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Abstract—State-of-the-art machine learning-based models pro-
vide automatic intelligent code completion based on large pre-
trained language models. The theoretical accuracy of these
models reaches 70%. However, the research on the practicality
of these models is limited. Our paper will discuss the useful-
ness of UniXcoder, a machine learning-based cross-modal auto-
completion model, in a normal environment through user evalu-
ation. These models incorporate context around the requested
completion and then return a prediction of code based on
the context. To accomplish this, two plugins were made called
‘Code4Me’. One for Visual Studio Code and PyCharm. These
plugins work with a remote API that requires a segment of
3966 characters of the left and right context at the trigger
point. The data collected consists of the inserted code completion,
verification of the code completion, the IDE used, the trigger
point, and the inference time. To evaluate the data the following
metrics are used: BLUE 4, ROUGE-L, Exact Match, Edit
Similarity, and the METEOR score. The results point out that
developers accept one completion every 8 suggestions with an
Exact Match for the suggestions of 62.5%. The user evaluation
using a survey, albeit with limited responses, are favourable
towards the model and Code4Me. The accuracy of UniXcoder,
however, is lower in a real-world setting than when it is predicting
source code. But overall, the usefulness of UniXcoder as an auto-
completion model is apparent.

Index Terms—code completion, statement completion, inte-
grated development environment, user study

I. INTRODUCTION

A code completion model is capable of predicting code. A
state-of-the-art completion model would be able to increase
the efficiency of development and in return save money
and time. Some natural language models have a theoretical
accuracy of 70% up to 4 token lengths [1]. This promised
accuracy makes code auto-completion a highly sought-after
code extension. The incredible promise of natural language
model-powered code completion has piqued the interest of
research institutes, universities, and businesses. They have
invested time and money into either researching or creating
a prediction model for programming languages. State-of-the-
art models include CodeBERT [2], RoBERTa [3], GPT-2 [4],
InCoder [5], UniXcoder [6], and many more. Each with its
own improvements and accuracies.

However, the only metrics available to gauge the effective-
ness of an auto-completion model are the accuracy on test
source code and the potential latency of the model. Many
state-of-the-art models have high accuracy scores once trained
and evaluated on their source code datasets. But, this does
not indicate how well such a model performs for a developer.

One model could have an impeding latency for every auto-
completion or it might only suggest straightforward predic-
tions. Therefore, to properly evaluate a model the interactions
between the model and the developer have to be analysed in
a real-world setting. The analysis could provide insights into
how well a model performs outside of source code tests. If
analysis can accurately depict which model performs well or
which changes have a more drastic impact on the developer’s
efficiency then it offers a second metric that can rank models
and potential features more accurately. Furthermore, BLUE 4,
ROUGE-L, Exact Match, Edit Similarity, and the METEOR
score could provide more insights into the performance of the
model.

To evaluate the relationship between the developer and
the cross-modal auto-completion model UniXcoder, we will
contribute two IDE plugins and a remote API (found on our
github1) that will provide insights into RQ1: What is the
acceptance rate of suggestions by a developer? Additionally, a
manual evaluation by the developers will be analysed through
the use of surveys. These two methods would allow for
analytical and empirical data to answer RQ2: How useful is the
model from the perspective of its users? Additionally, collected
data could outline flaws in the model or plugin and inspire
possible improvements for RQ3: How can the acceptance rate
of the model be improved for everyday coding use?

The answers to these questions will provide more insight
into the performance of models and provide a more realistic
estimation of the viability of natural language models in real-
world settings.

II. PROBLEM DEFINITION

The statistics of accuracy and latency are too limited to
evaluate the practicality of a model. The metrics that currently
measure how favourable a model is, are accuracy and latency.
The accuracy is measured on test sets and the latency is the
time it takes to suggest a code completion. These metrics
measure theoretical usefulness but not practical usefulness.
It could be that developers never make use of the model
because of the high latency or it only predicts simplistic code
suggestions. To, therefore, distinguish the models’ usefulness
to a developer two other metrics should be evaluated such as
the frequency the developer uses the model and the accuracy
of the code suggestions.

1https://github.com/code4me-me/code4me



III. BACKGROUND

In the following sections, we look into the background work
that is inherently established in this paper.

A. Language Models and Transformers

Natural language processing models grant computers the
ability to read, speak, and understand human languages. Most
of the state-of-the-art models make use of the architecture in-
troduced by Transformers. The improvements of transformers
are clear and outlined by Thomas Wolf et. al [7]. But, these
models were not limited to human language and could also be
expanded with abstract syntax trees to understand code and,
in turn, predict code.

B. UniXcoder

UniXcoder [6] is a state-of-the-art pre-trained and unified
cross-modal model for programming languages that supports
code completion and works as an encoder-decoder [8] model.
Cross-modal contents are (not limited to) flattened abstract
syntax trees and code comments. The architecture of UniX-
coder exists out of transformers and mask attention matrices
with prefix adapters to control the behaviour [6].

C. Completion Types

There exist different kinds of code completion and action
types. The code completion types determine what kind of
suggestion is given. Token completion would be limited to
a single code token. Statement completion which completes a
line of code. Lastly, there is block completion which completes
a method or function.

IV. RELATED WORK

Code Completion is in high demand and research is sprout-
ing up everywhere. So is the research around deep learning
models and user evaluation.

The paper by Bibaev et al. [9] makes use of anonymous
usage logs from the IDE to train a model that ranks completion
candidates. This study provides four different action types:
Explicit Select, Typed Select, Explicit Cancel, and Typed
Cancel. For training, they used Explicit Select or Typed Select
considering these have ground truths. Their trained model was
only 366KB and the model adds less than 30ms for inference
time. The findings were that their decision tree based model
was superior in ranking candidates over the default heuristics-
based ranking.

Another user study was carried out by Xu et al. [10]. This
study also introduces a plugin for the IDE used. The plugin
features a model with hybrid of code generation and code
retrieval functionality that requires a natural language prompt.
In contrary to automatic evaluation, the evaluation was done
by users manually undertaking specific tasks and a survey.
The evaluation of the users was positive but the creativity
requirements of a fitting prompt was troublesome as some
uses had trouble turning their ideas into natural language.

Furthermore, training these deep learning models is a com-
putationally intensive task. Thus, Sharma et al. [11] compared

three deep learning architectures Code-GPT, Roberta, and
GPT2 using limited computational power. Before the com-
parisons, CodeGPT is finetuned on the given python dataset.
The Roberta model is trained on four different CSharp datasets
and the GPT2 model is trained on two CSharp domains, naive
approach and domain-specific. After the training period of very
few epochs (5) GPT2 reached an accuracy score of 0.7123.

Moreover, Svyatkovskoy et al. [12] achieves code comple-
tion with limited requirements too. In this paper, the memory
requirements of a neural network are addressed. First, a new
framework was created that allowed for better analysis of
internal structures and how these internal structures influence
accuracy, memory usage, and computational cost. Then a new
STAN-based model was presented that re-ranks completion
candidates by combining static analysis and granular token
encodings. The new model requires significantly less memory.
The BPE-based natural language model required x2-x38 more
memory. It was also found that n-gram models tend to have
sizes that exceed x1700 times the memory requirement of their
model.

But the interest in code completion models has also opened
up the interest in security-oriented research. It is shown
by Schuster et al. [13] that neural code completion using
different models can be manipulated to suggest malicious or
vulnerable code completion options. This was demonstrated
by ‘attacking’ the models themselves and attempting data
poisoning. It was brought to attention that the current reliance
on code completion could be a security risk since the bait of
taking the wrong code suggestion is often taken reaching up
to 100% pick rate. And it is stressed that there is currently a
lack of proper security against poisoning models.

The increase in auto-completion models also marks the
start of the race to get the best performing models. The
authors Liu et al. [14] tackle two main limitations of sta-
tistical language modelling; the usage of static embedding
and the poor performance on identifiers. To improve these
drawbacks new multi-task learning-based pre-trained language
model using transformers. During the training, the identifiers
are marked with type information. Additionally, the CugLM
model attempts to predict both the identifier and type. The
type prediction aids with the token prediction. This model
significantly outperformed Byte Pair Encoding based Neural
Language Model (BPE NLM) in most Java and Typescript
predictions. The CugLM model meagerly underperformed on
punctuation in both languages.

In addition, an empirical study about transformers was
conducted. This study done by Chirkova and Troshin [15]
emphasizes how all components of an abstract syntax tree
(AST) are essential for quality auto-complete suggestions.
It was also discovered that grouping transformers increase
accuracy.

Liu et al. [16] addressed the drawbacks of existing models.
The neglect of syntactic constraints such as type in models
and the inability to model the long-term dependency. To
combat this, a new model was proposed that also makes use
of multi-task learning focusing on modelling the relationship
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between type and value of code elements. Furthermore, two
distinct ways of learning were explored. Predict the type
and value together or first predict the type and utilise it for
code prediction. It was shown that the type-first approach
yielded higher accuracies than predicting the type and value
together. The gain in accuracy was minimal for both Java and
Typescript.

Furthermore, another model was proposed by Liu et al.,
in this paper [17] three different drawbacks of Multi-Task
Learning models were addressed: The hierarchical structural
information being underutilised, the lack of modelling the
long-term dependency between semantic relationships, and
the under-utilised data from related tasks. This new model
uses a new ‘path2root’ encoder and combines it with an AST
encoder. This allowed us to more easily predict the next node
type and value. This model was trained on Python, Java, and
JavaScript and showed massive accuracy improvements over
both Nested N-gram and Pointer Mixture Network (PMN) for
the prediction of the next node type and value.

A PMN can still be improved upon for aspects such as “out
of vocabulary" (OOV) tokens. These tokens replace unknown
words if one occurs. This was done by Li et al. [18] by making
use of attention mechanisms (AST-based) for code completion.
These mechanisms look at previous hidden states and calculate
the importance of the next state. This is not the only technique
that could improve OOV, as noted by Aye and Kaiser [19]
the representation of OOV tokens was changed by combining
character-level input with token output. This approach slightly
improved accuracy compared to other state-of-the-art models.

V. METHODOLOGY

The completion suggestion list is triggered on a specific
set of tokens called trigger points. These trigger points are
intercepted by our plugin called “Code4Me" after which a
suggestion request is sent to the remote API with the segment
of context and the trigger point. This segment exists out of
3966 characters from both the left and right context of the
cursor. The character count is taken by calculating the average
token length in characters of a collected dataset2. Considering
the plugin is required to support two models InCoder and
UniXcoder the maximum-minimum required amount of tokens
of both models are sent to the remote API.

The server then calls the pre-trained model with the context
and the model returns a code suggestion. This is then prompted
to the user and only upon acceptance, the plugin will verify
the line after 30 seconds. This timeout was arbitrarily chosen
as we deemed that if a suggestion was correct it should not be
changed for a period of time. The timeout is also long enough
to allow for a developer to make changes to the line of code if
the accepted suggestion was inaccurate. The inserted line with
potential modifications is sent back to the server and stored to
allow for evaluation. Figure 1 showcases a general overview
of the main three components.

2We calculated the token frequencies on the raw files used in the P1K-22
dataset.

DOT, AWAIT, ASSERT, RAISE, DEL, LAMBDA,
YIELD, RETURN, EXCEPT, WHILE, FOR, IF, ELIF,
ELSE, GLOBAL, IN, AND, NOT, OR, IS, BINOP,
WITH, ;, „ [, (, {, ~, =

a) Server: The server contains the pre-trained UniXcoder
model and functions as a language server with a remote
API. The model runs on a The server is written in Python
to make use of the HuggingFace library. Furthermore, all
communication protocols use HTTPS.

b) Model: The model used is UniXcoder which is run by
the server. The model requires the left context and will provide
a suggestion. We implemented an early stopping condition;
whenever the model suggests a newline token we halt the
prediction. The stopping condition reduces the inference time
and the model is evaluated using line completion. Therefore,
we do not need more than one statement completion.

c) Code4Me: The IDE extensions as commonly referred
to when related to VSC and ‘plugin’ when expressed in the
Jetbrains environment. Both plugins embed the prediction of
the model into the suggestion list for auto-completion. The
suggestions from the models are displayed by a Code4Me
icon in the suggestion list. The plugin edits the ranking of
the suggestion list to the furthest of capabilities to increase
the probability of the suggestion reaching the top of the list.

VI. EXPERIMENT DESIGN

In this section, we outline our experiment in three main
sections. The implementation of the experiment, the evaluation
of the experiment and how the participants were recruited.
Furthermore, we elaborate upon the research questions and
explain how these questions will be answered using the
mentioned metrics in the evaluation section.

A. Research Questions

We will answer the following research questions in this
paper.

a) RQ1: What is the acceptance rate of suggestions from
the model when used by developers?: The acceptance rate
relates to the overall acceptance of suggestions by developers.
The acceptance rate could differ among trigger points. Thus a
discrepancy will be made between the overall acceptance rate
and specific trigger point acceptance rate.

b) RQ2: How useful is the model from the perspective of
its users?: The usefulness of the model could be influenced by
several factors such as the inference time of a suggestion and
the plugin itself. In addition, the usefulness of the model could
be established by the acceptance rate but also downplayed by
the fact that developers might implicitly accept the suggestion,
for example, typing it over.

c) RQ3: How can the acceptance rate of the model be
improved for everyday coding use?: Improving the acceptance
right directly influences the usefulness of the model. This
could be by improving the model itself or possibly the plugin
that provides the completions. Evaluating both acceptance rate
and usefulness could highlight flaws within the model or
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plugin. Moreover, the metrics proposed (BLUE 4, ROUGE-L,
Exact Match, Edit Similarity, METEOR score) could dispute
if the theoretical accuracy matters for the model to be useful.

B. Implementation

To collect these metrics developers prompt the code com-
pletion manually or one of the aforementioned trigger points.
The manual trigger for the code completion is bound to Visual
Studio Code’s trigger suggest command. This is by
default defined in VSC to a certain keybind and chosen to
ensure a native experience. It allows the plugin to seamlessly
integrate within the VSC IDE. We deemed this to be the
most user-friendly. The PyCharm plugin faced limitations and
bound the keybind to ALT+SHIFT+K.

Upon a trigger point or manual activation, the plugin sends
an HTTPS request with the trigger point (if any) and a segment
of their python document. The server will then return a code
suggestion and Code4Me will prompt the suggestion list. The
server also documents the request to gather a usage frequency
for every developer, the inference time, and the length of
context receive3. Once the code is inserted a method is called
that verifies if the code suggestion was used by checking if
the line of code in the document corresponds to the suggested
code by the model after a timeout of 30 seconds. Furthermore,
the insert completion is traced throughout the changes made
by the developer to make sure editing of the document does
not influence the retrieval of the correct line. This is then sent
back to the server using the remote API and documented for
later evaluation.

C. Evaluation

To evaluate the data different metrics are proposed. We
separate these metrics into two categories. Similarity metrics
for approved code suggestions that have been edited from
the original suggestion and the other more general metrics.
Additionally, we provide metrics from a survey that developers
took after having used the plugin.

a) Trigger Frequency: The frequency of each trigger
allows us to focus on which part of the model could be
the most useful and how the acceptance rate relates to those
triggers. It would also allow us to verify if the expected high
accuracies at certain trigger points are met.

b) Acceptance Rate: The acceptance rate directly cor-
relates to the usefulness of the plugin. If a developer has a
high acceptance rate then we know that the plugin was useful
for them. However, the following metrics can disprove if the
acceptance rate is significant enough to determine a model
useful. If the acceptance rate is low but the Exact Match is
high, the usefulness or lack thereof is influenced by other
factors.

c) BLUE-4: BLEU-4 is a variation on BLEU (BiLingual
Evaluation Understudy) and is an automatic evaluation of
machine translation. The concept of BLUE is “the closer a
machine translation is to a professional human translation, the

3This can be less than the preferred minimum context if the completion is
requested at the start of a file.

better it is" [20]. BLUE 4 compares the tokenized ground truth
to the prediction and computes a weighted sum of 1 to 4 N-
grams. We used a uniform weight for 1-4 N-grams.

d) ROUGE-L: ROUGE-L is a variant of ROUGE
(Recall-Oriented Understudy for Gisting Evaluation) [21].
ROUGE-L compares the tokenized ground truth to the pre-
diction and evaluates it by looking at the Longest Common
Subsequence (LCS) where each code token is a unigram.
ROUGE-L computes precision and recall and these are used
together to compute an F1 score.

e) Exact Match: The Exact Match metric compares if
both the ground truth and the prediction are equal while ig-
noring leading and trailing whitespace. This returns a boolean
value and is expressed as a percentage.

f) Edit Similarity: The Edit Similarity calculates the
number of character edits required for the ground truth to be
an exact match of the prediction. It also introduces three tech-
niques used for editing: insertion, deletion, and replacement.
A penalty of 1 for wrong characters, too many characters,
and too few characters, respectively. The similarity score is
calculated by dividing the Levenshtein Distance by the length
of the longest candidate. This results in a number between 0
and 1.

g) METEOR: The METEOR (Metric for Evaluation of
Translation with Explicit ORdering) score uses both precision
and recall to evaluate the ground truth and prediction by align-
ing their unigrams. Precision indicates the present unigrams in
the prediction that are also in the ground truth. Additionally,
recall indicates the present unigrams in the ground truth that
are also in the prediction. Moreover, METEOR is deemed bet-
ter at simulating human judgement than BLUE [22]. METEOR
weighs precision over recall by tenfold. It is shown by Lavie
et al. [23] that recall approaches human judgement More than
precision.

D. Participants

We recruited participants for the Code4Me plugin through
several programming-oriented online community networks (in-
cluding but not limited to LinkedIn, Reddit, Programming
Fora, Discord, and personal networks). All users were made
aware of the data collection and age requirement to partake
in the study. We decided to loosen the restraints on who has
access to the plugin to increase our chances of attaining partici-
pants. We, therefore, published both plugins on their respective
IDE marketplaces. This, however, allows unregulated access to
the plugin. Furthermore, all survey respondents were recruited
through the usage of the extension by the use of a pop-up every
50 suggestions. It is not possible to fill in the survey without
having used Code4Me as it required their unique anonymous
identifier.

Lastly, we posted a Facebook advertisement. The adver-
tisement was shown to people who fit within our participant
requirements. It resulted in 268 clicks but a negligible increase
in active users of the plugin. The ad was cancelled shortly after
its launch (<48 hours).
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Fig. 1. Overview of the communication between the IDE, extension, and server.

TABLE I
METRICS PER COMPLETION KIND

Metric Total Keybind Trigger Point
Occurrence 1552 39 1513
Exact Match 22.49 35.90 22.14
BLUE~4 34.89 51.64 34.46

R
O

U
G

E
-L Precision 40.56 57.35 40.13

Recall 42.09 57.05 41.70
F1 Score 39.65 56.66 39.22
Edit Similarity 49.81 64.35 49.44
METEOR 39.10 55.32 38.68

VII. RESULTS

The plugins were downloaded for a combined count of over
450 downloads. The VSC plugin received 54 downloads while
the Jetbrains equivalent was downloaded 416 times. Out of all
these downloads, 194 users used Code4Me. These users were
not limited to using Code4Me for Python files. The following
results are retrieved from the 68 users that used Code4Me for
Python. Of these users, 32 were assigned to the UniXcoder
model.

The results gathered over the course of two weeks are
displayed in table I, II, IV, and III. Table I displays how the
users interacted with Code4Me. Table II features the metrics
selection type (explicit selection, not selected). The bundled
performance of completions per token length of the suggested
completion can be found in table IV. The top-10 used trigger
points (ordered from left to right) are disclosed in Table III.
All results were tokenized using our own version of the official
Python tokenizer. The main difference is that ours is able to
tokenize non-compiling code. The average inference time of
the completions is approximately 150ms.

Besides usage statistics, users were prompted with a survey.
This survey was answered 13 times. The quality of the sug-
gestions was rated positively by 76.9% and 23.1% perceived
the quality as neutral. Potential time saved by Code4Me was
positively received by 92.3% of the respondents. 92.3% of the
participants deemed the suggestion from Code4Me to be an
improvement upon their IDE’s default suggestions. Lastly, all
participants from the survey were overall satisfied with the
plugin and mentioned they would keep using it.

TABLE II
METRICS PER SELECTION TYPE

Metric Explicit Select Not Selected
Occurrence 200 1352
Exact Match 62.50 16.57
BLUE~4 67.09 30.13

R
O

U
G

E
-L Precision 78.70 34.92

Recall 78.01 36.77
F1 Score 76.92 34.14
Edit Similarity 84.88 44.62
METEOR 75.42 33.73

VIII. DISCUSSION

The majority of completions are triggered by the trigger
points as shown in table I. The lack of occurrences for keybind
triggered completions hinders us in interpreting these results
with confidence. Thus, we will be directing our focus on
the trigger point results. The general indication of trigger
points shows that human evaluation would deem the com-
pletions subpar as simulated by the meteor score which is
rather low. Moreover, the model shows about a 22.5% overall
Exact Match accuracy without taking human intervention into
account. But if we do include the developer’s actions, the
statistics favour the model far more.

Whenever a completion is explicitly selected by the user
the results are great. The Exact Match rises up to 62.7% and
this combined with the Edit Similarity metric of 85.1% can
explain the overall appreciation by the survey respondents of
the plugin. A developer appreciates if a completion is accurate
over an inaccurate completion. Rejecting a completion does
not impact the developer’s time considering the inference
time of the model is low. The model only performed well
enough for the developer to select it 13.1% of the time out of
all suggestions. We can conclude that the developer deemed
the completion, when not selected, incorrect. This finding is
also supported by the severe drop in scores when the code
suggestion is not selected.

Evaluating the metrics per token length shows a down-
wards trend in Exact Match the longer the completion is.
The other metrics follow this downward trend slightly but
remain unfazed until a token length of 8. UniXcoder, thus,
performs rather consistently until an average character com-
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TABLE III
METRICS PER TOKEN LENGTH OF TRIGGER COMPLETION

Token Length
Metric 1 2 3 4 5 6 7 8 9 10 10
Occurrence 245 337 122 215 164 84 73 95 27 55 135
Exact Match 35.92 30.27 33.61 16.74 21.34 10.71 20.55 14.74 3.7 9.09 2.22
BLUE~4 24.58 41.5 44.88 41.72 42.72 31.83 35.36 37.63 19.49 29.97 12.49

R
O

U
G

E
-L Precision 50.41 38.87 46.72 45.76 42.49 38.26 37.36 45.41 20.8 38.87 15.1

Recall 49.15 34.28 46.83 45.18 44.72 44.88 41.44 51.03 27.65 46.39 29.8
F1 Score 49.23 35.44 45.97 43.89 41.87 39.35 37.79 45.8 22.78 40.62 17.52
Edit Similarity 51.45 54.13 59.25 52.46 50.29 45.28 47.03 54.87 35.42 53.3 24.95
METEOR 22.59 42.43 49.93 43.36 46.85 40.6 42.76 50.81 30.48 44.3 23.22

TABLE IV
METRICS OF TOP 10 TRIGGER POINTS

trigger point
Metric = ( . if [ , or + in
Occurrence 404 359 135 81 78 72 59 58 46 44
Exact Match 28.96 16.99 38.52 4.94 26.92 16.67 10.17 5.17 41.3 11.36
BLUE~4 30.06 35.3 51.28 24.47 45.12 30.58 32.24 21.1 49.6 35.16

R
O

U
G

E
-L Precision 33.61 33.41 55.67 31.66 47.87 34.61 43.95 64.52 55.9 50.89

Recall 35.42 34.02 57.45 34.5 50.5 38.81 42.11 70.16 57.21 51.52
F1 Score 33.38 31.07 55.53 31.48 46.65 35.55 42.54 64.47 54.87 48.67
Edit Similarity 46.61 43.66 65.7 43.02 57.73 49.44 54.04 44.48 64.78 47.92
METEOR 31.75 40.02 58.89 27.13 49.53 37.71 42.39 25.98 58.26 37.87

pletion length of 30 is reached. Edit Similarity and METEOR
remain dominant with the highest score followed by ROUGE-
L (recall).

In addition, the model performs better on certain trigger
points. It is not surprising that =, (, and . are the highest
occurring trigger points. The Exact Match being high for the
period is likely because it can retrieve more context of already
known functions and parameters. On the contrary, the lower
performance of ( as a trigger can be correlated with the
fact that there could be a limited amount of context for the
model to use, for example, whenever a new method is created.
Moreover, the model predicts indexing and the in operator
well. These two trigger points likely have more context too
as the object, array, or map have likely been declared before
the trigger point is called. While context lengths were stored
later during the data collection period, the amount of data
produced between that point and the end of the period does
not warrant confidence. The data was too sparse and, therefore,
also excluded from the tables.

Finally, the overall scores are lower than what is listed in
the findings by Guo et al. [6] for UniXcoder, but when a
suggestion is explicitly selected the scores surpass the findings
of Guo et al.

A. Threats to Validity

The results of the study can be undermined because of the
following potential threats to validity.

a) Internal Validity: One of the causes that might com-
promise the validity is the development of the plugins them-
selves. These plugins could contain bugs where something
might go wrong and a trigger or completion might be lost.

Additionally, it might be that the plugin makes more requests
than required. This was discovered at the end of the data
collection of the VSC plugin. If a user launches VSC and
triggers Code4Me while the python interpreter of VSC is
still initialising, it has a chance to queue multiple requests
while it technically is only one. Once the python interpreter
is initialised this behaviour was not seen again.

Lastly, the plugin sometimes produced incorrect syntax
when inserting a suggestion. This was often noticed with
closing brackets and braces. It will have influenced the Exact
Match score.

b) External Validity: Code4Me has been published on
the VSC and Jetbrains marketplace to ensure easy accessibility
to users. This, however, opened up the opportunity for mali-
cious intent by users. To prevent this, users were rate-limited
to 1000 requests an hour but it does not prevent intentional
poisoning of the data. To evaluate the data better, a focus group
could be introduced that works with the plugin for an hour
and then the statistics of those users could be compared. This
could potentially improve the measurements of the results. If
the focus group has significantly different results then it might
be that the public users faced issues with Code4Me. Besides
that, most of the results come from a smaller selection of
users that have more completions. This can introduce bias in
the data. This is also noticeable in the survey results where
the users that received InCoder as a model outnumbered the
users that received UniXcoder. We took the survey as a general
reception as the perception did not differ among users of the
models. Lastly, as aforementioned, some data was not stored
until later in the study such as context length resulting in sparse
and inconsistent data. If this would have been added at the start
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of the study it could have explained the causal relationships
between trigger points and their scores better.

c) Construct Validity: The tokenizer used influences the
evaluation done by the metrics. A different tokenizer produces
a different result. Furthermore, the Exact Match metric is
incredibly strict and even low values can already be impres-
sive. The metric should mostly be considered when looking
at the token length of individual completions. It is, after all,
significantly harder to get an Exact Match on a lengthier
completion.

IX. CONCLUSION AND FUTURE DIRECTION

In this paper, we developed two IDE extensions/plugins to
provide developers with UniXcoder predictions. The 32 active
users produced 1200+ data points and these were evaluated
using our tokenizer. We provide five different metrics to assess
the quality of the model. The metrics indicate an acceptance
rate of 13.1% which means that 1 in 8 suggestions have been
accepted. Combining the results and acceptance rate, we can
deem the model useful to the users even though the Exact
Match and Edit Similarity scores were found to be lower
in a real-world setting than when predicting source code.
Furthermore, this conclusion is reflected in the opinion of
the (limited) survey respondents. The usefulness of Code4Me
and thus UniXcoder is likely increased by the non-intrusive
implementation of the plugins. We believe that if users are
required to solely rely on the suggestions of UniXcoder, the
model would be perceived as less useful.

Finally, for future improvements the model acceptance rate
of the model could be improved by allowing left and right
contexts like the generative model InCoder. Moreover, adding
the possibility to use the filename as context could introduce
better results. Additionally, it could be beneficial to extend the
study period. And lastly, the plugins could be improved upon
by providing multiple suggestions per completion which could
increase the acceptance rate.

X. RESPONSIBLE RESEARCH

The study involves human research. To ensure that we did
this responsibly, we filed a request to the Human Resource
Ethics Committee of the Delft University of Technology. In
this request, we outlined what we intended on collected and
how we ensured that this was done responsibly. The main
risk identified were the age group, location of the users, and
possible bias. The minimum required age was set to 18. The
location was limited to the EU and possible bias was removed
by broadening the search space for potential volunteers. We
waited with collecting data until we received approval from
the committee.

Secondly, we had to adhere to the GDPR. We clearly
informed users that anonymised data collection took place and
that partaking in the study (be it using the plugin or filling in
the survey) is completely voluntarily. Additionally, the users
were informed what their data was used for and when it would
automatically be destroyed. The data will not be shared with
third parties and is secured on the servers of the TU Delft.

Finally, the repository, that holds the code to the server and
both plugins, is open-source.
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