-2. 
 
Table E-2: Simultaneity factors for a single track bridge 

Simultaneity factor 

 

Self-weight Prestress Settlement 

support 

LM71 

𝜓0,1 1,00 1,00 1,00 0,80 

𝜓1,1 1,00 1,00 1,00 0,80 

𝜓2,1 1,00 1,00 1,00 0,00 

 
Let’s consider a cross-section of bridge A at 0,5L. The characteristic load 
combination could be expressed as: 

 

𝛾𝐺 ∗ 𝐺𝑘 + 𝛾𝑄 ∗ 𝑄𝑘 + 𝛾𝑃 ∗ 𝑃 
 

 

 

 
 

Figure E- 1: Bending stresses in bridge A in the tendon and non-tendon zone 

  

Parameters 

𝑀𝐺 = 4978 𝑘𝑁𝑚 

𝑀𝑄 = 4381 𝑘𝑁𝑚 

𝑀𝑃 = −4810 𝑘𝑁𝑚 

𝑃∞ = −12038 𝑘𝑁 

𝐴𝑐 = 2,75 𝑚2 
𝐼𝑦𝑦 = 0,663 𝑚4 

𝑧 = 629 𝑚𝑚 

ℎ = 1750 𝑚𝑚 
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A maximum tensile stress is found in the non-tendon zone by only taking self-weight 
and prestress into account. Contrastingly the maximum tensile stresses in the 
tendon zone is formed by a combination of self-weight, prestress and LM71: 
 

𝜎𝑏,𝑛𝑜𝑛−𝑡𝑒𝑛𝑑𝑜𝑛 = −
𝑃

𝐴𝑐

−
(𝑀𝐺 + 𝑀𝑃) ∗ (ℎ − 𝑧)

𝐼𝑦𝑦

= −4,66 𝑁/𝑚𝑚2 < 1,50 𝑁/𝑚𝑚2  

 

𝜎𝑏,𝑡𝑒𝑛𝑑𝑜𝑛 = −
𝑃

𝐴𝑐

+
(𝑀𝐺 + 𝑀𝑃 + 𝑀𝑄) ∗ 𝑧

𝐼𝑦𝑦

= −0,06 𝑁/𝑚𝑚2 < 1,00 𝑁/𝑚𝑚2 

 

In a similar way the characteristic, frequent and quasi-permanent load combinations 

are analysed for bridge A and B. The final results are presented in Table E-3 and 

Table E-4 for bridge A and B respectively. It can be concluded that girder A meets 

the requirements of the OVS and therefore remains uncracked. Girder B however 
does not meet the requirements for the characteristic and frequent load combination. 
An additional calculation on girder B is performed to verify whether or not the crack 

widths stay within the acceptable limits.  
 
 
Table E-3: Maximum tensile bending stress in bridge A (section 0,5L) 

Load Combination 
 

Bridge A 
 

Tendon Non-Tendon U.C. 

Characteristic −0,06 < 1,00 𝑁/𝑚𝑚2 −4,66 < 1,50 𝑁/𝑚𝑚2 O.K. 

Frequent −0,89 < 0,00 𝑁/𝑚𝑚2 −4,66 < 1,00 𝑁/𝑚𝑚2 O.K. 

Quasi-permanent −4,22 < 0,00 𝑁/𝑚𝑚2 −4,66 < 0,00 𝑁/𝑚𝑚2 O.K. 

 
  
Table E-4: Maximum tensile bending stress in Bridge B (section 0,5L) 

Load Combination 

 

Bridge B 

 

Tendon Non-Tendon U.C. 

Characteristic 1,30 > 1,00 𝑁/𝑚𝑚2 −8,48 < 1,50 𝑁/𝑚𝑚2 NOT O.K. 

Frequent 0,50 > 0,00 𝑁/𝑚𝑚2 −8,48 < 1,00 𝑁/𝑚𝑚2 NOT O.K. 

Quasi-permanent −2,68 < 0,00 𝑁/𝑚𝑚2 −8,48 < 0,00 𝑁/𝑚𝑚2 O.K. 
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3 Cracked girder 
With the girder being cracked, tensile forces in the cross-section need to be 
transferred by the applied longitudinal reinforcement and prestress steel. Similar to 
the approach in appendix D, the concrete compressive strain (𝜀𝑐) and compression 
zone height (𝑥) are the two unknowns which are solved for equilibrium of horizontal 
forces and bending moment.  
 
 

 
Figure E-2: Internal force distribution in a cracked girder at midspan (0,5L) 

The strains are expressed as: 
 

𝜀𝑠 =
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥) 

 

∆𝜀𝑝1 =  
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥 − 𝑒𝑝1) 

 

∆𝜀𝑝2 =  
𝜀𝑐

𝑥
∗ (𝑑 − 𝑥 − 𝑒𝑝2) 

 
The forces are expressed as: 
 
𝑁𝑠 = 𝐴𝑠 ∗ 𝐸𝑠 ∗ 𝜀𝑠 
 
𝑁𝑝1 = 4 ∗ 𝐴𝑝 ∗ (𝜎𝑝∞ + ∆𝜀𝑝1 ∗ 𝐸𝑝 ∗ 𝜉1) 

 
𝑁𝑝2 = 4 ∗ 𝐴𝑝 ∗ (𝜎𝑝∞ + ∆𝜀𝑝2 ∗ 𝐸𝑝 ∗ 𝜉1) 

 

𝑁𝑐 = 0,5 ∗
𝜀𝑐

1,75 ∗ 10−3
∗ 𝑓𝑐𝑑 ∗ 𝑏 ∗ 𝑥 

 
 
With a value of 24923 𝑘𝑁𝑚 the characteristic load combination (at midspan) results 
in the largest bending moment in girder B. Applying the equilibrium conditions the 
height of the compression zone and the compressive strain goes to 2252 𝑚𝑚 and 
1,15 ‰ respectively. It can be concluded that height of the compression is larger 

than the height of the girder. For that it can be safely said that the entire cross-
section is under compression and the requirements regarding crack width are met.  
 
 
 
 

Parameters 

𝐴𝑝 = 2700 𝑚𝑚2 

𝐴𝑓𝑙𝑒𝑥 = 10∅16 

𝐸𝑠 = 210 𝐺𝑃𝑎 

𝐸𝑝 = 205 𝐺𝑃𝑎 

𝜉1 = 0,31 

𝑃∞ = 20886𝑘𝑁 

𝑑 = 2137 𝑚𝑚 

𝑒𝑝1 = 76 𝑚𝑚 

𝑒𝑝2 = 284 𝑚𝑚 

𝑓𝑝𝑑 = 1448 𝑁/𝑚𝑚2 

𝑓𝑐𝑑 = 23,3 𝑁/𝑚𝑚2 
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4 Spreadsheets for concrete stresses 
4.1 Stresses: Bridge A  - characteristic loading – 0,5L 
  



Bending moment

LC type P [kN] σxx [N/mm2] M [kNm] Non-Tendon Tendon Non-Tendon Tendon

1 self-weight 3755

2 ballast 1223

3 Conc. Mobile Load 3015

5a Contin. Mobile Load 1366

6 Support settelement max 0

7 Support settelement min 0

8 Prestress t=0 -13200 -4,80 -5274

9 Prestress t = ∞ -12038 -4,38 -4810

LC 1 + LC 2 + LC 9 -12038 -4,38 169 -4,66 O.K.

LC 1 + LC 2 + LC 3 + LC 5a + LC 6 + LC 9 -12038 -4,38 4551 -0,06 O.K.

LC 1 + LC 2 + LC 3 + LC 5a + LC 7 + LC 9 -12038 -4,38 4551 -0,06 O.K.

900 [mm] 2,00 [N/mm2]

1750 [mm] 1,00 [N/mm2]

2750000 [mm2] 1,50 [N/mm2]

6,63E+11 [mm4]

629 [mm]

629 [mm]

1121 [mm]

Sectional properties

Prestress  σb [N/mm2] U.C. [-]

Maximum bending stress

Load combination: Characteristic

Parameters

𝑦

0,5 ∗ 𝐴𝑏𝑟𝑖𝑑𝑔𝑒

𝑏𝑔𝑖𝑟𝑑𝑒𝑟

ℎ𝑔𝑖𝑟𝑑𝑒𝑟

0,5 ∗ 𝐼𝑦𝑦

𝑓𝑐𝑡𝑘;0,05 =

𝜎𝑏,𝑚𝑎𝑥,𝑡𝑒𝑛𝑑𝑜𝑛 =

𝑧𝑏𝑜𝑡𝑡𝑜𝑚

𝑧𝑡𝑜𝑝

𝜎𝑏,𝑚𝑎𝑥,𝑛𝑜𝑛−𝑡𝑒𝑛𝑑𝑜𝑛 =



qbridge 138 [kN/m] x 11,50 [m]

0,5q 68,8 [kN/m] c 1,0 [m]

Av 790,6 [kN] l 23,0 [m]

Bv 790,6 [kN] lsup. 21,0 [m]

γG 1,00 [-] (NEN 1990 table A2.3)

ψ0 1,00 [-]

Mx 3755,5 [kNm]

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

LC 1

𝑥

𝑥

𝑙

𝑐

𝑞



q 11,7 [kN/m2] x 11,50 [m]

0,5q 23,4 [kN/m] c 1,0 [m]

F 111 [kN] l 23,0 [m]

0,5F 55 [kN] lsup. 21,0 [m]

Av 324,5 [kN] lctc 4,0 [m]

Bv 324,5 [kN]

γG 1,00 [-]

ψ0 1,00 [-]

Mx 1222,8 [kNm]

LC 2

Loading (long. direction)

Bending moment

Load & Reaction forces Measurements

𝑥

𝑥

𝑙

𝑐

𝑞 𝐹𝐹



q 199,2 [kN/m] x 11,50 [m]

0,5q 99,6 [kN/m] a 6,9 [m]

Av 343,6 [kN] b 7,1 [m]

Bv 343,6 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

α 1,21 [-] lsup. 21,0 [m]

Mx 3015,4 [kNm]

LC 3

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑞

=

4,8 𝑚 4 ∗ 250 𝑘𝑁

𝑥

𝑥
𝑎 𝑏 𝑐𝑏



q 110 [kN/m] x 11,50 [m]

0,5q 55 [kN/m] a 6,9 [m]

Av 387,6 [kN] b 7,1 [m]

Bv 387,6 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

α 1,21 [-] lsup. 21,0 [m]

Mx 1366,4 [kNm]

LC 5a

Loading (long. direction)

Bending moment

Load & Reaction forces Measurements

𝑞𝑥

𝑥

𝑎 𝑏 𝑐

𝑞

𝑏



∆ -5 [mm] x 11,5 [m]

Av 0,0 [kN] a 10,5 [m]

Bv 0,0 [kN] c 1,0 [m]

yG 1,00 [-] l 23,0 [m]

ψ0 1,00 [-] lsup. 21,0 [m]

Mx 0,0 [kNm]

LC 6

Loading (long. direction)

Deflection & Reaction forces Measurements

Bending moment

𝑥

𝑥 𝑎 𝑐

∆= 5 𝑚𝑚



F1 1115 [kN] x 11,50 [m]

F2 -13200 [kN] c 1,0 [m]

M1 294 [kNm] l 23,0 [m]

q -101 [kN] lsup. 21,0 [m]

Av 55 [kN]

Bv 55 [kN]

yP 1,00 [-]

ψ0 1,00 [-]

Mx -5273,6 [kNm]

LC 8

Loading (long. direction)

Bending moment

Load & Reaction forces Measurements

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞



F1 1016,88 [kN] x 11,50 [m]

F2 -12038 [kN] c 1,0 [m]

M1 268 [kNm] l 23,0 [m]

q -92 [kN] lsup. 21,0 [m]

Av 50 [kN]

Bv 50 [kN]

yP 1,00 [-]

P∞/P0 0,912 [-]

ψ0 1,00 [-]

Mx -4809,5 [kNm]

LC 9

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞
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4.2 Stresses: Bridge A  - frequent loading – 0,5L 
  



Bending moment

LC type P [kN] σxx [N/mm2] M [kNm] Non-Tendon Tendon Non-Tendon Tendon

1 self-weight 3755

2 ballast 1223

3 Conc. Mobile Load 2412

5a Contin. Mobile Load 1093

6 Support settelement max 0

7 Support settelement min 0

8 Prestress t=0 -13200 -4,80 -5274

9 Prestress t = ∞ -12038 -4,38 -4810

LC 1 + LC 2 + LC 9 -12038 -4,38 169 -4,66 O.K.

LC 1 + LC 2 + LC 3 + LC 5a + LC 6 + LC 9 -12038 -4,38 3674 -0,89 O.K.

LC 1 + LC 2 + LC 3 + LC 5a + LC 7 + LC 9 -12038 -4,38 3674 -0,89 O.K.

900 [mm] 2,00 [N/mm2]

1750 [mm] 0,00 [N/mm2]

2750000 [mm2] 1,00 [N/mm2]

6,63E+11 [mm4]

629 [mm]

629 [mm]

1121 [mm]

Sectional properties

Prestress  σb [N/mm2] U.C. [-]

Maximum bending stress

Load combination: Frequent

Parameters

𝑦

0,5 ∗ 𝐴𝑏𝑟𝑖𝑑𝑔𝑒

𝑏𝑔𝑖𝑟𝑑𝑒𝑟

ℎ𝑔𝑖𝑟𝑑𝑒𝑟

0,5 ∗ 𝐼𝑦𝑦

𝑓𝑐𝑡𝑘;0,05 =

𝜎𝑏,𝑚𝑎𝑥,𝑡𝑒𝑛𝑑𝑜𝑛 =

𝑧𝑏𝑜𝑡𝑡𝑜𝑚

𝑧𝑡𝑜𝑝

𝜎𝑏,𝑚𝑎𝑥,𝑛𝑜𝑛−𝑡𝑒𝑛𝑑𝑜𝑛 =



qbridge 138 [kN/m] x 11,50 [m]

0,5q 68,8 [kN/m] c 1,0 [m]

Av 790,6 [kN] l 23,0 [m]

Bv 790,6 [kN] lsup. 21,0 [m]

γG 1,00 [-] (NEN 1990 table A2.3)

ψ1 1,00 [-]

Mx 3755,5 [kNm]

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

LC 1

𝑥

𝑥

𝑙

𝑐

𝑞



q 11,7 [kN/m2] x 11,50 [m]

0,5q 23,4 [kN/m] c 1,0 [m]

F 111 [kN] l 23,0 [m]

0,5F 55 [kN] lsup. 21,0 [m]

Av 324,5 [kN] lctc 4,0 [m]

Bv 324,5 [kN]

γG 1,00 [-]

ψ1 1,00 [-]

Mx 1222,8 [kNm]

LC 2

Loading (long. direction)

Bending moment

Load & Reaction forces Measurements

𝑥

𝑥

𝑙

𝑐

𝑞 𝐹𝐹



q 159,4 [kN/m] x 11,50 [m]

0,5q 79,7 [kN/m] a 6,9 [m]

Av 274,9 [kN] b 7,1 [m]

Bv 274,9 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

ψ1 0,80 [-] lsup. 21,0 [m]

α 1,21 [-]

Mx 2412,4 [kNm]

LC 3

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑞

=

4,8 𝑚 4 ∗ 250 𝑘𝑁

𝑥

𝑥
𝑎 𝑏 𝑐𝑏



q 88 [kN/m] x 11,50 [m]

0,5q 44 [kN/m] a 6,9 [m]

Av 310,1 [kN] b 7,1 [m]

Bv 310,1 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

ψ1 0,80 [-] lsup. 21,0 [m]

α 1,21 [-]

Mx 1093,1 [kNm]

LC 5a

Loading (long. direction)

Bending moment

Load & Reaction forces Measurements

𝑞𝑥

𝑥

𝑎 𝑏 𝑐

𝑞

𝑏



∆ -5 [mm] x 11,5 [m]

Av 0,0 [kN] a 10,5 [m]

Bv 0,0 [kN] c 1,0 [m]

yG 1,00 [-] l 23,0 [m]

ψ1 1,00 [-] lsup. 21,0 [m]

Mx 0,0 [kNm]

LC 6

Loading (long. direction)

Deflection & Reaction forces Measurements

Bending moment

𝑥

𝑥 𝑎 𝑐

∆= 5 𝑚𝑚



F1 1115 [kN] x 11,50 [m]

F2 -13200 [kN] c 1,0 [m]

M1 294 [kNm] l 23,0 [m]

q -101 [kN] lsup. 21,0 [m]

Av 55 [kN]

Bv 55 [kN]

yP 1,00 [-]

ψ1 1,00 [-]

Mx -5273,6 [kNm]

LC 8

Loading (long. direction)

Bending moment

Load & Reaction forces Measurements

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞



F1 1016,88 [kN] x 11,50 [m]

F2 -12038 [kN] c 1,0 [m]

M1 268 [kNm] l 23,0 [m]

q -92 [kN] lsup. 21,0 [m]

Av 50 [kN]

Bv 50 [kN]

yP 1,00 [-]

P∞/P0 0,912 [-]

ψ1 1,00 [-]

Mx -4809,5 [kNm]

LC 9

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞
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4.3 Stresses: Bridge A  - quasi-permanent loading – 0,5L 
  



Bending moment

LC type P [kN] σxx [N/mm2] M [kNm] Non-Tendon Tendon Non-Tendon Tendon

1 self-weight 3755

2 ballast 1223

3 Conc. Mobile Load 0

5a Contin. Mobile Load 0

6 Support settelement max 0

7 Support settelement min 0

8 Prestress t=0 -13200 -4,80 -5274

9 Prestress t = ∞ -12038 -4,38 -4810

LC 1 + LC 2 + LC 9 -12038 -4,38 169 -4,66 O.K.

LC 1 + LC 2 + LC 3 + LC 5a + LC 6 + LC 9 -12038 -4,38 169 -4,22 O.K.

LC 1 + LC 2 + LC 3 + LC 5a + LC 7 + LC 9 -12038 -4,38 169 -4,22 O.K.

900 [mm] 2,00 [N/mm2]

1750 [mm] 0,00 [N/mm2]

2750000 [mm2]

6,63E+11 [mm4]

629 [mm]

629 [mm]

1121 [mm]

Sectional properties

Prestress  σb [N/mm2] U.C. [-]

Maximum bending stress

Load combination: Quasi-permanent 

Parameters

𝑦

0,5 ∗ 𝐴𝑏𝑟𝑖𝑑𝑔𝑒

𝑏𝑔𝑖𝑟𝑑𝑒𝑟

ℎ𝑔𝑖𝑟𝑑𝑒𝑟

0,5 ∗ 𝐼𝑦𝑦

𝑓𝑐𝑡𝑘;0,05

𝜎𝑏,𝑚𝑎𝑥 = 0

𝑧𝑏𝑜𝑡𝑡𝑜𝑚

𝑧𝑡𝑜𝑝



qbridge 138 [kN/m] x 11,50 [m]

0,5q 68,8 [kN/m] c 1,0 [m]

Av 790,6 [kN] l 23,0 [m]

Bv 790,6 [kN] lsup. 21,0 [m]

γG 1,00 [-] (NEN 1990 table A2.3)

ψ2 1,00 [-]

Mx 3755,5 [kNm]

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

LC 1

𝑥

𝑥

𝑙

𝑐

𝑞



q 11,7 [kN/m2] x 11,50 [m]

0,5q 23,4 [kN/m] c 1,0 [m]

F 111 [kN] l 23,0 [m]

0,5F 55 [kN] lsup. 21,0 [m]

Av 324,5 [kN] lctc 4,0 [m]

Bv 324,5 [kN]

γG 1,00 [-]

ψ2 1,00 [-]

Mx 1222,8 [kNm]

LC 2

Loading (long. direction)

Bending moment

Load & Reaction forces Measurements

𝑥

𝑥

𝑙

𝑐

𝑞 𝐹𝐹



q 0,0 [kN/m] x 11,50 [m]

0,5q 0,0 [kN/m] a 6,9 [m]

Av 0,0 [kN] b 7,1 [m]

Bv 0,0 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

ψ2 0,00 [-] lsup. 21,0 [m]

α 1,21 [-]

Mx 0,0 [kNm]

LC 3

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑞

=

4,8 𝑚 4 ∗ 250 𝑘𝑁

𝑥

𝑥
𝑎 𝑏 𝑐𝑏



q 0 [kN/m] x 11,50 [m]

0,5q 0 [kN/m] a 6,9 [m]

Av 0,0 [kN] b 7,1 [m]

Bv 0,0 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

ψ2 0,00 [-] lsup. 21,0 [m]

α 1,21 [-]

Mx 0,0 [kNm]

LC 5a

Loading (long. direction)

Bending moment

Load & Reaction forces Measurements

𝑞𝑥

𝑥

𝑎 𝑏 𝑐

𝑞

𝑏



∆ -5 [mm] x 11,5 [m]

Av 0,0 [kN] a 10,5 [m]

Bv 0,0 [kN] c 1,0 [m]

yG 1,00 [-] l 23,0 [m]

ψ2 1,00 [-] lsup. 21,0 [m]

Mx 0,0 [kNm]

LC 6

Loading (long. direction)

Deflection & Reaction forces Measurements

Bending moment

𝑥

𝑥 𝑎 𝑐

∆= 5 𝑚𝑚



F1 1115 [kN] x 11,50 [m]

F2 -13200 [kN] c 1,0 [m]

M1 294 [kNm] l 23,0 [m]

q -101 [kN] lsup. 21,0 [m]

Av 55 [kN]

Bv 55 [kN]

yP 1,00 [-]

ψ2 1,00 [-]

Mx -5273,6 [kNm]

LC 8

Loading (long. direction)

Bending moment

Load & Reaction forces Measurements

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞



F1 1016,88 [kN] x 11,50 [m]

F2 -12038 [kN] c 1,0 [m]

M1 268 [kNm] l 23,0 [m]

q -92 [kN] lsup. 21,0 [m]

Av 50 [kN]

Bv 50 [kN]

yP 1,00 [-]

P∞/P0 0,912 [-]

ψ2 1,00 [-]

Mx -4809,5 [kNm]

LC 9

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞
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4.4 Stresses: Bridge B  - characteristic loading – 0,5L 
  



Bending moment

LC type P [kN] σxx [N/mm2] M [kNm] Non-Tendon Tendon Non-Tendon Tendon

1 self-weight 13403

2 ballast 3008

3a Mobile Max. (LM71) 8512

5 Support settelement max 0

6 Support settelement min 0

7 Prestress t=0 -22826 -5,26 -12964

8 Prestress t = ∞ -20886 -4,81 -11862

LC 1 + LC 2 + LC 8 -20886 -4,81 4548 -8,48 O.K.

LC 1 + LC 2 + LC 3a + LC 5 + LC 8 -20886 -4,81 13061 1,30 NOT O.K.

LC 1 + LC 2 + LC 3a + LC 6 + LC 8 -20886 -4,81 13061 1,30 NOT O.K.

1200 [mm] 2,00 [N/mm2]

2200 [mm] 1,00 [N/mm2]

4340000 [mm2] 1,50 [N/mm2]

1,73E+12 [mm4]

808 [mm]

808 [mm]

1392 [mm]

Sectional properties

Prestress  σb [N/mm2] U.C. [-]

Maximum bending stress

Load combination: Characteristic

Parameters

𝑦

0,5 ∗ 𝐴𝑏𝑟𝑖𝑑𝑔𝑒

𝑏𝑔𝑖𝑟𝑑𝑒𝑟

ℎ𝑔𝑖𝑟𝑑𝑒𝑟

0,5 ∗ 𝐼𝑦𝑦

𝑓𝑐𝑡𝑘;0,05

𝜎𝑏,𝑚𝑎𝑥,𝑡𝑒𝑛𝑑𝑜𝑛 =

𝑧𝑏𝑜𝑡𝑡𝑜𝑚

𝑧𝑡𝑜𝑝

𝜎𝑏,𝑚𝑎𝑥,𝑛𝑜𝑛−𝑡𝑒𝑛𝑑𝑜𝑛 =



qbridge 217 [kN/m] x 16,75 [m]

0,5q 108,5 [kN/m] c 1,0 [m]

Av 1817,4 [kN] l 33,5 [m]

Bv 1817,4 [kN] lsup. 31,5 [m]

γG 1,00 [-] (NEN 1990 table A2.3)

ψ0 1,00 [-]

Mx 13403,1 [kNm]

LC 1

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥

𝑙

𝑐

𝑞



q 9,9 [kN/m2] x 16,75 [m]

0,5q 24,8 [kN/m] c 1,0 [m]

F 99 [kN] l 33,5 [m]

0,5F 50 [kN] lsup. 31,5 [m]

Av 464,2 [kN] lctc 5,0 [m]

Bv 464,2 [kN]

γG 1,00 [-]

ψ0 1,00 [-]

Mx 3007,7 [kNm]

LC 2

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥

𝑙

𝑐

𝑞 𝐹𝐹



q1 188,9 [kN/m] x 16,75 [m]

q2 104,3 [kN/m] a 6,9 [m]

0,5q1 94,4 [kN] b 12,3 [m]

0,5q2 52,1 [kN] c 1,0 [m]

Av 967,0 [kN] l 33,5 [m]

Bv 967,0 [kN] lsup. 31,5 [m]

γQ 1,00 [-]

α 1,21 [-]

Mx 8512,4 [kNm]

LC 3a

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑞1
=

4,8 𝑚
4 ∗ 250 𝑘𝑁

𝑥

𝑥

𝑎𝑏 𝑐

𝑞2

𝑏



∆ -5 [mm] x 16,75 [m]

Av 0,0 [kN] c 1,0 [m]

Bv 0,0 [kN] l 33,5 [m]

yG 1,00 [-] lsup. 31,5 [m]

ψ0 1,00 [-]

Mx 0,0 [kNm]

LC 5

Loading (long. direction)

Deflection & Reaction forces Measurements

Bending moment

𝑥

𝑥

𝑐

∆= 5 𝑚𝑚

𝑙𝑠𝑢𝑝



F1 2290 [kN] x 16,75 [m]

F2 -22826 [kN] c 1,0 [m]

M1 5045 [kNm] l 33,5 [m]

q -145,2 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

yP 1,00 [-]

ψ0 1,00 [-]

Mx -12964,3 [kNm]

LC 7

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞



F1 2095 [kN] x 16,75 [m]

F2 -20886 [kN] c 1,0 [m]

M1 4616 [kNm] l 33,5 [m]

q -133 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

yP 1,00 [-]

P∞/P0 0,915 [-]

ψ0 1,00 [-]

Mx -11862,4 [kNm]

LC 8

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞
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4.5 Stresses: Bridge B  - frequent loading – 0,5L 
  



Bending moment

LC type P [kN] σxx [N/mm2] M [kNm] Non-Tendon Tendon Non-Tendon Tendon

1 self-weight 13403

2 ballast 3008

3a Mobile Max. (LM71) 6810

5 Support settelement max 0

6 Support settelement min 0

7 Prestress t=0 -22826 -5,26 -12964

8 Prestress t = ∞ -20886 -4,81 -11862

LC 1 + LC 2 + LC 8 -20886 -4,81 4548 -8,48 O.K.

LC 1 + LC 2 + LC 3a + LC 5 + LC 8 -20886 -4,81 11358 0,50 NOT O.K.

LC 1 + LC 2 + LC 3a + LC 6 + LC 8 -20886 -4,81 11358 0,50 NOT O.K.

1200 [mm] 2,00 [N/mm2]

2200 [mm] 0,00 [N/mm2]

4340000 [mm2] 1,00 [N/mm2]

1,73E+12 [mm4]

808 [mm]

808 [mm]

1392 [mm]

Sectional properties

Prestress  σb [N/mm2] U.C. [-]

Maximum bending stress

Load combination: Frequent

Parameters

𝑦

0,5 ∗ 𝐴𝑏𝑟𝑖𝑑𝑔𝑒

𝑏𝑔𝑖𝑟𝑑𝑒𝑟

ℎ𝑔𝑖𝑟𝑑𝑒𝑟

0,5 ∗ 𝐼𝑦𝑦

𝑓𝑐𝑡𝑘;0,05

𝜎𝑏,𝑚𝑎𝑥,𝑡𝑒𝑛𝑑𝑜𝑛 =

𝑧𝑏𝑜𝑡𝑡𝑜𝑚

𝑧𝑡𝑜𝑝

𝜎𝑏,𝑚𝑎𝑥,𝑛𝑜𝑛−𝑡𝑒𝑛𝑑𝑜𝑛 =



qbridge 217 [kN/m] x 16,75 [m]

0,5q 108,5 [kN/m] c 1,0 [m]

Av 1817,4 [kN] l 33,5 [m]

Bv 1817,4 [kN] lsup. 31,5 [m]

γG 1,00 [-] (NEN 1990 table A2.3)

ψ1 1,00 [-]

Mx 13403,1 [kNm]

LC 1

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥

𝑙

𝑐

𝑞



q 9,9 [kN/m2] x 16,75 [m]

0,5q 24,8 [kN/m] c 1,0 [m]

F 99 [kN] l 33,5 [m]

0,5F 50 [kN] lsup. 31,5 [m]

Av 464,2 [kN] lctc 5,0 [m]

Bv 464,2 [kN]

γG 1,00 [-]

ψ1 1,00 [-]

Mx 3007,7 [kNm]

LC 2

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥

𝑙

𝑐

𝑞 𝐹𝐹



q1 151,1 [kN/m] x 16,75 [m]

q2 83,4 [kN/m] a 6,9 [m]

0,5q1 75,5 [kN/m] b 12,3 [m]

0,5q2 41,7 [kN/m] c 1,0 [m]

Av 773,6 [kN] l 33,5 [m]

Bv 773,6 [kN] lsup. 31,5 [m]

γQ 1,00 [-]

α 1,21 [-]

ψ1 0,80 [-]

Mx 6809,9 [kNm]

LC 3a

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑞1
=

4,8 𝑚
4 ∗ 250 𝑘𝑁

𝑥

𝑥

𝑎𝑏 𝑐

𝑞2

𝑏



∆ -5 [mm] x 16,75 [m]

Av 0,0 [kN] c 1,0 [m]

Bv 0,0 [kN] l 33,5 [m]

yG 1,00 [-] lsup. 31,5 [m]

ψ1 1,00 [-]

Mx 0,0 [kNm]

LC 5

Loading (long. direction)

Deflection & Reaction forces Measurements

Bending moment

𝑥

𝑥

𝑐

∆= 5 𝑚𝑚

𝑙𝑠𝑢𝑝



F1 2290 [kN] x 16,75 [m]

F2 -22826 [kN] c 1,0 [m]

M1 5045 [kNm] l 33,5 [m]

q -145,2 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

yP 1,00 [-]

ψ1 1,00 [-]

Mx -12964,3 [kNm]

LC 7

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞



F1 2095 [kN] x 16,75 [m]

F2 -20886 [kN] c 1,0 [m]

M1 4616 [kNm] l 33,5 [m]

q -133 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

yP 1,00 [-]

P∞/P0 0,915 [-]

ψ1 1,00 [-]

Mx -11862,4 [kNm]

LC 8

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞
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4.6 Stresses: Bridge B  - quasi-permanent loading – 0,5L 
 



Bending moment

LC type P [kN] σxx [N/mm2] M [kNm] Non-Tendon Tendon Non-Tendon Tendon

1 self-weight 13403

2 ballast 3008

3a Mobile Max. (LM71) 0

5 Support settelement max 0

6 Support settelement min 0

7 Prestress t=0 -22826 -5,26 -12964

8 Prestress t = ∞ -20886 -4,81 -11862

LC 1 + LC 2 + LC 8 -20886 -4,81 4548 -8,48 O.K.

LC 1 + LC 2 + LC 3a + LC 5 + LC 8 -20886 -4,81 4548 -2,68 O.K.

LC 1 + LC 2 + LC 3a + LC 6 + LC 8 -20886 -4,81 4548 -2,68 O.K.

1200 [mm] 2,00 [N/mm2]

2200 [mm] 0,00 [N/mm2]

4340000 [mm2]

1,73E+12 [mm4]

808 [mm]

808 [mm]

1392 [mm]

Sectional properties

Prestress  σb [N/mm2] U.C. [-]

Maximum bending stress

Load combination: Quasi-permanent 

Parameters

𝑦

0,5 ∗ 𝐴𝑏𝑟𝑖𝑑𝑔𝑒

𝑏𝑔𝑖𝑟𝑑𝑒𝑟

ℎ𝑔𝑖𝑟𝑑𝑒𝑟

0,5 ∗ 𝐼𝑦𝑦

𝑓𝑐𝑡𝑘;0,05

𝜎𝑏,𝑚𝑎𝑥 = 0

𝑧𝑏𝑜𝑡𝑡𝑜𝑚

𝑧𝑡𝑜𝑝



qbridge 217 [kN/m] x 16,75 [m]

0,5q 108,5 [kN/m] c 1,0 [m]

Av 1817,4 [kN] l 33,5 [m]

Bv 1817,4 [kN] lsup. 31,5 [m]

γG 1,00 [-] (NEN 1990 table A2.3)

ψ2 1,00 [-]

Mx 13403,1 [kNm]

LC 1

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥

𝑙

𝑐

𝑞



q 9,9 [kN/m2] x 16,75 [m]

0,5q 24,8 [kN/m] c 1,0 [m]

F 99 [kN] l 33,5 [m]

0,5F 50 [kN] lsup. 31,5 [m]

Av 464,2 [kN] lctc 5,0 [m]

Bv 464,2 [kN]

γG 1,00 [-]

ψ2 1,00 [-]

Mx 3007,7 [kNm]

LC 2

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥

𝑙

𝑐

𝑞 𝐹𝐹



q1 0,0 [kN/m] x 16,75 [m]

q2 0,0 [kN/m] a 6,9 [m]

0,5q1 0,0 [kN] b 12,3 [m]

0,5q2 0,0 [kN] c 1,0 [m]

Av 0,0 [kN] l 33,5 [m]

Bv 0,0 [kN] lsup. 31,5 [m]

γQ 1,00 [-]

α 1,21 [-]

ψ2 0,00 [-]

Mx 0,0 [kNm]

LC 3a

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑞1
=

4,8 𝑚
4 ∗ 250 𝑘𝑁

𝑥

𝑥

𝑎𝑏 𝑐

𝑞2

𝑏



∆ -5 [mm] x 16,75 [m]

Av 0,0 [kN] c 1,0 [m]

Bv 0,0 [kN] l 33,5 [m]

yG 1,00 [-] lsup. 31,5 [m]

ψ2 1,00 [-]

Mx 0,0 [kNm]

LC 5

Loading (long. direction)

Deflection & Reaction forces Measurements

Bending moment

𝑥

𝑥

𝑐

∆= 5 𝑚𝑚

𝑙𝑠𝑢𝑝



F1 2290 [kN] x 16,75 [m]

F2 -22826 [kN] c 1,0 [m]

M1 5045 [kNm] l 33,5 [m]

q -145,2 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

yP 1,00 [-]

ψ2 1,00 [-]

Mx -12964,3 [kNm]

LC 7

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞



F1 2095 [kN] x 16,75 [m]

F2 -20886 [kN] c 1,0 [m]

M1 4616 [kNm] l 33,5 [m]

q -133 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

yP 1,00 [-]

P∞/P0 0,915 [-]

ψ2 1,00 [-]

Mx -11862,4 [kNm]

LC 8

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥
𝑙

𝑐

𝐹1

𝐹2

𝑀1

𝑞



Appendix F – Fatigue (ULS)  
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1 Introduction 
The through bridge is at rest when no variable loads act on it. At that moment the 
maximum stresses are caused by a combination of self-weight, prestress and 
ballast. But when a train passes the maximum stress increases significantly. 
During the life span of the bridge millions of trains will pass, causing an even 
greater number of stress fluctuation in the through girder. Materials loaded with a 
large number of stress fluctuations can develop small cracks. This phenomenon is 
called fatigue.  
 
Fatigue calculations in the design report (3) are performed on the longitudinal and 
shear reinforcement by limiting the stress fluctuations to a maximum. However this 
maximum allowable stress fluctuation is a lot higher than what the Eurocode 
considers acceptable. Additionally the design report only performs fatigue checks on 
reinforcement, whereas according to the Eurocode concrete under compression 

should be checked for fatigue as well.    
 
Due to the different calculation procedures and load models, a fatigue resistance 
calculation is performed on the through girder according to the Eurocode. Girder A 
remains uncracked (appendix E), leading to no strains in the shear and longitudinal 
reinforcement. This makes the reinforcement non-sensitive to fatigue, meaning only 
a fatigue resistance calculation on concrete under compression is necessary. Girder 
B however is cracked according to the requirements of the OVS. Besides a fatigue 
check on concrete, a fatigue check on the prestress steel, longitudinal and shear 
reinforcement is necessary.  
 
 
 
  



Appendix F  Fatigue (ULS) | 2  
 

2 Concrete  
At the start of this research, fatigue verification according to annex NN in Eurocode 
2 (20) was allowed by the OVS. But with the arrival of the new version of the OVS, 
the fatigue verifications needs to be performed according to the general part of 
Eurocode 2. Because the new OVS was published towards the end of this research, 
the calculations are performed using annex NN. 
 
The load combination for fatigue verification is not explicitly mentioned in Eurocode 
0 and is therefore derived from annex NN.3. The maximum, minimum and 
permanent characteristic load combination at ultimate limit state need to be 
considered. Even though this is an ULS check, all partial load factors are taken 
equal to 1,0. Additionally the factor 𝛼, (according to the OVS (19)) should be taken 
equal to 1,0 instead of 1,21.  
 

 

∑ 𝐺 + 𝑃 

 

∑ 𝐺 + 𝑃 + 𝑄𝐿𝑀71,𝑚𝑎𝑥 

 

∑ 𝐺 + 𝑃 + 𝑄𝐿𝑀71,𝑚𝑖𝑛 

 

Permanent 

 

 

Maximum LM71 

 
 

Minimum LM71 

 
The maximum load combination of LM71 corresponds with heavy axle loads at the 
start of the bridge and a distributed load over the rest. Whereas he minimum load 
combination is found when the cantilever is loaded with heavy axle loads. Naturally 
the permanent load combination consist of self-weight, ballast and prestress.  
  
 

 
 

Figure F-1: Maximum and minimum loading due to LM71 (section 0,8d) 
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2.1 Uncracked girder 
The next step, in order to determine the resistance of concrete against fatigue, is to 
determine the maximum compressive stress in the girder. Because girder A is 
uncracked and girder B is cracked, two different approaches need to be considered. 
This paragraph focuses on the uncracked approach, where the maximum 
compressive stress is found in the top fibre of the girder.  
 
According to Eurocode 2 the angle of the compressive diagonal used at ultimate 
limit state (𝜃) maybe converted into 𝜃𝑓𝑎𝑡 with equation [ F.1 ]. 

 
 

tan 𝜃𝑓𝑎𝑡 = √tan 𝜃 [ F.1 ] 

 

The angle (under fatigue loading) for a section near the support and at midspan is 

respectively 32,3° and 45° (Table F-1).  
 
Table F-1: Angle of the compressive diagonal under fatigue loading 

Section 𝜃  𝜃𝑓𝑎𝑡 

0,8d 21,8° 32,3° 

support 21,8° 32,3° 

0,5L 45° 45° 

 
 
In order to find the maximum compressive stress one needs to combine the torsion, 
clamping moment, suspension and shear force into one total shear force: 
 

𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + (𝑄𝑦𝑦 +
𝑚𝑥𝑥

𝑧1

) ∗ 𝑧 ∗ cot 𝜃𝑓𝑎𝑡 +
𝑇𝐸𝑑 ∗ 𝑧

2 ∗ 𝐴𝑘

 
 

[ F.2 ] 

 

 
This total shear force is then combined with a bending moment, in order to find the 
bending stress in the considered section (Chapter 4 Appendix D): 
 
 

𝑀𝐸𝑑,𝑡𝑜𝑡 = 𝑀𝐸𝑑 + 0,5 ∗ 𝑉𝐸𝑑 ∗ 𝑧 ∗ cot 𝜃𝑓𝑎𝑡 [ F.3 ] 
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Figure F-2: Stress diagrams due to prestress and bending and their combination 

 
Ultimately the compression in the top fibre is computed by equation [ F.4 ]: 
 

𝜎𝑐,𝑡𝑜𝑝 = −
𝑃∞

𝐴𝑐

−
𝑀𝐸𝑑,𝑡𝑜𝑡

𝑊𝑡𝑜𝑝

 
[ F.4 ] 

 

 
The characteristic load combinations in bridge A (at 0,8d and 0,5L), result in the 
compressive stresses in the top fibre as presented by Table F-2. A section at 
midspan is subjected to larger bending moments, which results in a larger stress 
fluctuation in the concrete. 
 
Table F-2: Bridge A: Compressive stress in top fibre for different characteristic load combinations  

Load Combination 𝜎𝑐,𝑡𝑜𝑝 [𝑁/𝑚𝑚2] 

0,8d (𝜃𝑓𝑎𝑡 = 32,3°) 0,5L (𝜃𝑓𝑎𝑡 = 45°) 

Permanent -7,29 -4,87 

LM71, min -7,54 -4,81 

LM71, max -10,40 -11,14 
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2.2 Cracked girder 
As mentioned before girder B is cracked. The tensile bending strength of the 
concrete goes to zero and (possible) tensile forces are transferred by the longitudinal 
reinforcement and prestressing steel. Using the cracked girder approach, a value for 
the height of the compression zone and the concrete strain needs to be obtained 
(Appendix D). Based on this first value, two approach are possible: 
 

1. 𝑥 > ℎ: Height of the compression zone is larger than the height of the cross-
section. The entire section is under compression, meaning there are no 
(additional) tensile forces in the reinforcement and prestressing steel and the 
requirements for fatigue are met. However the concrete is subjected to a 
compressive stress fluctuation that cannot be neglected.  
 

 
Figure F-3: Compression zone relative to the cross-section (left), stress-strain diagram (right) 

A strain of 1,75‰ corresponds with the concrete design strength and forms 
the upper limit of the elastic stage. A strain that is smaller than that 
corresponds with a compressive stress of: 
 

𝜎𝑐,𝑡𝑜𝑝 =
𝜀𝑐,𝑡𝑜𝑝

1,75 ∗ 10−3
∗ 𝑓𝑐𝑑 [ F.5 ] 

 

By determining the strain for the permanent, maximum and minimum 
characteristic load case, the compressive stress fluctuation can be 
established.  

2. 𝑥 < ℎ: Height of the compression zone is smaller than the height of the cross-
section which means a part of the section will be loaded in tension. The 
stress fluctuations in the concrete, reinforcement and prestress steel need to 
be determined in order to perform a fatigue resistance calculation.  

 
As it turns out the first approach is valid for all load combinations. Meaning the 
prestressing steel and longitudinal reinforcement in girder B fulfil the fatigue 
requirements. Table F-3 presents the accompanying concrete stresses in the top 
fibre. 
 
Table F-3: Bridge B: Compressive stress in top fibre for different characteristic load combinations 

Load Combination 𝜎𝑐,𝑡𝑜𝑝 [𝑁/𝑚𝑚2] 

support (𝜃𝑓𝑎𝑡 = 32,3°) 0,5L (𝜃𝑓𝑎𝑡 = 45°) 

Permanent -10,21 -9,87 

LM71, min -10,09 -9,84 

LM71, max -10,93 -14,13 
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2.3 Fatigue resistance 
Let’s consider an example for a section at 0,8d in girder A using the damage 
equivalent stress approach (annex NN.3.2 in Eurocode 2). The first step is to 
determine the fatigue design strength: 
 

𝑓𝑐𝑑,𝑓𝑎𝑡 = 𝑘1𝛽𝑐𝑐(𝑡0) ∗ 𝑓𝑐𝑑 ∗ (1 −
𝑓𝑐𝑘

400
) 

 

[ F.6 ] 

 

Where: 
𝑘1 = 0,85                                               (According to the Dutch National Annex) 

𝑓𝑐𝑘 = 35 𝑁/𝑚𝑚2                                     (Design report (3)) 

𝑓𝑐𝑑 = 35/1,5 = 23,3 𝑁/𝑚𝑚2 

𝛽𝑐𝑐(𝑡0) = 1,0                                          (Factor for concrete strength at first loading) 
 

𝑓𝑐𝑑,𝑓𝑎𝑡 = 0,85 ∗ 1,0 ∗ 23,3 ∗ (1 −
35

400
) = 18,1 𝑁/𝑚𝑚2 

 
The Eurocode takes into account a certain correction factor, 𝜆𝑐 , which is applied on 
the stress fluctuation. This factor accounts for the annual traffic volume, lifespan, 
number of tracks, length and permanent loading.  
 

𝜆𝑐 = 𝜆𝑐,0 ∗ 𝜆𝑐,1 ∗ 𝜆𝑐,2,3 ∗ 𝜆𝑐,4 [ F.7 ] 

 

 

 

• The 𝜆𝑐,0 factor accounts for the influence of the permanent load: 

 

𝜆𝑐,0 = 0,94 + 0,2 ∗
𝜎𝑐,𝑝𝑒𝑟𝑚

𝑓𝑐𝑑,𝑓𝑎𝑡
≥ 1,0      (for the compression zone) 

 

𝜆𝑐,0 = 0,94 + 0,2 ∗
7,29

18,1
= 1,02 

 

 
 

• The 𝜆𝑐,1 factor accounts for the critical length of the influence line: 

 
𝜆𝑐,1 = 𝜆𝑐,1 (2 𝑚) + [𝜆𝑐,1 (20 𝑚) − 𝜆𝑐,1(2 𝑚)] ∗ log (𝐿 − 0,3) 

 

Where: 
 

𝜆𝑐,1 (2 𝑚) = 0,70                                    (According to table NN.3) 

𝜆𝑐,1 (20 𝑚) = 0,75                                  (According to table NN.3)  

𝐿 = 20 𝑚                                              (Critical length of the influence line) 

 
𝜆𝑐,1 = 0,70 + [0,75 − 0,70] ∗ (log(20) − 0,3) = 0,75 
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• The 𝜆𝑐,2,3 factor accounts for the annual traffic volume and the lifespan of the 

bridge: 
 

𝜆𝑐,2,3 = 1 +
1

8
∗ log [

𝑉𝑜𝑙

25 ∗ 106
] +

1

8
∗ log [

𝑁𝑦𝑒𝑎𝑟𝑠

100
] 

 
Where: 
 

𝑉𝑜𝑙 = 25 ∗ 106                                     
𝑁𝑦𝑒𝑎𝑟𝑠 = 100                                   

𝜆𝑐,2,3 = 1 +
1

8
∗ log [

25 ∗ 106

25 ∗ 106
] +

1

8
∗ log [

100

100
] = 1,0 

 
 

• The 𝜆𝑐,4 factor accounts for the number of tracks on the bridge: 

 
𝜆𝑐,4 = 1,0       (Bridge A is a single track bridge) 

 
The total correction factor goes to: 
 
𝜆𝑐 = 1,02 ∗ 0,75 ∗ 1,0 ∗ 1,0 = 0,77 

 

 
The largest and the smallest stress of the damage equivalent stress fluctuation need 
to be determined from equation  [ F.8 ] and [ F.9 ]. 
 

𝜎𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢 = 𝜎𝑐,𝑝𝑒𝑟𝑚 + 𝜆𝑐(𝜎𝑐,𝑚𝑎𝑥,71 − 𝜎𝑐,𝑝𝑒𝑟𝑚) 

 
𝜎𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢 = 𝜎𝑐,𝑝𝑒𝑟𝑚 − 𝜆𝑐(𝜎𝑐,𝑝𝑒𝑟𝑚 − 𝜎𝑐,𝑚𝑖𝑛,71) 

[ F.8 ] 

 

[ F.9 ] 

 

 
𝜎𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢 = 7,29 + 0,77 ∗ (10,40 − 7,29) = 9,67 𝑁/𝑚𝑚2 

 

𝜎𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢 = 7,29 − 0,77 ∗ (7,29 − 7,54) = 7,48 𝑁/𝑚𝑚2 

 

 

The final check is to verify the fatigue resistance of concrete in the form of  
equation [ F.10 ]. 
 

14 ∗
1 − 𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

√1 − 𝑅𝑒𝑞𝑢

≥ 6 
[ F.10 ] 

 

Where: 

𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢 = 𝛾𝑠𝑑 ∗
𝜎𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢

𝑓𝑐𝑑,𝑓𝑎𝑡

 

 

𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢 = 𝛾𝑠𝑑 ∗
𝜎𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

𝑓𝑐𝑑,𝑓𝑎𝑡

 

 

𝑅𝑒𝑞𝑢 =
𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢

𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

 

 

𝛾𝑠𝑑 = 1,0                                              (Factor accounting for model uncertainties) 
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𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢 = 1,0 ∗
7,48

18,1
= 0,41 

 

𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢 = 1,0 ∗
9,67

18,1
= 0,53 

 

𝑅𝑒𝑞𝑢 =
0,41

0,53
= 0,77 

 

The final check shows one that concrete has sufficient resistance against fatigue: 
 

14 ∗
1 − 0,53

√1 − 0,77
= 13,71 ≥ 6 

 

 

The fatigue resistance calculation is performed on the uncracked girder (A) and 

cracked girder (B). The results of the calculations are presented in Table F-4, from 
which it can be concluded that the most critical section is at midspan in bridge B. 
This section is subjected to large bending moments, which causes large stress 
fluctuations in the top fibre which ultimately leads to the most critical unity check.  
 
Table F-4: Concrete fatigue resistance for girder A & B 

 

Bridge 
14 ∗

1 − 𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

√1 − 𝑅𝑒𝑞𝑢

 

0,8d  support 0,5L  

A 13,71 > 6  9,36 > 6 

B  22,82 > 6 7,46 > 6 
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3 Shear reinforcement 
In an uncracked section, the strains in the shear reinforcement remain zero, 
making the shear reinforcement non-sensitive to fatigue. A cracked girder however 
is different, in that case there are strains in the reinforcement making the stirrups 
sensitive to fatigue. Girder B is cracked and the fatigue check on the stirrups is 
therefore a necessity. Contrastingly girder A is uncracked and the check is 
unnecessary. However it is assumed as cracked (due to e.g. thermal action) to see 
whether or not the stirrups have enough fatigue resistance.  
 

3.1 Stress range 
First one needs to determine the stresses in the outer and inner stirrup. This 
calculation is quite similar to the approach in appendix D. Zone III is responsible 
for transferring torsion, shear and the suspension leads, where zone II only 
transfers shear forces. But from appendix D it can be learned that zone III on its 
own has insufficient capacity and that a distribution of respectively 35% and 65% 
of the suspension loads over zone II and III takes place. This distribution is also 
processed in this fatigue resistance calculation.  
 

 
 

Figure F-4: Forces in the stirrups due to shear (left top), torsion (right top), suspension force (left bottom), 
clamping moment (right bottom) 

Because the suspension loads are per meter, they are multiplied with the horizontal 
length of the diagonal. Taking the load distribution into account, the total shear 
fore in the outer and inner stirrup is expressed by [ F.11 ] and [ F.12 ]. 
 
 

𝑉𝐸𝑑,𝑡𝑜𝑡 = 0,25 ∗ 𝑉𝐸𝑑 +
𝑇𝐸𝑑 ∗ 𝑧

2 ∗ 𝐴𝑘

+ 𝑧 ∗ cot 𝜃 ∗ (𝑄𝑦𝑦 +
𝑚𝑥𝑥

𝑧1

) ∗ 65% 

 

𝑉𝐸𝑑,𝑡𝑜𝑡 = 0,25 ∗ 𝑉𝐸𝑑 + 𝑧 ∗ cot 𝜃 ∗ (𝑄𝑦𝑦 +
𝑚𝑥𝑥

𝑧1

) ∗ 35% 

[ F.11 ] 

 

 

[ F.12 ] 
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The maximum and minimum characteristic load combination are considered for  
bridge A and B. This results in the following stresses in the outer and inner stirrup: 
 
Table F-5: Stresses in the outer and inner stirrup of girder A (0,8d & 0,5L) 

Load Combination Outer stirrup: 𝜎𝑠 [𝑁/𝑚𝑚2] Inner stirrup: 𝜎𝑠 [𝑁/𝑚𝑚2] 

0,8d  0,5L  0,8d  0,5L 

LM71, min 207 72 10 21 

LM71, max 283 105 124 52 

 
 
Table F-6: Stresses in the outer stirrup of girder B (support & 0,5L)  

Load Combination Outer stirrup: 𝜎𝑠 [𝑁/𝑚𝑚2] 

support 0,5L  

LM71, min 104 24 

LM71, max 182 52 

 
 

3.2 Fatigue resistance 
The annex NN.3.1 in Eurocode 2 (20) uses the damage equivalent stress approach 
to determine the resistance of reinforcement against fatigue. The equivalent stress 
is computed by equation [ F.13 ]. 
 
 

∆𝜎𝑠,𝑒𝑞𝑢 = 𝜆𝑠 ∗ Φ ∗ ∆𝜎𝑠,71 [ F.13 ]  

 

The stress ranges due to LM71, including dynamic factor, can be derived from Table 
F-5 and Table F-6. The correction factor needs to be computed with equation  
[ F.14 ]. 
 
 

𝜆𝑠 = 𝜆1 ∗ 𝜆2 ∗ 𝜆3 ∗ 𝜆4 [ F.14 ]  

 

 

• The 𝜆𝑠,1 factor accounts for the critical length of the influence line: 

 
𝜆𝑠,1 = 𝜆𝑠,1 (2 𝑚) + [𝜆𝑠,1 (20 𝑚) − 𝜆𝑠,1(2 𝑚)] ∗ log (𝐿 − 0,3) 

 

Where: 
𝜆𝑠,1 (2 𝑚) = 0,90                                    (According to table NN.2) 

𝜆𝑠,1 (20 𝑚) = 0,65                                  (According to table NN.2)  

𝐿 = 20 𝑚                                              (Critical length of the influence line) 

 
𝜆𝑠,1 = 0,90 + [0,65 − 0,90] ∗ (log(20) − 0,3) = 0,65 
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• The 𝜆𝑠,2 factor accounts for the annual traffic volume: 

 

𝜆𝑠,2 = √
𝑉𝑜𝑙

25 ∗ 106

𝑘2

 

 
Where: 

𝑉𝑜𝑙 = 25 ∗ 106                                     
𝑘2 = 9,0                                             (Table 6.3N in NEN 1992-1-1)  

 

𝜆𝑠,2 = √
25 ∗ 106

25 ∗ 106

9

= 1,0 

 

• The 𝜆𝑠,3 factor accounts for the lifespan of the bridge: 

 

𝜆𝑠,3 = √
𝑁𝑦𝑒𝑎𝑟𝑠

100

𝑘2

 

 
Where: 

 𝑁𝑦𝑒𝑎𝑟𝑠 = 100 

𝜆𝑠,3 = √
100

100

9

= 1,0 

 

• The 𝜆𝑐,4 factor accounts for the number of tracks on the bridge: 

 
𝜆𝑐,4 = 1,0       (Bridge A & B are single track bridges) 

 
 
This yields in, 
 
𝜆𝑠 = 0,65 ∗ 1,0 ∗ 1,0 ∗ 1,0 = 0,65 
 
The damage equivalent stress in the outer stirrup of girder A (at 0,8) is equal to: 
 

∆𝜎𝑠,𝑒𝑞𝑢 = 0,65 ∗ (283 − 207) = 49,6 𝑁/𝑚𝑚2  

 
 
The damage equivalent stress should remain smaller than the critical stress range 

at 𝑁∗ cycles: 
 

𝛾𝐹,𝑓𝑎𝑡 ∗ ∆𝜎𝑠,𝑒𝑞𝑢(𝑁∗) ≤
Δ𝜎𝑅𝑠𝑘(𝑁∗)

𝛾𝑆,𝑓𝑎𝑡
 

[ F.15 ]  
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With help of section 6.8.4 in NEN-EN 1991-1-1 the S-N curve for S435 steel is 
established. The structure is subjected to 25 million cycles, which gives one a 

critical stress range of 113,6 𝑁/𝑚𝑚2. 
 
 

 
 

Figure F-5: S-N curve for S435 reinforcement 

 
According to the Dutch National Annex to Eurocode 2 (13) the partial load and 
material factor can be taken as: 𝛾𝐹,𝑓𝑎𝑡 = 1,0 and 𝛾𝑆,𝑓𝑎𝑡 = 1,15. 

 
The unity check for the outer stirrup in girder A at 0,8d eventually goes to: 
 

𝑈. 𝐶. =
𝛾𝐹,𝑓𝑎𝑡 ∗ ∆𝜎𝑠,𝑒𝑞𝑢(𝑁∗)

Δ𝜎𝑅𝑠𝑘(𝑁∗)/𝛾𝑠,𝑓𝑎𝑡

 =
1,0 ∗ 49,6

113,6/1,15
= 0,50 

 

 

Presented by Table F-7 and Table F-8 are the unity checks for fatigue in the shear 
reinforcement. The values stay well within the acceptable limits and there is no risk 
of fatigue failure of the stirrups. 
 
Table F-7: Bridge A: Unity checks for fatigue in the shear reinforcement 

Type of 

reinforcement 

Unity check [-] 

0,8d  0,5L 

Outer stirrup 0,50 0,22 

Inner stirrup 0,75 0,21 

 
 
Table F-8: Bridge B: Unity checks for fatigue in the shear reinforcement 

Type of 
reinforcement 

Unity check [-] 

support  0,5L 

Stirrup 0,51 0,19 
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4 Longitudinal reinforcement 
According to the OVS girder A remains uncracked, which means the entire section 
is under compression and there are no (additional) tensile forces in the longitudinal 
reinforcement and prestressing steel. A check on the fatigue resistance is thus 
irrelevant.  
 
Girder B however turns out to be cracked, which makes one expect (additional) 
tensile forces in the reinforcement and prestressing steel. Yet in paragraph 2.2 it 
was concluded that the height of the compression zone is larger than the cross-
sectional height. Consequently the entire section is under compression and the 
requirements regarding fatigue are automatically met for the longitudinal 
reinforcement and prestressing steel.  
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5 Spreadsheets 
5.1 Fatigue: Bridge A – Characteristic loading – 0,8d 
  



Prestress Bending moment

LC type P [kN] M [kNm]

1 self-weight 884

2 ballast 245

3 LM 71 max (1/2) 453

5a LM71 max (2/2) 335

5b LM71 min -41

6 Support settelement max 0

7 Support settelement min 0

8 Prestress t=0 -13200 -1055

9 Prestress t = ∞ -12038 -962

σperm (1+2+6+9) -12038 167

σ71,min (1+2+5b+6+9) -12038 126

σ71,max (1+2+3+5a+6+9) -12038 956

Suspension force Clamping moment Shear force Torsion Total shear force

LC type Qyy [kN] mxx [kNm] [kN] [kNm] [kN]

1 self-weight 29 13 628 -74

2 ballast 23 14 214 -65

3 LM 71 max (1/2) 82 -11 307 -120

5a LM71 max (2/2) 0 19 247 13

5b LM71 min 0 24 0 -96

6 Support settelement max 15 82 0 -178

7 Support settelement min -15 -82 0 178

8 Prestress t=0 -52 28 -923 37

9 Prestress t = ∞ -47 26 -842 34 0,00

σperm (1+2+6+9) 21 135 0 283 694

σ71,min (1+2+5b+6+9) 21 158 0 380 848

σ71,max (1+2+3+5a+6+9) 103 142 554 390 1563

Forces

𝑧𝑧



length L = 21000 [mm]

height h = 1750 [mm]

width b = 900 [mm]

cover = 35 [mm]

effective height = 1691 [mm]

= 6,63E+11 [mm4]

= 628 [mm]

= 2150500 [mm2]

Øouter stirrup = 16 [mm]

Øinner stirrup = 12 [mm]

Øflexural reinf. = 16 [mm]

spacing outer stirrup = 150 [mm]

spacing inner stirrup = 150 [mm]

n rebar flex. reinf. = 14 [-]

= 1,34 [mm2/mm]

= 0,75 [mm2/mm]

= 2815 [mm2]

= 1900 [mm2]

= 1522 [mm]

= 814 [mm]

θfat = 32,3 [◦]
θ = 21,8 [◦]

= 1,575 [m2]

= 5,30 [m]

= 297 [mm]

= 118 [mm]

= 0,88 [m2]

= 4,11 [m]

Angle compr. diagonal

Internal lever arm

Box girder properties

Fatigue Parameters

Geometry

Reinforcement

z=
0

,9
*

d
=

1
5

2
2 stirru

p
s

compression zone

𝑁𝑠𝑡𝑒𝑒𝑙

𝑁𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

flexural reinforcement

𝐴𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡
𝐴𝑜𝑢𝑡𝑒𝑟 𝑠𝑡𝑖𝑟𝑟𝑢𝑝

𝑧1 = 𝑏 − 2 ∗ 𝑐 − 2 ∗ 0,5 ∗ ∅𝑠𝑡𝑝

𝐴𝑖𝑛𝑛𝑒𝑟 𝑠𝑡𝑖𝑟𝑟𝑢𝑝

𝑡𝑒𝑓 = 𝐴/𝑢𝑡𝑒𝑓,𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 2 ∗ (ℎ − 𝑑)
𝐴𝑟𝑒𝑎 (𝐴)𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 (𝑢)
𝐴𝑘𝑢𝑘

stirru
p

s

𝐹

z1=814 mm

𝑧 = 0,9 ∗ 𝑑

𝜃

𝑄𝑦𝑦𝑚𝑥𝑥
𝐴𝑝

0,5𝐼𝑦𝑦𝑦0,5𝐴



= 167 [kNm]

=
694 [kN]

= 5,91E+08 [mm3]

= 1,06E+09 [mm3]

= -7,29 [N/mm2]

= -4,65 [N/mm2]

= 126 [kNm]

=
848 [kN]

= 5,91E+08 [mm3]

= 1,06E+09 [mm3]

= -7,54 [N/mm2]

= -4,51 [N/mm2]

= 956 [kNm]

=
1563 [kN]

= 5,91E+08 [mm3]

= 1,06E+09 [mm3]

= -10,40 [N/mm2]

= -2,91 [N/mm2]

Total

σc,t [N/mm2]
σperm (1+2+7+9) -7,29

σ71,min (1+2+5b+7+9) -7,54

σ71,max (1+2+3+5a+7+9) -10,40

Load combination

Stress range concrete

Stress range top fibre

σperm (1+2+6+9)

σ71,min (1+2+5b+6+9)

σ71,max (1+2+3+5a+6+9)

𝑊𝑡𝑜𝑝 = 𝐼𝑦𝑦/(ℎ − 𝑦)𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + (𝑄𝑦𝑦+𝑚𝑥𝑥/𝑧1) ∗ 𝑧 ∗ cot 𝜃 + 𝑇𝐸𝑑 ∗ 𝑧2 ∗ 𝐴𝑘 𝜎𝑐,𝑡𝑜𝑝 = −𝑃𝐴 −𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑡𝑜𝑝

𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚 = −𝑃𝐴 +𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑏𝑜𝑡𝑡𝑜𝑚

−𝑊𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐼𝑦𝑦/(𝑦)𝜎𝑐,𝑡𝑜𝑝𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚

𝑀𝐸𝑑

𝑊𝑡𝑜𝑝 = 𝐼𝑦𝑦/(ℎ − 𝑦)𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + (𝑄𝑦𝑦+𝑚𝑥𝑥/𝑧1) ∗ 𝑧 ∗ cot 𝜃 + 𝑇𝐸𝑑 ∗ 𝑧2 ∗ 𝐴𝑘 𝜎𝑐,𝑡𝑜𝑝 = −𝑃𝐴 −𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑡𝑜𝑝

𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚 = −𝑃𝐴 +𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑏𝑜𝑡𝑡𝑜𝑚

−𝑊𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐼𝑦𝑦/(𝑦)𝜎𝑐,𝑡𝑜𝑝𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚

𝑀𝐸𝑑

𝑊𝑡𝑜𝑝 = 𝐼𝑦𝑦/(ℎ − 𝑦)𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + (𝑄𝑦𝑦+𝑚𝑥𝑥/𝑧1) ∗ 𝑧 ∗ cot 𝜃 + 𝑇𝐸𝑑 ∗ 𝑧2 ∗ 𝐴𝑘 𝜎𝑐,𝑡𝑜𝑝 = −𝑃𝐴 −𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑡𝑜𝑝

𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚 = −𝑃𝐴 +𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑏𝑜𝑡𝑡𝑜𝑚

−𝑊𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐼𝑦𝑦/(𝑦)𝜎𝑐,𝑡𝑜𝑝𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚

𝑀𝐸𝑑



LC type VEd,tot [kN] σstirrup [N/mm2]
1 self-weight

2 ballast

3 LM 71 max (1/2)

5a LM71 max (2/2)

5b LM71 min

6 Support settelement max

7 Support settelement min

8 Prestress t=0

9 Prestress t = ∞
#VERW!

σperm (1+2+6+9) 537 167

σ71,min (1+2+5b+6+9) 666 207

σ71,max (1+2+3+5a+6+9) 913 283

LC type VEd,tot [kN] σstirrup [N/mm2]
1 self-weight

2 ballast

3 LM 71 max (1/2)

5a LM71 max (2/2)

5b LM71 min

6 Support settelement max

7 Support settelement min

8 Prestress t=0

9 Prestress t = ∞
0,00

σperm (1+2+6+9) 18 10

σ71,min (1+2+5b+6+9) 18 10

σ71,max (1+2+3+5a+6+9) 225 124

Total

Total

Stress range stirrups

Stress range outer stirrup

Stress range inner stirrup

𝑇𝐸𝑑 ∗ 𝑧2 ∗ 𝐴𝑘 + 0,25 ∗ 𝑉𝐸𝑑
Outer stirrup II

Outer stirrup I

0,25 ∗ 𝑉𝐸𝑑
Inner stirrup II

Inner stirrup I

𝑉𝐸𝑑,𝑡𝑜𝑡 = 0,25 ∗ 𝑉𝐸𝑑 + 𝑧 ∗ cot 𝜃 ∗ 𝑄𝑦𝑦 +𝑚𝑥𝑥𝑧1 ∗ 35%

𝑉𝐸𝑑,𝑡𝑜𝑡 = 0,25 ∗ 𝑉𝐸𝑑 + 𝑇𝐸𝑑 ∗ 𝑧2 ∗ 𝐴𝑘 + 𝑧 ∗ cot 𝜃 ∗ 𝑄𝑦𝑦 +𝑚𝑥𝑥𝑧1 ∗ 65%



= 0,85 [-] (NEN-EN 1992-1-1 NB) Factor for permanent stress = = 1,02 [-]

= 1,00 [-] Factor for element type = = 20,0 [m]

= 35 [N/mm2] (RBK) = = 0,70 [-]

= 1,50 [-] (NEN-EN 1992-1-1 NB) = = 0,75 [-]

= 23,3 [N/mm2] = = 0,75 [-]

= 18,1 [N/mm2] Factor for volume and life = = 2,50E+07 [ton/year/tr]

= = 100 [year]

= 1,00 [-] = = 1,00 [-]

= 7,29 [N/mm2] Factor for more than one track = = 1,00 [-]

= 10,40 [N/mm2] Damage equivalent factor = = 0,77 [-]

= 7,54 [N/mm2]

= 9,67 [N/mm2]

= 7,48 [N/mm2]

= 0,41 [-]

= 0,53 [-]

= 0,77 [-]

= 13,71 > 6 OK

Fatigue strength Correction factor λc

Concrete stress

Unity check

Concrete Fatigue verification (damage equivalent stress)

𝜎𝑐,𝑝𝑒𝑟𝑚

𝑘1𝛽𝑐𝑐 𝑡0𝑓𝑐𝑘𝛾𝑐,𝑓𝑎𝑡𝑓𝑐𝑑𝑓𝑐𝑑,𝑓𝑎𝑡
𝜎𝑐,𝑚𝑎𝑥,71𝜎𝑐,𝑚𝑖𝑛,71

𝜆𝑐,0 = 0,94 + 0,2 ∗ 𝜎𝑐,𝑝𝑒𝑟𝑚/𝑓𝑐𝑑,𝑓𝑎𝑡 ≥ 1
𝜆𝑐,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁. 3𝜆𝑐,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁. 3𝜆𝑐,1 𝐿 = 𝜆𝑐,1 2 𝑚 + 𝜆𝑐,1 20𝑚 − 𝜆𝑐,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑐,2,3 = 1 + 18 ∗ log 𝑉𝑜𝑙25 ∗ 106 + 18 ∗ log 𝑁𝑦𝑒𝑎𝑟𝑠100
𝑉𝑜𝑙𝑁𝑦𝑒𝑎𝑟𝑠
𝜆𝑐,4 =𝜆𝑐 = 𝜆𝑐,0 ∗ 𝜆𝑐,1*𝜆𝑐,2,3*𝜆𝑐,4 =𝜎𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢𝜎𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢

𝛾𝑠𝑑

𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

𝑅𝑒𝑞𝑢 = 𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢14 ∗ 1 − 𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢1 − 𝑅𝑒𝑞𝑢 ≥ 6



Factor for element type = = 20,0 [m] (OVS 00030-6)

= = 0,90 [-]

= = 0,65 [-]

= = 0,65 [-]

Factor for volume = = 2,50E+07 [ton/year/tr]

= slope of S-N line (table 6.3N NEN 1992-1-1), = 9,0 [-]

= = 1,0 [-]

Factor for life = = 100 [years]

= 76,33 [N/mm2]

= 49,60 [N/mm2] = = 1,0 [-]

Factor for more than one track = = 1,0 [-]

= 1,00 [-] (NEN-EN 1992-1-1 NB)

= 1,15 [-] (NEN-EN 1992-1-1 NB) Damage equivalent factor = = 0,65 [-]

1,00E+06 [cycles] (NEN-EN 1992-1-1)

5,0 [-] (NEN-EN 1992-1-1)

9,0 [-] (NEN-EN 1992-1-1)

162,5 [N/mm2] (NEN-EN 1992-1-1)

113,6 [N/mm2] (see graph)

= 0,50 < 1,00 OK

Outer stirrup fatigue verification (damage equivalent stress)

Unity check

Damage equivalent stress

Correction factor λs

Safety factors

S-N curve

𝜆𝑠,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 𝐿 = 𝜆𝑠,1 2 𝑚 + 𝜆𝑠,1 20 𝑚 − 𝜆𝑠,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑠,2 = 𝑘2 𝑉𝑜𝑙25 ∗ 106
𝑉𝑜𝑙
𝑁𝑦𝑒𝑎𝑟𝑠

𝛾𝐹,𝑓𝑎𝑡

𝑘2

𝜆𝑠,3 = 𝑘2 𝑁𝑦𝑒𝑎𝑟𝑠100𝜆𝑠,4𝜆𝑠 = 𝜆𝑠,1 ∗ 𝜆𝑠,2*𝜆𝑐,3*𝜆𝑠,4 =

Φ ∗ ∆𝜎𝑠,71∆𝜎𝑠,𝑒𝑞𝑢
𝛾𝑠,𝑓𝑎𝑡

𝑁∗𝑘1𝑘2Δ𝜎𝑟𝑖𝑠𝑘(𝑁∗)
𝑈. 𝐶. = 𝛾𝐹,𝑓𝑎𝑡 ∗ ∆𝜎𝑠,𝑒𝑞𝑢 𝑁 ≤ ∆𝜎𝑟𝑖𝑠𝑘(𝑁)𝛾𝑠,𝑓𝑎𝑡
Δ𝜎𝑟𝑖𝑠𝑘(𝑁)

outer stirrup

inner stirrup

flexural reinforcement



Factor for element type = = 20,0 [m] (OVS 00030-6)

= = 0,90 [-]

= = 0,65 [-]

= = 0,65 [-]

Factor for volume = = 2,50E+07 [ton/year/tr]

= slope of S-N line (table 6.3N NEN 1992-1-1), = 9,0 [-]

= = 1,0 [-]

Factor for life = = 100 [years]

= 114,57 [N/mm2]

= 74,44 [N/mm2] = = 1,0 [-]

Factor for more than one track = = 1,0 [-]

= 1,00 [-] (NEN-EN 1992-1-1 NB)

= 1,15 [-] (NEN-EN 1992-1-1 NB) Damage equivalent factor = = 0,65 [-]

1,00E+06 [cycles] (NEN-EN 1992-1-1)

5,0 [-] (NEN-EN 1992-1-1)

9,0 [-] (NEN-EN 1992-1-1)

162,5 [N/mm2] (NEN-EN 1992-1-1)

113,6 [N/mm2] (see graph)

= 0,75 < 1,00 OK

Unity check

Inner stirrup fatigue verification (damage equivalent stress)

Correction factor λs

Damage equivalent stress

Safety factors

S-N curve

𝜆𝑠,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 𝐿 = 𝜆𝑠,1 2 𝑚 + 𝜆𝑠,1 20 𝑚 − 𝜆𝑠,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑠,2 = 𝑘2 𝑉𝑜𝑙25 ∗ 106
𝑉𝑜𝑙
𝑁𝑦𝑒𝑎𝑟𝑠

𝛾𝐹,𝑓𝑎𝑡

𝑘2

𝜆𝑠,3 = 𝑘2 𝑁𝑦𝑒𝑎𝑟𝑠100𝜆𝑠,4𝜆𝑠 = 𝜆𝑠,1 ∗ 𝜆𝑠,2*𝜆𝑐,3*𝜆𝑠,4 =

Φ ∗ ∆𝜎𝑠,71∆𝜎𝑠,𝑒𝑞𝑢
𝛾𝑠,𝑓𝑎𝑡

𝑁∗𝑘1𝑘2Δ𝜎𝑟𝑖𝑠𝑘(𝑁∗)
𝑈. 𝐶. = 𝛾𝐹,𝑓𝑎𝑡 ∗ ∆𝜎𝑠,𝑒𝑞𝑢 𝑁 ≤ ∆𝜎𝑟𝑖𝑠𝑘(𝑁)𝛾𝑠,𝑓𝑎𝑡
Δ𝜎𝑟𝑖𝑠𝑘(𝑁)

outer stirrup

inner stirrup

flexural reinforcement



qbridge 138 [kN/m] x 2,36 [m] qpl 34,4 [kN/m] lctc 4,0 [m]

0,5q 68,8 [kN/m] c 1,0 [m] mpl01 45,8 [kNm]

Av 68,8 [kN] l 23,0 [m]

Bv 68,8 [kN] lsup. 21,0 [m]

γG 1,00 [-] (NEN 1990 table A2.3)

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -34,4 [kNm]

mxx,M 8,1 [kNm] (due to torsional moment at both ends)

mxx,subtot. 8,1 [kNm]

Mxy,M -32,8 [kNm] (due to torsional moment at both ends)

Mxy,subtot -32,8 [kNm]

LC 1

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01
𝑥

𝑥 𝑙 𝑐

𝑞 𝑞𝑝𝑙𝑞



qbridge 138 [kN/m] x 2,36 [m] qpl 34,4 [kN/m] lctc 4,0 [m]

0,5q 68,8 [kN/m] c 1,0 [m] mpl01 45,8 [kNm]

Av 721,9 [kN] l 23,0 [m]

Bv 721,9 [kN] lsup. 21,0 [m]

Vz 628,4 [kN] Qyy 29,4 [kN]

Mx 918,2 [kNm]

mxx, alt 4,5 [kNm] (due to alternative load case)

mxx,subtot. 4,5 [kNm]

Mxy, alt -41,5 [kNm] (due to alternative load case)

Mxy,subtot -41,5 [kNm]

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑥

𝑥 𝑙 𝑐

𝑞

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01



q 11,7 [kN/m2] x 2,36 [m] qpl 11,7 [kN/m] lctc 4,0 [m]

0,5q 23,4 [kN/m] c 1,0 [m] 0,25F 27,7 [kN/m] l1 0,95 [m]

F 111 [kN] l 23,0 [m] mpl01 15,6 [kNm] l2 1,5 [m]

0,5F 55 [kN] lsup. 21,0 [m] mpl02 55,2 [kNm] lb 4,9 [m]

Av 78,8 [kN] MT 70,8 [kNm]

Bv 78,8 [kN]

γG 1,00 [-]

Vz 0,0 [kN] Qyy 0,0 [kN]

LC 2

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01

𝑥

𝑥 𝑙 𝑐

𝐹 𝑞 𝐹

𝑞𝑝𝑙

𝑞

𝑙1 𝑙2 𝑙𝑏

𝑚𝑝𝑙02

𝑙2 𝑙1



Mx -67,1 [kNm] mxx,M 12,5 [kNm] (due to torsional moment at both ends)

mxx,subtot. 12,5 [kNm]

Mxy,M -50,8 [kNm] (due to torsional moment at both ends)

Mxy,subtot -50,8 [kNm]

q 11,7 [kN/m2] x 2,36 [m] qpl 11,7 [kN/m] lctc 4,0 [m]

0,5q 23,4 [kN/m] c 1,0 [m] mpl02 15,6 [kNm]

Av 245,7 [kN] l 23,0 [m]

Bv 245,7 [kN] lsup. 21,0 [m]

Vz 213,9 [kN] Qyy 23,4 [kN]

Bending moment Clamping moment

Torsion

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

𝑥

𝑥 𝑙 𝑐

𝑞

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙03 𝑞𝑝𝑙 𝑚𝑝𝑙03



Mx 312,5 [kNm] mxx,alt 1,5 [kNm] (due to alternative load case)

mxx,subtot. 1,5 [kNm]

Mxy,alt -14,2 [kNm] (due to alternative load case)

Mxy,subtot -14,2 [kNm]

Bending moment Clamping moment

Torsion



q 164,6 [kN/m] x 2,36 [m] 0,5q 82,3 [kN/m] le 1,7 [m]

0,5q 82,3 [kN/m] a 6,9 [m] mpl01 134,2 [kNm] ltr 1,5 [m]

Av 501,7 [kN] b 15,1 [m] lb 4,9 [m]

Bv 66,3 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

α 1,00 [-] lsup. 21,0 [m]

Vz 307,5 [kN] Qyy 82,3 [kN]

Mx 453,1 [kNm] mxx,M 23,2 [kNm] (due to torsional moment at one end)

mxx,q -34,3 [kNm] (due to distributed load)

mxx,tot -11,1 [kNm]

Mxy,M -96,8 [kNm] (due to torsional moment at one end)

Mxy,q -23,0 [kNm] (due to distributed load)

Mxy,tot -119,8 [kNm]

LC 3

Shear Force

Bending moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Suspension force

Clamping moment

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

𝑞
=

4,8 𝑚 4 ∗ 250 𝑘𝑁
0,5q𝑚𝑝𝑙01

𝑥
𝑥 𝑎 𝑏 𝑐

0,5q



q 91 [kN/m] x 2,36 [m] 0,5q 45,4 [kN/m] le 1,7 [m]

0,5q 45 [kN/m] a 5,9 [m] mpl01 74,1 [kNm] ltr 1,5 [m]

Av 246,7 [kN] b 15,1 [m] lb 4,9 [m]

Bv 439,5 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

α 1,00 [-] lsup. 21,0 [m]

Vz 246,7 [kN] Qyy 0,0 [kN]

Mx 335,5 [kNm] mxx,q 18,9 [kNm] (due to distributed load at one end)

mxx,tot 18,9 [kNm]

Mxy,q 12,7 [kNm] (due to distributed load at one end)

Mxy,tot 12,7 [kNm]

LC 5a

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑞

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

0,5𝑞 0,5𝑞𝑚𝑝𝑙01𝑥

𝑥 𝑎 𝑏 𝑐



q 164,6 [kN/m] x 2,36 [m] 0,5q 82,3 [kN/m] le 1,7 [m]

0,5q 82,3 [kN/m] a 19,6 [m] mpl01 134,2 [kNm] ltr 1,5 [m]

Av 82,3 [kN] b 0,0 [m] lb 4,9 [m]

Bv 82,3 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

α 1,00 [-] lsup. 21,0 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -41,2 [kNm]

mxx,M 23,7 [kNm] (due to torsion at both ends)

mxx,tot 23,7 [kNm]

Mxy,M -96,2 [kNm] (due to torsion at both ends)

Mxy,tot -96,2 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 5b

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

𝑞=

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

4 ∗ 250 𝑘𝑁
0,5q𝑚𝑝𝑙01

𝑥

𝑥 𝑎 𝑐

0,5q
=

4 ∗ 250 𝑘𝑁



∆ -5 [mm] x 2,36 [m] ∆ 0,005 [m]

Av 0,0 [kN] a 19,6 [m]

Bv 0,0 [kN] c 1,0 [m]

yG 1,00 [-] l 23,0 [m]

lsup. 21,0 [m]

Qyy 15,0 [kN]

Vz 0,0 [kN] Qyy,tot 15,0 [kN]

Mx 0,0 [kNm] mxx,∆ 82,0 [kNm]

mxx,tot 82,0 [kNm]

Mxy,∆ -178,0 [kNm]

Mxy,tot -178,0 [kNm]

LC 6

Loading (long. direction) Loading (transverse direction)

Deflection & Reaction forces Measurements Delfection & Reaction forces

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑥

𝑥 𝑎 𝑐

∆= 5 𝑚𝑚 ∆ 𝑚𝑝𝑙0/𝑐𝑚𝑝𝑙0/𝑐

𝑙𝑐𝑡𝑐
𝑄𝑦𝑦/𝑐

𝑄𝑦𝑦/𝑐



F1 1115 [kN] x 2,36 [m]

F2 -13200 [kN] c 1,0 [m]

M1 294 [kNm] l 23,0 [m]

q -101 [kN] lsup. 21,0 [m]

Av 55 [kN]

Bv 55 [kN]

yP 1,00 [-]

Vz -923,1 [kN]

Mx -1054,9 [kNm]

Measurements

Shear Force

Bending moment

LC 8

Girder loaded

Loading (long. direction)

Load & Reaction forces

𝑥

𝑥 𝑙 𝑐

𝐹1
𝐹2

𝑀1 𝑞



x 2,36 [m] qpl -51,5 [kN/m] lctc 4,0 [m]

a 16,0 [m] mpl01 -68,7 [kNm]

l 23,0 [m]

lsup. 21,0 [m]

Mxy,alt 37,3 [kNm] (due to alternative load case) Qyy -51,5 [kN]

Mxy,tot 37,3 [kNm]

mxx,alt 28,4 [kNm] (due to alternative load case)

mxx,tot 28,4 [kNm]

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

Torsion Suspension force

𝑥

𝑥 𝑎
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01

𝑏𝑏



F1 1017 [kN] x 2,36 [m]

F2 -12038 [kN] c 1,0 [m]

M1 268 [kNm] l 23,0 [m]

q -92 [kN] lsup. 21,0 [m]

Av 50 [kN]

Bv 50 [kN]

P∞/P0 0,912 [-]

yP 1,00 [-]

Vz -841,9 [kN]

Mx -962,0 [kNm]

Measurements

Shear Force

LC 9

Bending moment

Girder loaded

Loading (long. direction)

Load & Reaction forces

𝑥

𝑥 𝑙 𝑐

𝐹1
𝐹2

𝑀1 𝑞



x 2,36 [m] qpl -47,0 [kN/m] lctc 4,0 [m]

a 16,0 [m] mpl01 -62,6 [kNm]

l 23,0 [m]

lsup. 21,0 [m]

Mxy,alt 34,0 [kNm] (due to alternative load case) Qyy -47,0 [kN]

Mxy,tot 34,0 [kNm]

mxx,alt 25,9 [kNm] (due to alternative load case)

mxx,tot 25,9 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

𝑥

𝑥 𝑎
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01

𝑏𝑏
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5.2 Fatigue: Bridge A – Characteristic loading – 0,5L 
  



Prestress Bending moment

LC type P [kN] M [kNm]

1 self-weight 3755

2 ballast 1223

3 LM 71 max (1/2) 2492

5a LM71 max (2/2) 1129

5b LM71 min -41

6 Support settelement max 0

7 Support settelement min 0

8 Prestress t=0 -13200 -5274

9 Prestress t = ∞ -12038 -4810

σperm (1+2+6+9) -12038 169

σ71,min (1+2+5b+6+9) -12038 128

σ71,max (1+2+3+5a+6+9) -12038 3790

Suspension force Clamping moment Shear force Torsion Total shear force

LC type Qyy [kN] mxx [kNm] [kN] [kNm] [kN]

1 self-weight 29 6 0 0

2 ballast 23 4 0 0

3 LM 71 max (1/2) 82 -38 0 0

5a LM71 max (2/2) 0 31 0 0

5b LM71 min 0 5 0 0

6 Support settelement max 1 7 0 117

7 Support settelement min -1 -7 0 -117

8 Prestress t=0 -52 9 0 0

9 Prestress t = ∞ -47 8 0 0 0,00

σperm (1+2+6+9) 7 26 0 117 160

σ71,min (1+2+5b+6+9) 7 31 0 117 170

σ71,max (1+2+3+5a+6+9) 89 19 0 117 274

Forces

𝑧𝑧



length L = 21000 [mm]

height h = 1750 [mm]

width b = 900 [mm]

cover = 35 [mm]

effective height = 1691 [mm]

= 6,63E+11 [mm4]

= 628 [mm]

= 2750000 [mm2]

Øouter stirrup = 16 [mm]

Øinner stirrup = 12 [mm]

Øflexural reinf. = 16 [mm]

spacing outer stirrup = 150 [mm]

spacing inner stirrup = 150 [mm]

n rebar flex. reinf. = 14 [-]

= 1,34 [mm2/mm]

= 0,75 [mm2/mm]

= 2815 [mm2]

= 1900 [mm2]

= 1522 [mm]

= 814 [mm]

θfat = 45,0 [◦]
θ = 45,0 [◦]

= 1,575 [m2]

= 5,30 [m]

= 297 [mm]

= 118 [mm]

= 0,88 [m2]

= 4,11 [m]

Angle compr. diagonal

Internal lever arm

Box girder properties

Fatigue Parameters

Geometry

Reinforcement

z=
0

,9
*

d
=

1
5

2
2 stirru

p
s

compression zone

𝑁𝑠𝑡𝑒𝑒𝑙

𝑁𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

flexural reinforcement

𝐴𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡
𝐴𝑜𝑢𝑡𝑒𝑟 𝑠𝑡𝑖𝑟𝑟𝑢𝑝

𝑧1 = 𝑏 − 2 ∗ 𝑐 − 2 ∗ 0,5 ∗ ∅𝑠𝑡𝑝

𝐴𝑖𝑛𝑛𝑒𝑟 𝑠𝑡𝑖𝑟𝑟𝑢𝑝

𝑡𝑒𝑓 = 𝐴/𝑢𝑡𝑒𝑓,𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 2 ∗ (ℎ − 𝑑)
𝐴𝑟𝑒𝑎 (𝐴)𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 (𝑢)
𝐴𝑘𝑢𝑘

stirru
p

s

𝐹

z1=814 mm

𝑧 = 0,9 ∗ 𝑑

𝜃

𝑄𝑦𝑦𝑚𝑥𝑥
𝐴𝑝

0,5𝐼𝑦𝑦𝑦0,5𝐴



= 169 [kNm]

=
160 [kN]

= 5,91E+08 [mm3]

= 1,06E+09 [mm3]

= -4,87 [N/mm2]

= -4,10 [N/mm2]

= 128 [kNm]

=
170 [kN]

= 5,91E+08 [mm3]

= 1,06E+09 [mm3]

= -4,81 [N/mm2]

= -4,13 [N/mm2]

= 3790 [kNm]

=
274 [kN]

= 5,91E+08 [mm3]

= 1,06E+09 [mm3]

= -11,14 [N/mm2]

= -0,59 [N/mm2]

Total

σc,t [N/mm2]
σperm (1+2+7+9) -4,87

σ71,min (1+2+5b+7+9) -4,81

σ71,max (1+2+3+5a+7+9) -11,14

Load combination

Stress range concrete

Stress range top fibre

σperm (1+2+6+9)

σ71,min (1+2+5b+6+9)

σ71,max (1+2+3+5a+6+9)

𝑊𝑡𝑜𝑝 = 𝐼𝑦𝑦/(ℎ − 𝑦)𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + (𝑄𝑦𝑦+𝑚𝑥𝑥/𝑧1) ∗ 𝑧 ∗ cot 𝜃 + 𝑇𝐸𝑑 ∗ 𝑧2 ∗ 𝐴𝑘 𝜎𝑐,𝑡𝑜𝑝 = −𝑃𝐴 −𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑡𝑜𝑝

𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚 = −𝑃𝐴 +𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑏𝑜𝑡𝑡𝑜𝑚

−𝑊𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐼𝑦𝑦/(𝑦)𝜎𝑐,𝑡𝑜𝑝𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚

𝑀𝐸𝑑

𝑊𝑡𝑜𝑝 = 𝐼𝑦𝑦/(ℎ − 𝑦)𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + (𝑄𝑦𝑦+𝑚𝑥𝑥/𝑧1) ∗ 𝑧 ∗ cot 𝜃 + 𝑇𝐸𝑑 ∗ 𝑧2 ∗ 𝐴𝑘 𝜎𝑐,𝑡𝑜𝑝 = −𝑃𝐴 −𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑡𝑜𝑝

𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚 = −𝑃𝐴 +𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑏𝑜𝑡𝑡𝑜𝑚

−𝑊𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐼𝑦𝑦/(𝑦)𝜎𝑐,𝑡𝑜𝑝𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚

𝑀𝐸𝑑

𝑊𝑡𝑜𝑝 = 𝐼𝑦𝑦/(ℎ − 𝑦)𝑉𝐸𝑑,𝑡𝑜𝑡 = 𝑉𝐸𝑑 + (𝑄𝑦𝑦+𝑚𝑥𝑥/𝑧1) ∗ 𝑧 ∗ cot 𝜃 + 𝑇𝐸𝑑 ∗ 𝑧2 ∗ 𝐴𝑘 𝜎𝑐,𝑡𝑜𝑝 = −𝑃𝐴 −𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑡𝑜𝑝

𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚 = −𝑃𝐴 +𝑀𝐸𝑑 + 𝑉𝐸𝑑 ∗ 0,5 ∗ 𝑧 ∗ cot 𝜃𝑊𝑏𝑜𝑡𝑡𝑜𝑚

−𝑊𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐼𝑦𝑦/(𝑦)𝜎𝑐,𝑡𝑜𝑝𝜎𝑐,𝑏𝑜𝑡𝑡𝑜𝑚

𝑀𝐸𝑑



LC type VEd,tot [kN] σstirrup [N/mm2]
1 self-weight

2 ballast

3 LM 71 max (1/2)

5a LM71 max (2/2)

5b LM71 min

6 Support settelement max

7 Support settelement min

8 Prestress t=0

9 Prestress t = ∞
#VERW!

σperm (1+2+6+9) 140 68

σ71,min (1+2+5b+6+9) 146 72

σ71,max (1+2+3+5a+6+9) 213 105

LC type VEd,tot [kN] σstirrup [N/mm2]
1 self-weight

2 ballast

3 LM 71 max (1/2)

5a LM71 max (2/2)

5b LM71 min

6 Support settelement max

7 Support settelement min

8 Prestress t=0

9 Prestress t = ∞
0,00

σperm (1+2+6+9) 20 18

σ71,min (1+2+5b+6+9) 24 21

σ71,max (1+2+3+5a+6+9) 60 52

Total

Total

Stress range stirrups

Stress range outer stirrup

Stress range inner stirrup

𝑇𝐸𝑑 + 0,25 ∗ 𝑉𝐸𝑑
Outer stirrup II

Outer stirrup I

0,25 ∗ 𝑉𝐸𝑑
Inner stirrup II

Inner stirrup I

𝑉𝐸𝑑,𝑡𝑜𝑡 = 0,25 ∗ 𝑉𝐸𝑑 + 𝑇𝐸𝑑 ∗ 𝑧2 ∗ 𝐴𝑘 + 𝑧 ∗ cot 𝜃 ∗ 𝑄𝑦𝑦 +𝑚𝑥𝑥𝑧1 ∗ 65%

𝑉𝐸𝑑,𝑡𝑜𝑡 = 0,25 ∗ 𝑉𝐸𝑑 + 𝑧 ∗ cot 𝜃 ∗ 𝑄𝑦𝑦 +𝑚𝑥𝑥𝑧1 ∗ 35%



= 0,85 [-] (NEN-EN 1992-1-1 NB) Factor for permanent stress = = 1,00 [-]

= 1,00 [-] Factor for element type = = 20,0 [m]

= 35 [N/mm2] (RBK) = = 0,70 [-]

= 1,50 [-] (NEN-EN 1992-1-1 NB) = = 0,75 [-]

= 23,3 [N/mm2] = = 0,75 [-]

= 18,1 [N/mm2] Factor for volume and life = = 2,50E+07 [ton/year/tr]

= = 100 [year]

= 1,00 [-] = = 1,00 [-]

= 4,87 [N/mm2] Factor for more than one track = = 1,00 [-]

= 11,14 [N/mm2] Damage equivalent factor = = 0,75 [-]

= 4,81 [N/mm2]

= 9,57 [N/mm2]

= 4,83 [N/mm2]

= 0,27 [-]

= 0,53 [-]

= 0,50 [-]

= 9,36 > 6 OK

Fatigue strength Correction factor λc

Concrete stress

Unity check

Concrete Fatigue verification (damage equivalent stress)

𝜎𝑐,𝑝𝑒𝑟𝑚

𝑘1𝛽𝑐𝑐 𝑡0𝑓𝑐𝑘𝛾𝑐,𝑓𝑎𝑡𝑓𝑐𝑑𝑓𝑐𝑑,𝑓𝑎𝑡
𝜎𝑐,𝑚𝑎𝑥,71𝜎𝑐,𝑚𝑖𝑛,71

𝜆𝑐,0 = 0,94 + 0,2 ∗ 𝜎𝑐,𝑝𝑒𝑟𝑚/𝑓𝑐𝑑,𝑓𝑎𝑡 ≥ 1
𝜆𝑐,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁. 3𝜆𝑐,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁. 3𝜆𝑐,1 𝐿 = 𝜆𝑐,1 2 𝑚 + 𝜆𝑐,1 20𝑚 − 𝜆𝑐,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑐,2,3 = 1 + 18 ∗ log 𝑉𝑜𝑙25 ∗ 106 + 18 ∗ log 𝑁𝑦𝑒𝑎𝑟𝑠100
𝑉𝑜𝑙𝑁𝑦𝑒𝑎𝑟𝑠
𝜆𝑐,4 =𝜆𝑐 = 𝜆𝑐,0 ∗ 𝜆𝑐,1*𝜆𝑐,2,3*𝜆𝑐,4 =𝜎𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢𝜎𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢

𝛾𝑠𝑑

𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

𝑅𝑒𝑞𝑢 = 𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢14 ∗ 1 − 𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢1 − 𝑅𝑒𝑞𝑢 ≥ 6



Factor for element type = = 20,0 [m] (OVS 00030-6)

= = 0,90 [-]

= = 0,65 [-]

= = 0,65 [-]

Factor for volume = = 2,50E+07 [ton/year/tr]

= slope of S-N line (table 6.3N NEN 1992-1-1), = 9,0 [-]

= = 1,0 [-]

Factor for life = = 100 [years]

= 33,07 [N/mm2]

= 21,49 [N/mm2] = = 1,0 [-]

Factor for more than one track = = 1,0 [-]

= 1,00 [-] (NEN-EN 1992-1-1 NB)

= 1,15 [-] (NEN-EN 1992-1-1 NB) Damage equivalent factor = = 0,65 [-]

1,00E+06 [cycles] (NEN-EN 1992-1-1)

5,0 [-] (NEN-EN 1992-1-1)

9,0 [-] (NEN-EN 1992-1-1)

162,5 [N/mm2] (NEN-EN 1992-1-1)

113,6 [N/mm2] (see graph)

= 0,22 < 1,00 OK

Outer stirrup fatigue verification (damage equivalent stress)

Unity check

Damage equivalent stress

Correction factor λs

Safety factors

S-N curve

𝜆𝑠,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 𝐿 = 𝜆𝑠,1 2 𝑚 + 𝜆𝑠,1 20 𝑚 − 𝜆𝑠,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑠,2 = 𝑘2 𝑉𝑜𝑙25 ∗ 106
𝑉𝑜𝑙
𝑁𝑦𝑒𝑎𝑟𝑠

𝛾𝐹,𝑓𝑎𝑡

𝑘2

𝜆𝑠,3 = 𝑘2 𝑁𝑦𝑒𝑎𝑟𝑠100𝜆𝑠,4𝜆𝑠 = 𝜆𝑠,1 ∗ 𝜆𝑠,2*𝜆𝑐,3*𝜆𝑠,4 =

Φ ∗ ∆𝜎𝑠,71∆𝜎𝑠,𝑒𝑞𝑢
𝛾𝑠,𝑓𝑎𝑡

𝑁∗𝑘1𝑘2Δ𝜎𝑟𝑖𝑠𝑘(𝑁∗)
𝑈. 𝐶. = 𝛾𝐹,𝑓𝑎𝑡 ∗ ∆𝜎𝑠,𝑒𝑞𝑢 𝑁 ≤ ∆𝜎𝑟𝑖𝑠𝑘(𝑁)𝛾𝑠,𝑓𝑎𝑡
Δ𝜎𝑟𝑖𝑠𝑘(𝑁)

outer stirrup

inner stirrup

flexural reinforcement



Factor for element type = = 20,0 [m] (OVS 00030-6)

= = 0,90 [-]

= = 0,65 [-]

= = 0,65 [-]

Factor for volume = = 2,50E+07 [ton/year/tr]

= slope of S-N line (table 6.3N NEN 1992-1-1), = 9,0 [-]

= = 1,0 [-]

Factor for life = = 100 [years]

= 31,65 [N/mm2]

= 20,57 [N/mm2] = = 1,0 [-]

Factor for more than one track = = 1,0 [-]

= 1,00 [-] (NEN-EN 1992-1-1 NB)

= 1,15 [-] (NEN-EN 1992-1-1 NB) Damage equivalent factor = = 0,65 [-]

1,00E+06 [cycles] (NEN-EN 1992-1-1)

5,0 [-] (NEN-EN 1992-1-1)

9,0 [-] (NEN-EN 1992-1-1)

162,5 [N/mm2] (NEN-EN 1992-1-1)

113,6 [N/mm2] (see graph)

= 0,21 < 1,00 OK

Unity check

Inner stirrup fatigue verification (damage equivalent stress)

Correction factor λs

Damage equivalent stress

Safety factors

S-N curve

𝜆𝑠,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 𝐿 = 𝜆𝑠,1 2 𝑚 + 𝜆𝑠,1 20 𝑚 − 𝜆𝑠,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑠,2 = 𝑘2 𝑉𝑜𝑙25 ∗ 106
𝑉𝑜𝑙
𝑁𝑦𝑒𝑎𝑟𝑠

𝛾𝐹,𝑓𝑎𝑡

𝑘2

𝜆𝑠,3 = 𝑘2 𝑁𝑦𝑒𝑎𝑟𝑠100𝜆𝑠,4𝜆𝑠 = 𝜆𝑠,1 ∗ 𝜆𝑠,2*𝜆𝑐,3*𝜆𝑠,4 =

Φ ∗ ∆𝜎𝑠,71∆𝜎𝑠,𝑒𝑞𝑢
𝛾𝑠,𝑓𝑎𝑡

𝑁∗𝑘1𝑘2Δ𝜎𝑟𝑖𝑠𝑘(𝑁∗)
𝑈. 𝐶. = 𝛾𝐹,𝑓𝑎𝑡 ∗ ∆𝜎𝑠,𝑒𝑞𝑢 𝑁 ≤ ∆𝜎𝑟𝑖𝑠𝑘(𝑁)𝛾𝑠,𝑓𝑎𝑡
Δ𝜎𝑟𝑖𝑠𝑘(𝑁)

outer stirrup

inner stirrup

flexural reinforcement



qbridge 138 [kN/m] x 11,50 [m] qpl 34,4 [kN/m] lctc 4,0 [m]

0,5q 68,8 [kN/m] c 1,0 [m] mpl01 45,8 [kNm]

Av 68,8 [kN] l 23,0 [m]

Bv 68,8 [kN] lsup. 21,0 [m]

γG 1,00 [-] (NEN 1990 table A2.3)

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -34,4 [kNm]

mxx,M 1,8 [kNm] (due to torsional moment at both ends)

mxx,subtot. 1,8 [kNm]

Mxy,M 0,0 [kNm] (due to torsional moment at both ends)

Mxy,subtot 0,0 [kNm]

LC 1

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01
𝑥

𝑥 𝑙 𝑐

𝑞 𝑞𝑝𝑙𝑞



qbridge 138 [kN/m] x 11,50 [m] qpl 34,4 [kN/m] lctc 4,0 [m]

0,5q 68,8 [kN/m] c 1,0 [m] mpl01 45,8 [kNm]

Av 721,9 [kN] l 23,0 [m]

Bv 721,9 [kN] lsup. 21,0 [m]

Vz 0,0 [kN] Qyy 29,4 [kN]

Mx 3789,8 [kNm]

mxx,alt 4,5 [kNm] (due to alternative load case)

mxx,subtot. 4,5 [kNm]

Mxy,alt 0,0 [kNm] (due to alternative load case)

Mxy,subtot 0,0 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurement

Midspan loaded

𝑥

𝑥 𝑙 𝑐

𝑞
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01



q 11,7 [kN/m2] x 11,50 [m] qpl 11,7 [kN/m] lctc 4,0 [m]

0,5q 23,4 [kN/m] c 1,0 [m] 0,25F 27,7 [kN/m] l1 0,95 [m]

F 111 [kN] l 23,0 [m] mpl01 15,6 [kNm] l2 1,5 [m]

0,5F 55 [kN] lsup. 21,0 [m] mpl02 55,2 [kNm] lb 4,9 [m]

Av 78,8 [kN] MT 70,8 [kNm]

Bv 78,8 [kN]

γG 1,00 [-]

Vz 0,0 [kN] Qyy 0,0 [kN]

Shear Force Suspension force

LC 2

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01

𝑥

𝑥 𝑙 𝑐

𝐹 𝑞 𝐹

𝑞𝑝𝑙

𝑞

𝑙1 𝑙2 𝑙𝑏

𝑚𝑝𝑙02

𝑙2 𝑙1



Mx -67,1 [kNm] mxx,M 2,8 [kNm] (due to torsional moment at both ends)

mxx,subtot. 2,8 [kNm]

Mxy,M 0,0 [kNm] (due to torsional moment at both ends)

Mxy,subtot 0,0 [kNm]

q 11,7 [kN/m2] x 11,50 [m] qpl 11,7 [kN/m] lctc 4,0 [m]

0,5q 23,4 [kN/m] c 1,0 [m] mpl03 15,6 [kNm]

Av 245,7 [kN] l 23,0 [m]

Bv 245,7 [kN] lsup. 21,0 [m]

Vz 0,0 [kN] Qyy 23,4 [kN]

Shear Force Suspension force

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Bending moment Clamping moment

Torsion

𝑥

𝑥 𝑙 𝑐

𝑞
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙02 𝑞𝑝𝑙 𝑚𝑝𝑙02



Mx 1289,9 [kNm]

mxx, alt 1,5 [kNm] (due to alternative load case)

mxx,subtot. 1,5 [kNm]

Mxy,alt 0,0 [kNm] (due to alternative load case)

Mxy,subtot 0,0 [kNm]

Bending moment Clamping moment

Torsion



q 164,6 [kN/m] x 11,50 [m] p 82,3 [kN/m] le 1,7 [m]

0,5q 82,3 [kN/m] a 6,9 [m] mpl0 134,2 [kNm] ltr 1,5 [m]

Av 284,0 [kN] b 7,1 [m] lb 4,9 [m]

Bv 284,0 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

α 1,00 [-] lsup. 21,0 [m]

Vz 0,0 [kN] Qyy 82,3 [kN]

Mx 2492,1 [kNm]

mxx -37,7 [kNm] (due to concentrated loads at midspan)

mxx,tot -37,7 [kNm]

Mxy 0,0 [kNm] (due to concentrated loads at midspan)

Mxy,tot 0,0 [kNm]

LC 3

Shear Force

Bending moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Suspension force

Clamping moment

𝑞=

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

4,8 𝑚4 ∗ 250 𝑘𝑁
0,5q𝑚𝑝𝑙0𝑥

𝑥 𝑎 𝑏 𝑐

0,5q

𝑏



q 91 [kN/m] x 11,50 [m] p 45,4 [kN/m] le 1,7 [m]

0,5q 45 [kN/m] a 6,9 [m] mpl0 74,1 [kNm] ltr 1,5 [m]

Av 320,4 [kN] b 7,1 [m] lb 4,9 [m]

Bv 320,4 [kN] c 1,0 [m]

γQ 1,00 [-] l 23,0 [m]

α 1,00 [-] lsup. 21,0 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

mxx,q 15,7 [kNm] (due to distributed load)

Mx 1129,2 [kNm] mxx,q 15,7 [kNm] (due to distributed load)

mxx,tot 31,4 [kNm]

Mxy,q 0,0 [kNm] (due to distributed load)

Mxy,q 0,0 [kNm] (due to distributed load)

Mxy,tot 0,0 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 5a

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

𝑞

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

𝑝 𝑝𝑚𝑝𝑙0𝑥

𝑥 𝑎 𝑏 𝑐

𝑞

𝑏



q 164,6 [kN/m] x 11,50 [m] p 82,3 [kN/m] le 1,7 [m]

0,5q 82,3 [kN/m] a 10,50 [m] mpl0 134,2 [kNm] ltr 1,5 [m]

Av 82,3 [kN] c 1,0 [m] lb 4,9 [m]

Bv 82,3 [kN] l 23,0 [m]

γQ 1,00 [-] lsup. 21,0 [m]

α 1,00 [-]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -41,2 [kNm]

mxx,M 5,2 [kNm] (due to torsional moments at both sides)

mxx,tot 5,2 [kNm]

Mxy,M 0,0 [kNm] (due to torsional moment at both sides)

Mxy,tot 0,0 [kNm]

LC 5b

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑞=

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

4 ∗ 250 𝑘𝑁
0,5q𝑚𝑝𝑙0𝑥

𝑥 𝑎 𝑐

0,5q
=

4 ∗ 250 𝑘𝑁



∆ -5 [mm] x 11,50 [m] ∆ 0,005 [m]

Av 0,0 [kN] a 10,50 [m]

Bv 0,0 [kN] c 1,0 [m]

yG 1,00 [-] l 23,0 [m]

lsup. 21,0 [m]

Qyy 1,0 [kN]

Vz 0,0 [kN] Qyyt,tot 1,0 [kN]

Mx 0,0 [kNm] mxx,∆ 7,0 [kNm]

mxx,tot 7,0 [kNm]

Mxy,∆ 117,0 [kNm]

Mxy,tot 117,0 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 6

Loading (long. direction) Loading (transverse direction)

Deflection & Reaction forces Measurements Delfection

𝑥

𝑥 𝑎 𝑐

∆= 5 𝑚𝑚 ∆ 𝑚𝑝𝑙0/𝑐𝑚𝑝𝑙0/𝑐

𝑙𝑐𝑡𝑐
𝑄𝑦𝑦/𝑐

𝑄𝑦𝑦/𝑐



F1 1115 [kN] x 11,50 [m]

F2 -13200 [kN] c 1,0 [m]

M1 294 [kNm] l 23,0 [m]

q -101 [kN] lsup. 21,0 [m]

Av 55 [kN]

Bv 55 [kN]

yP 1,00 [-]

Vz 0,0 [kN]

Mx -5273,6 [kNm]

Measurements

Shear Force

Bending moment

LC 8

Girder loaded

Loading (long. direction)

Load & Reaction forces

𝑥

𝑥 𝑙 𝑐

𝐹1
𝐹2

𝑀1 𝑞



x 0,00 [m] qpl -51,5 [kN/m] lctc 4,0 [m]

a 16,0 [m] mpl01 -68,7 [kNm]

l 23,0 [m]

lsup. 21,0 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -51,5 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt 8,9 [kNm] (due to alternative load case)

mxx,tot 8,9 [kNm]

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

Torsion Suspension force

𝑥

𝑎
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01

𝑏𝑏



F1 1017 [kN] x 11,50 [m]

F2 -12038 [kN] c 1,0 [m]

M1 268 [kNm] l 23,0 [m]

q -92 [kN] lsup. 21,0 [m]

Av 50 [kN]

Bv 50 [kN]

P∞/P0 0,912 [-]

yP 1,00 [-]

Vz 0,0 [kN]

Mx -4809,5 [kNm]

Measurements

Shear Force

LC 9

Bending moment

Girder loaded

Loading (long. direction)

Load & Reaction forces

𝑥

𝑥 𝑙 𝑐

𝐹1
𝐹2

𝑀1 𝑞



x 0,00 [m] qpl -47,0 [kN/m] lctc 4,0 [m]

a 16,0 [m] mpl01 -62,6 [kNm]

l 23,0 [m]

lsup. 21,0 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -47,0 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt 8,1 [kNm] (due to alternative load case)

mxx,tot 8,1 [kNm]

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

Torsion Suspension force

𝑥

𝑎
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01

𝑏𝑏
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5.3 Fatigue: Bridge B – Characteristic loading – support 
  



Prestress Bending moment

LC type P [kN] M [kNm]

1 self-weight -54

2 ballast -62

3a Mobile Max. (LM71) -39

3b Mobile Min. (LM71) -39

5 Support settelement max 0

6 Support settelement min 0

7 Prestress t=0 -22826 5045

8 Prestress t = ∞ -20886 4616

σperm (1+2+6+8) -20886 4500

σ71,min (1+2+3b+6+8) -20886 4461

σ71,max (1+2+3a+6+8) -20886 4461

Suspension force Clamping moment Shear force Torsion Total shear force

LC type Qyy [kN] mxx [kNm] [kN] [kNm] [kN]

1 self-weight 42 24 1699 -230

2 ballast 25 15 390 -114

3a Mobile Max. (LM71) 78 -2 867 -158

3b Mobile Min. (LM71) 0 26 0 -158

5 Support settelement max -221 189 0 -491

6 Support settelement min 221 -189 0 491

7 Prestress t=0 -57 28 -2287 0

8 Prestress t = ∞ -52 26 -2093 0

σperm (1+2+6+8) 236 125 4 147 1159

σ71,min (1+2+3b+6+8) 236 99 4 12 1000

σ71,max (1+2+3a+6+8) 314 127 863 12 2173

Forces

𝑧𝑧



length L = 31500 [mm]

height h = 2200 [mm]

width b = 1200 [mm]

cover = 35 [mm]

effective height = 2137 [mm]

= 1,73E+12 [mm4]

= 808 [mm]

= 4340000 [mm2]

Øouter stirrup = 20 [mm]

Øflexural reinf. = 16 [mm]

spacing outer stirrup = 100 [mm]

n rebar flex. reinf. = 20 [-]

= 3,14 [mm2/mm]

= 4021 [mm2]

= 1900 [mm2]

= 1923 [mm]

= 1110 [mm]

θfat = 32,3 [◦]
θ = 21,8 [◦]

= 2,64 [m2]

= 6,80 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

Angle compr. diagonal

Box girder properties

Fatigue Parameters 

Geometry

Reinforcement

Internal lever arm

z=
0

,9
*

d
=

1
5

2
2 stirru

p
s

compression zone

𝑁𝑠𝑡𝑒𝑒𝑙

𝑁𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

flexural reinforcement

𝐴𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝐴𝑜𝑢𝑡𝑒𝑟 𝑠𝑡𝑖𝑟𝑟𝑢𝑝

𝑧1 = 𝑏 − 2 ∗ 𝑐 − 2 ∗ 0,5 ∗ ∅𝑠𝑡𝑝

𝑡𝑒𝑓 = 𝐴/𝑢𝑡𝑒𝑓,𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 2 ∗ (ℎ − 𝑑)
𝐴𝑟𝑒𝑎 (𝐴)𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 (𝑢)
𝐴𝑘𝑢𝑘

stirru
p

s

𝐹

z1= 1110 mm

𝑧 = 0,9 ∗ 𝑑

𝜃

𝑄𝑦𝑦𝑚𝑥𝑥
𝐴𝑝

0,5𝐼𝑦𝑦𝑦0,5𝐴



= -116 [kNm]

= 1159 [kN]

= 3261 [mm]

=

= 7,66E-04 [-]

= -10,21 [N/mm2]

= -155 [kNm]

= 1000 [kN]

= 3302 [mm]

=

= 7,57E-04 [-]

= -10,09 [N/mm2]

= -155 [kNm]

= 2173 [kN]

= 3040 [mm]

=

= 8,20E-04 [-]

= -10,93 [N/mm2]

Total

x [mm] Check

σperm (1+2+6+8) 3261 NO σperm (1+2+7+9) -10,21

σ71,min (1+2+3b+6+8) 3302 NO σ71,min (1+2+5b+7+9) -10,09

σ71,max (1+2+3a+6+8) 3040 NO σ71,max (1+2+3+5a+7+9) -10,93

Load combination

Stress range concrete

σperm (1+2+6+8)

σ71,min (1+2+3b+6+8)

σ71,max (1+2+3a+6+8)

Entire cross-section under compression

Entire cross-section under compression

Entire cross-section under compression

Total

Fatigue calculation on long. reinforcement/prestress necessary?

Load combination

Stress range concrete

𝑉𝐸𝑑,𝑡𝑜𝑡𝑀𝐸𝑑 −𝑀𝑝∞𝑥𝑥 > ℎ

𝑉𝐸𝑑,𝑡𝑜𝑡𝑥𝑥 > ℎ

𝑉𝐸𝑑,𝑡𝑜𝑡𝑥𝑥 > ℎ

𝑀𝐸𝑑 −𝑀𝑝∞

𝑀𝐸𝑑 −𝑀𝑝∞

𝜀𝑐,𝑡𝑜𝑝𝜎𝑐,𝑡𝑜𝑝

𝜀𝑐,𝑡𝑜𝑝𝜎𝑐,𝑡𝑜𝑝

𝜀𝑐,𝑡𝑜𝑝𝜎𝑐,𝑡𝑜𝑝
𝜎𝑐,𝑡𝑜𝑝 (N/𝑚𝑚2)

𝜎𝑐

𝜀𝑐
𝑓𝑐𝑑

1,75 ∗ 10−3
𝜎𝑐,𝑡𝑜𝑝

𝜀𝑐,𝑡𝑜𝑝

𝑥
𝜀𝑐,𝑡𝑜𝑝

ℎ



LC type VEd,tot [kN] σstirrup [N/mm2]
1 self-weight

2 ballast

3a Mobile Max. (LM71)

3b Mobile Min. (LM71)

5 Support settelement max

6 Support settelement min

7 Prestress t=0

8 Prestress t = ∞ #VERW!

σperm (1+2+7+9) 1157 121

σ71,min (1+2+5b+7+9) 998 104

σ71,max (1+2+3+5a+7+9) 1742 182

Total

Stress range stirrups

Stress range outer stirrup

𝑉𝐸𝑑,𝑡𝑜𝑡 = (𝑄𝑦𝑦 +𝑚𝑥𝑥) ∗ 𝑧 ∗ cot 𝜃 + 𝑇𝐸𝑑 + 0,50 ∗ 𝑉𝐸𝑑𝑇𝐸𝑑 + 0,50 ∗ 𝑉𝐸𝑑
Outer stirrup II

Outer stirrup I



= 0,85 [-] (NEN-EN 1992-1-1 NB) Factor for permanent stress = = 1,05 [-]

= 1,00 [-] Factor for element type = = 20,0 [m]

= 35 [N/mm2] (RBK) = = 0,70 [-]

= 1,50 [-] (NEN-EN 1992-1-1 NB) = = 0,75 [-]

= 23,3 [N/mm2] = = 0,75 [-]

= 18,1 [N/mm2] Factor for volume and life = = 2,50E+07 [ton/year/tr]

= = 100 [year]

= 1,00 [-] = = 1,00 [-]

= 10,21 [N/mm2] Factor for more than one track = = 1,00 [-]

= 10,93 [N/mm2] Damage equivalent factor = = 0,79 [-]

= 10,09 [N/mm2]

= 10,78 [N/mm2]

= 10,12 [N/mm2]

= 0,56 [-]

= 0,60 [-]

= 0,94 [-]

= 22,82 > 6 OK

Fatigue strength Correction factor λc

Concrete stress

Unity check

Concrete Fatigue verification (damage equivalent stress)

𝜎𝑐,𝑝𝑒𝑟𝑚

𝑘1𝛽𝑐𝑐 𝑡0𝑓𝑐𝑘𝛾𝑐,𝑓𝑎𝑡𝑓𝑐𝑑𝑓𝑐𝑑,𝑓𝑎𝑡
𝜎𝑐,𝑚𝑎𝑥,71𝜎𝑐,𝑚𝑖𝑛,71

𝜆𝑐,0 = 0,94 + 0,2 ∗ 𝜎𝑐,𝑝𝑒𝑟𝑚/𝑓𝑐𝑑,𝑓𝑎𝑡 ≥ 1
𝜆𝑐,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁. 3𝜆𝑐,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁. 3𝜆𝑐,1 𝐿 = 𝜆𝑐,1 2 𝑚 + 𝜆𝑐,1 20𝑚 − 𝜆𝑐,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑐,2,3 = 1 + 18 ∗ log 𝑉𝑜𝑙25 ∗ 106 + 18 ∗ log 𝑁𝑦𝑒𝑎𝑟𝑠100
𝑉𝑜𝑙𝑁𝑦𝑒𝑎𝑟𝑠
𝜆𝑐,4 =𝜆𝑐 = 𝜆𝑐,0 ∗ 𝜆𝑐,1*𝜆𝑐,2,3*𝜆𝑐,4 =𝜎𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢𝜎𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢

𝛾𝑠𝑑

𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

𝑅𝑒𝑞𝑢 = 𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢14 ∗ 1 − 𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢1 − 𝑅𝑒𝑞𝑢 ≥ 6



Factor for element type = = 20,0 [m] (OVS 00030-6)

= = 0,90 [-]

= = 0,65 [-]

= = 0,65 [-]

Factor for volume = = 2,50E+07 [ton/year/tr]

= slope of S-N line (table 6.3N NEN 1992-1-1), = 9,0 [-]

= = 1,0 [-]

Factor for life = = 100 [years]

= 77,85 [N/mm2]

= 50,58 [N/mm2] = = 1,0 [-]

Factor for more than one track = = 1,0 [-]

= 1,00 [-] (NEN-EN 1992-1-1 NB)

= 1,15 [-] (NEN-EN 1992-1-1 NB) Damage equivalent factor = = 0,65 [-]

1,00E+06 [cycles] (NEN-EN 1992-1-1)

5,0 [-] (NEN-EN 1992-1-1)

9,0 [-] (NEN-EN 1992-1-1)

162,5 [N/mm2] (NEN-EN 1992-1-1)

113,6 [N/mm2] (see graph)

= 0,51 < 1,00 OK

Outer stirrup fatigue verification (damage equivalent stress)

Unity check

Damage equivalent stress

Correction factor λs

Safety factors

S-N curve

𝜆𝑠,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 𝐿 = 𝜆𝑠,1 2 𝑚 + 𝜆𝑠,1 20 𝑚 − 𝜆𝑠,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑠,2 = 𝑘2 𝑉𝑜𝑙25 ∗ 106
𝑉𝑜𝑙
𝑁𝑦𝑒𝑎𝑟𝑠

𝛾𝐹,𝑓𝑎𝑡

𝑘2

𝜆𝑠,3 = 𝑘2 𝑁𝑦𝑒𝑎𝑟𝑠100𝜆𝑠,4𝜆𝑠 = 𝜆𝑠,1 ∗ 𝜆𝑠,2*𝜆𝑐,3*𝜆𝑠,4 =

Φ ∗ ∆𝜎𝑠,71∆𝜎𝑠,𝑒𝑞𝑢
𝛾𝑠,𝑓𝑎𝑡

𝑁∗𝑘1𝑘2Δ𝜎𝑟𝑖𝑠𝑘(𝑁∗)
𝑈. 𝐶. = 𝛾𝐹,𝑓𝑎𝑡 ∗ ∆𝜎𝑠,𝑒𝑞𝑢 𝑁 ≤ ∆𝜎𝑟𝑖𝑠𝑘(𝑁)𝛾𝑠,𝑓𝑎𝑡
Δ𝜎𝑟𝑖𝑠𝑘(𝑁)

outer stirrup

flexural reinforcement



qbridge 216 [kN/m] x 1,00 [m] qpl 43,2 [kN/m] lctc 5,0 [m]

0,5q 107,9 [kN/m] c 1,0 [m] mpl01 89,9 [kNm]

Av 107,9 [kN] l 33,5 [m]

Bv 107,9 [kN] lsup. 31,5 [m]

γG 1,00 [-]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -53,9 [kNm]

mxx,M 14,6 [kNm] (due to torsional moment at both ends)

mxx,subtot. 14,6 [kNm]

Mxy,M -89,9 [kNm] (due to torsional moment at both ends)

Mxy,subtot -89,9 [kNm]

LC 1

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01
𝑥

𝑥 𝑙 𝑐

𝑞 𝑞𝑝𝑙𝑞



qbridge 216 [kN/m] x 1,00 [m] qpl 43,2 [kN/m] lctc 5,0 [m]

0,5q 107,9 [kN/m] c 1,0 [m] mpl01 89,9 [kNm]

Av 1699,0 [kN] l 33,5 [m]

Bv 1699,0 [kN] lsup. 31,5 [m]

Vz 1699,0 [kN] Qyy 42,3 [kN]

Mx 0,0 [kNm]

mxx,alt 8,9 [kNm] (due to alternative load case)

mxx,subtot. 8,9 [kNm]

Mxy,alt -140,5 [kNm] (due to alternative load case)

Mxy,subtot -140,5 [kNm]

Midspan loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑥

𝑥 𝑙 𝑐

𝑞

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01



q 9,9 [kN/m2] x 1,0 [m] qpl 9,9 [kN/m] lctc 5,0 [m]

0,5q 24,8 [kN/m] c 1,0 [m] 0,25F 24,8 [kN/m] l1 1,1 [m]

F 99 [kN] l 33,5 [m] mpl01 20,6 [kNm] l2 2,0 [m]

0,5F 50 [kN] lsup. 31,5 [m] mpl02 61,0 [kNm] lb 6,2 [m]

Av 74,4 [kN] mpl01+mpl02 81,6 [kNm]

Bv 74,4 [kN]

γG 1,00 [-]

Vz 0,0 [kN] Qyy 0,0 [kN]

LC 2

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01

𝑥

𝑥 𝑙 𝑐

𝐹 𝑞 𝐹

𝑞𝑝𝑙

𝑙1 𝑙2 𝑙𝑏

𝑚𝑝𝑙02

𝑙2 𝑙1



Mx -62,1 [kNm]

Mxy,M -81,6 [kNm] (due to torsional moment at both ends) mxx,M 13,2 [kNm] (due to torsional moment at both ends)

Mxy,subtot -81,6 [kNm] mxx,subtot. 13,2 [kNm]

q 9,9 [kN/m2] x 1,00 [m] qpl 9,9 [kN/m] lctc 5,0 [m]

0,5q 24,8 [kN/m] c 1,0 [m] mpl01 20,6 [kNm]

Av 389,8 [kN] l 33,5 [m]

Bv 389,8 [kN] lsup. 31,5 [m]

Vz 389,8 [kN] Qyy 24,8 [kN]

Midspan loaded

Bending moment

Torsion Clamping moment

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

𝑥

𝑥 𝑙 𝑐

𝑞

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙03 𝑞𝑝𝑙 𝑚𝑝𝑙03



Mx 0,0 [kNm]

Mxy,incr. -32,2 [kNm] (due to alternative load case) mxx,incr. 2,0 [kNm] (due to alternative load case)

Mxy,subtot -32,2 [kNm] mxx,subtot. 2,0 [kNm]

Bending moment

Torsion Clamping moment



q1 156,1 [kN/m] x 1,00 [m] q1 78,0 [kN/m] le 2,4 [m]

q2 86,2 [kN/m] a 6,9 [m] q2 43,1 [kN/m] ltr 1,5 [m]

0,5q1 78,0 [kN] b 25,6 [m] mpl01 158,3 [kNm] lb 6,2 [m]

0,5q2 43,1 [kN] c 1,0 [m] mpl02 87,4 [kNm]

Av 944,8 [kN] l 33,5 [m]

Bv 696,6 [kN] lsup. 31,5 [m]

γQ 1,00 [-]

α 1,00 [-]

Vz 866,7 [kN] Qyy 78,0 [kN]

Mx -39,0 [kNm]

LC 3a

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment

𝑞1=

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

4,8 𝑚 4 ∗ 250 𝑘𝑁 𝑚𝑝𝑙01

𝑥

𝑥 𝑎 𝑏 𝑐

0,5𝑞1 0,5𝑞1

𝑚𝑝𝑙02 0,5𝑞2 0,5𝑞2𝑞2



Mxy,M -158,3 [kNm] (due to torsional moment at one end) mxx,M 25,3 [kNm] (due to torsional moment at one end)

Mxy,q1 0 [kNm] (due to distributed load) mxx,q1 -61,6 [kNm] (due to distributed load)

Mxx,q2 0 [kNm] (due to distributed load) mxx,q2 34 [kNm] (due to distributed load)

Mxy,tot -158,3 [kNm] mxx,tot -2,3 [kNm]

Torsion Clamping moment



q 156,1 [kN/m] x 1,00 [m] p 78,0 [kN/m] le 2,4 [m]

0,5q 78,0 [kN/m] a 31,5 [m] mpl01 158,3 [kNm] ltr 1,5 [m]

Av 78,0 [kN] b 0,0 [m] lb 6,2 [m]

Bv 78,0 [kN] c 1,0 [m]

γQ 1,00 [-] l 33,5 [m]

α 1,00 [-] lsup. 31,5 [m]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -39,0 [kNm]

mxx,M 25,7 [kNm] (due to torsional moment at both sides)

mxx,tot 25,7 [kNm]

Mxy,M -158,3 [kNm] (due to torsional moment at both sides)

Mxy,tot -158,3 [kNm]

LC 3b

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑞=

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

4 ∗ 250 𝑘𝑁
0,5q𝑚𝑝𝑙01

𝑥

𝑥 𝑎 𝑐

0,5q𝑞
=

4 ∗ 250 𝑘𝑁



∆ 5 [mm] x 1,00 [m] ∆ 0,005 [m]

Av 0,0 [kN] a 31,5 [m]

Bv 0,0 [kN] c 1,0 [m]

yq 1,00 [-] l 33,5 [m]

lsup. 31,5 [m]

Qyy -221,0 [kN]

Vz 0,0 [kN] Qyy,tot -221,0 [kN]

Mx 0,0 [kNm] mxx,∆ 189,0 [kNm]

mxx,tot 189,0 [kNm]

Mxy,∆ -491,0 [kNm]

Mxy,tot -491,0 [kNm]

LC 5

Loading (long. direction) Loading (transverse direction)

Deflection & Reaction forces Measurements Deflection

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑥

𝑥 𝑎 𝑐

∆= 5 𝑚𝑚 ∆ 𝑚𝑝𝑙0/𝑐𝑚𝑝𝑙0/𝑐

𝑙𝑐𝑡𝑐
𝑄𝑦𝑦/𝑐

𝑄𝑦𝑦/𝑐



F1 2290 [kN] x 1,00 [m]

F2 -22826 [kN] c 1,0 [m]

M1 5045 [kNm] l 33,5 [m]

q -145,2 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

γP 1,00 [-]

Vz -2286,9 [kN]

Mx 5045,0 [kNm]

Shear Force

LC 7

Girder loaded

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥 𝑙 𝑐

𝐹1
𝐹2

𝑀1 𝑞



x 1,00 [m] qpl -56,9 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -118,6 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -56,9 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt 28,0 [kNm] (due to alternative load case)

mxx,tot 28,0 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

𝑥

𝑥 𝑎
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01

𝑏𝑏



F1 2095 [kN] x 1,00 [m]

F2 -20886 [kN] c 1,0 [m]

M1 4616 [kNm] l 33,5 [m]

q -133 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

P∞/P0 0,915 [-]

γP 1,00 [-]

Vz -2092,5 [kN]

Mx 4616,2 [kNm]

Shear Force

LC 8

Girder loaded

Loading (long. direction)

Load & Reaction forces Measurements

Bending moment

𝑥

𝑥 𝑙 𝑐

𝐹1
𝐹2

𝑀1 𝑞



x 1,00 [m] qpl -52,1 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -108,5 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -52,1 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt 25,6 [kNm] (due to alternative load case)

mxx,tot 25,6 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

𝑥

𝑥 𝑎
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01

𝑏𝑏
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5.4 Fatigue: Bridge B – Characteristic loading – 0,5L 
 

 
 
  
 

 

 
 



Prestress Bending moment

LC type P [kN] M [kNm]

1 self-weight 13326

2 ballast 3008

3a Mobile Max. (LM71) 7035

3b Mobile Min. (LM71) -39

5 Support settelement max 0

6 Support settelement min 0

7 Prestress t=0 -22826 -12964

8 Prestress t = ∞ -20886 -11862

σperm (1+2+6+8) -20886 4471

σ71,min (1+2+3b+6+8) -20886 4432

σ71,max (1+2+3a+6+8) -20886 11506

Suspension force Clamping moment Shear force Torsion Total shear force

LC type Qyy [kN] mxx [kNm] [kN] [kNm] [kN]

1 self-weight 42 11 0 0

2 ballast 25 4 0 0

3a Mobile Max. (LM71) 78 -8 0 0

3b Mobile Min. (LM71) 0 4 0 0

5 Support settelement max 1 6 0 169

6 Support settelement min -1 -6 0 -169

7 Prestress t=0 -57 -19 0 0

8 Prestress t = ∞ -52 -17 0 0

σperm (1+2+6+8) 14 8 0 169 151

σ71,min (1+2+3b+6+8) 14 4 0 169 144

σ71,max (1+2+3a+6+8) 92 16 0 169 315

Forces

𝑧𝑧



length L = 31500 [mm]

height h = 2200 [mm]

width b = 1200 [mm]

cover = 35 [mm]

effective height = 2137 [mm]

= 1,73E+12 [mm4]

= 808 [mm]

= 4340000 [mm2]

Øouter stirrup = 20 [mm]

Øflexural reinf. = 16 [mm]

spacing outer stirrup = 100 [mm]

n rebar flex. reinf. = 20 [-]

= 3,14 [mm2/mm]

= 4021 [mm2]

= 1900 [mm2]

= 1923 [mm]

= 1110 [mm]

θfat = 45 [◦]
θ = 45 [◦]

= 2,64 [m2]

= 6,80 [m]

= 388 [mm]

= 126 [mm]

= 1,47 [m2]

= 5,25 [m]

Angle compr. diagonal

Box girder properties

Fatigue Parameters

Geometry

Reinforcement

Internal lever arm

z=
0

,9
*

d
=

1
5

2
2 stirru

p
s

compression zone

𝑁𝑠𝑡𝑒𝑒𝑙

𝑁𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

flexural reinforcement

𝐴𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝐴𝑜𝑢𝑡𝑒𝑟 𝑠𝑡𝑖𝑟𝑟𝑢𝑝

𝑧1 = 𝑏 − 2 ∗ 𝑐 − 2 ∗ 0,5 ∗ ∅𝑠𝑡𝑝

𝑡𝑒𝑓 = 𝐴/𝑢𝑡𝑒𝑓,𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 2 ∗ (ℎ − 𝑑)
𝐴𝑟𝑒𝑎 (𝐴)𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 (𝑢)
𝐴𝑘𝑢𝑘

stirru
p

s

𝐹

z1= 1110 mm

𝑧 = 0,9 ∗ 𝑑

𝜃

𝑄𝑦𝑦𝑚𝑥𝑥
𝐴𝑝

0,5𝐼𝑦𝑦𝑦0,5𝐴



= 16334 [kNm]

= 151 [kN]

= 3437 [mm]

=

= 7,40E-04 [-]

= -9,87 [N/mm2]

= 16295 [kNm]

= 144 [kN]

= 3443 [mm]

=

= 7,38E-04 [-]

= -9,84 [N/mm2]

= 23369 [kNm]

= 315 [kN]

= 2416 [mm]

=

= 1,06E-03 [-]

= -14,13 [N/mm2]

Total

x [mm] Check

σperm (1+2+6+8) 3437 NO σperm (1+2+7+9) -9,87

σ71,min (1+2+3b+6+8) 3443 NO σ71,min (1+2+5b+7+9) -9,84

σ71,max (1+2+3a+6+8) 2416 NO σ71,max (1+2+3+5a+7+9) -14,13

Entire cross-section under compression

Fatigue calculation on long. reinforcement/prestress necessary? Stress range concrete

Load combination
Total

Load combination

σ71,max (1+2+3a+6+8)

Stress range concrete

σperm(1+2+6+8)

Entire cross-section under compression

σ71,min(1+2+3b+6+8)

Entire cross-section under compression

𝑉𝐸𝑑,𝑡𝑜𝑡𝑀𝐸𝑑 −𝑀𝑝∞𝑥𝑥 > ℎ

𝑉𝐸𝑑,𝑡𝑜𝑡𝑥𝑥 > ℎ

𝑉𝐸𝑑,𝑡𝑜𝑡𝑥𝑥 > ℎ

𝑀𝐸𝑑 −𝑀𝑝∞

𝑀𝐸𝑑 −𝑀𝑝∞

𝜀𝑐,𝑡𝑜𝑝𝜎𝑐,𝑡𝑜𝑝

𝜀𝑐,𝑡𝑜𝑝𝜎𝑐,𝑡𝑜𝑝

𝜀𝑐,𝑡𝑜𝑝𝜎𝑐,𝑡𝑜𝑝
𝜎𝑐,𝑡𝑜𝑝 (N/𝑚𝑚2)

𝜎𝑐

𝜀𝑐
𝑓𝑐𝑑

1,75 ∗ 10−3
𝜎𝑐,𝑡𝑜𝑝

𝜀𝑐,𝑡𝑜𝑝

𝑥
𝜀𝑐,𝑡𝑜𝑝

ℎ



LC type VEd,tot [kN] σstirrup [N/mm2]
1 self-weight

2 ballast

3a Mobile Max. (LM71)

3b Mobile Min. (LM71)

5 Support settelement max

6 Support settelement min

7 Prestress t=0

8 Prestress t = ∞ #VERW!

σperm (1+2+7+9) 151 25

σ71,min (1+2+5b+7+9) 144 24

σ71,max (1+2+3+5a+7+9) 315 52

Total

Stress range stirrups

Stress range outer stirrup

𝑉𝐸𝑑,𝑡𝑜𝑡 = (𝑄𝑦𝑦 +𝑚𝑥𝑥) ∗ 𝑧 ∗ cot 𝜃 + 𝑇𝐸𝑑 + 0,50 ∗ 𝑉𝐸𝑑𝑇𝐸𝑑 + 0,50 ∗ 𝑉𝐸𝑑
Outer stirrup II

Outer stirrup I



= 0,85 [-] (NEN-EN 1992-1-1 NB) Factor for permanent stress = = 1,05 [-]

= 1,00 [-] Factor for element type = = 20,0 [m]

= 35 [N/mm2] (RBK) = = 0,70 [-]

= 1,50 [-] (NEN-EN 1992-1-1 NB) = = 0,75 [-]

= 23,3 [N/mm2] = = 0,75 [-]

= 18,1 [N/mm2] Factor for volume and life = = 2,50E+07 [ton/year/tr]

= = 100 [year]

= 1,00 [-] = = 1,00 [-]

= 9,87 [N/mm2] Factor for more than one track = = 1,00 [-]

= 14,13 [N/mm2] Damage equivalent factor = = 0,79 [-]

= 9,84 [N/mm2]

= 13,22 [N/mm2]

= 9,85 [N/mm2]

= 0,54 [-]

= 0,73 [-]

= 0,74 [-]

= 7,46 > 6 OK

Fatigue strength Correction factor λc

Concrete stress

Unity check

Concrete Fatigue verification (damage equivalent stress)

𝜎𝑐,𝑝𝑒𝑟𝑚

𝑘1𝛽𝑐𝑐 𝑡0𝑓𝑐𝑘𝛾𝑐,𝑓𝑎𝑡𝑓𝑐𝑑𝑓𝑐𝑑,𝑓𝑎𝑡
𝜎𝑐,𝑚𝑎𝑥,71𝜎𝑐,𝑚𝑖𝑛,71

𝜆𝑐,0 = 0,94 + 0,2 ∗ 𝜎𝑐,𝑝𝑒𝑟𝑚/𝑓𝑐𝑑,𝑓𝑎𝑡 ≥ 1
𝜆𝑐,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁. 3𝜆𝑐,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁. 3𝜆𝑐,1 𝐿 = 𝜆𝑐,1 2 𝑚 + 𝜆𝑐,1 20𝑚 − 𝜆𝑐,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑐,2,3 = 1 + 18 ∗ log 𝑉𝑜𝑙25 ∗ 106 + 18 ∗ log 𝑁𝑦𝑒𝑎𝑟𝑠100
𝑉𝑜𝑙𝑁𝑦𝑒𝑎𝑟𝑠
𝜆𝑐,4 =𝜆𝑐 = 𝜆𝑐,0 ∗ 𝜆𝑐,1*𝜆𝑐,2,3*𝜆𝑐,4 =𝜎𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢𝜎𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢

𝛾𝑠𝑑

𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢

𝑅𝑒𝑞𝑢 = 𝐸𝑐𝑑,𝑚𝑖𝑛,𝑒𝑞𝑢𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢14 ∗ 1 − 𝐸𝑐𝑑,𝑚𝑎𝑥,𝑒𝑞𝑢1 − 𝑅𝑒𝑞𝑢 ≥ 6



Factor for element type = = 20,0 [m] (OVS 00030-6)

= = 0,90 [-]

= = 0,65 [-]

= = 0,65 [-]

Factor for volume = = 2,50E+07 [ton/year/tr]

= slope of S-N line (table 6.3N NEN 1992-1-1), = 9,0 [-]

= = 1,0 [-]

Factor for life = = 100 [years]

= 28,28 [N/mm2]

= 18,38 [N/mm2] = = 1,0 [-]

Factor for more than one track = = 1,0 [-]

= 1,00 [-] (NEN-EN 1992-1-1 NB)

= 1,15 [-] (NEN-EN 1992-1-1 NB) Damage equivalent factor = = 0,65 [-]

1,00E+06 [cycles] (NEN-EN 1992-1-1)

5,0 [-] (NEN-EN 1992-1-1)

9,0 [-] (NEN-EN 1992-1-1)

162,5 [N/mm2] (NEN-EN 1992-1-1)

113,6 [N/mm2] (see graph)

= 0,19 < 1,00 OK

Outer stirrup fatigue verification (damage equivalent stress)

Unity check

Damage equivalent stress

Correction factor λs

Safety factors

S-N curve

𝜆𝑠,1 2 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 20 𝑚 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝑁𝑁.2𝜆𝑠,1 𝐿 = 𝜆𝑠,1 2 𝑚 + 𝜆𝑠,1 20 𝑚 − 𝜆𝑠,1 2 𝑚 ∗ (log 𝐿 − 0,3)
𝐿 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒

𝜆𝑠,2 = 𝑘2 𝑉𝑜𝑙25 ∗ 106
𝑉𝑜𝑙
𝑁𝑦𝑒𝑎𝑟𝑠

𝛾𝐹,𝑓𝑎𝑡

𝑘2

𝜆𝑠,3 = 𝑘2 𝑁𝑦𝑒𝑎𝑟𝑠100𝜆𝑠,4𝜆𝑠 = 𝜆𝑠,1 ∗ 𝜆𝑠,2*𝜆𝑐,3*𝜆𝑠,4 =

Φ ∗ ∆𝜎𝑠,71∆𝜎𝑠,𝑒𝑞𝑢
𝛾𝑠,𝑓𝑎𝑡

𝑁∗𝑘1𝑘2Δ𝜎𝑟𝑖𝑠𝑘(𝑁∗)
𝑈. 𝐶. = 𝛾𝐹,𝑓𝑎𝑡 ∗ ∆𝜎𝑠,𝑒𝑞𝑢 𝑁 ≤ ∆𝜎𝑟𝑖𝑠𝑘(𝑁)𝛾𝑠,𝑓𝑎𝑡
Δ𝜎𝑟𝑖𝑠𝑘(𝑁)

outer stirrup

flexural reinforcement



qbridge 216 [kN/m] x 16,75 [m] qpl 43,2 [kN/m] lctc 5,0 [m]

0,5q 107,9 [kN/m] c 1,0 [m] mpl01 89,9 [kNm]

Av 107,9 [kN] l 33,5 [m]

Bv 107,9 [kN] lsup. 31,5 [m]

γG 1,00 [-]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -53,9 [kNm]

mxx,M 2,3 [kNm] (due to torsional moment at both ends)

mxx,subtot. 2,3 [kNm]

Mxy,M 0,0 [kNm] (due to torsional moment at both ends)

Mxy,subtot 0,0 [kNm]

LC 1

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

Bending moment Clamping moment

Torsion

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01𝑥

𝑥 𝑙 𝑐

𝑞 𝑞𝑝𝑙𝑞



qbridge 216 [kN/m] x 16,75 [m] qpl 43,2 [kN/m] lctc 5,0 [m]

0,5q 107,9 [kN/m] c 1,0 [m] mpl01 89,9 [kNm]

Av 1699,0 [kN] l 33,5 [m]

Bv 1699,0 [kN] lsup. 31,5 [m]

Vz 0,0 [kN] Qyy 42,3 [kN]

Mx 13379,9 [kNm]

mxx, alt 8,9 [kNm] (due to alternative loading)

mxx,subtot. 8,9 [kNm]

Mxy,alt 0,0 [kNm] (due to alternative loading)

Mxy,subtot 0,0 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements 

Midspan loaded

𝑥

𝑥 𝑙 𝑐

𝑞
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01



q 9,9 [kN/m2] x 16,75 [m] qpl 9,9 [kN/m] lctc 5,0 [m]

0,5q 24,8 [kN/m] c 1,0 [m] 0,25F 24,8 [kN] l1 1,1 [m]

F 99 [kN] l 33,5 [m] mpl01 20,6 [kNm] l2 2,0 [m]

0,5F 49,7 [kN] lsup. 31,5 [m] mpl02 61,0 [kNm] lb 6,2 [m]

Av 74,4 [kN] mpl01+mpl02 81,6 [kNm]

Bv 74,4 [kN]

γG 1,00 [-]

Vz 0,0 [kN] Qyy 0,0 [kN]

LC 2

Cantilevers loaded

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Shear Force Suspension force

𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01

𝑥

𝑥 𝑙 𝑐

𝐹 𝑞 𝐹

𝑞𝑝𝑙

𝑞

𝑙1 𝑙2 𝑙𝑏

𝑚𝑝𝑙02

𝑙2 𝑙1



Mx -62,1 [kNm]

Mxy,M 0,0 [kNm] (due to torsional moment at both ends) mxx,M 2,1 [kNm] (due to torsional moment at both ends)

Mxy,subtot 0,0 [kNm] mxx,subtot. 2,1 [kNm]

q 9,9 [kN/m2] x 16,75 [m] qpl 9,9 [kN/m] lctc 5,0 [m]

0,5q 24,8 [kN/m] c 1,0 [m] mpl01 20,6 [kNm]

Av 389,8 [kN] l 33,5 [m]

Bv 389,8 [kN] lsup. 31,5 [m]

Vz 0,0 [kN] Qyy 24,8 [kN]

Shear Force Suspension force

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

Midspan loaded

Bending moment

Torsion Clamping moment

𝑥

𝑥 𝑙 𝑐

𝑞
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙03 𝑞𝑝𝑙 𝑚𝑝𝑙03



Mx 3069,8 [kNm]

Mxy,alt 0,0 [kNm] (due to alternative load case) mxx,incr. 2,0 [kNm] (due to alternative load case)

Mxy,subtot 0,0 [kNm] mxx,subtot. 2,0 [kNm]

Bending moment

Torsion Clamping moment



q1 156,1 [kN/m] x 16,75 [m] 0,5q1 78,0 [kN/m] le 2,4 [m]

q2 86,2 [kN/m] a 6,9 [m] 0,5q2 43,1 [kN/m] ltr 1,5 [m]

0,5q1 78,0 [kN] b 12,3 [m] mpl01 158,3 [kNm] lb 6,2 [m]

0,5q2 43,1 [kN] c 1,0 [m] mpl02 87,4 [kNm]

Av 799,1 [kN] l 33,5 [m]

Bv 799,1 [kN] lsup. 31,5 [m]

γQ 1,00 [-]

α 1,00 [-]

Vz 0,0 [kN] Qyy 78,0 [kN]

Mx 7035,0 [kNm]

Shear Force Suspension force

Bending moment

LC 3a

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

𝑚𝑝𝑙01
0,5𝑞1 0,5𝑞1

𝑚𝑝𝑙02 0,5𝑞2 0,5𝑞2
𝑞1=

4,8 𝑚4 ∗ 250 𝑘𝑁

𝑥

𝑥 𝑎𝑏 𝑐

𝑞2

𝑏



Mxy,q1 0 [kNm] (due to distributed load) mxx,q1 -57,5 [kNm] (due to distributed load)

Mxy,q2 0 [kNm] (due to distributed load) mxx,q2 49,6 [kNm] (due to distributed load)

Mxy,tot 0,0 [kNm] mxx,tot -7,9 [kNm]

Torsion Clamping moment



q 156,1 [kN/m] x 16,75 [m] 0,5q 78,0 [kN/m] le 2,4 [m]

0,5q 78,0 [kN/m] a 15,75 [m] mpl01 158,3 [kNm] ltr 1,5 [m]

Av 78,0 [kN] c 1,0 [m] lb 6,2 [m]

Bv 78,0 [kN] l 33,5 [m]

γQ 1,00 [-] lsup. 31,5 [m]

α 1,00 [-]

Vz 0,0 [kN] Qyy 0,0 [kN]

Mx -39,0 [kNm] mxx,M 4,1 [kNm] (due to torsion at both sides)

mxx,tot 4,1 [kNm]

Mxy,M 0,0 [kNm] (due to torsion at both sides)

Mxy,tot 0,0 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 3b

Loading (long. direction) Loading (transverse direction)

Load & Reaction forces Measurements Load & Reaction forces Measurements

𝑞=

𝑙𝑒 𝑙𝑡𝑟 𝑙𝑒
𝑙𝑏

4 ∗ 250 𝑘𝑁
0,5q𝑚𝑝𝑙01𝑥

𝑥 𝑎 𝑐

0,5q𝑞
=

4 ∗ 250 𝑘𝑁



∆ 5 [mm] x 16,75 [m] ∆ 0,005 [m]

Av 0,0 [kN] a 15,75 [m]

Bv 0,0 [kN] c 1,0 [m]

yq 1,00 [-] l 33,5 [m]

lsup. 31,5 [m]

Qyy 1,0 [kN]

Vz 0,0 [kN] Qyyt,tot 1,0 [kN]

Mx 0,0 [kNm] mxx,∆ 6,2 [kNm]

mxx,tot 6,2 [kNm]

Mxy,∆ 169,3 [kNm]

Mxy,tot 169,3 [kNm]

Shear Force Suspension force

Bending moment Clamping moment

Torsion

LC 5

Loading (long. direction) Loading (transverse direction)

Deflection & Reaction forces Measurements Deflection

𝑥

𝑥 𝑎 𝑐

∆= 5 𝑚𝑚 ∆ 𝑚𝑝𝑙0/𝑐𝑚𝑝𝑙0/𝑐

𝑙𝑐𝑡𝑐
𝑄𝑦𝑦/𝑐

𝑄𝑦𝑦/𝑐



F1 2290 [kN] x 16,75 [m]

F2 -22826 [kN] c 1,0 [m]

M1 5045 [kNm] l 33,5 [m]

q -145,2 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

γP 1,00 [-]

Vz 0,0 [kN]

Mx -12964,3 [kNm]

Bending moment

Shear Force

LC 7

Girder loaded

Loading (long. direction)

Load & Reaction forces Measurements

𝑥

𝑥 𝑙 𝑐

𝐹1
𝐹2

𝑀1 𝑞



x 16,75 [m] qpl -56,9 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -118,6 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -56,9 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt -18,5 [kNm] (due to alternative load case)

mxx,tot -18,5 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

𝑥

𝑥 𝑎
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01

𝑏𝑏



F1 2095 [kN] x 16,75 [m]

F2 -20886 [kN] c 1,0 [m]

M1 4616 [kNm] l 33,5 [m]

q -133 [kN] lsup. 31,5 [m]

Av 3 [kN]

Bv 3 [kN]

P∞/P0 0,915 [-]

γP 1,00 [-]

Vz 0,0 [kN]

Mx -11862,4 [kNm]

Bending moment

Shear Force

LC 8

Girder loaded

Loading (long. direction)

Load & Reaction forces Measurements

𝑥

𝑥 𝑙 𝑐

𝐹1
𝐹2

𝑀1 𝑞



x 16,75 [m] qpl -52,1 [kN/m] lctc 5,0 [m]

a 20,0 [m] mpl01 -108,5 [kNm]

l 33,5 [m]

lsup. 31,5 [m]

Mxy,alt 0,0 [kNm] (due to alternative load case) Qyy -52,1 [kN]

Mxy,tot 0,0 [kNm]

mxx,alt -16,9 [kNm] (due to alternative load case)

mxx,tot -16,9 [kNm]

Torsion Suspension force

Clamping moment

Floor loaded

Loading (long. direction) Loading (transverse direction)

Measurements Load & Reaction forces Measurements

𝑥

𝑥 𝑎
𝑙𝑐𝑡𝑐

𝑚𝑝𝑙01 𝑞𝑝𝑙 𝑚𝑝𝑙01

𝑏𝑏



Appendix G – SCIA Model vs. Analytical solution  
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1 Introduction 
The design of a concrete through railway bridge is a typical assignment for an 
engineering firm such as Witteveen+Bos. Nowadays the design loads on the bridge 
are determined using FEA programs rather than performing time-consuming hand 
calculations. The risk with FEA programs is that one needs as well a proper 
understanding of the program as the structural behaviour, in order to obtain 
correct results. Additionally a good structural engineer should have a critical 
attitude against the FEA-generated results to verify whether they are correct or not.   
 
In the case of Witteveen+Bos the FEA program SCIA Engineer is used to determine 
the critical design loads. The objective of this appendix is to draw up a comparison 
between the results generated with SCIA and the analytical solution. Chapter 3 
considers a number of load cases for which torsion in the girder is compared 
between three SCIA models and the analytical solution. Chapter 4 does the same 
but then focuses on the clamping moment, whereas chapter 5 researches the 

influence of dimensions on torsion. Finally chapter 6 tries to establish what the 
accuracy of the SCIA models is compared to the theory.  
 
The ultimate goal of this appendix is to prove that SCIA and the analytical solution 
compare rather well and that the current way of designing a bridge (using FE 
models) is a safe and acceptable method.   
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2 Models 
The master thesis of R.T.J. de Groot (4) focuses on torsion in a through bridge and 
makes the comparison between a 2D and 3D DIANA model and the analytical 
solution. Because a number of helpful conclusions and recommendation is provided 
in this thesis, an overview is given in the first part of this chapter. The second part 
will elaborate on three SCIA models that simulate a through bridge.  
 

2.1 Conclusions & recommendations 
 

• In contradiction to the analytical solution it turns out that self-weight does 
cause torsion in the girder.  

• Torsion in the girder strongly depends on the E-modulus of the floor in 
transverse direction. By reducing the E-modulus of the floor, torsion in the 
girder increases. 

• According to the analytical solution, the floor is distributed into strips. With 

the reduced E-modulus of the floor this assumption turns out to be correct. 
However, under a double line load of 80 𝑘𝑁/𝑚, the values for torsion in the 
2D-model remain 50% behind on the theoretical values. 

• When the girder is connected to the floor, there is a vertical eccentricity 
between the two corresponding nodes. This eccentricity causes an additional 
torsional moment which influences the results. A horizontal connection 
between these two elements is advised. 

• Fully prestressed structures are hardly exposed to torsion due to self-weight. 
This is because prestress counteracts the deflections and rotations caused by 
self-weight. But for structures with partial prestressing, torsion due to self-
weight might become an issue. 

• Under a line-load the distribution of torsion in the FEM model compares 
rather well to the analytical solution. For both methods torsion approximates 
a limit value for bridges longer than 40 meters.  

• The connection between the girder and the floor turns out to have a large 
influence on the results. By using solid-elements the exact geometry can be 
modelled and this problem is excluded. Hence solid-elements lead to better 
results than 2D-elements. But still the values for torsion in the solid-model 
(under a double line load of 80 𝑘𝑁/𝑚) remain 30% behind the values obtained 
by the analytical solution.   
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2.2 Plate model 
The plate model is entirely constructed out of 2D-elements and is designed in a 
number of steps. The first step is modelling the through floor in the XY-plane with a 
certain thickness. Then the triangular shaped section of the bridge (voute) is 
modelled in the XY-plane on the long edge of the floor. Because SCIA automatically 
connects overlapping nodes, no further action has to be under taken to connect 
these two plates. The girder is then modelled in the XZ-plane and translated to its 
correct position. One should notice that the centre-lines of the girder run in Z-
direction, where the centre-lines of the other two elements run in Y-direction. 
Which means the girder is not yet connected to the structure. To solve this problem 
the NS-Guideline 1015 (17) advises to use a rigid connection between the centreline 
of the girder and the edge of the triangular shaped section (red line in Figure G-1).  
 

 
       

Figure G-1: Cross-section and 3D-view of the plate model 

 
A rigid connection in SCIA means that the rotation for the two connected nodes are 
identical. Additionally the rotation determines the orientation of the connection line. 
The deformation of the nodes are identical as well, but due the rotation node 2 
undergoes an additional deformation of 0,5𝑏 ∗ 𝜑. 

 

 
 

Figure G-2: Deformation behaviour of the rigid connection 

 



Appendix G   SCIA Model vs. Analytical solution | 4  
 

The 2D-elements in SCIA are evaluated with 4-node quadrilateral and 3-node 
triangle elements. Each node has 6 degrees of freedom which represent the 
displacement and rotations in respectively X, Y and Z direction. Because the plate 
model only consists of simple forms, the model is evaluated with 4-node square 
elements. After some trial and error, it turns out that a mesh with squares of  
0,25 m forms the right balance between computational time and accurate results. 
 
 

 
 

Figure G-3: 3-node triangle element (left) and 4-node quadrilateral element (right) 

 
The application of point supports in the plate model results in large stresses and 
strains near the supports. To avoid this problem, so called strip supports are 
applied, which are line supports with a length of 0,25 meters (Figure G-4). With this 
length the supports coincide with the mesh, eliminating large stresses near the 
supports.  
 

 
 

Figure G-4: Strip supports applied in the plate model 

 
A similar problem arises when the rigid connections are applied every meter. The 
graphs for torsion become rather volatile. To solve this problem, the connections are 
applied every 0,25 meter, to let the connections coincide with the mesh as well. 
Evidently this leads to smoothers graphs for torsion.     
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2.3 Beam model 1A 
In beam model 1A the floor is modelled as a 2D-element which spans from centre 
girder to centre girder. The girder itself is modelled as a 1D-element on the long 
edge of the floor. The 1D-element consists of 2 nodes (one at the start and one at 
the end of the girder), where the 2D-element consists of 4 nodes (one on each 
corner). As mentioned before SCIA automatically connects overlapping nodes, 
meaning the floor and girder are connected at the corners. The concern however 
arises that the rotations and deformations of the floor and girder are only coupled 
at the corners of the structure and not along the entire length. To verify whether 
this is the case or not, an alternative beam model is introduced in paragraph 2.4 
which applies rigid connections between the 1D and 2D-elements.  
 

 
 

Figure G-5: Cross-section and 3D-view of the beam model 1A 

The cross-section entered in SCIA does not have the same dimensions as the 
original cross-section. The height of the girder is reduced with half the thickness of 
the floor. Equivalently the width of the floor is increased with the width of the girder 
(floor now spans from centre to centre). With the spreadsheet in paragraph 8.1 it is 
established that the cross-sectional area in SCIA is exactly the same whereas the 
section modulus is 5,6% smaller than the original cross-section. Yet the torsional 
stiffness of the girder has a value which is 29,7% less than the original value. 
Which means the shear modulus needs to be manually adjusted to:  

𝐺𝑔𝑖𝑟𝑑𝑒𝑟 = 18376 𝑁/𝑚𝑚2 instead of 𝐺 = 14176 𝑁/𝑚𝑚2.  
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2.4 Beam model 1B 
Beam model 1B forms a combination of the plate model and beam model 1A. The 
floor and voute are modelled as in the plate model (2D) where the girder is modelled 
as a line-element (1D). But in contrast to model 1A, the centreline of the girder does 
not coincide with the centre of the floor. This means that rigid connections between 
the 1D and 2D-element need to be applied to form a connection between these two 
elements. To do so, internal nodes are added to the 1D and 2D-elements and rigid 
connections are formed every ¼ meter. An advantage of this model is that the 
geometry is no longer simplified compared to the real cross-section and that the 
shear modulus does not need to be increased manually. However a disadvantage is 
that the connections formed have a vertical eccentricity, which according to de 
Groot can induce additional bending and torsional moments.  
  
 

 
 

Figure G-6: Cross-section and 3D-view of the beam model 1B 
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2.5 Mindlin vs. Kirchhoff 
The Kirchhoff theory assumes that vertical lines remains straight and perpendicular 
to the neutral plane of the plate during bending. Therefore normal strains and 
stress remain perpendicular to the surface. This explains that the shear 
deformation in an Kirchhoff element is not included (𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0). 

Contrastingly the Mindlin theory retains the assumption that vertical lines remain 
straight, but no longer perpendicular to the neutral plane during bending. Therefore 
normal strains and stresses do not remain perpendicular to the neutral plane. As a 
consequence additional strains arise (𝛾𝑥𝑧 = 𝛾𝑦𝑧 ≠ 0), causing shear deformation.  

 
In principal Kirchhoff elements apply to thin plates where shear deformation can be 
neglected, whereas Mindlin elements apply to thick plates where shear deformation 
is of significance. Obviously thick plates are applied in all three SCIA models and 
shear deformation is essential to determine the correct values for torsion.  
 

    
 

Figure G-7: Kirchhoff element (left) and Mindlin element (right) 
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3 Torsion 
 

3.1 Distributed mobile load 
Let’s assume a bridge with a span of 20 meters and the same cross-sectional 
properties as bridge A, is loaded with a double distributed line load of 100 𝑘𝑁/𝑚. 
Because this load simulates a train, the line loads are present with 1,50 meters 
spacing.  
 

 

 
Figure G-8: A double distributed line load of 100 kN/m 

Torsion along the length of the girder is plotted for the analytical solution, the plate 
and beam model 1A and 1B. Noteworthy is that beam model 1B and the plate model 
follow roughly the same course and beam model 1A stays behind. Even more 
controversial is the maximum torsion found by the analytical solution which is 
more than twice as large as the maximum value obtained by SCIA.  
 
 
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 34.000 𝑀𝑃𝑎 

 

 

 

 

 

 

 

 
Figure G-9: Torsion due to a double distributed line load (uncracked floor) 

 
During the derivation of the analytical solution (Appendix A) a number of 
assumptions are made. One of the most important ones is that the floor is divided 
into strips, meaning the load applied on the floor spreads quickly towards the 
girders. By reducing the Young’s Modulus of the floor, more load goes towards the 
girders and torsion increases. 
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According to the Eurocode the Young’s Modulus of a cracked section may be 
reduced to a fictitious value. Table NB.1 in the National Annex to Eurocode 2 (13) 
holds an expression for these fictitious values. From this table it is derived that the 
reduced E-modulus for C35/45 is equal to 𝐸𝑐𝑟𝑎𝑐𝑘𝑒𝑑 = 11.200 𝑁/𝑚𝑚2. To process this 
assumptions into SCIA, the E-modulus of the floor is reduced to 11.200 𝑁/𝑚𝑚2. 
 
 
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure G-10: Torsion due to a double distributed line load (cracked floor)  

Figure G-10 shows torsion for the half-loaded bridge, where the floor in SCIA is 
modelled as cracked. Due to this more load is transferred to the girders causing 
larger values for torsion. With this modification the plate and beam models in SCIA 
approximate the strip method used by the analytical solution.    
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3.2 Local mobile load 
The second considered load case is a double local line load of a 100 𝑘𝑁/𝑚, which 

spans from 𝑥 = 7,5 𝑚 to 𝑥 = 12,5 𝑚. Like the previous load case, the floor is modelled 
as cracked. 
  
 

 
 

Figure G-11: A double local line load of 100 kN/m 

 
The plate model and beam model 1B compare rather well to the analytical solution 
and the maximum torsion obtained is roughly the same. Contrastingly beam model 
1A stays behind and has a maximum which 40% lower. It is expected that the 
connection established between the 1D and 2D-element in model 1A results in a 
loss of stiffness. 
 
 
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure G-12: Torsion due to a local mobile load (cracked floor) 
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3.3 Self-weight 
The analytical solution assumes that for a constant loading (e.g. self-weight) the 
deflection of the floor and the rotation of the girder are constant. No deviation in 
rotation means that there is no torsion. However the SCIA models show that the 
floor (under influence of self-weight) deflects more at midspan than near the 
supports. Which means there is a deviation in rotation and therefore torsion. 
 
In order to find a graph for the analytical solution, an alternative load case is 
introduced. A local load is applied over a length 𝑎 with a value 𝑞𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒. The 

sheet in paragraph 8.2 is used to find a value for these two parameters which lead 
to the same deflection behaviour as the original load case.  
 
 

 
 

Figure G-13: Alternative load case for self-weight in longitudinal direction 

But besides an alternative load case in longitudinal direction, an alternative case in 
transverse direction is needed as well. The primary load on a strip is established by 
applying the entire self-weight as a distributed load on the floor.   
 
 

 
 

Figure G-14: Alternative load case for self-weight in transverse direction 
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With some trial and error it is established that, when the alternative load case in 
longitudinal direction approximates 16 meters with a value of 105% of the original 
loading (𝑞𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 = 𝑞𝑠𝑒𝑙𝑓−𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 1,05), that the analytical curve for torsion matches 

best with the SCIA models.  
 
 
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 
 

 

 

 

 

 

 

 

Figure G-15: Torsion due to self-weight (cracked floor)  

Figure G-15 shows the graphs for torsion due to self-weight. It turns out the plate 
model and analytical solution follow the same course and have roughly the same 
maximum. Beam model 1A shows a graph which remains far behind, where beam 
model 1B presents a graph which exceeds the analytical solution. This last 
phenomenon is remarkable, as model 1B is expected to follow the same course as 
the plate model. But because point supports are applied, large reactional forces are 
present near the end of the bridge increasing the values for torsion. Unfortunately 
strip supports are no better solution, because they induce a large counteracting 
bending moment near the supports which influences the rotation and therefore 
torsion in the girder.   
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3.4 Prestress 
Prestress basically has the opposite effect on the bridge as self-weight does.  
It generates an upward deflection and rotation in the girders that counteracts the 
rotation due to self-weight. But the similarity between the two is that the analytical 
solution assumes there is no torsion due to constant loading. Therefore an 
alternative load case needs to be applied.  
 
The prestress consists of a horizontal prestressing force, an upward acting 
distributed load and bending moment due to a small eccentricity of the tendons. 
Because torsion is only generated by deflection of the bridge and rotation of the 
girders, the horizontal force is excluded from this calculation. The downward acting 
bending moments at the edge of the bridge, leads to a smaller length of the 
alternative load case. With some trial and error, the same deflection behaviour is 
found by taking 𝑎 = 16 𝑚 and 𝑞 = 1,02 ∗ 𝑞𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠.  

 

 
 

Figure G-16: Alternative load case for prestress in longitudinal direction 

The upward acting distributed load is a result of the drape of the tendons and is 
originally present in the girders. But for this alternative load case, it is increased by 
2% and the load is distributed over the floor in order to find a primary load.  
 
 

 
 

Figure G-17: Alternative load case for prestress in transverse direction 
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Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 
 

 

 

 

 

 

 

 

Figure G-18: Torsion due to prestress (cracked floor) 

Figure G-18 presents the graphs for torsion in the girder due to prestress. The 
results are quite similar to torsion due self-weight, but then with an opposite sign. 
The plate model and analytical solution align pretty well, beam model 1A remains 
behind and beam model 1B exceeds the analytical solution near the supports. As 
concluded by R.T.J. de Groot, torsion in fully prestressed structures due to self-
weight and prestress is negligible.  
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3.5 Settlement of supports 
It can be likely that one of the supports settles more than others. Therefore a load 
case is introduced which takes 5 𝑚𝑚 of support settlement into account. This 
subjects the bridge to a deformation in as well longitudinal as transverse direction. 
But because the analytical solution assumes no load distribution in longitudinal 
direction, the support settlement case is reduced to a strip 𝑑𝑥 = 1,0 𝑚 with a 

deflection ∆ (Figure G-19). In chapter 3.1 in appendix A the primary load for this 
case is derived: 
 

𝑚𝑝𝑙0 = 6𝐸𝐼∆/𝐿2 [ G.1 ] 

 

 
Figure G-19: Transverse section for support settlement load case 

 
Noteworthy in Figure G-20 is that the shape of the analytical solution and the SCIA 
models compare rather well but that the values for torsion are far off. From the 
SCIA models it becomes clear that the settlement of the support isn’t just a 
deflection in transverse direction but also in longitudinal direction. This means that 
the load transfer happens in both directions and that the simplified case by the 
analytical solution is too conservative.   
 
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 
 

 

 

 

 

 

 

 

Figure G-20: Torsion due to support settlement (cracked floor) 
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4 Clamping moment 
Besides torsion the clamping moment is an important design load. A function for 
this load is derived in Appendix A to determine the course along the length of the 
girder. Because Witteveen+Bos uses SCIA to determine the clamping moment, it is 
interesting to see whether this matches with the analytical solution or not. 
 

4.1 Distributed line load 
The same type of loading as in paragraph 3.1 is considered, a double line load of 
100 𝑘𝑁/𝑚 on a bridge with a span of 20 meters. In the plate model the clamping 
moment is derived from the internal forces in the 2D-element that represents the 
girder. In beam model 1A the clamping moment is obtained by taking a section on 
the 2D-element which represents the floor. The similarity between these two is that 
the clamping moment is derived from a 2D-element which is present at the centre of 
the girder. However in beam model 1B this not possible, because there is no 2D-
element present at the centre of the girder. The clamping moment is therefore 
derived at the interface between the voute (2D) and the girder (1D), see Figure G- 
30. 
 

Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 
 

 

 

 

 

 

 

 

 

Figure G-21: Clamping moment for a double distributed line load (isotropic) 

The analytical solution shows a jump (and sign switch) at the end of the distributed 
load. This can be explained from the fact that the clamping moment under loading 
is counteracted by the clamping moment under the unloaded part. Which means 
that the clamping moment has the same magnitude but with an opposite sign.  
 
According to Figure G-21 the plate and beam model 1A align pretty well. Like the 
analytical solution these two models show a jump in clamping moment at the 

loaded-unloaded interface, but the maximums stay a bit behind. Beam model 1B 
shows a different result, which can be devoted to the fact that the clamping moment 
is obtained at a different location.  
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During the derivation of the clamping moment function, the assumption is made 
that the floor has no bending stiffness in longitudinal direction. Therefore the floor 
is now modelled as orthotropic (paragraph 8.4), with a cracked E-modulus in 
transverse direction and an E-modulus of 5.000 𝑀𝑃𝑎 in longitudinal direction. This 
last value is established using the national annex to Eurocode 2, which defines the 
lower limits for fictitious E-moduli.  
 
Property Girder Floor 

 𝐸𝑙𝑜𝑛𝑔 34.000 𝑀𝑃𝑎 5.000 𝑀𝑃𝑎 

𝐸𝑡𝑟𝑎𝑛𝑠 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 

 

 

 

 

 

 

 

 
 

Figure G-22: Clamping moment for a double distributed line load (orthotropic, Elong=5.000 MPa) 

As one can see the change in bending stiffness in longitudinal direction has 
increased the clamping moment slightly. But to see what the effect is when the floor 
has no longitudinal bending stiffness at all, the E-modulus is further reduced to 
𝐸𝑙𝑜𝑛𝑔 = 100 𝑀𝑃𝑎. 

 
 
Property Girder Floor 

 𝐸𝑙𝑜𝑛𝑔 34.000 𝑀𝑃𝑎 100 𝑀𝑃𝑎 

𝐸𝑡𝑟𝑎𝑛𝑠 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 

 

 

 

 

 

 

 
Figure G-23: Clamping moment for a double distributed line load (orthotropic, Elong=100 MPa) 

From Figure G-23 it can be concluded that by eliminating the longitudinal bending 
stiffness of the floor, the clamping moment graphs of the plate and beam model 1A 
align well with the analytical solution. Beam model 1B is less suitable for 
determining the clamping moment, because it is not possible to extract results at 
the centre of the girder.  
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4.2 Local mobile load 
The same load case as in paragraph 3.2 is considered, but this time for the 
clamping moment. Figure G-24 indicates that under loading the clamping moment 
is negative. At the interface loaded/unloaded the clamping moment makes a jump 
and becomes positive again. The explanation for this is similar to the previous 
paragraph, where the loaded parts of the bridge generate a clamping moment that 
is counteracted by the unloaded parts.  
 
 
 
Property Girder Floor 

 𝐸𝑙𝑜𝑛𝑔 34.000 𝑀𝑃𝑎 100 𝑀𝑃𝑎 

𝐸𝑡𝑟𝑎𝑛𝑠 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 

 

 

 

 

 
 

 
 

Figure G-24: Clamping moment for a local double distributed line load (orthotropic, Elong=100 MPa) 

Under loading the clamping moments in the plate and beam model 1A are larger 
than in the analytical solution. Unfortunately no direct explanation is found for the 
fact that these models deliver larger values than the analytical solution. But in 
practice, the bending stiffness of the floor (in a SCIA model) will not be reduced to a 
100 𝑀𝑃𝑎. Which means there will always be some load transfer in longitudinal 
direction, resulting in less conservative values for the clamping moment. From this 
point of view the analytical solution will form a safe upper limit. Beam model 1B 
results in values which remain smaller than the analytical solution, but no 
conclusions can be drawn from this fact since the results are obtained from at a 
different location. 
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5 Dimensions 
In this chapter a number of dimensions are changed to see what the effect is on 
torsion in the girder.  
 

5.1 Length 
For different bridge spans ranging from 0 to 40 meters, the maximum torsion for 
half loaded bridges is researched. For example a bridge of 30 meters is loaded with 
a double distributed line load of 100 𝑘𝑁/𝑚 over 15 meters.   
 
 

 
 

Figure G-25: Distributed line load on half the girder 

It can be concluded that for a bridge span between 0 and 30 meters, the maximum 
value for torsion keeps on increasing with the span. If the bridge span keeps on 
increasing beyond 30 meters there is no longer an increase in torsion. All three 
SCIA models and the analytical solution agree on this. But in general torsion in 
SCIA remains behind on the analytical solution for this mobile load case.  
 

Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 
 

 

 

 

 

 

 

 

Figure G-26: Maximum torsion for different bridge spans (cracked floor) 
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5.2 Height ratio 
Again let’s consider the bridge and load case from paragraph 3.1. This paragraph 
focuses on the influence of the girder height and floor thickness on the maximum 
torsion, by expressing these two dimensions in the form of a ratio: ℎ𝑔𝑖𝑟𝑑𝑒𝑟/ℎ𝑓𝑙𝑜𝑜𝑟 . 

 
  
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 
 

 

 

 

 

Figure G-27: Maximum torsion for a half loaded girder with varying girder height and floor thickness 
(cracked floor)  

With an increase in height ratio, the maximum torsion increases as well. It turns 
out there is linear correlation between the height ratio and the maximum obtained 
torsion. This can be explained from the point of view that a larger height ratio 
corresponds with a relatively stiffer girder. Basic mechanics teaches one that stiffer 
parts in the structure always attract more load, which in this case increases torsion 
in the girder. 
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5.3 Girder height & width 
One last time the half-loaded bridge from paragraph 3.1 is considered. This time the 
girder height and width are varied, to observe the influence on the maximum 
torsion. In order to properly understand what the effect of both parameters is, they 
are varied separately.  
 
 
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 

 

 

 

 

Figure G-28: Maximum torsion for increasing girder width 

    
Property Girder Floor 

𝐸 34.000 𝑀𝑃𝑎 11.200 𝑀𝑃𝑎 
 

 

 

 

 

 
 
 

 

Figure G-29: Maximum torsion for increasing girder height 

 
The three SCIA models and the analytical solution agree on the fact that whenever 
the height or the width of the girder increases, the maximum torsion increases as 
well. As mentioned before, when girder dimensions increase, it becomes a relatively 
stiffer part of the structure attracting more torsion.  
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6 Deviation of the model 
The main objective of this appendix is drawing up a comparison between the 
analytical solution and the three SCIA models, with respect to torsion in a through 
girder. This chapter will focus on the deviation between SCIA and the analytical 
solution, by considering the governing combination of self-weight, ballast, LM71 
and prestress acting on bridge A and B. Because the support settlement load case 
gives unrealistically high values for torsion, it is not considered in this calculation.  
In order to get a fair comparison, the cross-sectional properties will be fixed 
throughout this research. Which means that the girder is assumed to remain 
uncracked (𝐸 = 34.000 𝑀𝑃𝑎) whereas the floor is assumed to be cracked  

(𝐸 = 11.200 𝑀𝑃𝑎).  
 
The difference in torsion between SCIA and the analytical solution is established in 
a section at 0,8d. But the values for torsion in this section can deviate, due to for 
example the influence of the supports. Therefore it is decided to also take into 

account the maximum torsion in the through girder, which is not bound to a 
specific location.  
 
Table G-1: Bridge A: The difference in torsion between SCIA and the analytical solution at 0,8d 

 
 
Table G-2: Bridge A: The difference in maximum torsion between SCIA and the analytical solution 

 

Table G-1 presents torsion at 0,8d whereas Table G-2 shows the maximum torsion 
in the girder. The first impression one gets, is that the results from the plate model 
and beam model 1B are closer to the analytical solution than the results from the 
beam model 1A. One can also conclude, by taking a closer look at Table G-1, that 
there is a large difference between the analytical solution and the plate and beam 
model 1B for the load case prestress. Because the results in this table are generated 
at 0,8d, the supports are likely to have an influence. Therefore more value is put to 
Table G-2 which considers maximum torsion in the girder.  
 
 
 

1A 1B 1A 1B

1 Self-weight -93,0 -55,5 -32,5 -77,0 -40% -65% -17%

2 Ballast -81,0 -79,8 -59,9 -80,9 -1% -26% 0%

3 + 5a Load model 71 -195,0 -160,5 -124,9 -184,9 -18% -36% -5%

9 Prestress 34,0 52,3 29,7 76,8 54% -13% 126%

LC Type

Torsion [kNm] Difference [%]

Analytical Plate
Beam

Plate
Beam 

1A 1B 1A 1B

1 Self-weight -117,0 -59,6 -36,7 -77,2 -49% -69% -34%

2 Ballast -108,9 -82,5 -59,9 -84,3 -24% -45% -23%

3 + 5a Load model 71 -272,9 -271,8 -219,3 -261,5 0% -20% -4%

9 Prestress 65,2 62,4 36,5 78,3 -4% -44% 20%

LC Type

Maximum Torsion [kNm] Difference [%]

Analytical Plate
Beam

Plate
Beam 
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Table G-3: Bridge A: The total deviation of maximum torsion in the plate and beam model 1A & 1B 

 

Because not every load case has the same contribution to the total torsion, a 
weighed average is introduced to determine the total deviation. For example when 
considering the maximum torsion in bridge A, self-weight results in a deviation of     
-49% in the plate model (Table G-2). By taking into account that self-weight 
generates 20,7% of the total torsion, the deviation caused by this load case is 
−49% ∗ 0,207 =  −10%. Ultimately this results, for maximum torsion in bridge A, in a 

total deviation of -16% for the plate model, -38% for the beam model 1A and -11% 
for beam model 1B (Table G-3).  
 
Table G-4: Bridge A & B: The total deviation of torsion in the plate and beam model 1A & 1B at 0,8d 

 
 
Table G-5: Bridge A & B: The total deviation of maximum torsion in the plate and beam model 1A & 1B 

 

Respectively the total deviation of the plate, beam model 1A and 1B goes to 10-15%, 
40% and 10% (as seen in Table G-4 and Table G-5). At first it looks like beam model 
1B approximates the analytical solution slightly better than the plate model. But 
with the knowledge from chapter 3 the contrary can be concluded. This is due to 

the fact that for self-weight and prestress, beam model 1B exceeds the analytical 
solution and thereby compensates for its exactly larger deviation from the analytical 
solution.  
 
Beam model 1A shows a deviation of 40% from the analytical solution. The most 
plausible explanation for this lies in the fact that no rigid connections are applied in 
beam model 1A, resulting in a loss of bending and torsional stiffness at the 1D 
(girder) and 2D (floor) interface.  

1A 1B

1 Self-weight 20,7% -10% -14% -7%

2 Ballast 19,3% -5% -9% -4%

3+5a Load model 71 48,4% 0% -10% -2%

9 Prestress 11,6% 0% -5% 2%

100,0% -16% -38% -11%Total

LC Type % of Total loading

Deviation to analytical solution (%)

Plate
Beam

1A 1B 1A 1B

Self-weight -9% -15% -4% -10% -23% -8%

Ballast 0% -5% 0% 0% -7% 1%

Load model 71 -9% -17% -3% 6% -5% 13%

Prestress 5% -1% 11% 1% -4% 11%

Total deviation [%] -14% -39% 4% -4% -39% 17%

LC

Bridge B - Deviation in torsion (%)Bridge A - Deviation in torsion (%)

Plate
Beam

Plate
Beam

1A 1B 1A 1B

Self-weight -10% -14% -7% -9% -17% -4%

Ballast -5% -9% -4% -2% -6% -2%

Load model 71 0% -10% -2% 2% -9% 1%

Prestress 0% -5% 2% -1% -9% 1%

Total deviation [%] -16% -38% -11% -9% -41% -4%

LC

Bridge A - Deviation in torsion (%) Bridge B - Deviation in torsion (%)

Plate
Beam

Plate
Beam
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R.T.J. de Groot concluded that 2D and 3D models of a through bridge remain 
respectively 50% and 30% behind on the analytical solution. However it should be 
noted that de Groot considered statically undetermined structures with end-cross 
members, where this thesis focuses on statically determined structures without 
end-cross members. Additionally de Groot was looking for the best possible FE 
model for a through bridge rather than the deviation between the theory and a FE 
model. Which means both researches have a different scope and purpose and 
cannot be compared one on one.  
 
Finally one should realize that the analytical solution forms a safe upper limit when 
calculating torsion in a through bridge. The strip method and the negligence of the 
longitudinal bending stiffness of the floor are quite conservative assumptions. In 
reality a load on the floor will not only spread in transverse but also in longitudinal 
direction. SCIA on the other hand has the ability to distribute loads in both 
directions and is therefore closer to the real structural behaviour.  
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7 Conclusions & Recommendations 
 

7.1 Conclusions 
Based on the results found in this appendix the following conclusions can be 
drawn: 

• Modelling the floor as cracked, by reducing the E-modulus to roughly a third 
(𝐸𝑓𝑙𝑜𝑜𝑟 = 11.200 𝑀𝑃𝑎), makes the plate and beam models approximate the 

strip method of the analytical solution.  

• As opposed to the analytical solution, self-weight and prestress do cause 
torsion in the girder. By making use of an alternative load case, a graph for 
torsion can even be found for the analytical solution. But one should keep in 
mind that for fully prestressed structures the deflections and rotations of 
these two load cases cancel each other out, resulting in hardly any torsion.  

• A support settlement leads to maximum torsion at the location of settling 
which gradually decreases towards the unloaded support. In contrast to 
SCIA the analytical solution assumes no load spread in longitudinal direction 
for this load case, resulting in values for torsion which are too conservative.  

• One of the assumptions during the derivation of the analytical solution is 
that the bending stiffness of the floor in longitudinal direction is negligible. In 
SCIA the floor is modelled as orthotropic with hardly any bending stiffness in 
longitudinal direction. This results in values for the clamping moment which 
compare rather well to the analytical solution for the plate and beam model 
1A.  

• A simply supported through bridge, loaded over half the length, shows 
increasing values for torsion up to a span of 30 meters.  

• Increasing the girder height or width, makes it a relatively stiffer part of the 
structure. Stiffer parts of a structure attract more load, resulting in an 
(almost) linear relation between these dimensions and maximum obtained 
torsion.  

• Applying a governing combination of self-weight, ballast, LM71 and prestress 
on bridge A and B, results in values for torsion which are 10-15%, 40% and 
10% smaller than the analytical solution for respectively the plate, beam 
model 1A and 1B. However beam model 1B exceeds the analytical solution 
for the self-weight and prestress load case due to large reactional forces at 
the supports and therefore compensates for its deviation. 

• R.T.J. de Groot concluded that a 2D and 3D model of a through bridge 
results in values for torsion which remain respectively 50% and 30% behind 
the analytical solution. However de Groot focussed on the best possible FE 
model and considered statically undetermined structures with end-cross 
members. 

• There is a clear difference in deviation between beam model 1A and 1B. 
Because model 1A is constructed without rigid connections, there is a loss in 
bending and torsional stiffness of the girder, which results in a larger 
deviation from the analytical solution than beam model 1B. 

• The analytical solution assumes the bridge to be divided into small strips 
and neglects the longitudinal bending stiffness of the floor. In reality loads 
will be as well distributed in longitudinal as transverse direction and the 
analytical solution therefore needs to be considered as a safe upper limit.  
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7.2 Recommendations 
For modelling a through bridge in SCIA the plate model is recommended over the 
two beam models. Three reasons are provided to support this recommendation:  
 

• Deviation: As mentioned in paragraph 7.1, beam model 1A remains 40% 
behind the analytical solution due to the absence of rigid connections. The 
plate and beam model 1B remain respectively 10-15% and 10% behind the 
analytical solution. However beam model 1B exceeds the analytical solution 
for the self-weight and prestress load case due to large reactional forces at 
the supports and therefore compensates for its deviation. Additionally 
chapter 3 shows that the plate model aligns better with the analytical 
solution than beam model 1B. 
 

• Clamping moment: To find the clamping moment in the through girder 2D-
elements are needed. The plate model is entirely constructed of 2D-elements 
and the clamping moment is established from the centre of the girder 
(section A-A in Figure G- 30). Beam model 1B uses a 1D-element to model 
the girder and therefore does not have the ability to compute the clamping 
moment at the centre. As an alternative the clamping moment is derived at 
the interface between the girder and the floor (section B-B), which is not in 
agreement with the analytical solution which assumes the floor to be fully 
restrained in the centre of the girder. Additionally chapter 4 shows beam 
model 1B is not very suitable for determining clamping moments.  
 

 
Figure G- 30: Sections used in plate model and beam model 1B to determine clamping moments 

• Modelling time: Each internal node that is applied on a 1D-element has to 
be inserted manually. Consequently each rigid connection between the 1D 
and 2D-element has to be applied manually as well. The plate model is 
constructed by applying one rigid connection which is duplicated multiple 
times. Hence the beam model 1B is much more time consuming to model 
than the plate model.  

 
To conclude, the plate model is recommended to model a through bridge. But 
because this model still forms a simplification of the real structure, it is strongly 
recommended another graduate student models the through bridge in 3D. It is 
expected that a 3D model generates better results for torsion, because the geometry 
of the structure is no longer simplified. With this model a better understanding of 
the differences between the analytical solution and the real structural behaviour is 
obtained.      
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8 Attachments 
8.1 Cross-sectional properties 
  



1750

550

900 4000

900

1475

550

4900

Cross-sectional dimensions

Real cross-section

SCIA cross-section

𝑏𝑓𝑙𝑜𝑜𝑟 =

ℎ𝑓𝑙𝑜𝑜𝑟 =

𝑏𝑔𝑖𝑟𝑑𝑒𝑟 =

ℎ𝑔𝑖𝑟𝑑𝑒𝑟,1 =

𝑏𝑓𝑙𝑜𝑜𝑟 =

ℎ𝑓𝑙𝑜𝑜𝑟 =

𝑏𝑔𝑖𝑟𝑑𝑒𝑟 =

ℎ𝑔𝑖𝑟𝑑𝑒𝑟,2 =



= 5,35E+06 [mm2]

= 5,35E+06 [mm2]

= 0,00 [%]

= 1,58E+06 [mm2] = 875 [mm] = 1,38E+09 [mm3]

= 2,20E+06 [mm2] = 275 [mm] = 6,05E+08 [mm3]

= 1,58E+06 [mm2] = 875 [mm] = 1,38E+09 [mm3]

∑ = 5,35E+06 [mm2] ∑ = 2,03E+03 [mm] ∑ = 3,36E+09 [mm3]

Neutral axis above bottom fibre = 628 [mm]

= 1,33E+06 [mm2] = 1012,5 [mm] = 1,34E+09 [mm3]

= 2,70E+06 [mm2] = 275 [mm] = 7,41E+08 [mm3]

= 1,33E+06 [mm2] = 1012,5 [mm] = 1,34E+09 [mm3]

∑ = 5,35E+06 [mm2] ∑ = 2,30E+03 [mm] ∑ = 3,43E+09 [mm3]

Neutral axis above bottom fibre = 641 [mm]

SCIA cross-section

Cross-sectional properties (2/2)

Area

Position neutral axis

Real cross-section

𝐴𝑟𝑒𝑎𝑙
𝐴𝑆𝐶𝐼𝐴
∆𝐴𝑟𝑒𝑎

𝐴1
𝐴2
𝐴3

𝑦2
𝑦3

𝑦1 𝐴1 ∗ 𝑦1
𝐴2 ∗ 𝑦2
𝐴3 ∗ 𝑦3

𝐴1
𝐴2
𝐴3

𝑦2
𝑦3

𝑦1 𝐴1 ∗ 𝑦1
𝐴2 ∗ 𝑦2
𝐴3 ∗ 𝑦3



= 4,98E+11 [mm4] = 4,24E+11 [mm4]

= 3,3E+11 [mm4] = 4,29E+11 [mm4]

= 1,33E+12 [mm4] = 1,28E+12 [mm4]

= 1,18E+09 [mm3] = 1,15E+09 [mm3] = -2,59%

= 2,11E+09 [mm3] = 1,99E+09 [mm3] = -5,60%

= 875 [mm] = 737,5 [mm]

= 450 [mm] = 450 [mm]

= 2000 [mm] = 2450 [mm]

= 275 [mm] = 275 [mm]

= 2,88E+11 [mm4] = 2,22E+11 [mm4]

= 34000 [Mpa]

= 0,20 [-]

= 14167 [Mpa]

= 1,2971 [-]

= 18376 [Mpa]

Torsional stiffness

Real cross-section SCIA cross-section

Modified shear modulus

Sectional modulus

Real cross-section SCIA cross-section Difference

Cross-sectional properties (2/2)

Moment of inertia

Real cross-section SCIA cross-section
𝐼𝑦𝑦,𝑔𝑖𝑟𝑑𝑒𝑟
𝐼𝑦𝑦,𝑓𝑙𝑜𝑜𝑟

𝐼𝑦𝑦,𝑔𝑖𝑟𝑑𝑒𝑟
𝐼𝑦𝑦,𝑓𝑙𝑜𝑜𝑟

𝑊𝑡𝑜𝑝

𝑊𝑏𝑜𝑡𝑡𝑜𝑚

𝑊𝑡𝑜𝑝

𝑊𝑏𝑜𝑡𝑡𝑜𝑚

𝐼𝑦𝑦,𝑡𝑜𝑡 𝐼𝑦𝑦,𝑡𝑜𝑡

∆𝑊𝑡𝑜𝑝

∆𝑊𝑏𝑜𝑡𝑡𝑜𝑚

𝐼𝑡,𝑔𝑖𝑟𝑑𝑒𝑟

𝑎𝑔𝑖𝑟𝑑𝑒𝑟
𝑏𝑔𝑖𝑟𝑑𝑒𝑟
𝑎𝑓𝑙𝑜𝑜𝑟
𝑏𝑓𝑙𝑜𝑜𝑟

𝐼𝑡,𝑔𝑖𝑟𝑑𝑒𝑟

𝑎𝑔𝑖𝑟𝑑𝑒𝑟
𝑏𝑔𝑖𝑟𝑑𝑒𝑟
𝑎𝑓𝑙𝑜𝑜𝑟
𝑏𝑓𝑙𝑜𝑜𝑟

𝐸𝑐𝑚

𝑣

𝐺
𝐼𝑡,𝑟𝑒𝑎𝑙/𝐼𝑡,𝑆𝐶𝐼𝐴
𝐺𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
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8.2 Deflection due to self-weight 
  



Deflection due to self-weight & alternative load-case:

Which values are chosen for length a and alternative load qalternative, to obtain a similar 
deflection behaviour as the self-weight load case.

Parameters

Alternative load over length a:

Distributed load due to self-weight:

Distributed load due to alternative load case:

Functions for alternative load case

Displacement functions

Rotation functions



Bending moment functions

Shear force functions

Functions for self-weight

Displacement functions

Rotation functions

Bending moment functions

Shear force functions

Boundary conditions for alternative load case

Boundary conditions at x=0



Transition condition at x=(l-a)/2

Transition condition at x=(l+a)/2

Boundary conditions at x=L

Boundary conditions for self-weight

Boundary conditions at x=0

Boundary conditions at x=L

Solution



Graphs

Displacement graph
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8.3 Deflection due to prestress 
  



Deflection due to prestress:

A) Deflection due to bending moment MA

B) Deflection due to constant upward acting prestress q

Parameters

Parameters of the girder

Applied loading

Functions A

Displacement function

Rotation function

Bending moment function

Shear force functions



Functions B

Displacement function

Rotation function

Bending moment function

Shear force function

Boundary conditions A

Boundary conditions at x=0

Boundary conditions at x=L



Boundary conditions B

Boundary conditions at x=0

Boundary conditions at x=L

Solution

Graphs

Displacement graph



Deflection due to alternative loading:

Parameters

Applied loading & length

Functions C

Displacement functions

Rotation functions

Bending moment functions

Shear force functions



Boundary conditions C

Boundary conditions at x=0

Transition condition at x=(l-a)/2

Transition condition at x=(l+a)/2

Boundary conditions at x=L

Solution

Graphs

Displacement graph





Appendix G   SCIA Model vs. Analytical solution | 30  
 

8.4 Orthotropic floor properties 
  



Height h = = 650 mm

Youngs Modulus E1 = = 100 N/mm²

E2 = = 11200 N/mm²

Poisson Ratio n12 = = 0,20 [-]

n21 = n12 * E2 / E1 = 0,50 [-]

Shear modulus G12 = √ (E1 * E2) / (2* (1 + √(n12 * n21))) = 402 N/mm²

G13 = E1 / (2 * (1 + n12)) = 42 N/mm²

G23 = E2 / (2 * (1 + n21)) = 3733 N/mm²

D11 = (E1 * h3) / (12 * (1 - (n12 * n21))) = 3 MNm

D22 = (E2 * h3) / (12 * (1 - (n12 * n21))) = 285 MNm

D12 = n21 * D11 = 1 MNm

D33 = (G12 * h3) / 12 = 9 MNm

D44 = G13 * h / 1,2 = 23 MN/m

D55 = G23 * h / 1,2 = 2022 MN/m

d11 = (E1 * h) / (1 - (n12 * n21)) = 72 MN/m

d22 = (E2 * h) / (1 - (n12 * n21)) = 8089 MN/m

d12 = n21 * d11 = 36 MN/m

d33 = G12 * h = 261 MN/m

Parameters (shell elements)

Parameters (plate elements)

Properties

Orthotropy
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8.5 SCIA plate model – Bridge A 
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8.6 SCIA beam model 1A – Bridge A 
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8.7 SCIA beam model 1B – Bridge A 
 
 
 












