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Visual Homing for Micro Aerial Vehicles
using Scene Familiarity

Gerald J.J. van Dalen*, Kimberly N. McGuire*, Guido C.H.E. de Croon*

*Control and Simulation, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
E-mail: gjj.vandalen @ gmail.com

Autonomous navigation is a major challenge in the development of Micro Aerial Vehicles (MAVs). Especially when an algorithm has to be efficient,
insect intelligence can be a source of inspiration. One of the elementary navigation tasks of insects and robots is “homing”, which is the task of
returning to an initial starting position. A promising approach uses learned visual familiarity of a route to determine reference headings during
homing. In this paper an existing biological proof-of-concept is transferred to an algorithm for micro drones, using vision-in-the-loop experiments
in indoor environments. An artificial neural network determines which control actions to take.

Keywords: Visual Homing; Scene Familiarity; MAV.

1. Introduction

A major challenge in robotics is to navigate autonomously
through an unknown environment. Especially in indoor scenes,
where no Global Positioning System (GPS) system is available,
more can be done to achieve the navigation problem in a efficient
way.

Current navigation algorithms either require expensive sen-
sors or significant computation power. Especially Simultaneous
Localization and Mapping (SLAM) methods have shown to be
successful in real-time navigation, given enough computational
power on-board a vehicle or good sensors. Most Micro Aerial
Vehicles (MAVs) do not have such sensors and cannot perform
heavy computations on-board the vehicle.

In order to find suitable navigation algorithms for MAVs,
insects can be a source of inspiration, since they constantly have
to deal with complex navigation problems while only having
small-sized brains [1]. Different algorithms have already been
created based on observations done on insects. A well-known
example is using optic flow to get a sense of velocity, which is
known to be done by insects [2]. Integrating this estimate for
localization is called visual odometry. The obtained location es-
timate can be employed by higher level navigation algorithms.
Still, these algorithms are not readily available for tiny MAVs
yet.

One of the higher level skills employed by insects is the
ability to return to the nest location. This is referred to as hom-
ing [3]. It would be an important enabler for MAVs, if they
could use similarly high-level, but computationally efficient al-
gorithms for navigation.

Fig. 1. Pocket drone: a micro quad rotor containing a Lisa-S autopilot
and a stereo camera [4]. While this pocket drone can already fly, sta-
bilize and avoid obstacles, in this paper we investigate efficient insect-
inspired algorithms that will allow it to navigate in an unknown envi-
ronment.

A promising homing algorithm is proposed by Baddeley et
al., where familiar views along a route are used to determine the
correct direction to an earlier visited location [5]. This is a visual
homing algorithm, since cameras are used as driving sensor. In-
stead of focusing on the construction of a detailed (or coarse)
map, Baddeley et al. propose that homing can be performed
just by means of recognizing which direction seems most famil-
iar to a robot. Furthermore, they use a small neural network to
store and recapitulate a route in order to find the initial location.
Potentially, this is very useful for MAV navigation algorithms,
since it deals with limited storage capacity found on many small
platforms, like the pocket drone shown in Figure 1.

In an effort to find efficient navigation algorithms for
MAVs, this paper investigates the practical application of the
scene familiarity algorithm on MAVs. The focus is on how ro-
bust familiarity is to determine control actions. In our analysis of



October 9, 2018

19:15 vandalen2017

the scene familiarity method, we will use a simulator containing
realistic sceneries, vehicle dynamics and camera parameters. A
translation and rotation analysis will be performed as well, how-
ever, next to raw pixel values, we will also investigate alternative
image representations, to determine which one is more suitable
for recognizing familiar views. Besides keeping a stored set of
image representations, referred to as perfect memory, also an
efficient, unsupervised neural network called Infomax will be
used as representation for observed views. This mainly helps in
meeting the limited storage requirements of an MAV. Closed-
loop simulations with an MAV are presented and we show the
use of both the perfect memory approach and an Infomax neural
network for view representation. We hope to better understand
autonomous navigation for small MAVs.

First, section 2 discusses the state-of-the-art in autonomous
visual navigation on drones. Then, section 3 explains the scene
familiarity method as introduced by Baddeley et al. Section 4
shows simulations and experiments for different environments,
to overcome current shortcomings in the implementation de-
scribed by Baddeley et al. Finally, closed-loop simulation flights
are performed and presented in section 5, to show a more realis-
tic use-case of view familiarity for MAV homing.

2. Related Research

This section gives a brief overview of previous research done to
visual navigation and specifically visual homing. Visual SLAM
is the most commonly used algorithm in camera-driven robotics.
An example is shown in Motard et al., where an AIBO robot®
must navigate back to its charging station [6]. Still, visual SLAM
algorithms in real-time require much computational resources,
since (visual) processing, mapping and self-localization must be
performed simultaneously. As most MAVs have limited com-
putational resources, visual SLAM often cannot be run in real-
time, which makes it less suitable for homing.

A more efficient approach to visual navigation is visual
odometry, where visually obtained velocity is integrated to the
robot’s position. For visual homing, this path estimate is used to
get back to its initial position [7]. The detection of optical flow is
prone to small errors which can accumulate over time. For short
distances this would not have a large impact however for large
distances the position drift will become significant enough for
the homing task to fail. Environment driven references would
then be necessary to correct for this. This is not inherently pro-
vided by visual SLAM and requires additional navigation meth-
ods.

As mentioned, both visual SLAM and visual odometry
have their disadvantages for homing on a small MAV. In an
effort to overcome these disadvantages, nature can be used as
inspiration for more efficient homing algorithms.

In 1983, Cartwright & Collett introduced the Snapshot
Model [8]. The framework they presented gives an explanation
of the navigation capabilities of bees when traveling between
different food sources. The visual matching is done by a direct
comparison of an image on the retina with a stored snapshot. The

2http://www.sony-aibo.co.uk/

landmark approach is further extended by the addition of visual
beacons [9]. A disadvantage of this is that many images have to
be stored.

A similar approach uses Average Landmark Vectors
(ALVs) to represent landmarks [10]. ALVs, introduced by Lam-
brinos et al. in 1998, are averages of the heading vectors to all
landmark locations [11]. The homing vector is determined with
respect to this ALV. This method stores the location of interest
as a vector, which is more efficient in computation and storage,
than storing an entire image. However, due to ambiguity in the
landmarks used to estimate heading vectors, ALV homing is also
more prone to errors.

Both methods are inspired by nature, but still use some
form of geographical mapping. Scene familiarity methods refer
to recognition of a traversed route, without specific information
about the goal location. This means, a robot must always move
into the most familiar direction. In the ideal case, this would au-
tomatically mean that the agent returns to the goal location. In
2012, a scene familiarity method is proposed for visual homing
of desert ants [5]. In simulation, Baddeley et al. implemented
the method in two ways: one assuming perfect memory and one
using an Infomax neural network. As described in section 3, the
main advantage about this network is the small storage require-
ments. Besides this, the unsupervised nature makes training the
network very efficient.

Recently, Gaffin et al. have published a detailed analysis
on scene familiarity in realistic, indoor environments [12]. Dis-
tinguishing familiarity is both analyzed in rotation and transla-
tion, for raw pixel matching between images of different resolu-
tions. A rail mounted camera is used to create an image database,
which is used for a MATLAB-driven experiment. Here they ana-
lyzed the homing behavior when the agent started from different
positions. However, as they are assuming the perfect memory
principle, other methods can be added to make make a more par-
simonious homing method. In our research we investigate this by
comparing the perfect memory with the Infomax neural network
for storing views of the initial route.

3. The Scene Familiarity Method

In an effort to find a biologically more plausible alternative
to map-based navigation methods and the snapshot model de-
scribed in the previous section, the scene familiarity homing
method is introduced [5]. To show that homing navigation could
take place without the use of visual odometry, a method is pre-
sented where views along the entire route determine the head-
ing in which to proceed. Conceptually, this means that during a
training run images in the direction of the route are stored. Then,
when using the algorithm for homing, images taken around the
robot are compared to these stored views in order to determine
the most familiar direction.

When the homing capabilities are tested, the agent is placed
back at its initial location. From there, homing is done by per-
forming 360° scans of the world and comparing images taken
in each direction with all images stored. A familiarity value of
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a single image is obtained by calculating the Sum of Squared
Differences (SSD) of raw pixel values [13], as defined in Equa-
tion 1.

F(I)=- argmiinz (I(z,y) — Vi(z,y))* (1)

In this equation, F'(I) indicates the familiarity of view I,
I(x,y) is the current view and V;(z,y) are the stored views. It
can be seen that the stored image that gives the closest match
to the current image is used as familiarity value. The agent can
rotate on the spot or use an omni-directional camera to obtain fa-
miliarity values in all directions. After determining the most fa-
miliar direction (by maximizing the values obtained with Equa-
tion 1), the simulated agent is moved in that direction.

Fig. 2. Representation of the binary panoramic image used in Badde-
ley et al. Adapted from [5].

The stored panoramas are binary images and have dimen-
sions of 90 by 17 pixels (Figure 2). The resolution is such that
each pixel in horizontal direction is equivalent to a rotation of 4°.
During homing, familiarity is evaluated for steps of 1 pixel, such
that Equation 1 is evaluated 90 times. The maximum outcome of
this results in the most familiar direction.

Due to the large memory needed for storing images and the
computational requirements, the algorithm in the current form
is not yet suitable for implementation on-board a small robot.
Therefore, Baddeley et al. also studied an unsupervised Infomax
neural network to approximate familiarity [14]. This is a two-
layer neural network, where the linear combination of an input
and the network weights represent familiarity. An illustration of
the Infomax neural network is shown in Figure 3.

Each input provided to the network as training sample
changes the weights such that the input to the second layer
(called the novelty layer) is lowered. This means when during
testing familiar samples are provided, the summed input to nov-
elty neurons is lower than for unfamiliar samples.

As input to the network Baddeley et al. use raw pixel values
of filtered binary images. The number of input neurons is equal
to the number of novelty neurons. In principle this is not a given
necessity, since a lower amount of novelty neurons is compu-
tationally advantageous and might give sufficient performance
for successful scene discrimination. On the other hand, a higher
amount would increase the storage capacity of the network [15].

Input layer Novelty Layer

Fig. 3. Infomax neural network structure with an input layer and a
novelty layer. In this representation it is assumed that the input layer
and novelty layer contain an equal amount of neurons. Adapted from
from [15].

The main idea behind an Infomax network for familiarity
discrimination is that any sequence of inputs encountered dur-
ing training adjust the weights such that the total input to the
novelty layer decreases. The metric for familiarity is defined as:

M
d(z) ==Y |hil )
=1

Here, d(z) (also called the decision function) is the famil-
iarity of input sequence x, for which a larger value means that
the sequence is more familiar than when d(x) is smaller. h; is
the input to the ith novelty neuron and is a weighed linear com-
bination of all inputs x. As the familiarity d(x) can be seen as
the desired output of this network, an output layer is not needed
and therefore discarded.

Training is done using an unsupervised learning rule, with
the aim to lower the familiarity for each sample encountered
during training. The unsupervised learning rule used is obtained
from [16] and is defined as:

M
Aw; j = % (w” — (yi + hy) thwk,j> 3)

k=1

In this equation, 7 is the learning rate, w; ; is the current
value of the weight between input j and neuron ¢ and y; is the
output of the ith novelty neuron.

Baddeley et al. showed the validity of scene familiarity with
virtual robotic ants in a simulated environment. However, they
use an environment of binary sceneries, which are not represen-
tative for the scenes through which a robot must navigate. More-
over, the simulation is set up such that moving the image by one
pixel in the horizontal direction is equivalent to a rotation of the
agent of 4°. These direct relations to rotation and pixel differ-
ence are not realistic for real-life cameras. Furthermore, the al-
gorithm has only been tested on relatively small distances, since
images are stored every 4cm and movements of 10cm per time-
step are made. When the method is implemented in robotics, the
robot should be able to cover longer distances to make it more
useful.



October 9, 2018

19:15 vandalen2017

4. Familiarity Analysis

In the previous section, the original simulation results presented
by Baddeley et al. are discussed [5]. Based on this, a key ques-
tion remains whether the algorithm will work in more realistic
environments. In this and the following sections, an analysis of
an indoor simulated environment is presented in combination
with different image representation methods. First, the tested
image representations and calculated performance measures are
introduced. Then, simulation results of these different methods
in multiple environments are shown. To validate this, similar re-
sults are shown on real imagery.

4.1. Methods

To test the usability of familiarity of scenes for visual homing,
we investigate the familiarity sensitivity during both rotation and
translation. Analyzing rotation is done by performing a 360°
turn at a fixed location in the environment, in steps of 5°. A
single image is stored and used as trained view and all other
views experienced during this rotation are compared to this. The
hypothesis is that familiarity should improve when the heading
difference between the current view and the stored image de-
creases.

Translation is analyzed by evaluating familiarity in a grid
of locations, with a fixed heading. Again, a single image is used
as training sample and the familiarity is expected to improve
when the distance to the trained view gets smaller. Results of
this should show the sensitivity of familiarity with both increas-
ing distance (in two directions) and increasing heading angle.

The algorithm is tested on different image representations,
to see the impact of different image parameters. The first rep-
resentation is using raw pixels, which is the method used by
Baddeley et al. Two other categories on which we would like to
evaluate scene familiarity are colors and spatially invariant in-
formation. For the latter category, texton histograms are chosen,
which is a Bag of Words (BoW) method. From these categories,
Hue Saturation Value (HSV) colors and texton histograms were
chosen. Raw pixels, HSV colors and textons can be extracted
efficiently, which makes them good candidates for small MAVs.
The image representations are used in the following ways:

o Raw pixel values The sum of squared differences of each
pixel in two images outputs a similarity score [13], as shown
in Equation 1.

o Texton histograms Textons are small distinct image patches,
which can be extracted from an image [17]. When clustered
with a texton dictionary, histograms are formed which repre-
sent an image. An example of the conversion from an image
to a texton histogram can be seen in Figure 4, where the his-
togram shown in Figure 4c is used as image representation.

e HSYV color histograms Color histograms contain a classifica-
tion of each pixel based on color intensity. The resulting his-
togram is conceptually similar to the one shown in Figure 4c.

(b)
— 6,000 e
& 4,000 |
[}
=
o 2,000}
&
0
10 20 30 40 50
Cluster [-]

©

Fig. 4. Example of an image representation using textons. Figure 4a
shows an example image from a sports hall. Figure 4b shows the clus-
ters to which textons are assigned and Figure 4c shows the correspond-
ing texton histogram. The textons are patches of 5 by 5 pixels, and a
total number of 36816 textons have been extracted from the example
image.

The performances of the different methods are evaluated
by 1) looking at how distinct a view close to the trained view is,
compared to other views and 2) what the probability is that the
correct (i.e., trained) view is selected as most familiar, since that
direction will be chosen for homing. Figure 5 shows an example
of a familiarity evaluation when rotating on the spot. The trained
image is positioned at an angle of 180° and, in this example, im-
age matching is done using the SSD of raw pixel values. The
performance is evaluated using the following measures:

o Peak ratio The peak ratio is defines as:

max F' — up
PR= max F' — min F' @)
In this equation, F' refers to the familiarity values shown in
Figure 5 and pf is the mean of all familiarity values (i.e., the
green line in the figure). The higher the peak ratio is, the more
distinct a peak is.

e Basin of Attraction (BoA) The basin of attraction shows how
far an agent can be off from the trained view, before diverg-
ing from the correct direction. It is evaluated by finding all
local optima (both minima and maxima) and looking between
which minima the agent converges towards the trained opti-
mum familiarity (maximum).

o Correlation coefficient This is used to estimate the correla-
tion between two neighboring heading angles, differing by 5°.
Here, the Pearson product-moment correlation coefficient is
used, where 1 indicates full positive correlation between two
neighboring angles, -1 means full negative correlation and 0
means no correlation.
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Fig. 5. Rotation on the spot at a constant location in a simulator. Un-
filtered images of 48 by 32 pixels are taken every 5° and compared to a
stored image at a heading angle of 180°. The red dashed lines indicate
the BoA bounds and the green dashed line shows the mean familiarity.

The BoA is considered to be most important, since it de-
termines how far an agent can be off the route (i.e., the correct
heading), while still being able to converge back to the correct
path with a gradient-like search. The peak ratio is mainly use-
ful when an agent has no clue where to go; if the agent makes a
360° turn and the trained peak is very distinct, the probability of
continuing in the right direction is high. The correlation coeffi-
cient gives a measure for how continuous a familiarity curve is.
When the correlation is low, it could happen that spikes occur in
the familiarity curve, which may give wrong results.

4.2. SmartUAV Simulations

This section shows analyses for sceneries in the SmartUAV sim-
ulator. SmartUAV is made for Guidance Navigation & Control
(GNC) research on MAVs and specializes in the use of vision
as primary sensor. The simulator is written in C++ and sensors
and controllers can be connected using a block interface. This
makes it easily extendable and the level of simulation fidelity
can be adapted by changing complexity of vehicle dynamics,
sensor dynamics and realism of the environment.

The tested environment is based on a sports hall located in
Delft (the Netherlands). The dimensions are 30 by 60 meters.
Figure 6a shows an example view of the sports hall. This en-
vironment is used for both familiarity analysis and closed-loop
simulations.

Fig. 6. Examples from (a) the scenery used in SmartUAV simulations
and (b) the validation Cyberzoo environment.

As mentioned, both rotational and translational familiarity
sensitivity will be tested. For familiarity estimation, SSD val-

ues of raw pixels, SSD values of texton histograms and SSD
values of HSV color histograms are used and compared. The
familiarity sensitivity to yaw rotations is most important for
view familiarity-based homing. Each turn taken during homing
is made based on the familiarity values for different heading an-
gles. To analyze familiarity for different headings, different im-
age representations are compared by calculating the BoAs, peak
ratios and correlation coefficients. An MAV is simulated at a sin-
gle location and stores a representation of one view. This view is
matched to images in all other directions to get a measure of fa-
miliarity. This is done in a grid of locations in the sports hall, to
get imagery in the center of the room, as well as close to walls.
For each location, the BoA, peak ratio and correlation coefficient
can be calculated.

Table 1 summarizes these performance measures for the
different methods. The calculated BoAs, peak ratios and corre-
lation coefficients are averaged for all locations and the standard
deviations are included as well. Good performance is charac-
terized by large BoAs (i.e., it is likely that the correct heading
is found), large peak ratios (i.e., the correct familiarity value is
distinct compared to familiarities in other directions) and corre-
lation coefficients close to 1 (i.e., continuous and not too noisy).

The results show that the BoAs for raw pixel matching and
texton histogram matching perform similarly. HSV histogram
matching performs much worse, which is also seen in the lower
correlation coefficient. This indicates more local optima, which
inherently decreases the BoA. The peak ratio is best with raw
pixel matching, although the differences between the different
methods are quite small.

To illustrate the results shown in the table, familiarity
curves are shown in Figure 7. Figure 7a shows raw pixel
matching, 7b texton histogram matching and 7c¢ HSV histogram
matching. The blue, solid lines indicate the average familiarity
curves for all locations in the environment, the red dashed lines
indicate two times the standard deviation and the gray lines show
some example familiarity curves at individual locations in the
sports hall. The results are scaled such that the average lies be-
tween O and 1.

As expected, all average curves show a single peak at the
trained locations (i.e., at 180°). The HSV histogram result how-
ever, shows a less predictable outcome, with a larger amount of
local optima. This is in line with the lower BoAs and correlation
coefficients shown in Table 1.
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Fig. 7. Average rotation on the spot of 231 locations in the sports hall
environment in SmartUAV. Unfiltered images of 48 by 32 pixels are
taken every 5° and compared to a stored image at a heading angle of
180°. The red dashed lines indicate the 2¢ bounds and the gray lines are
some example familiarities. Figures (a), (b) and (c) indicate raw pixel
matching, texton histogram matching and HSV histogram matching re-
spectively.

Table 1. Average performance metrics during rotation, for
each image matching method in the simulated sports hall.
Raw pixels Textons HSV
BoA average 37.3% 36.7%  6.90%
BoA std. dev. 16.5% 120%  3.77%
Peak ratio average 0.57 0.43 0.53
Peak ratio std. dev. 0.10 0.076 0.13
Corr. coeff. average 0.98 0.98 0.80
Corr. coeff. std. dev. 0.051 0.0091 0.14

To test familiarity sensitivity with translation only, images
taken in a grid pattern are analyzed. In the sports hall the trained
view is obtained in the center of the room, which is matched
against views from the entire room, keeping the heading angle
constant. In contrast to rotation, translational motion is not di-
rectly controlled. For homing, only the heading angle is adjusted
in order to reach the correct destination. This means that good
performance in translation is characterized by a familiarity that
does not change too much for small displacements. Stated dif-
ferently: when a 360° turn is performed, it is advantageous when
the familiarity curves are similar for proximate locations, so that
good homing performance is achieved even when exploration
and homing routes do not perfectly align. Figure 8 shows the
results in the sports hall environment, for raw pixel matching,
texton histogram matching and HSV color histogram matching.
The colors indicate the familiarity of a certain location, where
dark blue is most familiar.

y [m]

-10 =5 0 ) 10 15

(a) Raw pixels

y [m]

—-10 -5 0 5 10 15
(b) Textons

y [m]

—15

-10 -5 0 ) 10 15
X [m]
(c) HSV

Fig. 8. Varying x and y positions in a SmartUAV simulation in a sports
hall, with constant heading angle. Unfiltered images of 48 by 32 pixels
are taken in a grid pattern and compared to a stored image at the center
of the grid (x=0 and y=0). Figure (a) uses raw pixel matching, figure (b)
texton histograms and figure (c) HSV histograms. Dark blue refers to a
good match, where yellow means a bad match.

From the figures it is clear that raw pixel matching shows
the most distinct global optimum. Texton and HSV histogram
matching however, show a larger region of optimal familiarity.
This can be useful when the robot is slightly off-track, because
rotational performance will be similar on different locations.
However, both methods show several local minima, which can
be disadvantageous for homing.
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4.3. Validation Experiment

To validate the previous analysis, an experiment is shown using
real imagery taken in an indoor environment. The environment
used is the Cyberzoo; a flight arena located at the TU Delft, as
shown in Figure 6b.

Validation is done for both rotation and translation. For ro-
tation, videos of rotations on the spot are recorded, containing
25 videos in a grid of 5 by 5 meters. The average BoAs, peak
ratios and correlation coefficients are computed, as in the simu-
lations presented in the previous section. The results, including
corresponding standard deviations, are shown in Table 2. The
first observation is that the BoAs are much smaller than in sim-
ulation. This is explained by more spikes (and hence local op-
tima) in the results, which is confirmed by the lower correlation
coefficients. It is in contrast with the observation in the previous
section that realistic environments yield higher BoAs.

The second observation is that texton and HSV histogram
matching show slightly better BoAs than raw pixel matching.
Due to the small differences and the large standard deviations
however, no significant conclusions can be drawn from this. The
corresponding rotation plots are shown in Figure 10.

Translation is validated by comparing images taken facing
the same direction, in a grid of 49 locations. The results are
quite similar to the simulation results and are shown in Figure 9.
Again, the result for raw pixel matching shows a very narrow
peak at the trained location. This can be disadvantageous for
homing, since a small offset from the training path can cause di-
vergence from this path. When looking at the texton histogram
matching result, it can be seen that two clear optima are present.
Even though the surrounding region has quite similar familiarity
values, the local optimum at x = 3 and y = 2 might result in
wrong convergence.

Looking at both rotation and translation of HSV histogram
matching, it can be observed that the real-life results are better
than those made in simulation. This can be explained by more
distinct colors in the validation imagery, such that more bins in
the HSV histogram are filled.

Table 2. Familiarity performance metrics for each im-
age matching method in the Cyberzoo environment.

Raw pixels Textons HSV
BoA average 9.13% 12.7% 11.7%
BoA std. dev. 3.38% 6.57%  4.24%
Peak Ratio average 0.53 0.41 0.37
Peak Ratio std. dev. 0.054 0.095 0.093
Corr. Coeff. average 0.82 0.92 0.84
Corr. Coeff. std. dev. 0.093 0.025 0.14

1 2 3 4 5 6 7
X [m]

(a) Raw Pixels

y [m]

1 2 3 4 5 6 7
X [m]

(b) Textons

y [m]

1 2 3 4 ) 6 7
X [m]

(c) HSV

Fig. 9. Varying x and y positions using pictures of the Cyberzoo en-
vironment, with constant heading angle. Unfiltered images of 64 by 48
pixels are taken in a grid pattern and compared to a stored image at
the center of the grid (x=4 and y=4). Dark blue refers to a good match,
where yellow means a bad match.
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Fig. 10. Average rotation on the spot of 25 locations in the Cyberzoo
environment. Unfiltered images of 64 by 36 pixels are taken every 5°
and compared to a stored image at a heading angle of 180°. The red
dashed lines indicate the 20 bounds and the gray lines are some exam-
ple familiarities. Figures (a), (b) and (c) indicate raw pixel matching,
texton histogram matching and HSV histogram matching respectively.

5. Closed-loop Simulation Flight

As mentioned in the previous sections, the recognition of views
during rotation performs best for both raw pixel matching and
texton histogram matching. Especially in simulation, the BoAs
of these two methods are comparable. When observing familiar-
ity during translations, both texton and HSV histogram matching
show a large central region of similar familiarity. As explained
earlier, this can be advantageous for homing, since recognizing
the correct heading during rotations probably yields the same
result for proximate locations. When looking at closed-loop re-
sults it is therefore expected that texton histogram matching will
perform better than the other two methods.

To show a closed-loop simulation, a simulated robot is
placed in the sports hall environment. A route is learned by fly-
ing backwards (with a speed of 0.5m/s), such that the front
camera looks in the homing direction, which is necessary to use
scene familiarity for homing. One third of the image taken at the
center is used for training. When homing is initiated, the robot
starts flying forward with a constant speed of 0.5m/s and the
heading is constantly determined using view familiarity. This is
done by selecting one third of the image giving the best match
with one of the trained views. The center of this image patch is

converted to an angle, to which the MAV is steered. Views are
obtained from a forward looking camera, with a field of view of
90°. The result of small turns in the flight path is shown in Fig-
ure 11a. Here, the blue solid line is the training route, starting
at x = —4m and y = —8m, which are arbitrarily chosen. A
route of approximately 20m is flown. From the results it can be
seen that both texton histogram matching and HSV histogram
matching approximately reach the initial location. Both texton
histogram matching and raw pixel matching are starting to di-
verge from the trained route, where HSV histogram matching
stays on the right track.

Figure 12a shows a closed-loop result using a perfect mem-
ory (i.e., by keeping a database of images, texton histograms
or HSV histograms), where some bigger turns are performed.
The results are similar to the previous ones. When comparing
texton histogram matching to HSV histogram matching, it is
observed that texton histogram matching performs turns with
a small delay, where HSV histogram matching turns too early.
The delay can be explained by a low frequency: because all pos-
sible patches are extracted from each image, texton histogram
matching operates at approximately 1 H z, where HSV histogram
matching operates at approximately 20H z.

Texton histogram matching can be significantly improved
by using sub-sampling of textons, instead of extracting all.
For HSV histogram matching it could be questioned whether
it only performs well because the flying direction in both re-
sults is quite straight. When homing is done by matching raw
pixels (performed at approximately 5H z), the robot diverges
from the trained route. It does, however, follow the curvature of
the trained path. The fact that raw pixel matching works worst
suggests that differences in familiarity when performing small
translational movements causes views to be hard to recognize.

As mentioned, the Infomax neural network can be used as
function approximator of familiarity [14]. To test this in closed-
loop, the three methods are all represented in a neural network.
For both texton and HSV histogram matching a network with
50 inputs is defined (i.e., each histogram forms one input vec-
tor to the network). The number of novelty neurons is arbitrarily
chosen to be 200. Furthermore, the number of epochs is set to
500. It turned out that a lower number of epochs gives signifi-
cantly worse performance. In further simulations or flight tests
this should be tuned by testing multiple numbers of both novelty
neurons and epochs. For raw pixel matching, the image is scaled
down to 16 by 12 pixels (192 inputs), to enable real-time perfor-
mance. The number of novelty neurons and epochs are kept the
same as for the other representations.

The results using an Infomax network can be seen in Fig-
ures 11b and 12b. The results are very similar, only slightly
worse, than with a perfect memory. This suggests that Infomax’s
performance is quite sufficient as function approximator.
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Fig. 11. Closed-loop homing simulation in the sports hall environ-
ment in SmartUAV. In figure (a), a perfect memory is used; in figure
(b) the Infomax neural network is applied. The route consists of small,
constant turns in alternating direction.
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Fig. 12. Closed-loop homing simulation in the sports hall environ-
ment in SmartUAV. In figure (a), a perfect memory is used; in figure (b)
the Infomax neural network is applied. The route contains three signif-
icant turns.

6. Discussion

When first looking at the rotational analysis, it was observed that
raw pixel and texton histogram matching performed best. When
looking at the translation results, raw pixel matching shows the
most distinct peak. Since the robot’s position is not directly con-
trolled, it is advantageous that a large familiar region appears in
translation, so that a small displacement of the robot does not
change the homing performance. This was especially the case
for texton histogram matching and HSV histogram matching.
This suggests that texton histogram matching would perform
best, which is confirmed by the closed-loop results. Surpris-
ingly, HSV histogram matching shows very good performance
in closed-loop. A reason for this can be that generating and stor-
ing HSV histograms is computationally very efficient, which al-
lows for a low time-step. This means corrections are made very
quickly so that the robot does not diverge too much. It does not
say however, that HSV histogram matching would perform well
when divergence already happened.

When evaluating the closed-loop tests in this paper, some
limitations can be identified. First of all, it is only tested in sim-
ulation. Although the fidelity of the simulation is higher than
the simulations performed by Baddeley et al., it is questionable
whether the same results would be obtained in a real flight. Fur-
thermore, additions can be proposed to make the algorithm more
robust. An example is to use active rotation instead of using
the inherent field of view of the forward looking camera, such
that bigger turns can be made. Alternatively, a camera with a
larger field of view can be added. Another possibility is the use
of visual odometry to get a rough estimate of the path taken.
Odometry could be used to prevent severe divergence from the
correct route. Since the experiment enforces small turns only, it
cannot yet be concluded that the method works well for diverse
trajectories. Furthermore, when performing real flight tests, fly-
ing backwards might not be desirable for training. Instead, an
omni-directional or additional backward facing camera can be
mounted to the MAV. Also, roll and pitch movements can cause
divergence from the path, because image matching with stored
views is more challenging. This can be corrected by projecting
images using information from inertial sensors.

Another point of discussion is that the main reason scene
familiarity can be a viable approach for visual homing of MAVs
is computational efficiency. The only way this is tested in this
paper, is by performing closed-loop real-time simulations on a
laptop computer. When implementing the algorithm on-board
an MAV, the real-time performance may be inadequate due to a
slower micro-processor. The one exception was HSV histogram
matching, because both the computations needed to extract his-
tograms, and the storage capacity are limited. In this paper how-
ever, all textons were extracted from each image. Usually, it suf-
fices to randomly pick a set of textons, which would drastically
improve computational performance. The storage of a texton
histogram is similar to storing an HSV histogram. A huge ad-
vantage of using a neural network is that the storage capacity is
constrained. Even though this means that the network can forget
earlier trained views (which is also investigated by Baddeley et
al.), it allows control over the often very limited storage capacity
on MAVs. Training on the other hand, is quite slow; especially
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when having to train each sample 500 times.

7. Conclusion and Recommendations

This paper investigates the applicability of the scene familiarity
homing method, observed from insect behavior, to MAVs. The
scene familiarity method is introduced as proof of concept for
desert ants to use the recognition along a route to find their way
home. Next to this, an unsupervised neural network was used to
keep a compact storage of familiarity.

The concept of only using recognition along a route is a
very interesting one. The analysis shows the closed-loop per-
formance is good. The reason the method is promising, is the
computational efficiency. Especially HSV histogram matching
showed surprisingly good closed-loop performance while run-
ning quite fast. For the other two image representations the al-
gorithm works in real-time on a laptop, although the frequencies
in the current implementations are low.

It is concluded that using texton or HSV histogram match-
ing is useful for visual homing on small robots. A few recom-
mendations can be made on further research. Firstly, attitude
compensation of images using pitch and roll angles should be
considered, to make view matching more robust. Secondly, once
a route is lost, the risk of divergence is quite high. This must
be further investigated. It seems very useful to combine scene
recognition with existing methods like visual odometry. Espe-
cially when some more thought is put in optimizing the algo-
rithm and sensor usage (like multiple or omnidirectional cam-
eras), two computationally efficient methods can be combined
to successfully perform homing.

Finally, to be able to better compare the scene familiarity al-
gorithm to other state-of-the-art homing methods, comparisons
should be done on a single platform. Even though the algorithm
described in this paper is predominantly intended for small plat-
forms, comparing it on a larger platform (together with, for in-
stance, visual SLAM) should highlight the strengths of scene
familiarity homing.
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