
Using LLM-Generated Summarizations to Improve the Understandability of
Generated Unit Tests

Enhancing Unit Test Understandability: An Evaluation of LLM-Generated Summaries

Natanael Djajadi1

Supervisor(s): Andy Zaidman1, Amirhossein Deljouyi1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Natanael Djajadi
Final project course: CSE3000 Research Project
Thesis committee: Andy Zaidman, Amirhossein Deljouyi, Asterios Katsifodimos
DOI: 10.5281/zenodo.12510836

https://zenodo.org/records/12510837

Abstract
Since software testing is crucial, there has been research
on generating test cases automatically. The problem
is that the generated test cases can be hard to under-
stand. Multiple factors play a role in understandability
and one of them is test summarization, which provides
an overview of the test of what it is exactly testing and
sometimes highlights the key functionalities. There al-
ready exist some tools to generate test summaries that
use template-based summarization techniques. Limita-
tions of generated summaries include that they can be
lengthy and redundant, and that it is best to use them in
combination with well-defined test names and variables.
There is a tool developed named UTGen, which combines
Evosuite and Large Language models to increase under-
standability which includes improving the test names and
variables, but does not have a summarization functional-
ity yet. In this research, we extend UTGen using LLM-
generated summaries.

We investigate to what extent the understandability of
a test case can be influenced by LLM-generated test sum-
maries in terms of context, conciseness, and naturalness.
For this reason, we do a user evaluation with 11 partici-
pants with a software testing background. They will judge
LLM-generated summaries and compare them to exist-
ing summarization tools. The LLM-generated summaries
scored overall higher than the template-based summaries
and were also more favorable by the participants.

1 Introduction
Software is used everywhere around us. Examples are regis-
tering participants for an event, or doing online transactions.
This means that the reliability and accuracy of software are
important which can be verified through testing, but it can
be very tedious and time-consuming. This is why there is
already a lot of research into generating those test cases au-
tomatically, of which EvoSuite is an example [6]. With
EvoSuite you can generate test cases that achieve a high
code coverage, but it can be hard to understand because of
the names of the variables for example. This can be seen
in Listing 1, where it uses names that are not descriptive like
rational1. In an interview study [9], the participants agreed
that when there are large test cases that maximize code cover-
age, they are hard to understand and maintain. A systematic
mapping study from 2024 by Winkler et al. [21] identified
factors that play a role in understanding test cases, which
include test names, identifier names, comments, test sum-
maries, and some other aspects.

Our research focuses specifically on elevating the under-
standability of test cases by using test summaries generated
with a large language model (LLM). In a survey about au-
tomatically documenting unit test cases, almost all the par-
ticipants agreed that the quality of the system, good docu-
mentation of the test cases, and maintaining those tests are
important [11]. Nevertheless, some limitations of generated
summaries include that they can be lengthy and redundant,
and that it is best to use them in combination with well-
defined test names and variables [18]. There already ex-
ists some research on test summaries. A developed tool is
TestDescriber [16], which also takes into account the part

@Test
public void test3() throws Throwable {

Rational rational0 = new Rational(1L, 3215L);
Rational rational1 = rational0.abs();
assertEquals(1L, rational0.numerator);
assertEquals(3215L, rational0.denominator);
assertEquals(3.11041E-4F, rational1.floatValue(),
0.01F);

}

Listing 1: Example of a generated test of Evosuite [16])

of the code that is executed. This leads to including code
coverage in the test summary, next to only using static code
to generate the summaries. One of the main aspects of that
study was that they looked at the impact of summaries on bug-
fixing. These summaries improved the comprehensibility of
the generated test cases for developers, resulting in them find-
ing twice as many bugs than without this tool. Another re-
search was about DeepTC-Enhancer [18], which uses a two-
stage approach. It first uses a template-based approach to gen-
erate high-level summaries, and then all the identifiers will be
renamed by deep learning to increase understandability. One
of the results of this research was that the participants pre-
ferred DeepTC-Enhancer over TestDescriber.

In recent years, there has been a significant advancement in
LLM technology. As such, more and more people are using
LLMs for their professional workflows and everyday activi-
ties. Large language models themselves can be used for a lot
of purposes in the context of coding, for example explaining
code for students to understand the code more effective [10],
or generating tests [4, 22]. LLMs can understand the ques-
tion that was prompted and the context, and generate output
in natural language, which would be relevant to our research.
In our case, we can ask the LLM to generate a summary for
a given test. TestDescriber and DeepTC-Enhancer both
do not use LLMs in their tools. A fairly new tool developed
named UTGen combines Evosuite with LLMs to increase the
understandability [5]. UTGen enhances the understandability
of generated tests by improving the test names and identi-
fiers names, contextualizing test data, and adding explanatory
comments.

Our research extends UTgen using LLM-generated sum-
maries, which are not (yet) included in this tool. It is inter-
esting to see the impact of summaries generated by LLMs
and how that would differ from template-based summaries.
We also look at the difference in output between a local and
a commercial LLM. Our study has the main question: to
what extent can the understandability of a test case be
influenced by Large Language Model-generated test sum-
maries in terms of context, conciseness, and naturalness?

This main question is broken down into three sub-
questions:

RQ1 What is the impact on the understandability of a test
case by using LLM-generated test summaries using
prompt engineering, few-shot, or context-aware summa-
rization?
Since prompt engineering, few-shot, and context-aware
summarization are different techniques to generate a
prompt, we want to see how that would differ from only
asking the LLM plainly to generate a test.

RQ2 To what extent can the understandability of a test case
be influenced using Large Language Model generated
test summaries in contrast to existing tools like Test-
Describer and DeepTC-Enhancer in terms of context,
conciseness, and naturalness?
We want to compare the understandability of LLM-
generated summaries with existing tools by looking at
the context (if the content is complete and correct), con-
ciseness (if there is no irrelevant information), and natu-
ralness (how natural the language that was generated is).
This we do with a user evaluation.

RQ3 What are the differences in characteristic elements be-
tween LLM-generated test summaries, TestDescriber,
and DeepTC-Enhancer that influence test case under-
standability?
Characteristic elements are individual parts of the sum-
mary that contribute to its overall understandability, like
the length of the summary, and using a numbered list. By
answering this question we can explain how these dif-
ferences impact the understandability of LLM-generated
summaries in contrast to the existing tools which was an-
swered in RQ2.

We summarize the core contributions of our work as follows:

• We extended UTGen with LLM-generated summaries
with prompt engineering and/or few-shot.

• A user evaluation was conducted with 11 participants
who all had experience in software testing to judge the
summaries on their understandability.

• The results show that LLM-generated summaries scored
higher and were preferred over template-based sum-
maries.

2 Background
In this section, we will go through the background in more
detail. First, we look at template-based summaries that ex-
isting tools use. Then we are going through two prompting
techniques which are used before.

2.1 Template-based Summaries
As earlier stated, TestDescriber [16] and
DeepTC-Enhancer [18] both use template-based sum-
maries. This means that they are using pre-defined templates
of natural language sentences. Then they fill it with the
output of SWUM, which is a technique that uses nouns,
verbs, and prepositional phrases to represent program
statements [12]. TestDescriber generates three types of
summaries: a class summary, a method summary, and a
fine-grained statement summary. DeepTC-Enhancer on the
other hand, focuses on its test summarization mostly to filter
out redundant information. It analyzes all the statements,
reduces the redundant steps which are for example multiple
lines of the same operations, and aggregates the remaining
statements.

2.2 Prompting Techniques
Prompt Engineering
Given that each model has its own favored input structures,
complexities, and drawbacks, there is not a universal solution
that fits all scenarios in prompt engineering. As in the paper

of UTGen [5], they use guidelines to prompt the LLM. Action
words, adopting a persona, and using Chain of Thought are
all techniques that are used. A study by Wei et al. [20] shows
that using Chain-of-Thought prompting improves the perfor-
mance of LLM for complex reasoning. Using this technique,
in the prompt there will be a series of intermediate reasoning
steps present.

Few-shot Summaries
Few-shot is another technique that can be used to prompt the
LLM. Here, one will first give a few examples or demon-
strations similar to the task that will be performed, and then
prompt the LLM to do the task. An existing work, which
is called Cedar, uses a strategy to automatically retrieve the
demonstration selection [14]. They show in their study that
the method they developed surpasses the most advanced ex-
isting models of assertion and program repair, showing im-
provements of up to 11% and 5% respectively.

3 LLM-generated Summarizations
3.1 Prompting Techniques Used for

Summarizations
We created four prompts using different prompting tech-
niques to generate summaries with the LLM.

Simple/Baseline
With this prompt, we asked the LLM to simply generate a
summary with the test method provided. This will be our
baseline to see if using different prompting techniques will
affect the output of the LLM. Tags like [CODE] and [/CODE]
will be used to make it clear for the LLM where the code
starts and ends. The prompt used is shown in Listing 2.

Please generate a summary of the unit test given between the
[CODE] and [/CODE] tags. Please put your answer between
[SUMMARY] and [/SUMMARY] tags.

[CODE]
<Insert Unit Test>
[/CODE]

Listing 2: Simple prompt which serves as the baseline

Prompt Engineering
As earlier mentioned, there is no one-size-fits-all solution
for prompt engineering. Since we are using the LLM
Codellama:7b-instructwhich was also used in UTGen [5]
and build on that tool, we can take inspiration from how
they engineered their prompt. We are aware that the goals of
UTGen are different since it prompts to improve aspects like
the test name and variables, and not summarizations. Still, as
they argue in their paper, prompt engineering can set guide-
lines for the LLM for the output generated. This can be useful
for our output since we want the summaries to concisely ex-
plain what the test does in a readable way.

Since using Chain of Thought improves the performance
of LLMs for complex reasoning [20], we will be also using
the Chain-of-Thought prompting. In step 4 as seen in List-
ing 3, we ask the LLM to make the summary as succinct and
concise as possible in a bullet point format. It is not a signif-
icant concern when the output is not in a bullet point format,
which sometimes happens with codellama:7b-instruct.

This is because we implement prompt healing, inspired by
Dagan et al.’s token healing technique [3]. While their ap-
proach fixes issues in the generated text by reducing bias in
the output, we use prompt healing to fix layout and informa-
tion issues in our generated summaries. Layout issues include
not using the bullet point format we asked for in our prompt
and summaries in code blocks. Irrelevant information refers
to auto-generated introductions like “Here is a suggested test
summary for the provided Java code:”. Prompt healing omits
irrelevant parts and adds newlines for non-bulleted output.

[INST] As a detail-oriented developer focused on enhancing the
clarity of a test suite, your task is to analyze the provided
Java code and generate a descriptive and concise summary of
the unit test. Follow these
steps:
1. Carefully read the Java code between the [CODE] tags.
2. Identify the primary functionality or purpose of the test.
3. Analyze actions performed in the test.
4. Formulate a test method summary that succinctly and
concisely captures what the test case does in a bullet point
format for easy, quick reading
5. Place your complete suggested test summary between the
[TESTSUMMARY] and [/TESTSUMMARY] tags, ensuring it is clear
and precise without unnecessary descriptions or information.
Remember, your focus is on clarity and precision. Use your
expertise to provide a meaningful and appropriate summary.

[/INST]

Listing 3: The instructions part for prompt engineering

Context-Awareness
For context-awareness, inspiration was taken from
TestDescriber [16]. TestDescriber takes the state-
ments and branches being tested into account to include
the code coverage in the test summary. In our case, next
to the test method which was already present in our simple
prompt, we also include the method that is being tested.
We hypothesize that the method that is being tested will
be explained in some way in the summary. The method
under test is between the [METHOD TESTED] AND
[/METHOD TESTED] tags.

Few-shot
In our few-shot prompt, we use demonstrations from sum-
maries that developers in the industry have written. Af-
ter going through open-source repositories on GitHub, the
projects from Spring [17], CoreNLP [15], and Dagger [7]
were chosen with the classes Spr8510Tests.java, Stanford-
CoreNLPServerITest.java, and LongCycleTest.java respec-
tively. These summaries were chosen because they were sum-
maries for unit tests, and were short, concise, and clear. A
summary generated with few-shot is shown in Listing 4. The
full prompt including the demonstrations is in the replication
package on GitHub1.

3.2 Large Language Models
Initially, the plan was that we would only use
codellama:7b-instruct [1] as the LLM, since UTGen
already uses this model. This model uses 7 billion pa-
rameters. But since we are running this locally and not
with as many parameters as GPT3.5, which has an es-
timated parameter count of 175 billion, we hypothesize

1
https://github.com/NaelDj/UTGen-Summarization-Extention

/**
* Tests the absolute value function of the Rational class to
* ensure it correctly handles positive values and returns the
* expected float representation.
*/
@Test
public void test3() throws Throwable {

Rational rational0 = new Rational(1L, 3215L);
Rational rational1 = rational0.abs();
assertEquals(1L, rational0.numerator);
assertEquals(3215L, rational0.denominator);
assertEquals(3.11041E-4F, rational1.floatValue(),
0.01F);

}

Listing 4: Summary generated with few-shot using the LLM
ChatGPT from the Rational class [16]

that codellama:7b-instruct performs worse. We have
found during testing different prompts that the generated
summaries do not always follow the instructions given. It
can be mostly seen during few-shot testing, where it would
generate very long summaries, while the demonstrations
given were only one line long. For this reason, we tried
both codellama:7b-instruct and GPT3.5 and GPT4o to
generate summaries.

3.3 Implementing in UTGen
There were two places where we had to alter the code to
implement the summary functionality in UTGen. The first
place is in the UTGen code itself, where summaries would
be added on top of the tests. The other place was in
the LLM server. Here the prompt was located and would
generate the summaries by connecting it to the LLM. The
model will be connected either locally with Docker for
codellama:7b-instruct or via the official API of GPT3.5.

Prompt healing was also implemented which was de-
scribed earlier as being inspired by token healing [3]. In the
LLM server, it would then omit unnecessary parts out of the
summary generated like “Here is your generated test:” and
when the LLM puts the summary in a code block, prompt
healing will extract the summary out of the code block. In
UTGen, every sentence of the summary will start on a new
line. This is to prevent very long summaries without any new-
lines, where the user would have to scroll horizontally to read
the summary.

4 Experimental Setup
In this section, the methodology of our research will be de-
scribed. We will investigate the following research questions:

RQ1 What is the impact on the understandability of a test
case by using LLM-generated test summaries using
prompt engineering, few-shot, or context-aware summa-
rization?

RQ2 To what extent can the understandability of a test case
be influenced using Large Language Model generated
test summaries in contrast to existing tools like Test-
Describer and DeepTC-Enhancer in terms of context,
conciseness, and naturalness?

RQ3 What are the differences in characteristic elements be-
tween LLM-generated test summaries, TestDescriber,
and DeepTC-Enhancer that influence test case under-
standability?

https://github.com/NaelDj/UTGen-Summarization-Extention

4.1 Set-up for user-evaluation (RQ1)
We will explore the understandability of the summaries
in terms of context, conciseness, and naturalness
using two test methods that were included in the
DeepTC-Enhancer [18] external developer’s surveys.
TestDescriber [16] and DeepTC-Enhancer [18] have
both already generated summaries for these tests. By generat-
ing summaries with the LLMs on these summaries, we could
then already compare template-based summarizations with
LLM-generated summarizations before the user evaluation.
This is because we do not use a pilot.

We use three different LLMs: codellama7b-instruct,
GPT3.5, and GPT4o. An LLM is non-deterministic, which
means that the same prompt can produce different results.
Therefore, it was important to run it multiple times on the
same prompt. Since we have three different LLMs, two tests
to generate summaries on, four prompt techniques, and we
run each prompt three times because of the non-deterministic
nature, we will then have 72 prompts in total to analyze.

These prompts will be analyzed by ourselves because due
to this project’s time limitations, it is not possible to do two
user evaluations. This can be done for further research. For
now, these 72 prompts will be analyzed using two types of
metrics: length of output and understandability. Understand-
ability, which includes judging the context, conciseness, and
naturalness, is very subjective. We chose to analyze under-
standability for this research question and RQ2 in terms of
context and conciseness, because of similar work done be-
fore [13, 16, 18]. Context is about if the content is complete
and correct. Conciseness is about if there is no irrelevant in-
formation. Those works also had a third aspect, readability.
However, since our research is about large language models,
it would be more interesting to see how natural the language
is of the generated summaries because these models are de-
signed to understand and generate human-like text. Rules
were implemented to make this evaluation less subjective. A
specific summary starts with 5 points on a Likert scale. It
can have points deducted if it is wrong, like missing informa-
tion or containing unnecessary information. It can stack up,
for example when in two separate places in the summary it
contains unnecessary information.

The rules for context are: 1) It should include what it is
testing, and how it is testing. If either of these is missing,
there will be a point deduction. 2) If any information is miss-
ing or 3) if any information is incorrect, there will also be a
point deduction. There is only one rule for conciseness: if
the summary contains unnecessary information, there will be
a point deduction. For naturalness, there will be a point de-
duction if: 1) brackets or quotes are used unnecessarily, or
2) the flow and tone are not appropriate. Flow refers to the
logical progression of ideas and how well sentences connect
with each other. Tone refers to maintaining a formal, objec-
tive style with proper grammar and punctuation.

4.2 User Study (RQ2)
We conduct a controlled experiment to answer the research
question of comparing LLM-generated tests with existing
tools. Participants were recruited via our network and in to-
tal there were 11 participants. They were given a survey and
judge summaries.

Experience Industry Academic

0-1 years 6 (60%) 3 (30%)
2-3 years 3 (30%) 1 (10%)
4-5 years 2 (20%) 7 (70%)

Total 11 (100%) 11 (100%)

Table 1: Experience of Participants

1) Participants: We recruited participants with software
testing experience. Eight of them were Bachelor students,
and three doing Masters. They were volunteers and there was
no reward for participation in this research. Their experience
in Java in the industry (practical) and academic are shown in
Table 1. All the participants had at least one year of experi-
ence in Java academically.

2) Survey: The survey starts with an informed consent. Af-
ter that, the survey consists of two parts with a total of 20
questions. The first part is about their background. The sec-
ond part is about judging summaries on their understandabil-
ity. This part consists of four rounds, which means that four
different summaries were judged and compared by the par-
ticipants. The first two summaries were chosen based on the
external surveys from DeepTC-Enhancer [18], and the last
two were chosen based on the replication packages that was
on GitHub of TestDescriber [16] and DeepTC-Enhancer,
such that we did not have to run those tools. We made sure to
minimize bias by not ordering the summaries based on their
tools in the same order but randomized the summaries gen-
erated by the tools in each round. For judging the under-
standability of the test cases in terms of context, conciseness,
and naturalness, the participants used a 5-point Likert scale.
There were also optional text boxes included after each ques-
tion where participants could elaborate on their answers.

We choose the LLM-generated summaries for the survey
based on our results from RQ1. After answering the previous
research question, we can choose the summaries we think are
best suited for the survey from codellama:7b-instruct
and ChatGPT. In the first two rounds, they will have
to compare all four tools, and in the last two rounds,
they compare the two LLM-generated summaries with ei-
ther DeepTC-Enhancer or TestDescriber, thus comparing
three summaries. This survey is also published in the replica-
tion package on GitHub.

3) Experimental Procedure: To minimize bias even more,
we also were present during the user evaluation. When par-
ticipants had questions, we would be able to elaborate. At the
same time, we could make sure they filled it in seriously and
thoughtfully and did not just fill it out without consideration.
This approach helps us avoid the uncertainty that comes with
online surveys, where it is harder to verify if they have not
chosen the options at random.

4) Analysis Method: We use the Kruskal-Wallis H test us-
ing a significance level of α = 0.05, which can be applied
to see if there are significant statistical differences for more
than two groups. We chose the Kruskal-Wallis H test since
the Shapiro-Wilk test shows that our results were not nor-
mally distributed. We will also use the Dunn’s test which
serves as a post-hoc test, to see pairwise which tools have
statistical differences. To measure the effect size, we use Co-
hen’s d to measure the effect size, categorizing it as negligible

/**

* Creates a new instance of the "Rational" class with numerator 1

* and denominator 3215.

* Calls the "abs()" method on the created rational number, which returns a

* new rational number with the absolute value of the original number.

* Asserts that the new rational number has a numerator equal to 1.

* Asserts that the new rational number has a denominator equal to 3215.

* Converts the new rational number to a float value and asserts that it is

* approximately equal to 3.11041E-4F, with a tolerance of 0.01F.

*/

@Test

public void test3() throws Throwable {
Rational rational0 = new Rational(1L, 3215L);

Rational rational1 = rational0.abs();

assertEquals(1L, rational0.numerator);

assertEquals(3215L, rational0.denominator);

assertEquals(3.11041E-4F, rational1.floatValue(),

0.01F);

}

Listing 5: Summary generated with prompt engineering using
codellama:7b-instruct from the Rational class [16])

Prompt Technique LLM Avg Sentences Avg Words Words/Sentence

Simple Codellama:7b-instruct 6,33 124,33 19,63
Simple GPT3.5 3,83 67,3 17,57
Simple GPT4o 4,67 75,5 16,18
Context-Awareness Codellama:7b-instruct 4,83 87 18
Context-Awareness GPT3.5 5 88,83 17,77
Context-Awareness GPT4o 4,83 91 18,83
Prompt Engineering Codellama:7b-instruct 4,67 81,33 17,43
Prompt Engineering GPT3.5 5,5 56,33 10,24
Prompt Engineering GPT4o 5 55,5 11,1
Few-shot Codellama:7b-instruct 7,17 148,5 20,72
Few-shot GPT3.5 1,5 32,5 21,67
Few-shot GPT4o 1 20,5 20,5

Table 2: Comparison of length of LLMs across different techniques

(d < 0.2), small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8),
and large (d ≥ 0.8) [19].

4.3 Elements to explain the results (RQ3)
This last research question will be answered in two ways. The
first way was by finding the characteristic elements ourselves.
When we refer to characteristic elements, we are referring to
individual parts of the summary that contribute to its overall
understandability, like the length of the summary, and using a
numbered list. To find the elements ourselves, we study sum-
maries generated with the existing tools and with the LLMs
first. Then, we identified common elements, for example us-
ing a numbered list. After this, we tested these elements on
other summaries to see if the elements served as characteristic
aspects that could contribute to the understandability. Lastly,
we refined the list of elements, for example by splitting ele-
ments into more specific ones. These were given as examples
in the survey to the participants, but they were encouraged to
come up with their own. This is the second way to come up
with aspects. Participants wrote aspects they liked the most
and the least in two text boxes. By having this distinction we
can also immediately see their preferences.

5 Results
The research questions will be answered one by one.

5.1 RQ1: Impact on understandability by using
different prompt techniques

The impact on understandability using different prompt tech-
niques depends on the LLM used. We will go through each
aspect of understandability (context, conciseness, and natu-
ralness) to see the differences between the techniques.

Context
As seen from Figure 1, few-shot has a lower score compared
to the other prompting techniques simple prompt, context-
awareness, and prompt engineering. This is because the sum-
maries generated by using few-shot are usually one-liners that
explain the main idea of the test, but they do not explain how
it works. The other prompting techniques go through the code
explaining almost each step. Since it is missing this informa-
tion, by using our predefined rules few-shot has a score of
around 4.

Other prompting techniques next to few-shot had on av-
erage a complete summary without much incorrect infor-
mation. However, codellama:7b-instruct for context-
awareness made on average more mistakes than ChatGPT, or
the other techniques simple prompt or prompt engineering.
This can be seen in Figure 1. We hypothesized that by us-
ing context-awareness, the method that is being tested would
also be explained in the summary. However, we found out
that codellama:7b-instruct never explained the method
being tested in the summary for the class ArrayIntList.
ChatGPT explained it only 1 out of the 6 times. For the class
Rational the LLMs explained the method always. Surpris-
ingly, summaries generated by simple prompt and prompt en-
gineering also explained the method for the Rational class
four of the six times using codellama:7b-instruct. The
prompt’s content, whether it includes or excludes the tested
method, appears to have minimal effect on the results.

Conciseness
As for conciseness, codellama:7b-instruct scored the
worst using few-shot and second-worst using the simple
prompt. As seen from Table 2, codellama:7b-instruct
uses the most amount of sentences and words on average us-
ing these two prompting techniques. This is because for few-
shot, codellama:7b-instruct does not use the demonstra-
tions given and explains the code mostly with multiple para-
graphs. However, ChatGPT used the demonstrations given
which were one-liners, outputting very concise summaries.
This is why it then scored on average the highest compared to
the other prompting techniques.

It is worth mentioning that the LLM using prompt engi-
neering generates summaries with bullet points in contrast to
simple prompt and context awareness, which explain the sum-
maries in paragraphs. The downside of using bullet points is
that they are more prone to containing repetitive lines of the
same operations. This can be seen in Listing 5, where it has
multiple lines of assertions. This explains why conciseness
has a score of 4 using codellama:7b-instruct.

Using context-awareness leads also to a drop for ChatGPT
in terms of conciseness, because explains a lot more of the
test which is sometimes not necessary. Table 2 shows that
ChatGPT uses more words on average in contrast to simple
prompt.

Naturalness
Naturalness for codellama:7b-instruct using few-shot
and simple prompt has a very low rating in Figure 1. For few-
shot, different aspects of prompts lowered the naturalness.
Examples are using a non-appropriate tone using “we”, using
a lot of the exact number 3.11041E-4, or the flow was some-
times disturbed by brackets which could have been omitted.

Figure 1: Comparison of the understandability of LLMs across different prompt techniques

As for the simple prompt, there were also instances where
the flow was disturbed by unnecessary uses of brackets and
unnecessary use of single quotes.

5.2 RQ2: Comparative influence of LLM-generated
summaries and existing tools

The results from comparing the summaries by the partici-
pants are shown in Figure 2. Because TestDescriber and
DeepTC-Enhancer are not compared to each other but only
to the LLMs in rounds 3 and 4 of the survey, they are also
separately compared in our results. The results indicate that
1) for context codellama:7b-instruct scores the highest,
2) for conciseness that ChatGPT scores the highest, and 3) for
naturalness LLM-generated summaries were ranked higher
than the template-based summaries. The average results of
the aspects of understandability can be seen in Table 3. From
this table, we can see that the score for the naturalness of
template-based summaries is below 4, and LLM-generated
summaries are greater than 4. In Table 4 we can see as aver-
age for the understandability that LLM-generated summaries
overall scored higher than the template-based summaries if
we assume the aspects are all weighted the same.

From a statistical perspective of comparing
TestDescriber with the LLMs, the participants found
the LLM-generated summaries codellama:7b-instruct
and ChatGPT as significantly far more concise than
TestDescriber using Dunn’s test (p = 0.01 and
p ≤ 0.01, respectively). The effect size is large in these
cases, being 0.92 and 1.41 respectively. As for naturalness
between TestDescriber and ChatGPT, the participants
perceived ChatGPT as significantly more natural with a
p-value of 0.04 with a medium effect size of 0.60. There
is no significant difference between TestDescriber and
the LLMs for the aspect context as the result from the
Kruskal-Wallis H test shows us (p = 0.08).

When comparing DeepTC-Enhancer with the LLMs,
DeepTC-Enhancer surpasses codellama in terms of con-
ciseness with a significant difference (p = 0.03) and a small
effect size of 0.46. There are no significant differences be-
tween DeepTC-Enhancer’s and the LLM-generated sum-
maries regarding the naturalness aspect (p = 0.35). How-
ever, between the LLM-generated summaries ChatGPT was
perceived as more concise than codellama with a signif-
icant difference of p ≤ 0.01 and a medium effect size
of 0.77. Furthermore, participants ranked codellama signif-
icantly higher than ChatGPT with a difference of p ≤ 0.01

for the context aspect, and having a large effect size of 0.94.

5.3 RQ3: Differences in test summary elements
influencing understandability

We will first show the liked and disliked elements of each
tool. The feedback from the participants was aggregated
across the four test methods of the survey. The numbers men-
tioned represent the total time an element was liked or dis-
liked across all tests.

TestDescriber

The only aspect more than one participant liked was that
TestDescriber included comments on all main aspects in
a step-by-step guide, which was mentioned four times in
total by two participants. However, in general the partic-
ipants disliked many elements, including that they found
the summaries long and containing unnecessary information.
The worst-rated aspect of this tool was the inline comments,
which they say make the test more unreadable as it is too de-
tailed. Seven participants mentioned this twelve times across
the tests, and can be seen in Figure 2 where for conciseness
TestDescriber scored low.

DeepTC-Enhancer

Participants liked a few aspects of DeepTC-Enhancer, which
included a good summarization of the flow of the test what it
does, and that it is concise. Five participants brought seven
times the numbered list up, which has a step-by-step expla-
nation of the test. But a few of them did not like that it de-
scribes what is happening on each line of code, which did
not help to understand the test’s purpose and therefore had
lower scores than codellama:7b-instruct where people
were more positive about the context which will be described
in the next subsection.

Codellama:7b-instruct

Eight participants mentioned fourteen times across the
tests that they liked the detailed description generated by
codellama:7b-instruct. It was worded in different
ways, like having a good amount of detail, an in-depth
explanation, and being clear. Also, they liked the struc-
tured format, which makes it very easy to skim through.
This came up five times by individual participants. As
such, codellama:7b-instruct received high scores for
the context. However, five participants raised seven times
that the summary is long and contains information that
is already in the test. Like using DeepTC-Enhancer,

Figure 2: Results from the comparison for the summaries of TestDescriber, DeepTC-Enhancer, codellama:7b-instruct, and ChatGPT
using a 5-point Likert scale

it explains in words what is happening on each line of
code, which participants said they could read themselves.
But it was raised that sometimes the summary looks like
DeepTC-Enhancer, but longer. This explains why the
conciseness of codellama:7b-instruct is lower than
DeepTC-Enhancer and ChatGPT.

ChatGPT

Five participants stated six times that they liked the concise
summarization. A slightly different group of five participants
said eight times that they liked how the summary directly ad-
dresses the test’s objective and explains the idea behind the
test. This can be seen in Figure 2 where many participants
scored ChatGPT high for conciseness. There was only one
aspect that they did not appreciate at all and therefore was
brought up seventeen times by seven participants. This as-
pect was that ChatGPT was explaining too little, which they
say makes it less practical, very basic and limited, and even
cryptic. This is the reason why for ChatGPT the context as-
pect scored lower than the other three tools on average.

Elements influencing preferences
As shown in Table 4, codellama:7b-instruct was the
most preferred summary among the participants, in second
place ChatGPT. Codellama:7b-instruct scored higher
than ChatGPT for context, but it is the other way around for
conciseness. This can be seen in Table 3 where the individ-
ual aspects of understandability are seen. From this, we see a
possible indication that participants find context more impor-
tant than conciseness. As the participants have brought up,
they really liked the detailed descriptions and structured for-
mat of codellama:7b-instruct and disliked that ChatGPT
was very basic and limited. A long summary with unneces-
sary information and in-line comments also has a lot of im-
pact as seen in Table 4, where TestDescriber was favored
the least.

Tool Context Conciseness Naturalness

TestDescriber 3.97 2.85 3.21
DeepTC 3.88 4.21 3.64
Codellama:7b-instruct 4.48 3.93 4.09
ChatGPT 3.78 4.57 4.05

Table 3: Average results of the aspects (context, conciseness, natu-
ralness) of understandability of the LLM-generated summaries

Tool # times favored Understandability

TestDescriber 7 3.34
DeepTC-Enhancer 12 3.09
ChatGPT 17 4.17
codellama:7b-instruct 20 4.13

Table 4: Comparison of the number of times participants preferred
to use a summary generated by the tool and the average score of
understandability

6 Discussion
In this section, we will discuss our results, and the potential
threats to validity in terms of construct, internal, and external
validity.

Revising the Research Questions
RQ1: What is the impact on the understandability of

a test case by using LLM-generated test summaries using
prompt engineering, few-shot, or context-aware summariza-
tion? We have seen that using the prompting technique
context-awareness did not have a lot of impact on the sum-
mary in contrast to other techniques like the simple prompt
or prompt engineering. This is because the LLM did not
include the method under test, or other techniques also al-
ready explained the method being tested. To see if this is
really the case, it would be good to include the method being
tested for other different tests and methods, since two may
not be enough to see the actual difference. Furthermore, for
future research it would be better to do a user evaluation to an-
swer this research question, which will be further explained

in Construct Validity.
RQ2: To what extent can the understandability of a

test case be influenced using Large Language Model gener-
ated test summaries in contrast to existing tools like Test-
Describer and DeepTC-Enhancer in terms of context, con-
ciseness, and naturalness? Codellama:7b-instruct and
ChatGPT were rated differently in the last two tests in the
survey, which is reflected in the difference in the rows of
the plots in Figure 2. An example can be seen when
looking at the context aspect for ChatGPT. When com-
paring ChatGPT to DeepTC-Enhancer, participants scored
ChatGPT lower than comparing it to TestDescriber. We
hypothesize that the difference in context for ChatGPT
was because the third test method in the survey was test-
ing buildFromEncodedMap of the KeycloackUriBuilder
class, which could have been more difficult to understand
than the other tests in the survey. Since the summary
of ChatGPT was very concise, it did not tell the partici-
pants much about how it is testing the method which leads
to a drop in understandability of the context. The differ-
ence of rating in conciseness of codellama:7b-instruct
may be because of its individual comparison to either
TestDescriber or DeepTC-Enhancer. In round three of
the survey, the summary of codellama:7b-instruct was
longer but similar to DeepTC-Enhancer’s summary. In
round four against TestDescriber, participants liked the
steps more of codellama:7b-instruct, which can be seen
in Figure 2, where it scored higher for conciseness.

RQ3: What are the differences in characteristic elements
between LLM-generated test summaries, TestDescriber, and
DeepTC-Enhancer that influence test case understandability?
For this research question, we saw many aspects that can in-
fluence understandability in either a positive, a negative way,
or even both. An example of both is when a summary is very
concise like the summaries generated by ChatGPT. On the
one hand, it is very concise which means it gets straight to
the point of the test. On the other hand, participants say it
is less practical since there is limited information and they
have to go through the whole test themselves. However, since
there are different aspects present in the same summary, it is
not possible to conclude that one specific aspect is better than
the other in our research. An example of this would be that
TestDescriber was rated the worst in conciseness but has
different aspects that could play a role in conciseness, which
are the inline comments, the length of the summary, and the
amount of unnecessary information.

Threats to Validity
Construct Validity is about how we set up our study. Dur-

ing the user evaluation, we were present when they were fill-
ing in the survey. However, in the first part of our study, we
judged the summaries on our own which can create a bias.
This we tried to mitigate by implementing rules to be more
consistent. Even then, a long summary has a bigger chance of
having irrelevant information than a shorter test, so the rules
may still not fully mitigate this problem. Because of the time
constraints of this research, another user evaluation was not
possible but would be good to do as future research.

Internal Validity. In the survey, the tools that gener-
ated the summaries were not revealed. Across the several
rounds, the summaries were randomized, such that summary

A in round 1 does not necessarily correlate to summary A in
round 2. This we have done to avoid a preference of the par-
ticipants for one tool over the other. However, since we had
four rounds, participants may have noticed a pattern through-
out the rounds of similarities between the summaries.

Next to that, to determine if the experience of the partici-
pants (practical, academic, or combined) influenced how they
ranked the aspects context, conciseness, and naturalness, we
conducted a permutation test. The results indicated that no
significant difference based on experience, suggesting our
findings were robust and not influenced by the participants’
backgrounds (for all p ≥ 0.05).

External Validity. There is a threat to the generalizability
of our results. To answer RQ1, we have used two classes that
were used in the DeepTC-Enhancer paper [18]. To limit gen-
eralizing our findings of RQ2 and RQ3, we use four different
tests in the user evaluation. With this, we made sure that we
do not conclude results from only one or two test cases.

7 Conclusions and Future Work
Research has shown that generated test summaries can be
lengthy and redundant, and that it is best to use them in
combination with well-defined test names and variables.
This is why we propose to extend UTGen [5] with LLM-
generated summaries since LLMs understand the prompted
question and context, and generate output in natural lan-
guage. Our research question is: to what extent can
the understandability of a test case be influenced by
LLM-generated test summaries in terms of context, con-
ciseness, and naturalness? For this, we first looked
at four different prompting techniques and three LLMs.
After this, the results suggested that prompt engineering
using codellama:7b-instruct [1] and few-shot using
ChatGPT [8] performed the best by analyzing the length
of the summaries and the different aspects. After this we
conducted a user evaluation to see how the LLM-generated
summaries would perform in contrast to the existing tools
TestDescriber [16] and DeepTC-Enhancer [18]. We
found out that the LLM-generated summaries scored overall
higher and were favored over the existing tools, in particu-
lar for the aspect of naturalness. Multiple aspects influence
understandability, of which some has both its advantages and
disadvantages like the length of the summary.

So to answer the research question, the right prompting
technique in combination with a suitable LLM can have a
positive impact on the understandability of a test case. With
each technique different aspects will be present in the sum-
mary, having also a different impact on understandability.
The shorter the test case, the more concise but also less infor-
mation which affects the content. The opposite is also true,
where the longer the test case, the less concise but the more
information. Our results also indicate that participants prefer
context over conciseness. Using an LLM increases natural-
ness in contrast to template-based summaries.

For future research, it would be good to do a user eval-
uation to look into the differences in prompting techniques
of different LLMs. Next to that, it would be interest-
ing to see how ChatGPT would perform with prompt engi-
neering compared to codellama:7b-instruct’s prompt-
engineered summaries.

8 Responsible Research
Five principles from the Netherlands Code of Conduct
As in the Netherlands Code of Conduct [2], the five principles
are honesty, scrupulousness, transparency, independence, and
responsibility. To be as honest as possible we document every
prompt in Google Documents. This means that there is also
version control, so every deletion can be seen. For scrupu-
lousness, we have first gone through many papers to see how
they have done their research. This was to get more inspi-
ration, and then we could exercise more care in designing,
conducting, and reporting our research. Transparency is im-
portant so other researchers can recheck that the research was
done correctly. We have tried to write every small step in this
paper what we have done, including where the data of our re-
search came from and where it was obtained. This study was
also done independently, in other words not connected to a
commercial or political nature. This study was fully done to
support our PhD candidate in his research. Lastly, we tried
to be responsible with the participants during the user evalu-
ation, by not flooding them with many questions that would
take more than 15 minutes. If we wanted deeper results, we
could do a very long survey, but this would not be good for
the well-being and concentration of the participants.

Biases
Biases also play a big role in responsible research. There are
different kinds of biases. For confirmation bias, it is impor-
tant to record your hypotheses before starting the analysis so
one can recognize their biases. Our research question was at
the beginning of the research formulated in a biased way. We
thought LLM-generated summaries would improve test sum-
maries in contrast to existing tools. However, our supervisor
pointed out that we do not know that yet, and the research
question was altered before starting the study. Now we are
more aware of this bias. There can also be selection biases,
which can occur when one looks at samples that are not repre-
sentative of the population. Since we are doing a small study,
it was only possible to get around 10 participants. This can in-
crease the bias if they all think in the same way. To mitigate
this problem, we have Bachelor students, as well as Master
students. But they are all from the same university and around
the same age. To fully eliminate this bias, it would be better
for a future study to include more participants who differ in
more aspects like university and age.

FAIR framework
The study must be findable, accessible, interoperable, and
reusable, which is the FAIR framework. We have published
the prompts, results, and survey results (without the names
of the participants) on GitHub2, such that it is findable and
accessible. The documentation of the code will also be up-
dated such that it is interoperable and reusable. The only part
that is a bit more difficult to reproduce is the self-evaluation
of RQ1. But as described in Construct Validity, we tried to
take this into account and mitigate it by implementing rules
for others to also be able to reproduce results.

Inappropriate use of LLM-generated summaries
There is a risk that a malicious actor would manipulate the
LLM to generate misleading or inaccurate test summaries.

2
https://github.com/NaelDj/UTGen-Summarization-Extention

This could lead to confusion or misinterpretation of what
the tests are actually doing. Next to that, since we built
our summarization on the tool UTGen, a malicious actor
could also somehow be able to generate tests that do not
make sense and are irrelevant. This could lead to a drop
in the quality of our approach and more ineffective test-
ing. Lastly, since we are prompting the LLM either locally
with codellama:7b-instruct or via the official API of
ChatGPT, there is always a chance that somebody could over-
load the resources of the system or server using a lot of un-
necessary large prompts for harmful purposes, which could
lead to a denial of service. This is the worst-case scenario
and will likely not happen with the servers of ChatGPT, but
there is always a risk involved.

References
[1] CodeLlama-7b-Instruct. https://ollama.com/library/co

dellama:7b-instruct. Accessed: 2024-06-01.
[2] The Dutch Research Council. nwo.nl. https://www.nw

o.nl/sites/nwo/files/documents/Netherlands%2BCode
%2Bof%2BConduct%2Bfor%2BResearch%2BIntegri
ty 2018 UK.pdf. Accessed 03-06-2024. 2018.

[3] Gautier Dagan, Gabriel Synnaeve, and Baptiste
Rozière. Getting the most out of your tokenizer for pre-
training and domain adaptation. https://arxiv.org/abs
/2402.01035. 2024. arXiv: 2402.01035.

[4] Arghavan Moradi Dakhel et al. “Effective test gener-
ation using pre-trained Large Language Models and
mutation testing”. In: Information and Software Tech-
nology 171 (July 2024), p. 107468. ISSN: 0950-5849.
DOI: 10.1016/j.infsof.2024.107468. URL: https://www
.sciencedirect.com/science/article/pii/S095058492400
0739.

[5] A. Deljouyi. “Understandable Test Generation
Through Capture/Replay and LLMs (Paper on UTGen
has not been published yet)”. In: ICSE 2024 Doctoral
Symposium, Apr. 2024. URL: https://dl.acm.org/doi/1
0.1145/3639478.3639789.

[6] G. Fraser and A. Andrea. “EvoSuite: Automatic test
suite generation for object-oriented software”. In: SIG-
SOFT/FSE’11 19th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-19)
and ESEC’11: 13rd European Software Engineering
Conference (ESEC-13) Szeged, Hungary, Sept. 2011.
DOI: 10.1145/2025113.2025179. URL: https://www.r
esearchgate.net/publication/221560749 EvoSuite Au
tomatic test suite generation for object - oriented soft
ware.

[7] Google. LongCycleTest.java. https://github.com/googl
e/dagger/blob/9a67471586c3ed1bccb5d0e13a86af06e
024cd1a/javatests/dagger/functional/cycle/LongCycle
Test.java#L37. Accessed: 2024-06-01. 2024.

[8] Introducing ChatGPT. https://openai.com/index/chatg
pt/. Accessed: 2024-06-10.

[9] P. S. Kochhar, X. Xia, and D. Lo. “Practitioners’
Views on Good Software Testing Practices”. In: 2019
IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-
SEIP) Montreal, QC, Canada: IEEE, Aug. 2019. DOI:

https://github.com/NaelDj/UTGen-Summarization-Extention
https://ollama.com/library/codellama:7b-instruct
https://ollama.com/library/codellama:7b-instruct
https://www.nwo.nl/sites/nwo/files/documents/Netherlands%2BCode%2Bof%2BConduct%2Bfor%2BResearch%2BIntegrity_2018_UK.pdf
https://www.nwo.nl/sites/nwo/files/documents/Netherlands%2BCode%2Bof%2BConduct%2Bfor%2BResearch%2BIntegrity_2018_UK.pdf
https://www.nwo.nl/sites/nwo/files/documents/Netherlands%2BCode%2Bof%2BConduct%2Bfor%2BResearch%2BIntegrity_2018_UK.pdf
https://www.nwo.nl/sites/nwo/files/documents/Netherlands%2BCode%2Bof%2BConduct%2Bfor%2BResearch%2BIntegrity_2018_UK.pdf
https://arxiv.org/abs/2402.01035
https://arxiv.org/abs/2402.01035
https://arxiv.org/abs/2402.01035
https://doi.org/10.1016/j.infsof.2024.107468
https://www.sciencedirect.com/science/article/pii/S0950584924000739
https://www.sciencedirect.com/science/article/pii/S0950584924000739
https://www.sciencedirect.com/science/article/pii/S0950584924000739
https://dl.acm.org/doi/10.1145/3639478.3639789
https://dl.acm.org/doi/10.1145/3639478.3639789
https://doi.org/10.1145/2025113.2025179
https://www.researchgate.net/publication/221560749_EvoSuite_Automatic_test_suite_generation_for_object-oriented_software
https://www.researchgate.net/publication/221560749_EvoSuite_Automatic_test_suite_generation_for_object-oriented_software
https://www.researchgate.net/publication/221560749_EvoSuite_Automatic_test_suite_generation_for_object-oriented_software
https://www.researchgate.net/publication/221560749_EvoSuite_Automatic_test_suite_generation_for_object-oriented_software
https://github.com/google/dagger/blob/9a67471586c3ed1bccb5d0e13a86af06e024cd1a/javatests/dagger/functional/cycle/LongCycleTest.java##L37
https://github.com/google/dagger/blob/9a67471586c3ed1bccb5d0e13a86af06e024cd1a/javatests/dagger/functional/cycle/LongCycleTest.java##L37
https://github.com/google/dagger/blob/9a67471586c3ed1bccb5d0e13a86af06e024cd1a/javatests/dagger/functional/cycle/LongCycleTest.java##L37
https://github.com/google/dagger/blob/9a67471586c3ed1bccb5d0e13a86af06e024cd1a/javatests/dagger/functional/cycle/LongCycleTest.java##L37
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/

10.1109/ICSE-SEIP.2019.00015. URL: https://ieeexpl
ore.ieee.org/document/8804445.

[10] Juho Leinonen et al. “Comparing Code Explanations
Created by Students and Large Language Models”.
In: Proceedings of the 2023 Conference on Innova-
tion and Technology in Computer Science Education
V. 1. ITiCSE 2023. event-place:, Turku, Finland. New
York, NY, USA: Association for Computing Machin-
ery, 2023, pp. 124–130. ISBN: 9798400701382. DOI:
10.1145/3587102.3588785. URL: https://doi-org.tudel
ft.idm.oclc.org/10.1145/3587102.3588785.

[11] B. Li et al. “Automatically Documenting Unit Test
Cases”. In: 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST):
IEEE, July 2016. DOI: 10.1109/ICST.2016.30. URL:
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/docu
ment/7515485.

[12] Paul W. McBurney and Collin McMillan. “Auto-
matic documentation generation via source code sum-
marization of method context”. In: Proceedings of
the 22nd International Conference on Program Com-
prehension. ICPC 2014. Hyderabad, India: Associa-
tion for Computing Machinery, 2014, 279–290. ISBN:
9781450328791. DOI: 10 . 1145 / 2597008 . 2597149.
URL: https : / /doi - org . tudelft . idm.oclc .org/10.1145
/2597008.2597149.

[13] Laura Moreno et al. “Automatic generation of natural
language summaries for Java classes”. In: 2013 21st
International Conference on Program Comprehension
(ICPC). 2013, pp. 23–32. DOI: 10.1109/ICPC.2013.66
13830.

[14] Noor Nashid, Mifta Sintaha, and Ali Mesbah.
“Retrieval-Based Prompt Selection for Code-Related
Few-Shot Learning”. In: 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE).
2023, pp. 2450–2462. DOI: 10.1109/ICSE48619.2023
.00205. URL: https://ieeexplore-ieee-org.tudelft.idm.o
clc.org/document/10172590.

[15] Stanford NLP. StanfordCoreNLPServerITest.java. http
s://github.com/stanfordnlp/CoreNLP/blob/246007929
ca8461804d2241b5b3ccbc9897eb1bd/itest/src/edu/sta
nford/nlp/pipeline/StanfordCoreNLPServerITest.java
#L164. Accessed: 2024-06-01. 2024.

[16] S. Panichella et al. “The impact of test case sum-
maries on bug fixing performance: an empirical inves-
tigation”. In: ICSE ’16: Proceedings of the 38th In-
ternational Conference on Software Engineering, May
2016, pp. 547–558. DOI: 10.1145/2884781.2884847.
URL: https://dl.acm.org/doi/10.1145/2884781.288484
7.

[17] Spring Projects. Spr8510Tests.java. https://github.com
/spring-projects/spring-framework/blob/35474915903
970c410ea61f737ee2aeeab41e063/spring-web/src/test
/java/org/springframework/web/context/support/Spr8
510Tests.java#L78. Accessed: 2024-06-01. 2024.

[18] D. Roy et al. “DeepTC-enhancer: improving the read-
ability of automatically generated tests”. In: ASE
’20: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, Jan.

2021, pp. 287–298. DOI: 10.1145/3324884.3416622.
URL: https://dl.acm.org/doi/10.1145/3324884.341662
2.

[19] Gail Sullivan and Richard Feinn. “Using Effect
Size—or Why the P Value Is Not Enough”. In: Journal
of graduate medical education 4 (Sept. 2012), pp. 279–
82. DOI: 10.4300/JGME-D-12-00156.1.

[20] Jason Wei et al. “Chain of Thought Prompting Elic-
its Reasoning in Large Language Models”. In: Jan.
2022. URL: https : / / www . researchgate . net / publica
tion/358232899 Chain of Thought Prompting Elicits
Reasoning in Large Language Models.

[21] Dietmar Winkler, Pirmin Urbanke, and Rudolf Ram-
ler. “Investigating the readability of test code”. In: Em-
pirical Software Engineering 29.2 (Feb. 2024), p. 53.
ISSN: 1573-7616. DOI: 10.1007/s10664-023-10390-z.
URL: https://doi.org/10.1007/s10664-023-10390-z.

[22] Zhiqiang Yuan et al. No More Manual Tests? Evaluat-
ing and Improving ChatGPT for Unit Test Generation.
May 2023. URL: https://www.researchgate.net/public
ation / 370605022 No More Manual Tests Evaluating
and Improving ChatGPT for Unit Test Generation.

https://doi.org/10.1109/ICSE-SEIP.2019.00015
https://ieeexplore.ieee.org/document/8804445
https://ieeexplore.ieee.org/document/8804445
https://doi.org/10.1145/3587102.3588785
https://doi-org.tudelft.idm.oclc.org/10.1145/3587102.3588785
https://doi-org.tudelft.idm.oclc.org/10.1145/3587102.3588785
https://doi.org/10.1109/ICST.2016.30
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/7515485
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/7515485
https://doi.org/10.1145/2597008.2597149
https://doi-org.tudelft.idm.oclc.org/10.1145/2597008.2597149
https://doi-org.tudelft.idm.oclc.org/10.1145/2597008.2597149
https://doi.org/10.1109/ICPC.2013.6613830
https://doi.org/10.1109/ICPC.2013.6613830
https://doi.org/10.1109/ICSE48619.2023.00205
https://doi.org/10.1109/ICSE48619.2023.00205
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/10172590
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/10172590
https://github.com/stanfordnlp/CoreNLP/blob/246007929ca8461804d2241b5b3ccbc9897eb1bd/itest/src/edu/stanford/nlp/pipeline/StanfordCoreNLPServerITest.java##L164
https://github.com/stanfordnlp/CoreNLP/blob/246007929ca8461804d2241b5b3ccbc9897eb1bd/itest/src/edu/stanford/nlp/pipeline/StanfordCoreNLPServerITest.java##L164
https://github.com/stanfordnlp/CoreNLP/blob/246007929ca8461804d2241b5b3ccbc9897eb1bd/itest/src/edu/stanford/nlp/pipeline/StanfordCoreNLPServerITest.java##L164
https://github.com/stanfordnlp/CoreNLP/blob/246007929ca8461804d2241b5b3ccbc9897eb1bd/itest/src/edu/stanford/nlp/pipeline/StanfordCoreNLPServerITest.java##L164
https://github.com/stanfordnlp/CoreNLP/blob/246007929ca8461804d2241b5b3ccbc9897eb1bd/itest/src/edu/stanford/nlp/pipeline/StanfordCoreNLPServerITest.java##L164
https://doi.org/10.1145/2884781.2884847
https://dl.acm.org/doi/10.1145/2884781.2884847
https://dl.acm.org/doi/10.1145/2884781.2884847
https://github.com/spring-projects/spring-framework/blob/35474915903970c410ea61f737ee2aeeab41e063/spring-web/src/test/java/org/springframework/web/context/support/Spr8510Tests.java##L78
https://github.com/spring-projects/spring-framework/blob/35474915903970c410ea61f737ee2aeeab41e063/spring-web/src/test/java/org/springframework/web/context/support/Spr8510Tests.java##L78
https://github.com/spring-projects/spring-framework/blob/35474915903970c410ea61f737ee2aeeab41e063/spring-web/src/test/java/org/springframework/web/context/support/Spr8510Tests.java##L78
https://github.com/spring-projects/spring-framework/blob/35474915903970c410ea61f737ee2aeeab41e063/spring-web/src/test/java/org/springframework/web/context/support/Spr8510Tests.java##L78
https://github.com/spring-projects/spring-framework/blob/35474915903970c410ea61f737ee2aeeab41e063/spring-web/src/test/java/org/springframework/web/context/support/Spr8510Tests.java##L78
https://doi.org/10.1145/3324884.3416622
https://dl.acm.org/doi/10.1145/3324884.3416622
https://dl.acm.org/doi/10.1145/3324884.3416622
https://doi.org/10.4300/JGME-D-12-00156.1
https://www.researchgate.net/publication/358232899_Chain_of_Thought_Prompting_Elicits_Reasoning_in_Large_Language_Models
https://www.researchgate.net/publication/358232899_Chain_of_Thought_Prompting_Elicits_Reasoning_in_Large_Language_Models
https://www.researchgate.net/publication/358232899_Chain_of_Thought_Prompting_Elicits_Reasoning_in_Large_Language_Models
https://doi.org/10.1007/s10664-023-10390-z
https://doi.org/10.1007/s10664-023-10390-z
https://www.researchgate.net/publication/370605022_No_More_Manual_Tests_Evaluating_and_Improving_ChatGPT_for_Unit_Test_Generation
https://www.researchgate.net/publication/370605022_No_More_Manual_Tests_Evaluating_and_Improving_ChatGPT_for_Unit_Test_Generation
https://www.researchgate.net/publication/370605022_No_More_Manual_Tests_Evaluating_and_Improving_ChatGPT_for_Unit_Test_Generation

	Introduction
	Background
	Template-based Summaries
	Prompting Techniques

	LLM-generated Summarizations
	Prompting Techniques Used for Summarizations
	Large Language Models
	Implementing in UTGen

	Experimental Setup
	Set-up for user-evaluation (RQ1)
	User StudyControlled Experiment (RQ2)
	Elements to explain the results (RQ3)

	Results
	RQ1: Impact on understandability by using different prompt techniques
	Context
	Conciseness
	Naturalness

	RQ2: Comparative influence of LLM-generated summaries and existing tools
	RQ3: Differences in test summary elements influencing understandability
	TestDescriber
	DeepTC-Enhancer
	Codellama:7b-instruct
	ChatGPT
	Elements influencing preferences

	Discussion
	Conclusions and Future Work
	Responsible Research

