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A Probabilistic Account of the Uncertainty
Due to Ties in Rank-Biased Overlap
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Abstract

Rank similarity quantifies the difference between two
ordered sets of items. Rank-Biased Overlap (RBO) is a
top-weighted measure of rank similarity that can be used
for a pair of indefinite rankings, such that only a prefix
is known and that items need not be present in both
rankings. This method is frequently used in Information
Retrieval (IR), such as to compare search engine results.
RBO defines tight lower and upper bounds, RBOmin
and RBOmax, which give the uncertainty due to items
in the unseen suffix. Another source of uncertainty are
ties: two items are tied in a ranking if their true order
is not known. Recent work on the treatment of ties
in RBO has made it a tie-aware measure. However,
unlike the uncertainty due to unseen items, uncertainty
due to ties does not disappear for longer prefixes. Deter-
mining the distribution of possible scores is 𝑂((𝑛!)2)
if all arrangements of ties are considered, and existing
methods only find the lower and upper bound for
RBO with respect to ties. We investigate whether a
probabilistic estimator for the uncertainty distribution
can be constructed. We use an iterative convolution
method to compose the marginal PMFs of each item.
By evaluating against synthetic data, we show that this
estimate distribution can be used to reliably compute
confidence intervals, mean, and variance. We conclude
that a probabilistic method is a viable solution when
seeking deterministic results with fast computation.
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1  INTRODUCTION
Sports results, Web searches, and triage lists are all examples
of rankings [1]. Coefficients of rank similarity are methods that
can compare two such rankings and indicate the degree to
which they agree or differ—comparing different search engines,
for example, is of particular interest in the field of Information
Retrieval (IR). Is a faster search engine better even though it
ranks the most relevant result lower? Rank similarity provides
objective values that enable such comparisons.

A subclass of the problem of rank similarity is rank corre-
lation, for which two notable coefficients are Kendall’s 𝜏  [6]
and Spearman’s 𝜌 [11]. These are defined for a pair of definite
rankings, which requires finite length and conjointness (each
ranking is complete along a common domain).

1.1 Similarity of Indefinite Rankings

Unweighted correlation coefficients, such as 𝜏 , are not well-
suited to applications in Information Retrieval (IR) and Recom-
mender Systems (RecSys). In IR, a top-weighed measure is of
interest due to the higher importance of earlier results [13]. (In
comparing two Web search engines on one query, the similarity
of Page 1 is more telling than that of Page 100). Such results are
also nonconjoint, as IR systems may not have the same access
or criteria for candidate results, and can have a length that
approaches infinity [13]. Webber et al. define the properties of
an indefinite ranking, in that it is nonconjoint, top-weighted,
and can be truncated arbitrarily [13].

The authors also propose Rank-Biased Overlap (RBO), a
new rank similarity coefficient for indefinite rankings [13]. T
RBO allows for evaluating the prefix of a pair of nonconjoint
rankings; by its definition, an infinitely long tail of unknown
values does not dominate the known prefix.

1.2 Uncertainty in Rank-Biased Overlap

In Rank-Biased Overlap, Webber et al. include uncertainty due
to prefix evaluation [13]. For a nonconjoint pair of infinite
rankings 𝑆 and 𝑇 , RBO can give results even if only fixed-
length prefixes are known and an infinite tail remains unknown.
In such a case, the bounds RBOmin and RBOmax represent the
lower and upper bound on the complete ranking’s RBO, where
RBOmin assumes that the unknown tails are entirely disjoint
while RBOmax assumes full unseen agreement. Extrapolating
the agreement seen up to 𝑑, the point estimate RBOext can also
be used.

Due to RBO’s top-weightedness, the resulting uncertainty
decreases monotonically with evaluation depth 𝑑. Any RBO
value at a greater depth will necessarily be between RBOmin
and RBOmax as evaluated at 𝑑. This principle can be seen in
Figure 1, which visualizes RBO on an arbitrarily chosen pair
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Figure 1:  RBO uncertainty due to unseen items converges.
𝑆 and 𝑇  are arbitrarily chosen and without ties. 𝑝 = 0.9.

Figure 2:  RBO uncertainty due to ties does not converge.
𝑆 and 𝑇  are arbitrarily chosen with ties. RBOmin, 𝑝 = 0.9.

of correlated rankings: as more of 𝑆 and 𝑇  is revealed with
increasing depth 𝑑, the uncertainty narrows and RBOext con-
verges to its true value for 𝑆 and 𝑇 .

This convergence allows control over the uncertainty; for
an infinite ranking, increasing the evaluation depth will always
cause lower uncertainty, allowing for compromise between de-
sired precision and computation time.

1.3 Uncertainty Due to Ties

While uncertainty due to unseen items can be mitigated by
evaluating at greater depth, this is not the case for ties. First, the
bounds RBOmin and RBOmax only consider unseen items and
do not take uncertainty due to ties into account. A tie is when
two or more items occupy the same rank in a ranking. Each tie
of length 𝑘 can be broken in 𝑘! ways, and selecting any one
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Figure 3:  Breaking a pair of tied items.
𝑆 is a tied ranking. 𝑆𝑎 and 𝑆𝑏 are the ways of breaking it.

permutation would be arbitrary. Figure 3 shows a tied ranking
𝑆 and its 2! = 2 combinations.

A tie can represent two underlying features of the ranked
data [3, 6]: equality or uncertainty. In the case of equality, there
is no true order between two items - for instance, two ice hockey
teams could both score the same number of points and occupy
the same rank in a tournament. In the case of uncertainty, a true
ordering exists but is not known. For example, two different
search results could have the same retrieval score as a result of
rounding. Breaking such ties would be arbitrary.

In any case, ties affect rank similarity measures: Kendall
[7] first adapted the 𝜏  correlation coefficient to the tie-aware
variants 𝜏𝑎 and 𝜏𝑏, and Corsi and Urbano [3] similarly proposed
tie-aware RBO: RBO𝑎 and RBO𝑏 for use when a true order
exists, but is unknown, and RBO𝑤 for use when ties represent
exact equality. The tie-aware variants of RBO allow its use with
tied data, such as by producing the expectation for all tie per-
mutations (RBO𝑎), but do not give the researcher an accurate
uncertainty to quote. The uncertainty is, however, necessary,
because each permutation of the ties can have a different RBO
value.

In practice, the number of possible values is an issue. To
define it, let us establish that 𝑆 and 𝑇  are indefinite rankings
with ties and that the notation |𝑆𝑘| denotes the number of items
tied for rank 𝑘 of ranking 𝑆. By the principles of combinatorics,
the number of possible permutations of ties in a prefix of length
𝑑 of rankings 𝑆 and 𝑇  is given by:

∏
𝑛

𝑖=1
|𝑆𝑖|! × |𝑇𝑖|! (1)

The factorial growth quickly outpaces computational limits,
with a worst-case complexity of 𝑂((𝑑!)2) if the entire rankings
are tied. In the words of Corsi and Urbano [4],

A brute-force approach that calculates RBO for all possible
permutations is off the table, for the number of permuta-
tions grows factorially with the number of ties. To put
this into perspective, we note that rankings by a typical
TREC Web run have more permutations than atoms in the
observable universe.

1.4 Related Works

Obtaining the exact uncertainty distribution by examining all
combinations is clearly out of the question for practical appli-
cations. However, it cannot be ignored, as evidenced by a
number of works in the field of IR. Yang et al. [14] discuss
the effect of uncertainty due to ties in Rank-Biased Precision
(RBP), an RBO-adjacent measure of retrieval precision [9], con-
cluding that there are cases where this uncertainty can disrupt
otherwise sound conclusions. Ounis et al. [10] note that the
choice of tie-breaking heuristic affected comparisons between
retrieval precision of groups participating in the TREC 2011
Microblog track. Lin and Yang [8] similarly note that arbitrary
tie-breaking challenges experiment reproducibility and suggest
to consistently break by document ID. Most recently, Corsi
and Urbano contribute in [3] that ties in Rank-Biased Overlap
should be broken using their tie-aware variants, discarding all
arbitrary orderings such as document ID. This viewpoint is
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shared by Cabanac et al. [2], who note that such orderings must
be acknowledged an uncontrolled parameter.

Summarily, prior research generally agrees on the fact that
uncertainty due to ties affects conclusions made using measures
such as RBO. Authors’ views generally differ on the heuristics
or variants that are to be used, each of which yield different
values for Rank-Biased Overlap. A correct means of ordering
tied items cannot exist; consequently, valid conclusions can only
be drawn by quantifying the uncertainty created by ties.

In their second paper, Corsi and Urbano [4] proposed an
algorithm to efficiently find RBOlow and RBOhigh: the bounds
for RBO for all possible ties. Bounds are also used for the un-
certainty due to unseen items: RBOmin and RBOmax. However,
there is a clear difference between unseen item uncertainty and
tie uncertainty: the former converges to zero with greater depth,
while the latter never converges. This is illustrated by Figure 2.
Uncertainty due to ties cannot be eliminated except by breaking
the ties, and bounds alone discard any information about what
is between them, including the skewness and spread of the
underlying distribution.

1.5 Contribution

This paper proposes to fill the research gap of efficient estima-
tion of the uncertainty distribution due to ties. Section  1.4
has outlined the importance of uncertainty due to ties while
showing that its distribution is computationally intractable to
compute. Further, we note that the approach of Corsi and Ur-
bano [4] is only suitable for finding the distribution bounds, and
that the authors have commented that determining confidence
intervals would be a useful future approach. Consequently, we
propose to answer the following research question:

How can the uncertainty of Rank-Biased Overlap for tied
rankings be represented probabilistically?

A useful answer to this research question would entail a prob-
abilistic model that can efficiently estimate the distribution of
uncertainty due to ties in Rank-Biased Overlap.

The method must be resistant to outliers, should produce
variable confidence interval-like bounds, and must also be more
efficient than searching the tie permutation space, which is
𝑂((𝑛!)2) in the input size. This paper proposes a method of
estimating the uncertainty distribution of RBO for tied data
that satisfies these requirements.

2  RANK-BIASED OVERLAP
RBO, as defined by Webber et al. [13], is defined as a sum across
depth 𝑑 of two rankings 𝑆 and 𝑇 :

RBO(𝑆, 𝑇 , 𝑝) = (1 − 𝑝) ∑
∞

𝑑=1
𝑝𝑑−1𝐴𝑑 (2)

In the equation above, RBO uses the persistence parameter 𝑝 ∈
(0, 1), to tune the top-weightedness of the measure. 𝐴𝑑 is the
agreement of rankings 𝑆 and 𝑇  up to depth 𝑑 such that:

𝐴𝑑 = |𝑆:𝑑 ∩ 𝑇:𝑑|
𝑑

(3)

3  UNCERTAINTY IN ITEM CONTRIBUTION
This section will outline the transformation of RBO, which
iteratively sums agreements up to depth 𝑑, into a formulation
that allows us to estimate its distribution due to ties. First, we
will separate RBO into the contributions of individual items in
the intersection of 𝑆 and 𝑇 . We will then derive the marginal
probability mass function (PMF) for an item’s contribution to
RBO. Next, Section 4 will describe how a modified convolution
can efficiently combine these PMFs to obtain the uncertainty
distribution of RBO due to ties.

3.1 Item Contribution to RBO
We will define item contribution for RBO for infinite rankings.
Starting with the sum-of-agreements formulation of Rank-
Biased Overlap, which is equivalent to Equation 2:

RBO(𝑆, 𝑇 , 𝑝) = (1 − 𝑝) ∑
∞

𝑑=1

𝑝𝑑−1|𝑆:𝑑 ∩ 𝑇:𝑑|
𝑑

= (1 − 𝑝) ∑
∞

𝑑=1
∑

𝑖∈(𝑆:𝑑∩𝑇:𝑑)

𝑝𝑑−1

𝑑

(4)

We use 𝕀 to denote the Iverson bracket, where 𝕀[𝑃 ] is 1 if the
logical proposition 𝑃  is true and 0 otherwise. We convert the
summation from the ranking slices 𝑆:𝑑 and 𝑇:𝑑 to all items 𝑆 ∩
𝑇 . Note that the contribution of each item 𝑖 ∉ 𝑆 ∩ 𝑇  is zero, as
these items never add to the agreement.

= (1 − 𝑝) ∑
∞

𝑑=1
∑

𝑖∈(𝑆∩𝑇)
𝕀[𝑖 ∈ 𝑆:𝑑 ∧ 𝑖 ∈ 𝑇:𝑑]𝑝

𝑑−1

𝑑

= (1 − 𝑝) ∑
𝑖∈(𝑆∩𝑇)

∑
∞

𝑑=1
𝕀[𝑖 ∈ 𝑆:𝑑 ∧ 𝑖 ∈ 𝑇:𝑑]𝑝

𝑑−1

𝑑

(5)

We introduce the value 𝑀𝑖, which represents the effective rank
of item 𝑖. It is defined as the earliest position 𝑑 such that item 𝑖
intersects both slices 𝑆:𝑑 and 𝑇:𝑑. Writing the rank of item 𝑖 in
ranking 𝑆 as 𝑆(𝑖), we define 𝑀  as follows:

𝑀𝑖 = max(𝑆(𝑖), 𝑇(𝑖)) (6)

By the definition of 𝑀𝑖, we replace the Iverson bracket:

RBO(𝑆, 𝑇 , 𝑝) = (1 − 𝑝) ∑
𝑖∈(𝑆∩𝑇)

∑
∞

𝑑=𝑀𝑖

𝑝𝑑−1

𝑑
(7)

This can further be rewritten using the closed-form contribu-
tion, using the following identity from Webber et al. [13]:

∑
∞

𝑑=1

𝑝𝑑

𝑑
= ln 1

1 − 𝑝
(8)

This operation converts the infinite sum to a finite sum for
easier computation.

RBO(𝑆, 𝑇 , 𝑝) = (1 − 𝑝) ∑
𝑖∈(𝑆∩𝑇)

[ ∑
∞

𝑑=𝑀𝑖

𝑝𝑑−1

𝑑
]

= 1 − 𝑝
𝑝

∑
𝑖∈(𝑆∩𝑇)[

[[∑
∞

𝑑=1

𝑝𝑑

𝑑
− ∑

𝑀𝑖−1

𝑑=1

𝑝𝑑

𝑑 ]
]]

(9)
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= 1 − 𝑝
𝑝

∑
𝑖∈(𝑆∩𝑇)[

[[ln 1
1 − 𝑝

− ∑
𝑀𝑖−1

𝑑=1

𝑝𝑑

𝑑 ]
]] (10)

The result is a sum over all the items in the intersection of 𝑆
and 𝑇 . An individual item contribution 𝐶𝑖 for item 𝑖 can be
expressed as follows:

𝐶𝑖(𝑆, 𝑇 , 𝑝) = 1 − 𝑝
𝑝 [

[[ln 1
1 − 𝑝

− ∑
𝑀𝑖−1

𝑑=1

𝑝𝑑

𝑑 ]
]] (11)

Conversely, RBO is the sum of its item contributions.

RBO(𝑆, 𝑇 , 𝑝) = ∑
𝑖∈(𝑆∩𝑇)

𝐶𝑖 (12)

Excluding the 𝑝 constant, 𝐶𝑖 depends on one value only: the
effective rank, 𝑀𝑖 ∈ ℤ+. We will define a set of constants 𝐾𝑛 for
𝑛 ∈ ℤ+ which give the contribution of any item with effective
rank 𝑀𝑖 = 𝑛.

𝐾𝑛 = 1 − 𝑝
𝑝

[ln 1
1 − 𝑝

− ∑
𝑛−1

𝑑=1

𝑝𝑑

𝑑
] (13)

∀𝑖  𝑀𝑖 = 𝑛 ↔  𝐶𝑖 = 𝐾𝑛 (14)

To illustrate that each 𝐾𝑛 is a constant given 𝑝, Figure 4 shows
𝐾𝑛 for three common values of the 𝑝 parameter.

3.2 Marginal Probability of Item Contribution

We will determine the probability mass function of 𝐶𝑖. As we
have shown that the contribution 𝐶𝑖 is determined by the effec-
tive rank 𝑀𝑖, we will begin by deriving the PMF of the latter.

In Equation 6, we have defined 𝑀𝑖 = max(𝑆(𝑖), 𝑇(𝑖)). For
rankings 𝑆 and 𝑇  with no ties, 𝑆(𝑖) and 𝑇(𝑖) give a constant rank
for each item 𝑖.

𝑝 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6 𝐾7 …

0.8 .402 .202 .122 .080 .054 .038 .027
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p
(p

er
si

st
en

ce
) 0.75

0.80

0.85

0.90

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7
n

K n
(c

on
tr

ib
ut

io
n)

Figure 4:  Item contribution 𝐾𝑛 for common 𝑝 values.
For any item 𝑖, 𝐶𝑖 = 𝐾𝑛 iff the effective rank 𝑀𝑖 = 𝑛.

If we introduce ties, we can model 𝑆(𝑖) and 𝑇(𝑖) as discrete
random variables. The sample space corresponds to all permu-
tations of breaking ties in 𝑆 and 𝑇 , as in Figure  3. The
arrangement of ties in 𝑆 and 𝑇  is independent and all permuta-
tions are equally likely. It follows that for a single item 𝑖, the RVs
𝑆(𝑖) and 𝑇(𝑖) denoting its position in 𝑆 and 𝑇  are independent
of each other. Each follows a discrete uniform PMF covering
the ranks 𝑖 can take (the positions covered by its tie). We use
notation where 𝑆 lower

(𝑖)  corresponds to the lowest possible rank 𝑖
could take when ties are broken in 𝑆.

𝑆(𝑖) ∼ 𝒰(𝑆 lower
(𝑖) , 𝑆upper

(𝑖) )

𝑇(𝑖) ∼ 𝒰(𝑇 lower
(𝑖) , 𝑇 upper

(𝑖) )
(15)

Figure 5 shows the intuition for one example ranking.
Computing the PMF for 𝑀𝑖 is possible from the indepen-

dent uniform distributions 𝑆𝑖 and 𝑇𝑖. Combining the two
random variables in this way is shown in Figure 6:

𝑀𝑖 = max(𝑆(𝑖), 𝑇(𝑖))

∼ max[𝒰(𝑆 lower
(𝑖) , 𝑆upper

(𝑖) ), 𝒰(𝑇 lower
(𝑖) , 𝑇 upper

(𝑖) )]
(16)

The result can also be written as a standalone probability mass
function using the definition of max. The derivation of this PMF
is Equation  18, with an example in Figure  7. The function is
expressed as a summation for clarity, but can also be rewritten
for 𝑂(1) computation.

P[𝑀𝑖 = 𝑑] = P[max(𝑆(𝑖), 𝑇(𝑖)) = 𝑑]

= P[𝑆(𝑖) < 𝑑 ∧ 𝑇(𝑖) = 𝑑] +

P[𝑆(𝑖) = 𝑑 ∧ 𝑇(𝑖) < 𝑑] +

P[𝑆(𝑖) = 𝑑 ∧ 𝑇(𝑖) = 𝑑]

(17)
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Figure 5:  𝑆(𝑖) is a discrete uniform random variable.
Item 𝑖 can take all positions in its tie with equal probability.
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Figure 6:  𝑆(𝑖) and 𝑇(𝑖) are indep. and determine 𝑀𝑖.
𝑀𝑖 represents item the ‘effective rank’ of 𝑖 in 𝑆 ∩ 𝑇 .
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Figure 7:  𝑀𝑖 is the maximum of 𝑆(𝑖) and 𝑇(𝑖).
𝑆 and 𝑇  are the same rankings as in Figure 6.

= ∑
𝑑−1

𝑗=1
(P[𝑆(𝑖) = 𝑑]P[𝑇(𝑖) = 𝑗] + P[𝑇(𝑖) = 𝑑]P[𝑆(𝑖) = 𝑗])       

+       P[𝑆(𝑖) = 𝑑] × P[𝑇(𝑖) = 𝑑]

(18)

In Equation 18, we have obtained the probability mass function
of 𝑀𝑖. Recalling the definition in Equation 14, 𝐶𝑖 = 𝐾𝑛 if and
only if 𝑀𝑖 = 𝑛. This one-to-one mapping gives a PMF for 𝐶𝑖.

P[𝐶𝑖 = 𝐾𝑛] = 𝑃 [𝑀𝑖 = 𝑛] (19)

3.3 Dependence of the Item Contributions

It may seem that the uncertainty distribution due to ties for
RBO can trivially be obtained from the contribution distribu-
tions 𝐶𝑖 for 𝑖 ∈ 𝑆 ∩ 𝑇 . This would be the case if the RVs were
independent.

If discrete RVs 𝑋 and 𝑌  are independent, this law holds:

∀𝑥, 𝑦 ∈ ℤ2 :   P[𝑋 = 𝑥, 𝑌 = 𝑦] = P[𝑋 = 𝑥]P[𝑌 = 𝑦]        (20)

We can use the following counterexample to show that 𝑀𝑖 and
𝑀𝑗 for two items 𝑖 and 𝑗 are not independent RVs.

𝑆 = 𝑇 = < (𝐴, 𝐵) >

P[𝑀𝐴 = 1] = P[𝑀𝐵 = 1] = 1
4

P[𝑀𝐴 = 1]P[𝑀𝐵 = 1] = 1
16

(21)

Note that by definition, 𝑀𝑖 = 1 only if 𝑆(𝑖) ≤ 1 ∧ 𝑇(𝑖) ≤ 1.
However, this would require items 𝐴 and 𝐵 to be first in
both rankings. There is no untied pair 𝑆′ such that 𝑆′

(𝐴) ≤ 1 ∧
𝑆′

(𝐵) ≤ 1. Thus:

P[𝑀𝐴 = 1 ∧ 𝑀𝐵 = 1] = 0
P[𝑀𝐴 = 1 ∧ 𝑀𝐵 = 1] ≠ P[𝑀𝐴 = 1]𝑃 [𝑀𝐵 = 1]

(22)

By the one-to-one mapping in Equation 19, the item contribu-
tions 𝐶𝑖 and 𝐶𝑗 for 𝑖 ≠ 𝑗 are thus also not independent. We have
obtained their marginal PMFs.

4  UNCERTAINTY IN THE CONTRIBUTION SUM
For this step, we treat each PMF of item contribution as
independent. While this assumption does not hold, as shown
in Section 3.3, this paper will demonstrate that reconstructing

RBO with the independence assumption can be an efficient
estimate of the distribution of uncertainty due to ties.

First, we will write a discrete PMF as a list of pairs
(𝑥, 𝑃 [𝑥]), each pair being an outcome and a nonzero probability
such that 𝑥 ∈ ℝ, P[𝑥] ∈ [0, 1]. The total probability is 1.

𝑋 is a PMF → ∑
(𝑥,𝑃 [𝑥])∈𝑋

𝑃 [𝑥] = 1 (23)

Next, we will use the ⊗ symbol to represent the summing
convolution. This convolution has the function signature shown
in Equation 24: it takes two probability mass functions 𝑋 and
𝑌 , each represented as a pair-list, and outputs all possibilities
of the sum of their values under the assumption that 𝑋 and 𝑌
represent independent RVs. This is defined in Equation 25.

⊗ : (ℝ, ℝ)𝑚, (ℝ, ℝ)𝑛 → (ℝ, ℝ)𝑞 (24)

⊗ (𝑋, 𝑌 ) =
∀𝑥 ∈ 𝑋 :
∀𝑦 ∈ 𝑌 :
    (𝑥 + 𝑦,  𝑃 [𝑥]𝑃 [𝑦])

(25)

We will now apply ⊗ to iteratively evaluate the uncertainty
distribution of RBO. In Algorithm 1, we use the ⊗ operation
to add the marginal PMF of a single item contribution 𝑖 to a
PMF representing the intermediate sum of evaluated items. An
example step in this procedure is shown in Figure 8. We obtain
an approximate PMF for the RBO itself by sequentially adding
the marginal contributions of items {𝐴, 𝐵, …} ∈ 𝑆 ∩ 𝑇 .

𝐶𝐴 ⊗ 𝐶𝐵 ⊗ … ≈ RBO(𝑆, 𝑇 , 𝑝) (26)

Marginal item PMF 𝐶𝐶

𝑐 P[𝐶𝐶] = 𝑐

0.02 2/3

0.03 1/3

Approx. PMF of 𝐶𝐴 + 𝐶𝐵

𝑐 P[𝐶𝐴 + 𝐶𝐵] ≈ 𝑐

0.4 2/5

0.5 3/5

⨂

Approx. PMF of 𝐶𝐴 + 𝐶𝐵 + 𝐶𝐶

𝑐 P[𝐶𝐴 + 𝐶𝐵 + 𝐶𝐶] ≈ 𝑐

0.42 4/15

0.43 2/15

0.52 6/15

0.53 3/15

Figure 8: The summing convolution, written as ⊗.
Note that 𝑋 + 𝑌 = 𝑋 ⊗ 𝑌  only holds for indep. PMFs.

4.1 An Approach to Reducing Covariance

Unfortunately, estimating RBO using Algorithm 1 and the con-
volution function from Equation 25 is not accurate. The problem
with this approach lies in the independence assumption. Sec-
tion 3.3 shows that the assumption can trivially be broken, and
a basic convolution makes no effort to deal with the covariance.

On the other hand, eliminating covariance by finding the
joint distribution of item contributions 𝐶𝑖 is equivalent to
searching the entire permutation space. The problem is related
to tensor estimation of joint distributions, a well-known dimen-
sionality reduction problem in Machine Learning, however, this
is a complex approach that would require two- or three-dimen-
sional pairwise marginal probabilities [5].
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1: procedure EstimateRBO(𝑆, 𝑇 , 𝑝) 
2:
3: ▷ Initialize the PMF 𝑋 for length 0.
4: ▷ This stores a list of RBO-probability pairs.
5: ▷ For an empty ranking pair, P[𝑋 = 0] = 1.
6: 𝑋 ← {(0, 1)}
7:
8: for each item 𝑖 in 𝑆 ∩ 𝑇  do
9: ▷ Obtain the contribution PMF 𝐶𝑖 for item 𝑖.
10: ▷ The function is given in Equation 19.
11: 𝐶𝑖 ← Contribution(𝑖, 𝑆, 𝑇 , 𝑝)
12:
13: ▷ Perform the convolution.
14: 𝑋 ← 𝑋 ⊗ 𝐶𝑖
15: end
16:
17: ▷ Return the resultant PMF.
18: ▷ 𝑋 approximates the uncertainty distribution.
19: return 𝑋
20:
21: end

Algorithm 1: Estimation by convolution

This part will describe a modular approach of solving this
problem. We will continue using iterative convolution, emulat-
ing the covariance by adding ‘rules’ into the ⊗ function. First,
we will modify the algorithm with a new data structure, a
‘bitstring’, to store intermediate values instead of raw numeric
contribution. Next, we will show that this scheme makes it easy
to apply rules and achieve better results.

Algorithm 1 maps the PMF for the first effective index of
an item 𝑀𝑖 to contribution value 𝐶𝑖, then convolves the values.
We will instead convolve the indices and map them to a value
later. From the one-to-one mapping of 𝑀𝑖 to 𝐶𝑖 (Equation 19),
we can show that for an arbitrary set of items 𝐼 , the sum of
contributions 𝐶𝑖 can be calculated from the set of their effective
ranks 𝑀𝑖. We will store this instead of the value.

∑
𝑖∈𝐼

𝐶𝑖 = ∑
𝑖∈𝐼

𝐾𝑀𝑖
(27)

Now, let us define the ‘bitstring’, which will encode the set of
𝑀𝑖 for an item set 𝐼  as a frequency table of infinite length. The
𝑘th digit of a bitstring refers to the number of occurrences of 𝑘.
Equation 28 shows an example of this.

(𝑎 × {1}) ∪ (𝑏 × {2}) ∪ (𝑐 × {3}) ∪ … = "𝑎𝑏𝑐…"
{1, 2, 4, 4} = "110200…"

(28)

Let us extend our definition of the contribution constants 𝐾𝑛
to a bitstring. Using function notation, 𝐾𝑛 : 𝑛 ∈ ℤ+ → ℝ gives
the contribution of a single item where 𝑀𝑖 = 𝑛. Similarly, we
extend this to multiple items. Let 𝐾𝑏 : 𝑏 ∈ 𝔹𝑛 → ℝ, where 𝔹
is the set of all bitstrings. 𝐾𝑏 is the contribution sum of all
𝑀𝑖 values encoded in the bitstring: the 𝑑th digit represents the
frequency of items where 𝑀𝑖 = 𝑑. An example is shown in
Equation 30.

𝑏 is a bitstring  →   𝐾𝑏 = ∑
∞

𝑑
𝑏𝑑𝐾𝑑 (29)

𝐾"110200…" = 𝐾1 + 𝐾2 + 2𝐾4 (30)

The new formulation of the algorithm will perform this step at
the very end while returning the value. Bitstrings will be used to

represent a sum of item contributions. The convolution function
will be written accordingly (Equation 31).

⊗ : (𝔹, ℝ)𝑚, (𝔹, ℝ)𝑛 → (𝔹, ℝ)𝑞 (31)

A single item contribution, in bitstring form, is a a ‘1’ at digit 𝑑,
where 𝑑 = 𝑀𝑖, and ‘0’ otherwise.

𝑀𝑖 = 𝑛 →  bitstring of item 𝑖 = {1 at digit 𝑛
0 otherwise (32)

With a basic ⊗ function such as described by Equation 25, using
bitstrings will not change the final estimation value. With the
PMF in the bitstring formulation, however, we can apply ‘rules’
by modifying the ⊗ function.

4.2 Applying Rules

We will define a set of rules that our bitstring must satisfy in
order to reduce the impact of covariance on our estimation. The
three rules that follow are limitations on possible permutations
from the definition of a ranking.

Rule 1. The sum of digits in a bitstring is equal to the number
of contributing items.

Rule 1 states that in a valid permutation, all items contributing
to RBO must have exactly one value of 𝑀𝑖. Since the bitstring
is a frequency table representation of contributing 𝑀𝑖 values,
the frequencies must count to the number of contributing items.

Rule 2. The cumulative sum of digits up to index 𝑑 is less than
or equal to 𝑑.

Rule 2 states that the agreement of a ranking at depth 𝑑 cannot
be greater than 𝑑. The agreement is equivalent to the frequency
of items where 𝑀𝑖 ≤ 𝑑, or the cumulative sum of the bitstring.

Rule 3. No digit is greater than 2.

Rule 3 is derived from the RBOhigh algorithm from Corsi and
Urbano [4]. It states that there is no valid permutation such that
depth 𝑑 adds 𝑛 > 2 items to the agreement: this would require
3 or more items to be at rank 𝑑, which is not possible.

Let us define a modified ‘culling convolution’, ⊗cull, which
works analogously to ⊗, only with the additional step of remov-
ing bitstrings from the PMF that do not satisfy Rules 1, 2, and 3.
The total probability is then renormalised¹ to 1. This algorithm
is shown in Algorithm 2. The effects of “culling” are twofold:
first, the estimate PMF is a more accurate representation of the
actual distribution. Second, the resultant PMF has significantly
fewer cases and thus takes up less memory.

Figure 9 shows an example ranking pair where the differ-
ence can be seen: while the basic convolution produces two
values outside of the actual distribution of permutations, the
culling convolution removes these ‘impossible’ cases and more
accurately represents the true distribution.

While the depicted example of 𝑆 = < (𝐴  𝐵  𝐶) >,  𝑇 =
< (𝐴  𝐵)  𝐶 > is clearly in favor of the culling convolution,

quantifying this improvement is of interest. Kullback-Leibler
divergence and similar commonly used statistical distances are
unsuitable for this comparison due to the disjoint support: cases

¹This is a naive approach that does not preserve the marginal probabil-
ities. Its implications will be discussed in Section 6.
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Figure 9: Basic and culling ⊗ on an example ranking pair.
Example: 𝑆 = < (𝐴  𝐵  𝐶) >,  𝑇 = < (𝐴  𝐵)  𝐶 >

1: procedure ⊗cull(𝑋, 𝑌 ) 
2:
3: ▷ Initialize the result PMF 𝑍 .
4: ▷ This is a list of bitstring-probability pairs.
5: 𝑍 ← {("000…", 1)}
6:
7: for each pair (𝑏𝑋, P[𝑏𝑋]) in 𝑋 do
8: for each pair (𝑏𝑌 , P[𝑏𝑌 ]) in 𝑌  do
9: if 𝑏𝑋 + 𝑏𝑌  satisfies rules then
10: 𝑍 ← 𝑍 + (𝑏𝑋 + 𝑏𝑌 , P[𝑏𝑋]P[𝑏𝑌 ])
11: end
12: end
13: end
14:
15: ▷ Normalize probabilities in 𝑍 to 1.
16: 𝑍 ← Normalize(𝑍)
17: return RBO, 𝑝RBO
18:
19: end

Algorithm 2: The modified convolution, ⊗cull

in the estimate PMF may not be present in the real distribution.
This is also the case for the culling convolution, as not all im-
possible permutations have been eliminated by our three simple
rules. The measure suitable for this comparison is the Earth
Mover’s Distance (Wasserstein metric 𝑊1) [12], which allows
for effective comparison of weighted discrete distributions with
disjoint support. In the example in Figure 9, ⊗cull results in an
improvement of the EM distance from 0.0131 to 0.0069.

5  EXPERIMENTAL EVALUATION
A systematic evaluation on synthetic and real-world data was
conducted to evaluate the method’s performance. To be a suc-
cessful implementation, the estimator must perform well for a
diverse range of cases; to that end, synthetic TREC-like data
was used.

5.1 Simulation Conditions

We conducted large-scale empirical evaluation of the estimator
on synthetic data. The aim of this evaluation is to test the
method on a large number of randomized rankings, establish
a picture of its baseline efficiency, and reason about situations
where it performs better or worse. This section will explain the
simulation methodology and introduce the results. A discussion
will follow in Section 6.

The test data was constructed using the simulate.R pro-
gram by Corsi and Urbano [3]. This program creates a pair of
tied rankings 𝑆 and 𝑇  with parameters |𝑆|, |𝑇 |, 𝑁 , and 𝜏 , where
𝑁 > |𝑆|, |𝑇 | is the number of items in the sample space and 𝜏

is Kendall’s correlation of the randomly generated scores used
to construct both rankings. The simulation code selects a uni-
formly distributed random 𝜏  for every ranking pair, producing
a variety of correlated and uncorrelated rankings.

We generated rankings in four categories of ranking “size”,
ranging from 6 to 29 items. Table 2 shows the values of |𝑆|, |𝑇 |,
and 𝑁 , and the number of rankings generated by category. Ad-
ditionally, a permutation cap of 105 was applied: ranking pairs
where the number of possible tie arrangements was greater than
105 was not included. This threshold was set to exclude those
pairs for which the true distribution of possible values could not
be computed in a reasonable time; the impact of this decision is
discussed in Section 6.

The probability mass function of the estimation method
described in this paper was generated for each ranking along-
side the actual PMF given by evaluating all permutations. The
parameter 𝑝 was set to 𝑝 = 0.9. Quantile data was computed for
each PMF without interpolation. Mean and variance data was
computed for each PMF. Finally, Earth Mover’s Distance (EMD)
was computed to compare the two PMFs. The inclusion of this
statistical distance is discussed in Section 4.2.

5.2 Evaluation Results

Table  1 is a summary of data collected during the empirical
evaluation. The mean Earth Mover’s Distance for all ranking
sizes was found to be 1.98 × 10−3 with some variation between
ranking sizes. We consider this to be an indicator that the distri-
butional similarity is high and that the estimate distribution will
yield reliable results in for a diverse set of rankings.

The “S” size rankings were observed to be more frequently
subject to estimation errors, with a notably above-average mean
Earth Mover’s Distance at 4.69 × 10−3, or ≈ 2.4 times the mean
for all. This is also visible in the mean squared error of the
variance estimator, which is 1.86 × 10−7 as compared to 2.60 ×
10−8 for rankings of size “XL”.

Figure 10 shows error in estimating the mean of the distri-
bution. The plot shows that the estimate PMF is well-centered
around the true distribution for all values of RBO, with no no-
ticeable correlation with the value. An enlarged plot is included
with a linear color scale to show the alignment of the 𝑥 and 𝑦
axes in the plot.

Figure 11 shows the error in estimating the 2.5th and 97.5th
percentile of the data. The data is adjusted for equal represen-
tation of each ranking size. We note that smaller rankings are
more frequently represented on the tails of the histograms,
indicating once again that the error is higher for this category.

Finally, all probability mass functions generated exceeded
the most extreme values for the true PMF; no estimate for the
0th or 100th quantile was closer to the mean than the true
value. Therefore, the estimate distribution can be said to always
overestimate the uncertainty.

6  DISCUSSION
We introduced the evaluation results, which validate that the
iterative convolution method is a viable method for estimation
of uncertainty due to ties in Rank-Biased Overlap. The data
shows that the estimate probability mass function obtained
exhibits consistent performance for a range of ranking lengths,
item counts, and RBO values.
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size S M L XL All sizes

Mean EMD† 4.69×10−3 2.82×10−3 1.75×10−3 1.22×10−3 1.98×10−3

MSE Mean 3.66×10−5 1.35×10−5 6.73×10−6 4.12×10−6 8.66×10−6

MSE Var 1.86×10−7 7.52×10−8 3.89×10−8 2.60×10−8 4.91×10−8

MSE q0 1.50×10−4 1.13×10−4 6.50×10−5 4.40×10−5 7.43×10−5

MSE q0.025 2.41×10−4 9.30×10−5 5.15×10−5 3.45×10−5 6.33×10−5

MSE q0.05 5.17×10−5 3.57×10−5 2.50×10−5 1.97×10−5 2.72×10−5

MSE q0.95 1.93×10−4 7.65×10−5 4.35×10−5 3.05×10−5 5.29×10−5

MSE q1 4.06×10−4 1.52×10−4 7.63×10−5 4.68×10−5 9.77×10−5

Table 1: Summary of evaluation data.

Ranking size   |𝑆| = |𝑇 |    𝑁    count   

S 𝒰(6, 11) 12 5 000

M 𝒰(12, 17) 18 35 000

L 𝒰(18, 23) 24 75 000

XL 𝒰(24, 29) 30 35 000

Table 2: Rankings sizes for the experimental evaluation.

Further, the results identify key characteristics of the ob-
tained distribution: namely, that its minimum and maximum
values are at least as extreme as the true distribution, and simi-
larly that the an arbitrary quantile of the estimate distribution
is biased away from its center.

These findings do not compare the accuracy of the estimate
to any baseline, and as such we consider this study to be an
exploratory evaluation. A more rigorous comparison including
real TREC or other IR data would be suitable if the method were
to be integrated in an R package and used in the field.

6.1 Method of the Empirical Evaluation

First, we consider the impact of the 100k permutation limit
imposed on the rankings evaluated against. We justify the
inclusion of this limit, because it is consistent with what similar
works have used in their experiments [3, 4]. Additionally, with
Rank-Biased Overlap being a top-weighed measure, a high per-
mutation count is not necessary to obtain higher uncertainty,
and the results could therefore test across the spectrum of
uncertainty magnitude.

The experimental evaluation raises questions about other
possibilities of sampling the distribution of all tied rankings.
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Figure 10: Estimator performance on mean (enlarged)
Binned data. Density is logarithmic on the left graph.

†Earth Mover’s Distance

-2% 0% 2% 4% 6% 8% 10%
97.5th percentile

siz
e

S

M

L

XL

0%

20%

40%

60%

-8% -6% -4% -2% 0% 2%
2.5th percentile

Pr
op

or
tio

n

Figure 11: CI estimation error for different ranking sizes.
Smaller rankings tend to have larger relative error.

The possibility of uniformly sampling this space was discarded
due to the scope of this project, and we chose to use ranking
simulation code instead. While the results showed a relation
between ranking size and the error of the uncertainty estimator,
we considered that this could be due to the sampling scheme,
which assigned rankings based on scores for which the corre-
lation distribution was uniform (Section  5). For the purposes
of this research, it would be more useful to sample against a
uniform distribution of the RBO uncertainty range.

7  CONCLUSION AND FUTURE WORK
Overall, the evaluation data suggests that this estimation tech-
nique is a strong candidate for efficient estimation of the
uncertainty distribution due to ties. We suggest that future
work continues to pursue efficient estimation via the modified
convolution method. We believe that it is a viable solution to the
dimensionality problem posed by the size of the tie distribution
and should be developed further.

Our recommendation to the field of IR and RecSys with re-
gards to uncertainty in tied data is to continue using the method
of Corsi and Urbano [4] for determining bounds unless arbitrary
quantile estimation would give a significant advantage. In that
case, this method would provide finer-grained results.

The method we proposed further satisfies the requirements
of being able to produce variable confidence interval-like
bounds, and is more efficient than searching the tie permuta-
tion space. For future work, it is crucial that the impact of
simplifying the estimate be explored further. We have defined
an estimation method that is iterative and allows for truncation
for faster evaluation. However, the speed advantage was not
demonstrated in the experimental evaluation due to limitations
of scope. This should be considered when applying methods like
iterative convolution.
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