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EV2Gym: A Flexible V2G Simulator for EV Smart
Charging Research and Benchmarking

Stavros Orfanoudakis , Student Member, IEEE, Cesar Diaz-Londono , Member, IEEE, Yunus Emre Yılmaz,
Peter Palensky , Senior Member, IEEE, and Pedro P. Vergara , Senior Member, IEEE

Abstract— As electric vehicle (EV) numbers rise, concerns
about the capacity of current charging and power grid infras-
tructure grow, necessitating the development of smart charging
solutions. While many smart charging simulators have been
developed in recent years, only a few support the development of
Reinforcement Learning (RL) algorithms in the form of a Gym
environment, and those that do usually lack depth in modeling
Vehicle-to-Grid (V2G) scenarios. To address the aforementioned
issues, this paper introduces EV2Gym, a realistic simulator
platform for the development and assessment of small and large-
scale smart charging algorithms within a standardized platform.
The proposed simulator is populated with comprehensive EV,
charging station, power transformer, and EV behavior models
validated using real data. EV2Gym has a highly customizable
interface empowering users to choose from pre-designed case
studies or craft their own customized scenarios to suit their
specific requirements. Moreover, it incorporates a diverse array
of RL, mathematical programming, and heuristic algorithms to
speed up the development and benchmarking of new solutions.
By offering a unified and standardized platform, EV2Gym aims
to provide researchers and practitioners with a robust environ-
ment for advancing and assessing smart charging algorithms.

Index Terms— Electric vehicle optimization, gym environment,
reinforcement learning, mathematical programming, model pre-
dictive control (MPC).

I. INTRODUCTION

THE increasing number of electric vehicles (EVs) raises
concerns about whether the current charging and power

grid infrastructure can adequately accommodate them [1].
Therefore, it is essential to evaluate the readiness of the exist-
ing infrastructure and develop smart charging solutions using
accurate simulator platforms. Various problem formulations
related to EV smart charging exist, each with its own unique
characteristics and constraints [2]. A variety of algorithms
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have been employed to tackle these challenges. Assessing
the strengths and weaknesses of these solutions within a
standardized simulator prior to real-world implementation can
accelerate the integration of these methods into the practical
operational management of EVs.

Classic mathematical optimization [3] algorithms and
Model Predictive Control (MPC) [4] are effective for solving
less complex EV optimization problems. In particular, mixed
integer programming (MIP) has gained widespread attention
in the optimization of EV charging scheduling, as it can model
the complexity of the problem, e.g., EVs arriving and depart-
ing, while taking into account various constraints [5], such as
EV battery capacity, charging demand, and energy pricing [6].
Furthermore in [7] and [8], a peak load management model is
employed to schedule EVs for charging or discharging based
on power demand, also considering the timing and location
where each EV needs to be served. However, mathematical
programming encounters difficulties as the number of decision
variables and constraints increases [9], for example, when
Charge Point Operators (CPOs) need frequent rerunning of
optimization algorithms. This operational demand, especially
with the anticipated increase of EVs in the near future, poses
a significant efficiency challenge for mathematical program-
ming approaches when confronted with complex, large-scale
optimization problems.

Reinforcement Learning (RL) methods [10] hold significant
potential to bridge the gaps between optimality, linear mod-
eling, uncertainty quantification, and scalability, making them
well-suited for the demands of EV smart charging. Existing
charging approaches struggle to efficiently manage more than
a few hundred EVs simultaneously, and as demand grows,
CPOs face the challenge of handling thousands of concur-
rent requests in real-time. Traditional mathematical methods,
fall short of providing the required responsiveness at this
scale, emphasizing the need for research into RL solutions.
RL methods can solve even complex, large-scale problems,
albeit sometimes at the expense of finding the optimal solu-
tions [11], [12]. Therefore, the availability of standardized RL
Gym environments for EV smart charging is crucial. Such
environments can seamlessly support benchmarking for any
type of open-source smart charging algorithm and facilitate
the development of new specialized RL algorithms [13].

A. Existing EV Charging Simulators
The importance of developing and evaluating algorithmic

solutions that can support the influx of hundreds of thousands
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TABLE I
OVERVIEW OF EXISTING EV SIMULATORS FOCUSING ON SMART CHARGING STRATEGIES

of EVs in the coming years has led to the development of many
EV simulator platforms. However, existing platforms are either
outdated, w.r.t. the simulation models implemented (V2G,
battery degradation, etc.) and the simulator, or have limited
simulation capabilities. Table I provides a comprehensive
comparison of existing EV simulator platforms, highlighting
the advantages and the limitations of each one. The main
comparison points revolve around the models developed, the
EV behavior data, the study of the impact and the constraints
of the power network, the developed algorithms, and their
suitability for the development of RL algorithms. Additionally,
the EV and charger models in the investigated simulators are
categorized as either diverse, which allows for heterogeneous
models, or uniform, which supports only a single common
model for all EVs and chargers.

V2G-Sim [14] is a traditional EV simulator with rich
modeling capabilities, such as EV models, EV behavior, etc.
Still, the simulator is not open-source and does not provide an
environment for developing RL algorithms. EVLibSim [15] is
another high-level optimal EV charging simulator for evalu-
ating scenarios such as V2G, battery swapping, and inductive
charging. This simulator focuses on providing diverse EV
models but does not simulate the impact on the grid and by
being written in Java it limits the accessibility to advanced
machine learning packages developed in Python. Furthermore,
EV-EcoSim [16] is an EV simulator environment focusing on
the impact of charging on the distribution network. Addition-
ally, it includes detailed battery utilization and degradation
models but does not focus on realistic EV specification and
behavior data. EVsim [17] is a simulator built with realistic
EV behavior data from public charging transactions focusing
on assessing and analyzing the behavior of many EV users.
Meanwhile, it does not include the option to research V2G and
its impact on the grid. Furthermore, OPEN [18] is an integrated
modeling, control, and simulation framework for smart local
energy systems, including EVs, also solving power flow at a
distribution system level. However, it only has uniform EV
specification and behavior models and is not suitable for the
development of RL algorithms. Notably, these simulators lack
the depth required for robust RL algorithm development due

TABLE II
OVERVIEW OF THE INPUT PARAMETERS OF THE EV2GYM MODELS,

EMPHASIZING THE FLEXIBILITY IN THE EXPERIMENTAL DESIGN

to either the absence of a standardized RL environment (Gym)
or the oversimplified nature of their models.

To address this issue, most modern simulators also include
a Gym environment that can seamlessly enable the testing
of any RL algorithm. ACN-Sim [19] is one of the most
established EV simulator platforms, as it is developed follow-
ing real EV parking lot characteristics while also including

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:34:06 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. An EV2Gym simulation comprises three phases: the configuration phase, which initializes the models; the simulation phase, which spans T steps,
during which the state of models like EVs and charging stations is updated according to the decision-making algorithm; and finally, in the last phase, the
simulator generates evaluation metrics for comparisons, produces replay files for reproducibility, and generates real-time renders for evaluation.

a Gym environment. It is also one of the only EV-specific
simulators supporting complete power network calculations
using open-source grid simulators, such as Pandapower and
MatPower. The main limitation of ACN-Sim is that it was
not designed with V2G support in mind; hence, it is not
suitable for V2G research. SustainGym [20] is an extension
of ACN-Sim that tries to standardize the EV optimal charging
problem as an RL benchmark suite by defining the state and
action space; however, without adding substantial functionality
to the simulation. Chargym [21] is another EV simulation
environment that can be used to develop RL algorithms
focused on cost and penalty design; however, the underlying
models are very simplified. Additionally, all EVs and chargers
have identical specifications, and the EV behavior is not based
on real data. Similarly, FleetRL [22] offers a Gym environment
tailored for commercial EV fleets, evaluating factors such
as cost-effectiveness, battery health, and operational perfor-
mance. Overall, there are Gym environments that provide
high-quality EV charging management simulation; however,
each one has different areas of focus or is outdated. Therefore,
it is important to develop a standardized platform that can
support the development of any type of control algorithm and
that is also capable of simulating V2G scenarios.

B. Our Contributions

To address these gaps, we introduce EV2Gym.1 This inno-
vative V2G simulator is tailored for developing and evaluating
smart charging algorithms, including rule-based, mathematical
programming, metaheuristic, and RL. Unlike existing tools,
EV2Gym incorporates realistic CPO assumptions, a critical
aspect often overlooked in other approaches. To enhance the
fidelity of our simulator, we populate it with highly detailed
models of EVs, charging stations, and EV behaviors using real
open-source data. By offering a unified and standardized plat-
form, EV2Gym aims to provide researchers and practitioners
with a robust environment for the advancement and assessment
of charging algorithms. The contributions of this paper can be
summarized as:

1Access the open-source code, along with baseline algorithms and custom
case studies, at https://github.com/StavrosOrf/EV2Gym and https://github.
com/distributionnetworksTUDelft/EV2Gym

• Flexible simulation environment for benchmarking and
impact assessment of any charging algorithms.

• Detailed modeling of V2G EV charging management
problems such as power setpoint tracking, profit maxi-
mization, utilization of PV, and demand response events.

• Fully customizable and easily configurable simulations
allowing for highly detailed specifications of simulations
with respect to charging topology and specifications,
EV characteristics and behavior, prices, loads and gen-
eration on the level of the power transformer, etc.

II. THE EV2GYM SIMULATOR

EV2Gym is an open-source simulator environment for
comprehensive V2G simulations focused on developing and
evaluating charging strategies to assess their performance and
limitations. Furthermore, EV2Gym integrates with the Gym
API [13], streamlining the assessment of RL algorithms. The
directory and file structure of the EV2Gym package is illus-
trated in Fig. 2, revealing the interconnection of its underlying
classes, functions, and data files. The core component of
EV2Gym is the EV2Gym_env class, which contains lists
of associated entities such as Transformers, Chargers,
and EVs. Additional essential functionalities are encapsulated
within the utilities, visuals, and rl_agent directo-
ries. The data folder contains all the static data required for
the simulation process. Furthermore, the baselines folder
encompasses implementations of various smart charging algo-
rithms, while the scripts directory holds utility functions
for efficiently evaluating any case study.

Most importantly, EV2Gym is modular; thus allowing for
the seamless addition of extra functionalities. This modularity
is crucial, as open-source software empowers researchers to
effortlessly extend the simulator to meet their specific require-
ments. This section introduces the components of EV2Gym
and provides a detailed description of the simulation flow and
its underlying models, i.e., EV, Charger, and Transformer.

A. Simulation Flow & Configuration

Executing a simulation is straightforward, requiring just
a few lines of code, as depicted in Alg.1. As a result,
the simulation can be broken down into three phases,

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:34:06 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 1 Python Code for Running a Simulation
1: from EV2Gym.EV2Gym_env import EV2Gym
2: env← EV2Gym(config_file) ▷ Initialization
3: state, _ ← env.reset()
4: agent ← Algorithm(. . . ) ▷ User-defined algorithm
5: for t = 1 to T do ▷ Simulation Phase
6: actions ← agent.get_action(env, state)
7: state, reward, done, _, stats ← env.step(actions)
8: end for

Fig. 2. Directory and file structure of the EV2Gym package.

depicted in Fig. 1: Initialization, Simulation, and Evaluation.
The first phase encompasses the initialization of simulator
models, empowering users to modify simulation parameters
(e.g., EV2Gym(config_file)), such as the simulation
length T , timescale 1t , and charging topology configuration.
Furthermore, the user can fully customize the parameters of
individual simulation models, including EVs, chargers, and
transformers. Additionally, users can integrate custom time-
series data, e.g., electricity prices and inflexible load curves,
enriching the simulation environment with real-world dynam-
ics. Table II shows all the configuration parameters contained
in a config_file.

Once the configuration phase has finished the main simu-
lation takes place. The simulation is partitioned into discrete
time steps represented by the set T , where t ∈ T . During
a simulation, there is a fixed number of charging stations
denoted by C, where i ∈ C, and is connected to a transformer
w ∈ W , while the number of the connected EVs changes
dynamically based on the simulation time and the scenario.
Additionally, each charging station has a set of Electric Vehicle
Supply Equipment (EVSE) J , where j ∈ J , wherein each one
an EV k from the set of available EVs E can connect. The goal
of a simulation is to assess the performance of various charging
strategies. Therefore, the user’s charging strategy controls the
current I j,i,t flowing from a charging station to a connected
EV. For example, in a simulation with a set of charging stations
C and each with a set of EVSEs J the control actions at
timestep t is a vector I t = [I j,i ], ∀ j ∈ J and ∀i ∈ C.

As depicted in Alg. 1, a simulation step is split into taking
an action based on a user-defined algorithm (agent), and then
updating the state of the environment’s models (env.step)

conditioned on the action taken. In EV2Gym the control
algorithm has complete access to the state of the environment,
while it can also access future information, such as electricity
prices and EV schedules (arrival, departure, and SoC). How-
ever, users can define which part of the input is observable
based on the case study they are exploring. Most importantly,
the EV2Gym is designed to support any type of algorithm,
i.e., heuristics, RL, MPC, or mathematical programming.

Finally, the simulation ends after T steps have passed.
At that time, the evaluation metrics (stats in line 6 of
Alg. 1) of the simulation (see Sec. III-C), along with several
figures, are generated in order to assess the performance of a
charging algorithm. Moreover, a Replay is generated, storing
information about the environment configuration parameters
and the EV schedules, so that the same simulation can be
evaluated with alternative smart-charging algorithms.

B. Electric Vehicles
Realistic EV models are necessary for precisely evaluating

the effectiveness of charging strategies and the potential of
V2G technology in facilitating the energy transition. Con-
sequently, the EV class is implemented to facilitate the
simulation of diverse EV-related case studies.

1) Charging and Discharging Models: Similar to real cases,
each EV can have different minimum and maximum charging
and discharging power limits, depending on the charging
mode (AC or DC), the power electronic limitations of the
onboard battery management system (BMS), and the charger.
In EV2Gym, the EV models have been designed with this
property in mind. Thus, the min and max power limits are
defined as Pch and P

ch
, depending on the AC or DC charging

mode. Similarly, the discharging power limits are defined as
Pdis, and P

dis
. Additionally, each EV has a maximum battery

capacity, represented as E , and a lower limit E , which is used
when discharging since the BMS of some EVs does not allow
discharging under a certain threshold. Also, EVs have a desired
SoC∗ at departure.

In the EV2Gym, a configurable two-stage model is avail-
able. The charging and discharging power is

Pt = η · It · Vt ·
√

φ, (1)

where It is the control algorithm current, and η refers to
the charging (ηch) and discharging (ηdis) efficiency. Also, Pt
depends on the charging station voltage Vt and the number of
phases φ ∈ {1, 2, 3}. Pt is also subject to the lower and upper
power limits of the EV and the charging station. In detail, the
two-stage model is:

SoCt

{
SoCt−1 + Pt ·1t/ E SoCt−1 < τ

1+ (SoCt−1 − 1) · exp Pt ·1t
E(τ−1)

SoCt−1 ≥ τ
(2)

where τ ∈ (0, 1), is the SoC transition threshold signifying
the start of the constant voltage region [19]. Notice that if
τ = 1, the model is linear. Fig. 3 demonstrates the charging
and discharging curves of the two models compared to real lab
measurements from [23]. As observed in Fig. 3, even though
the current setpoint is practically constant the actual perceived
current decreases after some point. The two-stage model can
more accurately mimic the actual charging curve of Type-2
charging (Fig. 3a), while there is a slight deviation in the

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:34:06 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Exploring the relation between actual and modeled SoC as a function of current in AC and DC charging and discharging.

TABLE III
BATTERY DEGRADATION PARAMETERS AND VALUES

DC curves (Fig. 3b and Fig. 3c). These findings affirm the
capability of EV2Gym models to accurately simulate realistic
EV charging and discharging curves.

2) Battery Degradation: V2G holds promise in supporting
power network operations through its ability to offer flexible
loads and provide users with financial incentives. Nevertheless,
there are concerns regarding the impact of discharging on
EV batteries. To address this, the EV2Gym incorporates a
validated battery degradation model [24], enabling the eval-
uation of various charging strategies. The battery degradation
model has a calendar (dcal) and a cyclic (dcyc) capacity
loss component. Capacity loss due to calendar aging over
a simulation period T depends on the average ⟨SoC⟩ of the
battery [25] and is defined as

dcal
= 0.75 · (ϵ0 · ⟨SoC⟩ − ϵ1) · exp

(
−

ϵ2

θ

)
·

T
(T tot)0.25 , (3)

where T tot is the battery age in days, θ is the battery tem-
perature, and ϵ0, ϵ1, ϵ2 are constants shown in Table III. The
cyclic capacity loss depends on the total energy exchanged by
the battery and the SoC at each simulation step

dcyc
=

(
ζ0 + ζ1

∫
|⟨SoC⟩ − SoC(t)|1t

T

)
·

∫
|P(t)|1t
√

Qacc
. (4)

In (4), the numerator of the last fraction represents the battery
throughput during the simulation, while Qacc represents the
accumulated throughput during the battery’s lifetime. The
overall battery degradation is then defined as

Qlost
= dcal

+ dcyc. (5)

The fraction of the capacity loss over a single day for an EV
with a 2-year-old, 50 kWh battery is presented in Fig. 4. Bat-
tery degradation caused by calendar aging is highly dependent
on the average SoC, while cyclic degradation can increase with
the amount of energy exchanged.

3) EV Characteristics: EV2Gym includes realistic EV
specifications. In detail, the user has the option to define the
specifications of the EV models (see Table II) in a simulation
either using realistic data from the RVO-NL [26] or custom
ones. In cases where users opt for realistic EV specifications
from the RVO-NL report, the simulator dynamically samples

Fig. 4. Visualizing calendar aging as a function of average SoC over a day,
and cyclic degradation as a function of the total energy exchanged.

TABLE IV
TOTAL NUMBER OF REGISTERED EVS IN THE NETHERLANDS IN 2023

from the available EVs listed in Table IV, employing a
probability distribution weighted by the total number of sales,
each time a new EV is connected.

4) EV User Behavior Models: EV2Gym uses authentic EV
behavior data to mimic various case studies. The simulation
starts with no EVs connected, gradually introducing them
in each time step t based on probability distributions for
public, workplace, and residential load profiles provided by
ElaadNL [27]. Users can specify the ElaadNL scenario to
simulate, or can import custom EV behavior or charging trans-
action data from their private datasets. Specifically, whenever
an EV is introduced at time tarr, the EV2Gym utilizes these
distributions to determine both the departure time tdep and the
energy level upon arrival Earr, taking into account the time
and day of arrival.

To validate the EV behavior model, we conducted extensive
sampling, generating around 1 million charging transactions
for each scenario. The distribution of arrival and departure
times over a week is presented in Fig. 5, showcasing variations
in daily routines between weekdays and weekends. Fig. 6
presents the probability density function (PDF) illustrating

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:34:06 UTC from IEEE Xplore.  Restrictions apply. 



ORFANOUDAKIS et al.: EV2GYM: A FLEXIBLE V2G SIMULATOR 2415

Fig. 5. Distributions of arrival and departure times of EVs as a function of time and scenario (public, work, and residential).

Fig. 6. Probability density function of the duration of stay for each hour of
arrival in a day. The brighter the color the higher the probability that an EV
spawns with that value. Notice that, all values for a single hour sum up to 1.

Fig. 7. PDF of the SoC at arrival for each hour of arrival in a day.

the duration of stay for each arrival time. Notably, in the
workplace scenario, EVs do not arrive between 19:00-05:00,
resulting in a zero stay time during these hours. Finally, Fig. 7
showcases the PDF of SoC upon arrival for every hour.

C. Charging Station
In EV2Gym, each Charger has a set of EVSE J where

EVs can connect. Each charger can charge or discharge based
on its voltage level V , number of phases φcs, and the total and
EVSE current limitations (see Table II). In practice, the total
current of a charging station is limited as

I cs
i ≤

∑
j∈J

I j,i ≤ I
cs
i . (6)

Additionally, if the current control signal of an EVSE is
between; 0 and I ch (for charging), or 0 and I dis (for discharg-
ing), the actual current will be zero, because it is assumed that
the EV’s BMS will not allow for such low charging currents.
Conversely, if the current signal exceeds the maximum EVSE

current constraints, the BMS will limit the current to the
maximum value. Also, if the sum of EVSE currents, I j,i for
charger i , surpasses the charging station current limits, it is
normalized down so that the operational constraint of (6) is
not violated. Moreover, a charging station can have unique
charging (cch) and discharging (cdis) prices. EV2Gym uses by
default the Dutch historic day-ahead energy prices, provided
by entso-e [28], since they have a direct relation with the
dynamic prices offered. If required, the user can include their
own energy prices for their experiments.

D. Power Transformer

The current version of EV2Gym does not include power
flow calculations; however, it aggregates sets of chargers
Cw ⊆ C at the level of power transformers ∀w ∈ W .
As shown in Table II, a Transformer has power limits
denoted by P tr, P

tr
. A power transformer in EV2Gym has

inflexible loads (PL) representing loads from houses or offices
that cannot be shifted in time, solar power (PV) generation
(PPV), and dynamic capacity reduction events (PDR), such
as demand response events, that are communicated to the
control algorithm only a few minutes ahead, e.g., 15 minutes
ahead. The inflexible loads are based on randomized Pecan
Street [29] datasets and the PV generation profile is based on
randomized Renewables.ninja [30] data, while the occurrence
of capacity reduction events is fully configurable by the
user, with respect to start time, duration, etc. Therefore, the
operational constraint for a power transformer w is defined as

P tr
w ≤ PEVs

w + PL
w + PPV

w ≤ P
tr
w − PDR

w , (7)

where PEVs
w is the total power because of EVs. Notice that,

unlike the charging station that normalizes the excess current,
violations of operational constraints of transformers are fea-
sible. Overloads are measured throughout the simulations as
they are an important aspect of a smart charging algorithm.
EV2Gym also generates forecasts of inflexible loads (P̃L) and
PV (P̃PV) by sampling from a Gaussian distribution N (µ, σ )

with mean (µ) the actual power consumed or generated at
timestep t and standard deviation (σ ) defined by the user.
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III. EXPERIMENTAL DESIGN

This section showcases two common EV smart charging
problems, modified through the simulation configuration file
(config_file), to highlight the simulator’s capabilities and
inspire users to create their own case studies.

A. Power Setpoint Tracking
Scheduling and dispatching EVs often involves addressing

challenges such as power setpoint tracking (PST), and capacity
management. In practical scenarios, a CPO, or typically a
company managing multiple EV chargers in their parking lot,
either procures energy in advance from the day-ahead market
or operates under a limited capacity contract. Consequently,
they try to adhere closely to the procured power setpoint,
ensuring efficient charging for all connecting EVs while fairly
distributing energy among them. In this scenario, we assume
that information about EV arrival and departure time, and
SoC at arrival is unavailable. However, it is assumed to be
known when an EV is fully charged since the measured energy
exchanged in a step is zero.

The PST problem has T discrete timesteps represented
by the set T , where t ∈ T . There is a fixed number of
charging stations denoted by C, where i ∈ C, is connected
to a transformer w ∈ W , while the number of EVs changes
dynamically. To model the presence of an EV, a binary variable
u j,i,t is introduced, with u j,i,t = 1, indicating that an EV is
connected and ready to charge at EVSE j at charging station
i during time t . Therefore, the mathematical formulation leads
to a MIP problem that is described by (8)-(22), ∀w ∈W, ∀ j ∈
J , ∀i ∈ C, ∀t ∈ T .

min
I ch

j,i,t ,I dis
j,i,t

∑
t∈T

(
Pset

t − P tot
t

)2 (8)

Subject to : P tot
t =

∑
i∈C

∑
j∈J

(
Pch

j,i,t + Pdis
j,i,t

)
∀ j, ∀i, ∀t (9)

Pch
j,i,t = I ch

j,i,t · V j,i,t ·
√

φ j,i,t · η
ch
j,i,t · ω

ch
j,i,t

∀ j, ∀i, ∀t (10)

Pdis
j,i,t = I dis

j,i,t · V j,i,t ·
√

φ j,i,t · η
dis
j,i,t · ω

dis
j,i,t

∀ j, ∀i, ∀t (11)

E j,i ≤ E j,i,t ≤ E j,i ∀ j, ∀i, ∀t (12)

E j,i,t = E j,i,t−1 + (Pch
j,i,t + Pdis

j,i,t ) ·1t

∀ j, ∀i, ∀t (13)
E j,i,t = Earr

j,i,t ∀ j, ∀i, ∀t | t = tarr
j,i,t (14)

I ch
j,i ≤ I ch

j,i,t ≤ I
ch
j,i ∀ j, ∀i, ∀t (15)

I dis
j,i ≥ I dis

j,i,t ≥ I
dis
j,i ∀ j, ∀i, ∀t (16)

I cs
i,t =

∑
j∈J

(
I ch

j,i,t · ω
ch
j,i,t + I dis

j,i,t · ω
dis
j,i,t

)
∀ j, ∀i, ∀t (17)

I cs
i ≤ I cs

i,t ≤ I
cs
i ∀i, ∀t (18)

PEVs
w,t =

∑
i∈Cw

∑
j∈J

(
Pch

j,i,t + Pdis
j,i,t

)
∀w, ∀ j, ∀i, ∀t (19)

P tr
w,t ≤ PEVs

w,t + PL
w,t + PPV

w,t ≤ P
tr
w,t − PDR

w,t

∀w, ∀t (20)

ωch
j,i,t + ωdis

j,i,t ≤ 1∀ j, ∀i, ∀t (21)

ωch
j,i,t = ωdis

j,i,t = 0 ∀ j, ∀i, ∀t
∣∣u j,i,t = 0

(22)

This formulation aims to minimize the squared power
tracking error (8) by defining the charging and discharging
current of the charging stations. Tracking error is the difference
between the procured or setpoint power Pset

t and the actual
power P tot

t at time t . By minimizing this error, the costs
of using unprocured energy and the losses of not using
the procured energy are also minimized. The current of a
single EVSE j is defined by two different decision variables
I ch
·ωch, I dis

·ωdis to model the discharging behavior differently
than the charging behavior. The charging current and power
(I ch and Pch) are positive, while the discharging current and
power (I dis and Pdis) take negative values. (10) and (11)
refer to the power definitions and (12)-(14) refer to the EV
battery constraints. (15) and (16) represent current charging
and discharging constraints for each EV and EVSE, and (18)
for the whole charger. The transformer power constraint is
described by (20). Finally, an EVSE cannot charge and dis-
charge simultaneously; hence, the constraints in (21)-(22) for
the binary variables ωch and ωdis.

B. The V2G Profit Maximization Problem

The second problem investigated focuses on maximizing a
CPO’s profits while ensuring that EV users’ demands are fully
satisfied. In contrast to the PST problem, here, it is assumed
that upon arrival at charging station i and EVSE j , an EV
shares its time of departure (tdep

j,i ), and its desired battery
capacity (E∗j,i ). Moreover, the battery capacity E j,i,t for each
EV is known while it remains connected to a charger. These
assumptions are usually considered in research as it is possible
to retrieve this information from EVs, as more efficient com-
munication protocols are introduced. The objective function
is described in (23) as a function of the charging (cch) and
discharging prices (cdis) for each EVSE j, i .

max
I ch

j,i,t ,I dis
j,i,t

∑
t∈T

∑
i∈C

(
−Pch

i,t · c
ch
i,t + Pdis

i,t · c
dis
i,t

)
·1t (23)

Subject to constraints from (10)-(22) and:

E j,i,t ≥ E∗j,i,t ∀ j, ; ∀i, ∀t |t = tdep
j,i,t (24)

Moreover, in this scenario, the controller possesses knowledge
of the inflexible load and PV forecasts to comply with the
power transformer constraints (20).

C. Evaluation Metrics

At the end of a simulation, the list of evaluation metrics,
shown in Table V, is generated (see stats in Alg. 1).
Evaluation metrics can help in assessing the performance of
various smart charging algorithms uncovering their strengths
and weaknesses. Also, more evaluation metrics can be added
to fit the needs of the users.
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TABLE V
A LIST OF EVALUATION METRICS PROVIDED BY THE SIMULATOR

IV. BASELINE ALGORITHMS

We offer a suite of baseline methods to expedite the
comparison of smart-charging algorithms. These algorithms
are categorized into heuristics, mathematical programming,
and RL. This diverse selection allows for comprehensive
evaluation across different algorithmic approaches.

A. Heuristics
Three simple rule-based algorithms are provided. The

Charge As Fast As Possible (AFAP) algorithm charges EVs
with maximum power immediately after they connect without
complying with transformer-level constraints. Similarly, the
Charge As Late As Possible (ALAP) heuristic starts charging
EVs at maximum speed as late as possible to reach the desired
SoC. Finally, Round Robin (RR) charges EVs in turns only up
to the power setpoint (Pset), ensuring each EV gets a fair share
of energy in a cyclical manner.

B. Mathematical Programming & MPC
Mathematical programming and Model Predictive Control

(MPC) algorithms are also provided. In detail, when solving
optimization problems, it is important to compare the outputs
of the developed algorithms with optimal solutions. For this
reason, we provide Gurobi models capable of solving opti-
mally, assuming complete knowledge, the PST and V2G profit
maximization problem, introduced in Sec. III. Moreover, real-
time MPC solutions for the profit maximization problem are
developed [31]. MPC is a dynamic approach, continuously
recalibrating strategies to steer towards optimal outcomes,
tackling the inherent uncertainties.

C. Deep Reinforcement Learning
Optimal EV dispatch problems are sequential decision-

making problems under uncertainty; thus, they can be formu-
lated as Markov Decision Processes (MDP) with (S,A,P,R).
The state-space S can include information about electricity
prices, grid demand, user preferences, SoC, etc., and the
actions A for every EV are related to the charging or discharg-
ing power during a time period t . The unknown state-transition
probability is described by P , while the reward R function

can be designed to maximize any objective function related
to EV optimization problems. Naturally, MDPs can be solved
using RL [10] to learn the optimal policy by interacting with
the environment and updating the policy based on observed
rewards and states. EV2Gym is a Gym environment that
can run any RL algorithm. In detail, we are utilizing the
Stable Baselines 3 python package, which includes an imple-
mentation for the most common RL algorithms [32]: A2C,
ARS, SAC, DDPG, TD3, TQC, PPO, TRPO, etc. Therefore,
implementing custom algorithms, including designing new
reward and state functions is simple to do. Furthermore, the
simulator allows for the adjustment of the action space as
needed, facilitating the implementation of discrete actions.

1) The PST Problem: Solving an EV optimal charging
problem requires creating specific state and reward functions.
In the case of PST problem, the state space is a vector
consisting of 3+3|N | variables, where |N | is the total number
of EVSE where an EV can connect. In detail, at timestep t

St = [t, Pset
t , P tot

t−1] ∪ [d j,i , E j,i,t − Earr
j,i , t − tarr

j,i ] ∀ j,∀i

(25)

with d j,i being 1 if the EV is fully charged and 0.5 if the
EV still receives energy. If no EV is connected at EVSE j of
charging station i , then the EV state parameters are replaced
by zeros. Notice that in this case study we assume that we do
not have prior information about EV arrivals and that the SoC
is unknown because of the communication protocol. However,
what is known is the total energy charged since the time of
arrival (E j,i,t − Earr

j,i ), and the time of stay up to step t . The

reward function is rt = −
(
Pset

t−1 − P tot
t−1

)2. To ensure bounded
actions in RL, the action vector a is constrained within the
interval [0, 1]N , where a value of 1 indicates charging at
maximum power and 0 denotes no action.

2) The V2G Profit Maximization Problem: Contrary to the
realistic PST problem, here we assume we know information
about EV departure and SoC as long as the EV connects to
the charger. The charging energy prices, forecasted inflexible
loads, and PV generation for a horizon h, are also considered
to be known. Therefore, the state at timestep t is defined as:

St = [t, P tot
t−1, cch

t :t+h] ∪ [P̃
L
w,t :t+h − P̃PV

w,t :t+h, PDR
w,t :t+h]

∪ [SoC j,i , tdep
j,i − t] ∀w,∀ j,∀i. (26)

The state has 1 + h + 2h|W | + 2|N | variables, where W is
the total number of power transformers. This state space has
many more variables than the PST problem, since the V2G
problem is a more complex optimization task. The reward
function ∀w,∀ j,∀i is:

rt = ct−1 − 100 · ϵov
w,t−1 − 100 · exp

(
−10 · ϵusr

j,i,tdep

)
, (27)

where ct−1 are the costs, ϵov
w,t−1 are the power transformer

overloads, and ϵusr
j,i,tdep is the user satisfaction score of EVs

at departure of the previous step, as defined in Table V. The
function in (27) rewards profits while it penalizes heavily over-
loads and unsatisfied customers. The reward function in (27)
was obtained after practical experimentation with alternative
formulations. Similar to the PST problem, the action vector
a is constrained within the interval [−1, 1]N , where a value
of −1 indicates discharging with maximum power, 1 means
charging with maximum power and 0 denotes no action.
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TABLE VI
BASELINE ALGORITHMS FOR THE PST PROBLEM WITH 20 CHARGERS

V. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of three
case studies, each assessed using all available baseline algo-
rithms and compared using the proposed evaluation metrics.

A. PST Benchmark
The first case study investigated is the public PST problem

(see Sec. III-A) with 20 chargers, using 15-minute timesteps
for almost a day (85 steps). Furthermore, the “Public” EV
behavior model (Sec. II-B.4) is employed, while the V2G
functionality is not available, to replicate the charging behavior
observed in publicly accessible charging stations. The primary
difficulty of this case arises from the lack of prior information
about EV arrivals and the absence of real-time SoC data.
Table VI presents the average performance of various baselines
after 100 stochastic experimental runs. Notice that, only the
results from applicable baselines are presented because the
ALAP, and MPC algorithms require prior information of
the EV departure, which is assumed to be unknown to the
CPO in this case study. A key metric is the energy error,
which indicates the actual deviation from the power setpoint.
Additionally, metrics such as total energy charged, user satis-
faction, tracking error, and reward are examined. The final row
illustrates the optimal solution assuming complete knowledge,
serving as an experimental upper bound on solution quality,
although it does not represent a realistic scenario. Similarly,
the AFAP heuristic algorithm serves as an experimental lower
bound, illustrating the outcomes when no smart charging
strategy is employed. Consequently, we anticipate that all other
algorithmic solutions will yield results that are inferior to the
optimal solution yet superior to those generated by AFAP.

As expected, AFAP has the worst average energy error
(313 kWh) while RR has the best (57 kWh), excluding the
optimal solution. The average energy error of RL baselines
varies from 213 to 295 kWh, while the user satisfaction varies
from 77% to 99%. RR also maximizes the fair distribution of
energy as shown by the 99% user satisfaction. Even though
RR seems to be the ultimate solution for the PST problem,
it has limitations when the number of charging stations and
operational constraints increase. Fig. 8 illustrates the perfor-
mance of selected baseline algorithms for a single run.

B. V2G Profit Maximization With Loads Benchmark
The second case study is about maximizing the profits

of V2G smart charging in a workplace parking lot while

Fig. 8. Side-by-side comparison of baseline algorithms for the PST problem
for 20 EV chargers throughout a day (85 steps, 15 minutes per step).

considering limited power capacity, uncertain inflexible loads,
and PV generation. Here, we assume that EVs share infor-
mation about their departure and the SoC is communicated at
all times. The simulation uses the “Workplace” EV behavior
model and has 85, 15-minute steps. Table VII demon-
strates an extensive comparison of all evaluation metrics after
100 stochastic runs for every baseline algorithm. In this case
study, profits and user satisfaction are the most important
metrics. Here again, the optimal solution is not realistic but
helps put an experimental upper bound. Notice that the total
battery degradation of all EVs at the end of the simulations
is measured for informational purposes, although it is not
included in the objective or reward function of any model.

As shown in Table VII, no algorithm achieves 100% user
satisfaction while maximizing profits. AFAP, ALAP, and RR
do not consider the energy prices and V2G; hence, they fail
to maximize profits. MPC, utilizing a prediction and control
horizon of 25 steps, offers the most favorable balance between
user satisfaction and profits. However, some RL methods,
such as TD3, yield higher profits at the expense of reduced
user satisfaction. Moreover, considering the execution time
as a performance tradeoff is crucial. MPC requires signifi-
cantly more time to determine optimal solutions, whereas RL
algorithms are notably faster. The training time of RL is not
considered in the comparison as it is done only once offline.
This underscores the limitations of mathematical programming
solutions as problem complexity grows, thereby emphasizing
the need for scalable solutions.

Fig. 9 illustrates the performance of selected algorithms in
comparison to the charging and discharging prices. Utilizing
uncontrolled charging (AFAP) results in higher transformer
overloads, whereas MPC and optimal solutions efficiently
utilize the power transformer limits to their maximum capacity.
Conversely, RL approaches appear to be more conservative in
approaching the transformer power limits.

Furthermore, a performance analysis is conducted for
varying simulator conditions for multiple runs. Fig. 10
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TABLE VII
BASELINES COMPARISON FOR THE V2G PROFIT MAXIMIZATION PROBLEM WITH 10 EV CHARGERS, TRANSFORMER LOADS, PV, AND DR EVENTS

Fig. 9. Performance comparison of selected algorithms in the V2G profit
maximization with loads problem with 10 bidirectional single-EVSE chargers.

Fig. 10. Algorithm evaluation across different transformer power limits.

demonstrates how the selected algorithms perform for varying
transformer power limits (25, 50, and 100 kW) while keeping
10 EVSE in every case. Fig. 11 evaluates the same algorithms
for varying maximum inflexible loads (75%, 95%, and 100%
of the power limit). We can observe that in both figures,
no algorithms perform as well as the optimal (oracle). Notably,
in Fig. 10 and Fig. 11, the RL and MPC algorithms generate
similar profits, but usually MPC has lower constraint violations
(transformer overloads and unsatisfied EV users.)

Fig. 11. Performance analysis for different volumes of inflexible loads.

Overall, in both case studies, the results suggest that RL
holds promise in offering effective solutions, albeit requiring
some adjustments, such as modifying the reward or state
functions, tuning algorithm hyperparameters, or exploring
alternative algorithms. Nevertheless, EV2Gym is ready to
facilitate the development and comparative analysis of novel
solutions, regardless of the chosen approach.

C. Large-Scale EV Charging Simulations

The EV2Gym simulator can be a very useful and effi-
cient tool for large-scale evaluation of charging strategies
and different levels of EV penetration. For example, Fig. 12
demonstrates how the aggregated EV loads from public charg-
ing stations look without smart-charging. To ensure that the
current charging and grid infrastructure can accommodate the
growing number of EVs, it is critical to flatten the load curve
over time by utilizing smart charging algorithms.

Additionally, it is essential to experimentally evaluate the
computational complexity of EV2Gym for large-scale simula-
tions. Fig. 13 depicts the average computation time required
for a simulation step as a function of the number of EV
chargers in the simulation. The step times reported in Fig. 13
do not include the time required for the charging optimiza-
tion algorithm to calculate an action; an example charging
algorithm execution time is reported at Table VII for a case
with 10 EVSE. The simulations were conducted on an AMD
Ryzen 7 5700X with 32 GB of RAM. The results indicate
that the simulation step-time scales linearly with a smaller
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Fig. 12. Weekly load of 10.000 uncontrolled public charging stations.

Fig. 13. Experimental computation complexity analysis per simulation step.

number of EVSEs and exponentially when exceeding 10,000
EVSEs. Note that, once trained, an RL model undergoes this
computationally intensive process only once. Afterward, it can
generate smart charging schedules in real-time with signifi-
cantly enhanced speed and efficiency, providing rapid, adaptive
solutions that outperform traditional methods in dynamic, real-
time environments.

VI. CONCLUSION

In this paper, we introduced EV2Gym, an innovative V2G
simulator designed to address critical gaps in the development
and evaluation of smart EV charging algorithms. Unlike exist-
ing tools, EV2Gym integrates realistic CPO assumptions and
detailed models of EVs, charging stations, and EV behaviors,
leveraging real open-source data to enhance fidelity. Finally,
we demonstrated the user-friendly process of designing new
case studies or custom algorithms and leveraging existing
baseline algorithms to accelerate the evaluation process.

Overall, we have developed a simulator that offers a unified
and standardized platform for researchers and practitioners
to advance and evaluate various aspects of charging algo-
rithms. Additionally, with EV2Gym, researchers can model
and explore other critical issues, not included in the current
version of the simulator, such as the impact of EV adoption
trends, effects on the electrical grid, and resilience against
cyberattacks [33]
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