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Abstract

Out-of-Domain (OOD) generalization is a challenging problem in machine learning
about learning a model from one or more domains and making the model perform well
on an unseen domain. Empirical Risk Minimization (ERM), the standard machine
learning method, suffers from learning spurious correlation in the training domain,
therefore may perform badly when the unseen domain has different distribution from
the training domain. Group Distributionally Robust Optimization (group DRO) is
a method proposed to handle the OOD generalization problem. In this paper, the
goals are to 1) measure if group DRO has a better OOD generalization performance
than ERM. 2) evaluate if group DRO finds causally invariant relationships between the
input and output. Semi-synthetic bird images with different backgrounds are used to
form our data sets to construct a binary image classification problem for experiments.
Results show that group DRO improves OOD generalization performance over ERM,
and group DRO can find invariant relationships. However, the ability of group DRO
to find invariant relationships is limited when the spurious correlation in the training
domain is strong.

Keywords: OOD generalization, group DRO, spurious correlation, invariant rela-
tionships

1 Introduction

Out-of-Domain (OOD) generalization problem is a challenging problem in the machine
learning research field that machine learning models, which have good performance in some
domains, may fail when applied to an unseen domain [IJ.

The reason why the model fails is that the training data we have does not always have
the same distribution as the data in the deployment, which leads to the standard machine
learning algorithm, under the principle of Empirical risk minimization (ERM), to exploit
spurious correlation in the training domain [2], therefore performing poorly on data where
such correlation does not hold.

An idea to solve the OOD generalization problem is to assume that there exist invariant
relationships across domains, and by finding and exploiting such relationships, the model
can make better predictions in the unseen domains by causal inference [3]. Many possible
solutions for solving the OOD generalization problem have been proposed. One of them
is Distributionally Robust Optimization (DRO) [4], which tries to minimize worst-case loss
over potential test distributions [4, 5], rather than minimize the average loss in the training
set as ERM does. Group DRO, an invariant of DRO, has been proven to prevent the models
from relying on pre-specified spurious correlations [2]. However, it is unclear if group DRO
can find invariant relationships between input and output and learn an model that predict
based on such invariant relationships. In this research, we try to answer the following
research questions:

e Does group DRO perform better than ERM in OOD generalization in a binary image
classification problem?

e Can group DRO find and exploit the invariant relationships between the input and
output in the training domain and learn an invariant classifier?

We structured the paper as follows: In Section [2] of the paper, the comparison between
group DRO and ERM is discussed. Section [3] is about the methodology to answer the
research questions, including the background behind the methodology. Section [4] is about



the experiments, including the semi-synthetic data sets generation, experiments steps and
results. Section [§]is about responsible research, in which the research principles we adhere
to are discussed. The results of the experiments are discussed in section [6] In section[7] the
conclusions of this research are summarized, and future works are proposed.

2 Group DRO and ERM

In this section, group DRO and its comparison with ERM is formally introduced, then
the reason why group DRO is a potential method to find invariant relationship is discussed.

The risk or loss in machine learning means the difference between the predicted output
and actual output is measured by a loss function. Ideally, we want to minimize the true risk,
which is the average loss over all possibility. However in practice, since it is not possible for
us to know the true distribution over all input and output, therefore we need to find another
way to approximate it.

ERM or Empirical Risk Minimization is a traditional method in supervised learning
[7]. The concept is simple and intuitive: we assume the training data, drawn from some
distribution, is a representative of all the classes in the real world, whose distribution can
approximate the real distribution, the algorithm tries to find a model that minimize the
empirical risk: the average loss between the predicted output and actual output in our
training set. Ideally, if we get more data, then the ERM can approach the true risk; however,
in practice, getting more data could be expensive; besides, the data we get is often biased,
which lead the ERM learns the spurious correlation in the training set, and suffer high loss
over relatively rare examples.

To improve the ERM, Distributionally Robust Optimization (DRO) [4, 5] is proposed.
Instead of minimizing the empirical risk, DRO tries to minimize the worst-case expected
loss over a series of possible test distributions. In this research, we use an invariant of DRO
called group DRO [2]. In group DRO, we divide data in the training set into different group,
using our prior knowledge of spurious correlation, and the distributions of each group serves
as possible test distributions in DRO; in another words, group DRO learns a model with
good worst-case training loss over the groups, which could prevent the model exploit the
spurious correlation we specified beforehand.

The standard procedure of ERM is [2]:

Opry o= argminE, .\ s[0(0; (z,y))] (1)
0O
Where z is the input feature, y is the label, [ is the loss, P is some distribution where
training data is drawn from (and under with the loss is computed) and 6 is the model from a
model family ©. In ERM, we learn a model minimize the expected loss under the empirical
distribution over training data.
The procedure for DRO looks like the following, the goal is to minimize the worst-case
expected loss (R in the formula) over an uncertainty set of distributions @ [2]:

- {R(G) = s Bloy~ll (o ym} 2)

In group DRO, the uncertainty set is defined in terms of the groups, where groups are
formed with our knowledge of spurious correlations, and the worst-case risk is the maximum



over the expected loss of each group, or worst group loss [2]:
R(0) = max Eg.y)~p, [(0; (2,))] 3)

Therefore, in group DRO, we learn a model minimize the worst-case loss described above,
over empirical distribution among each group [2]:

Ubro = argefgiﬂ {R(&) = max E, o, L0 (2, y))}} (4)

To summarize, since ERM only cares about minimizing the overall loss, the ERM algo-
rithm could capture some obvious non-essential features (background) in the input, which
are highly and spuriously correlated with output (label) during the learning process. Relying
on these correlations will not hurt the overall loss too much; however, this could lead to bad
performance when the learned model applied to the data set in which the same correlation
does not hold. For group DRO, we can group the data by the known spurious correlation.
As the algorithm of group DRO will minimize the loss of the group on which the algorithm
expects the model performs worst, the group with a small number of examples will not be
neglected. Therefore, group DRO algorithm avoids relying on the spurious correlation, and
makes it promising to find a model that uses features causal to the output to predict or
classify.

3 Methodology

In this section, we introduce the background knowledge of Out-Of-Domain (OOD) gener-
alization and Invariant Causal Prediction (ICP) , then the methods to answer the research
questions.

3.1 Out-of-Domain generalization

The algorithms for machine learning generally assume that the training data and testing
data has the same distribution [§]. However, in real life this may not be the case and could
result in poor performance of the learned model in deployment.

To illustrate the OOD generalization, computer scientists proposed an image classifica-
tion problem as an example about determining if the animal in a photograph is a cow or a
camel [9] 10]: due to the differences in living habits, most of the photographs of cow have
grassland as backgrounds, while photographs of camel mainly has desert backgrounds, the
model learned by the machine learning algorithm may use the background features to clas-
sify the example, which may perform badly on the test domain where the data is collected
from different environments than the training domain, e.g., when most photographs of cows
collected are in the desert background.

The problem introduced above leads to the Out of Domain generalization problem: How
to make the model learned from one or more domains performs well in an unseen domain.

3.2 Evaluation of OOD generalization performance

We construct a binary image classification problem using semi-synthetic data sets to measure
the OOD generalization performance of models learned by group DRO. Two training sets
are used to train the models, which have different strengths of spurious correlation: in the



first training set, for each class, the number of objects in each background is the same,
so the correlation between background and label is week; in the second training set, the
background has a strong correlation with the class label of the object, as most (but not all)
of objects in one class are against one background and most of objects in another class are
against another background. Then we compare the performance of models on testing sets
with different background distributions, where the correlations between the background and
class label are similar, different, or opposed to in the training set. We also did the same
experiment on models learned by ERM, and by comparing the performance of models learned
by the two methods, we can see if group DRO is better able to generalize Out-Of-Domain
than ERM.

3.3 Invariant causal prediction

To solve the problem OOD generalization problem, one idea is to find and exploit invari-
ant relationships between the invariant features and output in the training domain (in the
example metioned in that is the shape of the animal and its class label), which hold
across domains and can be used to explain why an object belongs to a class causally [3],
rather than rely on the spurious correlations between some obvious but spurious features
(background) and output, which, as Geirhos et al suggest, is a shortcut [II]. This is called
Invariant Causal Prediction (ICP) [6].

Figure [I] is a visual presentation of ICP. In short words, the goal of ICP is to learn a
model that is able to identify and use the invariant features to predict the output, and ignore
the spurious features.

Spurious
features
(Background)
Short Cut
(Spurious)
output Correlation
(Labels)
Invariant Invariant

Relationships features

(Camel's
shape, etc.)

Figure 1: A visual presentation of Invariant Causal Prediction: if the learned model is able
to use features which have causal invariant relationships with the output, then it performs
Invariant Causal Prediction



3.4 Evaluation of finding invariant relationships

We evaluate if group DRO is able to find invariant relationships by determining if the learned
models can perform ICP based on the same binary classification problem as in|3.2} First, we
use group DRO and ERM to learn the models from different training sets with different the
correlation strengths between the background and label of object. Next, for every object
i, we generate two examples, where the same object is placed in the different backgrounds.
Then for every object, we classify the two examples with group DRO model and ERM
model, and count when the two examples are classified identically and correctly. In the
end, we compare the results, and if models learned by group DRO have most of examples
being classified identically and correctly, then group DRO can find and exploit invariant
relationships and perform ICP.

4 Experiments

In this section, first we introduce the process of semi-synthetic data sets generation using
the The Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset [I2] or CUB data set in
short, the data set can be downloaded from Kaggldﬂ Then, we discuss the setups of the
two experiments, the experiment A is degined to measure the OOD generalization ability of
DRO, while the experiment B is to measure if group DRO can find invariant relationship in
the training domain.

4.1 Semi-synthetic data sets generation

In this research, we use semi-synthetic data sets for binary classification of birds.

The semi-synthetic data set are composed of two parts, namely the bird and the back-
ground. The photographs of birds come from the CUB data set, which contains 11788
images of 200 species of birds, 5994 for training and 5794 for testing. We divide the birds
into two classes for binary classification: land birds and water birds, as in the group DRO
paper [2]. Land birds have 4615 images in training split, 4510 images in testing split while
water birds have 1379 images in training split and 1284 images in testing split. We use pure
green and pure blue as backgrounds to make the distinction between backgrounds simple
and explicit.

In the generation process, the original division for training and testing of birds pho-
tographs are held, and the bird is extracted from the initial photograph and combined with
the background. Each example is marked with its true label and background, so we can
group the examples with their labels and backgrounds: land birds with green background,
land birds with blue background, water birds with blue background and water birds with
green background.

The python generation program we use is developed by the authors of group DRO, which
along with the group DRO implementation, can be found in GitHukﬂ

Figure [2 is a diagram for showing the invariant and spurious features in the data we
generate.

See Figure [3] [ [B] [6] for some examples of generated images.

Thttps://www.kaggle.com/datasets/veeralakrishna/200-bird-species-with-11788-images
2https://github.com/kohpangwei/group_ DRO



. Background

Figure 2: The diagram for data generation. X is the image (input), which consists of a
bird and its background; Y is the class label of the bird to be predicted (output), which is
determined by the bird itself, so the features of Bird are the invariant features here, which
have causal invariant relationship with the class label, while the features of the Background
are the spurious features

Figure 3: Land birds with green background Figure 4: Land birds with blue background



Figure 5: Water birds with blue background Figure 6: Water birds with green background

4.2 Experiments setup

In this subsection, we elaborate on how the experiments are designed, including the imple-
mentation of group DRO and ERM and the hyperparameters we use in section The
setup the Experiment A (designed to measure the OOD performance) is described in
and the setup of the Experiment B (designed to measure if group DRO finds the invariant
relationships) is described in [£.2.4]

4.2.1 Implementation and hyperparameters

For both group DRO and ERM, we use ResNet50 [I3] model, a 50 layers deep convolu-
tional neural network which is widely used for image classification. We use the group DRO
implememtation developed by the author of group DRO, which can be found at GitHub,
as mentioned in section [4.1] For the ERM implementation, we develop it with tensorflow,
using the implementation of Resnet50 from tensorflow.keras package. Both DRO and ERM
use stochastic gradient descent (SGD) as optimizer.

Table [1| shows the hyperparameters we use during the experiments.

Parameter Value
Batch Size 64
Epochs 30
Momentum 0.9

Learning Rate  0.001
Weight Decay  0.0001

Table 1: Hyperarameters setting

4.2.2 Experiment A setup

The experiment A refers to the method in section [3.2] aims to measure the OOD generaliza-
tion performance of group DRO by comparing how accurate models learned by both group
DRO and ERM on varying unseen testing domains.

The training, validation, and testing sets are generated as follows: in the first training
set, for each class of examples, we place half of the birds against the green background
and another half against the blue background, so the correlation between the bird and
background is weak. In the second training set, 90% of land birds are placed against the
green background and the remaining against the blue background; similarly, 90% of water
birds are placed against the blue background, the remaining against the green background,
so the correlation between the background and class label is strong. The validation set is
formed by randomly choosing 20% of water birds examples and 20% of land birds examples



from the training set, and we train the model several times to select the model with the
lowest validation loss. Testing sets are generated with probability p = P(green background
| land birds) = P(blue background | water birds), varying p from 0 to 1 with step 0.1, so
we have testing sets with different background distributions to simulate data sets collected
from different environments: when p is close to 0.5, the correlation between background
and class label becomes week; when p is close to 0 or 1, the correlation becomes strong in
different directions.

We then compare the accuracy on different testing sets of classifiers learned from first and
send training set by group DRO and ERM, to see how these classifiers perform in different
unseen domains.

4.2.3 Experiment A results

Below are the results for experiment A. The classification accuracy is calculated for each
class. The x-axis refers to testing sets with different background distributions, and the y-axis
refers to the accuracy; the grey line in each graph indicates the distribution of backgrounds
in the training set.

Figure [7] and Figure [§ show the accuracy of classifiers learned by group DRO and ERM
from the training set 1 on different testing sets for different classes. The results show that
both methods perform stably across testing sets. The classifier learned by group DRO
has stable and exemplary performance in classifying both classes of birds across different
testing sets, although the accuracy for classifying land birds is higher than for classifying
water birds. In contrast, the classifier learned by ERM is heavily biased towards land birds:
although its performance is slightly better in classifying land birds (accuracy near 1) than
group DRO (accuracy near 0.986) across testing sets, its performance in classifying water
birds (near 0.1) across testing sets is much worse than group DRO (near 0.9).
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Figure 7: Experiment A: the accuracy for clas- Figure 8: Experiment A: the accuracy for clas-
sifying land birds examples by models learned sifying water birds examples by models learned
from training set 1. from training set 1.

Figure [9]and Figure[I0]show the accuracy of classifiers learned by group DRO and ERM
from the training set 2 on different testing sets for different classes. The results show that,
when the spurious correlation between background and label is strong in the training set,
although the group DRO classifier generally performs better than the ERM classifier across
testing sets, the classifiers learned by both methods have a better performance in the testing



sets where the distributions of backgrounds are similar to the training set. Nevertheless, the
classifier learned by ERM is not as stable as the classifier learned by group DRO, especially
for classifying water birds, as shown from the change of accuracy from p = 0 to p = 1.
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Figure 9: Experiment A: the accuracy for clas- Figure 10: Experiment A: the accuracy for clas-

sifying land birds examples by models learned sifying water birds examples by models learned

from training set 2. from training set 2.

4.2.4 Experiment B set up

The experiment B refers to method in section [3.4] aims to evaluate if group DRO can
find invariant relationships in the training domain, and learns classifiers which classify an
example based on its invariant features rather than the spurious ones.

The training sets are generated as following: we change the distribution of backgrounds
for each class with probability p = P(green background | land birds) = P(blue background
| water birds), varying p from 0.5 to 0.9 with step 0.1, so the strength of spurious corre-
lation between background and label differs. The validation set are formed by randomly
choosing 20% of land birds examples of each background from the training set, similarly for
water birds. To counter the randomness in choosing the validation set, for each background
distribution we generate training sets three times.

Two testing sets are created: for each bird in CUB testing split, we generate two examples
in two different background, and one is put in testing set 1 and the other is put in testing
set 2. So we have every bird with examples of two backgrounds in two testing sets.

Then we learn the classifiers from training sets with different background distribution
by group DRO and ERM, and deploy the classifiers on the two testing sets. We count how
many pairs of examples with same bird but different backgrounds are classified identically
and equally, i.e.:

f(bird_i_with _green_background) = f(bird i with_blue background) = label(bird_ 1)
()
where f is the classifier.
We repeat the experiments three times as we have three training sets for each correlation
strength, and then calculate the average results.
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4.2.5 Experiment B results

The table [2] shows the results of the Experiment B. As shown in the results, the classifier
learned by group DRO from every correlation strength of training sets has most of the
examples classified correctly and equally, and generally performs much better than the
corresponding classifier learned by ERM, indicating that group DRO can find and exploit
invariant relationships. However, when we compare between the performance among group
DRO classifiers learned from different correlation strength of training sets, we find that when
the correlation strength between background and class label in the training set becomes
stronger (from p = 0.5 to p = 0.9), the performance becomes worse, especially from p = 0.8
to p = 0.9, although is still much better than ERM.

Method
Training set ERM group DRO
p=20.5 4600.33 (79.40%) | 5548.33 (95.76%)
p=20.56 4838.33 (83.51%) | 5525.33 (95.36%)
p=0.7 4544 (78.43%) 5474.33 (94.48%)
p =038 4521 (78.03%) 5314.67 (91.73%)
p=209 3980.33 (68.69%) | 4882.33 (84.27%)

Table 2: Experiment B results: the (average) number of bird being classified correctly and
equally, and the percentage in total number of birds

5 Responsible Research

In this section, we introduce the responsible research principles we adhere to, highlighting
the integrity of the research and the reproducibility of the experiments.

The first is about the integrity of research. In the dataset part from section [d] Ex-
periments, we explicitly pointed out the source of our data: since we use semi-synthetic
datasets constructed of birds photographs and backgrounds, the CUB dataset, where the
photographs of birds come from, is referenced, and we confirm that the CUB dataset be-
longs to the public domain dedication so there is no copyright concern; we use the python
generation program and group DRO implementation created by others, which is referenced
as well; the backgrounds are two images, one is pure green, and the other is pure blue, which
are archived along with the CUB dataset we downloaded, the semi-synthetic datasets we
generated and the results we have and can be provided upon request. We guarantee that all
data and results are not manipulated, fabricated, or trimmed. All related works on which
this research is built are referenced.

Besides, we ensure that our experiments are reproducible and repeatable. In section [4]
Experiments, we clearly explain the generation process of the semi-synthetic datasets in
the hyperparameters and implementation we used in and the experiment setups for
the two experiments in and The source of the semi-synthetic datasets generation
program and the group DRO implementation is referenced as mentioned above, and the
code we create for the ERM implementation can be provided upon request.
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6 Discussion

In this section, we will discuss the experiment results and our reflections on the results.

The Results from experiment A in section demonstrate the improvement of group
DRO in OOD generalization over ERM. Generally, group DRO classifiers have much bet-
ter and stabler performance than ERM ones across different testing sets, even when the
spurious correlation between background and label is strong (as more birds in land birds
class are against a green background, and more birds in water birds class are against a
blue background) in the training set. The results also show the bias towards land birds
for classifiers learned by both methods, as the accuracy of classifying land birds is higher
than of classifying water birds. The reason behind such bias is that the land bird class has
more examples than the water bird class in the training set. However, such bias is much
slighter for the classifiers learned by group DRO than those learned by ERM. This reflects
the differences between group DRO and ERM in learning a model as introduced in section [2}
ERM minimizes the overall loss, and since land birds have more examples than water birds
in the training set, high accuracy on land birds has more impact on overall accuracy, which
leads to a bias towards land birds; but as group DRO tries to minimize the worst group loss,
so the accuracy on every group (land or water bird with green or blue background) is taken
into consideration during the training, so the bias is relatively small.

The results from experiment B in section [4.2.5| reveal that group DRO can find invariant
relationships in the training domains. Looking at the result from p = 0.5 to p = 0.7, we
can see that the group DRO classifier can correctly classify most birds regardless of their
backgrounds (around or above 95% of the birds in the testing split), while the ERM classifier
cannot. However, when the correlation between background and class label in the training
sets becomes strong, the performance of the group DRO classifiers drops heavily (although
still much better than the ERM ones), as we can see from the result, from p = 0.8 to 0.9,
the percentage drops from 91.73% to 84.27%. It shows that group DRO may struggle to find
the invariant relationships when the correlation between class labels and spurious features
in the training domain becomes enough.

There are some limitations to this research. First of all, to learn the model with group
DRO, we need to group the training data by the knowledge of spurious correlation. In
our experiments, we mark not only the class label of the training example, but also the
background during the data generation (section to group the data, which is additional
and expensive work for data collected from the real world. Besides, we use image examples
with pure color backgrounds, but in the real-world situation, the backgrounds can be much
more complicated, making it harder for the model to tell the invariant features and spurious
features apart.

To summarize, group DRO has improved the OOD generalization performance over
ERM, and group DRO learns invariant relationships from training sets. However, the ability
of group DRO to find invariant relationships is limited when the spurious correlation in the
training domains becomes robust.

7 Conclusions

In this research, we compare the OOD performance of group DRO and ERM and evaluate if
group DRO can find the invariant relationship in the training domain. Semi-synthetic bird
images are used in the experiments. In the first experiment, the classifiers learned by group
DRO and ERM from the same training set are deployed to different testing sets to compare

12



the OOD performance of both methods. In the second experiment, the classifiers learned
by both methods from different training sets perform classification on the same bird with
different backgrounds to see if the models classify by the invariant relationship. The results
of the experiments reveal that group DRO can improve the OOD generalization performance
over ERM and the method can find the invariant relationships between the input and output
in the training domain. However, its capability of finding the invariant relationship drops
when the spurious correlation in the training set is strong.

In the future, the experiments can be repeated using real world images to see how group
DRO performs when the spurious features like background are more complicated. Besides,
the performance of group DRO can be compared to methods which are designed for finding
invariant relationships like Invariant Risk Minimization [9] and Risk Extrapolation [I4].
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