

Delft University of Technology

Factors Affecting On-Time Delivery in Large-Scale Agile Software Development

Kula, Elvan; Greuter, Eric; Van Deursen, Arie; Georgios, Gousios

DOI
10.1109/TSE.2021.3101192
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Kula, E., Greuter, E., Van Deursen, A., & Georgios, G. (2022). Factors Affecting On-Time Delivery in Large-
Scale Agile Software Development. IEEE Transactions on Software Engineering, 48(9), 3573 - 3592.
https://doi.org/10.1109/TSE.2021.3101192

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2021.3101192
https://doi.org/10.1109/TSE.2021.3101192

Factors Affecting On-Time Delivery
in Large-Scale Agile Software Development

Elvan Kula ,Member, IEEE, Eric Greuter, Arie van Deursen ,Member, IEEE, and Georgios Gousios

Abstract—Late delivery of software projects and cost overruns have been common problems in the software industry for decades.

Both problems are manifestations of deficiencies in effort estimation during project planning. With software projects being complex

socio-technical systems, a large pool of factors can affect effort estimation and on-time delivery. To identify the most relevant factors

and their interactions affecting schedule deviations in large-scale agile software development, we conducted a mixed-methods case

study at ING: two rounds of surveys revealed a multitude of organizational, people, process, project and technical factors which were

then quantified and statistically modeled using software repository data from 185 teams. We find that factors such as requirements

refinement, task dependencies, organizational alignment and organizational politics are perceived to have the greatest impact on on-

time delivery, whereas proxy measures such as project size, number of dependencies, historical delivery performance and team

familiarity can help explain a large degree of schedule deviations. We also discover hierarchical interactions among factors:

organizational factors are perceived to interact with people factors, which in turn impact technical factors. We compose our findings in

the form of a conceptual framework representing influential factors and their relationships to on-time delivery. Our results can help

practitioners identify and manage delay risks in agile settings, can inform the design of automated tools to predict schedule overruns

and can contribute towards the development of a relational theory of software project management.

Index Terms—Software engineering management, effort estimation, empirical studies, software companies

Ç

1 INTRODUCTION

LATE delivery and cost overruns have been common prob-
lems in the software industry for decades. On average,

software projects run around 30 percent overtime [1]. This
percentage does not seem to have decreased since the
1980s [2]. Even though effort estimation is at the heart of
almost all industries, it is especially challenging in the soft-
ware industry. This is mainly due to the fact that software
development is a complex undertaking, affected by a vari-
ety of social and technical factors. The overall perceived suc-
cess of a software project depends heavily on meeting the
time and cost estimates [3]. Improving effort estimation is
therefore a critical goal for software organizations: it can
help companies reduce delays and improve customer satis-
faction, while enabling them to efficiently allocate resources,
reduce costs and optimize delivery [4], [5]. In spite of the
availability of many estimation methods and guidelines [6],
[7], on-time delivery in software development remains a
major challenge. Prior research identified a large number of
factors that may influence the software development effort

[8], but which factors have the most impact is not clear. We
lack an understanding of the relationships between these
factors and how they impact on-time delivery.

Effort estimation is also a major challenge in agile soft-
ware development. Prior work [9] has found that around
half of the agile projects run into effort overruns of 25 per-
cent or more. In agile settings, software is incrementally
developed through short iterations to enable a fast response
to changing markets and customer demands. Agile projects
leverage short-term, iterative planning in which effort esti-
mates are progressively refined [10]. A particular challenge
involves combining the flexible, short-term agile planning
setting with the business needs for long term planning of
availability of large pieces of functionality (often referred to
as “epics” [11]). Most agile teams heavily rely on experts’
subjective assessment of team- and project-related factors to
arrive at an estimate [12], [13]. However, these factors
remain largely unexplored [13]; further analysis is required
to investigate influential factors and how they impact delays
in agile projects.

By identifying and investigating influential factors, we
can obtain valuable insights on what data and techniques are
needed to becomemore predictable at delivering software in
agile settings. An identification of themost influential factors
can help software organizations increase the effectiveness
and efficiency of scheduling strategies by concentratingmea-
surement and risk management activities directly on those
factors that have the greatest impact on on-time delivery.
Such knowledge can also guide future research on building
and evaluating software effort estimation techniques, meth-
ods and tools. Furthermore, a deeper understanding of the
interactions between influential factors can help in identify-
ing the root causes of delays, and developing tools and

� Elvan Kula is with the Delft University of Technology, 2628, CD, Delft,
Netherlands, and also with the ING Tech, 1102, MG, Amsterdam, The
Netherlands. E-mail: E.Kula@tudelft.nl.

� Eric Greuter is with the ING Tech, 1102, MG, Amsterdam, The Nether-
lands. E-mail: Eric.Greuter@ing.com.

� Arie van Deursen and Georgios Gousios are with the Delft University of
Technology, 2628 Delft, The Netherlands. E-mail: {Arie.vanDeursen,
G.Gousios}@tudelft.nl.

Manuscript received 14 Oct. 2020; revised 16 June 2021; accepted 13 July 2021.
Date of publication 2 Aug. 2021; date of current version 19 Sept. 2022.
(Corresponding author: Elvan Kula.)
Recommended for acceptance by M. P. Robillard.
Digital Object Identifier no. 10.1109/TSE.2021.3101192

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022 3573

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8577-3760
https://orcid.org/0000-0002-8577-3760
https://orcid.org/0000-0002-8577-3760
https://orcid.org/0000-0002-8577-3760
https://orcid.org/0000-0002-8577-3760
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0002-8495-7939
https://orcid.org/0000-0002-8495-7939
https://orcid.org/0000-0002-8495-7939
https://orcid.org/0000-0002-8495-7939
https://orcid.org/0000-0002-8495-7939
mailto:E.Kula@tudelft.nl
mailto:Eric.Greuter@ing.com
mailto:Arie.vanDeursen@tudelft.nl
mailto:G.Gousios@tudelft.nl

guidelines that can assist software organizations in improv-
ing their on-time delivery performance.

The goal of this paper is to identify the most relevant fac-
tors and their interactions that affect schedule deviations in
large-scale agile software development. To do so, we con-
duct a case study at ING, a large Dutch internationally oper-
ating bank with more than 15,000 developers. The teams at
ING develop software using an agile development process.
They work with epics to manage interdependent software
deliveries across multiple teams and iterations. We follow a
mixed-methods approach in which we combine expert-
with data-based strategies to derive, confirm and investi-
gate factors that impact the timelines of epic deliveries. We
conduct a survey with 635 software experts from ING, and
we analyze historic repository data from 185 teams and
2,208 epics to corroborate the survey findings. We extract
proxy measures from repository data that we map to the
perceived influential factors and analyze their importance
in schedule deviations. Throughout our study, the follow-
ing two research questions guide our work:

RQ1. Factor identification: Which factors are perceived to
affect the timeliness of deliveries (RQ1.1), what is
their perceived level of impact (RQ1.2), and what are
the perceived types of interactions between these
factors and on-time delivery (RQ1.3)?

RQ2. Factor validation: How do the perceived influential
factors impact schedule deviation in deliveries?

Our survey results show that requirements refinement,
task dependencies, organizational alignment, organiza-
tional politics and the geographic distribution of teams are
the factors that are perceived to have the greatest impact on
timely delivery. We find that factors interact hierarchically:
organizational factors interact with people factors, which in
turn impact the technical factors. The technical factors are
perceived to have a direct impact on the timeliness of soft-
ware delivery. Our data analysis reveals that the project
size, number of task dependencies, historical delivery per-
formance, team familiarity and developer experience are
the most important proxy measures that explain the sched-
ule deviations in deliveries.

By answering the research questions, we create a concep-
tual framework representing 25 factors and their interac-
tions that are perceived to affect the timely delivery of
software at ING. The main contributions of this paper are:

� A set of factors and their interactions affecting the
timely delivery of software in large-scale agile devel-
opment. We order the factors by their relevance.

� A conceptual framework of on-time delivery that repre-
sents influential factors and their interactions. This
framework suggests multiple paths for action that
may improve the timeliness of software deliveries.

2 BACKGROUND

On-time delivery in software development remains a major
challenge and important topic of interest since improving it
has a large economic benefit. Considerable research has
been directed at identifying factors that cause schedule

overruns in software projects. This work can be found in the
research areas of effort estimation and software project risk
management. In this section, we provide background on
large-scale agile software development, and we discuss
research on effort drivers and software project risks that
lead to schedule overruns. We also provide details on the
development context of the case company.

2.1 Large-Scale Agile Software Development

A common way for agile companies to express user require-
ments is based on a five-level hierarchy introduced by Lef-
fingwell [11] (shown in Fig. 1). Within strategic focus areas
called strategic themes, epics form high-level functional goals
for the product(s) [10]. Epics represent a large body of work
that can be split into features, which in turn can be split into
user stories. Stories are short requirements or requests writ-
ten from the perspective of an end user [14]. Finally, user
stories are refined into development tasks, which denote the
technical work that needs to be done for a user story. Agile
teams work with a product backlog to keep track of the sta-
tus and business priority of work items [15].

Various agile planning frameworks for large projects
(multi-team, multi-month) have been implemented success-
fully in large-scale software organizations [16], [17], [18].
These frameworks rely on three levels of planning: release,
iteration and daily planning [10]. The release plan (usually
2-6 months) centers on epics [10], which often encompass
multiple teams and span over multiple iterations (e.g.,
sprints in Scrum [19]). An iteration is a short, fixed-length
period (usually 1-4 weeks) in which a single development
team delivers a number of user stories.

2.2 Factors Influencing Software Development
Effort

Prior work analyzed a variety of factors influencing the soft-
ware development effort (so-called effort drivers). Trendowicz
et al. [20] reviewed and divided the most commonly used
effort drivers into four categories: personnel factors (i.e., team
capabilities and experience [5], [9], [21], [22]), process factors
(i.e., quality of methods, tools and technologies applied [23],
[24], [25]), project factors (i.e., project resources and manage-
ment activities [26], [27]) and product factors (i.e., effort for
requirements analysis, design and coding [28]). Personnel fac-
tors and project factors are the topmentioned effort drivers in

Fig. 1. Agile work breakdown structure.

3574 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

agile projects [12]. As observed in previous studies [20], [29],
the accuracy of effort estimation methods depends on the
selection of relevant factors and the elimination of irrelevant
andmisleading factors.

Existing estimation methods can generally be classified
into expert-based and model-based approaches [5], [30].
Expert-based methods rely on human expertise to select rel-
evant factors, and are the most popular technique in both
agile and traditional (waterfall-like) projects [5], [31].
Model-based methods leverage data from past projects cov-
ering a certain initial set of factors in order to identify a sub-
set of factors that are relevant. Both methods have
significant practical limitations when applied individually.
Experts decisions heavily rely on subjective assessment,
which may lead to inaccuracy and inconsistencies between
estimates. The effectiveness of data-based methods, on the
other hand, largely depends on the quantity and quality of
available data. It is therefore likely that no single strategy
will be the best performer for all settings [5]. Hence, recent
works [32], [33] propose to combine expert-based and data-
based methods – similar to this work.

Machine learning models have gained popularity as an
alternative to model-based estimation methods. They have
achieved promising results in estimating effort for software
projects [34], [35], [36], [37], [38], and predicting the elapsed
time required for bug-fixing or resolving an issue [39], [40],
[41], [42], [43], [44]. Our study of factors affecting schedule
deviation in epics can provide further insights into impor-
tant effort drivers that can contribute to the improvement of
estimation methods.

2.3 Software Project Risk Factors

Risk factors are uncertain events that can pose a serious
threat to the successful completion of a software project [45].
Several studies point out that ineffective risk management is
one of the main reasons for schedule overrun in software
projects [46], [47], [48], [49], [50]. Risk management consists
of two main activities: risk assessment and risk control. Our
current work focuses on risk assessment, which is the pro-
cess of identifying risks, estimating the likelihood of their
occurrence and evaluating their potential effects [51]. In this
work, we identify risk factors that lead to schedule overrun
in software deliveries andwe evaluate their relative effects.

Seminalwork in the area of risk assessment has been carried
out by Boehm [51] (‘Top 10 Software Risks”) and the Software
Engineering Institute [52] (“Taxonomy-Based Risk Identi-
fication”). Examples of the most common risk factors are:
unclear or changing requirements (e.g., [51], [53], [54], [55]),
underestimated project complexity (e.g., [56], [57]), an unstable
organizational environment (e.g., [58], [59]), lack of manage-
ment support (e.g., [57], [60]), bad commitment of the user
([57], [61]) and personnel shortfalls (e.g., [51], [62]). Other stud-
ies focused on measurement of (the level of) risk [56], under-
standing the nature and types of risks [57] and mitigation of
risk components [63]. Wallace et al. [64] reviewed literature in
the field and identified six dimensions of software project risks:
organizational environment, user, requirements, project com-
plexity, planning & control and team risk. They analyzed the
relationships between risk dimensions and overall project per-
formance. More recently, Menezes et al. [65] identified 148 risk

factors through a systematic literature review and classified
them according to the SEI Taxonomy [52]. Related research
[66], [67], [68] has also been done in using statistical analysis for
evaluating risk factors in software projects.

While various risk checklists and frameworks have been
proposed in earlier work, the relationships between risk fac-
tors and project delay remain largely unexplored. Our study
complements prior work by providing further insights into
the relationships between factors and their implications for
on-time delivery performance.

2.4 The Case Company

To address our research questions, we conducted a case
study at ING TECH, the largest IT department within ING
that consists of 295 development teams distributed over
Europe, Asia and North America. TECH is responsible for
the development of ING’s main banking platforms and
advisory services that are being used by millions of custom-
ers worldwide. The department has significant variety in
terms of the products developed, the size and application
domain, as well as the programming languages used.

In recent years, ING has reinvented its organisational
structure, moving from traditional functional departments to
a completely agile organisational structure based on Spotify’s
‘Squads, Tribes and Chapters’ model [69]. The main purpose of
thismodel is to scale agile to hundreds of development teams.
Each development team consists of 5 to 9 members, and has a
Scrummaster and a product owner. The teams at ING TECH
practice DevOps and follow Scrum as agile methodology.
They work in sprints of 1 to 4 weeks. To ensure that code can
be deployed fast to production, ING put a fully automated
software delivery pipeline in place. All development teams
make use of the pipeline. The delivery pipeline contains sev-
eral specialized tools, as depicted in Fig. 2.

At ING TECH, epics are usually delivered in a time span
of one to four quarters, i.e., three to 12 months. Epics should
either be delivered as a whole within a quarterly cycle or, in
case of larger epics, in incremental software releases. The
planning activities are led by tribe leads with active engage-
ment of product owners tomanage inter-team dependencies.

3 RESEARCH METHOD

Our research method consists of an exploratory and confir-
matory phase. In the exploratory phase, we developed and
distributed a survey to software experts to identify factors
that are perceived to affect the on-time delivery of epics
(RQ1.1) and types of factor interactions (RQ1.3). In the confir-
matory phase, we applied data triangulation to corroborate

Fig. 2. Continuous delivery pipeline at ING.

KULA ETAL.: FACTORS AFFECTING ON-TIME DELIVERY IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 3575

the respondents’ perceptions and to extract more detailed
insights into the effects of influential factors.We conducted a
second survey with a different sample of software experts to
order influential factors by their perceived level of impact
(RQ1.2), and we performed regression analysis using reposi-
tory data to validate the impact of factors (RQ2).

3.1 Collecting and Analyzing Survey Data

The main goal of the surveys was to gather the perceptions
of software experts at ING on factors affecting the timeliness
of epic deliveries and how much of an impact they have. To
design and execute our surveys, we followed methodologi-
cal guidelines from Kitchenham and Pfleeger [70], and
Kasunic [71], for survey research in software engineering.

3.1.1 Survey Design

We developed two self-administered online surveys, which
were composed of a mix of closed and open-ended ques-
tions. The first survey’s purpose was to identify influential
factors and their interactions, and the second survey was used
to assess the perceived level of impact of each of the identified fac-
tors from the first survey. The surveys were organized into
two sections: a section aimed at gathering demographic
information and a section targeting the research questions.1

We kept the number of survey questions to a minimum as
shorter questionnaires have been found to receive higher
response rates [70].

The demographic sections of the surveys consisted of
multiple-choice questions on the respondent’s role, overall
experience in software development and experience within
ING. These demographic characteristics are important to
assess the representativeness of participants [71] and they
have been shown to influence the reasons given for effort
estimation errors in related work [73]. The research related
section of the first survey contained open-ended questions
to gather unbounded and detailed responses on influential
factors and types of factor interactions. For RQ1.1, we asked
experts which factors affect the timeliness of their teams’
epic deliveries. For RQ1.3, we included a follow-up open-
ended question asking how the reported factors influence
the timeliness of epic deliveries. In the second survey, we
asked experts to rate the impact level of each identified fac-
tor from the first survey (RQ1.2). We used four-point Likert
scale questions from “no impact” to “large impact” to get
specific responses. We also provided a separate “not
applicable” optional response in case a factor was not rele-
vant to respondents. Here we also provided respondents
with a write-in question to probe for additional factors in
case any new ones might appear; we received 109 responses
to that question. We reviewed the responses manually and
found that they were rephrasing one of the 25 factors or
identifying a subcase of one of the factors.

We have taken multiple measures to make the survey
questions understandable by the respondents [70]. We
included a brief paragraph on the survey’s start page featur-
ing the purpose of the survey and an overview of the types
of questions presented in each section. Furthermore, we

provided definitions of factors to participants in the second
survey. The first two authors have considerable experience
working in the company, and they were able to explain the
factor definitions in vocabulary understood by the partici-
pants. Together with the last author, they also made sure
that the survey questions were coherent and consistent [70].
To avoid leading questions and biasing respondents, we
phrased and ordered the questions in a sequential order of
activities [71]. The factors in the second survey were pre-
sented in random order to the participants to reduce order-
ing bias [74].

3.1.2 Survey Validation

After design, the survey instrument should be evaluated to
display areas for improvement [70], [71]. We piloted both
surveys with 25 randomly selected employees from ING
TECH to refine the survey questions. The pilot versions
included an additional open-ended question at the end of
the survey asking respondents for feedback on the survey
contents. The respondents’ feedback allowed us to refine
the survey questions. As part of the pilot run, we received 6
responses (24 percent response rate) for the first survey and
5 responses (20 percent response rate) for the second survey.
No reminder emails were sent. The pilot of the first survey
revealed that the wording of the survey question aimed at
RQ1.3 was unclear. The question asked respondents about
the types of relationships between factors, which respond-
ents interpreted in different ways (e.g., sign of impact, cau-
sality versus correlation, direct or indirect link). Since we
wanted to collect descriptive information about factor inter-
actions and do the classification of relationships ourselves,
we rephrased it as a more open-ended question in the final
version of the survey. The initial version of the second sur-
vey disclosed that the names of some factors (e.g., task
dependencies versus technical dependencies) were ambigu-
ous to respondents. This prompted us to provide a list of
factor definitions in the final version of the second survey.

3.1.3 Survey Execution and Sampling Strategy

Our target population was composed of the 2,850 employ-
ees that belong to the 295 development teams at ING TECH.
All these teams work with epic deliveries and are therefore
relevant for our study. We received access to a mailing list
containing all team members, which became our sampling
frame. We were able to identify participants based on their
email address and we had an overview of teams (team
names) they belong to. This enabled us to determine mem-
bers’ participation and link survey responses to teams’
repository data for triangulation in RQ2.

As recommended in survey guidelines [70], [71], [75], we
performed simple random sampling to obtain representa-
tive samples from our population. For our final surveys, we
excluded the 50 employees solicited in the earlier pilot sur-
veys from our sampling frame. The final version of the first
survey was distributed to 1,400 employees (one half of the
population) in October 2019. These employees were sam-
pled uniformly at random across all teams at ING TECH.
We received 298 responses (representing 237 teams), corre-
sponding to a response rate of 21 percent. A majority (79
percent) of teams had one respondent, 16 percent had two

1. The final survey instruments can be found in the supplemental
material [72].

3576 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

respondents and remaining 5 percent had three respond-
ents. The final version of the second survey was distributed
to the other half of the population (another 1,400 employees)
in November 2019. This second group did not include
employees solicited in the first survey. We obtained 337
responses (representing 241 teams), corresponding to a
response rate of 24 percent. A majority (72 percent) of teams
had one respondent, 18 percent had two respondents, 9 per-
cent had three respondents and the remaining 1 percent
had four respondents.

As per our sampling plan for the surveys, the partici-
pants were invited using a personal invitation mail featur-
ing the purpose of the survey and how its results can enable
us to gain new knowledge of delay factors in epic deliveries.
Participants had a total of two weeks to participate in the
surveys. To follow up on non-responders [70], we sent
reminder emails to those who did not participate yet at the
beginning of the second week.

3.1.4 Survey Data Analysis

The data we analyzed in this paper comes exclusively from
the responses to the final surveys (i.e., the first survey
deployed in October 2019 and the second survey deployed
in November 2019). The “not applicable” responses were
omitted from the analysis set. For the analysis of RQ1.2, we
used descriptive statistics to order factors by their perceived
level of impact. For the analysis of RQ1.1 and RQ1.3, we
performed inductive coding to summarize the results of the
open-ended questions. Coding samples are provided as
examples in the supplemental material [72].

Identifying Influential Factors. A common approach for
transforming qualitative data into quantitative data is cod-
ing [76], [77]. For RQ1.1, we applied inductive coding (i.e.,
inductive content analysis) during two integration rounds to
derive influential factors from the open-ended survey
responses. Each code in our coding scheme represents an
influential factor. We coded by statement and codes contin-
ued to emerge till the end of the process. In the first round,
the first and the last author used an online spreadsheet to
code a 10 percent sample (30 mutually exclusive responses)
each. They assigned at least one and up to four codes to
each response. Next, the first and last author met in person
to integrate the obtained codes, meaning that similar codes
were combined or merged, and related ones were general-
ized or specialized if needed. When new codes emerged,
they were integrated in the set of codes. The first author
then applied the integrated set of codes to 90 percent of the
answers and the last author did this for the remaining 10
percent of the responses. In the second round, the two
authors had another integrationmeetingwhich resulted into
the final set of codes. The final set contained three (13 per-
cent) more codes than the set resulting from the first integra-
tion round. We computed percent agreement and Cohen’s
kappa [78] to assess inter-coder reliability on the final coding
scheme. We measured substantial agreement between the
coders: percent agreement = 86 percent and k = 0.72. Then,
together, the two authors grouped the factors into the five
categories identified in thework of Chow et al. [3]. The result-
ing 25 codes and five categories are summarized in Table 1.

Classifying Types of Factor Relationships. For RQ1.3, we
analyzed open-ended survey responses to investigate the

perceived types of relationships between influential factors
and on-time delivery. We took the same approach as Jorgen-
sen and Molokken-Ostvold [73]. We focused on direct, indi-
rect and contributory relationships to make a distinction
between simple, complex and condition-dependent types of
interactions between factors. More discussions on types and
interpretations of reasoning models can be found in the
work of Pearl [79]. Possible interpretations of a factor X
being a reason for schedule deviation are:

� There is a direct link between X and schedule deviation
(i.e., X is a direct reason for deviation). We classified a
factor as having a direct relationship with on-time epic
delivery if it is explained to be an immediate reason
for schedule deviation. For example, “unmanaged
dependencies” is a reason that may immediately lead
to unplannedwaiting time and thus delay in an epic.

� There is an indirect relationship between X and sched-
ule deviation (i.e., X leads to events that, in turn, lead
to deviation). We classified a factor as having an indi-
rect relationshipwith on-time delivery if it is explained
to affect schedule deviation through other factors or
events. For example, “lack of organizational trust”
may lead to “errors during handoffs”, which in turn
may result in “unmanaged dependencies”. “Lack of
organizational trust” and “errors during handoffs”
are both indirect reasons of different distance to the
direct reason “unmanaged dependencies”.

� The events leading to schedule deviation would have
been harmlesswithout X (i.e., X is a contributory reason
for schedule deviation). We classified a factor as hav-
ing a contributory relationship with on-time delivery if
it is described as a necessary condition for schedule
deviation rather than a direct or indirect reason.
Assuming that “unmanaged dependencies” is a
direct reason for schedule deviation, a contributory
reason could be a “lack of a dependencymanagement
tool”. That is, delays caused by “unmanaged depend-
encies” could have been prevented or reduced by
effective dependencymanagement.

For RQ1.3, we applied inductive coding during one inte-
gration round to derive a combination of (intervening) fac-
tors and their types of relationships to on-time epic
delivery. We classified each reported relationship as a
‘direct’, ‘indirect’ or ‘contributory’ relationship using a sep-
arate code. Our interpretation of these relationships was
based on the explanation of the respondent. For indirect
and contributory relationships, we also coded the interven-
ing factors that were mentioned. The first author performed
the coding and classification for all answers. The last author
did this for 20 percent of the answers. The resulting codes,
including the intervening factors that followed from indi-
rect and contributory relationships, matched with codes
that were identified from open-ended responses to RQ1.1.
No more new codes emerged in this process.

To evaluate inter-coder reliability, the first and last author
met in person to compare the types of relationships identified.
There were a few borderline cases in which a reported rela-
tionship would fit the indirect category as well as the contrib-
utory category. In such cases we tried to stay close to the
formulation of the respondent. We classified a relationship as

KULA ETAL.: FACTORS AFFECTING ON-TIME DELIVERY IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 3577

a contributory relationship only if an intervening factor was
formulated as a necessary condition for the occurrence of
another factor (e.g., using an if-then statement). If it was not
phrased as a conditional statement, then we marked the rela-
tionship as an indirect one. Using Cohen’s kappa [78], we
measured substantial agreement between the coders: k = 0.69
and percent agreement = 83 percent.

3.1.5 Survey Demographics

As mentioned earlier, the surveys contained a section aimed
at gathering demographic information of the respondents,
namely, their role within ING, total work experience at ING,
total work experience in the software industry. A majority
(66 percent) of the respondents self-identified as software
engineer, while the rest identified themselves as manager or
team lead (19 percent), product owner (7 percent), software
architect (6 percent) or other (2 percent). The experience of
the respondents at ING ranged from one year (24 percent) to
more than 20 years (12 percent) with a median of between
one and five years (41 percent). The experience of the
respondents in the software industry ranged from one year
(4 percent) to more than 20 years (24 percent) with a median
of between 10 and 20 years (32 percent).

3.2 Collecting and Analyzing Repository Data

To quantitatively assess the impact of the perceived influen-
tial factors presented in Table 1, we extracted proxy meas-
ures from multiple data sources at ING that capture the
respondents’ intended meaning of the factors. In this sec-
tion, we describe the datasets used and the linking process
that we applied to the datasets. The primary goal of our
regression model is to explain, rather than predict; we want
to understand which proxy variables have a meaningful
relationship with schedule deviations in epics. Therefore,
we collected proxy variables that can be measured before
and after an epic has been delivered. The mapping of proxy
measures to perceived influential factors is shown in Table 3
and will be explained in Section 4.4.

3.2.1 Backlog Management Data

We extracted log data from ServiceNow, a backlog manage-
ment tool used by a majority of teams at ING TECH.2 The
dataset consists of 3,771 epics delivered by 273 teams at ING
TECH between January 01, 2017 and December 31, 2019. The
dataset contains the following variables for epics: identifica-
tion number, creation date, planned start date, actual start date,
planned delivery date, actual delivery date and a textual descrip-
tion. We acknowledge that the planned delivery date of a
delivery might change before actual development of the
delivery is started. Therefore, we consider only the planned
delivery date as scheduled on the day that the development
phase is started. An overview of all variables and their
descriptions is provided in the supplemental material [72].

3.2.2 Code Quality Measurements

We extracted code quality metrics from SonarQube, a static
code analysis tool in the software delivery pipeline at ING.3 It

is being used by most of the development teams at ING
TECH. The tool offers a wide range of metrics related to code
quality and unit tests execution. We extracted snapshots of
SonarQube data of 190 teams that actively use the tool as part
of their software delivery pipeline. Each snapshot is linked to
a delivery in ServiceNow based on team ID and time stamp of
when the measurement was done in SonarQube. If the time
stamp of a SonarQube snapshot falls between the actual start
date and actual end date of an epic in ServiceNow, the snap-
shot is considered to belong to the corresponding epic.
Although SonarQube offers a wide range of metrics, we only
consider the subset ofmetrics that are collected by all teams at
ING TECH. These metrics allow us to measure and compare
the code quality of epics in our analysis set. For each snapshot,
we extracted the metrics that teams at ING TECHmeasure to
assess their coding performance:

� Coding standard violations: the number of times the
source code violates a coding rule.

� Cyclomatic code complexity: measured average cyclo-
matic complexity of all files contained in a snapshot.

� Branch coverage: the average coverage by tests of
branches in all files contained in a snapshot.

� Failed test ratio: the number of failed tests divided by
the total number of tests executed during the devel-
opment phase of an epic.

� Comment density: the percentage of comment lines in
the source code.

To account for differences in project size, we divided the
metrics Coding standard violations and Cyclomatic code com-
plexity by Source lines of code: the total number of lines of
source code contained in a snapshot.

3.2.3 Data Cleaning Process

To eliminate noise and missing values, we keep only the
epics that meet the following conditions:

1) The planned delivery date and actual delivery date have
been set.

2) The epic has been assigned to a teamor group of teams.
3) The description field has been set.
4) The epic has been completed (i.e., if its status is set to

completed).
We also removed outliers that exceed two standard devi-

ations from the mean. For example, we removed six epics
that had lasted longer than two years and that were, there-
fore, not representative for the rest of the dataset. The origi-
nal dataset contained 3,771 epics. After linking and cleaning
the data, the final dataset decreased to 2,208 epics from 185
teams for which all data are present. This group of teams
overlaps with a majority (68 percent) of the teams that
responded to the surveys.

3.2.4 Schedule Deviation Measures

There are a range of error measures used in effort estimation.
Most of them are based on the Absolute Error (AE). Mean of
Magnitude of Relative Error and Prediction at level l [80] have
also been used in effort estimation. However, a number of
studies [81], [82], [83] have found that those measures bias
towards underestimation and are not stable when comparing
effort estimationmodels. The Balanced Relative Error (BRE) [84]

2. https://www.servicenow.com/
3. https://www.sonarqube.org/

3578 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

https://www.servicenow.com/
https://www.sonarqube.org/

has been recommended as an alternative estimation accuracy
measure. BRE is defined as

If Act - Est � 0; then BRE ¼ Act�Est

Planned duration

If Act - Est < 0; then BRE ¼ Act�Est

Actual duration
;

where Act is the actual delivery date and Est is the
planned delivery date of an epic (as reported on the start
date of the development phase). Act� Est calculates the
difference in days between the actual delivery date and
planned delivery date: a positive difference corresponds to
underestimation (Act is later than Est), while a negative
value corresponds to overestimation (Act is before Est).
Actual duration is the time interval (in days) between the
actual delivery date and start date of the development
phase of an epic. Planned duration is the time interval (in
days) between the planned delivery date and start date of
the development phase of an epic. We assess the relative
and absolute schedule deviation in epics using BRE and AE
(measured in days), respectively.

3.2.5 Regression Analysis

A common approach for measuring the impact of a number
of factors on estimation error is to use regression analysis.
For RQ2, we used regression analysis to quantitatively assess
the impact of combinations of perceived influential factors
on the schedule deviation in epics. We extracted 35 proxy
measures from backlog management data and code quality
measurements that can be mapped to the perceived influen-
tial factors. The proxy measures and their mapping to the
influential factors are given in Table 3. An analysis of the
proxy data revealed that it does not meet the assumptions
for linear regression. Considering the need for an interpret-
able model in our explanatory study, we decided to go for a
non-linear, spline-based regression modeling approach. We
applied MARS [85]; a multivariate, piecewise regression
technique that can be used to model complex relationships
between a set of predictors and a dependent variable. We
used the proxy measures as predictors and the measured
BRE as dependent variable. MARS divides the space of pre-
dictors into multiple knots, i.e., the points where the behav-
ior of the modeled function changes. This notion of knots
makes MARS particularly suitable for problems with high
input dimensions. The optimal MARS model is built using a
backwards elimination feature selection routine that looks at
reductions in the generalized cross-validation (GCV) crite-
rion as each predictor is added to the model. This procedure
makes it possible to rank variables in terms of their contribu-
tion to the GCV.We used the default MARS setting provided
by the EARTHpackage in R.

4 RESULTS

This section presents results on factors affecting delays in
epic deliveries, derived from survey responses and reposi-
tory data at ING. Example quotes from the survey are
marked with a [rX] notation, in which X refers to the

corresponding respondent’s identification number. The per-
ceived influential factors resulting from our manual coding
process are underlined. The proxy measures that we map to
the perceived influential factors are dashed underlined.

4.1 (RQ1.1) Factor Identification

From the open-ended survey responses, we identified 25
factors that are perceived to affect the on-time delivery of
epic deliveries. A list of these factors is shown in the left-
hand column of Table 1. The factors are organized along the
five dimensions identified in the work of Chow et al. [3];
organizational, process, project, people and technical.

4.1.1 Organizational Factors

This category of factors concerns the uncertainty surround-
ing the organizational environment in which an epic deliv-
ery takes place. Many respondents report the importance of
organizational alignment for the on-time delivery of epics.
A shared vision and mission are essential to ensure align-
ment between the implementation of an epic and its busi-
ness strategy: “A clear management vision creates focus and
helps us align on business priorities and timelines across the
company.” [r216]

Another factor that is perceived to contribute to timely
delivery is strong executive support. This includes the
active involvement of management in strategy execution
and the commitment of required resources. Respondent 285
explains that: “It motivates us if management sufficiently partic-
ipates in the preparation and performance review of delivery
performance”.

In a related manner, respondents report delays related to
organizational politics. Bureaucratic structures in the orga-
nization can hinder on-time delivery due to side steering:
“Management should trust teams to come up with realistic time-
lines instead of pushing deadlines. This will prevent last-minute
side steering and ad-hoc work.” [r39] Other factors in this cate-
gory that are perceived to hamper the on-time delivery of
epics are the geographic distribution of teams and a lack of
organizational stability (i.e., impact of organizational
restructuring).

4.1.2 People Factors

People factors refer to qualities associated with a software
development team that can affect the timeliness of deliver-
ies. Factors that are perceived to contribute to the on-time
delivery of epics are team stability (i.e., low team member
turnover), strong skills and knowledge, team familiarity
(i.e., the amount of experience individuals have working
with one another) and team commitment to on-time deliv-
ery (i.e., motivation to deliver on-time). Teams that are
more stable, skilled, familiar and committed to delivering
epics on-time are perceived to deliver more often on-time.
Moreover, respondents point to the importance of effective
communication between teams, management and custom-
ers when it comes to technical problems and project delays.

4.1.3 Process Factors

This category of factors refers to the effectiveness and matu-
rity of a software development team’s way of working. The

KULA ETAL.: FACTORS AFFECTING ON-TIME DELIVERY IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 3579

overall top mentioned factor is requirements refinement,
which refers to the process of defining epics and dividing
them into user stories. Missing or lacking details in the
requirements is one of the main reasons for delay: “Most of
the time when we do not make the deadline, the team missed
important information during refinement, which surfaced during
the sprint.” [r123] Here respondents also report the impor-
tance of frequent user involvement to manage user expecta-
tions and avoid delays caused by scope creep.

Another prominent factor featured in this category is reg-
ular delivery. Respondents explain the importance of hav-
ing a short cadence for on-time delivery: teams that
regularly deliver production ready software are perceived
to be more predictable. Respondent 143 explains that
“Delivering software in shorter cycles enables our team to manage
more complex projects and better predict our delivery capacity”.

Some respondents indicate to feel more focused and effec-
tive at work when they limit the amount of work in progress
at any given time.

Another prominent factor in this category is agile matu-
rity, which stands for the ability of a team to become more
agile over time. Respondents explain that they are able to
improve their agility, and thereby, on-time delivery, over
time through experience. Respondent 163 states that “It
helps to hold Scrum retrospectives and actually following up on
their outcome. This allows teams to come up with ways to avoid,
mitigate, or better handle impediments and other causes that
impact delivery”.

4.1.4 Technical Factors

The technical category represents factors related to the qual-
ity of the source code artifact, and the effectiveness of tech-
nology and tools used to produce that artifact. Technical
factors that are perceived to hamper timely delivery are
poor code documentation, lack of code quality, bugs or inci-
dents and insufficient testing. Well-defined coding stand-
ards are perceived to make teams more predictable in their
deliveries: “Higher quality standards will result in less incidents
and less time spent on code refactoring in the future. This will, in
turn, make our team more productive and predictable.” [r334]
Regarding testing, respondents mention to often fall behind
schedule when preparing and executing time/resource-
intensive types of tests, such as integration tests and perfor-
mance tests. Such tests can lead to delays due to delayed
availability of required infrastructure, unidentified depen-
dencies and late identification of defects.

Another factor that is perceived to delay epic deliveries is
a specific type of dependency — technical dependencies.
Technical dependencies can occur among different software
artifacts, e.g., source-code, architecture, hardware and tools.
Teams at ING work with project-specific repositories and
share codebases across teams within one application. As a
result, teams at ING are hampered by source code depen-
dencies across projects. Moreover, respondents perceive to
be delayed by the unavailability or instability of technology
and tools used for software development and software test-
ing (unreliable infrastructure).

4.1.5 Project Factors

This category represents the inherent complexity and uncer-
tainty of a software project. Task dependencies constitute a
top mentioned factor that is perceived to delay epic deliver-
ies. Task dependencies refer to dependencies among activi-
ties in the workflow of collaborating software development
teams. Issues such as inconsistent schedules and unaligned
priorities can cause delays for teams that collaborate in the
same delivery chain: “Task dependencies occur when teams are
not end-to-end responsible for bringing software to production.
They create the need for a significant amount of hand-offs.” [r79]

Our respondents report several project characteristics
that can affect on-time delivery: project size (i.e., the size of
software, the size of development teams and project dura-
tion), degree of project newness (i.e., the innovative nature
of a project) and project security (i.e., whether the project
needs to go through resource-intensive security tests).
Regarding the latter, respondents explain that business-

TABLE 1
Overview of 25 Factors That are Perceived to Affect the On-

Time Delivery of Epics

The factors are organized along five dimensions: organizational, people, pro-
cess, technical and project. Percentage of respondents is the percentage of
survey respondents that mentioned the corresponding factor. The factors’
Level of impact on delays was rated as 4 (large impact), 3 (moderate impact),
2 (small impact) and 1 (no impact). Top 2 is the percentage of respondents
that answered 4 or 3 for Impact level. WA is the weighted average of the Lik-
ert scale scores for Impact level. The factors’ Order numbers are based on the
ordering of the weighted averages.

3580 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

and safety-critical applications are generally built and tested
to much higher security standards, which may lead to unex-
pected delays in the quality assurance and security testing
process.

4.2 (RQ1.2) Perceived Level of Impact

For each factor, respondents were asked to rate the level of
impact using Likert-type choices of “no impact”, “small
impact”, “moderate impact” and “large impact”. The right-
hand column in Table 1 shows the perceived level of impact
of the factors as rated by the survey respondents. The Top 2
percentage indicates the percentage of responses that rated
the factor as having “large impact” or “moderate impact”.
The Order represents the order of factors by the weighted
average of their impact level scores. Close to 60 percent of the
respondents felt the factors are all moderately influencing
their on-time delivery. Task dependencies, requirements
refinement, organizational alignment, technical dependencies

and regular delivery are the top 5 cited factors. They received
more than 86 percent responses in the large and moderate
impact category. Based on the weighted average of impact
scores, requirements refinement (order #1), task dependencies
(order #2), organizational alignment (order #3), organizational
politics (order #4) and geographic distribution (order #5) are
the top 5 rated factors. They received a weighted average
impact score of 3.38 or higher. The impacts of the top 15 rated
factors are perceived to have large or moderate impact by
over 76 percent of the respondents. Communication (order
#25) has lowest perceived impact but 47 percent of the
respondents still rated it to have large ormoderate impact.

Further analysis shows that respondents were quite
consistent in their high ratings of most factors. The ratings
for all factors have a standard deviation (SD) lower
than 0.80, except for unreliable infrastructure (SD = 1.01),
project security (SD = 0.99), lack of code quality (SD = 0.97),
insufficient testing (SD = 0.96) and team commitment
(SD = 0.96).

TABLE 2
Types of Perceived Relationships Between Perceived Influential Factors and the Timeliness of Epic Deliveries (RQ1.3): Direct Rela-

tionship " , Indirect Relationship! , Contributory Link ? or Mentioned, but No Explicit Relationship

Factors can have three types of direct relationships with on-time delivery; they can lead to necessary rework (NR), unplannedwaiting time (WT) or deviations
in team effectiveness (TE). For indirect and contributory links, intervening factors are mentioned in the table. The percentages indicate the percentages of sur-
vey responses that mentioned the corresponding relationship.

KULA ETAL.: FACTORS AFFECTING ON-TIME DELIVERY IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 3581

4.3 (RQ1.3) Perceived Types of Factor
Relationships

We investigated open-ended survey responses to identify
direct, indirect and contributory relationships between 25
perceived influential factors (from Table 1) and on-time epic
delivery. As explained in Section 3.1.4, we focused on three
types of relationships to distinguish between simple, com-
plex and condition-dependent types of interactions between
factors. An overview of the perceived types of relationships
between factors and on-time epic delivery is shown in
Table 2. Respondents mentioned three ways in which fac-
tors can have a direct impact on the timeliness of epics; fac-
tors can lead to unplanned waiting time (WT), necessary
rework (NR) or changes in team effectiveness (TE). These are
orthogonal types of effects. WT and NR are described to
lead to delays, while increased (perceived) TE (i.e., a team’s
capacity to achieve its goals and objectives) is reported to
help with on-time delivery. Table 2 shows the relevant type
(NR, WT or TE) for each perceived direct relationship.

We found that the organizational factors, people factors and
technical factors are perceived to interact hierarchically. The
organizational factors have an impact on the people factors,
which in turn affect the technical factors. From the organiza-
tional factors, executive support is perceived to have an
indirect impact on timely delivery through team stability
and team commitment. Respondents believe that strong
executive support leads to more stable and highly moti-
vated teams. Geographic distribution is associated with
communication challenges and, thereby, reduced team
effectiveness and delay. From the people factors, team sta-
bility is observed to be positively related to skills and
knowledge and team commitment. Respondents explain
that stable teams are more likely to develop competences
over time and to take ownership of their work. Team com-
mitment and communication are perceived to increase team
effectiveness, and thereby, help with timely delivery. Skills
and knowledge is reported to have an indirect impact
through bugs or incidents and lack of code quality.
Respondents point out that teams with more experienced
members are faster at finding faults in software, and resolv-
ing unforeseen bugs and incidents. From the technical cate-
gory, all factors are perceived to have a direct impact on on-
time epic delivery. Respondents explain that problems
related to technical dependencies, lack of code quality, bugs
or incidents and insufficient testing can introduce necessary
rework. Technical dependencies are also perceived to have
an indirect impact on on-time delivery through lack of code
quality. Respondents indicate that technical dependencies
can introduce dependency problems, resulting in more
complex and less maintainable source code.

In general, the process factors are not perceived to have
relationships with factors from other categories. One excep-
tion is the link between requirements refinement and task
dependencies: respondents believe that an effective refine-
ment process should reveal task dependencies, thereby
enabling teams to minimize the likelihood of delays caused
by dependencies. Moreover, the most often reported rela-
tionship is the direct impact of requirements refinement on
on-time epic delivery. Respondents report that refinement
can prevent rework that is caused by unclear requirements.
Regular delivery is perceived to lead to more consistency in

the amount of work in progress, which in turn has a positive
impact on team effectiveness and timely delivery.

The project factors are reported to have direct, indirect
and contributory relationships with on-time epic delivery.
Unresolved task dependencies are perceived to immediately
result in delays through hand-offs and waiting times
between dependent teams. Organizational alignment and
communication are perceived to contribute negatively to the
relationship between task dependencies and on-time epic
delivery. Respondents explain that task dependencies can
only stay unresolved and lead to delays in environments
characterized by misaligned priorities and communication
issues. Project size is perceived to be linked with factors
across all dimensions. Larger epics are associated with
more dependencies, parallel work, communication over-
head, and increased testing and refinement effort. Innova-
tive epics (project newness) are reported to involve time-
intensive exploration activities and to be hampered by
unforeseen obstacles, which can decrease team effectiveness
and lead to delays. A higher level of project security is per-
ceived to contribute positively to delays due to rework
introduced by insufficient testing and lack of code quality.

Key findings from RQ1: We identified 25 factors that are
perceived to affect the timeliness of epic deliveries.
Requirements refinement, task dependencies, organiza-
tional alignment, organizational politics and the geo-
graphic distribution of teams are perceived to have the
greatest impact on on-time epic delivery. The factors
interact hierarchically; the organizational factors interact
with people factors, which in turn impact the technical
factors. The technical factors are perceived to have a
direct impact on timely epic delivery.

4.4 Studied Proxy Measures

We formulate 35 proxy measures to map to the perceived
influential factors. We extract the proxy measures from the
datasets described in Section 3.2 to fit a regression model to
quantitatively assess the impact of the perceived influential
factors. Table 3 provides definitions for the proxy measures
and their mapping to the perceived factors. Some of the
proxy measures are self-descriptive and for others we
explain the measure below. The proxies of the technical fac-
tors are described in Section 3.2.2. We take the median
across teams or individual team members to produce meas-
ures that are representative of the group as a whole. For
individual data, such as developer age, we take the median
of team members working on an epic. For team data, such
as team stability, we take the median of teams working on
an epic.

We were not able to measure proxies for organizational
alignment, organizational politics, executive support, (qual-
ity of) communication and technical dependencies. ING is
not collecting quantitative data on these factors. It was also
not possible to collect such data ex post facto.

4.4.1 Motivation for Mapping

Organizational Factors. To quantify the global distance
between teams, we calculate global-distance based on the

3582 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Global Distance Metric proposed in related work [86]. We
calculate the metric for pair-wise combinations of teams and
take the maximum value. To assess organizational stability,
we calculate nr-changed-leads ; this has been shown to influ-
ence the success of software projects in earlier work [57].

Process Factors. To assess the refinement quality of an
epic, we calculate state-ready to determine whether the
‘status’ field of an epic was set to ‘refinement ready’ before
the start of its planning phase. The intuition here is that
epics that are not clearly defined will miss important infor-
mation that is needed for planning and that could poten-
tially result in delay. We also calculate nr-updates ; the
intuition here is that problematic epics will raise more

comments and questions that could result in more updates
and potentially a delay. To assess agile maturity, we calcu-
late velocity and team-point ; both have been shown to be
representative of maturity in related work [10], [87]. We
extract acc-criteria to measure user involvement in the defi-
nition of an epic. The backlog management data contains a
special ‘acceptance criteria’ field that indicates whether
teams consulted their customer(s) to define acceptance
criteria.

Project Factors. We quantify task dependencies as the out-
going degree (out-degree) of dependencies of an epic; this
has been shown to predict delay in related work [67]. To
assess project newness, we determine the novelty of an

TABLE 3
Mapping of Proxy Measures to the Perceived Influential Factors (From Table 1)

The Description column provides a description of the proxy measure.

KULA ETAL.: FACTORS AFFECTING ON-TIME DELIVERY IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 3583

epic based on a special ‘business goal’ field in backlog man-
agement data. This field indicates whether an epic contrib-
utes to a ‘business transformation’, ‘business continuity’ or
‘compliance-related obligation’. Epics that contribute to a
business transformation are marked as novel. To measure
project security, we determine security-level , which indi-
cates whether an epics needs to go through a mandatory,
resource-intensive security testing procedure.

People Factors. To calculate the number of senior develop-
ers working on an epic (dev seniority), we retrieve the
expertise levels of developers as specified in backlog man-
agement data. At ING, the five-stage Dreyfus model [88] is
employed to evaluate the expertise of developers based on
their experience in the software industry. We marked devel-
opers with a Dreyfus skill level of 3 (‘competent’) and
higher as senior. To assess a team’s commitment to on-time
delivery, we calculate hist-performance; team commitment
has been shown to be positively related to team perfor-
mance and estimation accuracy in related work [64], [89],
[90], [91].

4.5 (RQ2) Factor Validation

How do perceived influential factors impact schedule deviation in
epic deliveries?

To answer this research question, we applied MARS to
quantitatively assess the impact of combinations of proxy
measures on the BRE values in epic deliveries. Table 4
presents the optimal MARS model for BRE values based on
all proxy measures presented in Table 3. The columns
show, from left to right, the beta factor coefficients bm

denoted as BFm, the basis functions selected as significant
covariates in the model, the coefficient values estimated and
a visualization of the relationship between the independent
variable and BRE value. The value of the beta factor implies
the magnitude of effect of the basis function (i.e., variable
effect) on the BRE value. For the effect of each basis func-
tion, maxð0; x� tÞ is equal to ðx� tÞ when x is greater than
t (the knot value); otherwise the basis function is equal to
zero.

As shown in Table 4, the MARS model contains 20 basis
functions and 13 proxy measures. The selected proxy meas-
ures represent all five of the factor dimensions. They are
effective in explaining 67 percent of the variation in the BRE
values of epic deliveries (adjusted R2: 0.672.). Fig. 3 pro-
vides a ranking of the proxy measures by order of impor-
tance. Proxies that have no impact on BRE are not shown.
The importance is calculated as the relative importance of
proxies in terms of reductions in the GCV estimate
of the prediction error as each proxy measure is
included. From this figure, we observe that nr-sprints,
out-degree, hist-performance, dev-age-ing, team-existence
and team-size have the greatest impact on schedule devia-
tion in epics. Their importance values range from 15 to 21
percent.

Factors associated with delay show a rising relationship in
the rightmost column of Table 4. From Table 4, beta factors
BF1 and BF2 account for the nonlinear delay effect of
nr-sprints, the most important variable in the MARS model.
The number of sprints in an epic is positively related to the
BRE values with a knot at t ¼ 8. The effect of nr-sprints can

be explained as follows. The delays in epics tend to increase
with a higher number of sprints. If the number of sprints in
an epic is lower than 8, the schedule deviation will increase
by 0.0142 per sprint (indicated by BF1). If the number of
sprints exceeds 8, then the schedule deviation value will
increase faster by 0.0339 per sprint (indicated by BF2). Other
proxy measures that contribute to delay in epics are
out-degree, team-size, nr-unplanned-stories and nr-stories.
They have a two-sided, positive relationship with BRE with
a single knot. This indicates that delays in epics tend to
increase with larger teams and with more outgoing depen-
dencies, unplanned stories and planned stories. The proxies
security-level, nr-changed-leads, nr-incidents and
dev-workload-points can also contribute to delays: they
have a right-sided, positive relationship with BRE with a
single knot. This means that when these proxies exceed
their corresponding knot value, the delay in epics tends to
increase. For example, the beta factor BF15 shows the non-
linear effect of nr-changed-leads on BRE which can be
described as follows. If the teams’ tribe lead changed less
than two times during the current and previous epics, it has
a negligible effect on the BRE value (indicated by BF0).
However, if the number of changed tribe leads exceeds two,

TABLE 4
The MARS Model for the BRE Values of Epic Deliveries (RQ2)

Adjusted R2: 0.672. The variables in the models are ordered by importance (see
Fig. 3).

3584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

then the BRE value will increase by 0.0344 for every addi-
tional change in tribe lead. The effects of security-level are
similar. If the security level is higher than 0.85, then the BRE
increases by 0.1288. Given that (security-level is a binary
variable, this means that in practice the BRE values of epics
that need to pass the mandatory security testing procedure
are 0.1288 higher than the BRE values of epics that do not
need to go through this procedure.

Factors associated with on-time delivery show a downward
relationship in the rightmost column of Table 4. As indi-
cated by BF5-9 and BF16, the proxies (hist-performance,
dev-age-ing, team-existence and stability-ratio help with
the timely delivery of epics. The delay in epics tends to
decrease for teams that were less often involved with delay
epics in the past and teams that have existed longer in their
current composition. The delay can also decrease with a
higher developer experience at ING and higher team stabil-
ity up to the corresponding knot values.

Absolute Deviation. Further analysis of the absolute devia-
tions in epics showed that an overlapping set of 10 variables
is effective in explaining 61 percent of the variation in the AE
values. The proxymeasure nr-teams emerged as statistically
significant, while nr-unplanned-stories, nr-changed-leads,
nr-incidents and dev-workload-points were not selected in
the model for AE values. Moreover, the proxies have slightly
different importance values:out-degree (15), nr-sprints (14),
(team-existence (13), dev-age-ing (12), hist-performance (11)
and (nr-stories (10) have the greatest explanatory power for
the absolute deviation.

Key findings from RQ2: A set of 13 proxy measures is
effective in explaining 67 percent of the variation in the
BRE values of epics. The project size, number of task
dependencies, historical delivery performance, team
familiarity and developer experience at ING have the
greatest explanatory power for schedule deviations in
epics.

5 A CONCEPTUAL FRAMEWORK OF ON-TIME

DELIVERY

We organized the findings from our survey and regression
analysis into a conceptual framework, presented in Fig. 4.
The framework captures the 25 perceived influential factors
(from Table 1) and how they relate to on-time delivery. The
connections between factors are derived from the reported
types of relationships in Table 2. The directions are derived
from the descriptions of factors in Section 4.1 and the rela-
tionships in Section 4.3.

Practitioners can use our conceptual framework to iden-
tify and manage the risks associated with on-time software
delivery. For example, in our regression model, historical
delivery performance is one of the most important proxy
measures that affect schedule deviations in epics. Epics
assigned to teams having a high percentage of delayed epics
are at a high risk of being delayed. We recommend project
managers to identify the teams that are involved with many
delayed epics in the past, and consider allocating more time
for their work or training them to successfully estimate
effort and deliver on-time.

Our study also provides practitioners with a comprehen-
sive list of factors and proxy measures that should be col-
lected and analyzed to derive useful models that can be
applied to improve on-time delivery. An assessment of the
most significant factors would be a good starting point for
further exploring influential factors in other settings. By
weighing and analyzing the qualitative and quantitative
attributes of factors, practitioners can choose the most
important factors that influence their on-time delivery.
Moreover, our analysis shows that expert- and data-based
selection methods identified different (only partially over-
lapping) sets of relevant factors. Therefore, we recommend
software practitioners to combine selection methods to
extract more detailed insights and gain a better understand-
ing of their software development processes.

The design of an effective strategy to improve on-time
delivery must recognize the relationships between influen-
tial factors. The relationships in our conceptual framework
are operationalized by reported relationships. We can there-
fore not reason about causal links between factors. How-
ever, our framework does enable us to form hypotheses that
could lead to actionable insights and may suggest corrective
actions to address the root causes of delay in similar
development contexts. Our results suggest that addressing
factors that have a direct relationship with on-time delivery
should directly lead to an improvement in on-time delivery.
For example, our survey respondents believe that a lack of
code quality leads to necessary rework, and thereby, delay
in epics. We therefore hypothesize that code quality
improvements may reduce the likelihood of rework and
improve the on-time delivery performance. Moreover, our
results suggest that improvements in indirectly influential
factors lead to improvements in intervening factors, which,
in turn, improve the timeliness of deliveries. For example,
executive support is perceived to have a positive impact on
team stability and team commitment, which in turn leads to
improved team skills, high-quality code and less bugs or
incidents. We hypothesize that establishing stronger execu-
tive support may lead to more stable, committed and highly

Fig. 3. Importance of proxy measures in MARS model for BRE.

KULA ETAL.: FACTORS AFFECTING ON-TIME DELIVERY IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 3585

skilled teams that are better able to maintain code quality
and resolve delays caused by bugs and incidents. The paths
for action that can be inferred from our conceptual frame-
work indicate that on-time software delivery requires atten-
tion across many factors, and that both social and technical
factors may need to be addressed to enable continuous
improvement.

6 DISCUSSION

New Influential Factors. Our study has identified additional
factors that influence on-time delivery and which, to the
best of our knowledge, have not been covered in the current
literature. We found that team familiarity is associated with
timely software delivery. While prior research [92] has
shown that familiarity is beneficial to team performance, it
has not been investigated in the context of on-time delivery
before. Our respondents believe that familiarity between
team members improves the team coordination and helps
in adapting to environmental changes. This indicates that
for a better on-time delivery performance project managers
should not only focus on keeping teams stable, they should
also track and support teams to build familiarity over the
long term. Moreover, agile maturity emerged as a new fac-
tor that is perceived to affect on-time delivery. The survey
respondents rated this factor among the top 10 most influen-
tial factors. The survey responses point out that a growing
agile maturity enables teams and ultimately the organiza-
tion to continuously improve their on-time delivery
performance.

Relevance of Factors. The 25 influential factors we pre-
sented as part of RQ1 relate to previous research in effort
estimation [20] and software project risk management [65].

Our results provide new insights into the relative effects of
these factors. Our respondents perceive requirements
refinement, task dependencies and organizational align-
ment to have the greatest impact on the timing of their
deliveries. While requirements-related issues are top-cited
risk factors in literature [65], task dependencies and organi-
zational alignment have not received much attention. They
have only been investigated in the context of scaling agile
methods [93]. Further research is required to investigate the
importance of these factors in the context of on-time
delivery.

Prior work [12] has shown that team- and project-related
factors are the most often mentioned effort drivers by agile
practitioners. However, the relative importance of these fac-
tors has not been investigated before. The regression analy-
sis we presented as part of RQ2 confirmed that the proxy
measures of project factors (i.e., task dependencies, project
size) and team factors (i.e., team commitment, team famil-
iarity and skills & knowledge) have the greatest impact on
schedule deviations. The project factors are found to have a
slightly greater impact than task factors. We did not find a
significant relationship between the code quality measure-
ments and schedule deviations in epics. Poor code quality
and documentation have also emerged as perceived influen-
tial factors in other studies [94], [95]. More in-depth studies
are needed to corroborate the perceived impact of source
code quality on on-time delivery.

Role of Organizational Environment. Our respondents
reported the importance of several organizational factors for
on-time delivery. The factors organizational alignment, orga-
nizational politics and geographic distribution were rated
among the top 5 most influential factors in our survey.
Among these, organizational politics and organizational

Fig. 4. A conceptual framework of on-time delivery (based on survey responses and quantitative data from the case company). The dimensions/cate-
gories of factors are shown in blue rectangles. The 25 perceived influential factors are visualized as ellipses connected by directional arrows indicat-
ing their perceived relationships. For readability purposes, the arrows starting from project size are partially omitted. For each relationship, the
direction (positive + or negative -) is shown. Factors are found to have three types of direct relationships with the timeliness of deliveries; they can
lead to necessary rework (NR), unplanned waiting time (WT) or changes in team effectiveness (TE). The star symbols indicate factors that are rated
among the top 10 most relevant factors in survey data or repository data.

3586 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

alignment have been shown to impact project performance
in related work [57], [64], [96] but they have not been identi-
fied as top influential factors before. Hence, our results sug-
gest that different environmental aspects may play a larger
role in on-time delivery than previously thought. Further
research is required to investigate the impact of the organiza-
tional environment on on-time delivery in different settings.

Coordination Challenges in Large-Scale Agile. Our survey
respondents indicated that several factors affecting on-time
delivery are related to the challenges of adopting agile
methods at the large scale of the case company. These fac-
tors include task dependencies, technical dependencies,
geographic distribution and organizational alignment. Our
respondents explained that their teams often depend on
other teams and external parties for testing and deploying
new software. This resonates with the findings by earlier
work [93], [97], [98] that large-scale agile projects are more
likely to be hampered by communication and coordination
challenges. Further research is required to investigate the
characteristics and impacts of different types of dependen-
cies and task relationships in large-scale settings. Software
organizations would benefit from mechanisms that make
teams aware of inter-team dependencies, blockers and
external dependencies that have the largest impact on their
delivery time. Future research should study how existing
coordination mechanisms are used in large-scale agile com-
panies and how they can be improved to better support
agile teams in delivering on time.

Incident Management Workflows. In line with earlier work
[60], [99], [100], [101], [102], we found that software deliveries
are delayed by unexpected bugs and technical incidents. In
our regression model, the number of unplanned stories and
the number of incidents have a strong relationship with
schedule deviation in epics. The disruptive nature of bugs
and incidents calls for streamlined incident management pro-
cesses and automated incident handling. Promising research
in this direction has been carried out by Gupta et al. [103].
They used information integration techniques and machine
learning to automatically link incoming incidentswith config-
uration items. An interesting extension would be to leverage
probabilistic modeling to predict the impact of an incoming
incident on the time estimate of a delivery.

Multi-Objective Optimization for Software Delivery. We
found that the security level of a software delivery is posi-
tively related to delay. Our respondents indicated that there
is no tolerance for failure in some of the business-critical sys-
tems at ING. In highly regulated projects, engineers may
need to decide to delay a delivery to increase time available
for quality assurance and security testing. This alludes to a
tension between delivery speed and the constraints imposed
by regulations. New methods for rapid security verification
and vulnerability identification could help organizations
maintain agility. Related work [104], [105], [106] has focused
on integrating security into agile methods and the challenges
which this presents. Fitzgerald et al. [104] looked into the
concept of continuous compliance and end-to-end traceability
to support agile development processes in large-scale regu-
lated environments.

The trade-off between timely delivery and security high-
lights a broader theme that predictable delivery is not the
only factor that development teams in software organizations

are trying to optimize. In reality, organizations deal withmul-
tiple objectives and look for optimal trade-off solutions that
balance several criteria. Future research should investigate
how the value of on-time delivery is measured and weighed
in trade-offs in software industry.

A Sociotechnical Approach to Improving On-Time Delivery.
The perceived indirect and contributory relationships
between influential factors (see Table 2) show that changing
one factor may impact another, and that there are many
non-technical factors that may also have an impact on on-
time delivery. The results lead to some hypotheses that we
discussed in Section 5, that may suggest corrective actions
to improve the timeliness of software deliveries. The hierar-
chical interactions between factors indicate that the inter-
play between technical factors and on-time delivery is
influenced by the social context of development work, as
determined by organizational and people factors. This sug-
gests that a healthy team culture and organizational envi-
ronment can be used as intervening factors to resolve
potential harmful effects of technical issues on on-time
delivery.

Predicting Delays in Software Deliveries. An interesting
opportunity for future work is to incorporate the influential
factors from our study into predictive models for delays in
software deliveries. Currently, most software organizations
rely on experts’ subjective assessment to arrive at a time
estimate for their deliveries. This may lead to inaccuracy
and more importantly inconsistencies between estimates.
Therefore, software organizations can benefit from predic-
tive models that provide automated support for project
managers in predicting the delivery time or delay of soft-
ware deliveries. Existing models [41], [67], [67], [107] learn
based on metadata (e.g., type, priority) and/or textual fea-
tures of the software task. Our results show that the predic-
tive power of these models can be enhanced by
incorporating the significant variables from our regression
analysis. This will enable models to capture information
about the software task as well as the environment in which
the delivery takes place.

Our findings also suggest that an incremental learning
approach might be beneficial for predicting delays in soft-
ware deliveries. As unexpected events related to bugs, inci-
dents, and a team members’ departure can occur during the
development phase (after a time estimate has been made),
the prediction model should learn over time and adjust pre-
dictions based on newly acquired knowledge. A sliding win-
dow-setting could be used to model team dynamics and
external changes. This boosts the ability of the model to learn
and predict based on a team’s recent delivery performance,
and to forget older, irrelevant data. Initial work in this direc-
tion has been carried out byAbrahamsson et al. [34].

A Relational Theory of On-Time Delivery. A relational the-
ory of on-time delivery would provide insightful and
actionable information for project managers to design effec-
tive risk management strategies that improve on-time deliv-
ery performance. Our framework contributes in the
advancement of a relational theory of on-time software deliv-
ery [108]. We identified and categorized influential factors
(descriptive theory), and aim to specify the relations between
factors to start to explain how they interact with each other.
One potential research direction is therefore to investigate

KULA ETAL.: FACTORS AFFECTING ON-TIME DELIVERY IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 3587

why factors are related, e.g., through causality. This could
be assessed by causal inference on time-series data, or
through observations collected by experiments with devel-
opment teams.

Guiding Future Research. We anticipate that our concep-
tual framework, and the set of factors we identified, can be
useful for other researchers that study on-time software
delivery. Our survey instrument and mixed-methods
approach can be replicated to reveal how specific factors
impact on-time delivery in other settings. A consideration
across organizations of different scale and context could
lead to quite different factors that influence the results.
Moreover, other social contextual settings, such as organiza-
tions with different levels of management support and orga-
nizational stability, could be considered to explore how the
social setting affects the interplay between technical and
social factors, and their impact on on-time epic delivery.

7 THREATS TO VALIDITY

In this section, we discuss the threats to validity of our
study and limitations with our conceptual framework. We
used the checklist of Moll�eri et al. [109] to assess our surveys
and identify threats to validity. The resulting scores from
our assessment using the checklist can be found in the sup-
plemental material [72].

External Validity. As with any single-case empirical
study, external threats are concerned with our ability to gen-
eralize our results [110]. The company we studied employs
thousands of software engineers and has significant variety
in terms of the products developed, the size and application
domain (banking applications, cloud software, software
tools). We performed random sampling and captured a
range of roles and experiences, which may improve gener-
alizability [109]. Even though our sample of survey partici-
pants is diverse, it is unlikely to be representative of
software managers and engineers in general.

We conducted self-administered surveys, which may
suffer from non-response bias [111], [112]. Our surveys
were advertised as an “On-time Software Delivery Survey”
and therefore could have led to over-representation of
teams that deliver on-time. Developers from teams that are
often delayed might have been less comfortable about par-
ticipating in the surveys. Moreover, some of the factors pre-
sented in the second survey were geared at technical
aspects of software development. This might have caused
participants in non-technical roles to drop out, resulting in a
bias toward software engineers. A limitation from our sur-
vey tool is that it does not record partially completed sur-
veys. Hence, we do not know the dropout rate and cannot
determine drop-out questions. This introduces a possible
threat to external validity [109]. Our survey may have also
been subject to self-selection bias, e.g., participants with
strong opinions about delivery deadlines might have been
more likely to participate in the survey. To mitigate non-
response and self-selection bias, we sent personal invita-
tions, kept the survey as short as possible and were trans-
parent about the survey length. We also sent reminders to
non-responders to increase the response rate and reduce the
possibility of bias.

Although we control for variations using a large number
of participants and projects, we cannot generalize our con-
clusions to other organizations. Replication of this work in
different development settings is required to determine
how work context influences (the perceptions of) factors
affecting on-time delivery. Our findings indicate a trade-off
between timely delivery and increased (security) testing
and code refactoring effort. In a financial organization like
ING there is no tolerance for failure in some of their busi-
ness-critical systems. This may have influenced the factors
we identified, making our findings likely to generalize more
to software organizations with similar security regulations.
Moreover, our results show several factors related to organi-
zational fragmentation (e.g., dependencies, organizational
alignment) which may be more common in large-scale
organizations. In an effort to increase external validity and
encourage replication, we have made our survey instrument
available so that others can deploy it in different organiza-
tions and contexts [72].

Internal Validity.We recognize that surveys can introduce
biases and may contain ambiguous questions [109]. To miti-
gate these issues, we used terminology familiar to the target
population and piloted the survey. We updated the survey
instruments based on the validation results. In addition, we
sought support from the second (confirmatory) survey and
performed data triangulation. In the second survey (also
piloted), no new factors emerged from the open-ended
responses we solicited. In our survey design, we phrased
and ordered the questions sequentially to avoid leading
questions. We also randomized the order of factors to
address order effects.

Our surveywas not anonymous and therefore might have
been subject to social desirability bias (i.e., a respondent’s
possible tendency to appear in a positive light) [113]. Tomiti-
gate this risk, we let participants know that the responses
would be kept confidential and evaluated in aggregated
form.

A factor that might have influenced our qualitative anal-
ysis is the bias induced by the involvement of the authors
with the studied organization [109]. To counter the biases
which might have been introduced by the first two authors,
the last author (from Delft University of Technology) helped
in designing survey questions and the manual coding of
survey responses. In addition, we formally checked for reli-
ability by computing inter-coder reliability. Another risk of
the coding process is the loss of accuracy of the original
response due to an increased level of categorization. To mit-
igate this risk, we allowed multiple codes to be assigned to
the same answer.

Construct Validity. The goal of our first survey was to elicit
influential factors and their interactions as experienced by
engineers themselves. As the factors and types of relation-
ships come from open-ended responses, and we rigorously
assessed the expressedmechanisms throughmanual coding,
we argue that they accurately represent the respondents’
views. However, it should be noted that we did not verify
whether participants can distinguish between affects. In the
second survey we asked participants about the perceived
impact of factors. To keep the survey short, each factor was
measured by a single response item. Therefore, we could not
test the reliability of participants’ responses.

3588 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

In our analysis of repository data, we consider data vari-
ables as constructs to meaningfully measure perceived
influential factors. This introduces possible threats to con-
struct validity due to measurement errors [114]. The proxy
variables we measured may not capture the respondents’
intended meaning of the concepts or constructs. Many fac-
tors, such as team commitment and organizational align-
ment, are quantifiable in principle but not directly
measurable. For example, we measured the historical on-
time delivery performance of a team as a reflective indicator
of their commitment to on-time delivery. However, the
commitment level of team members might not be reflected
in their past on-time delivery performance. A more com-
mon and direct way of measuring commitment is through
psychological attachment instruments but it was not possi-
ble to collect such data ex post facto.

For the mapping of proxy measures to the perceived
influential factors we had to find acceptable trade-offs
between the preciseness of proxy measures and the avail-
ability of data at ING. We acknowledge that for some per-
ceived factors more precise alternatives can be found in
related work. However, the repository data available did
not cover equally precise data on all factors. Furthermore, it
is possible that the data variables do not accurately repre-
sent reality. For example, we calculated time-related infor-
mation on epics based on their planned and actual delivery
dates in backlog management data. However, it might hap-
pen that teams close their deliveries too early or too late. We
cannot account for the impact of poor record keeping on
our results.

Transferability and Credibility of Our Framework. We
believe that the influential factors in the conceptual frame-
work are likely transferable, to some extent, to other settings
as they relate to previous research in effort estimation and
project risk management. However, the specific results
regarding the ordering of factors, factor relationships and
regression analysis are bounded to the scale and context of
ING. How factors impact on-time software delivery may
vary according to scale and context factors of development
work. It is noteworthy that we were not able to validate all
factors as the repository data available did not cover all per-
ceived influential factors. Our regression analysis does not
exclude the importance of the non-included variables.
Additional variables would probably have been included in
our regression model if we had more data. We were not
able to triangulate the relationships for RQ1.3. Replication
of this work is required to validate the findings and reach
more general conclusions. This might help enrich the con-
ceptual framework.

8 CONCLUSION

Improving the timeliness of software deliveries is a chal-
lenge that is faced by many software organizations. In this
paper, we identified and investigated the most relevant fac-
tors affecting delay in large-scale agile software develop-
ment. We composed our findings in the form of a
conceptual framework (Fig. 4) representing these factors
and their interactions. The key findings of this study are:

1) Requirements refinement, task dependencies, orga-
nizational alignment, organizational politics and
the geographic distribution of teams are perceived
to have the greatest impact on timely software
delivery.

2) Project size, number of dependencies, historic deliv-
ery performance, team familiarity and developer
experience are the most important variables that
explain schedule deviations in software deliveries.

3) Factors are found to interact hierarchically: organiza-
tional factors are perceived to interact with people
factors, which in turn impact the technical factors.
Technical factors are perceived to have a direct
impact on timely software delivery.

Our conceptual framework suggests multiple paths for
action that may improve the timeliness of software deliver-
ies. Based on our findings, we identified challenging areas
calling for further attention, related to the scalability of agile
methods, inter-team dependencies, security concerns, the
role of organizational culture, team stability and incident
management. Progress in these areas is crucial in order to
become more predictable at delivering software in agile
settings.

ACKNOWLEDGMENTS

This work was partially supported by ING through AI for
Fintech Research (AFR), an ICAI lab. We thank all the sur-
vey participants at ING who provided valuable inputs for
this study. We would also like to thank our anonymous
reviewers for their constructive feedback and suggestions
that greatly improved our paper.

REFERENCES

[1] T. Halkjelsvik and M. Jørgensen, “From origami to software
development: A review of studies on judgment-based predic-
tions of performance time,” Psychol. Bull., vol. 138, no. 2, 2012,
Art. no. 238.

[2] M. Jørgensen, “What we do and don’t know about software
development effort estimation,” IEEE Softw., vol. 31, no. 2, pp.
37–40, Mar./Apr. 2014.

[3] T. Chow and D.-B. Cao, “A survey study of critical success fac-
tors in agile software projects,” J. Syst. Softw., vol. 81, no. 6, pp.
961–971, 2008.

[4] F. J. Heemstra, “Software cost estimation,” Inf. Softw. Technol.,
vol. 34, no. 10, pp. 627–639, 1992.

[5] M. Jørgensen, “A review of studies on expert estimation of soft-
ware development effort,” J. Syst. Softw., vol. 70, no. 1/2, pp. 37–
60, 2004.

[6] B. W. Boehm and P. N. Papaccio, “Understanding and control-
ling software costs,” IEEE Trans. Softw. Eng., vol. 14, no. 10,
pp. 1462–1477, Oct. 1988.

[7] A. Trendowicz, J. M€unch, and R. Jeffery, “State of the practice in
software effort estimation: A survey and literature review,”
in Proc. IFIP Central East Eur. Conf. Softw. Eng. Techn., 2008,
pp. 232–245.

[8] A. Trendowicz and J. M€unch, “Factors influencing software
development productivity–state-of-the-art and industrial experi-
ences,” Advances Comput., vol. 77, pp. 185–241, 2009.

[9] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation
in agile software development: A systematic literature review,”
in Proc. 10th Int. Conf. Predictive Models Softw. Eng., 2014,
pp. 82–91.

[10] M. Cohn, Agile Estimating and Planning. London, U.K.: Pearson
Education, 2005.

[11] D. Leffingwell, Scaling Software Agility: Best Practices for Large
Enterprises. London, U.K.: Pearson Education, 2007.

KULA ETAL.: FACTORS AFFECTING ON-TIME DELIVERY IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 3589

[12] M. Usman, E. Mendes, and J. B€orstler, “Effort estimation in
agile software development: A survey on the state of the
practice,” in Proc. 19th Int. Conf. Eval. Assessment Softw. Eng.,
2015, pp. 1–10.

[13] E. Dantas, M. Perkusich, E. Dilorenzo, D. F. Santos, H. Almeida,
and A. Perkusich, “Effort estimation in agile software develop-
ment: An updated review,” Int. J. Softw. Eng. Knowl. Eng., vol. 28,
no. 11n12, pp. 1811–1831, 2018.

[14] M. Cohn,User Stories Applied: For Agile Software Development. Bos-
ton, MA, USA: Addison-Wesley Professional, 2004.

[15] K. Schwaber and M. Beedle, Agile Software Development With
Scrum, vol. 1. Upper Saddle River, NJ, USA: Prentice Hall, 2002.

[16] K. Conboy and N. Carroll, “Implementing large-scale agile
frameworks: Challenges and recommendations,” IEEE Softw.,
vol. 36, no. 2, pp. 44–50, Mar./Apr. 2019.

[17] M. Paasivaara, “Adopting safe to scale agile in a globally distrib-
uted organization,” in Proc. IEEE 12th Int. Conf. Global Softw.
Eng., 2017, pp. 36–40.

[18] M. Paasivaara, B. Behm, C. Lassenius, and M. Hallikainen,
“Large-scale agile transformation at ericsson: A case study,”
Empir. Softw. Eng., vol. 23, no. 5, pp. 2550–2596, 2018.

[19] H. F. Cervone, “Understanding agile project management meth-
ods using scrum,”OCLC Syst. Serv.: Int. Digit. Library Perspectives,
vol. 27, no. 1, pp. 18–22, 2011.

[20] A. Trendowicz and R. Jeffery, Software Project Effort Estimation:
Foundations and Best Practice Guidelines for Success. Berlin, Ger-
many: Springer, 2014, pp. 277–293.

[21] V. Mahni�c and T. Hovelja, “On using planning poker for estimat-
ing user stories,” J. Syst. Softw., vol. 85, no. 9, pp. 2086–2095, 2012.

[22] C. J. Torrecilla-Salinas, J. Sede~no, M. Escalona, and M. Mej�ıas,
“Estimating, planning and managing agile web development
projects under a value-based perspective,” Inf. Softw. Technol.,
vol. 61, pp. 124–144, 2015.

[23] P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko, and W.
Pedrycz, “Predicting development effort from user stories,” in
Proc. Int. Symp. Empir. Softw. Eng. Meas., 2011, pp. 400–403.

[24] D. Nguyen-Cong and D. Tran-Cao, “A review of effort estima-
tion studies in agile, iterative and incremental software devel-
opment,” in Proc. RIVF Int. Conf. Comput. Commun. Technol.-Res.
Innov. Vis. Future, 2013, pp. 27–30.

[25] S. Grapenthin, S. Poggel, M. Book, and V. Gruhn, “Facilitating
task breakdown in sprint planning meeting 2 with an interaction
room: An experience report,” in Proc. 40th EUROMICRO Conf.
Softw. Eng. Adv. Appl., 2014, pp. 1–8.

[26] S. Kang, O. Choi, and J. Baik, “Model-based dynamic cost estima-
tion and tracking method for agile software development,” in
Proc. IEEE/ACIS 9th Int. Conf. Comput. Inf. Sci., 2010, pp. 743–748.

[27] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshir-
band, “A systematic literature review on agile requirements
engineering practices and challenges,” Comput. Hum. Behav., vol.
51, pp. 915–929, 2015.

[28] M. Agrawal and K. Chari, “Software effort, quality, and cycle
time: A study of CMM level 5 projects,” IEEE Trans. Softw. Eng.,
vol. 33, no. 3, pp. 145–156, Mar. 2007.

[29] M. Jørgensen and S. Grimstad, “Avoiding irrelevant and mis-
leading information when estimating development effort,” IEEE
Softw., vol. 25, no. 3, pp. 78–83, May/Jun. 2008.

[30] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting best practi-
ces for effort estimation,” IEEE Trans. Softw. Eng., vol. 32, no. 11,
pp. 883–895, Nov. 2006.

[31] M. Jørgensen and T. M. Gruschke, “The impact of lessons-
learned sessions on effort estimation and uncertainty asses-
sments,” IEEE Trans. Softw. Eng., vol. 35, no. 3, pp. 368–383,
May/Jun. 2009.

[32] A. Trendowicz, M. Ochs, A. Wickenkamp, J. M€unch, Y. Ishigai,
and T. Kawaguchi, “Integrating human judgment and data anal-
ysis to identify factors influencing software development
productivity,” e-Informatica, vol. 2, no. 1, pp. 47–69, 2008.

[33] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of
ensemble effort estimation,” IEEE Trans. Softw. Eng., vol. 38, no.
6, pp. 1403–1416, Nov./Dec. 2012.

[34] P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, and G. Succi,
“Effort prediction in iterative software development processes–
incremental versus global prediction models,” in Proc. 1st Int.
Symp. Empir. Softw. Eng. Meas., 2007, pp. 344–353.

[35] P. Hearty, N. Fenton, D. Marquez, and M. Neil, “Predicting proj-
ect velocity in XP using a learning dynamic Bayesian network
model,” IEEE Trans. Softw. Eng., vol. 35, no. 1, pp. 124–137, Jan./
Feb. 2009.

[36] M. Choetkiertikul, H. K. Dam, T. Tran, T. T. M. Pham, A. Ghose,
and T. Menzies, “A deep learning model for estimating story
points,” IEEE Trans. Softw. Eng., vol. 45, no. 7, pp. 637–656, Jul.
2019.

[37] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature
review of machine learning based software development effort
estimation models,” Inf. Softw. Technol., vol. 54, no. 1, pp. 41–59,
2012.

[38] P. Sharma and J. Singh, “Systematic literature review on software
effort estimation using machine learning approaches,” in Proc.
Int. Conf. Next Gener. Comput. Inf. Syst., 2017, pp. 43–47.

[39] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time:
An empirical study of commercial software projects,” in Proc.
35th Int. Conf. Softw. Eng., 2013, pp. 1042–1051.

[40] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Proc. 4th Int.
Workshop Mining Softw. Repositories, 2007, pp. 29–29.

[41] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models:
Can we do better?,” in Proc. 8th Work. Conf. Mining Softw. Reposi-
tories, 2011, pp. 207–210.

[42] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software
defect association mining and defect correction effort pre-
diction,” IEEE Trans. Softw. Eng., vol. 32, no. 2, pp. 69–82, Feb.
2006.

[43] S. Assar, M. Borg, and D. Pfahl, “Using text clustering to predict
defect resolution time: A conceptual replication and an evalua-
tion of prediction accuracy,” Empir. Softw. Eng., vol. 21, no. 4,
pp. 1437–1475, 2016.

[44] C. Maddila, C. Bansal, and N. Nagappan, “Predicting pull
request completion time: A case study on large scale cloud serv-
ices,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2019, pp. 874–882.

[45] J. G. March and Z. Shapira, “Managerial perspectives on risk and
risk taking,”Manage. Sci., vol. 33, no. 11, pp. 1404–1418, 1987.

[46] K. De Bakker, A. Boonstra, and H. Wortmann, “Does risk man-
agement contribute to it project success? A meta-analysis of
empirical evidence,” Int. J. Project Manage., vol. 28, no. 5, pp. 493–
503, 2010.

[47] J. J. Jiang, G. Klein, and T. L. Means, “Project risk impact on soft-
ware development team performance,” Project Manage. J., vol. 31,
no. 4, pp. 19–26, 2000.

[48] J. J. Jiang, G. Klein, and R. Discenza, “Information system success
as impacted by risks and development strategies,” IEEE Trans.
Eng. Manage., vol. 48, no. 1, pp. 46–55, Feb. 2001.

[49] W.-M. Han and S.-J. Huang, “An empirical analysis of risk com-
ponents and performance on software projects,” J. Syst. Softw.,
vol. 80, no. 1, pp. 42–50, 2007.

[50] L. Wallace, M. Keil, and A. Rai, “Understanding software project
risk: A cluster analysis,” Inf. Manage., vol. 42, no. 1, pp. 115–125,
2004.

[51] B. W. Boehm, “Software risk management: Principles and
practices,” IEEE Softw., vol. 8, no. 1, pp. 32–41, Jan. 1991.

[52] M. J. Carr, S. L. Konda, I. Monarch, F. C. Ulrich, and C. F. Walker,
“Taxonomy-based risk identification,” Carnegie-Mellon Univ.,
Pittsburgh, PA, Tech. Rep. CMU/SEI-93-TR-006, 1993.

[53] R. N. Charette, Software Engineering Risk Analysis and Manage-
ment. New York, NY, USA: Intertext Publications, 1989.

[54] C. Jones, Assessment and Control of Software Risks. Englewood
Cliffs, NJ, USA: Yourdon Press, 1994.

[55] T. Addison and S. Vallabh, “Controlling software project
risks: An empirical study of methods used by experienced proj-
ect managers,” in Proc. Annu. Res. Conf. South African Inst. Com-
put. Scientists Inf. Technol. Enablement Through Technol., 2002,
pp. 128–140.

[56] H. Barki, S. Rivard, and J. Talbot, “Toward an assessment of soft-
ware development risk,” J. Manage. Inf. Syst., vol. 10, no. 2, pp.
203–225, 1993.

[57] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, “Identifying soft-
ware project risks: An international delphi study,” J. Manage. Inf.
Syst., vol. 17, no. 4, pp. 5–36, 2001.

[58] K. Ewusi-Mensah, Software Development Failures. Cambridge,
MA, USA: MIT Press, 2003.

3590 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

[59] S. L. Jarvenpaa and B. Ives, “Executive involvement and partici-
pation in the management of information technology,” MIS
Quart., vol. 15, pp. 205–227, 1991.

[60] M. Van Genuchten, “Why is software late? An empirical study of
reasons for delay in software development,” IEEE Trans. Softw.
Eng., vol. 17, no. 6, pp. 582–590, Jan. 1991.

[61] H. Barki and J. Hartwick, “Rethinking the concept of user
involvement,”MIS Quart., vol. 13, pp. 53–63, 1989.

[62] H. Hoodat and H. Rashidi, “Classification and analysis of risks in
software engineering,” World Acad. Sci. Eng. Technol., vol. 56, no.
32, pp. 446–452, 2009.

[63] J. Ropponen and K. Lyytinen, “Components of software develop-
ment risk: How to address them? A project manager survey,”
IEEE Trans. Softw. Eng., vol. 26, no. 2, pp. 98–112, Feb. 2000.

[64] L. Wallace, M. Keil, and A. Rai, “How software project risk
affects project performance: An investigation of the dimensions
of risk and an exploratory model,” Decis. Sci., vol. 35, no. 2, pp.
289–321, 2004.

[65] J. Menezes, C. Gusm~ao, and H. Moura, “Risk factors in software
development projects: A systematic literature review,” Softw.
Qual. J., vol. 27, no. 3, pp. 1149–1174, 2019.

[66] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and infor-
mation value in software requirements and architecture,” in
Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 883–894.

[67] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Predicting
delays in software projects using networked classification (t),”
in Proc. 30th IEEE/ACM Int. Conf. Autom. Softw. Eng., 2015,
pp. 353–364.

[68] H. R. Joseph, “Poster: Software development risk management:
Using machine learning for generating risk prompts,” in Proc.
IEEE/ACM 37th Int. Conf. Softw. Eng., 2015, vol. 2, pp. 833–834.

[69] H. Kniberg and A. Ivarsson, “Scaling agile@ spotify with tribes,
squads, chapters& guilds,” Entry Posted November, vol. 12, pp. 1–14,
2012.

[70] B. A. Kitchenham and S. L. Pfleeger, “Principles of survey
research: Parts 1– 6,” ACM SIGSOFT Softw. Eng. Notes, vol. 28,
pp. 24–27, 2003.

[71] M. Kasunic, “Designing an effective survey,” Carnegie-Mellon
Univ., Pittsburgh, PA, Tech. Rep. CMU/SEI-2005-HB-004, 2005.

[72] E. Kula, E. Greuter, A. van Deursen, and G. Gousios,
“Supplemental material for factors affecting on-time delivery in
large-scale agile software development,” 2020. [Online]. Avail-
able: https://tinyurl.com/yxkylqpb

[73] M. Jorgensen and K. Molokken-Ostvold, “Reasons for software
effort estimation error: Impact of respondent role, information
collection approach, and data analysis method,” IEEE Trans.
Softw. Eng., vol. 30, no. 12, pp. 993–1007, Dec. 2004.

[74] F. Strack, ““Order effects” in survey research: Activation and
information functions of preceding questions,” in Context Effects
in Social and Psychological Research. Berlin, Germany: Springer,
1992, pp. 23–34.

[75] J. S. Moll�eri, K. Petersen, and E. Mendes, “Survey guidelines in
software engineering: An annotated review,” in Proc. 10th ACM/
IEEE Int. Symp. Empir. Softw. Eng. Meas., 2016, pp. 1–6.

[76] J. Y. Cho and E.-H. Lee, “Reducing confusion about grounded
theory and qualitative content analysis: Similarities and differ-
ences,” Qualitative Rep., vol. 19, no. 32, pp. 1–20, 2014.

[77] J. F. DeFranco and P. A. Laplante, “A content analysis process for
qualitative software engineering research,” Innovations Syst.
Softw. Eng., vol. 13, no. 2, pp. 129–141, 2017.

[78] J. Cohen, “A coefficient of agreement for nominal scales,” Educ.
Psychol. Meas., vol. 20, no. 1, pp. 37–46, 1960.

[79] P. Judea, “Causality: Models, reasoning, and inference,” Cam-
bridge University Press. ISBN 0, vol. 521, no. 77362, 2000, Art. no. 8.

[80] S. Conte, H. Dunsmore, and V. Shen, Software Engineering Metrics
and Models. Redwood City, CA, USA: Benjamin-Cummings Pub-
lishing Co., Inc., 1986.

[81] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simula-
tion study of the model evaluation criterion MMRE,” IEEE Trans.
Softw. Eng., vol. 29, no. 11, pp. 985–995, Nov. 2003.

[82] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J.
Shepperd, “What accuracy statistics really measure,” IEE Proc.-
Softw., vol. 148, no. 3, pp. 81–85, 2001.

[83] D. Port and M. Korte, “Comparative studies of the model evalua-
tion criterions MMRE and PRED in software cost estimation
research,” in Proc. 2nd ACM-IEEE Int. Symp. Empir. Softw. Eng.
Meas., 2008, pp. 51–60.

[84] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust
regression for developing software estimation models,” J. Syst.
Softw., vol. 27, no. 1, pp. 3–16, 1994.

[85] J. H. Friedman, “Multivariate adaptive regression splines,” The
Ann. Statist., vol. 19, pp. 1–67, 1991.

[86] J. Noll and S. Beecham, “Measuring global distance: A survey of
distance factors and interventions,” in Proc. Int. Conf. Softw. Pro-
cess Improvement Capability Determination, 2016, pp. 227–240.

[87] D. Hartmann and R. Dymond, “Appropriate agile measurement:
Using metrics and diagnostics to deliver business value,” in Proc.
AGILE, 2006, pp. 6–134.

[88] S. E. Dreyfus and H. L. Dreyfus, “A five-stage model of the
mental activities involved in directed skill acquisition,” Distribu-
tion, Univ. California, Berkeley, Berkeley, CA, p. 22, Feb. 1980.

[89] C. Aube and V. Rousseau, “Team goal commitment and team
effectiveness: The role of task interdependence and supportive
behaviors,” Group Dynamics: Theory Res. Pract., vol. 9, no. 3, 2005,
Art. no. 189.

[90] K. M. Chudoba, E. Wynn, M. Lu, and M. B. Watson-Manheim,
“How virtual are we? Measuring virtuality and understanding
its impact in a global organization,” Inf. Syst. J., vol. 15, no. 4, pp.
279–306, 2005.

[91] O. Morgenshtern, T. Raz, and D. Dvir, “Factors affecting dura-
tion and effort estimation errors in software development proj-
ects,” Inf. Softw. Technol., vol. 49, no. 8, pp. 827–837, 2007.

[92] R. S. Huckman, B. R. Staats, and D. M. Upton, “Team familiarity,
role experience, and performance: Evidence from indian soft-
ware services,”Manage. Sci., vol. 55, no. 1, pp. 85–100, 2009.

[93] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and suc-
cess factors for large-scale agile transformations: A systematic lit-
erature review,” J. Syst. Softw., vol. 119, pp. 87–108, 2016.

[94] H. Huang and E. M. Trauth, “Cultural influences and globally
distributed information systems development: Experiences from
chinese it professionals,” in Proc. ACM SIGMIS CPR Conf.
Comput. Personnel Res.: The Global Inf. Technol. Workforce, 2007,
pp. 36–45.

[95] M. Kajko-Mattsson, “Problems in agile trenches,” in Proc. 2nd
ACM-IEEE Int. Symp. Empir. Softw. Eng. Meas., 2008, pp. 111–119.

[96] J. Kontio, M. Hoglund, J. Ryden, and P. Abrahamsson,
“Managing commitments and risks: Challenges in distributed
agile development,” in Proc. 26th Int. Conf. Softw. Eng., 2004, pp.
732–733.

[97] N. Sekitoleko, F. Evbota, E. Knauss, A. Sandberg, M. Chaudron,
and H. H. Olsson, “Technical dependency challenges in large-
scale agile software development,” in Proc. Int. Conf. Agile Softw.
Develop., 2014, pp. 46–61.

[98] D. E. Strode, S. L. Huff, B. Hope, and S. Link, “Coordination in
co-located agile software development projects,” J. Syst. Softw.,
vol. 85, no. 6, pp. 1222–1238, 2012.

[99] A. Elbanna and S. Sarker, “The risks of agile software develop-
ment: Learning from adopters,” IEEE Softw., vol. 33, no. 5, pp.
72–79, Sep./Oct. 2016.

[100] A. L. Lederer and J. Prasad, “Causes of inaccurate software
development cost estimates,” J. Syst. Softw., vol. 31, no. 2, pp.
125–134, 1995.

[101] S. Grimstad, M. Jorgensen, and K. Molokken-Ostvold, “The cli-
ents’ impact on effort estimation accuracy in software develop-
ment projects,” in Proc. 11th IEEE Int. Softw. Metrics Symp., 2005,
pp. 10–pp.

[102] K. M. Furulund and K. Molkken-stvold, “Increasing software
effort estimation accuracy using experience data, estimation
models and checklists,” in Proc. 7th Int. Conf. Qual. Softw., 2007,
pp. 342–347.

[103] R. Gupta, K. H. Prasad, and M. Mohania, “Automating ITSM
incident management process,” in Proc. Int. Conf. Auton. Comput.,
2008, pp. 141–150.

[104] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, and D. O’Brien, “Scaling
agile methods to regulated environments: An industry case
study,” in Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 863–872.

[105] F. Moyon, K. Beckers, S. Klepper, P. Lachberger, and B. Bruegge,
“Towards continuous security compliance in agile software
development at scale,” in Proc. IEEE/ACM 4th Int. Workshop Rapid
Continuous Softw. Eng., 2018, pp. 31–34.

[106] L. ben Othmane, P. Angin, H. Weffers, and B. Bhargava,
“Extending the agile development process to develop acceptably
secure software,” IEEE Trans. Dependable Secure Comput., vol. 11,
no. 6, pp. 497–509, Nov./Dec. 2014.

KULA ETAL.: FACTORS AFFECTING ON-TIME DELIVERY IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 3591

https://tinyurl.com/yxkylqpb

[107] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of
bugs,” in Proc. 2nd Int. Workshop Recommendation Syst. Softw.
Eng., 2010, pp. 52–56.

[108] F. S. Downs and J. Fawcett, The Relationship of Theory and Research.
London, U.K.: McGraw-Hill/Appleton & Lange, 1986.

[109] J. S. Moll�eri, K. Petersen, and E. Mendes, “An empirically evalu-
ated checklist for surveys in software engineering,” Inf. Softw.
Technol., vol. 119, 2020, Art. no. 106240.

[110] R. Donmoyer, “Generalizability and the single-case study,” in
Case Study Method: Key Issues, Key Texts. Thousand Oaks, CA,
USA: SAGE Publications, 2000, pp. 45–68.

[111] E. D. De Leeuw, Data Quality in Mail, Telephone and Face to Face
Surveys. San Jose, CA, USA: ERIC, 1992.

[112] R. M. Groves, R. B. Cialdini, and M. P. Couper, “Understanding
the decision to participate in a survey,” Public Opin. Quart., vol.
56, no. 4, pp. 475–495, 1992.

[113] A. Furnham, “Response bias, social desirability and dissim-
ulation,” Pers. Indiv. Differ., vol. 7, no. 3, pp. 385–400, 1986.

[114] P. Ralph and E. Tempero, “Construct validity in software engi-
neering research and software metrics,” in Proc. 22nd Int. Conf.
Eval. Assessment Softw. Eng., 2018, pp. 13–23.

Elvan Kula (Member, IEEE) is currently working
toward the doctoral degree at the Delft University
of Technology, The Netherlands. She focuses on
using automated techniques to both understand
and improve software development processes in
terms of efficiency and predictability. Her
research interests include effort estimation, soft-
ware analytics, and machine learning for software
engineering. She is the manager of AI for Fintech
Research, a five year research collaboration
between ING and TU Delft.

Eric Greuter is chief product owner at the IT
Infrastructure Data & Analytics Department of
ING TECH, Netherlands. He leads several engi-
neering and research teams, and is responsible
for the backlog management data warehouse at
ING, Netherlands. His research interests include
software processes, data integration, and cloud
infrastructure services.

Arie van Deursen (Member, IEEE) is a full pro-
fessor in software engineering at the Delft Univer-
sity of Technology, The Netherlands, where he
heads the Software Engineering Research Group
and chairs the Department of Software Technol-
ogy. His research interests include human
aspects of software engineering, software archi-
tecture, and software testing. He serves on the
advisory board of the Innovation Center for AI
(ICAI). He is founder and scientific director of AI
for Fintech Research (AFR), and one of the cur-

rently 20 ICAI labs. He served as program co-chair for ESEC/FSE 2017
and for ICSE 2021. He serves on the advisory board of the Empirical
Software Engineering and on the editorial board of the PeerJ Computer
Science.

Georgios Gousios is a research engineer at
Facebook and an associate professor at the Delft
University of Technology, The Netherlands (on
leave). He works in the fields of software analyt-
ics, software ecosystems, software processes,
and machine learning for software engineering.
He is the main author of the GHTorrent data col-
lection and curation framework and various
widely used tools and datasets.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3592 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

