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A B S T R A C T

We present the projection-based embedded discrete fracture model (pEDFM) for hexahedral corner-point
grid (CPG) geometries, for the simulation of hydrothermal processes in fractured porous media. Unlike the
previously-developed pEDFM for structured box grids, our new development allows for the modeling of
complex geometries defined with hexahedral CPG cells. It also advances the pEDFM method to include coupled
flow and heat transfer systems. Mass and energy conservation equations are simulated in a fully-coupled
manner using a fully-implicit (FIM) integration scheme. This allows for stable simulations, specially when large
time steps are taken. Independent corner-point grids are imposed on the rock matrix and all fractures, with
conductivities ranging from highly permeable to flow barriers. The connectivities between the non-neighboring
grid cells are described such that a consistent discrete representation of the embedded fractures occurs within
the corner-point grid geometry, specially as the quadrilateral interfaces are allowed to be fully flexible. Various
numerical tests including geologically-relevant and real-field models, which are established in the literature, are
conducted to demonstrate the applicability of the developed method. It is shown that pEDFM can accurately
capture the physical influence of both highly conductive fractures and flow barriers on the flow and heat
transfer fields in complex reservoir geometries. This development is promising for flow simulations of real-
field geo-models, increasing the discretization flexibility and enhancing the computational performance for
capturing explicit fractures accurately.
1. Introduction

For successful development of a variety of geo-engineering ap-
plications related to geo-energy (e.g., hydrocarbon and geothermal)
production and storage (e.g., CO2 storage and hydrogen storage), a
detailed understanding of fluid mass and heat transport in porous rocks
is essential. To achieve this, accurate and efficient simulation of mass
and heat transfer in the subsurface geological formation plays a crucial
role. Computer models and their resulting estimation of the dynamic
processes contribute to efficient and safe operations in the production
or storage facilities for any of the above-listed applications. Simulation
results provide valuable insights into the optimization of hydrocarbon
extractions (Jansen et al., 2005), the energy production outlines and the
life-time of geothermal systems (OSullivan et al., 2001; Axelsson et al.,
2003; Burnell et al., 2012, 2015), the practical capacities that can be
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offered by the underground formations to store CO2 (Eiken et al., 2011;
Class et al., 2009; Harris et al., 2021; Wang et al., 2021; Ruprecht et al.,
2014) or hydrogen (Anon, 2021; Heinemann et al., 2021), and many
more.

However, while modeling subsurface flow, the geo-engineering
community faces a number of key challenges. The geological formations
are often large scales in nature. While they are located only a few kilo-
meters deep in the subsurface (crust) and have a thickness of hundreds
(if not tens) of meters, their areal extents can easily be in orders of
kilometers. In order to reflect the geological and geometrical properties
of the subsurface accurately, high-resolution computational grids are
often imposed on the domain. This results in significant computational
complexity, which makes it impossible to run the computer models
using conventional methods. Moreover, strong spatial heterogeneity
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contrasts are observed between various physical and chemical prop-
erties in the formations. These heterogeneities affect the flow and
transport properties of the rock (i.e., storage capacity and conductivity)
across several orders of magnitude. The discretization of the governing
partial differential equations, or PDEs, results in ill-conditioned linear
systems of equations creating challenges for the numerical solution
schemes applied to solve such heterogeneous systems. In addition,
the measurement of the heterogeneous properties several kilometers
beneath the subsurface involves a great deal of uncertainty. In order to
minimize the impact of such uncertainties, instead of one realization,
hundreds (if not thousands) of realizations are created in the context
of uncertainty quantification (UQ) and a large number of simulations
have to be run. Thus, the complexity of the system can have a huge
impact on providing predictions on a reasonable time scale.

Furthermore, geological formations are often defined with complex
geometry and stratigraphy. Using Cartesian grid geometry, even though
it allows for simpler conceptual modeling analyses, can result in over-
simplified and inaccurate predictions. In addition, the presence of faults
and fractures has significant effects on fluid and heat flow patterns
through the subsurface formations. The heterogeneity contrasts in the
length scales and conductivities caused by these complex networks
of fractures and faults can cause extreme challenges in solving the
linear systems using numerical methods (Gan and Elsworth, 2016;
Gholizadeh Doonechaly et al., 2016b; Salimzadeh et al., 2019). More-
over, the strong coupling of mass and heat transport results in severe
non-linearity which negatively impacts the stability and convergence
in the system. In case of multi-phase flow (e.g., high-enthalpy geother-
mal systems) these issues become more drastic (Wong et al., 2018).
The elastic and plastic deformations in the geo-mechanical interac-
tions (Rossi et al., 2018; Garipov et al., 2016; Gholizadeh Doonechaly
et al., 2016a), reactive transport (e.g., geo-chemical interaction be-
tween the substances) (Morel and Morgan, 1972; Leal et al., 2017;
Salimzadeh and Nick, 2019) and compositional alterations in the fluid
and rock are among the list of other noteworthy challenges. Therefore,
there is a high demand for developing advanced simulation methods
that are computationally efficient and scalable, yet accurate at the
desired level. Consequently, the development of a reliable computer
model for simulation of subsurface flow and transport in fractured
porous media is critical to address the challenges in practical appli-
cations. As a result, many advanced numerical methods have been
developed.

To represent the real-field geological formations accurately, instead
of using Cartesian grids, more complex and flexible gridding structures
are needed as these formations are more conveniently represented by
flexible grids (Lie et al., 2020; Reichenberger et al., 2006). The grid
geometry should create a set of discrete cell volumes that approximate
the reservoir volume, yet fit the transport process physics, and avoid
over complications as much as possible (Ahmed et al., 2015). Unstruc-
tured grids allow for many flexibilities, which need to be carefully
applied to a computational domain so that the discrete systems do
not become over-complex (Karimi-Fard et al., 2004; Jiang and Younis,
2016). Without introducing the full flexibility (and at the same time
complexity) of the fully unstructured grids, the corner-point grid (CPG)
geometry allows for many possibilities with better representation of the
geological structures. This has made CPG attractive in the geoscience
industry-grade simulations (Ponting, 1989; Ding and Lemonnier, 1995;
GeoQuest, 2014; Lie, 2019).

Fractures have often small apertures (size of millimeters) but pose
a serious impact on flow patterns due to large contrast of permeabil-
ity between fractures and their neighboring rock matrix (Berkowitz,
2002; Kumar et al., 2020). Therefore, consistent representation of these
geological features is important in predicting the flow behavior using
numerical simulations (Berkowitz, 2002). Different approaches have
been proposed to model the effect of fractures on flow patterns. To
avoid direct numerical simulation (DNS) and thereby imposing ex-
2

tremely high resolution grids on the length scales of fracture apertures,
it is possible to upscale fractures by obtaining averaged and effective
properties (e.g., permeability) between fractures (or faults) and the
hosting rock (also known as the rock matrix). This introduces a porous
media representation without fractures but with approximated conduc-
tivities. However, such models raise concerns about the inaccuracy of
the simulation results due to the employed excessively upscaled param-
eters, especially in presence of high conductivity contrasts between the
matrix and fractures. Therefore, two distinct methods have been intro-
duced in fracture modeling approaches; the so-called dual continuum
models (also known as dual porosity or dual porosity-dual permeabil-
ity) (Warren and Root, 1963; Barenblatt et al., 1983; Kazemi et al.,
1996) and the discrete fracture model (DFM) (Dietrich et al., 2005). In
the dual porosity method, the matrix plays the role of fluid storage and
the fluid only flows inside the fractures as it is assumed that there is
no direct connection between the matrix cells. In the dual porosity-dual
permeability method, both matrix and fracture have connections. Both
dual porosity and dual porosity-dual permeability models homogenize
the fracture domain in a computing block and neglect specific fracture
features such as orientation and size. DFM, on the other hand, considers
fractures as a separate system in a lower dimensional domain than that
of the rock matrix, and couples them through a flux transfer function.
In 2D domains the fractures are represented by 1D line-segments and
in 3D domains each fracture is modeled by a 2D plane-segment. DFM
methods have been developed and evolved quite significantly during
the past several years (See, e.g., (Karimi-Fard et al., 2004; Lee et al.,
1999, 2001; Li and Lee, 2008; Ahmed et al., 2015; Geiger-Boschung
et al., 2009; Karvounis, 2013; Reichenberger et al., 2006; Moinfar
et al., 2014; Fumagalli et al., 2016), and the references therein). Two
different DFM approaches have been presented in the literature: the
Embedded DFM (EDFM) and the Conforming DFM (CDFM) (Flemisch
et al., 2018; Li and Voskov, 2021; Moinfar et al., 2013). The main
difference between these two techniques resides in the flexibility to
the grid geometry (Shah et al., 2016). In CDFM, the fracture elements
are located at the interfaces between the unstructured matrix grid-
cells (Sandve et al., 2012). The effect of the fractures is represented
by modifying transmissibilities at those interfaces. Therefore, there is
an accurate consideration of flux transfer between the matrix and the
fractures (Karimi-Fard et al., 2004; Reichenberger et al., 2006; Ahmed
et al., 2015). However for highly dense fracture networks the number
of matrix grid cells should be very high with very fine grid cells close
to the fracture intersections, to account for the fractures. In addition, in
case of fracture generation and propagation, the matrix grid has to be
redefined at various steps of the simulation which reduces the efficiency
of such an approach. All of these complexities can limit the application
of CDFM in real-field applications. In EDFM, fractures are discretized
separately and independently from the matrix on a lower dimensional
domain by using non-conforming grids (Lee et al., 1999; Li and Lee,
2008). Once the grid cells are created and the discretization is finished,
the fractures and matrix are coupled together using conservative flux
transfer terms that calculate the flow between each fracture element
and its overlapping neighbors (Hajibeygi et al., 2011; HosseiniMehr
et al., 2018; Xu and Sepehrnoori, 2019). Having two independent grids
allows for the modeling of complex fracture networks with simpler
grids for the matrix.

While EDFM can provide acceptable results for highly conductive
fractures, it cannot accurately represent flow barriers (such as non-
conductive fractures and sealing faults). To resolve this limitation,
projection-based EDFM (pEDFM) was introduced, for the first time, by
Tene et al. (2017) and extended to multilevel multiscale framework
in a fully 3D Cartesian geometry (HosseiniMehr et al., 2020). pEDFM
provides consistent connectivity values between the rock matrix and
the fractures, and thus can be applied to fractured porous media with
any range of conductivity contrasts between the rock and the frac-
tures (either highly conductive or impermeable). The original pEDFM
concept (Tene et al., 2017) has been applied to more geoscientific

applications (e.g. in (Jiang and Younis, 2017)).
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In this work, the projection-based embedded discrete fracture model
(pEDFM) on the corner-point grid (CPG) geometry is presented. To
cover a more general application criteria, different flow environments
are considered, i.e., multiphase fluid flow model (isothermal) in frac-
tured porous media and single-phase coupled mass-heat flow in low-
enthalpy fractured geothermal reservoirs. The finite volume method
(FVM) is used for discretization of the continuum domain. To rep-
resent realistic and geologically relevant domains, the corner-point
grid geometry is used. The sets of nonlinear equations are coupled
using fully-implicit (FIM) coupling strategy. The flux terms in the mass
and energy conservation equations are discretized with an upwind
two-point flux approximation (TPFA) in space and with a backward
(implicit) Euler scheme in time. The pEDFM is employed in order
to explicitly and consistently represent fractures and to provide com-
putational grids for the rock matrix and the fractures independently
regardless of the complex geometrical shape of domain. Here, the
applicability of the pEDFM implementation (Tene et al., 2017; Hossein-
iMehr et al., 2020) has been extended to include fractures with generic
conductivity contrasts (either highly conductive or impermeable) with
any positioning and orientation on the corner-point grid geometry. This
matter is paramount for practical field-scale applications. In addition
to geometrical flexibility of EDFM, the matrix–matrix and fracture–
matrix connectivities are altered to consider the projection of fractures
on the interfaces of matrix grid cells. Using various synthetic and
geologically-relevant real-field models the performance of the pEDFM
on the corner-point grid geometry is shown.

This article is structured as follows: First, the governing equations
are described in Section 2. The discretization and simulation strategy
are explained in Appendix A.3. In Section 4, the corner-point grid
geometry and calculation of the transmissibilities are briefly covered.
The pEDFM approach for the corner-point grid geometry is presented
in Section 5. The test cases and the numerical results are shown in
Section 6. At last, the paper is concluded in Section 7.

2. Governing equations

In this section, the governing equations of the isothermal multiphase
flow is revisited. In order to improve the readability, the governing
equations for single-component (water) two-phase (vapor–liquid) cou-
pled mass-heat transport in geothermal systems are presented in the
appendix.

Mass conservation in porous media for phase 𝛼 in the absence of
mass-exchange between the phases, capillary and gravitational effects
with 𝑛frac explicit fractures is given as
𝜕
𝜕𝑡

(

𝜙𝜌𝛼𝑆𝛼
)𝑚 − ∇ ⋅

(

𝜌𝛼𝝀𝜶 ⋅ ∇𝑝
)𝑚 =

𝜌𝛼𝑞
𝑚,𝑤
𝛼 +

𝑛frac
∑

𝑖=1
𝜌𝛼

𝑚,𝑓𝑖
𝛼 on 𝛺𝑚 ⊆ 𝐑𝑛, (1)

for the rock matrix 𝑚 and
𝜕
𝜕𝑡

(

𝑎𝜙𝜌𝛼𝑆𝛼
)𝑓𝑖 − ∇ ⋅

(

𝑎 𝜌𝛼𝝀𝜶 ⋅ ∇𝑝
)𝑓𝑖 =

𝜌𝛼𝑞
𝑓𝑖 ,𝑤
𝛼 + 𝜌𝛼

𝑓𝑖 ,𝑚
𝛼 +

𝑛frac
∑

𝑗=1

(

𝜌𝛼
𝑓𝑖 ,𝑓𝑗
𝛼

)

𝑗≠𝑖

on 𝛺𝑓𝑖 ⊆ 𝐑𝑛−1 ∀ 𝑖 ∈ {1,… , 𝑛frac} (2)

for the lower-dimensional fracture 𝑓𝑖 with aperture 𝑎. There exist 𝑛𝛼
phases. Moreover, the superscripts 𝑚, 𝑓 and 𝑤 in Eqs. (1)–(2) indicate,
respectively, the rock matrix, the fractures and the wells. Here, 𝜙 is
the porosity of the medium, 𝜌𝛼 , 𝑆𝛼 , 𝝀𝜶 are the density, saturation,
and mobility of phase 𝛼, respectively. In addition, 𝝀 =

𝑘𝑟𝛼
𝜇𝛼

𝐊 holds,
here 𝑘𝑟, 𝜇 and 𝐊 are phase relative permeability, viscosity and rock
bsolute permeability tensor, respectively. Also, 𝑞𝛼 is the phase source
erm (i.e., wells). Finally, 𝑚,𝑓𝑖

𝛼 and 𝑓𝑖 ,𝑚
𝛼 are the phase flux exchanges

etween matrix and the 𝑖th fracture, whereas 𝑓𝑖 ,𝑓𝑗 represents the
3

𝛼

nflux of phase 𝛼 from 𝑗th fracture to the 𝑖th fracture. Note that the
mass conservation law enforces ∭𝑉 𝑚,𝑓𝑖

𝛼 𝑑𝑉 = −∬𝐴𝑓𝑖
𝑓𝑖 ,𝑚
𝛼 𝑑𝐴 and

∬𝐴𝑓𝑖
𝑓𝑖 ,𝑓𝑗
𝛼 𝑑𝐴 = −∬𝐴𝑓𝑗

𝑓𝑗 ,𝑓𝑖
𝛼 𝑑𝐴.

The Peaceman well model (Peaceman, 1978) is used to obtain the
well source terms of each phase for the rock matrix as

𝑞𝑚,𝑤𝛼 =
𝑊 𝐼 ⋅ 𝜆∗𝛼 ⋅ (𝑝

𝑤 − 𝑝𝑚)
𝛥𝑉

(3)

and for the fractures as

𝑞𝑓𝑖 ,𝑤𝛼 =
𝑊 𝐼 ⋅ 𝜆∗𝛼 ⋅ (𝑝

𝑤 − 𝑝𝑓𝑖 )
𝛥𝐴

. (4)

Here, 𝑊 𝐼 denotes the well productivity index and 𝜆∗𝛼 is the effective
mobility of each phase (𝜆 =

𝑘𝑟𝛼
𝜇𝛼

𝐾) between the well and the grid cell
penetrated by the well in each medium. In the discrete system for the
rock matrix, the control volume is defined as 𝛥𝑉 and in the discrete
system for the fracture, the control area is written as 𝛥𝐴.

The flux exchange terms 𝑚,𝑓𝑖
𝛼 , 𝑓𝑖 ,𝑚

𝛼 (matrix–fracture connectivi-
ties) and 𝑓𝑖 ,𝑓𝑗

𝛼 (fracture–fracture connectivities) are written as:
𝑚,𝑓𝑖
𝛼 = 𝐶𝐼𝑚,𝑓𝑖 ⋅ 𝜆∗𝛼 ⋅ (𝑝

𝑓𝑖 − 𝑝𝑚)
𝑚,𝑓𝑖
𝛼 = 𝐶𝐼𝑓𝑖 ,𝑚 ⋅ 𝜆∗𝛼 ⋅ (𝑝

𝑚 − 𝑝𝑓𝑖 ) (5)
𝑓𝑖 ,𝑓𝑗
𝛼 = 𝐶𝐼𝑓𝑖 ,𝑓𝑗 ⋅ 𝜆∗𝛼 ⋅ (𝑝

𝑓𝑗 − 𝑝𝑓𝑖 ),

here 𝐶𝐼 indicates the connectivity index between each two non-
eighboring elements (see Eq. (49)).

Eqs. (1)–(2), subject to proper initial and boundary conditions, form
well-posed system for 𝑛𝛼 unknowns, once the ∑𝑛𝛼

𝛼=1 𝑆𝛼 = 1 constraint
s employed to eliminate one of the phase saturation unknowns. Here,
his system of equations is solved for a two phase flow fluid model with
he primary unknowns of 𝑝 and 𝑆1 (from now on indicated as 𝑆).Please
ote that the effects of both capillarity (in case of a multiphase flow)
nd gravity are neglected in all the equations.

. Discretization of the equations and the simulation strategy

The discretization of the nonlinear equations is done using the
inite volume method (FVM). The equations are discretized with a two-
oint-flux-approximation (TPFA) finite-volume scheme in space and a
ackward (implicit) Euler scheme in time. Independent structured grids
re generated for a three-dimensional (3D) porous rock and 2D fracture
lanes. The discretization is done for each medium. For a corner-point
rid geometry, an illustration is presented in Fig. 4.

The coupled system of non-linear equations (1)–(2) is discretized
y calculating the fluxes. The advective TPFA flux of phase 𝛼 between
ontrol volumes 𝑖 and 𝑗 reads

𝛼,𝑖𝑗 = 𝜌∗𝛼
𝑘∗𝑟𝛼
𝜇∗
𝛼
𝑇𝑖𝑗 (𝑝𝑖 − 𝑝𝑗 ). (6)

Here, 𝑇𝑖𝑗 = 𝐴𝑖𝑗
𝑑𝑖𝑗

𝐾𝐻
𝑖𝑗 denotes the transmissibility between the neigh-

boring cells 𝑖 and 𝑗. 𝐴𝑖𝑗 and 𝑑𝑖𝑗 are the interface area and the distance
etween these two cells centers respectively. The term 𝐾𝐻

𝑖𝑗 is the
armonic average of the two permeabilities. The superscript ∗ indicates
hat the corresponding terms are evaluated using a phase potential
pwind scheme. Following the EDFM and pEDFM paradigms (Hajibeygi
t al., 2011; Tene et al., 2017; HosseiniMehr et al., 2018), the fluxes
etween a matrix cell 𝑖 and a fracture cell 𝑗 are modeled as

𝑚,𝑓
𝛼,𝑖𝑗 = −𝑓,𝑚

𝛼,𝑖𝑗 = −𝜌∗𝛼
𝑘∗𝑟𝛼
𝜇∗
𝛼
𝑇 𝑚,𝑓
𝑖𝑗 (𝑝𝑚𝑖 − 𝑝𝑓𝑗 ), (7)

In this equation, 𝑇 𝑚,𝑓
𝑖𝑗 is the geometrical transmissibility in the mass

flux between cell 𝑖 belonging to the rock matrix 𝑚 and the element 𝑗
belonging to the fracture 𝑓𝑖 and it reads:

𝑇 𝑚,𝑓 = 𝐾𝐻 × 𝐶𝐼 . (8)
𝑖𝑗 𝑖𝑗 𝑖𝑗
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Fig. 1. Visualization of a matrix–fracture overlap and a fracture–fracture intersection.
The figure on the left shows a fracture element overlapping with a matrix grid cell.
The overlapping section forms an irregular polygon. The figure on the right illustrates
intersection of two elements from two fracture plates inside a matrix grid cell with the
intersection line colored in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

In the equation above, 𝐾𝐻
𝑖𝑗 denotes the harmonically averaged

permeability between the rock matrix and the overlapping fracture ele-
ments. Moreover, 𝐶𝐼𝑚,𝑓𝑖𝑗 is the connectivity index between the two over-
lapping elements. The EDFM and pEDFM model the matrix–fracture
connectivity index as:

𝐶𝐼𝑚,𝑓𝑖𝑗 =
𝐴𝑚,𝑓
𝑖𝑗

⟨𝑑⟩𝑖𝑗
, (9)

with 𝐴𝑚,𝑓
𝑖𝑗 being the area fraction of fracture cell 𝑗 overlapping with

matrix cell 𝑖 (see Fig. 1, on the left) and ⟨𝑑⟩𝑖𝑗 being the average distance
between these two cells (Hajibeygi et al., 2011).

Similarly, the flux exchange between intersecting fracture elements
𝑖 (belonging to fracture 𝑓𝑖) and 𝑗 (belonging to fracture 𝑓𝑗) is modeled
as

𝑓𝑖 ,𝑓𝑗
𝛼,𝑖𝑗 = −𝑓𝑗 ,𝑓𝑖

𝛼,𝑖𝑗 = −𝜌∗𝛼
𝑘∗𝑟𝛼
𝜇∗
𝛼
𝑇
𝑓𝑖 ,𝑓𝑗
𝑖𝑗 (𝑝𝑓𝑖𝑖 − 𝑝

𝑓𝑗
𝑗 ). (10)

Here, 𝑇
𝑓𝑖 ,𝑓𝑗
𝑖𝑗 is the geometrical transmissibility in the mass flux

between element 𝑖 in the fracture 𝑓𝑖 and the element 𝑗 in the fracture
𝑓𝑗 , which reads:

𝑇
𝑓𝑖 ,𝑓𝑗
𝑖𝑗 = 𝐾𝐻

𝑖𝑗

𝐶𝐼𝑓𝑖𝑖𝐼𝑖𝑗 × 𝐶𝐼
𝑓𝑗
𝑗𝐼𝑖𝑗

𝐶𝐼𝑓𝑖𝑖𝐼𝑖𝑗 + 𝐶𝐼
𝑓𝑗
𝑗𝐼𝑖𝑗

. (11)

Please note that the geometrical transmissibility 𝑇
𝑓𝑖 ,𝑓𝑗
𝑖𝑗 between

the two non-neighboring (intersecting) fracture cells is obtained on
a lower dimensional formulation. This is needed due to the fact that
the intersection between two 2D fracture plates forms a line-segment
and the intersection between two 1D fracture line-segments results in
a point. Fig. 1 (on the right) visualizes an example of an intersection
between two non-neighboring 2D fracture elements. The result of the
intersection is a line segment 𝐼𝑖𝑗 (colored in red) with the average
distances from the intersection segment written as ⟨𝑑⟩𝑓𝑖𝑖𝐼𝑖𝑗 ≠ ⟨𝑑⟩

𝑓𝑗
𝑗𝐼𝑖𝑗

.
This is the reason why these transmissibilities are computed using a
harmonic-average formulation as shown above.

Thus, at each time-step the following system of equations is solved

⎛

⎜

⎜

⎝

(

𝜙𝜌𝛼𝑆𝛼
)𝑛+1
𝑖 −

(

𝜙𝜌𝛼𝑆𝛼
)𝑛
𝑖

𝛥𝑡

⎞

⎟

⎟

⎠

𝑚

+

(𝑁𝑛
∑

𝑗=1
𝐹𝛼,𝑖𝑗

)𝑚

+

𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
𝑚,𝑓𝑘
𝛼,𝑖𝑗

⎞

⎟

⎟

⎠

= 𝜌𝛼𝑞
𝑚,𝑤
𝛼,𝑖 ,

∀ 𝑖 ∈ {1,… , 𝑁 } (12)
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𝑚

in the matrix and

⎛

⎜

⎜

⎝

(

𝑎𝜙𝜌𝛼𝑆𝛼
)𝑛+1
𝑖 −

(

𝑎𝜙𝜌𝛼𝑆𝛼
)𝑛
𝑖

𝛥𝑡

⎞

⎟

⎟

⎠

𝑓ℎ

+

(𝑁𝑛
∑

𝑗=1
𝐹𝛼,𝑖𝑗

)𝑓ℎ

+

𝑁𝑚
∑

𝑗=1
𝑓ℎ ,𝑚
𝛼,𝑖𝑗 +

𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
𝑓ℎ ,𝑓𝑘
𝛼,𝑖𝑗

⎞

⎟

⎟

⎠

= 𝜌𝛼𝑞
𝑓ℎ ,𝑤
𝛼,𝑖 ,

∀ 𝑖 ∈ {1,… , 𝑁𝑓ℎ} (13)

in each fracture 𝑓ℎ. Here, 𝑁𝑚 and 𝑁𝑓𝑘 are the number of cells in the
matrix and number of the cells in fracture 𝑓𝑘, respectively. 𝑁𝑛 indicates
the number of neighboring cells (2 in 1D, 4 in 2D, 6 in 3D).

Eqs. (12)–(13) can be written in residual form as

(

𝑟𝑛+1𝛼,𝑖

)𝑚
= 𝜌𝛼𝑞

𝑚,𝑤
𝛼,𝑖 −

⎛

⎜

⎜

⎝

(

𝜙𝜌𝛼𝑆𝛼
)𝑛+1
𝑖 −

(

𝜙𝜌𝛼𝑆𝛼
)𝑛
𝑖

𝛥𝑡

⎞

⎟

⎟

⎠

𝑚

−

(𝑁𝑛
∑

𝑗=1
𝐹𝛼,𝑖𝑗

)𝑚

−
𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
𝑚,𝑓𝑘
𝛼,𝑖𝑗

⎞

⎟

⎟

⎠

,

∀ 𝑖 ∈ {1,… , 𝑁𝑚} (14)

for the rock matrix, and

(

𝑟𝑛+1𝛼,𝑖

)𝑓ℎ
= 𝜌𝛼𝑞

𝑓ℎ ,𝑤
𝛼,𝑖 −

⎛

⎜

⎜

⎝

(

𝑎𝜙𝜌𝛼𝑆𝛼
)𝑛+1
𝑖 −

(

𝑎𝜙𝜌𝛼𝑆𝛼
)𝑛
𝑖

𝛥𝑡

⎞

⎟

⎟

⎠

𝑓ℎ

−

(𝑁𝑛
∑

𝑗=1
𝐹𝛼,𝑖𝑗

)𝑓ℎ

−
𝑁𝑚
∑

𝑗=1
𝑓ℎ ,𝑚
𝛼,𝑖𝑗 −

𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
𝑓ℎ ,𝑓𝑘
𝛼,𝑖𝑗

⎞

⎟

⎟

⎠

,

∀ 𝑖 ∈ {1,… , 𝑁𝑓ℎ} (15)

for fracture 𝑓ℎ. Let us define 𝑟𝑛 = [(𝑟𝑚)𝑛, (𝑟𝑓1 )𝑛... ...(𝑟𝑓𝑛frac )𝑛]𝑇 where
(𝑟𝑘)𝑛 is the residual vector of medium 𝑘 at time-step 𝑛. Similarly, 𝑝𝑛

and 𝑆𝑛 indicate the vectors of pressure and saturation unknowns (of
all media). The residual 𝑟𝑛+1 is a non-linear function of the primary
unknowns 𝑝𝑛+1 and 𝑆𝑛+1. Thus, at each time-step a Newton–Raphson
method is employed to solve the non-linear system iteratively, i.e.

𝑟𝜈+1𝛼 ≈ 𝑟𝜈𝛼 +
𝜕𝑟𝛼
𝜕𝑝

|

|

|

|

𝜈
𝛿𝑝𝜈+1 +

𝜕𝑟𝛼
𝜕𝑆

|

|

|

|

𝜈
𝛿𝑆𝜈+1, (16)

where the superscript 𝜈 is the iteration index. Consequently, at each
Newton’s iteration the linearized system 𝐉𝜈𝛿𝑥𝜈+1 = −𝑟𝜈 is solved. Here,
𝐉𝜈 is the Jacobian matrix with 𝛿𝑥𝜈+1 = [𝛿𝑝, 𝛿𝑆]𝑇 . Therefore, assuming
two phases (the indices 1 and 2 representing the equations of the first
and the second phases respectively), the linear system of equations can
be written as

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

𝐽𝑚,𝑚
1,𝑝 𝐽𝑚,𝑓

1,𝑝

𝐽𝑓,𝑚
1,𝑝 𝐽𝑓,𝑓

1,𝑝

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝐽𝑚,𝑚
1,𝑆 𝐽𝑚,𝑓

1,𝑆

𝐽𝑓,𝑚
1,𝑆 𝐽𝑓,𝑓

1,𝑆

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝐽𝑚,𝑚
2,𝑝 𝐽𝑚,𝑓

2,𝑝

𝐽𝑓,𝑚
2,𝑝 𝐽𝑓,𝑓

2,𝑝

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝐽𝑚,𝑚
2,𝑆 𝐽𝑚,𝑓

2,𝑆

𝐽𝑓,𝑚
2,𝑆 𝐽𝑓,𝑓

2,𝑆

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐉𝜈

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛿𝑝𝑚

𝛿𝑝𝑓

𝛿𝑆𝑚

𝛿𝑆𝑓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝜈+1

⏟⏞⏞⏟⏞⏞⏟
𝛿𝑥𝜈+1

= −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑟𝑚1

𝑟𝑓1

𝑟𝑚2

𝑟𝑓2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝜈

⏟⏟⏟
𝑟𝜈

(17)

In this formulation, non-linear convergence is reached when the
following conditions are satisfied:
(

‖𝑟𝜈+11 ‖2

‖𝑟01‖2
< 𝜖(𝑟1) ∨

‖𝑟𝜈+11 ‖2

‖𝑟ℎ𝑠1‖2
< 𝜖(𝑟1)

)

∧

(

‖𝑟𝜈+12 ‖2

‖𝑟02‖2
< 𝜖(𝑟2) ∨

‖𝑟𝜈+12 ‖2

‖𝑟ℎ𝑠2‖2
< 𝜖(𝑟2)

)

∧ (18)
(

‖𝛿𝑝‖2 < 𝜖(𝑝) ∧
‖𝛿𝑆‖2 < 𝜖(𝑆)

)

‖𝑝‖2 ‖𝑆‖2
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Here, 𝜖(𝑟1), 𝜖(𝑟2), 𝜖(𝑝) and 𝜖(𝑆), are the user-defined tolerances that are
set initially as input at the beginning of the simulation. The notation
‖𝑥‖2 is the second norm of the vector 𝑥. The superscript 0 denotes the
value of its corresponding vector at the initial state of the iteration step.
Please note that in some systems the condition ‖𝑟𝜈+1‖2

‖𝑟ℎ𝑠‖2
< 𝜖(𝑟) can result

in a better convergence when compared to ‖𝑟𝜈+1‖2
‖𝑟0‖2

< 𝜖(𝑟) and vice versa.
Therefore both conditions are checked and either of them can implicate
the convergence signal.

4. Corner-point grid geometry

A corner-point grid (CPG) is defined with a set of straight pil-
lars outlined by their endpoints over a Cartesian mesh in the lateral
direction (Lie, 2019). On every pillar, a constant number of nodes
(corner-points) is set, and each cell in the grid is set between 4 neigh-
boring pillars and two neighboring points on each pillar. Every cell
can be identified by integer coordinates (𝑖, 𝑗, 𝑘); where the 𝑘 coordi-
nate runs along the pillars, and 𝑖 and 𝑗 coordinates span along each
layer. The cells are ordered naturally with the 𝑖-index (𝑥-axis) cycling
fastest, then the 𝑗-index (𝑦-axis), and finally the 𝑘-index (negative of
𝑧-direction).

For establishing vertical and inclined faulting more accurately, it is
advantageous to define the position of the grid cell by its corner point
locations and displace them along the pillars that have been aligned
with faults surfaces. Similarly, for modeling the erosion surfaces and
pinch-outs of geological layers, the corner point format allows points to
collapse along coordinate lines. The corner points can collapse along all
four lines of a pillar so that a cell completely disappears in the presence
of erosion surfaces. If the collapse is present in some pillars, the de-
generate hexahedral cells may have less than six faces. This procedure
creates non-matching geometries and non-neighboring connections in
the underlying 𝑖-𝑗-𝑘 topology (Lie, 2019). Fig. 2 illustrates the steps in
the construction of the corner-point grids as explained above.

4.1. Two-point flux approximation in the corner-point grid geometry

In order to only highlight the calculation of the two-point flux ap-
proximation in the corner-point grid geometry and avoid complexities
in presenting fully detailed governing equations, a simplified linear
elliptic equation is used which serves as a model pressure equation for
incompressible fluids, i.e.,

∇ ⋅ 𝑢 = 𝑓, (19)

where 𝑓 is the source/sink term (wells), and 𝑢 is the Darcy velocity,
defined as

𝑢 = −𝐊∇𝑝. (20)

Finite volume discrete systems can be obtained by rewriting the
equation in integral form, on discrete cell 𝛺𝑖, as

∫𝜕𝛺𝑖

𝑢 ⋅ 𝑛 𝑑𝑆 = −∫𝛺𝑖

𝑞 𝑑�⃗�. (21)

The flux between the two neighboring cells i and k can be then
written as

𝑢𝑖,𝑘 = ∫𝛤𝑖,𝑘
𝑢 ⋅ 𝑛 𝑑𝑆. (22)

The faces 𝛤𝑖,𝑘 are denominated half face as they are linked with a
grid cell 𝛺𝑖 and a normal vector 𝑛𝑖,𝑘. It is assumed that the grid matches
with another one so that each interior half-face will have a twin half-
face 𝛤𝑘,𝑖 that has an identical area 𝐴𝑖,𝑘 = 𝐴𝑘,𝑖 but an opposite normal
vector 𝑛𝑖,𝑘 = −𝑛𝑘,𝑖. The integral over the cell face is approximated by
the midpoint rule, and Darcy’s law, i.e.,

𝑢 ≈ 𝐴
(

𝐊∇𝑝
)(

�⃗�
)

⋅ 𝑛 (23)
5

𝑖,𝑘 𝑖,𝑘 𝑖,𝑘 𝑖,𝑘
Fig. 2. Construction of a corner-point grid: Starting from the coordinate lines defining
pillars (top), the corner-points are added to them (middle). A stack of cells is created
for each set of four lines defining a pillar and at last the full grid is obtained (bottom).

where �⃗�𝑖,𝑘 indicates the centroid of 𝛤𝑖,𝑘.
The one-sided finite difference is used to determine the pressure

gradient as the difference between the pressure 𝜋𝑖,𝑘 at the face centroid
and the pressure at some point inside the cell. The reconstructed
pressure value at the cell center is equal to the average pressure 𝑝𝑖
inside the cell, thus,

𝑢𝑖,𝑘 ≈ 𝐴𝑖,𝑘𝐊𝐢
(𝑝𝑖 − 𝜋𝑖,𝑘)𝑐𝑘,𝑖

∣ 𝑐𝑘,𝑖 ∣2
⋅ 𝑛𝑖,𝑘 ⇒ 𝑢𝑖,𝑘 ≈ 𝑇𝑖,𝑘(𝑝𝑖 − 𝜋𝑖,𝑘). (24)

The vectors 𝑐𝑘,𝑖 are defined from cell centroids to face centroids. As
shown in Fig. 3, face normals are assumed to have a length equal to
the corresponding face areas 𝐴𝑖,𝑘 ⋅ 𝑛𝑖,𝑘, i.e.,

𝑇𝑖,𝑘 = 𝐴𝑖,𝑘𝐊𝐢
𝑐𝑘,𝑖 ⋅ 𝑛𝑖,𝑘
∣ 𝑐𝑘,𝑖 ∣2

. (25)

The one-sided transmissibilities 𝑇𝑖,𝑘 are related to a single cell and
provide a two-point relation between the flux across a cell face and
the pressure difference between the cell and face centroids. The proper
name for these one-sided transmissibilities is half-transmissibilities as
they are associated with a half-face (Karimi-Fard et al., 2004; Bosma
et al., 2017).

Finally, the continuity of fluxes across all faces, 𝑢𝑖,𝑘 = −𝑢𝑘,𝑖, as well
as the continuity of face pressures 𝜋 = 𝜋 = 𝜋 are set. This leads to
𝑖,𝑘 𝑘,𝑖 𝑖𝑘



Advances in Water Resources 159 (2022) 104091M. HosseiniMehr et al.
Fig. 3. Two cells used to define the two-point discretization on general 2D polygon
cells (see the figure on top) and 3D polyhedral cells (see the figure at the bottom).

𝑇 −1
𝑖,𝑘 𝑢𝑖𝑘 = 𝑝𝑖 − 𝜋𝑖𝑘 (26)

− 𝑇 −1
𝑘,𝑖 𝑢𝑖𝑘 = 𝑝𝑘 − 𝜋𝑖𝑘. (27)

The interface pressure 𝜋𝑖𝑘 is then eliminated and the two-point flux
approximation (TPFA) scheme is defined as

𝑢𝑖𝑘 =
[

𝑇 −1
𝑖,𝑘 + 𝑇 −1

𝑘,𝑖
]−1 (𝑝𝑖 − 𝑝𝑘) = 𝑇𝑖𝑘 (𝑝𝑖 − 𝑝𝑘). (28)

𝑇𝑖𝑘 is the transmissibility associated with the connection between
the two cells. The TPFA scheme uses two ‘‘points", the cell averages 𝑝𝑖
and 𝑝𝑘, to approximate the flux across the interface 𝛤𝑖,𝑘 between cells
𝛺𝑖 and 𝛺𝑘. The TPFA scheme in a compact form obtains a set of cell
averages that meet the following system of equations
∑

𝑘
𝑇𝑖𝑘 (𝑝𝑖 − 𝑝𝑘) = 𝑞𝑖 , ∀𝛺𝑖 ⊂ 𝛺. (29)

5. pEDFM for the corner-point grid geometry

In this section, pEDFM for the corner-point grid (CPG) geometry is
described. Note that this development considers only convex hexahe-
dral CPG geometries with planar faces. However, in some field-relevant
geo-models, some interfaces may not be planar. For example, the model
illustrated in Fig. 4 and the grid cells illustrated in Fig. 5 have some
non-planar faces. To obtain the matrix–fracture intersections, in the
presence of non-planar matrix grid interfaces, the pEDFM procedure
approximates the non-planar interface with a planar interface. This
approximation is explained further in this section. Note that the planar
fractures can have any orientation in 3D with arbitrary crossing lines
with other fractures.

As stated in the section for the discretization of the governing
equations, sets of flux exchange terms are defined between the matrix
and the explicit fractures. Inside each term, the connectivity index
(𝐶𝐼𝑖𝑗 = 𝐴𝑖𝑗

⟨𝑑⟩𝑖𝑗
) is considered. In the corner-point grid geometry, to

calculate the area fraction (𝐴𝑖𝑗) of each overlapping fracture element
inside the corresponding matrix grid cell, various geometrical functions
are defined which can obtain the intersection between a quadrilateral
(the 2D planar fracture grid cell in 3D geometry) and a hexahedron (the
matrix grid cell in the corner-point grid geometry).

At first, the matrix grid cells that are overlapped by each element
of each fracture need to be detected. To achieve this, the matrix cell
with the shortest distance to the fracture element is detected. The
6

Fig. 4. An example of a fractured domain on the corner-point grid geometry. The
domain presented in Fig. 4(a) is the well-known Norne oil-field which is a true
representative of the real-field geometry (Lie, 2019). Fig. 4(b) is a realization of a
fracture network inside the domain that was exclusively designed by the authors of this
paper. Note that each sub-domain (matrix, and individual fractures) entail independent
grid resolutions, and can have independent complexities (e.g. 3D orientation).

distance is calculated between the matrix cell center point and the
corners of the fracture element. In a loop, it is checked whether the
quadrilateral fracture element intersects with any of the quadrilateral
faces of that hexahedral matrix cell. The fracture–matrix intersection
points are then ordered counter-clockwise, and a polygon is formed
from the intersection points. Various geometrical possibilities exist with
regards to the intersection points and the polygons generated by them.
More precisely, if only one or two intersection points are obtained,
there is no polygon generated. As such, no area can be defined by
the points, i.e., the intersection is a line or a single point (thus zero
surface area). Alternatively, if between three to six intersection points
are detected, one can form a polygon with them (either a triangle,
a quadrilateral, a pentagon or a hexagon). The area of the polygon,
i.e. 𝐴𝑖𝑗 , is then calculated by triangulation procedure. Once the area
is calculated, the average distance between the fracture plate and the
overlapped matrix grid cell, i.e. ⟨𝑑⟩𝑖𝑗 , is computed. For this purpose,
since complex geometries are considered, a numerical approach is
developed. This numerical approach imposes a set of equidistant points
within the hexahedral matrix grid cell. The distance of each point to the
fracture plate is then calculated. Finally, the distances for all numerical
points are then averaged and assigned to ⟨𝑑⟩𝑖𝑗 value. Having the area
of the polygon and this average distance, the connectivity index is then
calculated. Afterwards, using a flood-fill search algorithm (Newman,
1979), all the matrix grid cells that are overlapped by the mentioned
fracture elements are detected and their connectivity indices are calcu-
lated. This procedure is done for each fracture element of each fracture
plate. The flood-fill search algorithm ensures computational efficiency
by avoiding unnecessary checks on the matrix grids that are not in the
vicinity of the fracture element.
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Fig. 5. The intersection between one or two fractures and a hexahedron in the corner-
point grid geometry is illustrated in these images. Note that the intersections form
irregular polygons. In the case of two fracture intersecting inside a matrix grid cell,
i.e., image at the bottom right, the polygons formed by the overlap of the two fractures
intersect on a line segment.

The algorithm above is performed on the computational CPG geo-
model, assuming all matrix grid interfaces are planar. However, as
mentioned before, field-relevant models could entail some non-planar
interfaces. To employ our pEDFM-CPG in these scenarios, the developed
algorithm applies approximate pEDFM connectivities for those non-
planar interfaces. More precisely, prior to obtaining the intersection
points between matrix and fracture elements, the non-planar interfaces
are approximated into planar interfaces. To achieve this, the middle
point of the non-planar interface is acquired via arithmetic averaging
of the coordination of the four corners. This middle point together with
the normal vector of the corresponding interface are used to formulate
the equation of a planar quadrilateral that best fits this interface. This
planar interface is then used to detect and realize the intersection
points within the pEDFM algorithm. It is also worth mentioning that
the approximation of non-planar interfaces into planar quadrilateral
plane segments results in slight (in many cases negligible) volume
shifts of the hexahedral grid cells between neighboring cells of the
interface. Note that as any volume shift in one grid cell is followed
by identical volume shift with opposite sign in the other neighboring
grid cell, hence, this approximation remains strictly mass conservative.
Moreover, such approximation is primarily local, for each non-planar
interface, and as such remains much smaller than the fine-scale grid
cell size in each direction. However, it allows for the major flexibility
of having the developed pEDFM also applicable to non-planar matrix
interfaces.

The first step in the development of the pEDFM for the corner-point
grid geometry is to flag all the interfaces between the matrix cells that
a fracture plate interrupts the connection between their cell centers. To
detect the affected interfaces, first, the list of all the matrix grid cells
that are overlapped by a fracture element is considered. In a loop, for
each overlapped matrix grid cell, a line segment that connects the cell
center of the mentioned matrix grid cell and the cell center of each of
its neighboring cells is defined. If the fracture plate intersects the line
segment, the interface between the two neighboring matrix grid cells is
affected by the crossing fracture. Therefore a projection of the fracture
element is obtained on the affected interface. In Fig. 6, the fracture
element 𝑓 is assumed to overlap with the matrix grid cell 𝛺𝑖 with an
area fraction of 𝐴𝑖𝑓 . A set of projections is defined on the interfaces
between the overlapped matrix grid cell 𝛺𝑖 and its neighboring grid
cells that are affected by the crossing (i.e., 𝛺 and 𝛺 ). For the interface
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𝑗 𝑘
between grid cells 𝛺𝑖 and 𝛺𝑗 (denoted as 𝛤𝑖,𝑗) the projection area
fraction 𝐴𝑖𝑓⟂𝛤𝑖,𝑗 is obtained via

𝐴𝑖𝑓⟂𝛤𝑖,𝑗 = 𝐴𝑖𝑓 × cos(𝛾). (30)

Here, 𝛾 is the angle between the fracture element 𝑓 and the interface
𝛤𝑖,𝑗 connecting the matrix grid cell 𝛺𝑖 and the neighboring grid cell (in
this example, 𝛺𝑗). On the zoomed-in section of Fig. 6, this projection
area fraction is highlighted in red. Similarly, the projection area frac-
tions on the interfaces between all the neighboring matrix grid cells that
are intersected by fracture elements are calculated based on the same
formulation. Thereafter, a continuous projection path (shown in Fig. 6
as solid lines in light-blue color) is obtained on the interfaces. This
projection path, disconnects the connections between the neighboring
cells on both sides of this path, thus allowing a non-parallel and
consistent flux exchange (i.e., through matrix–fracture–matrix).

After obtaining the projection areas, a set of new transmissibilities
are defined to provide connection between the fracture element 𝑓 and
each non-neighboring matrix grid cell (i.e., 𝑗 and 𝑘 in the example
shown in figure. 6):

𝑇𝑖𝑒𝑓 =
𝐴𝑖𝑓⟂𝛤𝑖,𝑗

⟨𝑑⟩𝑖𝑒𝑓
𝜆𝑖𝑒𝑓 , (31)

with ⟨𝑑⟩𝑖𝑒𝑓 defined as the average distance between the fracture el-
ement 𝑓 and matrix grid cell 𝑖𝑒, and 𝜆𝑖𝑒𝑓 being the effective fluid
mobility between these two cells. Therefore, the transmissibility be-
tween the matrix grid cell 𝑖 and its corresponding neighboring cells is
re-adjusted as

𝑇𝑖𝑖𝑒 =
𝐴𝑖𝑖𝑒 − 𝐴𝑖𝑓⟂𝛤𝑖,𝑗

𝛥𝑥𝑒
𝜆𝑖𝑒𝑓 . (32)

These transmissibilities are modified via multiplication of a factor
denoted as 𝛼 and defined as a fraction of the projection area divided
by the total area of that interface as the following:

𝛼 =
𝐴𝑖𝑓⟂𝛤𝑖,𝑗

𝐴𝑖𝑖𝑒
. (33)

As an example, if half of an interface area between two cells is
covered by the projection of a fracture cell, the alpha factor for that
interface will be 𝛼 = 0.5. The transmissibilities are modified via

𝑇𝑖𝑖𝑒 ∶= 𝑇𝑖𝑖𝑒 × (1 − 𝛼). (34)

One should consider that due to the continuation of a fracture plate,
for all the overlapping fracture elements (except for the boundaries of
the fractures), the projections will cover the entire area of the affected
interfaces. This means that 𝛼 is 1.0 for most of the cases. Therefore, to
simplify the implementation, all the non-zero 𝛼 factors are modified to
be 1.0 forcing full projections from the boundaries of the fractures on
the affected interfaces.

Algorithm 1 describes the pEDFM procedure for the corner-point
grid geometry, where the steps explained above are pointed step-by-
step.

6. Simulation results

Numerical results of various test cases are presented in this section.
The first two test cases compare the pEDFM model on the Cartesian
grid geometry with the pEDFM on the corner-point grid geometry. The
third test case demonstrates the pEDFM result on a non-orthogonal
grid model. Thereafter, we move towards a series of geologically rel-
evant fields. Using the pEDFM on the corner-point grid geometry, a
number of synthetic (highly conductive) fractures and (impermeable)
flow barriers are added to the geologically relevant models. The com-
putational performance of this method will not be benchmarked as the
purpose of these simulation results is to demonstrate the pEDFM on the
corner-point grid geometry as a proof-of-concept.

Tables 1 and 2 show the mutual input parameters that are used
for the test cases with the isothermal multiphase and the geothermal
single-phase flow models respectively.
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Fig. 6. pEDFM Illustration for a rock matrix in the corner-point grid geometry and an
overlapping fracture. Due to pEDFM modifications, new non-neighboring connections
between the fracture elements and the non-overlapped matrix cells are defined. The
matrix–matrix connectivities are modified only if the fracture plate interrupts the line-
segment that passes through the cell centers of each two neighboring matrix grid cells.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Input parameters of the fluid and rock properties for the isothermal multiphase flow.

Property Value

Matrix porosity (𝜙) 0.2 [−]
Fractures permeability (min) 10−22 [m2]
Fractures permeability (max) 10−6 [m2]
Fractures aperture 5 × 10−3 [m]
Fluid viscosity (phase 1, 𝜇1) 0.001 [Pa s]
Fluid viscosity (phase 2, 𝜇2) 0.003 [Pa s]
Fluid density (phase 1, 𝜌1) 1000 [kg∕m3]
Fluid density (phase 2, 𝜌2) 850 [kg∕m3]
Initial pressure of the reservoir 2 × 107 [Pa]
Initial saturation (phase 1, 𝑆1) 0.0[−]
Initial saturation (phase 1, 𝑆2) 1.0[−]
Injection Pressure 5 × 107 [Pa]
Production Pressure 1 × 107 [Pa]

Table 2
Input parameters of the fluid and rock properties for the geothermal single-phase flow
used in some test cases.

Property Value

Rock thermal conductivity (𝛬𝑟) 4 [W∕m K]
Fluid thermal conductivity (𝛬𝑓 ) 0.591 [W∕m K]
Rock density (𝜌𝑟) 2750 [kg∕m3]
Fluid specific heat (𝐶𝑝𝑓 ) 4200 [J∕kg K]
Rock specific heat (𝐶𝑝𝑟 ) 790 [J∕kg K]
Matrix porosity (𝜙) 0.2[−]
Fractures permeability (min) 10−20 [m2]
Fractures permeability (max) 10−8 [m2]
Fractures aperture 5 × 10−3 [m]
Initial pressure of the reservoir 1.5 × 107 [Pa]
Initial temperature of the reservoir 400 [K]
Injection Pressure 2 × 107 [Pa]
Injection Temperature 300 [K]
Production Pressure 1 × 107 [Pa]

6.1. Test case 1: 2D heterogeneous fractured reservoir (square)

In this test case, the pEDFM on the Cartesian grid is compared with
the corner-point grid geometry. For this reason, a box-shaped hetero-
geneous 100 [m] × 100 [m] domain containing 30 fractures with mixed
conductivities is considered. The length of each fracture is different but
the size of their aperture is identical and set to 𝑎𝑓 = 5 ⋅ 10−3 [m]. A
136 × 136 grid is imposed on the rock matrix and the fracture network
consists of 1024 grid cells (in total 19520 cells). The permeability of the
matrix ranges from 𝐾𝑚𝑚𝑖𝑛

= 1.2 × 10−15 [m2] to 𝐾𝑚𝑚𝑎𝑥
= 1.2 × 10−12 [m2],

and the permeability of the fracture network has the range of 𝐾𝑓𝑚𝑖𝑛 =
10−22 [m2] and 𝐾𝑓𝑚𝑎𝑥 = 10−6 [m2]. Two injection wells are located at
the bottom left and top left corners with an injection pressure of 𝑝 =
8

inj
Algorithm 1 The pEDFM algorithm for the corner-point grid geometry.
Read the corner-point grid data of the domain.
Scan the input file including the fractures geometry.
Discretize the fractures and generate the grids.
Obtain the EDFM connectivities:
for 𝑓 = 1 to 𝑁𝑢𝑚frac do

for 𝑖𝑓 = 1 to 𝑁𝑢𝑚𝑔𝑟𝑖𝑑 (𝑓 ) do
Find the closest matrix grid cell (𝐼𝑚)
for 𝑗 = 1 to 𝑁𝑢𝑚𝑓𝑎𝑐𝑒𝑠 do

Obtain the intersections between the fracture element and
all the faces

end
Order the intersection points counter-clockwise.
if 𝑁𝑢𝑚intersection points > 2 then

Calculate the area of the intersection polygon 𝐴𝑚,𝑓
𝑖𝑗 .

Populate the matrix grid cell 𝐼𝑚 with equidistant points.
Calculate the average distance between the fracture plate
and the matrix grid cell ⟨𝑑⟩𝑖𝑗 .
Calculate the connectivity index 𝐶𝐼𝑚,𝑓𝑖 .

end
Add the neighbors of the matrix grid cell 𝐼𝑚 to the checklist.
for 𝑛 = 1 to 𝑁𝑢𝑚neighbors do

Obtain the intersections.
if 𝑁𝑢𝑚intersection points > 2 then

Repeat the procedure and add the neighbors of this grid
cell to the checklist.

end
end

end
end
Obtain the pEDFM projections:
for 𝑓 = 1 to 𝑁𝑢𝑚frac do

for 𝑖𝑓 = 1 to 𝑁𝑢𝑚𝑔𝑟𝑖𝑑 (𝑓 ) do
for 𝐼𝑚 = 1 to 𝑁𝑢𝑚𝐸𝐷𝐹𝑀 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠) do

Define a linesegment connecting the cell center of matrix
grid cell 𝐼𝑚 to its neighbor.
if fracture 𝑓 intersects the line segment then

Obtain the projection area.
Calculate the 𝛼 factor.
Compute the average distance to the neighbor of the grid
cell 𝐼𝑚.
Compute the connectivity index for the neighbor of the
grid cell 𝐼𝑚.

end
end

end
end

2× 107 [Pa]. Additionally, there are two production wells at the bottom
right and the top right corners with a pressure of 𝑝prod = 1 × 107 [Pa].
Table 2 demonstrates the input parameters of this test case. Fig. 7 shows
the results of the simulation using both Cartesian Grid and corner-point
geometry.

Note that in this test case (and the test case 2), the 𝑥, 𝑦, 𝑧 coordi-
nates of the grids of the Cartesian geometry and the corner-point grid
geometry are identical. However, the grids are generated with different
geometrical approaches. In one scenario, the grid cells are discretized
using the Cartesian grid geometry and the grid cells are indexed in
every of the 𝑥, 𝑦, 𝑧 directions (𝑖 ∈ {1,… , 𝑁𝑥}, 𝑗 ∈ {1,… , 𝑁𝑦},
𝑘 ∈ {1,… , 𝑁𝑧}). For this scenario the pEDFM for the Cartesian grid
is used which has already been developed (Tene et al., 2017). In the
other scenario, the grid cells are generated using the corner-point grid
geometry where a list of nodes and a list of all the interfaces and
transmissibilities are generated. the pEDFM for the corner-point grid
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Fig. 7. Test case 1: 2D Heterogeneous. Fig. 7(a) illustrates the permeability map of the
system. The Figs. 7(b) and 7(c) show the pressure solutions at a specific time-step for
the Cartesian grid and the corner-point grid geometry respectively. The figures on the
bottom row 7(d) and 7(e) visualize the saturation distribution at the same time-step.

geometry that is developed in this work is used for this scenario.
Therefore, the size and positioning of the grid cells in the two scenarios
are identical, though have been generated with different geometrical
approaches.

The results of the both scenarios show a match visually. In order
to quantify the difference between the results of the two different ge-
ometrical approach for the pEDFM, a average relative error (in second
norm) is calculated for the pressure and the saturation distributions
over the entire simulation time. This relative error for each variable
𝑥 is calculated as

𝑒𝑥 =
∣∣ 𝑥Cart − 𝑥CPG ∣∣2

∣∣ 𝑥Cart ∣∣2
, (35)

where 𝑥 is a solution vector (of either of the main unknowns) and the
subscripts Cart and CPG indicate Cartesian grid and the corner-point
grid geometry. The errors calculated for this test case are 𝑒𝑝 = 1.55×10−5

and 𝑒𝑆 = 1.60 × 10−4.

6.2. Test case 2: 3D homogeneous fractured reservoir (box)

These test cases, similar to the test case 1, show a comparison for
the pEDFM on the Cartesian grid versus the corner-point grid geometry.
A 3D 100 [m] × 100 [m] × 40 [m] domain containing 15 lower dimen-
sional fractures with different geometrical properties is considered. A
9

Fig. 8. Test case 2: The non-orthogonal mesh structure used in this test case. The
domain is a 3D Cartesian box, but the grids have tilted pillars in two of the dimensions,
creating non-orthogonal grids.

Fig. 9. Test case 2: 3D Homogeneous box. The figures in the upper row show the
pressure solutions at a specific time-step for the Cartesian grid and the CPG geometries
respectively. The figures on the bottom row illustrate the saturation solutions at the
same time-step.

50 × 50 × 20 grid is imposed on a rock matrix. The fracture network
contains 1005 grid cells (total of 51005 grid cells). The rock matrix has a
permeability of 𝐾𝑚 = 10−14 [m2]. The fracture network consists of both
highly conductive fractures with a permeability of 𝐾𝑓 = 10−6 [m2] and
flow barriers with a permeability of 𝐾𝑓 = 10−22 [m2]. Two injection
wells exist on the bottom left and top left boundaries with a pressure
of 𝑝inj = 2 × 107 [Pa]. Similarly, two production wells are located at the
bottom right and top right boundaries with a pressure of 𝑝prod = 1 ×
107 [Pa]. All wells are vertical and perforate the entire thickness of the
reservoir. Two different grids are considered using the CPG geometry:
one with orthogonal grids where the coordinates of all the grid cells
are identical with those in the Cartesian grid geometry, and one with
non-orthogonal grids where the pillars of the grids are slightly tilted.
To provide a better insight, the non-orthogonal grid mesh is shown in
Fig. 8. As shown, the domain remains a Cartesian box, but the CPG grid
is tilted to verify its consistency.

Fig. 9 illustrates the simulation results for he Cartesian Grid, and
the two sets of CPG models.

Fig. 10 shows the errors between the results of the Cartesian grid
geometry (as the reference solution) and the two CPG cases (orthogonal
and non-orthogonal). Similar to the previous test case, a match is visible
between the results of the Cartesian grid and the orthogonal corner-
point grid, with errors (calculated via Eq. (35)) of 𝑒𝑝 = 1.71 × 10−9

and 𝑒𝑆 = 2.47 × 10−8. The difference between the solutions of the
Cartesian grid and the non-orthogonal corner-point grids are greater
as the different grid geometry results in different connectivities (𝑒𝑝 =
1.03 × 10−2 and 𝑒 = 4.44 × 10−2).
𝑆
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Fig. 10. Test case 2: The errors (calculated via Eq. (35)) of the pressure and saturation
results between the Cartesian grid geometry (as the reference solution) and the CPG
geometries: one with orthogonal grids (Fig. 10(a)) and one with non-orthogonal grids
(Fig. 10(b)).

6.3. Test case 3: 3D reservoir with non-orthogonal grids

The third test case (Fig. 11) demonstrates the capability of the
pEDFM method on the reservoir model based on corner point grids.
The grid cells in test case 2 were deformed to create a distorted
version of that model. The model allows for the testing of the pEDFM
implementation in a non-orthogonal grid system. The same dimensions
and gridding from test case 2 are used in this test case. The fracture
network consisting of 15 fractures is discretized in 876 grids, and a total
of 50876 grid cells are imposed on the entire domain.

Two different scenarios are considered in this test case. In the first
scenario some fractures are considered as highly conductive while the
others are given a very low permeability and are considered to be flow
barriers (shown in Fig. 11(a) with yellow color for high permeability
and blue color for low permeability). In the second scenario, the
permeability of the fractures is chosen as the inverse of scenario 1
11(b), i.e., the low conductive fractures are now highly conductive and
vice versa. The values of permeability for the matrix and (low and high
conductive) fractures are identical to the ones in test case 2. The well
pattern and pressure restrictions are also the same as in the previous
test case.

The pressure and saturation results of scenario 1 are shown in
Figs. 12(a) and 12(c) respectively (at the left side of Fig. 12). As the
grid geometry and the gridding system of this test case are not similar
to the previous test case, it is not possible to compare the two test cases.
The pressure and saturation distribution of the second scenario (at the
same simulation time) can be observed at right side of Fig. 12.

In the first scenario, the flow barriers are close to the injection wells,
thus restricting the displacement of the injecting phase towards the
center of the domain (Fig. 12(c)). Therefore, a high pressure gradient
is visible near the injection wells (Fig. 12(a)) as the low permeability
fractures limit the flux through the domain. In the second scenario,
the highly conductive fractures are near the injection wells, and the
saturation profile increases through the whole thickness of the do-
main (Fig. 12(d)). The pressure profile is uniformly distributed in the
reservoir as there is no flux restriction near the wells (Fig. 12(b)).

Additionally, to perform a grid resolution sensitivity analysis of
the developed model, this test case was used with three different grid
resolutions. While keeping all the input parameters identical as the ones
that were mentioned above, three different computational grids (using
corner-point grid geometry) were imposed on this domain, namely,
80 × 80 × 32, 40 × 40 × 16 and 20 × 20 × 8 for the rock matrix, and
2852, 757 and 173 for the fracture network, respectively. Fig. 13 shows
the saturation distribution of these three different gird resolutions at a
simulation time of 𝑡 = 100 [𝑑𝑎𝑦𝑠]. The results of the two lower grid
resolutions (i.e., 20 × 20 × 8 and 40 × 40 × 16) were compared
against the results of the highest grid resolution (i.e., 80 × 80 × 32),
meaning that the results of the 80 × 80 × 32 grid resolution is used as
reference in the calculation of the error. The relative error for pressure
10
Fig. 11. Test case 3: A 3D fractured deformed box with non-orthogonal grid in the
corner-point grid geometry. The Figs. 11(a) and 11(b) on top show the permeability
of the fractures for the scenarios 1 and 2 respectively. The Fig. 11(c) on the bottom
left illustrates the matrix grid cells that are overlapped by the fractures. Fig. 11(d) on
the bottom right shows the geometry of injection and production wells.

Fig. 12. Test case 3: A 3D fractured deformed box with a non-orthogonal grid in the
corner-point grid geometry. The Figs. 11(a) and 11(b) on top show the permeability
of the fractures for the scenarios 1 and 2 respectively. The Fig. 11(c) on the bottom
left illustrates the matrix grid cells that are overlapped by the fractures. Fig. 11(d) on
the bottom right shows the geometry of injection and production wells.

and saturation results are given in Fig. 14. These errors are calculated
as:

𝑒𝑥 =
∣∣ 𝑥HighRes − 𝑥LowRes ∣∣2

∣∣ 𝑥HighRes ∣∣2
, 𝑥 = {𝑃 , 𝑆𝑤} (36)
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Fig. 13. Test case 3: Grid resolution sensitivity analysis with three different grid
resolutions (with non-orthogonal corner-point grids) imposed on the computational
domain. The figures show the saturation distribution at 𝑡 = 100[𝑑𝑎𝑦𝑠] of simulation
time. Only the grid cells with the saturation values of higher than 𝑆𝑤 = 0.5 are visible.

Fig. 14. Test case 3: Grid resolution sensitivity analysis with three different grid
resolutions (with non-orthogonal corner-point grids) imposed on the computational
domain. These figures illustrate the pressure and saturation errors of the results from
different grid resolutions.

Fig. 15. Test case 4: The location of the Johansen formation can be observed on the
left figure. This formation is located within the green curve in the map, and the yellow
curve represents areas where seismic data have been acquired (courtesy of Gassnova).
The figure on the right shows the depth map of the Johansen model (NPD5 data set).

6.4. Test case 4: The Johansen formation

The water-bearing Johansen formation was a potential candidate for
CO2 storage in a project promoted by the Norwegian government. The
Norwegian continental margin has excellent potential for CO2 storage
options in saline aquifers.

The Johansen formation (Eigestad et al., 2009) is located in the
deeper part of the Sognefjord delta, offshore Mongstad on Norway’s
southwestern coast (see Fig. 15). It belongs to the Lower Jurassic Dunlin
group and is interpreted as a laterally extensive sandstone, and it is
overlaid by the Dunlin shale and below by the Amundsen shale. A
saline aquifer exists in the depth levels ranging from 2200[m] to 3100[m]
below the sea level. The depth range makes the formation ideal for CO2
storage due to the pressure regimes existent in the field (providing a
thermodynamical situation where CO2 is in its supercritical phase).

These formations have uniquely different permeabilities and per-
form very different roles in the CO2 sequestration process. The Jo-
hansen sandstone has relatively high porosity and permeability, and it
is suitable to store CO2. The low-permeability overlaying Dunlin shale
acts as a seal that avoids the CO from leaking to the sea bottom layers.
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Fig. 16. Test Case 4: Illustration of the Johansen model (NPD5 data set). The left
figure represents the active section of the model or NPD5, highlighted with blue color,
and the right figure shows the faults marked with red color. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

The Johansen formation has an average thickness of nearly 100[m],
and the water-bearing region extends laterally up to 60[km] in the
east–west direction and 100[km] in the north–south direction. The
aquifer has good sand quality with average porosities of roughly 25%.
This implies that the Johansen formation’s theoretical storage capacity
can exceed one Gigaton of CO2 providing the assumption of residual
brine saturation of about 20%. The northwestern parts of the Johansen
formation are located some 500[m] below the operating Troll field, one
of the North Sea’s largest hydrocarbon fields.

6.4.1. Data set
The MatMoRA project has created five models of the Johansen for-

mation: one full-field model (149 × 189 × 16 grids), three homogeneous
sector models (100 × 100 × 𝑛 for 𝑛 = 11, 16, 21), and one heterogeneous
sector model (100 × 100 × 11) also known as the NPD5 sector (Eigestad
et al., 2009). In this work, the last data set (NPD5) has been used. The
NPD5 sector can be seen in Fig. 16. In the left side of this figure, the
NPD5 sector is highlighted with blue color.

In the discretized computational grids, the Johansen formation is
represented by five layers of grid cells. The Amundsen shale below
the Johansen formation and the low-permeable Dunlin shale above are
characterized by one and five cell layers, respectively. The Johansen
formation consists of approximately 80% sandstone and 20% claystone,
whereas the Amundsen formation consists of siltstones and shales, and
the Dunlin group has high clay and silt content.

6.4.2. Rock properties
The Johansen sandstone is a structure with a wedge shape pinched

out in the front part of the model and divided into two sections
at the back. Fig. 17 shows two different selections, i.e., the entire
formation (Figs. 17(a) and 17(c)) and the NPD5 sector of the formation
(Figs. 17(b) and 17(d)).

The porosity map of the entire model is visible in Fig. 17(a), and
Fig. 17(b) shows the cells with porosity values larger than 0.1 that
belong to Johansen formation. Similarly, the permeability map of the
entire formation is shown in Figs. 17(c), and Fig. 17(d) illustrates
the permeability of the NPD5 sector where the Dunlin shale above
the Johansen and the Amundsen shale below the Johansen formation
are excluded. The permeability tensor is diagonal, with the vertical
permeability equivalent to one-tenth of the horizontal permeability.
In both graphs, the permeability is represented by a logarithmic color
scale.

6.4.3. Simulation results
The ‘‘NPD5’’ sector of the Johansen formation model (Lie, 2019) is

used in the following test case. It is a corner-point grid reservoir model
that consists of 100 × 100 × 11 grid cells from which 88775 grid cells
are active. The rock properties of the Johansen formation available as
public data were given as input in the simulation. A network of 121
fractures is embedded in the reservoir geological data set that contains
both highly conductive fractures and flow barriers with permeability
of 𝐾 = 10−8 [m2] and 𝐾 = 10−20 [m2] respectively. The model is
𝑓𝑚𝑎𝑥 𝑓𝑚𝑖𝑛
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Fig. 17. Test Case 4: Porosity and permeability of the entire Johansen formation and
the NPD5 sector). The left figures show porosity and permeability of the whole model,
whereas the right figures show the porosity and permeability of the NPD5 sector
(sandstone).

bounded by two shale formations. Therefore the fractures were placed
inside the Johansen formation (layers 6 to 10). In total 150 fractures are
embedded in the model, and the fracture network consists of 3494 grid
cells (in total 92269 grid cells for matrix and fractures). Five injection
wells with pressure of 𝑝inj = 5 × 107 [Pa] and four production wells
with pressure of 𝑝inj = 1 × 107 [Pa] were placed in the model. Wells are
vertical and drilled through the entire thickness of the model. Fig. 19(d)
illustrates the location of the injection and production wells in this
test case. Moreover, Fig. 18 shows a histogram of the number of the
neighboring connections between the matrix grid cells of this field.
While the majority of the grid cells have 5 or 6 neighbors, there are
grid cells that have more than 6 neighbors due to non-matching grid
topology.

In the ‘‘NPD5’’ computational model of the Johansen formation, 29
percent of the interfaces are non-planar. Approximating these interfaces
with planar quadrilateral interfaces results in 1.57 percent of volume
shift in each grid cell by average. However, as mentioned previously,
mass conservation is guaranteed and no inconsistency is generated.

Two scenarios are considered with two different fracture networks
of mixed conductivities. While the geometries of both fracture networks
are identical, the permeability values of the fractures from scenario 1
are inverted for the scenario 2. This implies that the highly conductive
fractures in the fractures network of scenario 1 act as flow barriers
in the 2nd scenario and the flow barriers of scenario 1 are modified
to be highly conductive fractures in the scenario 2. Figs. 19(a) and
19(b) display the fractures networks of scenario 1 and scenario 2
respectively. The matrix grid cells overlapped by the fractures are
visible in Fig. 19(c) (see Fig. 19).

The simulation results of the first scenario are shown in Figs. 20 and
21. The injection wells are surrounded by highly conductive fractures
that facilitate the flow since the model’s dimensions are considerably
large (approximately 50[km]×50[km]). The pressure distribution in the
reservoir is shown in Fig. 20. High pressure values are observed in a
large section of the reservoir as there is no restriction for flow from the
wells, and two shale formations bound the Johansen sandstone. One
can interpret that the high pressure drops observed in some regions
are caused by presence of low permeable fractures (or flow barriers)
12
Fig. 18. Test case 4: The Johansen formation. The histogram shows the range of the
number of neighboring connections between the grid cells. The vertical axis displays
the number of counts for a specific number of neighbors for a cell in logarithmic scale.

Fig. 19. Test case 4: The Johansen formation with 9 wells and a set of 150 synthetic
fractures (with mixed conductivities). The figures on top show the fracture networks
with different permeabilities for scenario 1 (top left) and scenario 2 (top right). The
figure at bottom left illustrates the highlighted matrix cells that are overlapped by the
fractures network. And the figure at bottom right shows the schematics of the injection
and production wells.

in those regions. The saturation displacement is considerably enhanced
by the highly conductive fractures (Fig. 21) located near the injection
wells.

For the second scenario, the results are presented in Figs. 22 and
23. The injection wells are surrounded by low conductive fractures
which restrict the flow from the injection wells towards the production
wells. The pressure distribution differs considerably when compared
to the first scenario. The flow barriers near the wells result in high
pressure drops in the vicinity of the injection wells. The saturation
displacement (Fig. 23) is lower than that of scenario 1 due to presence
of low conductive fractures near the injection wells.

6.5. Test case 5: The Brugge model

The Brugge model is an SPE benchmark study conceived as a
reference platform to assess different closed-loop reservoir management
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Fig. 20. Test case 4: The pressure profile of the Johansen formation for the simulation
scenario 1. The figure on the left illustrates the pressure distribution in the matrix grid
cells. The transparency of this figure is increased to make the fractures visible and to
display the pressure profile in the fractures in the figure on the right.

Fig. 21. Test case 4: The saturation profile of the Johansen formation for the simulation
scenario 1. The figures on the left illustrate the saturation profile in the matrix grid cells
and the figures on the right side show the saturation maps in the fractures. From the
top row towards the bottom row, the saturation profiles are displayed for simulations
times 5000, 20000 and 35000[days] respectively.

methods (Peters et al., 2010). It is the largest and most complex test
case on closed-loop optimization to represent real field management
scenarios. The active Brugge field model has 44550 corner-point grid
cells, and the main geological features present in the model are a
boundary fault and an internal fault. Seven different rock regions with
their particular petrophysical properties are distributed throughout
the whole model. Thirty wells are included in the field model’s well
production pattern: 20 producers and 10 injectors (see Fig. 24).

6.5.1. Geological model
The geological structure of the Brugge field contains an east/west

elongated half-dome with a boundary fault at its northern edge and
an internal fault with a throw at an angle of nearly 20 degrees to
13
Fig. 22. Test case 4: The pressure profile of the Johansen formation for the simulation
scenario 2. The figure on the left illustrates the pressure distribution in the matrix grid
cells. To make the pressure profile of the fractures visible, the transparency of the left
side figure is increased and it is presented in the right side figure.

Fig. 23. Test case 4: The saturation profile of the Johansen formation for the simulation
scenario 2. The figures on the left side show the saturation profile in the matrix grid
cells and the figures on the left side display the saturation maps in the fractures.
From the top row towards the bottom row, the saturation profiles are displayed for
simulations times 5000, 20000 and 35000[days] respectively.

the northern fault edge. The dimensions of the field are approximately
10[km]×3[km]. The original high-resolution model consists of 20 million
grid cells, with average cell dimensions of 50[m] × 50[m] × 0.25[m]. In
addition to the essential petrophysical properties for reservoir simula-
tion (sedimentary facies, porosity, permeability, net-to-gross, and water
saturation), the grid model includes properties measured in real fields
(gamma-ray, sonic, bulk density, and neutron porosity). The data were
generated at a detailed scale to produce reliable well log data in the
thirty wells drilled in the field.

The original high-resolution model was upscaled to a 450000 grid
cells model, which established the foundation for all additional reser-
voir simulations of the reference case. A set of 104 realizations, each
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Fig. 24. Test case 5: Illustration of the Brugge model. The left graph represents the
active section (colored in blue) of the model, and the right figure shows the faults
marked with red color. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 25. Test case 5: Porosity and Net-to-gross ratio for the Brugge model. The left
graph shows the porosity of the model, and the right one shows the net-to-gross ratio
map in the structural model.

Fig. 26. Test case 5: Permeability map of the Brugge model. The left figure shows the
horizontal permeability, and the right figure illustrates the vertical permeability; both
are plotted using a logarithmic color scale.

containing 60000 grid cells, was created from the data extracted from
the reference case.

All the realizations used the same geological structure of the field.
The North Sea Brent-type field was the reference to generate the
reservoir zones’ rock properties and thicknesses. An alteration of the
formations’ vertical sequence for the general Brent stratigraphy column
(comprising the Broom–Rannoch–Etive–Ness–Tarbert Formations) was
made and resulted in that the highly permeable reservoir zone switched
locations with the underlying area (less permeable and heterogeneous).

6.5.2. Rock properties
A reservoir model with 60000 grid cells was the reference to create

104 upscaled realizations for the reservoir properties. The properties
that contain the realizations are facies, porosity, a diagonal permeabil-
ity tensor, net-to-gross ratio, and water saturation (see Figs. 25–27).

6.5.3. Simulation results
The following test case from the Brugge model is used to show the

pEDFM model’s capability in fracture modeling in a synthetic geologi-
cally relevant model with the corner-point grid geometry. The reservoir
model consists of 138 × 48 × 9 grid cells from which 43474 grid cells
are active. Rock properties of the realization available from public data
were used in the simulation. A network of 60 fractures is defined in the
reservoir domain containing both highly conductive fractures and flow
barriers with permeability of 𝐾𝑓𝑚𝑎𝑥 = 10−8 [m2] and 𝐾𝑓𝑚𝑖𝑛 = 10−20 [m2]
respectively. The fracture network consists of 5384 grid cells (in total
48858 grid cells). The well pattern used in this test case was a modified
14
Fig. 27. Test case 5: The depth map and saturation regions of the Brugge field. The left
graph displays the depth map, and the right graph represents the rock type distribution
displayed in the color bar.

Fig. 28. Test case 5: The Brugge model. The histogram above illustrates the range
of neighboring connections between the grid cells of this field. The vertical axis (in
logarithmic scale) demonstrates the number of occurrences for a specific number of
neighbors for a cell.

version of the original well pattern (with 30 wells) (Peters et al., 2010).
Four injection wells with 𝑝inj = 5 × 107 [Pa] and three production wells
with a pressure of 𝑝prod = 1× 107 [Pa] were defined in the model. Wells
are drilled vertically and through the entire thickness of the reservoir.
A histogram is available in Fig. 29 which shows an illustration of the
range of the neighboring connections between the matrix grid cells in
this model. It can be seen that there are a number of grid cells with
more than 6 neighbors due to the non-matching grid topology. This
computational model has 66.5 percent of its interfaces as non-planar,
and the approximation of the these interfaces into planar quadrilateral
interfaces causes 1.23 percent of volume shift in each grid cell, on
average. (see Fig. 28)

Two scenarios are created with two different fracture networks
including mixed conductivities. The geometries of both fracture net-
works are identical but the permeability values of the fractures from
scenario 1 are inverted for the scenario 2, namely, the highly conductive
fractures in the fractures network of scenario 1 act as flow barriers
in the 2nd scenario and the flow barriers of scenario 1 are modified
to be highly conductive fractures in the scenario 2. Figs. 29(a) and
29(b) show the fracture networks of scenario 1 and scenario 2 respec-
tively. The matrix grid cells overlapped by the fractures are visible in
Fig. 19(c).

The pressure and saturation results of the scenario 1 are shown
in Figs. 30 and 31 respectively. The pressure results are only shown
for the simulation time 5000[days], but the saturation profiles are
presented for three time intervals of 2000, 5000 and 10000[days]. The
injection wells are surrounded by highly conductive fractures that act
as flow channels. As a result, the saturation of the injecting phase is
considerably increased in larger distances from the injection phases and
the pressure drop around the injection wells is not high.

The results of the 2nd scenario can be seen in Figs. 32 and 33
respectively. The pressure results are only shown for the simulation
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Fig. 29. Test case 5: The Brugge model with 7 wells (4 injectors and 3 producers) and
a set of 60 synthetic fractures (with mixed conductivities). The figures on top show the
fractures network with different permeabilities for scenario 1 (top left) and scenario 2
(top right). The figure at bottom left illustrates the highlighted matrix cells that are
overlapped by the fractures network. And the figure at the bottom right shows the
schematics of the injection and production wells.

Fig. 30. Test case 5: The pressure profile of the Brugge model for the simulation
scenario 1. The figure on the left shows the pressure distribution in the matrix grid
cells. The transparency of this figure is increased to make the pressure map in the
fractures visible. This map is displayed on the right figure. The results are shown for
the simulation time 5000[days].

time 5000[days], but the saturation profiles are presented for three
time intervals of 2000, 5000 and 10000[days]. The injection wells are
surrounded by flow barriers that restrict the flow. As a result, a high-
pressure zone is formed near the wells since the central area of the
reservoir is isolated with low permeability fractures. This is followed
by a sharp pressure gradient. The saturation displacement is small due
to the reservoir’s low permeability values and the absence of highly
conductive fractures near the wells. The saturation displacement is
restricted to the area near the injection wells.

6.6. Test case 6 and 7: Norne field

Norne (Verlo and Hetland, 2008) is an oil and gas field situated
in the Norwegian Sea around 80 kilometers north of the Heidrun oil
field. The field dimensions are approximately 9[km] × 3[km] and the
seawater depth in the area is 9[m]. The field is located in a license
awarded region in 1986 and incorporates blocks 6608∕10 and 6608∕11
(see Fig. 34). Equinor is the current field operator. The expected oil
recovery factor is more than 60%, which is very high for an offshore
sub-sea oil reservoir.

Subsurface data from the Norne field have been published for re-
search and education purposes thanks to NTNU, Equinor, and partners’
initiative. The full simulation model can be obtained through the
Open Porous Media (OPM) project (opm-project.org) (Anon, 2020). The
Norne field simulation model was the first benchmark case based on
15
Fig. 31. Test case 5: The saturation profile of the Brugge model for the simulation
scenario 1. The figures on the left illustrate the saturation profile in the matrix grid cells
and the figures on the right side show the saturation maps in the fractures. From the
top row towards the bottom row, the saturation profiles are displayed for simulations
times 2000, 5000 and 10000[days] respectively.

Fig. 32. Test case 5: The pressure profile of the Brugge model for the simulation
scenario 2. The figure on the left shows the pressure distribution in the matrix grid
cells. The transparency of this figure is increased to make the pressure map in the
fractures visible. This map is displayed on the right figure. The results are shown for
the simulation time 5000[days].

real field data available to the public. The model is based on the 2004
geological model and consists of 46 × 112 × 22 corner-point grid cells.

6.6.1. Reservoir
The Oil and gas production of Norne is obtained from a Jurassic

sandstone, which lies at a depth of 2500 meters below sea level. The
original estimation of recoverable resources was 95.2 million cubic
meters for oil, mainly in the Ile and Tofte formations, and 13.01 billion
cubic meters for gas in the Garn formation.

6.6.2. Field development
The Alve field finding preceded the Norne field’s discovery in 1992.

The plan for development and operation (PDO) was approved in 1995,
and the production started in 1997. The field development infrastruc-
ture consists of a production, storage, and offloading vessel (FPSO)
attached to sub-sea templates. Water injection is the drive mechanism
to produce from the field.

In 2019, Norne FPSO was granted a lifetime extension to increase
value creation from the Norne field and its satellite fields, and also, the
blow-down of the gas cap in the Not Formation started. In 2020 two
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Fig. 33. Test case 5: The saturation profile of the Brugge model for the simulation
scenario 2. The figures on the left illustrate the saturation profile in the matrix grid cells
and the figures on the right side show the saturation maps in the fractures. From the
top row towards the bottom row, the saturation profiles are displayed for simulations
times 2000, 5000 and 10000[days] respectively.

Fig. 34. Test Case 6 and 7: Location of the Norne Field. The left plot shows the field
located in the Norwegian sea (source: Equinor), and the right picture shows the location
of the licensed blocks (source: Norwegian Petroleum Directorate).

Fig. 35. Test Case 6 and 7: Illustration of the Norne field model. The left graph
represents the active section (colored in green) of the model, and the right figure
shows the faults marked with red color. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

production wells were planned to be drilled in the Ile Formation (see
Fig. 35).

6.6.3. Petrophysical data
The field simulation model’s petrophysical data consist of porosity,

permeability, net-to-gross, and transmissibility multiplier data. Perme-
ability is anisotropic and heterogeneous, with a clear layered structure
as expected for a real reservoir field model. The vertical communication
is decreased in significant regions of the model by the transmissibility
multiplier data that is available, resulting in intermediate layers of the
reservoir with permeability values close to zero. The porosity values of
16
Fig. 36. Test Case 6 and 7: Porosity map of the Norne Field.

Fig. 37. Test Case 6 and 7: Permeability map of the Norne field. The left figure shows
the horizontal permeability, and the right figure displays the vertical permeability; both
are plotted using a logarithmic color scale.

Fig. 38. Test Case 6 and 7: Depth map of the Norne field and the vertical
transmissibility multipliers that reduce the vertical communication between the grid
cells.

the field are in the interval between 0.094 and 0.347 (see Fig. 36).
A considerable percentage of impermeable shale is present in some
regions in the model (see Figs. 37–39).

6.6.4. Simulation results of test case 6: Norne with highly conductive
fractures

This test case demonstrates the performance of the pEDFM model on
the Norne field. The corner-point grid data for this and the following
test cases were extracted from the input files of MATLAB Reservoir
Simulation Toolbox (MRST) (Lie, 2019).

As explained above, Norne is an oil field located around 80 kilome-
ters north of the Heidrun oil field in the Norwegian Sea (Lie, 2019).
As described in the MRST (Lie, 2019), the extent of this oil field
is 10 [Km] × 2 [Km] × 100 [m]. The corner-point grid skeleton consists
of 46 × 112 × 22 grid cells from which 44915 grid cells are active
forming the complex geometrical shape of this oil field. A synthetic
network of 15 fractures (designed by the author as a realization) is
considered inside this domain. The permeability of the Norne rock
matrix in this test case is assumed to be constant at 𝐾 = 10−14 [m2]
𝑚
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and the permeability data from the field was not used in this test
case. All fractures are highly conductive with a permeability of 𝐾𝑓 =
10−8 [m2]. Two injection wells with pressure of 𝑝inj = 5 × 107 [Pa] and
two production wells with pressure of 𝑝prod = 1×107 [Pa] are located in
the outer skirts of the reservoir as it can be seen on Fig. 39(a). All wells
are vertical and perforate the entire thickness of the reservoir. For this
test case, the low-enthalpy single-phase geothermal fluid model was
used. The input parameters used in this test case are listed in Table 2.

6.6.5. Simulation results of test case 7: Norne with mix-conductive fractures
In this test case, the Norne field model with a skeleton of 46 × 112

× 22 grid cells and a total of 44915 active matrix grid cells is considered.
Unlike in test case 6, the real rock properties of the Norne field were
used in this test case. A set of 56 synthetic fractures are created and
embedded in the reservoir domain which comprises highly conductive
fractures and flow barriers with permeability of 𝐾𝑓𝑚𝑎𝑥 = 10−8 [m2] and
𝐾𝑓𝑚𝑖𝑛 = 10−20 [m2] respectively. The fracture network consists of 2165
grid cells. In total there are 48705 grid cells in this test case. Four
injection wells with a 𝑝inj = 5×107 [Pa] and three production wells with
a 𝑝prod = 1 × 107 [Pa] were placed in the model. Wells are vertical and
drilled through the entire thickness of the model. Fig. 40 demonstrates
a histogram with the number of occurrences for a specific number of
neighboring connections between the grid cells of this computational
domain. The distribution of the counts of the neighboring connections
shows that a considerably large number of grid cells have more than 6
neighbors, some with up to 20 neighboring connections which is a result
of the non-matching grids. Correct computation of the matrix–fracture
connectivities on this domain with such a topological complexity is
crucial for the accurate capture of the effect of the embedded fractures
and faults on the flow patterns. In this computational model, 56.5
percent of the interfaces are non-planar, and the approximation of the
these interfaces into planar quadrilateral interfaces results in a volume
shift of 4.45 percent in each grid cell, in average.

Like the test cases in Johansen 6.4 and Brugge 6.5 models, two
scenarios are considered for the fracture network used in this test case.
In both scenarios, the geometrical properties of the fracture networks
are identical. However, the permeability values of the highly conduc-
tive fractures and flow barriers from the scenario 1 are inverted in the
scenario 2 (see Fig. 41).

The pressure and saturation results of scenario 1 simulation are
presented in Figs. 42 and 43 respectively. The pressure results are only
shown for simulation time 5000[days], but the saturation profiles are
presented for three time intervals of 2000, 5000 and 10000[days]. The
injection wells are surrounded by flow barriers that restrict the satura-
tion displacement in the reservoir. The pressure is high in the areas
near the wells. These high-pressure areas are an indication that the
pEDFM implementation in the corner-point grid geometry is successful
in the modeling of the fractures with low conductivities. High pressure
drops can be seen at the location of the flow barriers. The increase
in saturation is mainly carried out in two parts of the model. These
two areas are not isolated from the rest of the model which allows a
distribution of the injecting phase through the flow paths.

The results of scenario 2 are shown in Figs. 44 and 45 respectively.
In the same manner as for the previous scenario, the pressure results
are only shown for the simulation time 5000[days], while the saturation
profiles are shown for time intervals of 2000, 5000 and 10000[days].
The injection wells are surrounded by highly conductive fractures that
act as flow channels. The pressure is more uniformly distributed. As
a result, the effect of high permeable fractures near the injector wells
has increased the saturation displacement across larger distances in the
domain.
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Fig. 39. Test case 6: Norne oil field. The Figs. 39(a) and 39(b) show the pressure
solutions of the matrix and the embedded fractures. The figure on the bottom row
39(c) visualizes the temperature solution at the same time-step.

7. Conclusions and future work

In this paper, a projection-based embedded discrete fracture model
(pEDFM) for corner-point grid (CPG) geometry was developed and
presented. This method was used with different fluid models, i.e., for
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Fig. 40. Test case 6: The Norne field. The histogram above shows a distribution of the
number of neighboring connections between the grid cells of this model. The vertical
axis shows the number of occurrences (in logarithmic scale). It can be seen that there
are grid cells that are connected to more than 6 other cells, with some having up to
20 neighboring connections.

Fig. 41. Test case 7: The Norne model with 7 wells (4 injectors and 3 producers) and
a set of 56 synthetic fractures (with mixed conductivities). The figures on top show the
fractures network with different permeabilities for scenario 1 (top left) and scenario 2
(top right). The figure at bottom left illustrates the highlighted matrix cells that are
overlapped by the fractures network. And the figure at the bottom right shows the
schematics of the injection and production wells.

fully-implicit simulation of isothermal multiphase fluid flow and low-
enthalpy single-phase coupled mass-heat flow in fractured heteroge-
neous porous media. First, the corner-point grid geometry and its
discretization approach were briefly described. Afterwards, the pEDFM
model (Tene et al., 2017; HosseiniMehr et al., 2020) was extended to
account for fully 3D fracture geometries in a generic corner-point grid
discrete system. Through a few box-shaped 2D and 3D homogeneous
and heterogeneous test cases, the accuracy of the pEDFM on the corner-
point grid geometry was briefly compared against the Cartesian grid
geometry. The new method presented similar results of satisfactory ac-
curacy in the corner-point grid geometry when compared to a Cartesian
grid-geometry. The 3D box-shaped reservoir was then converted into a
non-orthogonal gridding system to assess the pEDFM method further.
18
Fig. 42. Test case 7: The pressure profile of the Norne model for the simulation
scenario 1. The figure on the left shows the pressure distribution in the matrix grid
cells. The transparency of this figure is increased to make the pressure map in the
fractures visible. This map is displayed on the right figure. The results are shown for
simulation time 5000[days].

Fig. 43. Test case 7: The saturation profile of the Norne model for the simulation
scenario 1. The figures on the left illustrate the saturation profile in the matrix grid cells
and the figures on the right side show the saturation maps in the fractures. From the
top row towards the bottom row, the saturation profiles are displayed for simulations
times 2000, 5000 and 10000[days] respectively.

Moreover, numerical results were obtained on a number of
geologically-relevant test cases. Different scenarios with various syn-
thetic fracture networks were considered for these test cases. These
fine-scale simulations allowed for mix-conductivity fractures. It was
shown that pEDFM can accurately capture the physical influence of
both highly conductive fractures and flow barriers on the flow pat-
terns. The pEDFM in the corner-point grid geometry is found to be
a promising technique for increasing the discretization flexibility and
enhancing the computational performance while honoring the accu-
racy. Many geo-models (including ones used in the test cases above)
contain millions of grid cells that have complex geometrical alignments
to match the positioning of fractures and faults, causing significant
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Fig. 44. Test case 7: The pressure profile of the Norne model for the simulation
scenario 2. The figure on the left shows the pressure distribution in the matrix grid
cells. The transparency of this figure is increased to make the pressure map in the
fractures visible. This map is displayed on the right figure. The results are shown for
simulation time 5000[days].

Fig. 45. Test case 7: The saturation profile of the Norne model for the simulation
scenario 2. The figures on the left illustrate the saturation profile in the matrix grid cells
and the figures on the right side show the saturation maps in the fractures. From the
top row towards the bottom row, the saturation profiles are displayed for simulations
times 2000, 5000 and 10000[days] respectively.

computational complexity and lack of flexibility especially when taking
geomechanical deformation into account. The pEDFM model provides
the possibility to avoid the complexity of gridding in such models by
explicitly representing the discontinuities such as fractures and faults.
In the presence of elastic and (more importantly) plastic deformations,
one could only modify the gridding structure of the affected region
in the rock matrix, fully independent of the fractures and faults. This
advantage results in significant computational gains especially in the
realm of poromechanics.

The developments of the pEDFM in the corner-point grid geometry
and all the related software implementations of this work are made
open source and accessible on https://gitlab.com/DARSim.
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Appendix. Mass and heat conservation for high-enthalpy geother-
mal systems

In this section, the governing equations of the single-component
(water) two-phase (vapor–liquid) flow in high-enthalpy geothermal sys-
tems are described. Due to the thermodynamic conditions, the single-
component water can exist in either liquid and vapor (steam) phases in
high-enthalpy systems. Two sets of equations are considered, i.e., the
mass balance and the energy conservation equations. Each set of equa-
tions have two subsets for the two phases but are added together and
form one set of equations for the entire system, meaning, one mass
balance equation and one energy balance equation for all the phases.
Expectedly, in low enthalpy-systems, these equations are reduced to
single-phase.

A.1. Mass balance equation

Mass balance for phase 𝛼 for a system with 𝑛𝛼 phases reads
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for the rock matrix 𝑚 and

𝜕
𝜕𝑡

(

𝑎 𝜙
𝑛𝛼
∑

𝛼=1
𝜌𝛼𝑆𝛼

)𝑓𝑖

− ∇ ⋅

(

𝑎
𝑛𝛼
∑

𝛼=1

(

𝜌𝛼𝝀𝜶 ⋅ ∇𝑝
)

)𝑓𝑖

=

𝑛frac
∑

𝑖=1
𝜌𝛼𝑞

𝑓𝑖 ,𝑤
𝛼 +

𝑛𝛼
∑

𝛼=1
𝜌𝛼

𝑓𝑖 ,𝑚
𝛼 +

𝑛𝛼
∑

𝛼=1

𝑛frac
∑

𝑗=1

(

𝜌𝛼
𝑓𝑖 ,𝑓𝑗
𝛼

)

𝑗≠𝑖
,

on 𝛺𝑓𝑖 ⊆ 𝐑𝑛−1, (38)

for the discrete fracture 𝑓𝑖 with aperture 𝑎. The superscripts 𝑚, 𝑓𝑖 and
𝑤 indicate the rock matrix, the 𝑖th fracture and the wells, respectively.
Moreover, 𝜙 is the medium porosity, and 𝜆𝛼 is the phase mobility,
i.e. 𝝀𝜶 = 𝑘𝑟,𝛼

𝜇𝛼
𝐊, where 𝑘𝑟,𝛼 and 𝜇𝛼 are the phase 𝛼 relative permeability

and viscosity. The term 𝐊 is the rock absolute permeability which can
be a full tensor. In this work we only consider scalar permeability
values, i.e., 𝐊 = 𝑘𝐈 with 𝐈 being the identity matrix. Moreover, 𝜌𝛼
denotes the fluid density and 𝑆𝛼 refers to the saturation of phase 𝛼.
The fluid pressure 𝑝 is one of the two primary unknowns, and 𝑞 is
𝛼

https://gitlab.com/darsim
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the source term (e.g. injection and production wells). The saturation
constraint requires summation of all phases to be equal to the unity,
i.e., ∑𝑛𝛼

𝛼=1 𝑆𝛼 = 1. The terms 𝑚,𝑓𝑖
𝛼 and 𝑓𝑖 ,𝑚

𝛼 are the phase flux
xchanges between the rock matrix 𝑚 and the fracture 𝑓𝑖; and, 𝑓𝑖 ,𝑓𝑗

𝛼
s the influx of phase 𝛼 from the 𝑗th fracture to the 𝑖th fracture.
he mass conservation ensures that ∭𝑉 𝑚,𝑓𝑖

𝛼 𝑑𝑉 = −∬𝐴𝑓𝑖
𝑓𝑖 ,𝑚
𝛼 𝑑𝐴 and

𝐴𝑓𝑖
𝑓𝑖 ,𝑓𝑗
𝛼 𝑑𝐴 = −∬𝐴𝑓𝑗

𝑓𝑗 ,𝑓𝑖
𝛼 𝑑𝐴 (Hajibeygi et al., 2011). The volumetric

ell fluxes are obtained via Peaceman model (Peaceman, 1978) both
or matrix and fractures, i.e.,

𝑚,𝑤
𝛼 =

𝑊 𝐼 ⋅ 𝜆∗𝛼 ⋅ (𝑝
𝑤 − 𝑝𝑚)

𝛥𝑉
(39)

𝑞𝑓𝑖 ,𝑤𝛼 =
𝑊 𝐼 ⋅ 𝜆∗𝛼 ⋅ (𝑝

𝑤 − 𝑝𝑓𝑖 )
𝛥𝐴

. (40)

Here, 𝑊 𝐼 denotes the well productivity index and 𝜆∗ is the effective
mobility of each phase between the well and the perforating compart-
ment in each medium and is obtained using upwind scheme. In the
discrete system for the rock matrix, the control volume is defined as
𝛥𝑉 , and for the lower-dimensional fracture, the control area is defined
as 𝛥𝐴. The volumetric flux exchanges between the rock matrix and the
fractures are similarly calculated as

𝑚,𝑓𝑖
𝛼 = 𝐶𝐼𝑚,𝑓𝑖 ⋅ 𝜆∗𝛼 ⋅ (𝑝

𝑓𝑖 − 𝑝𝑚)

𝑚,𝑓𝑖
𝛼 = 𝐶𝐼𝑓𝑖 ,𝑚 ⋅ 𝜆∗𝛼 ⋅ (𝑝

𝑚 − 𝑝𝑓𝑖 )

𝑓𝑖 ,𝑓𝑗
𝛼 = 𝐶𝐼𝑓𝑖 ,𝑓𝑗 ⋅ 𝜆∗𝛼 ⋅ (𝑝

𝑓𝑗 − 𝑝𝑓𝑖 ),

Where 𝐶𝐼 is the connectivity index and explained in the next
section.

A.2. Energy balance

The energy balance equation for a high-enthalpy multi-phase flow
ystem with the assumption of local equilibrium on the domain reads

𝜕
𝜕𝑡

(

(𝜌𝑈 )𝑒𝑓𝑓
)𝑚 − ∇ ⋅

( 𝑛𝛼
∑

𝛼=1

(

𝜌𝛼ℎ𝛼𝝀𝜶 ⋅ ∇𝑝
)

)𝑚

−

∇ ⋅
(

𝛬𝑒𝑓𝑓 ⋅ ∇𝑇
)𝑚 =

𝑛frac
∑

𝑖=1
𝜌𝛼ℎ𝛼𝑞

𝑚,𝑤
𝛼 +

𝑛𝛼
∑

𝛼=1

𝑛frac
∑

𝑖=1
𝜌𝛼ℎ𝛼

𝑚,𝑓𝑖
𝛼 +

𝑛frac
∑

𝑖=1
𝑚,𝑓𝑖 ,

on 𝛺𝑚 ⊆ 𝐑𝑛, (41)

on the rock matrix (𝑚) and

𝜕
𝜕𝑡

(

𝑎 (𝜌𝑈 )𝑒𝑓𝑓
)𝑓𝑖 − ∇ ⋅

(

𝑎
𝑛𝛼
∑

𝛼=1

(

𝜌𝛼ℎ𝛼𝝀𝜶 ⋅ ∇𝑝
)

)𝑓𝑖

− ∇ ⋅
(

𝛬𝑒𝑓𝑓 ⋅ ∇𝑇
)𝑓𝑖 =

𝑛frac
∑

𝑖=1
𝜌𝛼ℎ𝛼𝑞

𝑓𝑖 ,𝑤
𝛼 +

𝑛𝛼
∑

𝛼=1
𝜌𝛼ℎ𝛼

𝑓𝑖 ,𝑚
𝛼 +

𝑛𝛼
∑

𝛼=1

𝑛frac
∑

𝑖=1

(

𝜌𝛼ℎ𝛼
𝑓𝑖 ,𝑓𝑗
𝛼

)

𝑗≠𝑖
+

𝑓𝑖 ,𝑚 +
𝑛frac
∑

𝑖=1

(

𝑓𝑖 ,𝑓𝑗
)

𝑗≠𝑖 ,

on 𝛺𝑓𝑖 ⊆ 𝐑𝑛−1, (42)

n the lower dimensional fracture (𝑓𝑖). In these of equations, in addi-
ion to the previously defined parameters, ℎ𝛼 is the fluid enthalpy of
hase 𝛼. The term (𝜌𝑈 )𝑒𝑓𝑓 indicates the effective internal energy per
nit of mass and is calculated as

𝜌𝑈 )𝑒𝑓𝑓 = 𝜙
𝑛𝛼
∑

𝛼=1
𝜌𝛼𝑆𝛼𝑈𝛼 + (1 − 𝜙)𝜌𝑟 𝑈𝑟, (43)

ith 𝑈𝛼 and 𝑈𝑟 being the specific internal energy in fluid (for each
hase) and rock respectively. The dependent terms are nonlinear func-
ions of the primary unknowns, and are calculated using constitutive
20
elations (Coats et al., 1980; Faust et al., 1979). Additionally, 𝛬𝑒𝑓𝑓 is
he effective thermal conductivity written as

𝑚
𝑒𝑓𝑓 = 𝜙𝑚

𝑛𝛼
∑

𝛼=1
𝑆𝛼𝛬𝛼 + (1 − 𝜙𝑚)𝛬𝑟 (44)

𝑓𝑖
𝑒𝑓𝑓 = 𝜙𝑓𝑖

𝑛𝛼
∑

𝛼=1
𝑆𝛼𝛬𝛼 + (1 − 𝜙𝑓𝑖 )𝛬𝑟

Here, 𝛬𝛼 and 𝛬𝑟 are the thermal conductivities of phase 𝛼 and
ock, respectively. The conductive heat flux exchanges, i.e., 𝑚,𝑓𝑖 , 𝑓𝑖 ,𝑚

matrix–fracture connectivities) and 𝑓𝑖 ,𝑓𝑗 (fracture–fracture connec-
ivities), are calculated as
𝑚,𝑓𝑖 = 𝐶𝐼𝑚,𝑓𝑖 ⋅ 𝛬∗

𝑒𝑓𝑓 ⋅ (𝑇 𝑓𝑖 − 𝑇 𝑚)
𝑚,𝑓𝑖 = 𝐶𝐼𝑓𝑖 ,𝑚 ⋅ 𝛬∗

𝑒𝑓𝑓 ⋅ (𝑇 𝑚 − 𝑇 𝑓𝑖 ) (45)
𝑓𝑖 ,𝑓𝑗 = 𝐶𝐼𝑓𝑖 ,𝑓𝑗 ⋅ 𝛬∗

𝑒𝑓𝑓 ⋅ (𝑇 𝑓𝑗 − 𝑇 𝑓𝑖 ).

ere, 𝛬∗
𝑒𝑓𝑓 is the harmonic average between the two non-neighboring

ompartments.
In the energy balance equation above, two approaches exist for the

hoice of the primary unknowns. On one hand, the natural formulation
mploys pressure 𝑝 and temperature 𝑇 as the primary unknowns (called
s the 𝑃 -𝑇 formulation as well). On the other hand, the molar formula-
ion can be used where the pressure 𝑝 and the total fluid enthalpy 𝐻 are
onsidered as the primary unknowns (also known as 𝑝-𝐻 formulation).
he details for the choice of the primary unknown is available in the

iterature (Coats et al., 1980; Faust et al., 1979). Please note that the
ffects of both capillarity (in case of a multiphase flow) and gravity are
eglected in all the equations.

.3. Discretization of the equations and the simulation strategy

The discretization of the nonlinear equations is done using the
inite volume method (FVM). The equations are discretized with a two-
oint-flux-approximation (TPFA) finite-volume scheme in space and a
ackward (implicit) Euler scheme in time. Independent structured grids
re generated for a three-dimensional (3D) porous rock and 2D fracture
lates. The discretization is done for each medium. For a corner-point
rid geometry, an illustration is presented in Fig. 4.

.3.1. Mass and heat fluxes
The coupled system of non-linear equations (Eqs. (37)–(38) and

41)–(42)) is discretized by calculating the fluxes. First, the discrete
ass fluxes need to be calculated. The mass flux of the phase 𝛼 between

ach two neighboring control volumes 𝑖 and 𝑗 (inside one medium)
sing the TPFA scheme can be written as

𝛼,𝑖𝑗 = 𝜌∗𝛼
𝑘∗𝑟𝛼
𝜇∗
𝛼
𝑇𝑖𝑗 (𝑝𝑖 − 𝑝𝑗 ). (46)

Here, 𝑇𝑖𝑗 = 𝐴𝑖𝑗
𝑑𝑖𝑗

𝐾𝐻
𝑖𝑗 denotes the transmissibility between the neigh-

boring cells 𝑖 and 𝑗. 𝐴𝑖𝑗 and 𝑑𝑖𝑗 are the interface area and the distance
etween these two cell centers respectively. The term 𝐾𝐻

𝑖𝑗 is the har-
onic average of the two permeabilities. The superscript ∗ indicates

hat the corresponding terms are evaluated using a phase potential
pwind scheme.

Following the EDFM and pEDFM paradigms (Hajibeygi et al., 2011;
ene et al., 2017; HosseiniMehr et al., 2018), the fluxes between a rock
atrix cell 𝑖 and a fracture cell 𝑗 are modeled as

𝑚,𝑓
𝛼,𝑖𝑗 = −𝑓,𝑚

𝛼,𝑖𝑗 = −𝜌∗𝛼
𝑘∗𝑟𝛼
𝜇∗
𝛼
𝑇 𝑚,𝑓
𝑖𝑗 (𝑝𝑚𝑖 − 𝑝𝑓𝑗 ), (47)

In this equation, 𝑇 𝑚,𝑓
𝑖𝑗 is the geometrical transmissibility in the mass

flux between cell 𝑖 belonging to the rock matrix 𝑚 and the element 𝑗
belonging to the fracture 𝑓 and it reads

𝑇 𝑚,𝑓 = 𝐾𝐻 × 𝐶𝐼𝑚,𝑓 . (48)
𝑖𝑗 𝑖𝑗 𝑖𝑗
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𝑗



In the equation above, 𝐾𝐻
𝑖𝑗 denotes the harmonically averaged

permeability between the rock matrix and the overlapping fracture
elements. Moreover, 𝐶𝐼𝑚,𝑓𝑖𝑗 is the connectivity index between the two
mentioned overlapping elements. The EDFM and pEDFM model the
matrix–fracture connectivity index as

𝐶𝐼𝑚,𝑓𝑖𝑗 =
𝐴𝑚,𝑓
𝑖𝑗

⟨𝑑⟩𝑖𝑗
, (49)

with 𝐴𝑚,𝑓
𝑖𝑗 being the area fraction of fracture cell 𝑗 overlapping with

the rock matrix cell 𝑖 (see Fig. 1) and ⟨𝑑⟩𝑖𝑗 being the average distance
between these two cells (Hajibeygi et al., 2011). The computation of
the connectivity index is identical for bot types of fractures (either
conductive or impermeable).

Similarly, the flux exchange between intersecting fracture elements
𝑖 (belonging to fracture 𝑓ℎ) and 𝑗 (belonging to fracture 𝑓𝑘) is modeled
as

𝑓ℎ ,𝑓𝑘
𝛼,𝑖𝑗 = −𝑓𝑘 ,𝑓ℎ

𝛼,𝑖𝑗 = −𝜌∗𝛼
𝑘∗𝑟𝛼
𝜇∗
𝛼
𝑇 𝑓ℎ ,𝑓𝑘
𝑖𝑗 (𝑝𝑓ℎ𝑖 − 𝑝𝑓𝑘𝑗 ). (50)

Here, 𝑇 𝑓ℎ ,𝑓𝑘
𝑖𝑗 is the geometrical transmissibility in the mass flux

between element 𝑖 in the fracture 𝑓ℎ and the element 𝑗 in the fracture
𝑓𝑘, which reads

𝑇 𝑓ℎ ,𝑓𝑘
𝑖𝑗 = 𝑎𝐾𝐻

𝑖𝑗

𝐶𝐼𝑓ℎ𝑖𝐼𝑖𝑗 × 𝐶𝐼𝑓𝑘𝑗𝐼𝑖𝑗

𝐶𝐼𝑓ℎ𝑖𝐼𝑖𝑗 + 𝐶𝐼𝑓𝑘𝑗𝐼𝑖𝑗

. (51)

Please note that the geometrical transmissibility 𝑇 𝑓ℎ ,𝑓𝑘
𝑖𝑗 between

the two non-neighboring (intersecting) fracture cells is obtained on
a lower dimensional formulation. This is needed due to the fact that
the intersection between two 2D fracture plates forms a line-segment
and the intersection between two 1D fracture line-segments results in
a point. Fig. 1 (on the right) visualizes an example of an intersection
between two non-neighboring 2D fracture elements. The result of the
intersection is a line segment 𝐼𝑖𝑗 (colored in red) with the average
distances from the intersection segment written as ⟨𝑑⟩𝑓ℎ𝑖𝐼𝑖𝑗 ≠ ⟨𝑑⟩𝑓𝑘𝑗𝐼𝑖𝑗 .
This is the reason why these transmissibilities are computed using a
harmonic-average formulation as shown above.

At next, the convective and conductive heat fluxes are calculated.
The convective heat flux exchange between the neighboring control
volumes 𝑖 and 𝑗 for each phase 𝛼 reads

𝐹𝛼,𝑖𝑗 =
𝜌∗𝛼ℎ

∗
𝛼

𝜇∗
𝛼

𝑇𝑖𝑗 (𝑝𝑖 − 𝑝𝑗 ). (52)

Here, ℎ∗𝛼 is the enthalpy of phase 𝛼 in fluid determined at the
interface between grid cells 𝑖 and 𝑗. Conclusively, 𝐹𝛼,𝑖𝑗 = ℎ∗𝛼 𝐹𝛼,𝑖𝑗 . The
convective heat flux exchange between non-neighboring elements can
be obtained via multiplication of their mass flux exchange (𝛼,𝑖𝑗) by
the effective phase enthalpy (ℎ∗𝛼) determined at the intersection of two
overlapping elements, i.e., ̆𝛼,𝑖𝑗 = ℎ∗𝛼 𝛼,𝑖𝑗 .

The conductive heat flux between two neighboring cells 𝑖 and 𝑗
(belonging to one medium) is written as

𝐺𝑖𝑗 = T𝑐𝑜𝑛𝑑,𝑖𝑗 (𝑇𝑖 − 𝑇𝑗 ). (53)

where, T𝑐𝑜𝑛𝑑,𝑖𝑗 = 𝐴𝑖𝑗
𝑑𝑖𝑗

(𝛬𝑒𝑓𝑓 )𝐻𝑖𝑗 is the transmissibility between grid cells
𝑖 and 𝑗. 𝐴𝑖𝑗 , 𝑑𝑖𝑗 and (𝛬𝑒𝑓𝑓 )𝐻𝑖𝑗 are the interface area, the distance from
the cell centers and the harmonic average of the effective conductivity
set at the interface between grid cells 𝑖 and 𝑗 respectively. Please
note that the effective conductivity is calculated via Eq. (44). The
conductive heat flux exchange between non-neighboring elements 𝑖 and

is obtained as
𝑚,𝑓
𝑖𝑗 = −𝑓,𝑚𝑖𝑗 = −T𝑚,𝑓

𝑐𝑜𝑛𝑑,𝑖𝑗 (𝑇
𝑚
𝑖 − 𝑇 𝑓

𝑗 ). (54)

for matrix–fracture connectivities and

𝑓ℎ ,𝑓𝑘 = −𝑓ℎ ,𝑓𝑘 = −T𝑓ℎ ,𝑓𝑘 (𝑇 𝑓ℎ − 𝑇 𝑓𝑘 ). (55)
21

𝑖𝑗 𝑖𝑗 𝑐𝑜𝑛𝑑,𝑖𝑗 𝑖 𝑗
for fracture–fracture connectivities. The conductive heat transmissibili-
ties for matrix–fracture (T𝑚,𝑓

𝑐𝑜𝑛𝑑,𝑖𝑗) and fracture–fracture (T𝑓ℎ ,𝑓𝑘
𝑐𝑜𝑛𝑑,𝑖𝑗) connec-

tivities are explained later in this section.

A.3.2. Coupling and linearization of the nonlinear equations
Taking the calculated fluxes above into account, the discrete mass

balance equations can be written in their residual form as
(

𝑟𝑛+1𝑀𝐵,𝑖

)𝑚
=

(𝑛𝑝ℎ
∑

𝛼=1
𝜌𝛼𝑞

𝑚,𝑤
𝛼

)

𝑖

−

⎛

⎜

⎜

⎜

⎝

(

𝜙
∑𝑛𝑝ℎ

𝛼=1 𝜌𝛼𝑆𝛼

)𝑛+1

𝑖
−
(

𝜙
∑𝑛𝑝ℎ

𝛼=1 𝜌𝛼𝑆𝛼

)𝑛

𝑖
𝛥𝑡

⎞

⎟

⎟

⎟

⎠

𝑚

−

(𝑛𝑝ℎ
∑

𝛼=1

(𝑁𝑛
∑

𝑗=1
𝐹𝛼,𝑖𝑗

))𝑚

−
𝑛𝑝ℎ
∑

𝛼=1

⎛

⎜

⎜

⎝

𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
𝑚,𝑓𝑘
𝛼,𝑖𝑗

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

,

∀ 𝑖 ∈ {1,… , 𝑁𝑚} (56)

for element 𝑖 in matrix 𝑚 and
(

𝑟𝑛+1𝑀𝐵,𝑖

)𝑓ℎ
=

(𝑛𝑝ℎ
∑

𝛼=1
𝜌𝛼𝑞

𝑓ℎ ,𝑤
𝛼

)

𝑖

−

⎛

⎜

⎜

⎜

⎝

(

𝑎 𝜙
∑𝑛𝑝ℎ

𝛼=1 𝜌𝛼𝑆𝛼

)𝑛+1

𝑖
−
(

𝑎 𝜙
∑𝑛𝑝ℎ

𝛼=1 𝜌𝛼𝑆𝛼

)𝑛

𝑖
𝛥𝑡

⎞

⎟

⎟

⎟

⎠

𝑓ℎ

−

(𝑛𝑝ℎ
∑

𝛼=1

(𝑁𝑛
∑

𝑗=1
𝐹𝛼,𝑖𝑗

))𝑓ℎ

−
𝑛𝑝ℎ
∑

𝛼=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
𝑓ℎ ,𝑚
𝛼,𝑖𝑗

⎞

⎟

⎟

⎠

−

𝑛𝑝ℎ
∑

𝛼=1

⎛

⎜

⎜

⎝

𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
𝑓ℎ ,𝑓𝑘
𝛼,𝑖𝑗

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

,

∀ 𝑖 ∈ {1,… , 𝑁𝑓ℎ} (57)

for element 𝑖 in fracture 𝑓ℎ. Additionally, the discrete energy balance
equations are also rewritten as
(

𝑟𝑛+1𝐸𝐵,𝑖

)𝑚
=

(𝑛𝑝ℎ
∑

𝛼=1
𝜌𝛼ℎ𝛼𝑞

𝑚,𝑤
𝛼

)

𝑖

−

⎛

⎜

⎜

⎝

(

(𝜌𝑈 )𝑒𝑓𝑓
)𝑛+1
𝑖 −

(

(𝜌𝑈 )𝑒𝑓𝑓
)𝑛
𝑖

𝛥𝑡

⎞

⎟

⎟

⎠

𝑚

−

(𝑛𝑝ℎ
∑

𝛼=1

(𝑁𝑛
∑

𝑗=1
𝐹𝛼,𝑖𝑗

))𝑚

−

𝑛𝑝ℎ
∑

𝛼=1

⎛

⎜

⎜

⎝

𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
̆𝑚,𝑓𝑘
𝛼,𝑖𝑗

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

−

(𝑁𝑛
∑

𝑗=1
�̆�𝑖𝑗

)𝑚

−
𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
̆𝑚,𝑓𝑘𝑖𝑗

⎞

⎟

⎟

⎠

,

∀ 𝑖 ∈ {1,… , 𝑁𝑚} (58)

for element 𝑖 in matrix 𝑚 and
(

𝑟𝑛+1𝐸𝐵,𝑖

)𝑓ℎ
=

(𝑛𝑝ℎ
∑

𝛼=1
𝜌𝛼ℎ𝛼𝑞

𝑓ℎ ,𝑤
𝛼

)

𝑖

−

⎛

⎜

⎜

⎝

(

(𝜌𝑈 )𝑒𝑓𝑓
)𝑛+1
𝑖 −

(

(𝜌𝑈 )𝑒𝑓𝑓
)𝑛
𝑖

𝛥𝑡

⎞

⎟

⎟

⎠

𝑓ℎ

−

(𝑛𝑝ℎ
∑

𝛼=1

(𝑁𝑛
∑

𝑗=1
𝐹𝛼,𝑖𝑗

))𝑓ℎ

−

𝑛𝑝ℎ
∑

𝛼=1

(𝑁𝑚
∑

𝑗=1
̆𝑓ℎ ,𝑚
𝛼,𝑖𝑗

)

−
𝑛𝑝ℎ
∑

𝛼=1

⎛

⎜

⎜

⎝

𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
̆𝑓ℎ ,𝑓𝑘
𝛼,𝑖𝑗

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

−

(𝑁𝑛
∑

𝑗=1
�̆�𝑖𝑗

)𝑓ℎ

−
𝑁𝑚
∑

𝑗=1
̆𝑓ℎ ,𝑚𝑖𝑗 −

𝑛frac
∑

𝑘=1

⎛

⎜

⎜

⎝

𝑁𝑓𝑘
∑

𝑗=1
̆𝑓ℎ ,𝑓𝑘𝑖𝑗

⎞

⎟

⎟

⎠

,

∀ 𝑖 ∈ {1,… , 𝑁𝑚} (59)

for element 𝑖 in fracture 𝑓ℎ. The full residual vector for each of

the mass balance and energy balance equations can be written as
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a
n

𝑟

w
e
𝐉

a
t

c

𝑟𝑛 = [(𝑟𝑚)𝑛, (𝑟𝑓1 )𝑛...(𝑟𝑓𝑛frac )𝑛]𝑇 and, where (𝑟𝑘)𝑛 is the residual vector of
medium 𝑘 at time-step 𝑛. 𝑝𝑛 is the vector of the pressure unknowns.
Depending on the flow model (i.e., the number of the phases and
the thermal conditions), the second primary unknown is either the
saturation of the injecting phase (𝑆), the temperature (𝑇 ) or the total
fluid enthalpy (𝐻). For a multi-phase flow model in high-enthalpy
systems, the second primary unknown is the total fluid enthalpy with
the term 𝐻𝑛 indicating the vector of the total fluid enthalpy unknowns
at time step 𝑛. The residual at time-step 𝑛 + 1, namely, 𝑟𝑛+1, is a non-
linear function of the primary unknowns (𝑝𝑛+1 and 𝐻𝑛+1). Therefore,
t every time-step a Newton–Raphson method is used to solve the
on-linear system iteratively, i.e.,

𝜈+1
𝑀𝐵 = 𝑟𝜈𝑀𝐵 +

𝜕𝑟𝑀𝐵
𝜕𝑝

|

|

|

|

𝜈
𝛿𝑝𝜈+1 +

𝜕𝑟𝑀𝐵
𝜕𝐻

|

|

|

|

𝜈
𝛿𝐻𝜈+1 = 0 (60)

𝑟𝜈+1𝐸𝐵 = 𝑟𝜈𝐸𝐵 +
𝜕𝑟𝐸𝐵
𝜕𝑝

|

|

|

|

𝜈
𝛿𝑝𝜈+1 +

𝜕𝑟𝐸𝐵
𝜕𝐻

|

|

|

|

𝜈
𝛿𝐻𝜈+1 = 0

here 𝜈 and 𝜈 + 1 superscripts denote the current and the next it-
ration indices. At every Newton’s iteration step, the linear-system
𝜈𝛿𝑥𝜈+1 = −𝑟𝜈 is solved. In this notation, 𝐉𝜈 is the Jacobian matrix with
𝛿𝑥𝜈+1 = [𝛿𝑝, 𝛿𝐻]𝑇 . Therefore, the linear system of the equations can be
re-illustrated as

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝐽𝑚,𝑚
𝑀𝐵,𝑝 𝐽𝑚,𝑓

𝑀𝐵,𝑝

𝐽𝑓,𝑚
𝑀𝐵,𝑝 𝐽𝑓,𝑓

𝑀𝐵,𝑝

⎞

⎟

⎟

⎠

(

𝐽𝑚,𝑚
𝑀𝐵,𝐻 𝐽𝑚,𝑓

𝑀𝐵,𝐻

𝐽𝑓,𝑚
𝑀𝐵,𝐻 𝐽𝑓,𝑓

𝑀𝐵,𝐻

)

⎛

⎜

⎜

⎝

𝐽𝑚,𝑚
𝐸𝐵,𝑝 𝐽𝑚,𝑓

𝐸𝐵,𝑝

𝐽𝑓,𝑚
𝐸𝐵,𝑝 𝐽𝑓,𝑓

𝐸𝐵,𝑝

⎞

⎟

⎟

⎠

(

𝐽𝑚,𝑚
𝐸𝐵,𝐻 𝐽𝑚,𝑓

𝐸𝐵,𝐻

𝐽𝑓,𝑚
𝐸𝐵,𝐻 𝐽𝑓,𝑓

𝐸𝐵,𝐻

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐉𝜈

×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛿𝑝𝑚

𝛿𝑝𝑓

𝛿𝐻𝑚

𝛿𝐻𝑓

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜈+1

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝛿𝑥𝜈+1

= −

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑟𝑚𝑀𝐵

𝑟𝑓𝑀𝐵

𝑟𝑚𝐸𝐵

𝑟𝑓𝐸𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜈

⏟⏟⏟
𝑟𝜈

(61)

The convergence at each iteration loop is reached by satisfying the
following conditions, i.e.,
(

‖𝑟𝜈+1𝑀𝐵‖2

‖𝑟0𝑀𝐵‖2
< 𝜖(𝑟𝑀𝐵 ) ∨

‖𝑟𝜈+1𝑀𝐵‖2

‖𝑟ℎ𝑠𝑀𝐵‖2
< 𝜖(𝑟𝑀𝐵 )

)

∧

(

‖𝑟𝜈+1𝐸𝐵 ‖2

‖𝑟0𝐸𝐵‖2
< 𝜖(𝑟𝐸𝐵 ) ∨

‖𝑟𝜈+1𝐸𝐵 ‖2

‖𝑟ℎ𝑠𝐸𝐵‖2
< 𝜖(𝑟𝐸𝐵 )

)

∧ (62)
(

‖𝛿𝑝‖2
‖𝑝‖2

< 𝜖(𝑝) ∧
‖𝛿𝐻‖2
‖𝐻‖2

< 𝜖(𝑇 )

)

Here, each threshold (𝜖𝑥) is a user-defined tolerance set initially as
input at the beginning of the simulation. Notations ‖𝑟‖2 and ‖𝑥‖2 are
the second norm of the vectors of the residuals and the update of the un-
knowns. The superscript 0 denotes the value of its corresponding vector
t the initial state of the iteration step. Please note that in some systems
he condition ‖𝑟𝜈+1‖2

‖𝑟ℎ𝑠‖2
< 𝜖(𝑟) can result in a better convergence when

ompared to ‖𝑟𝜈+1‖2
‖𝑟0‖2

< 𝜖(𝑟) and vice versa. Therefore both conditions
are checked and either of them can implicate the convergence signal.
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