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Abstract

Audio fingerprinting has shown to be an effective
approach to music identification, having properties
robust to noise and signal degradations. A field in
which audio fingerprinting has not been evaluated
yet is music identification in movies. In movies,
music is often accompanied with background noise,
sound effects and dialogue, and further processed
using mixing and mastering techniques.

This paper evaluates the suitability of the au-
dio fingerprinting framework ‘SoundFingerprint-
ing’ for the identification of music in movies.
The framework is evaluated according to a bench-
mark established for this field. The framework
was tested on actual movie data, noise-layered
soundtracks, pitch-shifted soundtracks and tempo-
changed soundtracks. The framework was unable
to identify the music in actual movie data, thus
directing the research to identify problematic ar-
eas specific to SoundFingerprinting. In identifying
noise-layered soundtracks, the framework showed
varying performance dependent on the dominant
frequencies present in the noise sample. Further-
more, the framework showed to be robust to tempo-
changes, whereas the framework was unable to
identify pitch-shifted soundtracks. Based on this
performance evaluation, SoundFingerprinting is ill-
equipped for the task of music identification in
movies.

1 Introduction

For humans, establishing the equality of two songs is a trivial
task. While listening to the songs, we can understand lyrics,
tone, emotion and structure. For computers, however, this
task is much more complex. A computer has no prior knowl-
edge of what music is and can only act based on the ones and
zeros that ultimately form the signal. Comparing the com-
plete signal of one song to another is computationally expen-
sive, making identification in this way unfeasible for large
music databases. In the early 2000s, a new technique for es-
tablishing equality of audio objects emerged, called audio fin-
gerprinting. Instead of comparing the typically large objects

directly, audio fingerprinting algorithms reduce these audio
objects to many small fingerprints such that these compact
representations can be matched efficiently. The concept of an
audio fingerprint is analogous to human fingerprints, e.g. a
small signature of a human which can uniquely identify a hu-
man. Although the fingerprint does not give any information
on what the human looked like or what (in the case of audio
fingerprinting) the original signal looked like, it can be used
to identify the object. Throughout the last two decades, many
successful implementations of this technique have surfaced
for a variety of applications, such as radio-stream monitoring,
integrity verification, and content-based audio retrieval [1].
Research in this field has come to somewhat of a halt, yet new
challenges emerge, such as music identification in movies.

In movies, contrary to, for example, radio-stream monitor-
ing, music is often not the main point of focus; it supports
in conveying the intended message together with the video.
Songs may be played in combination with cinematic shots,
dialogue or action scenes. In final mixing for movies, one
has to combine several audio sources (dialogue, music, back-
ground noise, effects, foley) for the final theatre-mix. Using
various mastering techniques such as equalisation, filtering,
compression/limiting, and levelling, final mixing engineers
are able to balance the audio and highlight the essential parts
of the final mix [2].

Audio fingerprinting appears to be a promising approach
to this challenge, as it allows for fast querying in large mu-
sic databases, and there are implementations that have shown
to be (to a certain extent) robust to noise and signal degra-
dations [3] [4]. Yet, when audio fingerprinting implementa-
tions are applied to the field of music identification in movies,
performance drops significantly. Given the complexity of
the final theatre-mix and the variety of techniques employed
by different audio fingerprinting implementations, there are
many factors that could cause this sub-optimal performance.
To compare the performance of different implementations in
music identification in movies, a benchmark [5](i.e. a global
evaluation method) has been established in cooperation with
four other researchers. This benchmark decomposes the com-
plex problem of music identification in movies into separate
categories to analyse problematic areas for a given implemen-
tation. It is highly recommended to read the paper on the
benchmark beforehand, as it is referenced throughout the rest
of this paper.



This paper evaluates the suitability of an open-source au-
dio fingerprinting implementation, SoundFingerprinting, for
music identification in movies. This research answers the fol-
lowing research question is answered:

* How does SoundFingerprinting perform on music iden-
tification in movies?

This research question is split up into two sub-questions:

* How does SoundFingerprinting perform according to a
benchmark established for evaluating audio fingerprint-
ing frameworks for music identification in movies?

e What configurable parameters influence the perfor-
mance of the framework for music identification in
movies?

This paper continues in the following way. In section 2, the
works related to this research are discussed. Next, in sec-
tion 3, a description of the implementation of SoundFinger-
printing is given, along with a description of its configurable
parameters and possible strengths and weaknesses. After that,
the evaluation methodology is described in section 4. This
section contains a summary of the benchmark and a descrip-
tion of the evaluation setup. The results of this evaluation are
shown in section 5, followed by a discussion of the limita-
tions of the evaluation in section 6. The paper continues with
a section on the reproducibility of this research in section 7,
after which it is concluded by section 8, a section containing
the conclusion and future work directions.

2 Related works

There is currently no known research on the application of
audio fingerprinting for music identification in movies. How-
ever, there is research showing promising results in similarly
challenging environments.

In one of the papers on which the implementation of
SoundFingerprinting is based, Haitsma and Kalker [3] de-
scribe an algorithm robust to various kind of signal degra-
dations. It was tested on four short audio excerpts (stereo,
44.1kHz, and 16-bit samples), which underwent signal degra-
dations, including band-pass filtering, amplitude compres-
sion, equalisation and tempo-modification. For all above-
mentioned degradations, error rates in the order of 15% were
achieved. This shows that there are audio fingerprinting im-
plementations robust to the various mixing and mastering
techniques applied to movie audio. However, this research
did not examine any types of interfering noise.

The most well known audio fingerprinting implementation
is Shazam[4]. Shazam is a commercially deployed flexible
audio search engine, resistant to noise and distortion. It is
able to correctly identify tracks under the presence of voices,
traffic, dropout, and even other music. Their algorithm was
tested against synthesised data generated by layering a noise
sample of a noisy pub over excerpts of 15, 10, and 5 seconds
of length taken from tracks in the database. The noise sample
was subsequently layered onto the track at specific signal-to-
noise ratios. Their algorithm achieved a 50% identification
rate for 15, 10, and 5-second samples at approximately -9, -6,
and -3 dB SNR, respectively. For SNRs above 0, the identi-
fication rate was higher than 80%. The audio sampling and

processing was carried out using 8KHz, mono, 16-bit sam-
ples. Furthermore, for a database of about 20 thousand tracks
implemented on a PC, the average search time was on the or-
der of 5 to 500 milliseconds. While the Shazam algorithm
showed high identification rates for short, noise-layered sam-
ples, it has only been evaluated on a single sample of a noisy
pub. In movies, there is a vast range of types of noise that
could pose problems for identification. Each type of noise
has a different waveform, indicating the possibility that some
types of noise could be more problematic for identification
than others.

3 SoundFingerprinting

SoundFingerprinting is an open-source C# audio finger-
printing implementation based on a paper written by Baluja
et al. [6]. This paper introduces a novel method for audio
identification, which uses computer-vision techniques and
large-scale-data-stream processing algorithms to create
compact fingerprints of audio data that can be efficiently
matched. This section contains a summary of the algorithm,
its possible strengths and weaknesses, and its configurable
parameters. A complete description of the workings of
SoundFingerprinting can be found on CodeProject [7].

In the first step of the algorithm, the input signal is pre-
processed. The sampling rate most commonly used in digital
audio is 44.1 kHz, which is more than twice the frequency
that humans are able to hear (20 Hz - 20Khz). This is neces-
sary, as the Nyquist-Shannon sampling theorem [8] states that
perfect reconstruction of a signal is only possible when the
sample rate is greater than twice the maximum frequency of
the signal being sampled. However, in audio fingerprinting,
we are not interested in perfectly recreating the signal but in
capturing what is most characterizing. Instead, the input sig-
nal is downsampled to 5512Hz, reducing the size of the input
significantly while focusing on the frequencies most relevant
to the human auditory system [3]. Additionally, before any
other processing steps, the audio is converted to mono and
Pulse-code modulation (PCM) format.

To further process the audio input, a method is followed
that has been found to work well in previous audio finger-
printing studies [3]. The signal is split up into 371 ms long
frames, taken every 11.6 ms. The Fast Fourier Transform
(FFT) is applied for each frame, transforming the signal from
the time domain into the frequency domain. This is the bot-
tleneck of the entire algorithm; the FFT runs in O(n log(n)).
The result, a spectrogram, is then cut such that the 318 Hz-
2000 Hz domain is obtained. This frequency range is a con-
figurable parameter; we elaborate more on this in subsec-
tion 3.2. To further minimize the output dimensionality, the
specified range is encoded in 32 logarithmically spaced bins.
The resulting spectrograms are then combined to form a fre-
quency spectrogram of the entire audio input. From this spec-
trogram, ‘spectral images’ are extracted, each denoting the
distribution of frequencies of 1.48 seconds of the audio input.

These spectral images are then further reduced by apply-
ing Standard Haar-wavelet decomposition, a technique that
has shown great results in image retrieval [9]. For each of



the spectral images, a wavelet signature is computed. This
wavelet signature is a set of wavelets in which each wavelet
has a value corresponding to the energy observed in a particu-
lar frequency band of the spectral image. Out of this complete
set of wavelets, only the ones that most characterize the song,
i.e. have the highest magnitude, are kept. By selecting only
the wavelets with the highest magnitude, small changes in the
sound (i.e. small bit of noise, echo, other degradations) will
not affect the wavelet-image. In SoundFingerprinting, the top
200 wavelets are kept, following the value suggested in [6].
The previous stage of processing produces intermediate
fingerprints that are 8192 bits long. This length is further
reduced by Min-Hashing, a “forgiving hashing” method
that negates small differences. The method is based on the
algorithms described in [10] and [11]. More information
on these methods can be found in the respective papers, as
discussing this is beyond the scope of this paper. Finally,
using Locality Sensitive Hashing, the Min-Hash signature
for each fingerprint is spread over 25 hash tables, which
are used for lookup. When a query sub-fingerprint has
more than v (a configurable parameter) matches with the
Min-Hash signatures of a particular sub-fingerprint in the
hash tables, the two sub-fingerprints are compared. Their
overall similarity then results in the confidence of the match.

When the algorithm is presented with unknown audio input,
the input undergoes the complete fingerprinting process such
that its fingerprints can be matched to those stored in the
database.

3.1 Possible strengths and weaknesses

An important consequence of the slicing method described
in [3] is that the spectrogram of the entire input varies slowly
in time. The features of the audio fragment represented in
each fingerprint overlap with the features of the previous and
the next fragment, providing matching robustness to position
uncertainty in time. Next to that, retaining only the most
characterizing wavelets causes the framework to ignore small
changes in the audio, resulting in robustness to noise and
degradations. However, when the interfering noise is louder
than the song, the most characterizing wavelets might be pop-
ulated with dominant frequencies present in the noise sample.

Furthermore, the developer of SoundFingerprinting has
specified the following possible causes for matching failures
on his blog [12]: aliasing, clipping, tempo changes and spe-
cific frequency ranges. Only the last two are described in this
section, as aliasing typically only occurs when recording au-
dio with low-quality devices and clipping is not specifically
evaluated in this research.

The Tempo of a piece of music determines the speed at
which it is played and is measured in beats per minute (BPM).
Tempo changes are often used for remixing songs to adhere
to a particular style of music. The developer states: tempo
change shortens the distance between frequency peaks. The
initial song will not be recognized when querying with a
remixed version”. This, however, appears to be a bold state-
ment, as the overlap between fingerprints might be able to
compensate for this change in distance between frequency
peaks.

Finally, as mentioned in the framework description,
SoundFingerprinting uses specific frequency ranges for cre-
ating audio fingerprints. When songs that are stored in the
database contain characterizing frequencies above or below
this frequency range, the framework will not capture them
in the fingerprint, which can, in turn, decrease the chance of
recognition. When dealing with noise, however, this specific
frequency range can be both a strength and a weakness of the
framework. Noise with dominant frequencies outside of this
range will have little impact, whereas noise that falls within
this range will have a larger impact.

3.2 Configurable parameters

SoundFingerprinting has three built-in configurations for fin-
gerprinting and querying: LowLatency, Default and HighPre-
cision. The first configuration, LowLatency, is intended for
real-time radio-stream monitoring and thus will not be evalu-
ated for music identification in movies. The other two, how-
ever, should be able to handle audio accompanied with noise
to a certain degree. The developer recommends the usage of
the HighPrecision configuration for queries containing am-
bient noise, thus making HighPrecision the most appealing
configuration for this use case.

The main difference between the two configurations is the
frequency range they consider. For the Default configuration,
the specified frequency range is 318 Hz-2000 Hz, whereas the
HighPrecision configuration only considers the range 1200
Hz-2500 Hz. To examine the effect of frequency range filter-
ing, both configurations of the framework will be evaluated.
Another difference is the minimum amount of matches in the
hash tables needed for a stored sub-fingerprint to be compared
to a query sub-fingerprint. For Default, this is 4, for HighPre-
cision, this is 3. Due to the time limitations imposed by this
project and the time it takes to run a complete evaluation, the
two parameters are not evaluated separately. Instead, the two
configurations are run ‘as a whole’.

The final thing to consider is the match confidence thresh-
old. For each query, the framework returns a list of possible
matches together with a confidence value ranging between 0
and 1, denoting the probability of the match being correct.
If no confidence threshold is specified, the framework will
always try to return a match, even if its confidence is only
slightly higher than 0. The developer of SoundFingerprint-
ing has indicated that any potential match with a confidence
above 0.15 is most probably a true positive. However, as mu-
sic identification in movies poses a more complex challenge
than for example radio-stream monitoring, it might be the
case that the confidence the framework has in exact matches
will be lower. To examine the suitability of this threshold for
this field, the framework will be evaluated for various confi-
dence thresholds.

4 Methodology

For the evaluation of the framework, a data set of 49 movies,
including the original soundtrack, has been made available by
Muziekweb!, a Dutch music library. Next to that, 500 addi-

'"Muziekweb - The music
https://www.muziekweb.nl/en/

library of the Netherlands



tional random songs were supplied. The supplier has aimed to
diversify this data set to the best of their extent. To get a first
indication of the framework’s performance on actual movie
clips, six movies from different genres were manually split
up into query clips. In doing so, we aimed to capture seg-
ments of the movie in which some kind of noise accompanies
the original soundtrack. The results of this tentative evalua-
tion were far from ideal: SoundFingerprinting was only able
to identify 5% of the clips, consisting only of cases where
the music was accompanied by very little noise. This called
for a different, more controlled approach: synthesising data
in a modular fashion in order to isolate problematic areas.
This section contains a short description of the benchmark
and the method to answer the research questions. A complete
description of the benchmark can be found in the paper de-
scribing the benchmark [5].

4.1 Benchmark

4.1.1 Evaluation data synthesis

Based on the frequently recurring noise categories of the
manually labelled movies, a selection of movie noise cate-
gories has been put together. Given the limited time, spatial
and computational availability for this project, this selection
was limited to 15 categories. The selection of noise cate-
gories can be found in Table 2. For each noise category,
three different audio files of isolated noise were obtained
from Freesound” and layered on top of the original sound-
track at multiple signal-to-noise ratios (SNRs). The selection
of SNRs was limited to -6, 0 and 6 dB, indicating cases where
the noise is twice as loud as the soundtrack, equally loud
and half as loud, respectively. Next to categories of noise,
the evaluation data set also contains pitch-shifted and tempo-
changed versions of tracks. The data synthesis resulted in a
total of 13,320 noise-layered soundtracks and 784 structurally
altered soundtracks.

4.1.2 Criteria
The criteria by which the noise categories will be evaluated
are robustness, reliability, and search speed.

Robustness, the framework’s ability to identify tracks even
when the signal is degraded, is measured by the metric
commonly used in information retrieval: recall.

Reliability, the extent to which an output match can be
trusted to be a correct match, is measured by precision, also
commonly used in information retrieval.

Search speed is important to evaluate the scalability of the
framework. In audio fingerprinting, there is a trade-off be-
tween fingerprint size and the search speed of the framework.
A larger fingerprint size possibly improves the identification
rate but has the drawback of a lower search speed. In a real-
life use case, fingerprint databases often contain the finger-
prints of tens of thousands of tracks. Search speed and scala-
bility will therefore be measured by average query time with
respects to the amount of tracks stored in the database.

2Freesound - a collaborative database of Creative Commons Li-
censed sounds. https://freesound.org/

4.2 Evaluation setup

4.2.1 Database population

Before any querying can be done, the database needs to be
populated with fingerprints of tracks. As mentioned in sub-
subsection 4.1.1, only two random songs per movie (98 in
total) were used to generate test data. To most accurately re-
flect a real-life use case, the complete soundtrack of every
movie in the data set together with 500 additional random
songs were used to populate the database with, resulting in a
total of 1407 stored tracks.

4.2.2 Experiments

Once the database is populated with fingerprints, the frame-
work is ready to be evaluated according to the metrics speci-
fied in the benchmark. Each category is evaluated separately
to evaluate the performance of the framework in a modular
fashion. Throughout the evaluation, only the abbreviations
of noise categories are used. Their definitions can be found
in Table 2. This evaluation is done for both the Default- and
HighPrecision configuration in order to determine the most
suitable configuration.

First, as an initial overview of the framework’s ability to
identify audio accompanied with noise, the framework is
evaluated on noise categories without a specified confidence
threshold. The results of this are presented in subsection 5.1.

To examine the difference in the performance of both con-
figurations in more detail, a performance analysis based on
dominant frequencies in the noise samples is presented in
subsection 5.2. Each sample was inspected by plotting its fre-
quency spectrogram using the open-source audio editor Au-
dacity?. In this analysis, the goal was to find the frequency
range that would influence the characteristic frequencies ex-
tracted by the fingerprinting process the most. As SoundFin-
gerprinting essentially looks for local frequency peaks, the
frequencies with the highest energy would have the most in-
fluence. Therefore, the top 20% of frequency spectrogram
was taken as the most dominant frequency range. In the fin-
gerprinting process, frequencies are stored in logarithmically
spaced bins. To reflect this behaviour, a small spectrogram
window size (2048) was opted for. For categories in which
the separate noise samples had different dominant frequency
ranges, the average range was taken.

Next, in subsection 5.3, an analysis of the framework’s per-
formance for different confidence thresholds is presented. As
discussed in subsection 3.2, the confidence threshold speci-
fied by the developer of SoundFingerprinting will likely not
be suitable for this application. To evaluate the performance
of the framework according to different thresholds, each noise
category has been evaluated according to the metrics for
thresholds between 0.01 and 0.15, in steps of 0.01. Based on
this analysis, a new confidence threshold is suggested, which
is then used to show the overall robustness and reliability of
the framework on all noise categories.

This is followed by an evaluation on tempo-changed
and pitch-shifted versions of soundtracks in subsection 5.4.
After this, the evaluation is concluded with an analysis
editor

3Audacity - a free, audio

https://www.audacityteam.org/

open-source



of the search speed and scalability of the framework in
subsection 5.5, following the method described in [5].

4.2.3 Hardware specifications

For the experiments presented in this research, a computer
was used with the following specifications: a 3.60 GHz 6-
Core Processor, with 16GB of DDR4-3200 RAM, run on
Windows 10 Pro. The data was stored on an external HDD.
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Figure 1: Recall for each combination of noise category and SNR
of the benchmark, without a specified match confidence threshold

5 Results

5.1 Initial performance on noise categories

An initial overview of the framework’s ability to identify de-
graded audio is shown in Figure 1. For these results, no con-
fidence threshold was enforced.

In the case of SNR 6, where the soundtrack is twice as loud
as the noise, both configurations perform well, especially the
Default configuration, having above 0.9 recall for almost all
noise categories. The recall of the HighPrecision configu-
ration for SNR 6 already indicates some problematic areas;

categories with a recall of less than 0.85 for SNR 6 also show
significant performance drops for SNRs 0 and -6.

The SNR 0 case already proves a more difficult challenge.
Whereas the Default configuration mostly stays above 0.65
recall per category, the HighPrecision configuration already
shows multiple categories with recall below 0.5. In the final
case of SNR -6, where the noise is twice as loud as the sound-
track, both configurations show significant drops in perfor-
mance, rendering some categories completely unidentifiable.

5.2 Performance analysis based on dominant
frequencies

For all but two exceptions, AD and NWR, both configurations
handle the Ambient and Nature noise categories well. All
other Ambient and Nature noise categories show dominant
frequencies in the general range of 1 Hz - 500 Hz, therefore
falling mostly outside of the range of the Default configura-
tion and completely outside of HighPrecision’s range. How-
ever, HighPrecision still shows slightly inferior performance
for these categories compared to the Default configuration.

Two cases in which the frequency range of the HighPre-
cision appears to result in a better performance, are AD and
SFT. The dominant frequencies of both categories fall within
1 Hz-750 Hz and 1 Hz-1000 Hz respectively. The results in
Figure 1 show that, especially for SNR -6, the Default con-
figuration is less successful in identifying both categories.

However, there are also cases in which this different fre-
quency range has less of an effect. The dominant frequencies
of categories SCH (500 Hz-1600 Hz) and SFS (400 Hz-1700
Hz) overlap more with the Default frequency range than the
HighPrecision frequency range, yet no notable difference is
seen in the performance.

Furthermore, there are several categories which pose an
equal challenge to both configurations when considering their
dominant frequencies. Categories NWR, SFW, TG and TW
all have a very wide range of dominant frequencies, with most
noise samples spanning the entire range of both configura-
tions. In these cases, the Default configuration outperforms
the HighPrecision configuration.

5.3 Establishing a new confidence threshold

To examine the performance of the framework on negative
SNRs in more detail, the experiments from here on will addi-
tionally include SNRs -2 and -4.

If we look at the trend of the average recall and precision
across all categories for various thresholds in Figure 2 and
Figure 3, it becomes evident that the confidence threshold of
0.15 is not optimal for music identification in movies. At
thresholds 0.04 and higher, recall only decreases, while pre-
cision roughly stays the same.

If one were to opt for a maximally robust framework, not
using a threshold at all would be the best strategy. On the
other hand, if the output of your framework cannot be trusted,
i.e. the framework is not reliable, it is debatable whether the
output of your framework is actually useful.

We do not know the exact priorities one might have when
using this framework for music identification in movies. One
might specifically want a recall value of above 80%, whereas
others might value the reliability of their framework more,



thus prioritizing precision. Therefore, simply multiplying the
two metric values for each threshold and picking the high-
est value would not be generally applicable. Instead, we aim
to suggest a threshold of which we can say that performance
only deteriorates at higher thresholds. However, when the
confidence threshold increases, recall strictly decreases and
precision increases (with the exception of some higher thresh-
olds). Therefore, in picking a threshold, it is assumed that a
change in a metric score of less than 0.01 is negligible. For
both configurations, according to this assumption, the perfor-
mance only decreases after threshold 0.05. A final perfor-
mance overview of both configurations with this threshold is
given in Figure 6.
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Figure 3: Trend of recall and precision of the HighPrecision across
different confidence thresholds configuration

5.4 Structural alterations

In Figure 4 and Figure 5, the performance of the framework
against pitch-shifted and tempo-changed audio can be found.
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Figure 4: Recall on pitch-shifted audio
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Figure 5: Recall on tempo-changed audio

Pitch-shifted audio appears to a weakness of the framework.
Both configurations fail to identify almost all queries.

Remarkably, tempo-changed audio, which was one of the
weaknesses indicated by the developer, shows a high value
for recall. Based on good performance for the tempo-change
intensities specified in the benchmark, additional, more se-
vere tempo-changes were examined. There is a notable dif-
ference between the two configurations. The considered fre-
quency ranges have no effect on the performance, as the fre-
quencies in tempo-changed audio stay the same. Instead, it
appears that the lower minimum of hash table votes of the
HighPrecision configuration allows for the identification of
severe tempo-changes.

5.5 Search speed and scalability

The results of the search speed analysis of SoundFingerprint-
ing can be found in the table below.

Total tracks | Default | HighPrecision

10 95 117
98 95 133
196 154 169
980 470 420

Table 1: Average query time (ms) of the Default and HighPrecision
configuration for various database sizes

6 Discussion

The graphs displayed in Figure 6 show the performance of
both configurations of the framework on identifying noise-
layered audio. On average, the Default configuration shows
the best robustness to noise for SNRs 0 and 6. On the
other hand, HighPrecision is, on average, more robust to
noise at negative SNRs, thus making it more suitable for this
field. With the newly suggested match confidence threshold
of 0.05, the average identification rate of both configurations
increased by 0.13 compared to the threshold suggested by the
developer of SoundFingerprinting.

In the performance analysis based on dominant frequen-
cies in the noise samples, there appeared to be a correlation
between the performance of a configuration and the domi-
nant frequencies present in the noise sample. This indicates
that there is, perhaps, an ideal fingerprinting frequency range
for music identification in movies. However, the problem
space covered by the categories contained in the benchmark
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Figure 6: Recall (left) and precision (right) for all noise categories and SNRs, calculated with a confidence threshold of 0.05.

was limited. There are many more types of noise present in
movies, all possible of hindering identification. Therefore, in
order to establish an ideal frequency range, the categories of
noise should be expanded.

Furthermore, the framework showed to be robust to tempo-
changes. This is likely caused by the windowing method
of SoundFingerprinting, following the method described by
Haitsma and Kalker [3]. However, as no other windowing
settings were evaluated, we cannot say this for sure. Next to
that, it appears that the ‘minimum hash table votes’, as de-
scribed in subsection 3.2, also play a role in this robustness.
This is also not examined further in this paper, thus indicating
a direction for future work. The framework was also evalu-
ated on pitch-shifted soundtracks, but the framework showed
to be unfit for this task. To further examine the robustness of
SoundFingerprinting to signal degradations, its performance
should be evaluated on additional mixing and mastering tech-
niques.

Overall, SoundFingerprinting showed unsatisfactory per-
formance in many evaluation categories of the benchmark.
Considering that, in movies, the final mix consists of a
combination of soundtrack, noise and structural alterations,
SoundFingerprinting appears to be unsuitable for music iden-
tification in movies. However, one could still further evaluate
this suitability by incorporating combinations of noise and
structural alterations in the evaluation.

Something worth mentioning is that during an analysis of
false matches, we discovered a duplicate track in the song
database stored under different names. This caused false pos-
itives to emerge, even though the matched songs were the
same. Due to the time constraints of the project and the time

it takes to run a complete evaluation, this problem was not
solved. This means that the calculated metric values are not
100% accurate.

7 Responsible Research

A crucial part of scientific research is ensuring the repro-
ducibility of the research such that its correctness can be ver-
ified and that other researchers can build upon this research.

This, however, poses a problem when the data used in the
research is copyrighted. This is the case for the collection of
movies and their original soundtrack supplied by Muziekweb.
As we could not make this collection public, we opted for
listing the movies contained in the data set in a spreadsheet.
The noise samples, on the other hand, are all licensed under
the Creative Commons license. All necessary attributions for
these samples were collected in another spreadsheet. In the
layering process, only a small fragment of the noise sample
looped over the entire song. To allow other researchers to
use the same fragments of the samples for data synthesis, the
complete set of noise sample fragments has been made avail-
able.

All of the aforementioned reproducibility aspects, along
with the scripts that were used to generate the evaluation data,
can be found on GitLab . If one were to have a collection of
movies and their associated soundtrack, then the noise layer-

“The research group Gitlab repository  containing
all aspects regarding reproduction of the benchmark
https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-5/rp-
group-5-common



ing, pitch-shifting and tempo-changing scripts could be used
to generate evaluation data in an identical way.

Finally, the code used to run the evaluation of SoundFin-
gerprinting can be found on the GitLab ° repository specific
to this paper.

8 Conclusions and Future Work

In this paper, the performance of the audio fingerprinting
framework SoundFingerprinting has been evaluated accord-
ing to a benchmark for music identification in movies. The
framework was evaluated on actual movie clips and noise-
layered, tempo-changed and pitch-shifted version of movie
soundtracks. The framework was unable to identify actual
movie clips and showed varying performance for the altered
versions of movie soundtracks. The framework was evaluated
on two configurations, Default and HighPrecision, of which
HighPrecision showed to be most suitable for this field.
Furthermore, this evaluation concluded that the confidence
threshold suggested by the developer of SoundFingerprinting
was not suitable for this use case, after which a new threshold
was suggested. However, even with this more suitable
threshold, some categories of evaluation data rendered the
framework unable to identify the underlying soundtrack.
This evaluation focused on identifying problematic areas
for identification, evaluating each category of noise and
structural alteration separately. In movies, however, the final
mix consists of a combination of music, interfering noise and
structural alterations. Considering that SoundFingerprinting
already showed unsatisfactory performance in separate
categories, the current implementation of the framework
appears to be unsuitable for music identification in movies.

To further evaluate the suitability of SoundFingerprinting for
music identification in movies, the evaluation data set should
be expanded. To widen the search space of the evaluation,
additional noise categories and mixing and mastering tech-
niques found to be recurring in movies should be evaluated.
Next to that, the evaluation data did not contain combina-
tions of noise and/or structural alterations, which would more
accurately represent actual movie data. Finally, other fre-
quency ranges, fingerprint windowing settings and the *mini-
mum hash table votes’ could be explored to find a configura-
tion more suitable for this field.
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Appendix

Category | Description Noise code
Ambient St.re.et noiges AS
Dining noises AD
Rain NR
Nature Th.under' NT
Wind (air) NA
Water (river) NWR
Male talking SMT
Female talking SFT
Male shouting SMS
Speech Female shouting SFS
Male whispering SMW
Female whispering | SFW
Cheering SCH
Terrain Gravel noisqs TG
Wood creaking ™

Table 2: Noise categories contained in the benchmark.



	Introduction
	Related works
	SoundFingerprinting
	Possible strengths and weaknesses
	Configurable parameters

	Methodology
	Benchmark
	Evaluation data synthesis
	Criteria

	Evaluation setup
	Database population
	Experiments
	Hardware specifications


	Results
	Initial performance on noise categories
	Performance analysis based on dominant frequencies
	Establishing a new confidence threshold
	Structural alterations
	Search speed and scalability

	Discussion
	Responsible Research
	Conclusions and Future Work
	Appendix

