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Abstract

Emulsions and foams are commonly found in products made by industries ranging from those
associated with food and pharmaceuticals to those involved in selling personal care products.
This work is motivated by the need for accurate models of their mechanics, which can then be
used for efficient processing.

They can be thought of as soft repulsive spheres that can overlap with one another to a
certain extent, along with a weakly attractive potential between the spheres. We study such
systems in the context of the jamming transition - a transition seen in disordered systems
from a flowing state to one where they jam and develop rigidity. The canonical model for
the jamming transition is one of soft, repulsive and frictionless spheres which describe many
common physical systems. An attractive tail is added to the repulsive potential used in this
canonical model, in order to describe systems like emulsions and foams.

We compare the linear response of emulsions and foams with that of the canonical model.
Recent studies have shown for the canonical model that when we impose a quasi-static shear
strain at the boundaries of disordered systems, the linear elastic regime survives for a small
window close to the beginning of the straining action. It gives way to softening in the linear
elastic regime, associated with the beginning of a nonlinear response regime. We investigate
how this window leading to the non linear response changes for emulsions and foams. The
predictions obtained for softening, from ideas that derive from linear response in the jamming
transition and by imposing a quasi-static shear strain is compared for both emulsions and the
canonical model.
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1
Jamming of repulsive particles

1.1. Motivation for the present work
Glass has a wide variety of uses in modern society. From art to industry, it is an ubiquitous
material. What we lack though, is the knowledge of the physics that governs its formation
and an understanding of its true nature. While glass behaves as a solid, as is experienced by
all of us in our daily lives, its internal disordered structure is more reminiscent of a liquid. In
an industrial society that prides itself with using scientific principles to guide the production
of goods, research on the nature of glass could have profound real world consequences for
industries.

With their now famous paper O’Hern et al. [14], suggested a way forward for to understand
the nature of glass. In the process they also ended up trying to link two particularly intriguing
questions in separate branches of physics - how glass transition happens in solid state physics,
and what is the nature of granular materials in statistical physics. The gist of their idea
behind linking these two areas of physics, was that one could argue that in both these systems
there is a transition from a flowing state to one that was stuck or jammed. With the benefit
of hindsight, we know that for glass formation this scenario isn’t generally applicable [11] ,
but this landmark paper has lead to a rapidly growing branch in soft matter physics called
jamming, that has wide-spread implications for understanding colloids, granular matter and
emulsions.

Our focus is on systems like emulsions and foams in which you have one or more liquids
dispersed in another fluid that acts as the dispersion medium. These can be modelled as
weakly attractive collection of soft, frictionless particles as opposed to the usual model used
in jamming, i.e. soft, frictionless particles. We shall assume henceforth, that the collection of
particles dealt with in this document are frictionless. We shall go through the most important
results from jamming for soft particles in chapter 1 . Then, we will introduce the model
for weakly attractive, soft particles in chapter 2. We study the linear response obtained by
perturbing the position of particles, and by introducing a shear degree of freedom for the
confining box of the particles in chapter 3. The presence of attraction in weakly attractive
particles and its effect on linear response is studied in chapters 4 and 5. Finally, we study
the nonlinear response of finite, quasi-statically shear straining packings that have weakly
attractive particles in chapter 6.

1.2. Introduction
The collection of particles that we were discussing in the previous section has a unifying
property. They happen to be disordered, as opposed to systems like crystals, which have
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2 1. Jamming of repulsive particles

 

  𝑟𝑖𝑗

𝑅𝑖 𝑅𝑗

Figure 1.1: Particles 𝑖 and 𝑗, with radii 𝑅𝑖 and 𝑅𝑗, respectively, at a distance of 𝑟𝑖𝑗 from each other. This is
representative of a contact in a packing.

structures that repeat themselves at regular intervals. We can therefore expect that disordered
systems will have different properties and behaviour as compared to ordered systems [18].

In physics, we come across many systems that could be considered to be liquid because
theyflow; but under just the right conditions, they jam and behave as a solid. For example, it
is observed that low viscosity liquids, which could be considered to be a collection of disordered
molecules, undergo a transition to glass at low temperatures. More commonly, we know from
experience that ketchup in a bottle sometimes requires the bottle to be shaken for it to flow
freely. We are essentially applying a shear stress on the bottle in order to make ketchup flow.
Clearly temperature, and the stress applied on such systems appear to affect their transition
from a state in which they flow to a state in which they jam.

A new jamming phase diagram was introduced by Liu and Nagel [7], that took into consid-
eration the temperature, applied stress and the volume fraction. At the point where 𝑇 = 0 and
zero applied shear stress, point 𝐽 , the transition between jammed and unjammed is sharply
defined [13] , and this is the point that is studied by O’Hern et al. [14]. Point 𝐽 is a critical
point, since it governs the behaviour of the jammed/unjammed surface in the phase diagram
[14].

1.3. Model Overview and Assumptions
In this section we’ll introduce the canonical model that is used in literature for studying the
jamming transition. A 2-D box, with periodic boundary conditions is filled with frictionless,
spherical particles, that interact through a short-range, finite potential. There are two types of
particles present in the box. They have their radii in the ratio of 1 : 1.4. They are present in a
50-50 ratio in the box; it is a bi-disperse mixture. The odd radii ratio for the particles is taken
so as to avoid crystallization and thus ensure that there is disorder in the system [14]. Due
to finite size effects, the number of particles matter [5]. Unless stated otherwise, the number
of particles in the box is 1024. This collection of particles will be called a packing. Let us
assume two particles in this box, particles 𝑖 and particle 𝑗, as shown in figure 1.1. The distance
between their centres is represented by 𝑟𝑖𝑗, and the sum of their radii can be expressed by
𝑅𝑖𝑗 = 𝑅𝑖 + 𝑅𝑗. The particles interact because of a potential that exists between them.

If we take an energy scaling factor called 𝜖 into consideration, and think of this potential as
one that derives from Hooke’s law (see figure 1.2), then the potential with which the particles
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𝑉𝑖𝑗

𝑟𝑖𝑗/𝑅𝑖𝑗1

𝜖/2

0
Figure 1.2: The representative illustration of the potential 𝑉𝑖𝑗 that exists between soft, repulsive particles 𝑖

and 𝑗 in a packing

interact can be written as:

𝑉𝑖𝑗 =
⎧{{
⎨{{⎩

𝜖
2 (1 − 𝑟𝑖𝑗

𝑅𝑖𝑗
)

2
, if

𝑟𝑖𝑗
𝑅𝑖𝑗

≤ 1

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1

We are restricted to the situation in which the particles only interact if they overlap with
one another. For convenience, we define a new term 𝛿𝑖𝑗, called the relative overlap between
two particles 𝑖 and 𝑗 :

𝛿𝑖𝑗 = (1 − 𝑟𝑖𝑗
𝑅𝑖𝑗

)

It is a dimensionless quantity, which tells us how much of an overlap exists between two particles
with respect to the case when they simply touch each other.

The potential can be rewritten as:

𝑉𝑖𝑗 =
⎧{
⎨{⎩

𝜖
2𝛿2

𝑖𝑗 , if 𝛿𝑖𝑗 ≥ 0
0 , if 𝛿𝑖𝑗 < 0

(1.1)

Now, to get the force of interaction between the two particles, we simply take the gradient of
the potential that exists between them, and as we shall see this will give us a familiar force
(see figure 1.3) that resembles the one that we get from Hooke’s law:

𝐹𝑖𝑗 = −𝑑𝑉𝑖𝑗
𝑑𝑟𝑖𝑗

(1.2)

𝐹𝑖𝑗 =
⎧{
⎨{⎩

𝜖𝛿𝑖𝑗
𝑅𝑖𝑗

, if 𝛿𝑖𝑗 ≥ 0

0 , if 𝛿𝑖𝑗 < 0
(1.3)

We also get the following expression for the effective spring constant that exits between the
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𝐹𝑖𝑗

𝑟𝑖𝑗/𝑅𝑖𝑗1

𝜖/𝑅𝑖𝑗

0
Figure 1.3: The representative illustration of the force 𝐹𝑖𝑗 between particles 𝑖 and 𝑗

two particles. This is simply the gradient of the force that exists between the two particles:

𝑘𝑖𝑗 = −𝑑𝐹𝑖𝑗
𝑑𝑟𝑖𝑗

(1.4)

= 𝑑2𝑉𝑖𝑗
𝑑𝑟2

𝑖𝑗
(1.5)

𝑘𝑖𝑗 =
⎧{
⎨{⎩

𝜖
𝑅2

𝑖𝑗
, if 𝛿𝑖𝑗 ≥ 0

0 , if 𝛿𝑖𝑗 < 0
(1.6)

Temperature fluctuations at room temperature do not overtly affect the properties of a
granular system [13]. Therefore, the temperature of our systems is taken to be at the thermo-
dynamic limit of 𝑇 = 0 K. The particles are put at random points in the box which means
that the packing is at a temperature 𝑇 = ∞. Initially random states are sampled by looking
at an ensemble of many such packings. The energy of the packings is minimized, using a
conjugate gradient routine, by following the steepest gradient of the potential energy surface
that represents the energy of interactions of all particles. We are quenching all the particles
from their initial random positions to an energy minimum which would represent that they
are at 𝑇 = 0 K.

1.4. Jamming Transition
In this section, we look at how we can characterize the jamming transition. At the onset of this
transition to being jammed, the particles would have to develop a self supporting mechanism.
These particles aren’t bound by anything, so the only way they can make their presence felt
is by ensuring that they have a self-supported mechanism that is based on the interaction
potential of the particles [18]. It is achieved by forming a network of contacts between the
particles. This is shown in figure 1.4. When this happens, we would also notice that the
pressure exerted by this network of particles on the environment around it, becomes non-zero.
Thus a jamming transition, is necessarily a transition from a packing that has non-overlapping
particles, to one that has barely touching particles. We are therefore interested in a marginally
jammed packing, one where particles are just about touching each other, since it leads to
interesting physics. In the next section, the bulk properties that affect the jamming transition
are discussed.
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Figure 1.4: Force network (in blue) for soft, frictionless particles in a packing above the jamming point 𝐽. The
thickness represents the magnitude of the repulsive force between two particles. The particles are given a

certain color according to the number of contacts they have attained - light pink (6 contacts), cyan green (5
contacts), magenta (4 contacts), light blue (3 contacts), orange ( ≤ 2 contacts). The arrows show the

displacement of the particles at a low energy mode (a soft mode). It is interesting to note the non-affine
behaviour of these displacements. This is talked about in chapter 4

Contact Number
A particle will be in contact with another if it barely touches or overlaps with the other particle.
In other words, the relative overlap between the particles, 𝛿𝑖𝑗 ≥ 0. The contact number, which
is denoted by 𝑍 is the average number of such contacts that a particle makes in a packing. So,
by definition [14], it is denoted by :

𝑍 =
∑
𝑖>𝑗

1𝑖𝑗

𝑁
where :

1𝑖𝑗 = {
0 , if 𝛿𝑖𝑗 ≤ 1
1 , if 𝛿𝑖𝑗 > 1

and 𝑁 denotes the total number of particles in a packing.
There is a certain number of contacts that are required to ensure that there is rigidity in

the system. As an example let us take three particles that crowd around a particle. There
can exist an opening for this particle to move away from the others without costing any elastic
energy. This is called a floppy mode [18], and the particle that can move without costing
elastic energy is called a rattler and therefore not contributing to rigidity. This simple example
illustrates why the number of contacts would play a role for rigidity in a system. There can
also be angular requirement for contacts which don’t lead to floppy modes. If four particles
crowd around one particle, but they happen to be within 𝜋 radians, a floppy mode would again
be possible.

So how many contacts would one need to ensure rigidity and no floppy modes ? We know
that all contacts would contribute to a change in elastic energy. This number of these contacts
is 𝑍𝑁/2, the factor of half ensures that we don’t double count the number of contacts. The
degrees of freedom for all particles in the packing is 𝑑𝑁 , where 𝑑 is the number of dimensions
and 𝑁 is the number of particles. We wish to ensure that the terms that contribute to elastic
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energy are over and above the total degrees of freedom to ensure no floppy modes [12]. This
can be thought of in terms of force balance equations. There would be 𝑍𝑁/2 number of force
equations, but there are 𝑑𝑁 possible variables that represent all the 𝑁 particles degress of
freedom. Unless the number of force equations exceed the degrees of freedom, it will always
be possible to come up with a trivial solution for the equations [18]. We wish to avoid this
situation. Therefore, we can say :

𝑍𝑁
2 ≥ 𝑑𝑁
𝑍 ≥ 2𝑑

Since we are interested in frictionless,spherical particles in 2 dimensions, this number comes
out to be 𝑍 ≥ 4 [14]. In literature, when 𝑍 is equal to 2𝑑, it is called the isostatic contact
number, or 𝑍𝑖𝑠𝑜 [14]. This represents the case when the degrees of freedom are exactly equal
to the number of contacts in a packing. Geometrically, it would mean that the particles are
just about touching each other, and that they are marginally jammed. When particles start
overlapping with each other, we find that 𝑍 > 𝑍𝑖𝑠𝑜 in a jammed packing. There may exist
some particles that have 𝑍 ≤ 3 in jammed packings. They are rattlers, as we noted previously.
They do not contribute to a change in elastic energy and that their existence does not in any
way impede the above analysis. They are simply removed from the entire process of calculating
𝑍.

The rise of rigidity due to formation of contacts is essential for a packing to be in a jammed
state [14]. But at the macro-scale, how would we go about measuring its effects ? The first
quantity that comes to mind is to examine the stress tensor for a packing. This will give us a
complete picture of the state of the packing. The derivation is shown in appendix A.

Stress Tensor
The stress tensor for a packing is written as [14] :

𝜎𝛼𝛽 = 1
𝑉 ∑

𝑖>𝑗
𝐹 𝑖𝑗

𝛼 𝑟𝑖𝑗
𝛽 (1.7)

where 𝛼 and 𝛽 represent the coordinate axes for the system, 𝐹 𝑖𝑗
𝛼 , represents the force compo-

nent between 𝑖 and 𝑗 particle in direction 𝛼 and 𝑟𝑖𝑗
𝛽 represents the vector component between

the particles 𝑖 and 𝑗 in the direction 𝛽, and 𝑉 represents the volume of the box (in the 2-D
case it means the area of a box, 𝑉 = 𝐿2, where 𝐿 is the length of the box ).

Pressure
With the stress tensor in hand, we can now measure many other macro-scale quantities. We
start with the pressure 𝑝 [14]. It is simply represented as :

𝑝 =
∑
𝛼

𝜎𝛼𝛼

𝑑 (1.8)

=
∑
𝛼

𝜎𝛼𝛼

2 (1.9)

where 𝜎 is the stress tensor, and 𝑑 represents the dimension of the packing. In our 2-D case,
this is 𝑑 = 2. The rise of rigidity in our system, would require that there is a jump in the
pressure that the jammed system exerts, from zero to a non-zero value.
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Packing Fraction
The volume of space occupied by the particles in a packing as a fraction of the total volume
is defined as the packing fraction for a packing. The packing fraction is represented by 𝜙 in
literature [14], and can be written as :

𝜙 =
∑
𝑖

𝑉𝑖

𝐿𝑑

=
∑
𝑖

𝜋𝑅2
𝑖

𝐿2

where 𝑖 is the 𝑖𝑡ℎ particle, 𝑉𝑖 is the volume of the 𝑖𝑡ℎ particle which in a 2-D case means its
area, 𝑑 is the dimension of the packing, 𝐿𝑑 is the volume of the box, which in a 2-D case is 𝐿2.

For each packing there is a critical packing fraction at which the packing is jammed, and
it is denoted by 𝜙𝑐. At this critical volume fraction, the average number of contacts become
𝑍𝑖𝑠𝑜, and the contacts ensure that there is rigidity, and that the particles now exert a non-
zero pressure. We note, however that the critical volume fraction can be slightly different for
every packing, since for every packing at the jamming transition, we sample one of the many
available energy minimums that would lead to a marginally jammed packing. It isn’t therefore
uniquely representative of the jammed state, unlike pressure, which will make a sudden jump
from zero to non-zero at the jamming transition for every marginally jammed packing.

Bulk Modulus
Now that we have pressure and volume fraction defined, we can formalize the definition of
the bulk modulus for our system. Bulk modulus is simply the measure of how resistant is the
packing to a change in volume or a change in density. The volume fraction 𝜙 is a good measure
for a change in volume for our system.This can be written as [14] :

𝐵 = −𝜙 𝑑𝑝
𝑑𝜙

As the distance from 𝜙𝑐 increases towards the jammed state, the bulk modulus of the packing
increases as well.

Shear Modulus
The shear modulus measures the resistance of a packing when we apply a shear strain at its
boundaries. It can be noted down as :

𝐺 = 𝑑𝜎𝑥𝑦
𝑑𝛾

where 𝜎𝑥𝑦 is the 𝑥𝑦 component of the stress tensor, and 𝛾 is the shear strain in the 𝑥 direction,
and with a gradient in the 𝑦 direction.

1.5. Scaling Arguments
As noted earlier, the jamming point is a critical point. Scaling arguments provide us with
critical exponents that can describe the behaviour of marginally jammed systems at this critical
point. We shall discuss the scaling of the quantities discussed previously as a distance to
jamming. As we have already noted, distance to jamming can either be measured by pressure,
i.e. when the pressure of a packing becomes non-zero it can be considered to be jammed.
Or, we can take 𝜙 − 𝜙𝑐 as our criterion for measuring the distance to jamming, with the
understanding that 𝜙𝑐 can be different for individual packings.
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Pressure
It has been found that in the case of 2-D bi-disperse mixtures [14] :

𝑝 ∼ 𝜙 − 𝜙𝑐 (1.10)
𝑝 ∼ Δ𝜙 (1.11)

This can be understood from the fact that the pressure is proportional to force which we get
from the second derivative of the potential. Hence 𝑝 ∼ 𝐹 . In addition, we also know that the
quantity 𝜙 − 𝜙𝑐 represents the overlap between particles (remember that 𝜙𝑐 is the isostatic
point), and since the force is directly proportional to the overlap, we can say that 𝜙 − 𝜙𝑐 ∼ 𝐹 .

Contact Number
At the jamming transition, it has been found to have the following scaling [14, 18] :

𝑍 − 𝑍𝑐 ∼ (𝜙 − 𝜙𝑐)1/2

Δ𝑍 ∼ (Δ𝜙)1/2

The contact number jumps discontinuously to the isostatic value at the critical packing
fraction. It has been found that this scaling is independent of the polydispersity of the system
[14]. We assume a mono-disperse system, for simplification, with particles of radius 1, for
which it has been found that the radial distribution function [16, 18] :

𝑔(𝑟) ∼ 1√
𝑟 − 1

diverges at the jamming transition, i.e. at 𝑟 = 1, since the radii of particles is 1. This may
be understood as particles just about touching each other at the isostatic point, and therefore
crowding about and producing a delta function for 𝑔(𝑟) at 𝑟 → 1. The area under the curve of
𝑔(𝑟) will correspond to the number of contacts that are present in the packing. At the isostatic
point this would be then equal to 𝑁𝑑/2 contacts. Now, if we try to compress this packing,
we go from a typical particle overlap of 0 at the isostatic point to some value which we call as
𝛿. The marginal change in the typical contact number can be expressed in terms of the radial
distribution function[16, 18] :

Δ𝑍 ∼
1+𝛿

∫
1

1√
𝑟 − 1𝑑𝑟

Δ𝑍 ∼
√

𝛿

This gives us a scaling for the overlap length scale from the previous discussion on 𝑍. This is
written as 𝛿 ∼ Δ𝜙.

Bulk Modulus
As has been discussed above the bulk modulus is found from the derivative of the pressure
with respect to the packing fraction, and it has been shown that the bulk modulus changes in
an affine manner as a function of the distance to the jamming transition for 2-D, bi-disperse
packings [14] :

𝐵 ∼ (𝜙 − 𝜙𝑐)0
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Shear Modulus
It has been shown that the shear modulus does not follow the scaling that we would predict
from an affine assumption [14]. We shall discuss the non affine nature of disordered systems in
detail in chapter 4. The shear modulus of marginally jammed packings follows the following
scaling :

𝐺 ∼ (𝜙 − 𝜙𝑐)1/2

Note that the elastic moduli and pressure shown here are scale as power laws with the
distance to the jamming point 𝜙𝑐, which is why it has been described as a critical point
[14]. The discontinuous jump in the contact number at the jamming point and the continuous
increase in pressure from zero at the jamming point 𝐽 means that the jamming transition
has characteristics of both first and second order transitions [8, 14]. We now have the basic
quantities that describe and govern behaviour of packings at the jamming transition. They
will help us in understanding the results of this report. The physical quantities discussed here
have units that derive from the effective stiffness of a contact, which for our potential scales
with 𝜖, the energy scaling factor [14, 18] if we consider the units for the radii as one. In the
next chapter, we shall discuss the model for weakly attractive particles.





2
Weakly Attractive Particles

2.1. A Model for Particles with Attraction
As we discussed in section 1.1, the model for this work is for systems like emulsions and foams.
We shall extend the model for soft, frictionless particles that we had used in chapter 1, so as to
hold for our system of interest. We use emulsions as an example to understand the origin of the
weakly attractive forces between particles that exist in foams and emulsions. Emulsions are
formed when one liquid is dispersed in another liquid. For example, let us take oil droplets that
are dispersed in water. As they are immiscible liquids, this emulsion also needs a surfactant
that keeps the liquids mixed with each other. Surfactants usually have long carbon chains
as tails that are hydrophobic, and have a head that is hydrophilic. The hydrophobic part
dissolves in oil, and the hydrophilic part dissolves in water. Surfactants increase the stability
of emulsions, by effectively decreasing the surface tension between the constituent dispersed
liquids, and preventing droplet coalescence. This is shown in figure 2.1.

We can think of the dispersed oil droplets in water as soft spheres. In addition, we now need
to model the consequence of adding the surfactant. The addition of the surfactant would mean
that the oil droplets have a weakly attractive force around them, due to depletion interaction.
We extend this idea of a weakly attractive force around soft spheres to the model we had used
previously for repulsive soft spheres. We can do this by imagining a thin shell around a soft
sphere. This shell is the volume within which the attractive force exists.

Let us take a pair of particles 𝑖 and 𝑗 with radii 𝑅𝑖 and 𝑅𝑗 respectively, as in figure 2.2.
The distance between their centres, is represented by 𝑟𝑖𝑗. However, there is an imaginary shell
around both these particles. For particle 𝑖, this shell extends from 𝑅𝑖 to 𝑅𝑖(1 + 2𝑎), where 𝑎

Oil

Water

Figure 2.1: An oil droplet in water as part of an emulsion is shown here. The hydrophilic head of the
surfactant is dissolved in the water, and the hydrophobic tail is dissolved in the oil.

11
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𝑅𝑖

𝑅𝑖(1 + 2𝑎)

𝑅𝑗

𝑅𝑗(1 + 2𝑎)

𝑟𝑖𝑗

Figure 2.2: Weakly attractive shells surround particles 𝑖 and 𝑗. In this picture, the shells of the particles, and
not the particles themselves, are just about touching each other.

is a tunable attraction parameter,that represents the attraction strength between the spheres.
Similarly, such a shell also exists for particle 𝑗. This is shown in figure 2.2.

The interaction potential, 𝑉𝑖𝑗 between this pair of particle is of the following form [6, 9, 20]:

𝑉𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

𝜖
2 [(1 − 𝑟𝑖𝑗

𝑅𝑖𝑗
)

2
− 2𝑎2] , if

𝑟𝑖𝑗
𝑅𝑖𝑗

< 1 + 𝑎

− 𝜖
2 [1 + 2𝑎 − 𝑟𝑖𝑗

𝑅𝑖𝑗
]

2
, if 1 + 𝑎 < 𝑟𝑖𝑗

𝑅𝑖𝑗
< 1 + 2𝑎

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1 + 2𝑎

(2.1)

This is reminiscent of the repulsive potential with the addition of an attractive tail added to
it. We also note that we can define a relative overlap in the case of attraction, which we can
call as 𝛿𝑎𝑡𝑡𝑟

𝑖𝑗 :
𝛿𝑎𝑡𝑡𝑟

𝑖𝑗 = 1 + 2𝑎 − 𝑟𝑖𝑗
𝑅𝑖𝑗

The potential that we consider gives us a force 𝐹𝑖𝑗 between particles 𝑖 and 𝑗, and it can be
written as :

𝐹𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

𝜖
𝑅𝑖𝑗

[1 − 𝑟𝑖𝑗
𝑅𝑖𝑗

] , if
𝑟𝑖𝑗
𝑅𝑖𝑗

< 1 + 𝑎

− 𝜖
𝑅𝑖𝑗

[1 + 2𝑎 − 𝑟𝑖𝑗
𝑅𝑖𝑗

] , if 1 + 𝑎 < 𝑟𝑖𝑗
𝑅𝑖𝑗

< 1 + 2𝑎

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1 + 2𝑎

(2.2)

In addition, the stiffness between the particles, 𝑘𝑖𝑗, can be written as :

𝑘𝑖𝑗 =

⎧{{{
⎨{{{⎩

𝜖
𝑅2

𝑖𝑗
, if

𝑟𝑖𝑗
𝑅𝑖𝑗

< 1 + 𝑎

− 𝜖
𝑅2

𝑖𝑗
, if 1 + 𝑎 < 𝑟𝑖𝑗

𝑅𝑖𝑗
< 1 + 2𝑎

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1 + 2𝑎

(2.3)

We note that as 𝑎 → 0, the model described above, would be the same as the model for
repulsive particles as we had discussed in chapter 1. The model for weakly attractive, soft and
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𝑉𝑖𝑗

𝑟𝑖𝑗/𝑅𝑖𝑗

𝑟𝑖𝑗/𝑅𝑖𝑗

𝐹𝑖𝑗

1 + 𝑎 1 + 2𝑎1

Figure 2.3: Potential, 𝑉𝑖𝑗 and force, 𝐹𝑖𝑗 between weakly attractive particles 𝑖 and 𝑗

frictionless particles is used in chapter 4 and chapter 6. In the next chapter, we look at the
linear response of soft, frictionless particles by perturbing the initial positions of the particles
by a small amount, and also by adding a shear strain degree of freedom for the box within
which the particles are confined.





3
Linear Response to Perturbations

What happens when particles in a packing are perturbed from their initial positions by a
small amount ? To investigate this, let us take two soft, frictionless particles 𝑖 and 𝑗 just
about touching each other and assume that they behave as a spring [2, 19]. For a packing,
this would mean replacing contacts with springs [19]. This assumption inherently also means
that no new contacts in the packing are made nor are the existing ones broken. Our assumed
spring would then have been at a relaxed length of 𝑙0, which would be the sum of the radii
of the two particles. This spring, is known to have a spring constant 𝑘. They are displaced
by u1 and u2 respectively, as shown in 3.1. We note down the important parameters of this
initial configuration of the two particles. Here 𝐸𝑖 is the potential energy that exists when
two particles are in contact, and 𝐹 𝑖𝑗

0 is the force that exists initially, before the particles are
displaced.

𝐸𝑖 = 𝑘
2(𝑙 − 𝑙0)2 (3.1)

𝐹 𝑖𝑗
0 = −𝑘(𝑙 − 𝑙0) (3.2)

Next, we move to a frame where the first particle is fixed. So the displacement of the
second particle, in the new frame, becomes u21 = u2 − u1. We decompose 𝑢21, parallelly
and orthogonally to line that connects the initial centres of the particles. They are called u21∥
and u21⊥

, respectively. This is shown in figure 3.2. The new length of the spring, after the

 
𝑙

 

1 2

u1

u2

Figure 3.1: The particles in this illustration are displaced by a certain amount u1 and u2 from their initial
configuration

15
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𝑙

 

1
2

u1

u2
u21

u21⊥

u21∥

Figure 3.2: We assume that particle 1 is our frame of reference. In this frame, the relative displacement of
particle 2 is decomposed along the line that connects the centre of the two particles initially, and thus find u∥

and u⊥.

displacements, becomes 𝑙′
. This can be expressed in the following way [18] :

𝑙′ = √(𝑙 + 𝑢21∥
)2 + 𝑢2

21⊥
(3.3)

𝑙′ = 𝑙√(1 +
𝑢21∥

𝑙 )
2

+ (
𝑢21⊥

𝑙 )
2

(3.4)

When this expression is written down as a Taylor expansion, and terms of order 3 and higher
are neglected, we see that :

𝑙′ = 𝑙 [1 +
𝑢21∥

𝑙 + 1
2 (

𝑢21⊥

𝑙 )
2
] (3.5)

The new energy 𝐸𝑓, of our assumed spring is now :

𝐸𝑓 = 1
2𝑘(𝑙′ − 𝑙0)2 (3.6)

The change in energy of the spring from its initial configuration and its final configuration is :

𝛿𝐸 = 𝐸𝑓 − 𝐸𝑖 (3.7)

= 1
2𝑘(𝑙′ − 𝑙0)2 − 𝑘

2(𝑙 − 𝑙0)2 (3.8)

By only keeping the quadratic terms, we end up with :

𝛿𝐸 =
𝑘𝑢2

21∥

2 − 𝐹 𝑖𝑗
0 (𝑢21∥

+
𝑢2

21⊥

2𝑙 ) (3.9)

This needs to be extended for a many particle system, the change in energy of a many particle
system Δ𝑈 can be written as [18, 19] :

Δ𝑈 = ∑
⟨𝑖,𝑗⟩

𝛿𝐸𝑖𝑗 = ∑
⟨𝑖,𝑗⟩

𝑘𝑖𝑗
2 [𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
𝑢2

𝑖𝑗⊥

𝑘𝑖𝑗𝑙𝑖𝑗
] (3.10)
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The sub-indices, in the terms above, reflect the pair of particles that are in contact in the
many particles system. To get force equations for our system, we use Lagrangian mechanics.
We define,

𝐿 = 𝑇 − 𝑈 (3.11)

where L, T, U are the Lagrangian, the kinetic energy and the potential energy respectively. In
our system the degree of freedom are q = {𝑢𝑥

1 , 𝑢𝑥
2 , 𝑢𝑥

3 … , 𝑢𝑥
1 , 𝑢𝑦

2, 𝑢𝑦
3 …}, where 𝑢𝛼

𝑖 is the 𝑖𝑡ℎ

particle displacement in the 𝛼 direction. We assume that the particles can only move in 𝑥 and
𝑦 directions. Since the temperature is taken to be zero, the kinetic energy of our system is zero
and thus 𝐿 = −Δ𝑈 . When we write the Euler-Lagrange equation for this system, we need to
take into account the fact that it is a quasi-static system. Therefore,

− 𝜕𝐿
𝜕𝑞𝛼

𝑖
= 𝐹 𝛼

𝑖 (3.12)

𝐹 𝛼
𝑖 = 𝜕Δ𝑈

𝜕𝑞𝛼
𝑖

(3.13)

In the expression for Δ𝑈 in equation 3.10, we see that relative displacements between particles
in contact are used. We can always express them in terms of absolute displacements, which is
shown in section 3.1. Now, we note that when we do this, Δ𝑈 will be a quadratic expression
in terms of absolute displacements.

Δ𝑈 = 1
2 ∑

⟨𝑖,𝑗⟩
∑

⟨𝛼,𝛽⟩
𝐾𝛼𝛽

𝑖𝑗 𝑞𝛼
𝑖 𝑞𝛽

𝑗 (3.14)

Δ𝑈 = qTKq
2 (3.15)

In solid mechanics’ terminology, K can be seen as the stiffness matrix. Physicists call it the
dynamical matrix [14, 18]. When we simplify the force relations, after substituting the above
representation of the potential energy, we see that K is essentially a Hessian matrix of the
form given below:

𝐾𝛼𝛽
𝑖𝑗 = 𝜕2𝑈

𝜕𝑞𝛼
𝑖 𝜕𝑞𝛽

𝑗
(3.16)

This makes sense, since the packing is at a one of the many available energy minimums. If we
were to Taylor expand the perturbed energy of the packing, the leading contribution to the
change in energy - when we assume that the initial energy of the packing is zero - would be
from the Hessian term of the expansion, as the Jacobian term would be zero (i.e. ∇𝑈 = 0)
[14, 17].

3.1. Relative to Absolute Coordinates
If the initial position of the particles in contact are expressed as ri, rj, we can now find the
angle that the displacement vector uij = ui − uj makes with the vector rij = ri − rj that
initially connects the centres of the particles.

cos 𝜃 = = rij ⋅ uij
|rij||uij|

(3.17)

=
𝑈𝑥

𝑖𝑗𝑋𝑖𝑗 + 𝑈𝑦
𝑖𝑗𝑌𝑖𝑗

𝑟𝑖𝑗𝑢𝑖𝑗
(3.18)
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Figure 3.3: Periodic boundary conditions for the packing. Copies of the packing in the center of the
illustration are placed around the four sides of the box. This would introduce differences in the way that the

coordinates of particles in contact, especially near the boundaries, are calculated.

where the symbols mean the following :

𝑈𝑥
𝑖𝑗 = 𝑢𝑥

𝑖 − 𝑢𝑥
𝑗 (3.19)

𝑈𝑦
𝑖𝑗 = 𝑢𝑦

𝑖 − 𝑢𝑦
𝑗 (3.20)

𝑋𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 (3.21)
𝑌𝑖𝑗 = 𝑦𝑖 − 𝑦𝑗 (3.22)
𝑟𝑖𝑗 = |rij| (3.23)
𝑢𝑖𝑗 = |uij| (3.24)

In the first term of 3.10, we have the term 𝑢𝑖𝑗2
∥
. We can write this simply as :

𝑢2
𝑖𝑗∥

= 𝑢2
𝑖𝑗 cos2 𝜃 (3.25)

= (
𝑈𝑥

𝑖𝑗𝑋𝑖𝑗 + 𝑈𝑦
𝑖𝑗𝑌𝑖𝑗

𝑟𝑖𝑗
)

2

(3.26)

Similarly, we can find that :

𝑢2
𝑖𝑗⊥

= (𝑢2
𝑖𝑗 − 𝑢2

𝑖𝑗∥
) (3.27)

= 𝑢2
𝑖𝑗 − (

𝑈𝑥
𝑖𝑗𝑋𝑖𝑗 + 𝑈𝑦

𝑖𝑗𝑌𝑖𝑗
𝑟𝑖𝑗

)
2

(3.28)

In the following sections, we will discuss briefly the implications of introducing boundary
conditions to the displacements of particles and the subsequent changes in expressions for the
dynamical matrix or as we’ll call it henceforth, the Hessian.

3.2. Periodic Boundary Conditions
A periodic boundary condition is used when we want to remove the effects of having a wall at
the four faces of the box that makes our packing. It works by copying the packing, and placing
it around the original packing, as shown in Fig. 3.3 [14]. A contact between two repulsive
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Figure 3.4: Lees-Edwards boundary conditions for a sheared packing. Copies of the sheared central packing
are placed along the boundaries, but they are displaced by the amount of the shear strain that acts on the

original packing.

particles 𝑖 and 𝑗 exists if the distance between their centres 𝑟𝑖𝑗 is :

𝑟𝑖𝑗 ≤ (𝑅𝑖 + 𝑅𝑗) (3.29)

and for the case of particles with weakly attractive interaction, this becomes :

𝑟𝑖𝑗 ≤ (𝑅𝑖 + 𝑅𝑗)(1 + 2𝑎) (3.30)

In addition, we forgo those contacts that are made by rattlers. Let’s assume the origin of the
coordinate system lies at the center of the box. We want to find out all the contacts in the
packing, taking into consideration the periodic boundary conditions. We do this in two steps :

• Check if the particles are in contact in the packing.

• Due to the periodic boundary conditions, we then need to check for contacts at the
boundaries, simply by copying the packing, and placing it at the boundaries and checking
for contacts.

Periodic boundary conditions will have an effect on the coordinates of the particles in contact
near the boundary. They will have to be appropriately changed by adding (or subtracting) the
length of the box 𝐿 from the 𝑥 or 𝑦 coordinate of the particles depending on their positions
with respect to the assumed origin. We assume the origin to be at the center of the packing,
and we call it 𝑂. This is shown in 3.5. The new coordinates 𝑥′ and 𝑦′, relative to origin 𝑂,
can be written as :

𝑥′ = 𝑥 ± 𝐿
𝑦′ = 𝑦 ± 𝐿

3.3. Lees - Edwards Boundary Conditions
In this section, we shall look at how this response changes when a box degree of freedom, namely
shear strain, is introduced. Let’s assume that the 𝑦 box face is strained in the 𝑥 direction by
a vanishingly small amount of strain 𝛾. Assume the origin of the coordinate system lies at the
center of the box, as we did before in the periodic boundary conditions. This is shown in figure
3.5 In addition to fulfilling the periodic boundary condition, the particles now also have to full
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𝑂

𝐿 =Length of the box

𝛾

𝛾
Figure 3.5: Shear Strained Packing

fill the sheared boundary condition, commonly called the Lees-Edwards boundary condition
[3]. This is shown in 3.4. The 𝑦 coordinates of the particles at the boundary of the packing
remain the same, but their 𝑥 coordinate changes to the new coordinate 𝑥′ in the following way
:

𝑥′ = 𝑥 ± 𝛾𝐿
depending on whether the particle is above or below the origin 𝑂, as shown in 3.5.

3.4. Changes to the Hessian
The shear strain to the box now adds another degree of freedom to q, and therefore changes
the coordinates of the particles, as we have shown in the above section. The degrees of freedom
now becomes the following :

q = {𝑢𝑥
1 , 𝑢𝑥

2 , 𝑢𝑥
3 … , 𝑢𝑥

1 , 𝑢𝑦
2, 𝑢𝑦

3 … , 𝛾} (3.31)

where 𝑢𝛼
𝑖 is the 𝑖𝑡ℎ particle displacements in the 𝛼 direction, and 𝛾 is the shear strain imposed

on the packing. If there are 𝑁 particles, then the Hessian matrix K is now of the size (2𝑁 +
1) × (2𝑁 + 1). This is because of the addition of the following terms for each contact :

𝐾𝛼𝛾
𝑖𝑗 = 𝜕2𝑈

𝜕𝑞𝛼
𝑖 𝜕𝛾 (3.32)

𝐾𝛽𝛾
𝑖𝑗 = 𝜕2𝑈

𝜕𝑞𝛽
𝑖 𝜕𝛾

(3.33)

𝐾𝛾𝛾
𝑖𝑗 = 𝜕2𝑈

𝜕2𝛾 (3.34)

The derived terms for the Hessian matrix are shown in appendix D. In this chapter, we have
derived the linear response of packings by assuming that at every contact there exists a relaxed
spring, and then perturbing the springs by a small amount, in addition to incorporating a
vanishingly small shear strain degree of freedom that acts on the 𝑦 boundaries of the packings.
In the next chapter, we shall look at how to connect the bulk quantities measured from the
linear response of the packings, to quantities related to particles that make up the packings.
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Results : Linear Response

We create 200 packings for a range of pressures, 𝑝 = 10−6, … , 10−2 and attraction strength,
𝑎 = 0, … , 10−2. Both of these quantities have been chosen to have a step size of one decade.
The packings are created using the FCG algorithm (see appendix B), and the initial packing
fraction from which we begin making the packings is 𝜙 = 0.9. We use the absolute expressions
for the potential, force and stiffness as shown in appendix C. This would change the units of
the quantities that we measure in this chapter. As we had discussed in chapter 1, the physical
quantities scale with the units of the effective stiffness constant (see the expressions for stiffness
of a contact in equations C.4.3 and C.3.3). They would now scale solely with the energy scaling
factor 𝜖. It is done for convenience.

4.1. Strain Test
The energy of a shear strained packing (in the limit of 𝛾 → 0) in terms of the shear modulus
can be written as :

𝑈 = 𝑈0 + 1
2𝐺𝑉 2𝛾2 (4.1)

where 𝑈0 is the initial energy in the packing, 𝑉 is the volume of the packing (since we are
dealing with 2-D packings, this is just 𝐿2), 𝐺 is the shear modulus, and 𝛾 is the shear strain.
The second term can be found by assuming that the packing is deformed by a shear strain of 𝛾
assuming that it has a shear modulus of 𝐺. It goes without saying that in the linear response
of a vanishingly small shear strain, we have assumed a linear elastic constitutive relationship
between shear stress and shear strain. This has been measured by Wyart et al. [19] for rigidly
stiff random networks made up of springs, and verified by Ellenbroek et al. [3] for systems like
ours where we have athermal particles at an energy minimum for whom contacts have been
replaced by springs. As the shear modulus is an unknown, we can use the Hessian matrix,
derived in chapter 3, to calculate it. This is done by a strain test. We know that :

F = Kq (4.2)
where F is the force vector, K is the dynamical matrix and q is the displacement vector. This
can be written in an expanded form for N particles as :

⎡
⎢⎢⎢⎢⎢
⎣

𝐹 𝑥
1

𝐹 𝑦
1
⋮

𝐹 𝑥
𝑁

𝐹 𝑦
𝑁

𝜎𝑉

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐾1,1 𝐾1,2 … 𝐾1,2𝑁−1 𝐾1,2𝑁 𝐾1,2𝑁+1
𝐾2,1 𝐾2,2 … 𝐾2,2𝑁−1 𝐾2,2𝑁 𝐾2,2𝑁+1

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝐾2𝑁−1,1 𝐾2𝑁−1,2 … 𝐾2𝑁−1,2𝑁−1 𝐾2𝑁−1,2𝑁 𝐾2𝑁−1,2𝑁+1
𝐾2𝑁,1 𝐾2𝑁,2 … 𝐾2𝑁,2𝑁−1 𝐾2𝑁,2𝑁 𝐾2𝑁,2𝑁+1

𝐾2𝑁+1,1 𝐾2𝑁+1,2 … 𝐾2𝑁+1,2𝑁−1 𝐾2𝑁+1,2𝑁 𝐾2𝑁+1,2𝑁+1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝑢𝑥
1

𝑢𝑦
1
⋮

𝑢𝑥
𝑁

𝑢𝑦
𝑁
𝛾

⎤
⎥⎥⎥⎥⎥
⎦

21
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Note that we have assumed that the shear strain that we have imposed on the packing gives
rise to a shear stress 𝜎 and therefore a force 𝐹𝛾 acts on the boundaries of the packing, which
is then put in the appropriate place in the force vector F as 𝐹𝛾 = 𝜎𝑉 ; where 𝑉 is the volume
of the packing (in 2-D this is 𝐿2). The entries of the matrix 𝐾𝛼,𝛽 are derived from the
expressions given in appendix D for every contact < 𝑖, 𝑗 >, and put in the correct position in
K. In the first step of the strain test, we take all of the particle displacements to be zero (i.e.
{𝑢𝑥

1 , 𝑢𝑦
1, … 𝑢𝑥

𝑁, 𝑢𝑦
𝑁} = 0). The strain value is taken to be 1 (i.e. 𝛾 = 1), purely for convenience.

This value doesn’t affect the quantities that would be measured in this chapter. Next we solve
the system of equations above for the forces (i.e. {𝐹 𝑥

1 , 𝐹 𝑦
1 , … 𝐹 𝑥

𝑁, 𝐹 𝑦
𝑁}). We use these forces

to calculate the displacements using the smaller Hessian matrix K
′
, in the following way :

⎡
⎢
⎢
⎢
⎣

𝐹 𝑥
1

𝐹 𝑦
1
⋮

𝐹 𝑥
𝑁

𝐹 𝑦
𝑁

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝐾1,1 𝐾1,2 … 𝐾1,2𝑁−1 𝐾1,2𝑁
𝐾2,1 𝐾2,2 … 𝐾2,2𝑁−1 𝐾2,2𝑁

⋮ ⋮ ⋱ ⋮ ⋮
𝐾2𝑁−1,1 𝐾2𝑁−1,2 … 𝐾2𝑁−1,2𝑁−1 𝐾2𝑁−1,2𝑁
𝐾2𝑁,1 𝐾2𝑁,2 … 𝐾2𝑁,2𝑁−1 𝐾2𝑁,2𝑁

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑢𝑥
1

𝑢𝑦
1
⋮

𝑢𝑥
𝑁

𝑢𝑦
𝑁

⎤
⎥
⎥
⎥
⎦

F
′ = K

′
q

′

q
′ = (K

′)−1
F

′

What we are essentially doing in the above test, is to first assume that there is a linear
response to a shear strained packing. We calculate the forces that would act on the particles
for a vanishingly small strain on the box. These calculated forces are then used to find the
response of the particles in terms of displacements. These displacements can also be expressed
in terms of relative displacements (i.e. 𝑢∥ and 𝑢⊥) as shown in chapter 3.

We can also find the shear modulus that results from the straining of the box and the
response of the particles from the following:

Δ𝑈 = 𝐺𝑉 2𝛾2

2 (4.3)

= qTKq
2 (4.4)

𝐺 = qTKq
𝑉 2𝛾2 (4.5)

The packings generated are put through the strain test. In the following sections, we calculate
bulk quantities for a packing due to a linear response to shear strain and connect them to
quantities that are tied to individual particles and contacts in the packing.

4.2. Shear Modulus
We know from chapter 1 that for repulsive particles :

𝐺 ∼ (𝜙 − 𝜙𝑐)1/2 (4.6)
𝑝 ∼ (𝜙 − 𝜙𝑐) (4.7)

For our case where we make packings using pressure, we can use the following scaling :

𝐺 ∼ 𝑝1/2 (4.8)
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Figure 4.1: The shear modulus is obtained from assuming a linear response to a shear strained packing. This is
done for a range of attraction strengths 𝑎 and pressure 𝑝. The scaled value of the shear modulus is also shown.

Critical Scaling Analysis
Let’s assume ansatz that :

𝑝⋆ ∼ 𝑎𝜈 (4.9)
𝐺⋆ ∼ 𝑎𝜆 (4.10)

Its a reasonable assumption to have the shear modulus be a function of pressure and attraction
as those are our varying parameters in our numerical experiments.

𝐺 = 𝐺(𝑝, 𝑎) (4.11)
𝐺
𝐺⋆ = 𝒢 ( 𝑝

𝑝⋆ ) (4.12)

𝐺
𝑎𝜆 = 𝒢 ( 𝑝

𝑎𝜈 ) (4.13)

𝐺
𝑎𝜆 ∼ ( 𝑝

𝑎𝜈 )
𝛽

(4.14)

In order to satisfy the scaling of our data, we can write the following for the shear modulus of
the packing :

𝐺 ∼
⎧{
⎨{⎩

𝑎𝜆 if, 𝑝
𝑎𝛾 ≪ 1

𝑎𝜆−𝛽𝜈𝑝𝛽 if, 𝑝
𝑎𝛾 ≫ 1

(4.15)

If this relation holds true for all attraction values, including 𝑎 = 0, then the following is true
for the repulsive case :

𝛽 = 1
2 (4.16)

𝜆 − 𝜈𝛽 = 0 (4.17)

𝜆 = 1
2𝜈 (4.18)

We take the mean of the values of the shear modulus obtained from the strain test for various
pressures and attraction strength. This is shown in figure 4.1a. For the case of packings with
repulsive particles, we see an agreement between the theoretical scaling of 𝐺 with 𝑝. In the
presence of attraction, we see that with decreasing pressure there is a plateau in the value of
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𝐺. The plateauing begins at a larger pressure for a larger value of attraction. From our scaled
data for the shear modulus in figure 4.1b, we find that 𝜈 = 1,and 𝜆 = 1/2, and these also
satisfy the relationship between them, as required by the theoretical scaling.

𝐺
𝑎1/2 ∼ ( 𝑝

𝑎1 )
1/2

(4.19)

We get the following behaviour for the shear modulus from the scaled data :

𝐺 ∼
⎧{
⎨{⎩

𝑎1/2 if, 𝑝
𝑎 ≪ 1

𝑝1/2 if, 𝑝
𝑎 ≫ 1

(4.20)

4.3. Relative Displacements
In addition we can also use the above relation to know how the 𝑢∥ and 𝑢⊥ scale with respect
to pressure for repulsive systems. From equations 3.10 and 4.3, we can write [3, 4] :

𝐺𝛾2 ∼ 𝑘𝑢2
∥ (4.21)

𝐺𝛾2 ∼ 𝐹𝑢2
⊥ (4.22)

where 𝑘 is the stiffness constant of a contact, 𝑢∥ is the relative displacement along the line that
joins the center of the particles in contact, 𝑢⊥ is the relative displacement perpendicular to the
line of contact, and 𝐹 is the initial force between the particles in contact, and 𝐺 is the shear
modulus. In our case, 𝛾 = 1, and therefore drops out of the equations above. The stiffness
constant, 𝑘 is an 𝒪(1) term compared to the magnitude of 𝐺 and 𝑢2

∥ . The physical meaning of
this scaling comes from the change in energy of a contact, that has been linked to the scaling
of the shear modulus, a bulk quantity of the packing. Using the scaling of 𝐺 and 𝑝, we find
that for soft particles, the following scaling holds as we reduce the distance to the jamming
transition [3] :

𝐺 ∼ 𝑢2
∥ (4.23)

𝑢2
∥ ∼ 𝑝1/2 (4.24)

𝑢∥ ∼ 𝑝1/4 (4.25)

We know that the Force scales proportionally to pressure, therefore using the previous scaling
:

𝐺 ∼ 𝐹𝑢2
⊥ (4.26)

𝐺 ∼ 𝑝𝑢2
⊥ (4.27)

𝑢2
⊥ ∼ 𝑝−1/2 (4.28)

𝑢⊥ ∼ 𝑝−1/4 (4.29)

Critical Scaling Analysis
Using the same method as shown in the previous section, we can write the following :

𝑢2
∥ ∼ 𝑎𝜆′−𝛽′𝜈′𝑝𝛽′ (4.30)

𝑢2
⊥ ∼ 𝑎𝜆′′−𝛽′′𝜈′′𝑝𝛽′′ (4.31)

(4.32)

where the prime symbols are meant to distinguish the exponents from the previously used
symbols for 𝐺.



4.3. Relative Displacements 25

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

p

10
−4

10
−3

10
−2

10
−1

10
0

u
2 ‖

a = 0

a = 10
−6

a = 10
−5

a = 10
−4

a = 10
−3

a = 10
−2

slope = 0.6

(a) Relative displacements parallel to the line of
contact, 𝑢∥
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(b) Scaled values of the parallel relative
displacement, 𝑢∥ with attraction strength 𝑎

Figure 4.2: The parallel relative displacement, 𝑢∥ is obtained from assuming a linear response to a shear
strained packing. This is done for a range of attraction strengths 𝑎 and pressure 𝑝. The scaled value of this

displacement with 𝑎 is also shown.
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Figure 4.3: The perpendicular relative displacement, 𝑢⊥ is obtained from assuming a linear response to a
shear strained packing. This is done for a range of attraction strengths 𝑎 and pressure 𝑝. The scaled value of

this displacement with 𝑎 is also shown.
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From the theoretical scaling of the relative displacements in the case of repulsive particles,
we find that :

𝛽′ = 1
2 (4.33)

𝜆′ = 1
2𝜈′ (4.34)

𝛽′′ = −1
2 (4.35)

𝜆′′ = −1
2𝜈′′ (4.36)

The median value of the relative displacements of all contacts from the strain test for the
packings is shown in figure 4.2a and figure 4.3a. They are reported in terms of the squared
values since the relative displacements can have both positive and negative signs. The median
value is preferred here for relative displacements over the mean as there are a small number
of relative displacements for contacts that skew the mean value of the data due to a large
fluctuation in their values. We observe that for the case of repulsive systems :

𝑢2
∥ ∼ 𝑝0.6 (4.37)

𝑢2
⊥ ∼ 𝑝−0.4 (4.38)

This differs from the theoretical scaling for repulsive systems - shown previously by Wyart
et al. [19] who Δ𝜙 used as the measure for distance to jamming - by a small amount. At the
jamming transition, when the pressure is low, 𝑢⊥ is easier to undertake for contacts than 𝑢∥
so as to avoid an increase in energy change due to a reduced distance between the centres of
the particles. While this holds true in the results presented in this section, the data tells us
that 𝑢⊥ doesn’t increase as much as we would expect from the theoretical scaling of 𝑢⊥ with
𝑝. And similarly for 𝑢∥, when we reduce the distance to the jamming transition (i.e. 𝑝 → 0),
the data tells us that 𝑢∥ decreases more than we would expect from the theoretical scaling.

To satisfy the conditions imposed by the theoretical scaling of the relative displacements
for 𝑎 = 0 in equation 4.37, we would require 𝜆′

𝑡 = 1/2 and 𝜆′′
𝑡 = −1/2, using the same scaling

exponent for the pressure as in the case of the shear modulus, i.e. 𝜈′, 𝜈′′ = 1. The subscript
𝑡 denotes the theoretical prediction for the scaling exponents.The scaled values for attractive
systems is shown in figure 4.2b and figure 4.3b. From the data, we find that 𝜆′ = 0.6 and
𝜆′′ = −0.4. We get the following scaling for relative displacements :

𝑢2
∥

𝑎0.6 ∼ ( 𝑝
𝑎1 )

0.6
(4.39)

𝑢2
⟂

𝑎−0.4 ∼ ( 𝑝
𝑎1 )

−0.4
(4.40)

and their behaviour can be written as :

𝑢2
∥ ∼

⎧{
⎨{⎩

𝑎0.6 if, 𝑝
𝑎 ≪ 1

𝑝0.6 if, 𝑝
𝑎 ≫ 1

(4.41)

𝑢2
⊥ ∼

⎧{
⎨{⎩

𝑎−0.4 if, 𝑝
𝑎 ≪ 1

𝑝−0.4 if, 𝑝
𝑎 ≫ 1

(4.42)

In the attractive systems, two different types of contacts can be found – tensile contacts
and compressive contacts. Tensile contacts are defined as those contacts where 𝑟𝑖𝑗/𝑅𝑖𝑗 > 1.
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(a) Parallel, relative displacement 𝑢∥, for
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Figure 4.4: Relative displacements for a range of pressure 𝑝, and varying attraction strength 𝑎 for compressive
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Figure 4.5: Relative displacements for a range of pressure 𝑝, and varying attraction strength 𝑎 for tensile
contacts.

This means that the force that results at such a contact is 𝐹𝑖𝑗 < 0; which means the particles
have an attractive force between them. Similarly, compressive contacts are defined as those
contacts where 𝑟𝑖𝑗/𝑅𝑖𝑗 ≤ 1, which results in a contact that has a repulsive force between the
particles, i.e. 𝐹𝑖𝑗 > 0. An obvious question that comes to mind is if these contacts behave
differently in the linear response regime.

The relative displacements for tensile contacts (𝑢2
∥,𝑡, 𝑢2

⊥,𝑡) are shown in figure 4.5a and
figure 4.5b, while the relative displacements for compressive contacts (𝑢2

∥,𝑐, 𝑢2
⊥,𝑐) are shown

in figure 4.4a and figure 4.4b. At higher pressures, we find that 𝑢∥,𝑡 and, 𝑢⊥,𝑡 decrease
significantly as compared to the relative displacements of the repulsive case. The median values
for the two types of contacts, tend to become similar at lower pressures. This indicates that the
presence of attraction at higher pressures decreases relative displacements of tensile contacts
when compared to the case of compressive contacts. The combination of attraction and low
pressures doesn’t seem to significantly deviate the behaviour of the relative displacements of
tensile contacts when compared to compressive contacts.
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Region 𝑘𝑖𝑗 𝐹 𝑖𝑗
0

A > 0 > 0
B > 0 < 0
C < 0 < 0

Table 4.1: Tabulated signs of the stiffness and force of a contact given for the different regions that exist in the
attractive potential as shown in figure 4.6.

𝑟𝑖𝑗/𝑅𝑖𝑗

𝐹𝑖𝑗
1 + 𝑎 1 + 2𝑎

𝐴 𝐵 𝐶

1

Figure 4.6: Regions with differing signs of force and stiffness of a contact that are a consequence of attractive
tail of the potential that we have used.
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4.4. Energy Contributions and their Scaling
We refer back to the equations we had written for a change in elastic energy when two particles
in contact are displaced from their initial positions in 3 :

Δ𝐸𝑖𝑗 = (1
2𝑘𝑖𝑗𝑢2

𝑖𝑗∥
− 1

2𝑟𝑖𝑗
𝐹 𝑖𝑗

0 𝑢2
𝑖𝑗⊥

) (4.43)

In addition to the relative displacements, we see that the stiffness 𝑘𝑖𝑗 of a contact, and the
initial force 𝐹 𝑖𝑗

0 between particles in contact can also change signs. This behaviour is shown
in figure 4.6 and tabulated in 4.1 . As we have seen in section 4.2, the shear modulus of a
packing is directly dependent on how the change in energy occurs due to the displacements of
the particles. The change in energy is relatively straightforward in repulsive systems, but we
see from above, it occurs differently in attractive systems. In order to quantify this difference,
we look at how the mean contribution of each of the terms in table 4.1, changes with the
strength of the attraction and with pressure. For a contact 𝑖𝑗 in region 𝐴, we can write the
contributions to the change in elastic energy in the following way :

[Δ𝐸𝑖𝑗]
𝑘,𝐴

= 1
2 [𝑘𝑖𝑗]

𝐴
𝑢2

𝑖𝑗∥
(4.44)

[Δ𝐸𝑖𝑗]
𝐹,𝐴

= − 1
2𝑟𝑖𝑗

[𝐹 0
𝑖𝑗]

𝐴
𝑢2

𝑖𝑗⊥
(4.45)

where the subscripts 𝑘, 𝐴 and 𝐹, 𝐴 represent the elastic energy contribution due to the terms
associated with the stiffness constant, 𝑘𝑖𝑗 and force, 𝐹 0

𝑖𝑗 for a contact present in region A. This
is done for the other terms in 4.1 as well. The following ratios are defined to look at how the
different terms contribute to the mean change in energy of a contact :

𝐸I = ⟨
∣[Δ𝐸𝑖𝑗]

𝑘,𝐴/𝐵
∣

∣[Δ𝐸𝑖𝑗]
𝑘,𝐴/𝐵

∣ + ∣[Δ𝐸𝑖𝑗]
𝐹,𝐴/𝐵

∣
⟩ (4.46)

𝐸II = ⟨
∣[Δ𝐸𝑖𝑗]

𝐹,𝐴
∣

∣[Δ𝐸𝑖𝑗]
𝑘,𝐴

∣ + ∣[Δ𝐸𝑖𝑗]
𝐹,𝐴

∣
⟩ (4.47)

𝐸III = ⟨
∣[Δ𝐸𝑖𝑗]

𝐹,𝐵
∣

∣[Δ𝐸𝑖𝑗]
𝑘,𝐵

∣ + ∣[Δ𝐸𝑖𝑗]
𝐹,𝐵

∣
⟩ (4.48)

𝐸IV = ⟨
∣[Δ𝐸𝑖𝑗]

𝑘,𝐶
∣

∣[Δ𝐸𝑖𝑗]
𝑘,𝐶

∣ + ∣[Δ𝐸𝑖𝑗]
𝐹,𝐶

∣
⟩ (4.49)

𝐸V = ⟨
∣[Δ𝐸𝑖𝑗]

𝐹,𝐶
∣

∣[Δ𝐸𝑖𝑗]
𝑘,𝐶

∣ + ∣[Δ𝐸𝑖𝑗]
𝐹,𝐶

∣
⟩ (4.50)

They are shown in figure 4.7. For the repulsive case, the relevant ratios are 𝐸I and 𝐸II, as shown
in figures figure 4.7a and figure 4.7b. We see that the energy contribution of the 𝐸I is always
greater than 𝐸2. This is in agreement with the result that we find for relative displacements in
section 4.3. The role of attraction is to increase the contribution of 𝐸I , and decrease that of 𝐸II
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at low pressures. In addition, 𝐸III increases at lower pressures, while 𝐸IV and 𝐸V have no mean
contribution to the change in energy of a contact. This means that 𝑢∥ is favourable compared
to 𝑢⊥. At low pressures, the particles are far enough that coming coming closer together by 𝑢∥
will decrease the overall energy of the packing, due to the presence of attraction. We see that
the pressure at which the transition to undertaking 𝑢∥ is higher when the attraction strength
is higher. This is also consistent with our finding for the relative displacement of contacts in
section 4.3 . We also see from figure 4.7d that no contacts exist in region 𝐶. This is due to
the packing generation protocol that is used to make the packings. It is further explained in
section 4.5.

The scaled ratios are shown in figure 4.8. We find that the energy ratios scale approximately
as :

𝐸I ∼
⎧{
⎨{⎩

≈ 0.8 if, 𝑝
𝑎 ≪ 1

≈ 0.65 if, 𝑝
𝑎 ≫ 1

(4.51)

𝐸II ∼
⎧{
⎨{⎩

≈ 0.10 if, 𝑝
𝑎 ≪ 1

≈ 0.35 if, 𝑝
𝑎 ≫ 1

(4.52)

𝐸III ∼
⎧{
⎨{⎩

≈ 0.10 if, 𝑝
𝑎 ≪ 1

≈ 0 if, 𝑝
𝑎 ≫ 1

(4.53)

4.5. Discussion
The first interesting observation from the previous data, is that the scaling of the pressure is
always with attraction strength, 𝑝/𝑎. This can be explained by assuming that the pressure is
a function of attraction i.e. 𝑝(𝑎). When we Taylor expand this term, and divide the expansion
by 𝑎, we get the scaling of pressure in attractive packings as :

𝑝(𝑎)
𝑎 ∼ 𝑝

𝑎 (4.54)

For an ordered solid, affine predictions work well for explaining the behaviour of the material
under a vanishingly small shear strain. In disordered materials, this affine assumption breaks
down [10, 18], and its predictions fail to explain the behaviour of the material. For a linearly
shear strained packings of disordered particles, we need a framework for understanding the
non-affine behaviour of the system [19]. Disordered particles, when sheared, move in two ways
- they can move parallel to the line of contact, or perpendicular to it.They express their non-
affine particle responses through these displacements which then leads to the divergence of the
shear modulus when we close the distance to (un)jamming[19]. We can also see this in 4.9.

The study of linear response also gives us a way to connect the local properties of particles
to the bulk properties of the packings, for vanishingly small shear strains. We studied in section
4.3 how these displacements change with the introduction of attraction in jammed packings,
and in section 4.2, the effect of attraction on the shear modulus in the linear response regime.
We saw that the shear modulus, and the relative displacements plateau when attraction is
present between particles, close to the transitional jamming point (i.e. 𝑝 → 0 as we have used
pressure as the distance to jamming). Through the energy contributions we have also seen
a way to verify the scaling for the relative displacements which we obtain through the strain
test.
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Figure 4.9: The displacements seen in a jammed, disordered packing (1024 particles, 𝜙 = 0.84) when they are
calculated for a soft (low energy) mode. As a way to ensure that the Hessian was working correctly in the code

used for this work, we applied two verification tests. The first was to ensure that all the eigenvalues were
above zero, since the Hessian matrix is a positive definite matrix (see the derivation in chapter 3). The second
test, arguably the more interesting one, involved plotting the eigenvectors for one of the low energy modes (i.e.
the eigenvalue that corresponds to the energy of the packing was close to ≈ 10−16 which due to finite precision

of computers is essentially zero). The packing had a finite shear modulus, but the displacements of the
particles turns out to be highly non-affine. This tells us exactly why when we come close to the jamming

transition the value of the shear modulus diverges, at least in soft particles, the canonical model for jamming.
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We have studied the linear response of packings with and without the presence of weakly
attractive forces between soft spheres, using pressure as our distance to the traditional jamming
point 𝜙𝑐. In the next chapter, we shall look at the cause of the plateau values that we see
in the shear modulus and the relative displacements. While we expect that weak attractive
potential would have an effect on shear modulus and displacements, the plateauing of the value
was quite surprising.



5
Weak Attraction and Linear Response

We had seen in section 4.4 that there was no energy contribution from contacts in region
𝐶 of figure 4.6. It turns out that the weakly attractive potential used in this work, makes
the protocol with which packings are formed highly protocol dependent. We measure how the
pressure and the contact number of the packings for the previous chapter vary due to attraction
in the following sections.

Pressure
There are two types of pressures present in attractive packings as a result of two different types
of contacts – compressive and tensile pressures. They are denoted using 𝑝𝑐 and 𝑝𝑡 respectively.
Using equation 1.7 and 1.8, we can write them as :

𝑝𝑐 =
∑
𝛼

∑
𝑐

𝐹 𝑐
𝛼𝑟𝑐

𝛼

2𝐿2 (5.1)

𝑝𝑡 = ∣
∑
𝛼

∑
𝑡

𝐹 𝑡
𝛼𝑟𝑡

𝛼

2𝐿2 ∣ (5.2)

where 𝛼 is the direction, 𝑐 denotes all the compressive contacts 𝑖𝑗 between particles 𝑖 and 𝑗, and
𝑡 denotes all the tensile contacts. Compressive contacts would be those that exist in region A,
and tensile contacts would be those that exist in region B, as shown in figure 4.6. Compressive
pressure will always have a positive contribution to the total pressure, while tensile pressure
will have a negative contribution to the total pressure. In order to compare the two, we use
the absolute value for tensile pressure. The total pressure of a packing would be 𝑝 = 𝑝𝑐 − 𝑝𝑡.
They are shown in figure 5.1a and figure 5.2a. In order to see their relative magnitudes, we
plot the ratios 𝑝𝑐/(𝑝𝑐 +𝑝𝑡) and 𝑝𝑡/(𝑝𝑐 +𝑝𝑡). This is shown in 5.3. We find that the magnitude
of 𝑝𝑐 and 𝑝𝑡 plateaus at a certain pressure. The plateauing begins to occur at a lower total
pressure 𝑝 for lower values of attraction. While the total pressure 𝑝 decreases, we find that 𝑝𝑐
and 𝑝𝑡 are higher in magnitude than 𝑝.

35
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with pressure 𝑝 and attraction strength 𝑎.

The scaling for the two pressures are as follows :

𝑝𝑐 ∼
⎧{
⎨{⎩

𝑎 if, 𝑝
𝑎 ≪ 1

𝑝 if, 𝑝
𝑎 ≫ 1

(5.3)

𝑝𝑡 ∼
⎧{
⎨{⎩

𝑎1.5 if, 𝑝
𝑎 ≪ 1

𝑝𝑎2 if, 𝑝
𝑎 ≫ 1

(5.4)

Contact Number
In a similar manner to the pressure, we can also define 𝑍𝑐, 𝑍𝑡, the compressive and tensile
contact numbers respectively, where the only change is that the type of contact that is counted
for 𝑍𝑐 is compressive contacts, and for 𝑍𝑡 is tensile contacts. The total contact number 𝑍,
can be found by 𝑍 = 𝑍𝑐 + 𝑍𝑡. They are shown in figure 5.4a. The individual contribution of
𝑍𝑐 and 𝑍𝑡 to 𝑍 is shown in 5.4b. We observe a similar trend for the contact number, as for
pressure. In marginal jamming of a packing, we are also interested in Δ𝑍 = 𝑍 −𝑍𝑖𝑠𝑜 = 𝑍 −4.
We recall that excess contact number shows a jump, like pressure at the traditional jamming
point and so for soft, repulsive particles it scales as Δ𝑍 ∼ 𝑝1/2. This is shown in figure 5.4c,
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and its scaled value with attraction is shown in figure 5.4d. We find that Δ𝑍 scales in the
following way :

Δ𝑍
𝑎0.6 ∼ (𝑝

𝑎)
0.6

(5.5)

Δ𝑍 ∼
⎧{
⎨{⎩

𝑎0.6 if, 𝑝
𝑎 ≪ 1

𝑝0.6 if, 𝑝
𝑎 ≫ 1

(5.6)

(5.7)

For the case of 𝑝/𝑎 ≫ 1, we note that the theoretical scaling of Wyart et al. [19] would have
been Δ𝑍 ∼ 𝑝0.5, while we get from our numerical simulations, Δ𝑍 ∼ 𝑝0.6. We checked from
our numerical experiments that this also holds true for the case of zero attraction, and that
Δ𝑍 ∼ 𝑝0.6 for the case of 𝑎 = 0.

5.1. Discussion
In section 5, we see that the compressive and attractive pressures equalize with each other
at a certain pressure. By this, we mean that they come extremely close in value to each
other, but never really cancelling each other out completely. The point where they equalize,
is dependent on the attraction strength as we see from their scaled values. The higher the
attraction strength, the higher will be the pressure, at which 𝑝𝑐 and 𝑝𝑡 equalize. To achieve
lower pressures, after equalizing, the two pressures change by small amounts in order to give
even smaller values for total pressure, 𝑝. This means that we could approach extremely low
pressures with high values of attraction, without really close to what we could think of as being
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑙𝑦 jammed as in the case of soft, repulsive particles.

The plateauing observed in the displacements and shear modulus at low pressures for
attractive packings, is a consequence of this equalization of 𝑝𝑐 and 𝑝𝑡 at higher pressures, due
to the weakly attractive potential that exists between particles. The presence of attraction
prevents packings from truly achieving low pressures, by this we mean that the packings are
formed by a sort of deception by 𝑝𝑐 and 𝑝𝑡, as we explained before.

This is a consequence of the packing generation protocol we used. The packings start off
from a packing fraction of 𝜙 = 0.9 and the packings then are either increased or decreased in
size to achieve a certain pressure. This means that the particles are very close to each other
at the very beginning of the generation protocol as we have begun at a high packing fraction
where the overlaps between particles is high.
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number ∆𝑍 and its scaled value with attraction are also shown.
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This affects the regions of the potential that we can achieve between particles. This is
clearly shown in section 4.4. The energy contributions of contacts in region 𝐶 shown in 4.6
is zero. The contacts that we find tend to remain in regions 𝐴 and 𝐵. In the potential for
attractive particles, shown in 2.3, we can think of the contacts in the packings as being stuck
in the potential well that exists in the corresponding regions of 𝐴 and 𝐵. It is infeasible for the
particles to move to region 𝐶 when we increase the packing size during the packing generation
protocol, since it would lead to an increase in energy of the contact between particles.

The above explanation quite accurately predicts the consequences of the packing generation
protocol used when weakly attractive particles are present. This also tells us why exactly we
observe plateaus in the shear modulus and relative displacements, instead of another kind of
curve, that may have been possible if we used a different packing generation protocol.

In the next chapter, we shall look at the nonlinear response to finitely shear straining
packings.





6
Results : Non Linear Response

In the previous chapters, we studied the linear response of the systems like emulsions and
foams in the limit of a vanishing strain on packings. The linear response regime gives us a
powerful tool to study the bulk properties of disordered systems near the jamming transition
and linking it to the the non affine behaviour of particles that constitute the studied systems.

An important question to ask here is what happens to packings that are close to the
jamming transition, when a finite shear strain is applied at the boundaries of the packings.
Recall that in chapter 1 we had talked about ketchup and the jammed and unjammed behaviour
that it shows when we shake the bottle to make it flow more easily. In an industrial setting,
knowing the mechanics that governs the behaviour of systems like emulsions and foams could
lead to the setting up of efficient production processes. This is the motivation to study the
effects of finite shear strain on models that describe emulsions and foams, in the context of the
jamming transition. Linear elastic behaviour for materials is given by Hooke’s law:

𝜎 = 𝐺𝛾

and linear elasticity describes the effects of shear strain on packings when the strain is close to
the vanishing strain limit quite well. We note that this was also the constitutive relationship
that we had used in chapter 3. What happens at finite strain?

Boschan et al. [1] have described the behaviour of packings when we apply finite shear
strain at varying strain rates to the packings. We restrict ourselves to the observations that
they describe and their analysis for strain rates that are vanishingly small ( ̇𝛾 → 0). This is
called the quasi-static shear strain rate or the quasi-static straining action as we call it in this
report.

When does linear elasticity break down and give way to the nonlinear response of packings
close to the jamming transition ? It has been shown that the linear elasticity response of
packings breaks down only after a small finite strain window for a quasi-static shear straining
process [1]. Boschan et al. [1] observed that the measured stress with respect to the applied
finite shear strain during the quasi-static shearing action followed linear elasticity (Hooke’s
law) up to a certain strain and then the measured stress decreased with higher values of strain.
They called this strain softening, because of the decrease (or softening) in the measured stress
after a certain strain.

We note that applying a finite shear strain to packings is inherently nonlinear because of
the making and breaking of contacts that would take place during the shearing action, thus
introducing non-linearity in the bulk response of the jammed packings. However, an interesting
observation by Boschan et al. [1] was that the non linear response regime only begins after a
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certain accumulation of of contact changes. They were able to generalise the results obtained
by van Deen et al. [17] for the strain at which the first contact change is observed in shear
strained packings.

6.1. Strain Softening
In this section we will describe the quasi-static shear straining of packings for weakly attractive
particles and emulsions. We generate 200 packings for a range of attraction from 𝑎 = 0, … , 10−2

and pressures 𝑝 = 10−5, … , 10−2, with both pressure and attraction strength taken with a step
size of a decade and by using the FCG algorithm to minimize energy, starting from an initial
packing fraction of 𝜙 = 0.9. Further, we impose a quasi-static, finite shear strain on these
packings. In order to do so, we take start from zero strain, and subsequently vary the step size
taken for shear strain Δ𝛾 to reach a finite shear strain of 10−2. The initial strain step that is
taken is Δ𝛾 = 10−6, and then the step size Δ𝛾 is reduced further at subsequent shear strains.
This is because at lower total strain we don’t expect a lot of rearrangements to happen in the
packings, while at higher strains, the possibility of this happening is larger.

The quasi-static shearing action, described previously takes place by applying the shear
strain reached after every strain step, at the 𝑥 face of the 𝑦 boundaries of these packings.
The particles at the boundaries are then made to comply with the shear strain by applying
the Lees-Edwards boundary condition as described in chapter 4.. At each strain step, after
imposing this boundary condition, we minimize the energy of the sheared packing using the
FCG algorithm. This enables the sheared packing to again reach its local energy minimum
after being shear strained, thus mimicking a quasi-static shear straining process.

At each shear strain value 𝛾, we measure the shear stress of the packing using the stress
tensor (as derived in appendix A). In order to observe strain softening, we plot the value of
𝜎/𝛾 against shear strain. This is called the relaxation shear modulus, and for clarity it’ll
be specified henceforth as 𝜎/𝛾 so as to remind the reader that it is distinct from the shear
modulus that is measured in the linear response of vanishing shear strain that was studied in
the previous chapter.

We show our results in in figure 6.1 and figure 6.2. In figure 6.1, we show how the value
of 𝜎/𝛾 evolves with 𝛾 for the case of packings that have a varying pressure, 𝑝, for a number of
values for 𝑎, the attraction strength. In figure 6.2, we show how 𝜎/𝛾 evolves with 𝛾 for packings
that have varying values of attraction strength, 𝑎, for a number of number of values of initial
pressure 𝑝, of the packing. We have taken the median value for 𝜎/𝛾 at each strain step. This
is necessitated by the presence of a few packings that have had such a drastic rearrangement
at the beginning of the straining action that they can no longer be considered equivalent to
the packing that we began with. We observe that at a certain pressure the initial value of 𝜎/𝛾
is higher for a higher value of 𝑎, the attraction strength. The crossover strain at which we
observe softening in the value of 𝜎/𝛾 is referred to as 𝛾𝑠. We observe that it increases with
the the attraction strength. Therefore, the presence of attraction delays the onset of softening,
and this delay is longer for a higher value of attraction strength. In addition, for the same
attraction strength, packings with a higher initial pressure will undergo strain softening at a
higher value of softening strain 𝛾𝑠.

The role of the attraction strength and initial pressure on this crossover from linear elastic
to nonlinear regime is captured by 𝛾𝑠. We assume that strain softening begins at a strain
where the initial value of 𝜎/𝛾 decreases by 70 percent. Then, we plot 𝛾𝑠 for various attraction
strengths against initial pressure in figure 6.3a. For the case of soft, repulsive particles, it has
been found that the crossover strain found by the quasi-static straining action occurs with the
following scaling [1, 17] :

𝛾𝑠 ∼ 𝑝 (6.1)
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We find that this relationship holds in figure 6.3a for 𝑎 = 0. We scale 𝑝 and 𝛾𝑠, with values
of attraction, and using the critical analysis analysis technique of the previous chapter, we can
write the following :

𝛾𝑠
𝑎𝜆 ∼ ( 𝑝

𝑎𝜈 )
𝛽

(6.2)

𝛾𝑠 ∼ 𝑎𝜆−𝛽𝜈𝑝𝛽 (6.3)

For this to hold true in the case of 𝑎 = 0, we would require 𝛽𝑡 = 1, and 𝜆𝑡 = 𝜈𝑡, where the
subscript 𝑡 denotes the case for theoretical prediction . From our numerical data, we find that
𝛽 = 0.75, while 𝜆 = 0.75, and 𝜈 = 1 i.e. 𝛽 = 𝛽𝑡, while 𝜆 < 𝜈, which differs from our theoretical
prediction of 𝜆𝑡 = 𝜈𝑡. The behaviour of 𝛾𝑠 with 𝑝 and 𝑎 can be written as:

𝛾𝑠 ∼
⎧{
⎨{⎩

𝑎0.75 if, 𝑝
𝑎 ≪ 1

𝑝𝑎−0.25 if, 𝑝
𝑎 ≫ 1

(6.4)

The scaling of 𝛾𝑠 distinctly changes in the presence of weakly attractive forces between par-
ticles, in comparison with what we would expect from the theoretical scaling in the case of
𝑝/𝑎 ≫ 1. In the next section, we will look at how individual particles respond to a quasi-static
shear strain.

6.2. Correlation Softening
Now that we have seen how the how the bulk measurement 𝜎/𝛾 behaves during the quasi-static
shearing action; we move on to how individual particles behave during this process. In order
to quantify their behaviour, we need to look at their trajectories while they are quasi-statically
sheared. We define a particle velocity, so as to look at how the trajectories evolve with shear
strain, v𝑖 for a particle 𝑖 as:

v𝑖 = 𝑑x𝑖
𝑑 ̇𝛾 (6.5)

where x𝑖 is the particle position and ̇𝛾 is the shear shearing rate. Since we look at packings
that have been quasi-statically sheared, it becomes impossible to calculate v𝑖 as ̇𝛾 → 0 for
this case. In order to quantify the change trajectory of the individual particles, we use the
linear response of these particles to a vanishingly small shear strain. The displacements q =
{𝑢1𝑥, 𝑢1𝑦, … , 𝑢𝑁𝑥, 𝑢𝑁𝑦}, which we get in chapter 3 as a result of linear response of particles
to an infinitesimally small shear strain, gives us a way to quantify the trajectories of these
particles.

The implicit assumption here is that packings are linearly elastic for vanishingly small shear
strains even when we calculate trajectories from the linear response at finite strains where the
linearly elasticity for a packing doesn’t hold for any longer due to softening. It is based on
the fact that the potential energy of the particles in quasi-statically sheared packings is still a
smooth function of their displacements at any given finite strain. We link this back to chapter
3, where we had replaced contacts with springs. We have assumed that all the contacts in our
quasi-statically sheared packings are in the range of separation that lie in region 𝐴 and 𝐵 as
shown in figure 4.6. We had seen previously that no contacts lie in region 𝐶, so we can safely
say here that because of the packing generation protocol used, and the fact that our packings
are above the traditional jamming point when we quasi-statically shear packings, we would
never see contacts that are precisely at the point where the slope of the force law changes
signs (which would make an assumption of linear elasticity invalid), thus making our implicit
assumption for linear elasticity at vanishingly small strains valid.
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Figure 6.1: The relaxation shear modulus 𝐺 = 𝜎/𝛾 is shown here for a number of attraction strengths. For
each 𝑎, we plot the median value of 𝜎/𝛾, which is found by quasi-statically shear straining packings, for a

number of different pressure values 𝑝.
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Figure 6.2: The relaxation shear modulus 𝐺 = 𝜎/𝛾 is shown here for a number of different initial pressures 𝑝
of the packings. For each 𝑝, we plot the median value of 𝜎/𝛾, which is found by quasi-statically shear

straining packings, for a number of different attraction strengths 𝑎.
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Figure 6.3: The crossover strain for strain softening 𝛾𝑠 as a function of initial pressure 𝑝 and attraction
strength 𝑎 is shown here along with its scaled value.
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From the previous chapter, we recall that the shear modulus of packings diverges near the
jamming transition, and that the non-affinity of the relative particle displacements near the
jamming transition was responsible for the divergence of the shear modulus. We see that in
packings with attraction, the degree to which the shear modulus diverges is clearly dependent
on both pressure and attraction strength. So, the question we would like to answer here is
how dependent is the softening that we observe in the relaxation shear modulus 𝜎/𝛾 , which is
obtained by quasi-statically shear straining packings by finite shear strain steps, on the degree
of non-affinity of particle trajectories.

We begin by defining a correlation function 𝐶 for these trajectories as:

𝐶 (𝛾) =
⟨𝑢𝑖𝑦 (𝛾) ⋅ 𝑢𝑖𝑦 (0)⟩

𝑖=1…𝑁
⟨𝑢𝑖𝑦 (0) ⋅ 𝑢𝑖𝑦 (0)⟩

𝑖=1…𝑁
(6.6)

where the trajectories 𝑢𝑖𝑦 (𝛾) are the displacements that we find using the strain test from
the previous chapter. The subscript in 𝑢𝑖𝑦 (𝛾) denotes that we only use the displacements for
particles that are in the 𝑦 direction. The correlation function 𝐶 is measuring how trajectories
vary at each strain step with their initial trajectory. We restrict ourselves to the 𝑦 components
of these trajectories to ensure that we only measure the non-affine components of the particle
trajectories. As our shear strain is in the 𝑥 direction, there would be affine and non-affine
components in the displacements that take place in the 𝑥 direction. Even when the trajectories
begin decorrelating, and therefore showing non-affinity in their trajectories due to finite shear
strain, we wouldn’t be able to see it at the precise point where non-affinity in trajectories
begins due to the presence of affine components in the correlation function for 𝑥 components
of the particle trajectories.

The median value of the correlation function, 𝐶, is shown for varying strengths of attraction
for a range of pressures in figure 6.4. We find that the correlation function also shows a decrease
from its initial value starting at a certain strain, similar to the way we see strain softening in
section 6.1. This decrease is essentially the start of the decorrelation of the particle trajectories
as discussed before; the non-affinity in particle trajectories begins to significantly increase at
this point. We will call this phenomenon as correlation softening. The word softening here
just means the beginning of non-affinity of particle trajectories, the choice of the word being
inspired from the softening in the relaxation modulus 𝐺 = 𝜎/𝛾 observed in quasi-statically
sheared packings. The crossover strain at which we observe correlation softening is called as
𝛾†

𝑠 . In a similar manner as for the previous figure, we show in figure 6.5 how correlation
softening for varying pressures and a range of attraction strengths begins. We can conclude
from both these plots that the presence of attraction delays the onset of correlation softening,
with the onset dependent upon the attraction strength. The initial pressure of the packing
also affects the onset of correlation softening; the higher the initial pressure, the more delay
there is in observing the correlation softening.

Using the same criterion as for 𝛾𝑠, we assume that the crossover strain, 𝛾†
𝑠 for correlation

softening happens when 𝐶 is 70 percent of its initial value. These values are plotted against
the initial pressure, for a range of attraction in 6.6a. For the case of zero attraction, we find
that :

𝛾†
𝑠 ∼ 𝑝0.75 (6.7)

We do a similar critical scaling analysis, as for 𝛾𝑠 , and from figure 6.6b, we find that :

𝛾†
𝑠 ∼

⎧{
⎨{⎩

𝑎0.75 if, 𝑝
𝑎 ≪ 1

𝑝0.75 if, 𝑝
𝑎 ≫ 1

(6.8)



6.3. Discussion 47

6.3. Discussion
Let’s assume that the presence of attraction makes it increasingly difficult for contacts to
be broken when we shear packings using the protocol in section 6.1. We can make another
reasonable assumption that the crossover strain from correlation softening 𝛾†

𝑠 , which is derived
from trajectories of particles in the linear response, would give us an increasingly convergent
prediction for 𝛾𝑠. As the attraction strength increases, the linear elastic window discussed
in 6.1 should mimic the correlation 𝐶 when it comes to the crossover strain due. This can
be explained by the fact that the system becomes more affine when there is an increase in
difficulty of breaking bonds. In order to validate this assumption, we compare the values of 𝛾𝑠
and 𝛾†

𝑠 in the two distinct regions of 𝑝/𝑎 ≪ 1 and 𝑝/𝑎 ≫ 1. When attraction is present, we
find that :

𝛾𝑠 ∼ 𝛾†
𝑠 ∼ 𝑎0.75 if 𝑝

𝑎 ≪ 1 (6.9)

and :

𝛾𝑠 ∼ 𝑝𝑎−0.25 if, 𝑝
𝑎 ≪ 1 (6.10)

𝛾†
𝑠 ∼ 𝑝0.75 if, 𝑝

𝑎 ≪ 1 (6.11)

We plot value of 𝛾𝑠/𝛾†
𝑠 in figure 6.7, and scale the pressure with attraction. We find that:

𝛾𝑠
𝛾†

𝑠
∼

⎧{
⎨{⎩

1 if, 𝑝
𝑎 ≪ 1

(𝑝
𝑎)

0.25
if, 𝑝

𝑎 ≫ 1
(6.12)

While 𝛾𝑠 and 𝛾𝛾
𝑠 scale similarly when 𝑝/𝑎 ≪ 1, our initial assumption, made at the begin-

ning of our discussion, breaks down for the case when 𝑝/𝑎 ≫ 1. This is because the softening
observed in the correlation function has no dependence on attraction for 𝑝/𝑎 >> 1 while the
crossover strain for strain softening does indeed have a dependence on 𝑎 (see equations 6.8 and
6.4). This means that while non-affinity increases when we apply the quasi-static straining
action onto packings for 𝑝/𝑎 ≫ 1, the crossover strain 𝛾†

𝑠 where the breakdown of velocity
correlation begins does not depend on attraction strength. At the same time, the cross over
strain for strain softening, or where the relaxation shear modulus 𝐺 = 𝜎/𝛾 begins to leave the
linear elasticity regime, depends on the attraction strength.

In the case of no attraction between particles, we see that the crossover strain, for softening
in the relaxation modulus, scales as 𝛾𝑠 ∼ 𝑝 while the crossover strain, for the beginning of
the breakdown in affinity of particle velocities, scales as 𝛾†

𝑠 ∼ 𝑝3/4. This means that non-
affinity of the particles already begins at a strain of 𝛾†

𝑠 , before strain softening is observed, and
yet the linear elasticity holds for the quasi-statically sheared packings till 𝜎/𝛾 softens at 𝛾𝑠.
This is an interesting observation when compared to what we see in repulsive particles at the
jamming transition, as discussed in chapter 1, where the non-affinity of the relative particle
displacements is the reason for the divergence of the shear modulus close to the jamming point
𝐽 . We can conclude that non-affinity of particle velocities for quasi-statically shear strained
packings does not fully explain the emergence of the softening in 𝜎/𝛾 or in other words the
window of linear elasticity that exists at the very beginning of the quasi-static shearing action,
quite surprisingly continues to exist even after non-affinity in particle velocities, derived from
linear response, has set in for jammed packings.
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Figure 6.4: Correlation 𝐶 and its evolution with strain 𝛾 for various strengths of attraction 𝑎 when
quasi-statically shear straining packings is shown here.
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Figure 6.5: Correlation 𝐶 and its evolution with strain 𝛾 for various values of the initial pressure of packing 𝑝
when quasi-statically shear straining packings is shown here.
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strength 𝑎 is shown here along with its scaled value.
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7
Conclusions and Future Work

We have studied how weakly attractive particles behave in the linear response regime, above the
traditional critical jamming point of 𝜙𝑐. As we have seen, the linear response regime helps in
relating the non-affine character of particle motions near the marginally jammed state to bulk
quantities. In the presence of attraction and for what could be considered to be traditionally
jammed solids, we find the scaling relations for the shear modulus and relative displacements,
using pressure as our measure the distance to the jamming point 𝐽 . The plateauing of these
quantities close to 𝑝 = 0, which is our measure for the distance to the traditional jamming
point 𝜙𝑐, is explained by the packing generation protocol used to make our packings, and
the potential that is used to model weakly attractive soft particles. This is verified when we
look at the relative magnitudes of the compressive and tensile pressures, and the different
contributions of the compressive and tensile contact number to the total contact number 𝑍.
We also looked at how the mean energy contributions of terms that make up the change in
energy of a contact in the linear response, scales with pressure and attraction strength. This
also gave us an understanding of the regions of the potential where the contacts in our packings
could be found.

The non linear response of quasi-statically shear strained packings is also studied. We
obtained two strain scales - 𝛾𝑠 for strain softening and 𝛾†

𝑠 for correlation softening - in the
presence of attraction for traditionally jammed packings. The linear elastic window observed
before the onset of strain softening has been a subject of vivid discussion recently, with the
main discussion point being on how and why strain softening occurs[1, 15, 17]. Boschan et al.
[1] argue that non linearity sets in after a set number of accumulation for contact changes that
occur before 𝛾𝑠, and they identified the cross over strain scale for strain softening to occur
which explains the first part of this question. Therefore, we focused on the second part of this
question for both weakly attractive and soft particles.

The original thesis for this work, was that the presence of attraction would prevent contact
changes that occur during the quasi-static shearing action, and we could then see that the onset
of non linear response at 𝛾𝑠 , or the closing of the linear elastic window, would correspond
to a softening of a quantity derived from the linear response regime. The assumption here
being that with attraction the contact network of the particles would be closer to the model
of springs, in which we cannot make or break contacts, used in the linear response regime.
With this in mind, we defined a correlation 𝐶, which we obtained from velocities of particles
derived from the linear response at each strain step for 𝛾. The softening of the correlation
gave us a strain scale 𝛾†

𝑠 .The softening here corresponds to the breakdown in correlation of the
particle velocities obtained from the linear response at each strain step. We observe that these
scales only match for the case of 𝑝/𝑎 ≪ 1, and don’t match for the case of repulsive particles
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52 7. Conclusions and Future Work

and 𝑝/𝑎 ≫ 1. We also compared how these scales differed from one another. The fact that
non-affinity in particle motions at the traditional jamming transition explains the divergence
of shear modulus, but fails to completely explain the strain softening or the softening in the
relaxation shear modulus seen in quasi-statically shear strained packings, points to an exciting
possibility of a different mechanism at play during the finite shear straining process for both
soft particles and for weakly attractive particles that model foams and emulsions. It would
be useful to explicitly compare results for the relaxation shear modulus from the nonlinear
response and the shear modulus obtained from linear response, in order to have a complete
description of differences in bulk and particle quantities between the nonlinear response to
finite shear strain and the linear response to vanishingly small shear strain.

We could also see how linear response changes when we change the protocol of our pack-
ing generation. There is a protocol dependence for the generation of packings with weakly
attractive particles. It may be possible to make packings that are above 𝜙𝑐 and who also have
different behaviour in the linear response due to the way the packing was made. It would be
extremely interesting to study packings made below the traditional jamming point of 𝜙𝑐. This
essentially means the traditional jamming point needs to be explored further.The anomaly
between the scaling obtained for relative displacements, pressure and excess contact number
in our results for the linear response regime for packings made with using 𝑝 as measure for the
distance to jamming and what would be usually expected from well described power laws and
scaling in the jamming transition literature needs to be explored further.



A
Stress Tensor Derivation

Assume that a force density of ℱ𝛼 acts at the boundary of a volume 𝒱. Let’s assume a stress
tensor for this volume as 𝜎. We can then write the following using both surface and volume
integrals :

∫
𝒱

ℱ𝛼𝑑𝒱 = ∫
𝒱

𝜕𝜎𝛼𝛽
𝜕𝑥𝛽

𝑑𝒱 (A.1)

∮
𝜕𝒱

ℱ𝛼𝑑𝒜 = ∮
𝜕𝒱

𝜎𝛼𝛽 𝑛𝛽𝑑𝒜 (A.2)

We can also write this as :

𝜕(𝑥𝛾𝜎𝛼𝛽)
𝜕𝑥𝛼

= 𝜕𝑥𝛾
𝜕𝑥𝛼

𝜎𝛼𝛽 +𝑥𝛾
𝜎𝛼𝛽
𝜕𝑥𝛼

(A.3)

= 𝛿𝛼𝛾𝜎𝛼𝛽 +𝑥𝛾
𝜕𝜎𝛼𝛽
𝜕𝑥𝛼

(A.4)

For stress balance we require that :

𝑥𝛾
𝜕𝜎𝛼𝛽

𝜕𝛼 = 0 (A.5)

Therefore :

𝜕(𝑥𝛾𝜎𝛼𝛽)
𝜕𝑥𝛼

= 𝛿𝛼𝛾𝜎𝛼𝛽 (A.6)

= 𝜎𝛼𝛾 (A.7)

This can done for the entire volume 𝒱, note that we have used 𝛽 instead of 𝛾 here for conve-
nience :

1
𝒱 ∫

𝒱
𝜎𝛼𝛽𝑑𝒱= 1

𝒱 ∫
𝒱

𝜎𝛼𝛾𝑑𝒱 (A.8)

= 𝑥𝛾𝜎𝛼𝛽𝑛𝛽𝑑𝐴 (A.9)

We define the average stress tensor �̄�𝛼𝛽 as :

�̄�𝛼𝛽 = 1
𝒱 ∫

𝒱
𝜎𝛼𝛽𝑑𝒱 (A.10)
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The force density can also be written in the following manner :

𝜎𝛼𝛽 𝑛𝛽 = ℱ𝛼 (A.11)

Using the above, we can write :

�̄�𝛼𝛽 = 1
𝒱 ∫

𝜕𝒱
𝑥𝛾ℱ𝛼𝑑𝒱 (A.12)

Let’s now assume that there is a volume 𝑉 that is filled with 𝑁 particles. By using Voronoi
tessellation, we can find the volume occupied by a single particle. Let’s assume that a single
particle occupies a volume of 𝒱 and it is in contact with other particles. We will call these
contacts as 𝑐. The average stress tensor for this particle can be written as :

�̄�𝛼𝛽 = 𝑁
𝑉 ∮

𝑑𝑉 /𝑁
∑

𝑐
𝐹 𝑐

𝛼𝑥𝑐
𝛽𝑑𝐴 (A.13)

Since these are discrete forces and their sum is finite, we can write :

�̄�𝛼𝛽 = 𝑁
𝑉 ∑

𝑐
𝐹 𝑐

𝛼𝑥𝑐
𝛽 (A.14)

We can now find the average stress tensor for all the particles as :

�̄�𝛼𝛽 = 𝑁
𝑉 ∑

<𝑖,𝑗>
𝐹 𝑖𝑗

𝛼 𝑥𝑖𝑗
𝛽 (A.15)

where 𝑖 and 𝑗 are the particles that are in contact.



B
Packing generation protocol

Packings can be generated using the non-linear conjugate gradient method [15]. Initially, all
the particles in the packing are put at random points inside of the box. The goal now is to go
to a minimum possible energy for the packing. Let’s assume that all the particle positions are
given by q. The energy is given by 𝑈 . The forces between particles in contact are given by 𝐹 .
There’s two ways of achieving our goal. The first is the energy gradient method (ECG), and
the second is the force gradient method (FCG).

B.1. Energy Gradient Method
We need to get to a minimum in the energy landscape of our initial, randomly generated
packing. The non linear conjugate gradient (NCG) algorithm is used to achieve this since at
every iteration of the algorithm, the positions of the particles, and therefore the energy changes.
The NCG algorithm searches for the steepest direction. It does so by using the gradient of
the energy. The gradient of the energy gives us the forces −∇𝑈 = F. This is used as the first
guess of the search direction in NCG. We also know that the potential between two particles
is proportional to their overlap. It gives us an estimate of how the energy curve with respect
to the search direction would look like - essentially a parabola. If we have three points of a
parabola, we will have enough information to construct this parabola. With the NCG, we can
take three steps, with three search directions, and end up with an estimation of the parabola.
The minimum point of this parabola would then give us the minimum energy.

A disadvantage of this step is that we can’t be certain that we have achieved the minimum
due to numerical issues. In short, because we start off with a certain energy initially we have
zeroth order terms that do not allow us to reach an equilibrium of the packing to its minimum
energy. The zero-th order terms cause catastrophic cancellation and therefore limits us from
achieving the energy minimum. This leads us to another way of making packings and its called
the Force Conjugate Gradient(FCG) method.

B.2. Force Conjugate Gradient Method
Instead of minimizing energy, we can also minimize the forces between particles in a packing.
Since at a minimum energy, the gradient is zero, and therefore forces are zero, we have no
zero-th order terms. This means that there is no catastrophic cancellation like the Energy
gradient method. In addition, we only have to do two steps of the NCG, since we are now
essentially looking for the search direction where the gradient is zero.

All of the packings are made by achieving a certain pressure. This is done by starting at
a certain packing fraction, in our case 𝜙 = 0.9, and randomly populating the packing. The
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56 B. Packing generation protocol

box size is then increased or decreased by a certain amount, and FCG is used to then get the
configuration of particles which results in minimum energy. The pressure of the packing is
then calculated. Depending on whether it is greater or lesser than the desired pressure, the
box size is increased or decreased. And so on and so forth, the iterations take place.

B.3. Attractive Particles
In the case of attractive particles, the potential between two particles isn’t as easy as the
potential that we see in the case of repulsive particles. If they come really close to one another,
the attractive part of the potential takes over, and the tendency of the particles is to come
even closer, so as to decrease the total energy of the system. This means that the parabola
that we used in the repulsive case for ECG does not exist any more, which necessitates the use
of FCG.



C
Absolute and Relative Expressions

C.1. Relative Potential for the repulsive case
Overlap is defined as :

𝛿𝑖𝑗 = 1 − 𝑟𝑖𝑗
𝑅𝑖𝑗

(C.1)

C.1.1. Potential

𝑉𝑖𝑗 =
⎧{{
⎨{{⎩

𝜖
2 (1 − 𝑟𝑖𝑗

𝑅𝑖𝑗
)

2
, if

𝑟𝑖𝑗
𝑅𝑖𝑗

≤ 1

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1
(C.2)

𝑉𝑖𝑗 =
⎧{
⎨{⎩

𝜖
2𝛿2

𝑖𝑗 , if 𝛿𝑖𝑗 ≥ 0
0 , if 𝛿𝑖𝑗 < 0

(C.3)

C.1.2. Force

𝐹𝑖𝑗 =
⎧{{
⎨{{⎩

𝜖
𝑅𝑖𝑗

(1 − 𝑟𝑖𝑗
𝑅𝑖𝑗

) , if
𝑟𝑖𝑗
𝑅𝑖𝑗

≤ 1

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1
(C.4)

𝐹𝑖𝑗 =
⎧{
⎨{⎩

𝜖𝛿𝑖𝑗
𝑅𝑖𝑗

, if 𝛿𝑖𝑗 ≥ 0

0 , if 𝛿𝑖𝑗 < 0
(C.5)

C.1.3. Stiffness

𝑘𝑖𝑗 =
⎧{{
⎨{{⎩

𝜖
𝑅2

𝑖𝑗
, if

𝑟𝑖𝑗
𝑅𝑖𝑗

≤ 1

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1
(C.6)

𝑘𝑖𝑗 =
⎧{
⎨{⎩

𝜖
𝑅2

𝑖𝑗
, if 𝛿𝑖𝑗 ≥ 0

0 , if 𝛿𝑖𝑗 < 0
(C.7)
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C.2. Relative Potential for the attractive case
Attractive overlap is defined as :

𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 = 1 + 2𝑎 − 𝑟𝑖𝑗

𝑅𝑖𝑗
(C.8)

C.2.1. Potential

𝑉𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

𝜖
2 [(1 − 𝑟𝑖𝑗

𝑅𝑖𝑗
)

2
− 2𝑎2] , if

𝑟𝑖𝑗
𝑅𝑖𝑗

≤ 1 + 𝑎

𝜖
2 [1 + 2𝑎 − 𝑟𝑖𝑗

𝑅𝑖𝑗
]

2
, if 1 + 𝑎 < 𝑟𝑖𝑗

𝑅𝑖𝑗
≤ 1 + 2𝑎

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1 + 2𝑎

(C.9)

𝑉𝑖𝑗 =

⎧{{
⎨{{⎩

𝜖
2 (𝛿2

𝑖𝑗 − 2𝑎2) , if 𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 > 𝑎

− 𝜖
2 (𝛿𝑎𝑡𝑡𝑟

𝑖𝑗 )2 , if 0 < 𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 < 𝑎

0 , if 𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 < 0

(C.10)

C.2.2. Force

𝐹𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

𝜖
𝑅𝑖𝑗

(1 − 𝑟𝑖𝑗
𝑅𝑖𝑗

) , if
𝑟𝑖𝑗
𝑅𝑖𝑗

≤ 1 + 𝑎

− 𝜖
𝑅𝑖𝑗

(1 + 2𝑎 − 𝑟𝑖𝑗
𝑅𝑖𝑗

) , if 1 + 𝑎 < 𝑟𝑖𝑗
𝑅𝑖𝑗

≤ 1 + 2𝑎

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1 + 2𝑎

(C.11)

𝐹𝑖𝑗 =

⎧{{{
⎨{{{⎩

𝜖𝛿𝑖𝑗
𝑅𝑖𝑗

, if 𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 > 𝑎

−𝜖𝛿𝑎𝑡𝑡𝑟
𝑖𝑗
𝑅𝑖𝑗

, if 0 < 𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 < 𝑎

0 , if 𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 < 0

(C.12)

C.2.3. Stiffness

𝑘𝑖𝑗 =

⎧{{{
⎨{{{⎩

𝜖
𝑅2

𝑖𝑗
, if

𝑟𝑖𝑗
𝑅𝑖𝑗

≤ 1 + 𝑎

− 𝜖
𝑅2

𝑖𝑗
, if 1 + 𝑎 < 𝑟𝑖𝑗

𝑅𝑖𝑗
≤ 1 + 2𝑎

0 , if
𝑟𝑖𝑗
𝑅𝑖𝑗

> 1 + 2𝑎

(C.13)

𝑘𝑖𝑗 =

⎧{{{
⎨{{{⎩

𝜖
𝑅2

𝑖𝑗
, if 𝛿𝑎𝑡𝑡𝑟

𝑖𝑗 > 𝑎

− 𝜖
𝑅2

𝑖𝑗
, if 0 < 𝛿𝑎𝑡𝑡𝑟

𝑖𝑗 < 𝑎

0 , if 𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 < 0

(C.14)
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C.3. Absolute Potential for the repulsive case
Absolute overlap is defined as :

𝛿𝑎𝑏𝑠
𝑖𝑗 = 𝑅𝑖𝑗 − 𝑟𝑖𝑗 (C.15)

C.3.1. Potential

𝑉𝑖𝑗 =
⎧{
⎨{⎩

𝜖
2 (𝑅𝑖𝑗 − 𝑟𝑖𝑗)2 , if 𝑟𝑖𝑗 ≤ 𝑅𝑖𝑗

0 , if 𝑟𝑖𝑗 > 𝑅𝑖𝑗
(C.16)

𝑉𝑖𝑗 =
⎧{
⎨{⎩

𝜖
2 (𝛿𝑎𝑏𝑠

𝑖𝑗 )2 , if 𝛿𝑎𝑏𝑠
𝑖𝑗 ≥ 0

0 , if 𝛿𝑎𝑏𝑠
𝑖𝑗 < 0

(C.17)

C.3.2. Force

𝐹𝑖𝑗 = {
𝜖 (𝑅𝑖𝑗 − 𝑟𝑖𝑗) , if 𝑟𝑖𝑗 ≤ 𝑅𝑖𝑗
0 , if 𝑟𝑖𝑗 > 𝑅𝑖𝑗

(C.18)

𝐹𝑖𝑗 = {
𝜖𝛿𝑖𝑗 , if 𝛿𝑎𝑏𝑠

𝑖𝑗 ≥ 0
0 , if 𝛿𝑎𝑏𝑠

𝑖𝑗 < 0 (C.19)

C.3.3. Stiffness

𝑘𝑖𝑗 = {
𝜖 , if 𝑟𝑖𝑗 ≤ 𝑅𝑖𝑗
0 , if 𝑟𝑖𝑗 > 𝑅𝑖𝑗

(C.20)

𝑘𝑖𝑗 = {
𝜖 , if 𝛿𝑎𝑏𝑠

𝑖𝑗 ≥ 0
0 , if 𝛿𝑎𝑏𝑠

𝑖𝑗 < 0 (C.21)

C.4. Absolute Potential for the attractive case
Absolute, attractive potential is defined as :

𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠
𝑖𝑗 = (1 + 2𝑎)(𝑅𝑖𝑗 − 𝑟𝑖𝑗) (C.22)

C.4.1. Potential

𝑉𝑖𝑗 =

⎧{{
⎨{{⎩

𝜖
2 [(𝑅𝑖𝑗 − 𝑟𝑖𝑗)2 − 2 (𝑅𝑖𝑗𝑎)2] , if 𝑟𝑖𝑗 ≤ 𝑅𝑖𝑗(1 + 𝑎)
𝜖
2 [(1 + 2𝑎) 𝑅𝑖𝑗 − 𝑟𝑖𝑗]2 , if 𝑅𝑖𝑗 (1 + 𝑎) < 𝑟𝑖𝑗 ≤ 𝑅𝑖𝑗(1 + 2𝑎)
0 , if 𝑟𝑖𝑗 > 𝑅𝑖𝑗(1 + 2𝑎)

(C.23)

𝑉𝑖𝑗 =

⎧{{
⎨{{⎩

𝜖
2 [(𝛿𝑎𝑏𝑠

𝑖𝑗 )2 − 2 (𝑅𝑖𝑗𝑎)2] , if 𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠
𝑖𝑗 ≥ 𝑅𝑖𝑗𝑎

− 𝜖
2 (𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠

𝑖𝑗 )2 , if 𝑅𝑖𝑗𝑎 > 𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠
𝑖𝑗 > 0

0 , if 𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠
𝑖𝑗 < 0

(C.24)
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C.4.2. Force

𝐹𝑖𝑗 =
⎧{
⎨{⎩

𝜖 (𝑅𝑖𝑗 − 𝑟𝑖𝑗) , if 𝑟𝑖𝑗 < 𝑅𝑖𝑗(1 + 𝑎)
−𝜖 (𝑅𝑖𝑗(1 + 2𝑎) − 𝑟𝑖𝑗) , if 𝑅𝑖𝑗(1 + 𝑎) < 𝑟𝑖𝑗 < 𝑅𝑖𝑗(1 + 2𝑎)
0 , if 𝑟𝑖𝑗 > 𝑅𝑖𝑗(1 + 2𝑎)

(C.25)

𝐹𝑖𝑗 =
⎧{{
⎨{{⎩

𝜖𝛿𝑎𝑏𝑠
𝑖𝑗 , if 𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠

𝑖𝑗 ≥ 𝑅𝑖𝑗𝑎
−𝜖𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠

𝑖𝑗 , if 𝑅𝑖𝑗𝑎 > 𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠
𝑖𝑗 > 0

0 , if 𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠
𝑖𝑗 < 0

(C.26)

C.4.3. Stiffness

𝑘𝑖𝑗 =
⎧{
⎨{⎩

𝜖 , if 𝑟𝑖𝑗 < 𝑅𝑖𝑗(1 + 𝑎)
−𝜖 , if 𝑅𝑖𝑗(1 + 𝑎) < 𝑟𝑖𝑗 < 𝑅𝑖𝑗(1 + 2𝑎)
0 , if 𝑟𝑖𝑗 > 𝑅𝑖𝑗(1 + 2𝑎)

(C.27)

𝑘𝑖𝑗 =
⎧{{
⎨{{⎩

𝜖 , if 𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠
𝑖𝑗 ≥ 𝑅𝑖𝑗𝑎

−𝜖 , if 𝑅𝑖𝑗𝑎 > 𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠
𝑖𝑗 > 0

0 , if 𝛿𝑎𝑡𝑡𝑟,𝑎𝑏𝑠
𝑖𝑗 < 0

(C.28)
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D.1. Expressions for the Hessian
When all of the expressions found in chapter 3 for the relative case of repulsive potential are
put into the 3.10 equation and we look at the expressions for the Hessian of all the particles
in contact, we find that :

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = 𝐴 𝜖

𝑅2
𝑖𝑗𝑟2

𝑖𝑗
𝛼𝑖𝑗𝛽𝑖𝑗 (D.1)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = 𝜖

𝑅𝑖𝑗𝑟3
𝑖𝑗

(1 − 𝑟𝑖𝑗
𝑅𝑖𝑗

) (𝐵𝑟2
𝑖𝑗 − 𝐴𝛼𝑖𝑗𝛽𝑖𝑗) (D.2)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖
𝑅𝑖𝑗

(𝐴𝛼𝑖𝑗
𝑟𝑖𝑗

𝛽𝑖𝑗
𝑟𝑖𝑗

( 1
𝑅𝑖𝑗

+ 𝛿𝑖𝑗
𝑟𝑖𝑗

) − 𝐵𝛿𝑖𝑗
𝑟𝑖𝑗

) (D.3)

where :

𝑎, 𝑏 = {𝑖, 𝑗}, where i and j are a pair of interacting particles (D.4)
𝛼, 𝛽 = {𝑥, 𝑦}, where x and y are the cartesian basis of the absolute frame (D.5)

𝛼𝑖𝑗, 𝛽𝑖𝑗 = 𝑋𝑖𝑗 or 𝑌𝑖𝑗 (D.6)

𝐴 = {−1 , if 𝑎 ≠ 𝑏
1 , if a = b

(D.7)

𝐵 =
⎧{
⎨{⎩

−1 , if 𝑎 ≠ 𝑏 and 𝛼 = 𝛽
1 , if 𝑎 = 𝑏 and 𝛼 = 𝛽
0 , if 𝛼 ≠ 𝛽

(D.8)

𝛿𝑖𝑗 = (1 − 𝑟𝑖𝑗
𝑅𝑖𝑗

) , called the overlap (D.9)

D.2. Box Degree of Freedom : Shear Strain
Let us assume a box degree of freedom, namely the shear strain, and represented by 𝛾, that
can be be perturbed in addition to the particles’ degrees of freedom, as talked about in chapter
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3. The expressions for the new terms are as follows:

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = 𝐶 𝜖𝐿𝑦

𝑅2
𝑖𝑗𝑟2

𝑖𝑗
𝑋𝑖𝑗𝛼𝑖𝑗 (D.10)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = 𝐷 𝜖

𝑅𝑖𝑗𝑟3
𝑖𝑗

𝐿𝑦𝛿𝑖𝑗𝑌𝑖𝑗𝛽𝑖𝑗 (D.11)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖𝐿𝑦
𝑅𝑖𝑗𝑟2

𝑖𝑗
(𝐶 𝑋𝑖𝑗𝛼𝑖𝑗

𝑅𝑖𝑗
− 𝐷𝛿𝑖𝑗𝑌𝑖𝑗𝛽𝑖𝑗

𝑟𝑖𝑗
) (D.12)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = 𝜖𝐿2

𝑦
𝑅2

𝑖𝑗𝑟2
𝑖𝑗

𝑋2
𝑖𝑗 (D.13)

𝜕2

𝜕2𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = 𝜖𝐿2

𝑦
𝑅𝑖𝑗𝑟3

𝑖𝑗
𝛿𝑖𝑗𝑌 2

𝑖𝑗 (D.14)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖𝐿2
𝑦

𝑅𝑖𝑗𝑟2
𝑖𝑗

(𝑋2
𝑖𝑗

𝑅𝑖𝑗
− 𝛿𝑖𝑗𝑌 2

𝑖𝑗
𝑟𝑖𝑗

) (D.15)

where:

𝐿𝑦 = Length of box in y direction (D.16)

𝐶 = {1 , if 𝑎 = 𝑗
−1 , if 𝑎 ≠ 𝑗 (D.17)

𝐷 = {−1 , if 𝑎 ≠ 𝑗, 𝛼 = 𝑥 or 𝑎 = 𝑗, 𝛼 ≠ 𝑥
1 , if 𝑎 = 𝑗, 𝛼 = 𝑥 or 𝑎 ≠ 𝑗, 𝛼 ≠ 𝑥 (D.18)

(D.19)

D.3. Attractive Potential between Particles
We shall now shift our focus to particles that also have a weak attraction between them, at
short range. The potential is of the following form between two particles 𝑖, 𝑗:

𝑉𝑖𝑗 =

⎧{{
⎨{{⎩

𝜖
2 [(1 − 𝑟𝑖𝑗

𝑅𝑖𝑗
)

2
− 2𝑎2] , if 𝑟𝑖𝑗

𝑅𝑖𝑗
< 1 + 𝑎

− 𝜖
2 [1 + 2𝑎 − 𝑟𝑖𝑗

𝑅𝑖𝑗
]2

, if 1 + 𝑎 < 𝑟𝑖𝑗
𝑅𝑖𝑗

< 1 + 2𝑎
0 , if 𝑟𝑖𝑗

𝑅𝑖𝑗
> 1 + 2𝑎

(D.20)

where 𝑎 is the attraction factor that defines the strength of the attraction between the particles.



D.4. Hessian Expressions for the Attractive Potential 63
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Using the previous notations we get the following if 𝑟𝑖𝑗
𝑅𝑖𝑗

< 1 + 𝑎 :

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = 𝐴 𝜖

𝑅2
𝑖𝑗𝑟2

𝑖𝑗
𝛼𝑖𝑗𝛽𝑖𝑗 (D.21)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = 𝜖

𝑅𝑖𝑗𝑟3
𝑖𝑗

(1 − 𝑟𝑖𝑗
𝑅𝑖𝑗

) (𝐵𝑟2
𝑖𝑗 − 𝐴𝛼𝑖𝑗𝛽𝑖𝑗) (D.22)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖
𝑅𝑖𝑗

(𝐴𝛼𝑖𝑗
𝑟𝑖𝑗

𝛽𝑖𝑗
𝑟𝑖𝑗

( 1
𝑅𝑖𝑗

+ 𝛿𝑖𝑗
𝑟𝑖𝑗

) − 𝐵𝛿𝑖𝑗
𝑟𝑖𝑗

) (D.23)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = 𝐶 𝜖𝐿𝑦

𝑅2
𝑖𝑗𝑟2

𝑖𝑗
𝑋𝑖𝑗𝛼𝑖𝑗 (D.24)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = 𝐷 𝜖

𝑅𝑖𝑗𝑟3
𝑖𝑗

𝐿𝑦𝛿𝑖𝑗𝑌𝑖𝑗𝛽𝑖𝑗 (D.25)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖𝐿𝑦
𝑅𝑖𝑗𝑟2

𝑖𝑗
(𝐶 𝑋𝑖𝑗𝛼𝑖𝑗

𝑅𝑖𝑗
− 𝐷𝛿𝑖𝑗𝑌𝑖𝑗𝛽𝑖𝑗

𝑟𝑖𝑗
) (D.26)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = 𝜖𝐿2

𝑦
𝑅2

𝑖𝑗𝑟2
𝑖𝑗

𝑋2
𝑖𝑗 (D.27)

𝜕2

𝜕2𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = 𝜖𝐿2

𝑦
𝑅𝑖𝑗𝑟3

𝑖𝑗
𝛿𝑖𝑗𝑌 2

𝑖𝑗 (D.28)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖𝐿2
𝑦

𝑅𝑖𝑗𝑟2
𝑖𝑗

(𝑋2
𝑖𝑗

𝑅𝑖𝑗
− 𝛿𝑖𝑗𝑌 2

𝑖𝑗
𝑟𝑖𝑗

) (D.29)

In the above case, it is observed that the expressions are identical to the ones that are obtained
in the case of repulsive potential between the particles. The expressions change for the next
case, where we see the attraction parameter coming into play. If 1 + 𝑎 < 𝑟𝑖𝑗

𝑅𝑖𝑗
< 1 + 2𝑎, the the
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expressions becomes the following,

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = −𝐴 𝜖

𝑅2
𝑖𝑗𝑟2

𝑖𝑗
𝛼𝑖𝑗𝛽𝑖𝑗 (D.30)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = − 𝜖

𝑅𝑖𝑗𝑟3
𝑖𝑗

(1 + 2𝑎 − 𝑟𝑖𝑗
𝑅𝑖𝑗

) (𝐵𝑟2
𝑖𝑗 − 𝐴𝛼𝑖𝑗𝛽𝑖𝑗) (D.31)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖
𝑅𝑖𝑗

(−𝐴𝛼𝑖𝑗
𝑟𝑖𝑗

𝛽𝑖𝑗
𝑟𝑖𝑗

( 1
𝑅𝑖𝑗

+ 𝛿𝑎𝑡𝑡𝑟
𝑖𝑗
𝑟𝑖𝑗

) + 𝐵𝛿𝑎𝑡𝑡𝑟
𝑖𝑗
𝑟𝑖𝑗

)(D.32)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = −𝐶 𝜖𝐿𝑦

𝑅2
𝑖𝑗𝑟2

𝑖𝑗
𝑋𝑖𝑗𝛼𝑖𝑗 (D.33)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = −𝐷 𝜖

𝑅𝑖𝑗𝑟3
𝑖𝑗

𝐿𝑦𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 𝑌𝑖𝑗𝛽𝑖𝑗 (D.34)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖𝐿𝑦
𝑅𝑖𝑗𝑟2

𝑖𝑗
(−𝐶 𝑋𝑖𝑗𝛼𝑖𝑗

𝑅𝑖𝑗
+ 𝐷

𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 𝑌𝑖𝑗𝛽𝑖𝑗

𝑟𝑖𝑗
) (D.35)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = − 𝜖𝐿2

𝑦
𝑅2

𝑖𝑗𝑟2
𝑖𝑗

𝑋2
𝑖𝑗 (D.36)

𝜕2

𝜕2𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = − 𝜖𝐿2

𝑦
𝑅𝑖𝑗𝑟3

𝑖𝑗
𝛿𝑎𝑡𝑡𝑟

𝑖𝑗 𝑌 2
𝑖𝑗 (D.37)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = − 𝜖𝐿2
𝑦

𝑅𝑖𝑗𝑟2
𝑖𝑗

(𝑋2
𝑖𝑗

𝑅𝑖𝑗
− 𝛿𝑎𝑡𝑡𝑟

𝑖𝑗 𝑌 2
𝑖𝑗

𝑟𝑖𝑗
) (D.38)

The variables above, are defined in the same way as before. The only new expression is :

𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 = 1 + 2𝑎 − 𝑟𝑖𝑗

𝑅𝑖𝑗
, which is called the attraction overlap (D.39)

D.5. Absolute Overlap for Attractive Particles
In a different scenario, where we use the potential that is not dimensionless, which is called
absolute overlap, we get a slightly modified set of equations. The absolute overlap is expressed
as follows:

𝑉𝑖𝑗 =
⎧{{
⎨{{⎩

𝜖
2 [(𝑅𝑖𝑗 − 𝑟𝑖𝑗)2 − 2(𝑅𝑖𝑗𝑎)2] , if 𝑟𝑖𝑗

𝑅𝑖𝑗
< 1 + 𝑎

− 𝜖
2 [𝑅𝑖𝑗(1 + 2𝑎) − 𝑟𝑖𝑗]2 , if 1 + 𝑎 < 𝑟𝑖𝑗

𝑅𝑖𝑗
< 1 + 2𝑎

0 , if 𝑟𝑖𝑗
𝑅𝑖𝑗

> 1 + 2𝑎
(D.40)

We shall now define our overlaps in a different manner than before:

𝛿𝑖𝑗 = 𝑅𝑖𝑗 − 𝑟𝑖𝑗, which is called the absolute overlap (D.41)
𝛿𝑎𝑡𝑡𝑟

𝑖𝑗 = 𝑅𝑖𝑗(1 + 2𝑎) − 𝑟𝑖𝑗, which is called the absolute attractive overlap (D.42)
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The expressions from before now are slightly modified. So if 𝑟𝑖𝑗
𝑅𝑖𝑗

< 1 + 𝑎, we get :

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = 𝐴 𝜖

𝑟2
𝑖𝑗

𝛼𝑖𝑗𝛽𝑖𝑗 (D.43)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = 𝜖

𝑟3
𝑖𝑗

(𝑅𝑖𝑗 − 𝑟𝑖𝑗) (𝐵𝑟2
𝑖𝑗 − 𝐴𝛼𝑖𝑗𝛽𝑖𝑗) (D.44)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖 (𝐴𝛼𝑖𝑗
𝑟𝑖𝑗

𝛽𝑖𝑗
𝑟𝑖𝑗

(1 + 𝛿𝑖𝑗
𝑟𝑖𝑗

) − 𝐵𝛿𝑖𝑗
𝑟𝑖𝑗

) (D.45)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = 𝐶 𝜖𝐿𝑦

𝑟2
𝑖𝑗

𝑋𝑖𝑗𝛼𝑖𝑗 (D.46)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = 𝐷 𝜖

𝑟3
𝑖𝑗

𝐿𝑦𝛿𝑖𝑗𝑌𝑖𝑗𝛽𝑖𝑗 (D.47)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖𝐿𝑦
𝑟2

𝑖𝑗
(𝐶𝑋𝑖𝑗𝛼𝑖𝑗 − 𝐷𝛿𝑖𝑗𝑌𝑖𝑗𝛽𝑖𝑗

𝑟𝑖𝑗
) (D.48)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = 𝜖𝐿2

𝑦
𝑟2

𝑖𝑗
𝑋2

𝑖𝑗 (D.49)

𝜕2

𝜕2𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = 𝜖𝐿2

𝑦
𝑟3

𝑖𝑗
𝛿𝑖𝑗𝑌 2

𝑖𝑗 (D.50)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖𝐿2
𝑦

𝑟2
𝑖𝑗

(𝑋2
𝑖𝑗 − 𝛿𝑖𝑗𝑌 2

𝑖𝑗
𝑟𝑖𝑗

) (D.51)

In the above case, we also observe that the expressions are identical to the ones that are
obtained in the case of repulsive potential between the particles.The expressions change for
the next case, where we see the attraction parameter coming into play.If 1 + 𝑎 < 𝑟𝑖𝑗

𝑅𝑖𝑗
< 1 + 2𝑎,
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the the expressions becomes the following,

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = −𝐴 𝜖

𝑟2
𝑖𝑗

𝛼𝑖𝑗𝛽𝑖𝑗 (D.52)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = − 𝜖

𝑟3
𝑖𝑗

𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 (𝐵𝑟2

𝑖𝑗 − 𝐴𝛼𝑖𝑗𝛽𝑖𝑗) (D.53)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝑞𝛽
𝑏

(𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = 𝜖 (−𝐴𝛼𝑖𝑗
𝑟𝑖𝑗

𝛽𝑖𝑗
𝑟𝑖𝑗

(1 + 𝛿𝑎𝑡𝑡𝑟
𝑖𝑗
𝑟𝑖𝑗

) + 𝐵𝛿𝑎𝑡𝑡𝑟
𝑖𝑗
𝑟𝑖𝑗

) (D.54)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = −𝐶 𝜖𝐿𝑦

𝑟2
𝑖𝑗

𝑋𝑖𝑗𝛼𝑖𝑗 (D.55)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = −𝐷 𝜖

𝑟3
𝑖𝑗

𝐿𝑦𝛿𝑖𝑗𝑌𝑖𝑗𝛽𝑖𝑗 (D.56)

𝜕2

𝜕𝑞𝛼𝑎 𝜕𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = −𝜖𝐿𝑦
𝑟2

𝑖𝑗
(𝐶𝑋𝑖𝑗𝛼𝑖𝑗 − 𝐷𝛿𝑖𝑗𝑌𝑖𝑗𝛽𝑖𝑗

𝑟𝑖𝑗
) (D.57)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
) = −𝜖𝐿2

𝑦
𝑟2

𝑖𝑗
𝑋2

𝑖𝑗 (D.58)

𝜕2

𝜕2𝛾 ( 𝐹 𝑖𝑗
0

2𝑟𝑖𝑗
𝑢2

𝑖𝑗⊥
) = −𝜖𝐿2

𝑦
𝑟3

𝑖𝑗
𝛿𝑎𝑡𝑡𝑟

𝑖𝑗 𝑌 2
𝑖𝑗 (D.59)

𝜕2

𝜕2𝛾 (𝑘𝑖𝑗
2 𝑢2

𝑖𝑗∥
− 𝐹 𝑖𝑗

0
2𝑟𝑖𝑗

𝑢2
𝑖𝑗⊥

) = −𝜖𝐿2
𝑦

𝑟2
𝑖𝑗

(𝑋2
𝑖𝑗 −

𝛿𝑎𝑡𝑡𝑟
𝑖𝑗 𝑌 2

𝑖𝑗
𝑟𝑖𝑗

) (D.60)
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