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Abstract

Bidentate ligand-coordinated transition metal complexes are often used as homogeneous catalyst, as they
have the ability to produce enantioselective compounds. These compounds are of high interest in the phar-
maceutical and food industries. However, identifying high performing catalysts relies on trial-and-error ap-
proaches, which is time consuming and costly. The use of data-driven predictive models could improve this
process significantly, by shifting most of the process from experimental work to computational work.

Previous work from the group has attempted to develop such predictive model using Machine Learn-
ing (ML), a representation of a manually generated static structure and a database generated through High-
Throughput Experimentation (HTE). However, these models faced challenges in terms of model performance
and consistency between different substrates. This research aims to enhance these models, by improving the
representations used in ML to achieve more accurate predictions.

To bring the representations closer to reality, both dynamic and new static approaches are tested, using
conformer ensembles (CEs) generated by CREST. These structures were then used in DFT calculations to
obtain accurate properties of these complexes. Additionally, new HTE data, which is closer to the complexes
used in the simulation, was incorporated to improve training data for the ML models.

The investigated reaction is the hydrogenation of norbornadiene (NBD) using Rh-NBD complexes. The
performance of both classification and regression was compared across different representations, a cheap
topological connectivity fingerprint (ECFP), semi-empirical DFT representations and expensive fully DFT
optimized representations. The results conclude that none of the DFT-based representation outperforms
the cheap topological fingerprint for this specific reaction. The study also highlights the importance of high
quality data in training the models. Ultimately, while the representation was improved, the much simpler
topological method was the most effective for prediction of catalyst performance.
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Introduction

Artificial Intelligence (Al) is becoming increasingly indispensable in our lives. From self-driving cars to ad-
vanced language models like ChatGPT, Al is the latest technological advancement, driven by our desire to
use automation to maximize safety, efficiency, profit and many more things. According to current trends, Al
is expected to grow exponentially in the upcoming years, with Machine Learning, the fastest growing field
within Al, to quintuple in market value by 2030. [1] This growth enables potential applications of Machine
Learning across numerous sectors, as it might be more beneficial to use in the future, in terms of knowledge,
costs and computational power.

Chemists are increasingly interested in utilizing AI for chemical exploration of molecules, materials and cat-
alysts due to challenges associated to their discovery and optimization. The major issue in this field is that
our knowledge is largely based on experimental findings, often without understanding the full underlying
principles. [2]

Catalyst design, for instance, involves complex mechanisms and correlations, making it difficult to di-
rectly connect catalyst properties to their performance. Despite decades of research, this field still relies
heavily on trial-and-error methods to discover new or improved compounds. [3] While High-Throughput
Experimentation (HTE) has improved efficiency by enabling parallel testing, it remains an exhaustive trial-
and-error process, as each potential catalyst is experimentally evaluated. [2]

Machine Learning (ML) can offer a solution to both the knowledge gap and inefficiency of the process, as
this data-driven approach is excellent in identifying similarities and patterns, which ultimately can be used in
predictive models and relate properties to performances. [4] This approach also changes the majority of the
process from manual experimentation to computational analysis, allowing for faster wider and less expensive
screening. [5]

In general, this process of using ML for chemical exploration can be outlined in four fundamental steps: Data
(generation and preprocessing), Representation (input for the ML models), Models (pattern recognition and
predictions) and Analysis (evaluation of results). While literature has shown successful applications, many
studies used relatively simple methods for the Data and Representation step. [4][6][7] We aim to improve
these two steps, as the potential impact to improve catalyst design is the highest here.

Developing a universal predictive model however is unrealistic, given catalysis is a diverse field with a variety
of categories and characteristics. Catalysts can be divided into three main categories: heterogeneous, ho-
mogeneous and bio-catalyst. [8][9] Each type of catalyst has its own distinct properties and applications, re-
quiring specialized approaches for design and optimization. Our focus is on a specific type of homogeneous
catalysts: bidentate ligand coordinated transition metal (TM)-based catalysts. [10][11][12] These catalysts
are utilized to yield stereoselective compounds, which are of high interest in the pharmaceutical and food
industries. [13][14][15]

In previous research from our group, such predictive ML models for bidentate coordinated TM-based cata-
lysts were investigated, with as main objective to investigate their performance both In- and Out-Domain.
[16] A case of asymmetric hydrogenation of imines was performed for five different substrates using 192



ligands, while a generalized precatalyst complex was simulated to obtain numeric features for each ligand
(descriptors). Although, the predictive models were accurate in very specific cases, the performance was not
consistent for all substrates. We suspect this might have been caused by underdevelopment in the 'Data’ and
"Representation’ steps of these models. Since the reaction involved asymmetric hydrogenation, stereochem-
istry might have been important, making the use of simulating a general complex too simple. Therefore, two
main modifications were made to address this problem and continue on this research.

First, in the previous study, experiments were performed on multiple different substrate-Rh complexes
and ligand descriptors were derived from a precatalyst-Rh complex, while substrate specific descriptors were
supplemented separately. Now a new reaction is performed, where the norbornadiene (NBD) moiety in the
precatalyst structure is hydrogenated. Thus creating a more closely related relation between simulated data
and experimental data.

Second, an alternative structural representation method is explored. A dynamic representation, incorpo-
rating conformer searching. This approach might provide more accurate descriptors, since it considers all
possible conformations, leading to representations that are closer to reality.

This leads to the main objective of this thesis, which is about investigating the effect on the performance
of predictive ML models, when different types of representations are used. To answer the main objective a
variety of things will be done:

* Different representations will be compared, including variations in: DFT methods, static and dynamic
structures, and descriptor selection.
* Analysis will be done on prediction results and descriptors.

The key changes made compared to previous research, are mostly focused on improving the least developed
steps Data and Representation. These changes include:

* The usage of a new experimental dataset of hydrogenation of the NBD moiety. Simulated and experi-
mental data will have a closer relation, as both are using NBD as substrate now.

* The usage of dynamic representation, which involves conformer searching. The idea is to bring the
descriptors closer to reality by consideration of all possible conformers.

* Consideration of In-Domain modeling and conversion only, instead of In- and Out-Domain modeling,
and conversion and selectivity. This will simplify the prediction task.

This thesis begins with a theory section to provide the necessary context, followed by a methods section that
describes the tools and techniques used. The main section presents the results and discussion, concluding
with a final section on the conclusion and outlook.



Supporting theory

2.1. Transition metal (TM) complexes

Transition metal (TM) complexes are one of the most important types within homogeneous catalysis. [17]
These complexes consist of a central metal atom surrounded by ligands, which stabilize the complex and can
alter the characteristics of the complex, such as geometry or electronic properties. [18]

These metal centers are usually transition metals, which are located in the d- block of the periodic table.
The partially filled d sub-shell causes the unique properties in these complexes. These properties include:
(1) a range of oxidation states, (2) the presence of unpaired electrons, and (3) the ability to coordinate with
four to six electron-donating ligands. These properties contribute to the tunability of the complexes, making
a versatile and optimizable catalyst. [19]

However, not all transition metals are well-suited for homogeneous catalysis. Metals in effective catalysts
depend on multiple factors, but in general they must be reactive, tuneable, stable, and reasonably affordable.
[19] That is why depending on application, usually transition metals such as rhodium, cobalt, nickel or iron
are used. [20] In this thesis rhodium-based catalysts are investigated, as multiple cases show its capability to
reach high activity and excellent enantioselectivity in combination with phosphorus-based ligands. [21] A few
examples of well-known use cases of rhodium are (asymmetric) hydrogenation, cross-coupling and hydro-
formylation reactions. [11][19] The specific reaction investigated, is the rhodium-catalyzed hydrogenation
reaction of norbornadiene (NBD), which is a precatalyst. [16][22] The reaction scheme is given in Figure 2.1,
where norbornene (NBEN) and norbornane (NBAN) are the formed products of the substrate norbornadiene
(NBD) in presence of hydrogen.

H2 H2
Rh-catalyst Rh-catalyst

/ o

Yy

Norbornadiene Norbornene Norbornane

Figure 2.1: Reaction scheme of hydrogenation of norbornadiene (NBD) to the products norbornene (NBEN) and norbor-
nane (NBAN).

2.1.1. (Bidentate) ligands

The ligands in these complexes are lewis bases, they are typically molecules or ions with one or more free elec-
tron pairs that can be donated to a metal center to form a strong bond. These ligands are categorized based
on the number of coordination bonds they form with the metal atom: monodentate (one bond), bidentate
(two bonds) or polydentate (multiple bonds) ligands. Thermodynamically, more bonds with the metal atom
will usually lead to a stronger bond between ligand and metal. [19] A wide variety of molecules or ions can



2.2. Catalyst design and Machine Learning 4

be used as ligands, each influencing the electronic and steric parameters of the complex in a different way. In
homogeneous catalysis, these ligands are often phosphorus-based due to their high tunability, unique prop-
erties and strong ligation (soft on lewis acid scale). [11][23]

As previous work of the group involved a case of asymmetric hydrogenation, mostly bidentate ligands were
tested. [16] The reason being that bidentate ligands not only offer greater bond strength compared to mon-
odentate ligands, but also enable the ability to produce stereoselective or enantiopure compounds when
asymmetric bidentate ligands are used. The importance and demand in stereoselective or enantiopure com-
pounds can be linked to the pharmaceutical and food industries, where strict regulations on purity and qual-
ity are active. The thalidomide tragedy emphasizes the need for pure compounds, as the wrong enantiomer
can lead to very different effects. [24][25]

In this work, the same ligand selection was used as in previous work. This selection contains mostly
phosphorus-based ligands, and a few hetero donor ligands like PN or PO or phosphorus-based monodentate
ligands. These additional ligands are included as literature have demonstrated some specific applications in
asymmetric hydrogenation using these type of ligands. [26]

89.887°

(a) XYZ structure of L3, where all hydrogen atoms are hided. (b) XYZ structure of L77, where all hydrogen atoms are hided.
NBD is located at the bottom. The angle between L-M-L is NBD is located at the bottom. The angle between L-M-L is
93.6 degrees. 89.9 degrees.

Figure 2.2: Example where different ligands can change complex properties a lot, these two complexes have a very dif-
ferent groups resulting in different bite angles between the donor atoms. The differences in properties such as these can
lead to differences in catalytic activity.

2.2, Catalyst design and Machine Learning

As mentioned in the introduction, the design of catalysts can be significantly enhanced through the integra-
tion of computational techniques. This approach would requires a high-performing predictive model, which
would be employed to assess the performance of numerous ligands and identify the most promising ones.
These selected ligands would then proceed to the next phase of the process and undergo lab testing. This
method would reduce a lot of resources and labor required, as only a selection would make it to the lab test-
ing phase instead of all complexes.

To develop such high-performing model, four well-established steps are important: Data (generation), Rep-
resentation (for the algorithms), (Machine Learning) Models and Analysis (and evaluation of results).

Data generation consist of creating digital representations of the complexes and obtaining experimental
data to be used in the models. This data is stored in a database and preprocessed before it can be used to train
the model. Experimental data is obtained through High-Throughput Experimentation (HTE), a technique
that screens multiple samples simultaneously. This approach allows us to quickly build a large database.
Digitally generated data mostly includes calculations using Density Functional Theory (DFT) (Section 2.3)
and CREST (Conformer-Rotamer Ensemble Sampling Tool) (Section 2.5.2).
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Representation, the generated data is represented in a way that the algorithms can use the data to find
patterns, correlations and more. The complexes are represented through descriptors that are calculated in
the DFT calculations. (Section 2.7)

Machine Learning Models, use an algorithm to find patterns and correlations in different selections of the
descriptors. Together with the experimental data, predictions on (multi-class) classification (Section 2.8.1)
and regression (Section 2.8.1) are made.

Analysis and evaluation of the results are done to determine the performance of the models. The analysis
methods include Balanced Accuracy (BA) (Section 2.8.1) for classification and r-squared (r?) (Section 2.8.1)
for regression.

Representation
for algorithms

Use of descriptors:
DFT-based
ECFP-based

Figure 2.3: The four steps of creating a Machine Learning Model, including Data generation, Representation for algo-
rithms, Machine Learning Models, and Analysis and evaluation of results. In our case, Data and Representation steps are
mostly varied, as these steps can be improved the most.

2.3. Density Functional Theory

Density Functional Theory (DFT) is a quantum mechanical modeling method, used in specializations, such
as computational physics or computational science. It is used to obtain molecular properties of compounds,
by solely using equations to calculate parameters. It is mostly used for calculating electronic parameters, but
can also be used to optimize geometries or calculate frequencies of a molecule or complex. In this work, DFT
is used to generate accurate descriptions of the different complexes. Properties are calculated, which are used
by the ML algorithms to find patterns and similarities.

The information provided in this section is based on Chapter 2 of Dr. V. Sinha PhD thesis and the books: 'A
Chemist’s Guide to Density Functional Theory’ and '"Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory’. [27][28][29]

2.3.1. Theoretical framework

DFT calculations are done on the electron density at molecular level and stem from the Kohn-Sham equa-
tions, which are based on the Hohenberg-Kohn theorems. To understand these, we can start from the foun-
dation of quantum mechanics, which is the non-relativistic, time-independent Schrédinger equation, given
in Equation 2.1.

H‘Pl(flnyy ey fnyﬁlyEZr ey ﬁn) = El\Pl(fli fz; ey fnrﬁly §21 ---;ﬁn) (2']-)

Where H is the Hamiltonian operator for a system with N electrons and M nuclei, ¥ the wave function
with x; denoting the X,Y,Z-coordinates, and E the energy Eigenvalue.

The Hamiltonian operator can be written as the kinetic energy + the potential energy for both electron and
nucleus, which is shown in Equation 2.2. The terms in this equation describe the kinetic energy of the elec-
trons, kinetic energy of the nuclei, Coulomb attraction between nucleus and electron, Coulomb repulsion
between electrons and Coulomb repulsion between the nuclei.
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Where V% is the Laplacian operator for index i, Z4 the charge of index A, r; 4 the distance between electron
i and nucleus A, r;; the inter-electronic distance, and R4p the inter-nuclear distance.

However, this equation requires approximations, since an exact solution can only be obtained for single-
electron systems. The Born-Oppenheimer approximation simplifies Equation 2.2, based on the significantly
faster motion of much lighter electrons compared to nuclei. This approximation assumes that the kinetic
energy of the nuclei is negligible (approximately zero) and that the nucleus-nucleus coulomb interaction
remains constant constant. These assumptions result in a simplified Hamiltonian shown in Equation 2.3.

N M
2 -1
ZV ZZ DI I 2.3)
i=1A=1TiA  j=1j=1
Where Vlz. is the Laplacian operator for index i, Z4 the charge ofindex A, r; 4 the distance between electron
iand nucleus A, and r;; the inter-electronic distance.

The simplification of Equation 2.3 modifies the original time-independent Schrodinger equation (Equation
2.1), resulting in a wave function that becomes parametrically dependent on the nuclear coordinates. The
Schrédinger equation for electrons is given in Equation 2.4.

ﬁel\Pel =E¥e

L (2.4)
\Ilel = \}’i(xlyx2) weey xn|{Rl)R2) -HrRI’L})

Where H,; is the Hamiltonian operator for electrons and ¥,; is parametrically dependent on the nuclear
coordinates.

The Born-Oppenheimer (BO) approximation, however, encounters challenges in accurately describing the
kinetic energy term, caused by the correlated motion of electrons. This issue can be addressed by using the
electron density p(r), which creates a mean-field approximation.

The use of electron density in the BO approximation reduces the degrees of freedom from a number of
spatial 3N variables for a system of N electrons to 3 spatial variables. This idea was based on two Hohenberg
and Kohn (HK) theorems. 'The ground state of any interacting many particle system is a unique functional
of the electron density’ and 'The ground state of any interacting many particle system minimizes the ground
state energy’. Kohn-Sham combined this idea to the Hartree-Fock (HF) energy, given in Equation 2.5, to find
an expression for the hard to describe terms.

Enplp(®) = Vi + ViemlpP)] + J1p(A)] + Tlp(P)] + Exc[p(7)] (2.5)

Where V) is the nuclei-nuclei repulsion term, Vs is the electrons-nuclei attraction term, J is the
mean-field electron-electron interaction, 7 is the kinetic energy term, E)l(c is the exchange-correlation func-
tional term with non-classical effects of the mean-field approximation and p(7) is the electron density.

The Kohn-Sham (KS) energy (Equation 2.6) solves the unknown terms, kinetic energy J and exchange-correlation
functional E)I(C, in the HF energy. The exchange correlation correction is explicitly given in Equation 2.7.

Exslp(®] = Vim + Vmlp®1 + Tl + TES interacting P (M1 + Exclp(7)] (2.6)
Exclp(P)] = Exclp(P]+ Tlp(F)] - T,Ifos,, interacting P (T)] 2.7)
Where TKS is the kinetic energy functional of a non-interacting system, Exc is the exchange

non— mteracnng
and correlation correction to the potential energy and p(7) is the electron density.
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2.3.2, Basis sets

Basis sets are required to solve equations such as the Schrédinger equation for a many-bodied system (similar
to Equation 2.4), such as molecules. While this equation theoretically is solvable using numerical integration
methods, no practical techniques using such approaches are available for molecules. The solution is to use
linear algebra and matrix methods to transform these wave functions (differential equations) to a basis set of
algebraic equations. The wave function can then be expressed as in Equation 2.8.

K
Wi=) cjipjr) (2.8)
j=1
Where K is the amount of basis functions, ¢;; coefficients and ¢ (r) the known function.

These known functions are based on atomic orbitals, typically Slater-Type Orbitals (STOs) and Gaussian-
Type Orbitals (GTOs). In theory, an infinite K should yield the exact solution to the differential equation.
However, this is not the case, and will always result in an energy higher than the true ground state energy Ep.
Therefore, a basis set is chosen that balances accuracy with computational cost. In this thesis, the def2-Split-
Valence Polarization-enhanced (def2-SVPP) basis set is used, which provides additional basis functions for
polarization in heavier atoms. This results in more accurate calculations compared to the normal def2-SVP,

2.3.3. Potential energy surface

Since DFT is used for geometry optimization, it must be able to determine the lowest energy geometries.
The potential energy surface (PES) is een representation of the energy landscape of a given molecule or com-
plex, where the energy is plotted as a function of the atomic positions. [30] Local minima found on the PES
correspond to stable structures, while local maxima correspond to the transition states.

Figure 2.4: Example of a Potential Energy Surface (PES), illustrating how the energy varies given the atomic positions. The
red arrow shows the pathway between two stable conformers. Figure adapted from LibreText Physical Chemistry. [31]

2.3.4. DFT Optimization

DFT optimization (DFT OPT) is a method within DFT that optimizes the input structure to find a local min-
imum on the PES, which corresponds to the local most stable configuration. [32] This method is computa-
tionally intensive, as the structure is iteratively adjusted until convergence is reached.

2.3.5. DFT Single-Point

DFT Single-Point (DFT SP) is a method that calculates the energy from an input structure without adjusting
the input structure. [33] It represents the energy calculation of a specific point on the PES. Since the structure
is not modified, it involves less parameters compared to DFT OPT making it computationally much cheaper.
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2.4. Exchange-correlation functional

Exchange-correlation (XC) functionals approximate the quantum mechanical effects of electron exchange
and correlation. These functionals use either non-empirical or semi-empirical methods, spanning a range
from low to high accuracies. While more refined functionals offer greater accuracy, they also come with a
higher computational cost. These functionals are categorized in tiers based on their accuracy and computa-
tional cost. An overview of all XC functional tiers are shown in the Jacob’s ladder given in Figure 2.5.

Highest chemical accuracy A
¢a Double hybrid/GRP
B2LYP, RPA -
8
(8]
@i Hybrid/Meta-hybrid GGA ©
B3LYP, M06, PBEO S
» S
El M 3
35 2 eta-GGA
s /v MOBL, TPSS §
< GGA 2
>
vp BLYP, BP86, PBE 8
S5
(8]
LDA/LSDA 2
P SVWN
v

Hartree-Fock Theory

Figure 2.5: Jacob’s ladder showing the different levels of exchange-correlation functionals. Left of the ladder the depen-
dencies of each level is given, starting with electron density p, gradient of the electron density Vp, kinetic energy density
7/ Laplacian of the electron density V2p, occupied orbitals ¢; and unoccupied (virtual) orbitals ¢ .

The Jacob’s ladder shows the HF theory at the bottom, where the XC-functional is equal to zero. The tiers are
arranged in increasing order of accuracy and computational cost. The Local (Spin) Density Approximation
(L(S)DA) occupies the lowest tier, this approximation assumes homogeneous gas behavior for the electrons.
The second tier is the Generalized Gradient Approximation (GGA), which is an improvement of the LDA.
It accounts for inhomogeneity by including spatial derivatives of the electron density. The third tier is meta-
GGA, which further refines the approximation by incorporating the kinetic energy density. Hybrid functionals
are in the fourth tier, combining empirical parameters to linearly fit a fraction of the exact non-local exchange
from the HF theory. Meta-hybrid GGA which are even more refined are also in the same tier. It incorporate a
fraction of the HF exchange to the meta-GGA functionals. The current highest tier are the double hybrid and
generalized random phase approximation, which introduces more higher order correlations to the system,
such as unoccupied orbitals. In this thesis the hybrid functional 'PBEQ’ (also known as 'PBE1PBE’) is used for
all DFT calculations. PBEQ is a hybrid function, which combines the exact HF energy with the Perdew-Burke-
Enzerhof functional. Which should give improved accuracy for a higher computational cost. This functional
is specifically chosen, because studies on similar complexes have shown good results. [34][35]

2.5. Conformer searching with semi-empirical methods

While DFT is excellent at calculating properties and locating minima or maxima, it is also very resource in-
tensive. Locating all conformers in a conformer ensemble requires rotation of all bonds and optimization of
all conformers, which makes using DFT inefficient and unreasonable. Semi-empirical methods offer a more
practical solution. These methods are like DFT based on quantum mechanics, however it uses alot of approx-
imations, either derived from experimental data or simplifying phenomena to make the calculations quicker
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but also less accurate. This allows for quick exploration of the entire PES to identify stable conformers (lo-
cal minima). The resulting approximate structures can be refined and optimized using DFT. This approach
accelerates the process by a lot and reduces computational cost by using semi-empirical methods for initial
screening and DFT for final optimization.

2.5.1. GFNn-xTB

Semi-empirical tight-binding models are considered an efficient alternative to DFT calculations. One of these
models is called the Geometry, Frequency, Non-covalent, extended Tight-Binding (GFN-xTB) method, which
provide reasonably accurate results for a fraction of the cost of DFT OPT calculations. [36] GFNn-xTB meth-
ods have multiple methods tailored for different needs in system, such as just optimization of geometries or
adding improved accuracy for electronic parameters. The current derived GFN-xTB methods are: GFN1-xTB,
GFN2-xTB, GFN-iFF and GFN-FE GFN-XTB is solely based on quantum mechanical tight binding models,
while GFN-@)FF are based on quantum mechanical integrated or generalized force field methods. GFN2-
xTB, the successor of GFN1-xTB, has improved accuracy, particularly for larger complexes, on polarization,
dispersion and interactions. This increased accuracy however, comes with a higher computational cost. The
GFN-iFF and GFN-FF are often used for larger systems, specifically for molecular dynamics, but also con-
former searching. GFN-iFF is more accurate in transfer polarization and other electronic parameters within
the systems. [36][37][38][39]

2.5.2, CREST

CREST (Conformer-Rotamer Ensemble Sampling Tool) is an automatized algorithm designed for efficient
conformer exploration using these GFNn-xTB methods. This tool offers a variety of functions allowing for
generation of a diverse conformer ensemble, which includes finding different conformations, aggregates and
isomers. CREST identifies different conformers by rotating covalent bonds. It calculates the root mean square
deviations (RMSD) to distinguish duplicates and isomers. xTB energies are used to identify stable conformers
by locating minima on the PES. [40][41] In this thesis, CREST was used for conformer searching in combina-
tion with GFN2-xTB calculations. GFN2-xTB is specifically chosen for its improved accuracy when dealing
with polar and complex systems. [36]

2.6. Properties vs barcode

ML algorithms require a machine-readable format of the complexes, to identify similarities and patterns
within the data. This done through descriptors, as they allow us to better understand the relationship be-
tween found patterns and real chemical properties. Descriptors have a different meaning for DFT-based and
ECFP representations.

2.6.1. Descriptors for DFT-based representations

DFT-based descriptors represent the properties of a complex by using values from the prior DFT calcula-
tions. The descriptors were calculated in two ways. In representations where only one conformer is used,
such as the manually generated structure (handmade) or the minimum energy conformer from a CE, values
are directly taken from the DFT calculations. In representations where the entire CE is considered, the de-
scriptors are Boltzmann averaged values from all conformers in the ensemble. The Boltzmann weights are
determined by the energies calculated for each conformer, with a lower energy corresponding to a higher
Boltzmann weight. As a result, more stable conformers on the PES have greater influence on the descriptors.
These descriptors were calculated and retrieved using OBeLiX, an automated Python workflow developed by
our group. [42] A more detailed explanation of the process can be found in Section 3.2.5.

The descriptors can be categorized in geometric, steric and electronic parameters, with the complete list
given in shown in Table 2.1, which also highlights the differences between the three descriptor selections
used.

The 36 descriptors selection includes all descriptors used, with some descriptors using values obtained
from calculations using the free ligand (FL) geometries. These FL geometries were retrieved from DFT Opti-
mization calculations, and used DFT SP calculations to obtain FL descriptors. DFT SP calculations ensured
that the FL geometries remained consistent with their geometry in the complex. This approach allows for
the calculation of properties solely influenced by the ligand itself, without the interference from the rest of
the complex. The 24 descriptor selection differs by excluding steric descriptors related to stereochemistry.
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The 21 descriptor selection, additionally, differs to this with using only complex descriptors, where the other
ones use free ligand descriptors. This 21 descriptors selection, is used by geometries which only use DFT SB,
as it was not possible to extract the FL geometries from these calculations.

Steric descriptors

Steric descriptors represent the steric values for each quadrant (quad) and octant. The buried volume is used
to quantify in percent how much of the metal center is occupied by the ligand. [43] Donor min and max refer
to the two electron-donating atoms that forms bonds with the metal center.

Geometric descriptors

Geometric descriptors were related to the bite angle, cone angle, dihedral angles of the complex. The bite
angle represents the angle between the two electron-donating atoms and the metal center. The cone angle
describes the angle including the most outer atoms of the ligand, with the metal center positioned at one
corner. The dihedral angle refers to the angle of two plane through two sets of three atoms.

Electronic descriptors

Electronic descriptors are related to the electronic properties of the complex, where energies and charges are
calculated. The abbreviations in these descriptors are NBO (Natural Bonding Orbital), HOMO (Highest Oc-
cupied Molecular Orbital), LUMO (Lowest Unoccupied Molecular Orbital).

Figure 2.6: Visualization of the cone angle (f) and bite angle (). Figure adapted from Chemical Communications. [43]
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Table 2.1: Overview of the different descriptor selections used and on which structures they are based on. FL refers to free
ligand geometry is used, COMP refers to complex geometry is used.

36 descriptors 24 descriptors 21 descriptors

Name (stereoC., (no stereoC., (no stereoC.,
free ligand) free ligand) complex)
Steric
'NE_quad’ Yes - -
'NW_quad’ Yes - -
'SW_quad’ Yes - -
"SE_quad’ Yes - -
"4+,4,+_octant’ Yes - -
'-,+,+_octant’ Yes - -
’-,-,+_octant’ Yes - -
"+,-,+_octant’ Yes - -
’+,-,-_octant’ Yes - -
’-,-,-_octant’ Yes - -
’-,+,-_octant’ Yes - -
"4,4,-_octant’ Yes - -
"buried_volume_Rh_3.5A' Yes Yes Yes
’buried_volume_donor_max’ Yes Yes Yes
"buried_volume_donor_min’ Yes Yes Yes
Geometric
'bite_angle_sin’ Yes Yes Yes
'bite_angle_cos’ Yes Yes Yes
‘cone_angle_sin’ Yes Yes Yes
‘cone_angle_cos’ Yes Yes Yes
‘dihedral_angle_1’ Yes Yes Yes
‘dihedral_angle 2’ Yes Yes Yes
‘distance_Rh_max_donor_gaussian’ Yes Yes Yes
‘distance_Rh_min_donor_gaussian’ Yes Yes Yes
Electronic
'distance_pi_bond_1’ Yes Yes Yes
‘distance_pi_bond_2’ Yes Yes Yes
'sum_electronic_and_free_energy_dft’ Yes Yes -
‘dipole_moment_dft’ FL FL COMP
"lone_pair_occupancy_min_donor_dft’ FL FL COMP
"lone_pair_occupancy_max_donor_dft’ FL FL COMP
'dispersion_energy_dft’ FL FL COMP
‘nbo_charge_Rh_dft’ FL FL COMP
‘nbo_charge_min_donor_dft’ FL FL COMP
‘'nbo_charge_max_donor_dft’ FL FL COMP
’homo_lumo_gap_dft’ FL FL COMP
‘lone_pair_occupancy_max_donor_dft_abs_diff’ Yes Yes -
‘lone_pair_occupancy_min_donor_dft_abs_diff’ Yes Yes -

2.6.2. Descriptors for ECFP representation

ECFP descriptors tell essentially nothing about electronic or geometric properties of the complex, but act es-
sentially as a barcode to describe the topology of the complex. The values in these descriptors are boolean,
and how they are created in described in more detail in Section 2.7.2. Patterns and similarities between dif-
ferent complexes can be found as these descriptors are created in such systematic way that values within a
descriptors refer to the same group of atoms.
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2.7. Representations

Several representations are used for the ML algorithms to identify patterns and similarities. These represen-
tations vary in simulation methods or selection of descriptors. These representations are essentially a list of
selected descriptors, where each descriptor has a value for each complex.

In the ML algorithms, these representations are linked to the experimental data (outcome). The descriptors
within these representations are crucial for the model’s performance, as the ML algorithm finds patterns and
similarities among them. The goal of using these different representations is to assess whether increasing the
accuracy of descriptors leads to improved model performance.

2.7.1. DFT-based representation
The DFT simulation based descriptors, vary in geometry calculation method, conformers selection and de-
scriptors used.

Geometries were calculated using three methods: a handmade structure which is DFT optimized, a hand-
made structure which is xTB optimized in CREST, and a handmade structure which is first xTB optimized in
CREST and then DFT optimized.

Two conformer selection methods were used (in case of a conformer ensemble): the minimum energy
structure, which considers only the most stable conformer, and the Boltzmann averaged structure, which ac-
counts for the entire conformer ensemble.

Three descriptor selection sets were used: a 36-descriptor set that includes stereochemistry and DFT op-
timized free ligand parameters, a 24-descriptor set containing DFT optimized free ligand parameters, and a
24-descriptor set containing DFT SP complex descriptors.

2.7.2, ECFP

Extended Connectivity Finger Prints (ECFP) are circular topological fingerprints used to characterize molec-
ular complexes. These fingerprints contain a lot of fingerprint parameters, which are boolean values and de-
scribe a part of the molecular structure. These fingerprints are systematically made in a way, which allows for
very precise and structural mapping of parameters. These allow for excellent similarity searching and cluster-
ing if they have the same fixed-length bit string. [44][45]

Creation

The creation of ECFP is based on a simple and structured concept. It starts with user-provided inputs such as
areadable chemical structure and fixed-bit string. These readable structure is typically given in SMILES (.smi),
structure-data file (.sdf), MOL/MOL2 (.mol) or XML files (xml). The fixed-bit string defines the number of
‘parameters’ these fingerprint consist of. This is typically chosen based on the complexity of the compounds,
as too much bits can lead to overfitting and too few bits result in loss of data. These bits are generated us-
ing hashed data, where each hash contains information of the atomic number, heavy atom neighbor count,
valance (minus the number of hydrogen atoms), ring membership and atomic charge.

In a molecule or complex, the data of each atom processed iteratively. Each atom is considered as starting
point and its n-th neighbors are considered n iterations from the starting point, creating a circular iteration.
This process goes iteratively through the entire molecule, where each unvisited neighbor updates the current
identifiers, similarly like in graph traversal. Only non-duplicate combinations are added as new information
to the identifiers, and where identifiers are found in different iterations, only the one with the lowest iteration
count is kept. once all non-duplicate identifiers are found, they are then hashed, each referring to specific
(sub)groups of atoms. An example is shown in Figure 2.7, 2.8 and 2.9.

A

A AA

[teration 0 [teration 1 [teration 2

Figure 2.7: Example of how circular iterations are taken in a molecule. Figure adapted from Medium. [46]
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Figure 2.8: Example of new features that are added after each iteration. Figure adapted from Medium. [46]
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Figure 2.9: Example of hashing and bit collision in the final ECFP representation. The values are binary, and there is 1 bit
collision where two different identifiers refer to the same point in the representation. Figure adapted from Research Gate.
(47]

2.8. Machine Learning

Machine learning is big part of Al and can be scribed as "The field of study that gives computers the ability
to learn without being explicitly programmed." — Arthur Samuel. Within Machine Learning there are also
categories to distinguish different variant of ML. There is supervised, unsupervised and reinforced learning.
With supervised and unsupervised being a relevant for the models we want to use.

2.8.1. Supervised learning

Supervised learning, uses labeled data to train algorithms to classify or predict data. [48] Labeled data is
data with the target value known. These target values can be either a categorical or continuous value. This
method is widely used in the chemical sector, as it relies on known target values. These values are often values
we derive from observations in experiments. Supervised learning provides predictions that can be validated
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against real-world data. In context of catalyst design, it can find correlations between the conversion (target)
and properties of the catalysts, making the development of more effective catalyst better.

Classification

Classification is a component of supervised learning and uses categorical data, where the categories are de-
fined based on thresholds set by the user. These classes can be binary or multi-class. Classification typically
has a higher tolerance for errors, require less data to achieve good predictions and have simpler evaluation
metrics compared to regression. For these reasons classification often outscores regression and is considered
easier to predict. We can classify catalysts in 'bad’ or 'good’ catalysts, or in case of multi-class classifica-
tion, we add 'deactivation’ or other categories to it. In this thesis, the Balanced Accuracy (BA) will be used to
evaluate the classification performance of the model as the data split can lead to unbalanced datasets. This
method labels the predictions results as True Positive (TP), False Negative (FN), True Negative (TN), False
Positive (FP).

Sensitivity + Specifici
Balanced Accuracy = STy 5 pectficity (2.9
TP
Sensitivity = ——— 2.10
ensitivity TP+ FN ( )
TN
Specificity = ——— 2.11
peclialty = TN Fp @10

Regression

Regression only uses continuous data, where a value can only be correct if the real and predicted value are
exactly the same. Therefore, different evaluation metrics are used compared to regression. Typically in regres-
sion, metrics are used that are related to the distance between the real and predicted value. Some examples
are mean squared error (MSE), residual sum squared (RSS) and R-squared (R?). In this report R? will be used
as evaluation metric for regression results. The formula for R? is given in Equation 2.12.

R2=q_2Wi -)°
Y(yi—)?
Where y;, y; and y are the observed value, predicted value and mean observed value respectively.

(2.12)

2.8.2. Unsupervised learning
Unsupervised learning uses data without explicit target values (unlabeled data) to train algorithms by finding
patterns or relationships between the data.

Clustering

Clustering is a form of unsupervised learning, where data is clustered based on similarities between data,
common methods include k-means clustering or DBSCAN. K-means clustering divides the data points in k
amount of clusters and is based on distances from the centroid points, while DBSCAN groups these points
based on density.

In this thesis DBSCAN is used for Filtering for DFT, where conformers are clustered based on their like-
lihood to converge to the same minimum. Previous work has tested these methods in combination with an
algorithm, and DBSCAN works better for this purpose. [49] Filtering for DFT is explained in more detail in
Section 3.2.3.

Dimensionality reduction
Dimensionality reduction is another part of unsupervised learning, where the algorithm analyzes the data
and reduces the dimensionality to retain valuable information and be more interpretable.

In this thesis Principal Component Analysis (PCA) is used, which is a linear based model. The data is
usually shown in 2D or 3D, where the Principal Components shown on each axis are the components with
the highest variance. This allows for the largest separation of points.



Methods

3.1. Experimental data

Experimental data was obtained by Johnson & Johnson. [50] High-Throughput experimentation on Rh-NBD
complexes was conducted and the first half of 192 different complexes was provided. The full list can be
found in Appendix A.1. The experiments were performed twice, with conversion data recorded at 15 minutes
for both runs and at 30 minutes for 'run I'. This resulted in two experimental datasets: one containing the
average conversion from both runs at 15 minutes (run I’ and run II’) and another with the conversion at 30
minutes (run I'). The reaction conditions were T = 303.15 K and P = 3 bar Hy. The samples contained 0.2
mol% Rh-catalyst complex and a total volume of 150 pl (10.2 ul NBD and 139.8 ul THF). The analysis was
done using GC-FID in MeCN.

The company also provided an interpolated conversion plot between 0 and 30 minutes, which is shown in
Figure 3.1. With most curves already having reached their final conversion at 15 minutes. Some curves show
decrease of conversion after 30 minutes.

Conversion

Figure 3.1: Interpolated conversion curves of the experimental data on Rh-NBD complexes. Reaction conditions: 303.15
K, 3 bar Hy. The data point are at 15 and 30 minutes.

15



3.2. Workflow 16

3.2. Workflow
The complete workflow for thesis is adapted from previous work [49]. It begins with the creation of input
structures, which are then processed through conformer searching and pruning packages in Python. The
resulting conformer ensembles are reduced further by filtering before undergoing DFT calculations.

In this thesis, this workflow is finished by doing DFT calculations, calculating descriptors, running these
ML algorithms and analyzing the results.

1. Input structure 2. Conformer searching 3. Pruning 4. Filtering
b .
‘:.o. °®
®e 2
v ey —p
e,
“% e’ #fe ol
L ]
-s.:' \'. ) °®
Se o0
.
6. Descriptors 7. Models

04 10O

Figure 3.2: Complete workflow. Figure adapted from Sara’s thesis. [49]

3.2.1. Input structures

Input structures were created from 192 rhodium-NBD complexes. These complexes contain rhodium with
+1 oxidation state and a molecular moiety that resembles the precatalyst structure. Different ligand families
were investigated, which are specified in Appendix A.1. The catalyst structures are represented using Carte-
sian coordinates in (.xyz) files. These initial structures were handmade. These structures are the starting point
for DFT calculations and CREST to find conformers and optimize these structures.

3.2.2. Conformer searching and pruning
The input structures were used in CREST to find conformers and pruned using MORFEUS.

CREST
CREST version 2.12 and xTB version 6.4.0 was used to generate and find conformers. The hybrid potential
GFN2-xTB//GFN-FF was used, for the improved accuracy and relatively low computational cost. The GFN-
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FF method optimizes conformational geometries using Force Field calculations, then GFN2-xTB single point
calculations are done which are more accurate in our case since we have heavier atoms. The multiplicity and
charge were set to 1, since the total complex has a charge of +1, Rh (1), NBD (0), ligands (0).

MORFEUS

The MORFEUS Python package reduced and preprocessed these conformer ensembles by conformer prun-
ing. The MORFEUS package has multiple pruning tools: energy pruning, enantiomer pruning and root
mean square deviation (RSMD) pruning. All were used to reduce the conformer ensemble. Energy prun-
ing, removed conformers above a certain energy threshold, based on relative energies within the ensemble.
Enantiomer pruning, removed conformers with a different chirality compared to the original input structure.
RSMD pruning, removed duplicate conformers by comparing the difference between molecules.

3.2.3. Filtering for DFT
Filtering for DFT is required, as CREST generates a large number of 'stable’ conformers, many of these are very
close on the PES. After DFT Optimization, these closely packed conformers would likely converge to the same
minimum. Filtering these conformers would reduce the computational cost significantly, as for example DFT
Optimization would be done over 500 structures instead of 3000.

This filtering was performed using a classification algorithm trained on a subset of the data, which was
analyzed and improved using Density-Based clustering (DBSCAN). A more detailed description of how this
algorithm works can be found in Sara’s thesis. [49] The € used is 0.19.

3.2.4. DFT calculation

DFT Optimization (DFT OPT) and DFT Single-Point (DFT SP) calculations were done for all xTB geometries
generated in CREST. The calculations were done on Gaussian 16 (C.0239). PBE0-D3(BJ)/def2-SVPP level of
theory was used to minimize computational cost, while being very accurate. PBEO refers to the hybrid func-
tional, D3(BJ]) accounts for dispersion corrections with a high accuracy for non-covalent bonds and def2-
SVPP is a basis set optimized for polarization accuracy for heavier atoms. For DFT OPT, an additional fre-
quency analysis was done to identify imaginary frequencies. In case of an imaginary frequency, PyQRC was
used to create a slightly modified geometry, which is DFT optimized again to end up in a stable minimum.

3.2.5. Descriptor calculation

The descriptors were calculated using the OBeLiX workflow. For DFT SP calculations of an xTB-optimized ge-
ometry, the descriptor_calculator.py script was employed to obtain the descriptors. Python notebooks con-
tain code to generate descriptors sets from the DFT OPT calculations. The calculation of descriptor sets for
the free ligand consisted of more extensive steps such as the extraction of the free ligand geometry, how-
ever code to generate descriptors sets from DFT SP calculations do not have these extraction of free ligand
geometry.

3.2.6. Model selection

Previous work used Random Forest models with hyperparameter optimization using grid search to obtain
more robust and reliable results. Three different train/test splits were evaluated and each grid search con-
tained a predefined parameter space and used k-fold cross-validation, to prevent overfitting of the data. Ul-
timately an 80/20 train/test split was chosen as optimal configuration for the ML models. [16]

Since we have a small dataset of only 192 or even 96 samples, cross-validation allowed us to reuse the
samples and to get 'maximum’ data from this dataset. We partitioned the data in 5, which increased our
dataset by five. This approach improved the efficiency and allowed us to confidently say we obtain the best
performing model for each random state.

3.2.7. Representations

Different representations are used to test different levels of computational power and importance of descrip-
tors. DFT-based descriptors are chosen by ourselves and the main target. As alternative method we have
added ECFP, with a fixed-bit string of 512 parameters. 1024 and 2048 bits were also tested, but previous work
chose 512 to cause the least amount of useless bits (bits that are uniform for all samples). For baseline testing,
two models were made which contains 24 or 36 descriptors with random floats between -100 and 100. The
amount of descriptors and 'ligands’ were matched to the DFT-based descriptors to keep a fair comparison.
The representation are described in more detail in Section 4.1.



Results & Discussion

This chapter begins with an overview of generated data and available representations along with their corre-
sponding abbreviations. It then analyzes the new obtained experimental data on the Rh-catalyst with NBD as
substrate. Next, it revisits previous work, describing the results from the five different substrates with the orig-
inal representation (Original Substrate model). Further on, this original representation will be combined with
the new experimental data and on the representations will be altered. These variations, are either variations in
method used (DFT, ECFP, random), method of representation of structure (static, dynamic) and/or descriptors
chosen.

4.1. Data generation

For the results, we have generated missing data from previously investigated representations, created five new
representations for the ML models, and tested three different descriptor selections. We evaluated the per-
formance of the ML models using the different representations and descriptor selections, and also analyzed
descriptors, energies and ECFP. Everything is done for the 192 different Rh-complexes, except the fully DFT
Optimized conformer ensemble (CE). Here we have done the DFT OPT for all complexes but only processed
the first 96 complexes as time was limited and we only have experimental data for the first 96 complexes.

There are multiple representations used in this thesis, each with varying levels of computational cost and ac-
curacy. Tables 4.1 and 4.2 give a clear overview of all representations with their description and key differences.
There are 12 different representations used, 9 of them are related to DFT-based descriptors, 1 using ECFP and
2 baseline models containing 36 or 24 descriptors with randomly generated values. In the DFT-based repre-
sentations, variations were introduced in the input structure, DFT methods and descriptor selection.

The input structures refer to the geometries used in the DFT calculations. These structures were varied to
improve the descriptors and bring them closer to reality. In previous work, a handmade structure was used
as input structure, but now additional representations were tested, where CREST generated these structures.
CREST generated the entire CE, from which we created two types of representation from. One representation
which only uses the most stable structure of the CE (lowest energy conformer) as input, and another where
DFT calculations are done for all conformers in the CE and combined using Boltzmann weighting. The idea of
using CREST is to create a more realistic representation of the complexes, as the CE can introduce the dynamic
aspect of a complex or find the most structure with the lowest energy.

Two DFT methods were used: DFT OPT and DFT SP calculations. Given the high computational cost of DFT
OPT, DFT SP calculations, which are based on xTB calculated geometries from CREST were evaluated to deter-
mine whether the additional cost of DFT OPT results in a significant advantage.

Various descriptor selections were used to test their influence. Specifically, descriptors related to stereochem-
istry and those where free ligand geometries were used. These were tested, as stereochemistry should have
minimal impact as our substrate is symmetrical. Additionally, free ligand descriptors were included in previ-
ous work, as a generalized substrate was used. This may no longer be necessary, as both experimental and
simulated data now corresponds to the exact same compounds.

18
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These changes can also be recognized in their names:

* Representations without ’"CREST’ refer to the static representations where an initial handmade structure
is used as input for DFT calculations.

* Representations with "DFT’ refer to DFT Optimized structures and calculations, while those without
"DFT’ corresponds to DFT SP calculations.

* Representations with "CREST’ & ’[E min.]’ refer to the static representations where only the lowest en-
ergy conformer from the CREST generated CE is used.

* Representations with ’CREST’ & ’[boltz. avg.]’ correspond to the dynamic representations, where the
entire CREST generated CE is used, considering the Boltzmann-weighted average.

The descriptor selection is specified by the terms in parentheses:

* No brackets indicates all 36 descriptors are used, with free ligand geometries applied for certain descrip-

tors.

* ’(no stereoC.)’ refers to the 24 descriptor selection, where stereochemistry related descriptors are ex-

cluded.

* ’(no stereoC., no free lig.)’ excludes stereochemistry descriptors and replaces free ligand descriptors
with complex descriptors, as the free ligand geometries could not be extracted from the DFT SP calcula-

tions.

Table 4.1: Overview of all representation names, with their more detailed description. All DFT representations start from a
handmade structure, which are DFT Optimized or passed through CREST to generate a conformer ensemble (CE). When
a CE is applicable, structures are included based on the Boltzmann averaged energy or the lowest energy conformer is
selected and then used in DFT calculations.

Name Description

OG-DFT-NBD Handmade structure + DFT Optimization (Original Substrate model)
DFT-NBD Handmade structure + DFT Optimization (Original NBD model)
DFT-NBD Handmade structure + DFT Optimization

(no stereoC.) (stereochemistry descriptors removed)

DFT-NBD Handmade structure + DFT Optimization

(no stereoC., no free lig.)

CREST-NBD [boltz. avg.]
(no stereoC., no free lig.)

CREST-NBD [E min.]
(no stereoC. no free lig.)

CREST-NBD [E min.]
(no stereoC.)

CREST-DFT-NBD
[boltz. avg.] (no stereoC.)

CREST-DFT-NBD
[E min.] (no stereoC.)

ECFP
Random-24
Random-36

(stereochemistry removed, free ligand replaced for complex descriptors)

Handmade structure + CREST + DFT Single Point + Boltzmann averaged
(stereochemistry removed, free ligand replaced for complex descriptors)

Handmade structure + CREST + DFT Single Point + Mimimum energy selec-
tion (stereochemistry removed, free ligand replaced for complex descriptors)

Handmade structure + CREST + DFT Single Point + Minimum
energy selection + DFT Optimization (stereochemistry removed)

Handmade structure + CREST + DFT Optimization + Boltzmann averaged
(stereochemistry descriptors removed)

Handmade structure + CREST + DFT Optimization + Minimum
energy selection (stereochemistry descriptors removed)

Extended Connectivity Fingerprint using fixed-length bit string 512
Randomized values (between -100 — 100) for 24 descriptors (Baseline)

Randomized values (between -100 — 100) for 36 descriptors (Baseline)
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Table 4.2: Overview of all representations with their characteristics. Representation names containing’CREST’ used CREST
generated structures, if the final geometry is xTB-based only DFT SP was used.

Experimental . .
Name dataset Final geometry Energy based on Descriptors
OG-DFT-NBD 5 different substrates DFT-based DFT OPT geometry 36
DFT-NBD NBD DFT-based DFT OPT geometry 36
DFT-NBD NBD DFT-based DFT OPT geometry 24
(no stereoC.)
DFT-NBD NBD DFT-based DFT OPT geometry 21
(no stereoC., no free lig.)
CREST-NBD [boltz. avg.] NBD xTB-based xTB geometry 24
(no stereoC., no free lig.)
CREST-NBD [E min.] NBD xTB-based xTB geometry 21
(no stereoC., no free lig.)
CREST-NBD [E min.] NBD DFT-based xTB geometry 21
(no stereoC.)
CREST-DFT-NBD NBD DFT-based DFT OPT geometry 24
[boltz. avg.] (no stereoC.)
CREST-DFT-NBD NBD DFT-based DFT OPT geometry 24
[E min.] (no stereoC.)
ECFP NBD - - 447
Random-24 NBD - - 24
Random-36 NBD - - 36

4.2, Experimental data

Beginning with the new obtained experimental data on Rh-catalysts with NBD as substrate. As mentioned
in Chapter 3, this data was generated in collaboration with Johnson & Johnson. [50] They conducted High-
Throughput experimentation on Rh-NBD complexes with 96 different ligands. The experiments were per-
formed twice, with conversion data recorded at 15 minutes for both runs and at 30 minutes for 'run I'. This
resulted in two experimental datasets: one containing the average conversion from both runs at 15 minutes
(run T’ and 'run IT’) and another with the conversion at 30 minutes ('run I'). The reaction conditions were T =
303.15 K and P = 3 bar H,.
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Figure 4.1: Distribution plot of the average 15 minute conversion results for the first 96 Rh-NBD complexes, showing most
data points in either the low or high conversion regime. The median conversion 0.317.
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Figure 4.2: Distribution plot of the 30 minute conversion results for the first 96 Rh-NBD complexes, showing most data
points in either low or high conversion regime. The median conversion is 0.321.

The data distribution is presented in Figures 4.1 and 4.2. These figures show a broad, asymmetric distribu-
tion of the data. Figure 4.1 illustrates a higher concentration of data points at at lower conversions, while
Figure 4.2 shows a small shift towards higher conversions (with the average increasing from 0.423 to 0.465).
However, the median remains almost unchanged (0.317 vs 0.321), suggesting that most, if not all, of these
low performing catalysts remained below this threshold. Visually, it is also noticeable as the bars left of the
median are now more evenly distributed, while the right side side increases to conversions closer to 1.

The threshold used for classification in previous work ('Original Substrate model’) (threshold = 0.8) will result
to unbalanced training datasets for the ML algorithms, as the majority of the data is below this value. The
threshold is set to the median conversion for each dataset, to create a more balanced classification. However,
since these thresholds are different in different datasets, it is not entirely 'fair’ to compare results from differ-
ent datasets. This will be avoided, and classification will only be compared if it involves the same dataset.

4.3. Original substrate models

To understand the decisions made in this thesis, it is important to first reevaluate the results obtained in the
model developed in previous work of the group. Their research focused on a non-specific predictive model
for a case of asymmetric hydrogenation of imines. The ligand descriptors were thus separately supplemented
with descriptors of the substrate. This model was used to predict conversion through classification and stere-
oselectivity through regression. However, as previously mentioned, the results were inconsistent across the
five investigated substrates, with only 'SM4’ and 'SM5’ showing cases with high performance. These models
and substrates are described in more detail in [16].

In this thesis, an experimental dataset for NBD is used, shifting the model from a non-specific to a substrate-
specific approach. Additionally, only conversion is analyzed, as NBD is symmetrical and eliminates any stere-
oselectivity in the complexes. Since conversion is now the sole prediction task, both classification and regres-
sion will be performed on conversion. This requires generation of regression results for conversion using
the 'Original Substrate model’, as previous work only applied regression to stereoselectivity. Additionally, to
maintain consistency in training data across all representations, only the first 96 ligands from the substrate
datasets were used, as they correspond with the first 96 ligands from the NBD dataset. However, due to struc-
tural issues caused by CREST, which will be explained later, ligands L19 and L24 were excluded, leaving 94
usable data points in the datasets. This set will be still referred as the first 96 ligands. The generated data is
presented in Figure 4.3 and will serve as a benchmark for model performance.
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Figure 4.3: Box plot of regression performances on conversion using the Original Substrate model (96 data points). Five
substrates are shown with representations: OG-DFT-NBD, ECFP and random-36.

Figure 4.3 shows that SM4 and SM5 have cases where the performance is very high, but also cases of very low
performance. This results in the box plots having a large range. SM1, SM2 and SM3 show a small spread of the
performances, but in all cases low performance (R% < 0.4).

4.4. Sensitivity analysis
In the complete ML model workflow two things can be randomized: the initialization of the ML model and the
train/test data split used in the ML algorithms. A sensitivity analysis is done to determine the importance and
influence of these randomizations.

4.4.1. Model
Three different model initializations were tested over the two datasets and showed no significant change in
model performance for both classification and regression (Figures 4.4 and A.1).

Sensitivity analysis of initialization of Machine Learning model

In-domain: target=Conversion 15' AVG, substrate=NBD, In-domain: target=Conversion 15' AVG, substrate=NBD,
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Figure 4.4: Sensitivity analysis of initialization of the Machine Learning Model. Box plots are shown of the performance of
the ML models using classification (left) and regression (right). Both methods show small changes in performance in two
different representations.
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4.4.2. Data
Three different test/train data splits were tested over the two datasets and showed a noticeable change in
performance (Figures 4.5 and A.2).

Sensitivity analysis of data splitting of the train/test data
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Figure 4.5: Sensitivity analysis of data splitting of the train/test data. Box plots are shown of the performance of the ML
models using classification (left) and regression (right). While classification shows a small change in performance, regres-
sion shows a much larger change.

The data split is dominant over the initialization, so the most change in performance would be obtained by
parametrization of the data split. The ML model initialization random state is kept constant since the influence
is negligible, and the data split is randomized using five random states [8 20 30 62 66]. This sensitivity analysis
also shows that the train/test split influences the performance a lot.

4,5, Static representation (DFT-NBD)

Moving on to the first model representation of this thesis. In this model representation, the same descriptors
are used as the Original Substrate model, however the new experimental dataset is introduced. The results of
classification and regression are shown in Figure 4.6 and 4.7.

Performance original static representation combined with experimental NBD dataset
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Figure 4.6: Box plot of model performances for classification (left) and regression (right) for average conversion at 15 min-
utes. Static DFT-NBD representation is used, in combination with the NBD dataset.
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Performance original static representation combined with experimental NBD dataset
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Figure 4.7: Box plot of model performances for classification and regression for conversion at 30 minutes. Static DFT-NBD
representation is used, in combination with the NBD dataset.

Both the average 15 minute and 30 minute conversion figures show similar results, with high performance
for classification and regression score around 0.4. In all cases the DFT-NBD performances are comparable to
ECFP and significantly higher than the random baseline. This suggests that the models are able to find some
patterns using the DFT-NBD and ECFP representations.

Original NBD model vs Original substrate model

The static DFT-NBD representation, using the new NBD dataset, is compared to the five substrate datasets in
Figure 4.8. The figure highlights the differences between all these models. The average 15 minute dataset is
chosen to represent the NBD dataset, as the performances for 15 minute averaged and 30 minute datasets were
very similar. The addition of the new dataset resulted in a much smaller spread in the DFT-NBD representation
compared to the OG-DFT-NBD representation in the substrate representations. While the new representation
did not necessarily improve on absolute performance, it did improve on consistency. Surprisingly, the ECFP
representation also showed improvement compared to the representations in the substrate models.
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Figure 4.8: Comparison of performances between DFT-NBD representations using the new NBD dataset and the five sub-
strate datasets. SMX refers to the different substrates used.
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Feature Importance

Feature Importance (FI) plots reveal which descriptors contributed the most on the decision making of ML
algorithms. Figure 4.9 shows the averaged FI over the five random states used for DFT-NBD. It can be seen that
the descriptors which lead to the highest performance were mostly electronic descriptors except SW quadrant
(steric) and bite angle (geometric). The bite angle specifically had the highest importance. These descriptors
are reasonable as other studies have that ligands with a certain bite angle can influence the catalytic activity.
[51]1[52]

Averaged feature importance of the best RF model 'Conversion 15' AVG' rs: [8, 20, 30, 62, 66], classification
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Figure 4.9: Feature importance plot of all descriptors used in DFT-NBD. Mostly electronic and descriptors and the bite
angle (geometric descriptor) show dominating contribution with the lowest influence from steric descriptors.

4.5.1. Removal stereochemistry

The FI plot in Figure 4.9 showed almost no influence of steric descriptors (quadrants and octants). These
steric descriptors were important in case of stereochemistry, as the steric effects might prevent conversion
towards a specific enantiomer. In the new experimental dataset about Rh-NBD complexes this cannot be the
case, as NBD is symmetrical and eliminates any stereoselectivity. Including these steric descriptor might lead
to over-specification, which can introduce correlations that may exist but do not have any influence on the
conversion. Removing these descriptors related to stereochemistry results in 12 less descriptors, described in
Table 2.1 in Chapter 2.

Performance static representation without stereochemistry

In-domain: target=Conversion 15 min AVG, substrate=NBD, In-domain: target=Conversion 15 min AVG, substrate=NBD,
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Figure 4.10: Effect of removing the stereochemistry descriptors on the NBD average 15 minute dataset. On the left the
classification performances are shown for DFT-NBD with stereochemistry and DFT-NBD without stereochemistry. Per-
formances are similar in both representations.
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Figure 4.10 shows the removal of stereochemistry in the average 15 minute dataset. The effect in both classifi-
cation and regression is minimal, making the addition of stereochemistry negligible as expected. The results
for 30 minutes are shown in Figure A.3, and share the same observation, where the performance is in the
same range and not significantly different.

Since the removal of stereochemistry is logical and also show minimal change in the results, it has been de-
cided not to include stereochemistry in the following sections (unless specified otherwise).

4.5.2. Removal free ligand descriptors

In previous work, free ligand descriptors were used to represent the ligands, as complex descriptors could
be influenced by the other atoms in the complex, such as the simulated NBD moiety which was not present
in the other substrates. In this thesis, we focus solely on Rh-NBD complexes, both in simulations and ex-
perimentally. Therefore, the effect of substituting these free ligand descriptors for complex descriptors was
evaluated. Eight electronic descriptors based on free ligand geometries were substituted for electronic de-
scriptors calculated using the complex geometry. Additionally, this substitution led to the removal of three
electronic descriptors that used both geometries.

Performance static representation without stereachemistry and free ligand descriptors
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Figure 4.11: Effect of substituting free ligand descriptors for complex descriptors on the average 15 minute conversion
NBD dataset. On the left the classification performances are shown for DFT-NBD without stereochemistry and DFT-NBD
without stereochemistry and free ligand descriptors. Performances are similar.

Figure 4.11 shows the performances of the DFT-NBD representation with stereochemistry removed and the
free ligand descriptors substituted for the complex descriptors for the average 15 minute dataset. The substi-
tution resulted in small decrease in classification performance and a performance in the same range as the
DFT-NBD representation with free ligand descriptors.
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Performance static representation without stereochemistry and free ligand descriptors
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Figure 4.12: Effect of substituting free ligand descriptors for complex descriptors on the NBD 30 minute conversion NBD
dataset. On the left the classification performances are shown for DFT-NBD without stereochemistry and DFT-NBD with-
out stereochemistry and free ligand descriptors. Performances are similar.

Figure 4.12 shows the performance of the same representations as in Figure 4.11, but with the 30 minute
NBD dataset. The classification performance is almost identical, with the slightest improvement in regression
performance. This improvement is not significant and also was not present in the average 15 minute dataset
results, leading to the conclusion that the performance remains within the same range.

4.6. CREST-based representations (CREST-NBD & CREST-DFT-NBD)

Since the static representation shows similar performance between the DFT models and ECFP, a different
approach is chosen to represent the complex structure. This approach includes searching the entire con-
former ensemble. The representations are progressively increased in accuracy, ranging from cheaper to more
expensive models.

Starting with CREST-NBD, the xTB geometries obtained from CREST were used to do DFT SP calculations.
We obtained descriptors for each conformer in a CE. Three different representations were created for these
ensembles: one where all descriptors were combined using the Boltzmann average to describe all conformers
based on their energy, one where the lowest energy (most stable) conformer was selected, and one where
the lowest energy conformer was chosen, followed by additional DFT (re)optimization to obtain free ligand
descriptors.

Representations with the highest level of theory are also investigated. These are the CREST-DFT-NBD
models, where xTB geometries from CREST are used to do DFT OPT calculations. From these DFT optimized
structures two representations were created, one representing all conformers by using the Boltzmann aver-
age, and one using the lowest energy conformer.

Initially, CREST generated over 6000 structures, which were reduced to 2756 structures after applying Sara’s
filtering algorithm. [49] However, not all of these geometries were usable. 7 of the 192 conformer ensembles
(CEs) contained structures with destroyed ferrocene groups, which formed bonds with other atoms. These
affected CEs corresponding to ligand: 19, 24, 115, 140, 141, 176 and 188. These CEs were excluded, which
reduced the structures further. Ultimately, this ferrocene issue impacted only two CE, as we only had experi-
mental data for the first 96 ligands.
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(a) DFT Optimized structure of L19 generated by CREST. Fe shown in (b) Ferrocene molecular structure, Fe center (blue)
dark orange, Rh (greenish blue), N (orange), C (gray) and O (blue). Hy- sandwiched by two cyclopentadienyl groups (C
drogen atoms are not displayed to keep overview. (black) and H (white)). [53]

Figure 4.13: Example of a destroyed ferrocene group by CREST. This ferrocene group in the front of Figure 4.13a makes
bonds with other atoms outside of the cyclopentadienyl groups, such as phosphor and carbon.

4.6.1. Cheap vs Expensive E min selection

There are three representations based on the lowest energy conformer in the conformer ensembles (CEs).
Two of these are based on the energy obtained from the xTB geometries, while the third is based on the en-
ergy obtained from the DFT optimized geometries. The first representation CREST-NBD, is the cheapest and
only utilizes DFT SP calculations and complex descriptors. A more expensive representation is re-optimized
CREST-NBD. This representation uses an additional DFT OPT calculation to be comparable with DFT OPT
level representations (CREST-NBD [E min.] (no stereoC.)). The highest level of accuracy minimum energy
representation is CREST-DFT-NBD. IN this representation every conformer in a CE is DFT Optimized and the
most stable structure is found afterwards. These representation models are run and compared in Figures 4.14
and 4.15.

Conformer ensemble minimum energy selection representations

In-domain: target=Conversion 15 min AVG, substrate=NBD, In-domain: target=Conversion 15 min AVG, substrate=NBD,
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Figure 4.14: Comparison of performances of minimum energy representations from conformer ensembles on the average
15 minute dataset. The conformers in the left and middle representation are based on the energy obtained from xTB
geometries. The representation on the right is based on the energy obtained from the DFT OPT geometry (cheapest
representation on the left tot the most expensive on the right).
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Conformer ensemble minimum energy selection representations

In-domain- target=Conversion 30 min, substrate=NBD,
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Figure 4.15: Comparison of performances of minimum energy representations from conformer ensembles on the 30
minute dataset. The conformers in the left and middle representation are based on the energy obtained from xTB ge-
ometries. The representation on the right is based on the energy obtained from the DFT OPT geometry (cheapest repre-
sentation on the left to most expensive to the right).

These figures show the comparison between the different lowest energy representations for the average 15
minute and 30 minute datasets. It shows clear differences for classification and regression. The classification
results are in the same range, however it can be seen that the cheapest representation (CREST-NBD [E min.]
(no stereoC., no free lig.)) has the largest interquartile range (IQR), meaning it is the least consistent and has
smaller boxes for the DFT Optimized structures. For regression, it can be seen that the most expensive CREST-
DFT-NBD representation performs the best, however the middle representation is more consistent for both
datasets, but with the lowest performance.

Energy analysis

Energies of these lowest energy conformers were analyzed, as CREST-NBD [E min.] (no stereoC.) and CREST-
DFT-NBD [E min.] (no stereoC.) give different performances, suggesting that different minimum energy struc-
tures were used. These energies were compared to the energies of static representation (DFT-NBD) and shown
in Figures 4.16 and 4.17.

Energies of CREST-NBD [E min.] compared to energies of static DFT-NBD
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Figure 4.16: Energy analysis of CREST-NBD vs static DFT-NBD. A lower dE means a more stable structure has been found
after CREST, minimum energy selection based on xIB energies and reoptimization using DFT OPT.
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Figure 4.16 presents the energies of the lowest energy conformers in the CREST-NBD model compared to the
static DFT-NBD model. It can be noted that some ligands have an increased energy, suggesting either that
the lowest energy conformer based on the xTB energy does not corresponds to the true minimum energy
conformer or that CREST is unable to find all possible conformers.

Energies of CREST-DFT-NBD [E min.] compared to energies of static DFT-NBD
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Figure 4.17: Energy analysis of CREST-DFT-NBD vs static DFT-NBD. A lower dE means a more stable structure has been
found after CREST, DFT OPT and minimum energy selection based on DFT OPT energies.

Figure 4.17 presents the energies of the lowest energy conformers in the CREST-DFT-NBD representation
compared to the static DFT-NBD representation. Several observations can be made. First, this figure still
shows increased energies compared to the the DFT Optimized handmade structure (DFT-NBD), suggesting
that CREST not only fails to find all conformers in a CE, but also is unable to identify the important, most
favorable structures in some cases. Second, Figure 4.17 displays equal or lower energies than those in Figure
4.16, with for example 123, L26 or L77 showing a lower energy. This indicates that different conformers are
used, which means that the lowest XTB energy conformers do not always corresponds to the lowest energy
after DFT Optimization.

The CEs with higher energy compared to the initial DFT-NBD representation are ligands [1, 2, 5, 6, 7, 10, 11,
13, 14, 17, 21, 23, 25, 26, 33, 34, 35, 37, 38, 39, 41, 46, 47, 52, 54, 56, 60, 61, 69, 77, 80, 84], which accounts
for 34% of the CEs. The ligands that cross 10 kJ/mol are considered extreme cases and are further analyzed.
These extremes are [2, 5,6, 7,11, 14,17, 21, 25, 26, 54, 60, 61, 77].

4.6.2. Analysis of increased energy structures after CREST

The xyz structures with higher energy after CREST-DFT-NBD were analyzed using ChemCraft and Avogadro?2.
Output structures files from DFT Optimization revealed several causes for the observed energy differences.
While all cases retained the correct bonds and atoms, CREST failed in identifying the optimal or logical orien-
tations. The largest energy increases were primarily observed in ligands containing ferrocene groups, while in
the less extreme cases CREST did not find the most optimal conformer, such as perfect symmetry, or avoiding
steric hindrance. Small energy increases were caused by small variations in angles but nothing structurally
significant.
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(a) Overlay of L25 DFT-NBD (crossed atoms) and CREST-DFT- (b) Complete 2D structure of the Rh-NBD complex L25. [2 ]
NBD (unmarked atoms), illustrating Fe (dark orange, light

blue), Rh (greenish blue, shiny orange), N (orange, yellow) and

C (gray, pink), respectively. To remain clarity, only the back-

bone is shown. Hydrogen, NBD and the end groups attached

to phosphor are ommited.

Figure 4.18: Example of a structure where the ferrocene group has an extremely noticeable different orientation, compared
to the handmade structure. In the CREST structure this ferrocene group is directed towards the metal center, resulting in
a more compact complex, whereas in the handmade structure this group is oriented outwards. The inward orientation in
the CREST structure causes steric hindrance, resulting in the higher observed energy.

Figure 4.18a shows an example where the ferrocene group causes an energy increase in the CREST gener-
ated structure. The bulk of the ferrocene is oriented towards the metal center, whereas in the handmade DFT
Optimized structure this ferrocene is oriented outwards from the metal center. This steric presence of this
bulky group leads to unfavorable interactions between electrons, resulting in higher energies. CREST seems to
struggle a lot with these ferrocene groups, as multiple cases are found where CREST either destroys or fails to
identify correct conformers. Other examples where this is the case are L11, L19, L24 or L26. However, CREST
also led to cases where the structure was improved, such as L3, where a decrease of 150 kJ/mol is observed.
In this particular case, no weird distortions or illogical positioning was observed, CREST simply found a much
better conformer.

(a) DFT Optimized handmade structure (DFT-NBD) of L60, (b) DFT Optimized structure generated by CREST (CREST-
with the bulky subgroups attached to nitrogen oriented to DFT-NBD) of L60, with the bulky subgroups attached to nitro-
the sides and smaller subgroups attached to oxygen oriented gen oriented down and smaller subgroups attached to oxygen
down. oriented to the sides.

Figure 4.19: Example of a structure where an increase in energy is caused by CREST’s inability to find all conformers. A clear
difference is observed between the handmade DFT optimized structure and CREST generated DFT optimized structure.
The atoms are displayed in colors: Rh (greenish blue), P (orange), N (dark orange), O (blue), C (gray), H (white).
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Figure 4.19 shows the structure for L60 in the DFT Optimized handmade structure and CREST generated
structure. There is a clear difference in geometries, where the handmade structure orients the bulkier sub-
groups to the sides, while in the CREST structure these groups oriented downward. CREST was unable to find
this orientation, which would have led to a difference of 20.4 kJ/mol.
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(a) Top view of the DFT Optimized handmade structure (b) Top view of the DFT Optimized structure generated by

(DFT-NBD) of L61. It can be noted that this structure is CREST (CREST-DFT-NBD) of L61. It can be noted that this struc-

complete symmetrical. ture is not symmetrical, as the cyclohexane group at the bottom
middle does not have a mirrored orientation in the cyclohexane
group at the top middle.

Figure 4.20: Example of a structure where a small change in orientation causes an increase in energy. When viewed
straight through Rh-NBD, it is clear that the handmade structure is much more symmetric compared to the CREST gen-
erated structure. CREST is unable find the correct rotation for one of the benzene rings, preventing the complex to be
completely symmetrical. The atoms are color-coded as follows: Rh(greenish blue), P (orange), N (dark orange), O (blue),
C (gray), H (white).

Figure 4.20 shows L61, where the two structures are very similar, but a difference in the orientation of one
benzene ring has caused the large energy increase. In the handmade DFT optimized structure these groups
are arranged in perfect symmetry, while this not the case in the CREST structure.

4.6.3. Cheap vs Expensive Boltzmann-averaging

The Boltzmann-averaged representations are also compared, these differ in DFT method used. The cheap
variant, CREST-NBD, uses DFT SP calculations and complex descriptors, as the code used was unable to
extract free ligand .xyz geometries from DFT SP calculations. The expensive CREST-DFT-NBD variant, uses
DFT OPT calculations for each conformer and uses the free ligand descriptors.
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Figure 4.21: Comparison of performances of Boltzmann averaged representations from conformer ensembles on the
average 15 minute dataset. The cheap representation (left) show very consistent performances, while the expensive rep-
resentation (right) show a broader IQR. However, the absolute performance does not change.
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Figure 4.22: Comparison of performances of Boltzmann averaged representations from conformer ensembles on the 30
minute dataset. The cheap (left) and expensive (right) representation show similar performances and IQR’s.

Figure 4.21 shows the Boltzmann averaged representations without stereochemistry for the average 15 minute
dataset. The prediction results are very similar, with small but almost not noticeable improvements for the
expensive representation. The expensive representation loses on consistency compared to the cheap variant
for this specific case. However, this effect is not seen in Figure 4.22, where the same representations are com-
pared but with a the 30 minute dataset. As the performance is similar, the only conclusion that can be made
is CREST-DFT-NBD is not performing better, despite the expensive DFT OPT calculations.
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4.6.4. Analysis descriptors

Boltzmann averaged descriptors are compared to the static DFT-NBD descriptors, to investigate the effect of
CREST. Scatter plots are made for each descriptor with on the x-axis the values of DFT-NBD and on the y-axis
the values of CREST-DFT-NBD [boltz. avg.]. The diagonal x=y line is the identity line, which implies that the
values equals the same. The interactive descriptor figures can be found in the supplementary files.

Analyzing these figures has shown that steric and geometric descriptors change a lot after conformer search-
ing. These descriptors changed as they are very structure dependent. Considering that the structures in both
representations are not identical, it is expected that these descriptors will differ. In the electronic descriptors
only lone pair and dipole moment descriptors showed similar variation. The variation is evenly spread be-
tween above and below the identity line, showing no bias in all cases except 'dipole_moment_dft. This figure
shows an overestimation of DFT-NBD or underestimation of CREST-DFT-NBD, where all points in CREST-
DFT-NBD show (much) lower values.

As the lowest energy after conformer searching is not always lower than the static DFT-NBD, it is hard to say
if the CREST descriptors are as good as the DFT-NBD descriptors for the structures. Further analysis of the
outliers in these figures, confirmed that they were not necessarily from CEs where CREST was unable to find
the lowest energy conformer. This result led us believe that these variations in descriptors could be caused
by the conformational flexibility that CREST has included.

Descriptors that pretty much stayed using these static and dynamic method were: 'sum_electronic_and_free_
energy’, ‘'nbo_charge_min_donor’, 'nbo_charge_max_donor’, 'free_ligand_nbo_charge_min_ donor’, 'free_
ligand_nbo_charge_max_ donor’, 'free_ligand_dispersion_energy’. They showed that changing the geometry
did not alter the results.
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(a) Scatter plot of descriptor ’-,+,+_octant, (b) Scatter plot of descriptor 'free_ligand_  (c) Scatter plot of descriptor 'dipole_

a broad but evenly distributed variation is nbo_charge_min_donor_dft, almost iden- moment_dft, figure shows a overestimation

observed over the two representations. tical values are found using a different ap- in the CREST-DFT-NBD representation.
proach.

Figure 4.23: Example of a few descriptor scatter plots, where the values of the same descriptor over a static and dynamic
representation is compared (DFT-NBD vs CREST-DFT-NBD). The red line shows the identity line, where the values.

4.6.5. Boltzmann-averaging vs E min selection

The last comparison that can be made is the difference in performance for the Boltzmann averaged and
minimum energy structures. While the lowest energy conformer is often considered a sufficiently accurate
representation, recent studies have suggested taking into account CE can be beneficial. [54] To compare these
two, might show us if the expensive Boltzmann averaged representation is much better than the minimum
energy structure representation.
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Figure 4.24: Box plot comparison of performances of all conformer ensemble representations for average 15 minute
dataset. Classification (left) and regression (right).
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Figure 4.25: Box plot comparison of performances of all conformer ensemble representations for 30 minute dataset.
Classification (left) and regression (right).

Figure 4.24 shows the cheap lowest energy representation compared to the cheap Boltzmann averaged rep-
resentation and Figure 4.25 shows the expensive lowest energy representation and the expensive Boltzmann
averaged representation. Both of these figures show visible differences, but none of them shows clearly which
is better. Results in classification show high performances, with varying range. Regression show more consis-
tency for Boltzmann averaged representations, but performances are still in the same range, suggesting that
the minimum energy structure is a good representation for the entire CE in this case.

4.6.6. Analysis descriptors

The descriptors of these representations are compared to further analyze the differences between the min-
imum energy conformer and the entire CE, and almost no difference is found between these descriptors.
Most descriptors show plots of the values being only on or close to the identity line. Some figures related to
steric descriptors and or angles show some noticeable outliers, but these are the descriptors which are very
sensitive to changes within the geometry of the structure.
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Figure 4.26: Two example of scatter plots, where the values of the same descriptor over minimum energy structure vs the
entire CE is compared (CREST-DFT-NBD [boltz. avg.] vs CREST-DFT-NBD [E min.]). The red line shows the identity line,
where the values.

Additionally, the highest Boltzmann weights for each CE is displayed in Figure 4.27. It can be seen that in
more than 70% of the CEs, the highest weight is below 50%, suggesting that even in cases where the CE is
flexible, the consideration of multiple structures does not lead to large differences in the descriptor. Based
on this observation, for this specific case, we found that the minimum energy conformer representation is
almost the same as the Boltzmann averaged representation.
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Figure 4.27: Distribution of highest Boltzmann weights in a conformer ensemble.

4.7. Comparison all models
Finally, all no stereochemistry models are compared and the results are presented in Figures 4.28 and 4.29.
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Comparison of performance of different no stereochemistry representations
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Figure 4.28: Overview all no stereochemistry representations average 15 minute dataset.
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Figure 4.29: Overview all no stereochemistry representations 30 minute dataset.
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It can be seen that all models are very comparable for classification and regression, with them being in the
same range. However, the size of the range differs a lot between models with no clear trend. Furthermore,
ECFP scores similar or even better compared to the DFT models. This suggests that the ECFP method, which
is based on topology, is as good, if not better, compared to the expensive DFT calculated descriptors. As a
result ECFP will be further analyzed.
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4.8. ECFP analysis

4.8.1. Feature Importance

The FI plots were analyzed, revealing high importance of fingerprints parameters fp57, fp333, f{p467 and fp91.
However, these parameters cannot be directly traced to specific groups or atoms in the comple, as the pro-
cess is done iteratively starting from the center. As a result, these parameters can point to different subgroups
of atoms in different complexes, but also multiple different subgroups can point the the same bit (bit colli-
sion). This makes further analysis challenging. If these bits can be connected to the original (sub)groups in
the future it could provide new insights into what groups and combinations makes ECFP work this well.
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Figure 4.30: Example of a Feature Importance figure of ECFP, where the highest descriptors are shown. This figure is
zoomed in and contains only the highest 10 features.

4.8.2. PCA

There is no method to compare the regression results of the DFT models and ECFP, but for classification, ac-
curacy results can be compared. PCA is used to reduce the dimensionality of the descriptors for each ligand
and to represent them in a 2D chemical space. DFT-NBD is compared to ECFP, as this has the same level of
theory in the original substrate model and as the results of the other DFT models are not significantly differ-
ent. FN, FB, TN, TP values were compared over the five random states analyzed. We looked at consistency for

reoccurring ligands in the test set, differences in performance for the same ligands between DFT-NBD model
and ECFP.

Figures 4.31 and 4.32, show that ECFP and DFT-NBD have different data points where each performs better
than the other. Figure 4.31, for example, clearly shows that DFT-NBD has both better and worse predictions
compared to ECFP, such as L73 (-7.6 -2.9) performing worse, or L27 (1.4, -0.5) better. Another example is
Figure 4.32, L13 (2.5, -0.6) and L84 (-5.1, 1.6). This suggests that DFT-NBD and ECFP both use different cor-
relations, which leads them to different predictions, with neither necessary better than the other.

Additionally, the reoccurring data points in the test split across different random states were analyzed to
assess if models predict consistently for these data points, and results show that both models do not always
produce consistent predictions. Among the 96 CEs, 24 were included in the test set more than once, of these,
only 6 showed different prediction for at least one of the models. This highlights that the importance of the
training data again.
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Figure 4.31: PCA of DFT-NBD (top) vs ECFP (bottom) for average 15 minute conversion dataset (random state 66). Both
models have points where each outperforms the other.
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Figure 4.32: PCA of DFT-NBD (top) vs ECFP (bottom) for 30 minute conversion dataset (random state 66). Both models
have points where each outperforms the other.



Conclusion & Outlook

5.1. Conclusion

The research question focused on investigating the effect of different types of representation on the perfor-
mance of predictive Machine Learning (ML) models. The objective was to improve predictive models used
for catalyst design of bidentate ligand coordinated transition metal (TM) complexes. These different repre-
sentations were all DFT-based, with varying input structures and DFT calculations methods. Additionally,
new experimental data created by High-Throughput Experimentation is used, which is closer to the simu-
lated data.

The new reaction investigated was a hydrogenation reaction on a symmetrical substrate norbornadiene (NBD).
Previous work investigated asymmetric hydrogenation reactions on different substrates. [16] The original
representation (DFT-NBD), which is a handmade DFT Optimized structure, was combined with this new
experimental data. This combination resulted in improved consistency of the models, but it did not neces-
sarily improve their absolute performance. In comparison the models used in previous work [16], the current
model clearly demonstrated better performance in DFT-based and ECFP representations compared to the
random representations for regression. This suggests that the ML algorithms have captured useful patterns,
but the performance r? = 0.5 is not sufficiently high. Additionally, this DFT-NBD representation, used a set of
descriptors that included stereochemistry related descriptors. However, these descriptors were removed, as
our new data used a symmetrical substrate. It was found that this removal had only negligible effect on the
performance, which indicates that these descriptors do not influence the performance.

As mentioned, different representations were tested, adjustments were made to the input structure to more
closely represent reality. This was achieved by using conformer ensembles (CEs) generated by CREST. These
CEs account for the dynamic aspect of the complex by using all structures in the conformer ensemble (CE)
and weighing them using Boltzmann averaging, or by selecting the most stable structure to represent the CE.
However, CREST was not always able to find a more or equally stable conformer as DFT-NBD. This resulted in
an energy increase in the lowest energy structure for approximately 25% of the CEs, leading to worse of equal
performance compared to the static method. These higher energies were primarily caused by structures con-
taining a ferrocene group, which CREST struggled with. Another hypothesis for the lack of improvement in
these models could be the limitations of HTE . HTE is known to rapidly generate data, but also introduce inac-
curacies. These are caused by using a general application for all samples, which can overlook the differences
in catalysts, such as their activation times, sample variability and more. Depending on reaction, activity, and
compound, these HTE can have very large deviations. [55] Our data, for instance, showed standard deviation
values ranging from 0.9 to 39.5%, with an average of 11.8%. If experimental data contains significant errors,
even perfect descriptors will fail to make accurate predictions.

Descriptors in both DFT-NBD and CREST representation were compared as part of the CREST analysis. The
results showed that descriptors between DFT-NBD and CREST differed noticeably, specifically in steric de-
scriptors. These descriptors are the most sensitive to changes in the input structure, as they are very geome-
try related. It was also noted that electronic descriptors changed the least. Between the Boltzmann averaged
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and minimum energy representations from CREST, it was found that these descriptors were almost identical,
with the largest spread in again steric descriptors. Furthermore, we checked whether the similarity was due
to minimum energy structures having dominant Boltzmann weights, but in over 70% of the CEs, this was not
the case. Overall, the lowest energy conformer representations performed as good as the Boltzmann averaged
representations.

Regardless of which DFT-based representation was used, the performance of all representations were similar
or worse than ECFP, with for all models a good classification performance and a mediocre 0.3 to 0.7 R2, with
varying interquartile ranges (IQR). These large IQRs emphasize the importance of data splitting, as this has
caused the large differences in performance.

Furthermore, none of the expensive DFT-based models has surpassed ECFP. Further analysis was done, but
retrieving and learning from the patterns found is hard. This method works indeed the best and a possible
explanation could be the consistency of how we described our data, coupled with the systematic method
ECFP works, it can very nicely and effectively split topological features of these complexes. [56][57] These
features might strongly correlate with the physical phenomena that drive the catalytic activity.

5.2. Outlook

The highest level of theory has been reached in this thesis. Boltzmann averaging, combined with DFT Op-
timization, was used to obtain the most realistic representation of the complexes. However some methods
could still be improved. Currently, CREST generated conformer ensembles with higher energies compared to
manually generating a structure and optimizing it using DFT. Most of these increased energy structures were
associated to ferrocene groups. If CREST is able to reliably generate correct conformers containing these
ferrocene groups, it might be possible to actually obtain more accurate descriptors using geometries from
CREST.

Improving reliability of High-Throughput Experimentation or finding alternative methods could improve
the overall performance of the prediction models, as inconsistencies in experimental data may be the limiting
factor in achieving a higher absolute performance.

Expanding the dataset could also significantly improve model performance, as results have shown strong
dependency on the data split. Increasing the number data points would reduce the impact of the data split
and make the models more consistent. Alternatively running more random states would give a more accurate
box plots for the model performance.

In the future, different reactions can be analyzed, or different conformer ensemble generators can be
used, to gain valuable insights.. These might identify where exactly the weaknesses are located and what can
be changed to improve the current model.
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A.1. Methods

Definitive list of ligands (Oct ’23)

#

Structure

Alias or name

CAS#

Type

Formula

Egq. to Rh

M. [g mol]

Vendor

Catalog #

L1

SL-J001-1

155806-35-2

PP

CasHaaFeP2

1.01

594.54

Sigma-Aldrich

88717

L2

SL-J002-1

155830-69-6

PP

CazHaoFeP2

1.01

542.46

Sigma-Aldrich

88719

L3

SL-J003-1

167416-28-6

PP

CasHseFeP2

1.04

606.64

Sigma-Aldrich

88721

L4

SL-J004-1

158923-09-2

PP

CasHasFeP2

1.03

594.54

Sigma-Aldrich

88723

L5

SL-J005-1

184095-69-0

PP

CaoHaoFeP2

1.03

638.55

Sigma-Aldrich

88725

L6

SL-J00B-1

292638-88-1

PP

CaoHaoF 12FeP2

1.06

866.53

Sigma-Aldrich

88727

puaddy

—XI
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# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
MeO. Q
)
L7 P @ “'Me SL-J007-1 360048-63-1 PP CuzHseFeOzP2 1.00 710.70 Sigma-Aldrich 88729
H
MeO
CF; _< \g
P . .
L8 FaC P~ Fe /e SL-J008-1 166172-63-0 PP CasHasF12FeP2 1.03 910.55 Sigma-Aldrich 88731
L
F5C
CF3
D=2
L9 P~ _Fe “IMe SL-J009-1 158923-11-6 PP CaaHszFeP2 1.03 554.56 Sigma-Aldrich 88733
O="
FiC vy
[oR=3
P” _Fe fume
L10 @ H SL-JO11-1 246231-79-8 PP CasHasFsFeP2 1.04 678.46 Sigma-Aldrich 88735
F3C
MeO A<
P
P Fe “iMe
L11 @ H SL-J013-1 187733-50-2 PP CasHsaFeO2P2 1.03 658.62 Sigma-Aldrich 88737
MeO
N PTL
L12 07 “p” Fe Me SL-J212-1 849924-41-0 PP CasHacFeO:zP2 1.08 522.39 aber AB426473
H
O~
—
L13 O @Z(P SL-J404-1 851308-40-2 PP CugHaaFeP2 1.03 738.67 STREM 26-1175
P~ _Fe fume

¢ —xipuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
MeO. :
L14 j 7\(‘“Me SL-J418-1 849924-45-4 PP CasHs2FeO:zP2 1.03 754.71 Sigma-Aldrich 88747
MeO
4
L15 SL-J452-1 849924-73-8 PP CasHzaFeO2P2 1.05 590.42 Sigma-Aldrich 88751
[} ! P
"Me
~o :
L16 S\ @ SL-J502-1 223120-71-6 PP CazHaoFeP; 1.06 542.46 Sigma-Aldrich 88753
L™
L17 (R)-BINAM-P 74974-14-4 PP CaqH3aN2P2 1.02 652.72 Sigma-Aldrich 708615
L18 >L SL-J505-1 849924-76-1 PP CaaHasFeP; 1.07 570.52 Sigma-Aldrich 88755
7& : ”Me
L19 SL-T002-2 914089-00-2 PP CasHesFeNP2 1.01 711.78 Sigma-Aldrich 07542
L20 SL-M001-1 174467-31-3 PP CszHsoFeNzP2 1.03 820.78 Sigma-Aldrich 73463

¥ —xpuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
L21 SL-M003-1 494227-36-0 PP CeoHazFzaFeNzP2 1.02 1364.76 Sigma-Aldrich 73467
L22 SL-M004-1 494227-37-1 PP CeaHraFeN204P; 1.04 1053.10 Sigma-Aldrich 73469
L23 SL-M009-1 793718-16-8 PP CeoHesFeNzP2 1.01 932.99 Sigma-Aldrich 73471
L24 SL-T001-2 850444-36-9 PP CasHasFeNP2 1.03 687.58 Sigma-Aldrich 73476
565184-33-0 . .

L25 SL-W001-1 (AKA 387868-06-6) PP CaeHazF12FeP2 1.05 930.54 Sigma-Aldrich 65671
L26 SL-W002-1 388079-58-1 PP CuzHasFeP2 1.08 658.54 Sigma-Aldrich 65673

¢ —xipuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
L27 SL-W003-2 849925-19-5 PP CazHssFeP; 1.06 670.64 Sigma-Aldrich 65676
L28 SL-W005-2 849925-20-8 PP Cs2HasF12FeO2P2 1.02 1046.70 Sigma-Aldrich 65678
L29 SL-W008-2 849925-22-0 PP CagHasF12FeP2 1.07 942.63 Sigma-Aldrich 65682
L30 SL-W008-1 894771-28-9 PP CsoHszFeP2 1.02 770.76 STREM 26-1555
L31 SL-F356-1 952586-19-5 PP CuaHssFe:NP2 1.04 74553 Sigma-Aldrich 779075
L32 (R)-BINAP 76189-55-4 PP CaaH32P2 1.09 622.69 Sigma-Aldrich 693065

9 —xrpuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
F3C.
CF;
OMe CF,
L
MeO CF
L33 MeO CFg (R)-BTFM-GarPhos 1365531-84-5 PP CuasH2sF2404P2 1.07 1186.66 STREM 15-1663
OGN
CF3
OMe/@\CF3
F3C
99 i@
L34 P\O\ (R)-Tol-BINAP 99646-28-3 PP CasHaoP2 1.04 678.80 Sigma-Aldrich 693049
] l P/é\, (R)-Xyl-BINAP . )
L35 b (AKA (R).DM-BINAP) 137219-86-4 PP Csz2HasP2 1.05 734.90 Sigma-Aldrich 692379
99 ;\@
L36 b (R)-Hs-BINAP 139139-86-9 PP CaaHaoP2 1.09 630.75 Sigma-Aldrich 692387
. .
(] p/®
L37 b (S)-SegPhos 210169-54-3 PP CagHzs04P2 1.09 610.59 Sigma-Aldrich 693006

XY 0

L -xtpuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
¢
L38 ° P (S)-Xyl-SegPhos 210169-57-6 PP CusHasO4P, 1.05 722.80 Sigma-Aldrich 692999
o p N (AKA (S)-DM-SegPhos) g Araaiar . . gma-.
g
OMe
OMe
.
o P
L39 b (S)-DTBM-SegPhos 210169-40-7 PP CraH10006P2 1.09 1179.55 Sigma-Aldrich 692980
<1
o
OMe
OMe
cl
ol O
L40 MeO (R)-Cl-MeO-BIPHEP 185913-97-7 PP CagHaoCl202P2 1.00 651.50 Sigma-Aldrich 96738
el
O,
Cl
OMe
OMe
MeO l P . .
L41 Mo o SL-A109-1 352655-61-9 PP CraH10406P2 1.01 1151.59 Sigma-Aldrich 29512
U
OMe
OMe
MeO ! P/é\ . .
L42 MeO b SL-A120-1 394248-45-4 PP CugHaa02P2 1.07 694.84 Sigma-Aldrich 29516
Do

g —xtpuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
N
N—
[
g b
L43 meg E SL-A107-1 352655-40-4 PP CroH100N4O2P2 1.02 1091.54 Sigma-Aldrich 29528
U
Ve
N
\
/N\
=
(o] =g
)
MeO PN ) )
L44 5 SL-A108-2 145214-59-1 PP CaoH2406P2 1.08 542.46 Sigma-Aldrich 29515
MeO. [=¢
e
/0
—=
Meoj :l P/O/ . .
L45 MeO P SL-A102-2 133545-25-2 PP CuzHa002P2 1.01 638.73 Sigma-Aldrich 29521
e i \©\
MeO g P/&( ) .
L46 MeO b SL-A121-1 192138-05-9 PP CroHes02P2 1.10 1031.48 Sigma-Aldrich 29524
C
MeO OMe
OMe OMe
o
L47 MeO P OMe SL-A104-1 256390-47-3 PP CsoHss014P2 1.05 942.93 Sigma-Aldrich 29526
MeO. . R OMe
OMe
OMe oM
MeQ &
OMe

6 —xipuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
OMe Q
L48 meg i (R)-GarPhos 1365531-75-4 PP CaoH3s04P2 1.06 64267 Sigma-Aldrich 754927
ROy
OMe
L49 meg : (R)-Xyl-GarPhos 1365531-89-0 PP CasHs204P2 1.00 754.89 Sigma-Aldrich 761389
Re
OMe
OMe
OMe OMe
MeO l P 5 .
L50 MeO. P (R)-DTBM-GarPhos 1365531-98-1 PP CrgH1080sP2 1.03 1211.64 Sigma-Aldrich 761419
U
OMe OMe
OMe
MeO E P/<
L51 MeO b (S)-Pr-BIPHEP 150971-43-0 PP CasH002P2 1.03 446.55 STREM 15-0655
RGN
(o] g P’@
L52 o P (R)-Cs-TunePhos 301847-89-2 PP CasH3202P2 1.05 594.63 STREM 15-0175
C(L N
L53 - P\/\P < (S,S)-Pr-BPE 528854-34-4 PP CazHaaP2 1.07 370.54 Sigma-Aldrich 668435
/\

01 —x1puaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
-0
o P/Q (RR,R)-SPIRAP ) )
L4 o™ . : (AKA (R CrabPhos) NA PP CaaHss02P2 1.03 648.72 Sigma-Aldrich 905240
soxs
L55 H L H (RR.S,S)-DuanPhos 528814-26-8 PP CaaHazP2 1.09 382.46 Sigma-Aldrich 657697
S
Q < OMe
L56 p P (R.R)-DIPAMP 55739-58-7 PP CasH2s02P2 1.06 458.48 Sigma-Aldrich 697761
Me0\©
0
L57 o (R)-Pr-PHOX 164858-78-0 PN CaaH2aNOP 1.09 373.44 Sigma-Aldrich 72575
|
N
Ls8 SL-F131-1 899811-43-9 PP CeoHsiFesNzP. 1.03 912.48 STREM 26-1260
(AKA Trifer) soHssFeaNP . .
L59 (R)-Xyl-SDP 917377-75-4 PP CasHsoP2 1.04 700.89 STREM 15.5168
L60 (S)-DM-MonoPhos 185449-86-9 | Phosphoramidite CaHzNOP 2.00 387.42 STREM 15-1255

11 -xipuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
L61 (R)-Ph-MonoPhos 936010-61-6 Phosphoramidite CasH2sNO2P 2.00 511.56 STREM 15-5620
L62 (S)-NEtz-MonoPhos 252288-04-3 Phosphoramidite CasH22NO2P 2.00 387.42 STREM 15-1231
L63 (R.R,R)-Xyl-SKP 1429939-35-4 PP CszH5402P2 1.03 772.95 STREM 15-4320
L64 (R,R)-Ph-BPE 528565-79-9 PP CaaH36P2 1.09 506.61 Sigma-Aldrich 667811
L65 (8.S)-ChiraPhos 64896-28-2 PP CasHz26P2 1.04 42648 Sigma-Aldrich 259098
L66 (R.R)-Et-BPE 136705-62-9 PP C1aH36P2 1.06 314.43 Sigma-Aldrich 668478
L67 (R)-QuinoxP 866081-62-1 PP C1gHzsN2P2 1.06 334.38 Sigma-Aldrich 676403

21 —xipuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
Q /
L68 E:/P R (R,R)-Et-DuPhos 136705-64-1 PP CazHasP2 1.04 362.48 Sigma-Aldrich 668494
Me Q Me
L69 Cp p (R,R)-Me-DuPhos 147253-67-6 PP C1aHasP2 1.08 306.37 Sigma-Aldrich 665258
;Me Me
1 = P
L70 P (S)-PhanePhos 192463-40-4 PP CaoHaaP2 1.09 576.66 Sigma-Aldrich 682136
P@
v
L71 o (S)-Me-Pr-PHOX 1152313-76-2 PN CasH2sNOP 1.05 401.49 Sigma-Aldrich 719641
1\)(
N—/
=1
L72 P @ SL-N003-2 163169-29-7 PN CasHzsFeNOP 1.09 481.36 Sigma-Aldrich 717398
\j o]
L73 P%O (S)-NeoPHOX 1199225-38-1 PN CazH2sNOP 1.05 353.45 Sigma-Aldrich 729264
N
e
N—P,
L74 P o / \® (R,S)-Me-BoPhoz 406680-94-2 PP CarHasFeNP2 1.06 611.49 Sigma-Aldrich 682322
“"Me

¢1 —xipuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
1 \p‘
L75 g (R)-Xyl-PhanePhos 325168-89-6 PP CasHsoP2 1.08 688.88 Sigma-Aldrich 682306
PD’/
P
L76 OO Fe OO (S,8)--Binaphane 544461-38-3 PP CsaHsoFeP2 1.09 806.71 STREM 26-0243
D+
L77 (R,R)-BDPP 96183-46-9 PP CaeHaoP2 1.09 440.51 STREM 15-0432
F'\‘/\/F'
©/ Me I\_;’Ie
)
L78 Z o (R,R)-NorPhos 71042-55-2 PP CatHzsP2 1.09 462,51 STREM 15-0140
g O
v o
/ Fe P
L79 —N_ @ (R,S)-BPPFA 74311-56-1 PP CasHarFeNP, 1.06 625.51 Sigma-Aldrich 344087
e
@P/ :
o]
L80 >< (R,R)-DIOP 32305-98-9 PP Ca1H3202P2 1.07 498.54 Sigma-Aldrich 237655
O™
[
She

¥1 - xipuaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
F'
L81 o (S)-Tol-Bu-PHOX 218460-00-5 PN C27H30NOP 1.10 415.52 Sigma-Aldrich 688533
W
N—/
MeO 0
L82 P Py (8.S)-DPE-Phos 2119686-55-2 PP CasH3205P2 1.06 598.62 STREM 15-1279
D=
L83 P k (S)-NMDPP 43077-29-8 P Ca2HzoP 2.00 324.45 STREM 15-3490
0
A( P
L84 )v (S,S)-BABIBOP 2207601-04-3 PP Ca2H2802P2 1.03 386.41 STREM 15-6410
QI
o
Ly
i
\\( P
L85 )V (S,5,5,5)-Me-BABIBOP 2207601-10-1 PP CaaH320:P2 1.06 414.47 STREM 15-6420
P
e O
o]
<
o
4( R
L86 )V (8,5,S,5)-Pr-BABIBOP 2207601-12-3 PP CasH4002P2 1.08 470.57 STREM 15-6430
P
>....< O
e}
LX)
P, P
L87 7( (R.R,R.R)-Bis-BIDIME 1884680-48-1 PP CasHaaO6P2 1.03 658.71 STREM 15-6240
MeO l OMe  MeO ‘ OMe
L88 2 (R,R)-PPM 77450-05-6 PP CasHzaNP2 1.05 453.51 STREM 15-7210

G1 - xipuaddy



Structure

L89

Alias or name

CAS#

Type

Formula

Eq. to Rh

Peles

P
R

M..[g mol]

Vendor Catalog #

SL-A101-1

133545-16-1

PP

CisH3202P;

1.03 582.62

Sigma-Aldrich 29510

L90

F
F
F F
oV shey
MeO P .
MeO I P F

F F
F
CF3

F

(S)-MeO-F12-BIPHEP

116008-37-6

PP

CasH20F1202P2

1.06 798.50

Kanto 25971-95

L91

P

: /@CFB
MeO .
MeO. I P

CF3

(R)-MeO-F1e-BIPHEP

NA

PP

CazH24F1602P2

1.03 926.57

Kanto 2022-008K

L92

= // CFy
MeO
MeO. P. -
J /m

N CFs
N=

(R)-MeO-Py-F12-BIPHEP

NA

PP

CasH24F12N4O2P2

1.06 858.56

Kanto 2022-009K

L93

(R)-MeO-F20-BIPHEP

NA

PP

Caz2Ha0F2002P2

1.02 998.54

Kanto 2022-010K

91 —x1puaddy



# Structure Alias or name CAS# Type Formula Eq.to Rh | Mu[g mol'] Vendor Catalog #
FiC_ N
[N CF,¢Fs
= =Ny
N )
L94 meg g gE (R)-MeO-BFPy-BIPHEP NA PP CazHzoF24N4O2P2 1.03 1130.56 Kanto 2022-011K
e 3
O 7 L N
- CFalp
Fac” N 8
L95 PJ\/\P (S,S)-XyISKEWPhos 551950-92-6 PP CarHasP2 1.08 552.72 Kanto 05843-68
L96 P/'\/\P (S,S)-DIPSKEWPhos NA PP CsaH7eP2 1.10 777.15 Kanto 05845-55

L1 -x1puaddy
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A.2. Results and Discussion
A.2.1. Sensitivity analysis

Sensitivity analysis of initialization of Machine Learning model

In-domain: target=Conversion 30", substrate=NBD, In-domain: target=Conversion 30', substrate=NBD,
o threshold=0.321, rs=10, classification o threshold=0.321, rs=10, regression
Representation Representation
Il DFT-NBD HEEl DFT-NED
08 BN DFT-NBD (no stereoC.) 0.8 EEE DFT-NBD (no stereoC )
0.6 0.6
ey —

5 o
o 04 g 04
5} Q
c (=
@ @
E E
g o2 2 o2
I 2

0.0 0.0

-02 -0.2
04 04
NBD NBD
Dataset Dataset

Figure A.1: Sensitivity analysis of initialization of the Machine Learning model. Box plots are shown of the performance
of the models using classification (left) and regression (right). Classification show no change after different initializations
and regression show small changes.

Sensitivity analysis of data splitting of the train/test data

In-domain: target=Conversion 30", substrate=NBD, In-domain: target=Conversion 30', substrate=NBD,
threshold=0.321, classification threshold=0.321, regression
1.0 1.0
Representation Representation
HEEl DFT-NED HEEl DFT-NED

08  mmm DFT-NBD (no stereoC.) E 08 BN DFT-NBD (no stereoC.)

0.6 0.6
5 )
o 04 @ 04
5] (%]
5 g
@
E E
S 02 2 02
= k=
g g

0.0 0.0

-02 -0.2
04 04
NBD NBD
Dataset Dataset

Figure A.2: Sensitivity analysis of data splitting of the train/test data. Boxplots are shown of the performance of the
ML models using classification (left) and regression (right). While classification show a small change in performance,
regression show a much larger change.
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A.2.2. Removal stereochemistry

Performance static representation without stereochemistry

In-domain: target=Conversion 30 min, substrate=NBD, In-domain: target=Conversion 30 min, substrate=NBD,
threshold=0.321, classification regression

1.0 1.0

. — . )

0.6 . 06
5 ®
o o

2 04 S o4
E E
5 =]
= T

& o2 a 02

0.0 0.0

0.2 02

NBD NBD
Dataset Dataset
Representation Representation
EEl DFT-NBD EEl DFT-MBD (no stereoC.) EEl DFT-NBD HEEl DFT-NBD (no stereoC_)

Figure A.3: Effect of removing the stereochemistry descriptors on the NBD 30 min dataset. On the left the classification
performances are shown for DFT-NBD with stereochemistry and DFT-NBD without stereochemistry. Performances are
similar

A.2.3. ECFP

Feature importance of the best RF model 'Conversion 15' AVG' rs: 20, classification

0.04
0.03
@
g
5
5
g oo02
E
E
B . . . -
0
fps7 pa67 91 fpdd2 fp211 fp370 fpa27 P63 475 fp201

Feature

Figure A.4: ECFP Figure Importance plot of random state 20.
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Feature importance of the best RF model 'Conversion 15' AVG' rs: 30, classification

0.03
0.02
: B I
L]

p333 fpdd2 fp91 fpa67 p379 fp222 fp201 p373

Importance

Feature

Figure A.5: ECFP Figure Importance plot of random state 30.

Feature importance of the best RF model 'Conversion 15' AVG' rs: 62, classification

| [———

fp57 fp333 fp130 fp183 p379 fp467 fp222 fp370 fp70

Importance
o
(=]
®

Feature

Figure A.6: ECFP Figure Importance plot of random state 62.

Feature importance of the best RF model 'Conversion 15' AVG' rs: 66, classification

| Fpe——

fps7 fpd67 fp370 fpad2 p391 fp183 fpo1 fp4s fp333 379

Importance

Feature

Figure A.7: ECFP Figure Importance plot of random state 66.

A.3. ChatGPT

ChatGPT was used during this thesis to assist and improve my writing and coding. It was primarily used
for tedious tasks, which I otherwise had googled. Things such as how to retrieve an entire row or column
when a specific value is in a DataFrame, and suggesting synonyms or word to refine my flow. I always made
sure I checked everything I asked ChatGPT, to prevent repeating sentences or having inconsistencies. For the
coding part, I tried to avoid copy pasting entire codes, as it could alter the calculations or data if I needed to
continue on those. I usually only copy pasted code if I ask to display data, for example how to make a Seaborn
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barplot, or how to change the colors in a plot. When I use ChatGPT to rewrite my text, I try to only use parts
that improved the flow or avoid lengthy sentences.

A.3.1. Examples

P 0 Initially there were over 6000 structures created by CREST, which
were reduced to 2756 structures after filtering using the Sara's
algorithm. \cite{Sara2024}. Not all of these geometries generated
by CREST were usable. 7 of the 192 conformer ensembles
contained structures where the ferrocene is destroyed and
formed bonds with other atoms. These were from conformer
ensembles (CEs) of ligand: 19, 24, 115, 140, 141, 176 and 188.
These CEs were not included, which reduced the structures even
more. Ultimately this ferrocene error affected two CE, since we
only had experimental data for the first 96 ligands. Can you
rewrite to improve the flow of this paragraph?

Sure! Here's a revised version with improved flow and clarity:

Initially, CREST generated over 6,000 structures, which were reduced to 2,756 after filtering with

Séra's algorithm \cite{Sara2024}. However, not all of these geometries were usable. In 7 out of the
192 conformer ensembles (CEs), the ferrocene unit was disrupted, forming unintended bonds with
other atoms. These affected CEs corresponded to ligands 19, 24, 115, 140, 141, 176, and 188. As a

Figure A.8: Example where I inputted a paragraph to see if  missed punctuation and changed structure if it is better.

is it boxplot or box plot

Both "boxplot" and "box plot" are used in scientific literature, but "box plot" (two words) is more
common in formal writing and statistical contexts. However, "boxplot" (one word) is also widely
accepted, especially in programming languages like R and Python. It depends on the style guide

you're following! Are you using a specific formatting standard?

Figure A.9: Example where I checked spelling of words.
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meaningless synonym

Here are some synonyms for "meaningless," depending on the context:
« Insignificant
* Pointless
¢ Useless
o Empty
e Trivial
¢ Irrelevant
e Purposeless
* Inconsequential
* Futile

+ Nonsensical

Let me know if you need a synonym for a specific situation!

QO PdY Oy

Figure A.10: Example where I used ChatGPT for finding synonyms.

Example Code:

Here's a basic example demonstrating the use of sns.barplot :

python ©@ Kopiéren ¥ Bewerken

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

'Category': ['A', 'B', 'C', 'A', 'B', 'C'],
'Values': [10, 20, 15, 30, 25, 35],
'Group': [IXI, IXI, IXI, IYI' IYI' |Yv]

ol

# Create the barplot

plt.figure(figsize=(8, 6))

sns.barplot(x="'Category', y='Values', hue='Group', data=data, ci='sd', palette='virid
plt.title('Barplot Example with Confidence Intervals')

plt.ylabel('Average Values')

plt.xlabel('Category")

plt.show()

Figure A.11: Example where I asked how to create a sns.barplot, when I have a pd.DataFrame.
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