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A B S T R A C T

In the assessment of existing structures, it is uncommon to consider a track record of the structural performance
of the structure itself or similar structures. However, the structure’s proven strength in service could play a
significant role, along with the performance of similar structures in the population. Because the population track
record does not apply in the design of new structures, it is not encountered in design standards. An assessment
that does not incorporate the track record may conclude insufficient structural reliability whilst, in reality, the
reliability is satisfactory. In the suggested approach, information obtained from laboratory experiments is
combined with the track record in a Bayesian way to assess a structure’s reliability. As a case study for this
article, the reliability of the connection strength between wide slab floor elements is considered. Although
laboratory tests indicate poor connection strength, the track record indicates just one failure and many well-
performing floors. It is found that considering the time-dependent nature of structural reliability is vital for
understanding how proven strength develops from the completion of the structure to its usage today. The number
of similar objects in the population that show satisfactory performance is varied and is shown to have a sig-
nificant effect when its number grows. The presented method and case study show that reliability assessments
incorporating a track record enable more accurate structural reliability predictions for existing structures.

1. Introduction

In the design and evaluation of structural systems, structural reli-
ability analysis consists of a collection of techniques and models that can
be used for probability- and risk-based decision-making. Application
may be found in codes and guidelines for structural engineering,
sometimes explicit but in most cases in the form of so-called semi-
probabilistic procedures. The main task in structural reliability analysis
is the estimation of the lifetime (or annual) failure probability for a given
structure. As input, the calculation procedure requires structural
behaviour models as well as a probabilistic description of all relevant
actions, material properties and geometrical parameters. In fact, the
establishment of these models themselves is already an essential part of
the structural reliability analysis. Here, the current article proposes a
next step by including track record information in the behaviour models
used for the structural reliability analysis. The application of the pro-
posed reliability updating method will be illustrated by a practical
example.

On 27 May 2017, part of a parking garage being built at Eindhoven
Airport in the Netherlands collapsed [1]. The building was almost

finished and would be put into use a month later. Wide slab floors were
used in the construction of the building. In this floor system, thin pre-
fabricated concrete slabs are placed first, followed by additional rein-
forcement and an in-situ concrete layer. As a result of the collapse,
further research into the resistance of wide slab floors was initiated. In
particular, the mechanical properties of the longitudinal joint between
wide slabs to form a continuous span were studied in a laboratory
setting, resulting in new information about the mean capacity and the
coefficient of variation for various failure mechanisms [2]. In addition, it
is known that similar floor slabs were used in thousands of buildings, all
performing without noticeable shortcomings under the applied load
conditions over the past decades. So, besides the information from the
laboratory experiments, there is the knowledge of a single failure but
also many well-performing floors in an in-situ environment; the latter is
called the track record.

Therefore, as input to the structural reliability calculation, two types
of information need to be taken into account: a) the information from
the laboratory experiments and b) the information from the track re-
cord. Including a) is established knowledge, e.g. see Annex D of [3];
however, a conceptual reliability framework to include b) is not evident
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and is therefore the subject of the current article. Note that to some
extent, we may conceive the uncertainties under a) as being part of the
model uncertainty θ and the uncertainties belonging to b) as part of the
conversion factor η as introduced in EN 1990 [3] and ISO 2394 [4]. In
Section 2, the track record to be included in the reliability analysis is
described. It describes the type of information and how it relates to the
limit state function. In Section 3 it is explained how the track record is
accounted for in a reliability analysis using Bayesian updating and the
Monte Carlo method. Sections 4 and 5 describe an application and the
results of the proposed method in the context of wide slab floors. Sec-
tions 6 and 7 conclude the article with a discussion and conclusions.

2. Track record for reliability analysis

2.1. State of information

To assess the reliability of a structural system, all relevant informa-
tion should be taken into consideration. In this respect, one should firstly
think of information related to the physical properties of the structure
(dimensions, material properties) and actions, including the available
information about the corresponding statistical models. It will be clear
that for the assessment of an existing structure next to prior information
also results of individual inspections and other observations may or
should also be considered. In addition, where possible, one may include
observations made on other similar structures. This is what is called the
‘track record’ in this article.

If more information about which parameters are important or more
detailed information about these parameters is gathered, the reliability
measure will likely change. In this light, even bad news can lead to an
increase in reliability [5].

2.2. Structural reliability

The failure probability of a given structure may be formulated as:

Pf = P(Z<0) (1)

where Z = g(X) indicates the limit state function of the failure mecha-
nism or the combination of failure mechanisms under consideration. In
this formulation,X is a vector containing the random variables. A typical
limit state function is given as Z = g(R, G, Q) = R – (G + Q), with R the
resistance, G the permanent action and Q the variable action. The
resistance R is traditionally written as model uncertainty (θR) times the
resistance following from theoretical models or laboratory experiments
(Annex D of [3]). However, here the information from the track record is
missing; this is discussed in the following paragraphs.

2.3. Track record

In the assessment of existing structures, the in-situ performance of
the structure under investigation or of similar structures in a population
is known. In the track record information that some structures in the
population have failed in the past while others are performing well until
the moment of assessment is included. The observations of the type ‘the
resistance is larger than a not exactly specified load’ for a known pop-
ulation is referred to as the ‘mega-experiment’. It is essential to include
the mega-experiment since in an actual building the structural perfor-
mance of a structural element could be different from the performance
in laboratory circumstances. Examples are:

• the deviating behaviour of a floor in-situ compared to laboratory
tests (including scale effects and system effects such as spreading of
load effects);

• increasing the internal lever arm in a floor structure due to the
structural contribution of a finishing layer that is not included as
such in the design calculation;

• membrane or arch effects;
• redistribution of section forces.

The information resulting from the mega-experiment takes place on
the level of complete structures instead of on the level of details, girders,
columns, slabs, etc.

When including information from a track record, the choice of the
(sub)population is of significant importance. For example, it does not
make sense to judge the reliability of a certain structure with a known
weak detail pointing at the large group of well-functioning structures
where this detail is not present. Such information is important and must
be carefully included insofar as this is possible on the basis of knowledge
of different types of details, embodiments, etc. Where relevant, sub-
populations therefore need to be distinguished and assessed.

2.4. Structural reliability including the track record

The reliability of existing structures should be assessed using all in-
formation available at the time of the assessment. The updated proba-
bility of failure, on basis of a calculation model and given the available
data is expressed as:

Pf = P(Z<0 | D) (2)

where Z indicates the limit state function of the object under consider-
ation as before and D the relevant data. Eq. (2) is different from Eq. (1),
because of the presence of D behind the condition sign. The notation D is
used for the data – as they are not typically observations of random
variables in the limit state function. The data encompasses the real-
world performance of an object or of a set of similar objects, i.e. the
track record. The object, thought to be part of a population, may be a
structure, a structural component, and so on. Its track record, as stated,
contains two sources of information:

1. Performance of the object itself, up to the time of assessment. This
information will normally be positive, i.e. no failure in the past years.
If the structure had failed there would be no point in (future) reli-
ability predictions. Of course, inspections or “near escapes” may lead
to a lower reliability estimate compared to the initial estimate, but
that is not a part of the present article.

2. Performance of similar objects, including the (loading) conditions.
Known failures and non-failures should be included. Similarity
(mathematically expressed by the degree of correlation) is closely
related to the definition of the population discussed next.

Including the two sources of information as stated above, the data
may be expanded as:

D = [S(t), F1, F2,…, S1, S2,…] (3)

where S(t) indicates survival of the object itself up to the time of
assessment, Fi = {Zi < 0} indicate the failures of similar objects and Sj =
{Zj ≥ 0} indicate the similar objects that have survived.

3. Reliability updating using a track record

3.1. General principle

In the process of reliability updating use is made of statistical
inference via the application of the Bayesian method, as already intro-
duced in 1939 in the first edition of the book Theory of Probability by
Jeffreys [6]. It is the most referenced work that describes the basis of the
Bayesian method as it is used today [7]. The method gained more
attention later, largely thanks to the work of Lindley [8], Box and Tiao
[9] and others. At its core is Bayes’ theorem, which may be expressed as
(other formulations exist as well):
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P(H|D) =
P(D|H)P(H)

P(D)
(4)

where H refers to a hypothesis (e.g. the value of model parameters) and
D to the observations or data. Benjamin and Cornell [10] describe the
Bayesian updating of engineering models and the decision-making
process within a civil engineering context. Others followed with the
application of Bayesian updating for mechanical, computational, system
identification and structural health monitoring applications [11–15]. Of
particular interest in the context of this study is the updating of struc-
tural reliability associated with existing structures. Especially in the
adoption of new structural systems where experience is missing, design
and execution flaws are more likely to occur. Bayesian methods provide
a way to assess the performance of engineering models and update the
associated uncertainty [16].

3.2. Prior distribution and likelihood

In Bayesian statistics, the prior distributions of the parameters that
need to be updated allow for the insertion of subjective knowledge. Past
experience and a degree of uncertainty may both be incorporated in the
selection of prior distributions and their parameters. In cases where less
subjectivity is desired, noninformative priors (often in the form of uni-
form distributions) are used [6]. In the updating process, informative
prior distributions are preferred, as noninformative prior distributions
can lead to irrational outcomes [17]. By adopting low informative
priors, only very little information is added based on common physical
sense [18].

When Bayesian updating is performed based on a track record, the
likelihood function evaluates the probability of observing the track re-
cord (D), given a hypothetical set of parameter values (H):

P(D|H) = P
(
Dc|H =D

)
(5)

where Dc|H describes all possible outcomes of the calculated track record
given H. In the current application, the track record concerns the sur-
vival or failure of the considered objects, but it may describe any
performance-related property. For this reason, the generic formulation
in Eq. (5) is used.

3.3. Calculation method

Several calculation methods can be applied to obtain the posterior
distribution, P(H | D). In most cases, the explicit calculation of the
marginal likelihood, P(D), is not required because it acts as a normal-
ising constant [6]. Analytical calculations are possible when the prior
and posterior distributions are from the same distribution family. It is
then called a conjugate prior to the likelihood function [19]. The com-
mon (textbook) example involves a Bernoulli trial with a beta distribu-
tion for both the prior and posterior modelling successes and failures.
However, in more complex engineering applications the computation of
the posterior requires numerical calculation.

When the number of possible outcomes is finite and small, numerical
integration may be used to calculate the posterior directly using the
(nested) summation of the probabilities. If continuous random variables
are used, discretisation of their distribution functions is necessary.
Finely discretised distributions combined with a large number of
random variables often lead to an intractable problem – especially when
the calculation of the likelihood is computationally expensive. In these
circumstances, Monte Carlo simulation provides a solution. It should be
realised that in this application the data is of the type {Z< 0} or {Z> 0}
(see Section 2.4); in case of observations with the equality sign, a dis-
cretisation of the output space is necessary. In the application of
Bayesian inference, two methods are generally distinguished in
literature:

1. Bayesian Monte Carlo (BMC): In the BMC method, the prior dis-
tributions are sampled n times. For each sample, the simulation is
carried out to determine if the particular set of parameter values (H)
gives rise to the desired behavioural outcome (likelihood evalua-
tion). After the simulation, m parameter sets are stored which led to
the observed data represented by the set D, and n – m parameters sets
that did not. Together, the m samples that led to the desired
behaviour describe the posterior distribution [20,21].

2. Markov Chain Monte Carlo (MCMC): In the MCMC method, a
Markov chain is constructed which can subsequently be used to
obtain samples from the posterior distribution. The Metropolis-
Hastings [22,23] and Gibbs sampling algorithm [24] may be used
to produce such a sequence. The construction of the chain is a
gradual process, slowly converging to the desired distribution. For
this reason, a so-called burn-in period is required.

In the current work, the BMC method is adopted, mainly because of
its simplicity. Concerns have been raised about the efficiency of the BMC
method and the possibility of incorrect results due to insufficient sam-
ples in the important regions [25]. However, these limitations are of
general concern with the application of Monte Carlo methods. These
issues are recognised, and more advanced strategies, such as importance
sampling [26] and recursive stratified sampling [27], may be adopted to
increase its efficiency. In the current research, efficiency has not been a
limiting factor because the reliability indices are relatively low and the
calculation procedure was written in C++, a programming language
developed with performance in mind [28].

The proposed algorithm for a typical track record calculation using
the BMCmethod is described in Appendix A. Because of the Monte Carlo
implementation, the likelihood function may be implemented as an in-
dicator function: given a particular realisation of the model parameters,
it may be determined whether the track record matches the calculated
track record or not – see Eq. (5). The likelihood function is thus not
explicitly required to provide a measure of the likelihood, which would
be difficult to compute given the numerous reliability calculations
(including correlations and time-dependence) needed for its evaluation.

3.4. Reliability updating for a given model

The structural reliability updating is performed on the basis of a
probabilistic calculation model g(X) and a data set of observations D.
The choice of both the calculation model g and the total population of-
fering the data D is, to some extent, arbitrary. For example, one can
choose a simple model in the limit state function of Eq. (2) and thus
accept a large (model) uncertainty or a more accurate model with a
larger modelling effort and less uncertainty. A large amount of uncer-
tainty normally remains in the case of a large uninformative population,
as possible differences in subpopulations are not accounted for. In the
Bayesian reliability updating process, adding data contained in the track
record to a simple model with large uncertainty will typically have a
substantial effect. When the data is added to an accurate model with
small uncertainty, the results will not change significantly. If the scope
(population) was chosen to be very large, the data will contain greatly
varying outcomes and the uncertainty in the posterior remains. Note
that the level of reliability is also of influence.

In most cases, the uncertainty stems from a poor understanding of
the structural resistance and possibly a part due to construction (human)
error. Experiments in the laboratory are commonly employed to cali-
brate mechanical models such that they describe the resistance with
greater accuracy. In the same way, the track record may be regarded as a
real-world mega experiment. The same basic principles for updating on
the basis of data experiments hold for both cases. The model uncertainty
of the resistance (θR) functions as a generic ‘basket’ in which all un-
certainty not explicitly accounted for is captured in a versatile manner
by treating its mean and coefficient of variation as random variables
within a Bayesian updating framework [29]. A helpful general form of
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the limit state function where the resistance and load effect are incor-
porated is:

Z = g(X) = θRR − θE(G+Q+…) (6)

where R is the resistance, θE the model uncertainty of the load effect, G
the permanent load, Q the variable load, and so on. Another random
variable, in particular another model uncertainty (e.g. θE), could also be
used as a variable to be updated. But, this approach would be further
from reality since it is believed that in this case there is primarily a lack
of proper modelling with regard to the resistance. Also for that reason
the updating process is performed per (sub)population in order to arrive
at a representative model uncertainty.

3.5. Correlation modelling for the track record

The impact of the information following from the track record of the
structure under consideration and from other structures depends largely
on the degree of correlation between the random variables in the various
limit states. Table 1 gives an overview of the most important correlations
related to the stochastic parameters in Eq. (6). It is assumed the refer-
ence period for the variable load is chosen such that its subsequent
realisations are independent. In most cases, the correlation between
elements located in different buildings will be too small to have a sig-
nificant effect; hence the correlation coefficient is 0. An autocorrelation
coefficient of 1 for the resistance R implies a constant value over time,
irrespective of possible deterioration trends. If the deterioration is
implemented as a random process, the coefficient may be smaller than 1.

As mentioned before, special attention is required for the model
uncertainty of the resistance θR. This model uncertainty takes into ac-
count the difference between the mathematical (or mechanical and
material) model and the reality. This model uncertainty is regarded as a
source of uncertainty, the size of which can be reduced by collecting
more (structural element specific) information. In structural reliability
calculations including the track record, the mean and the coefficient of
variation of θR should be taken as stochastic parameters. They are
believed to be different for each subpopulation because of the differ-
ences in the joint type and configuration. In addition, there is of course
the variation between members in one subpopulation because of the
different methods of execution, etc. Thus, the realisations of θR are in-
dependent for each individual structural element, but the mean value
and coefficient of variation are fully dependent between elements since
the elements belong to one subpopulation (empirical Bayes method).

To account for the correlation in time (autocorrelation) for the same
element a time-dependent reliability analysis is performed within the
BMC method. When viewed as Bayesian updating, the likelihood

function is evaluated in each period to give the posterior (block period of
5 years, see Table 3). The next block will use the posterior as its prior
distribution and evaluate the likelihood again. Effectively, the distri-
butions of all time-independent parameters are updated each time step
in the simulation (see Appendix A).

4. Case study

4.1. Wide slab floor connections

The theory presented in the previous sections has been applied in the
context of wide slab floor systems. Traditionally, wide slabs span from
load-bearing wall to load-bearing wall. The bottom reinforcement,
included in the wide slab, is present along the entire length of the floor.
Lattice girders are incorporated to be able to lift the slabs during pro-
duction and construction, and to give sufficient strength during the
pouring of the in-situ layer (Fig. 2). In addition, the lattice girders allow
the precast wide slab and the in-situ concrete to bond together.

In the direction perpendicular to the span, where the slabs lie next to
each other, normally only minimal forces will develop. A minor gap
between the precast floor slabs exists. If the loads are small, no extra
reinforcement in the in-situ layer is considered to be necessary according
to Dutch building requirements. When higher loads are expected, the
application of reinforcement over the joint is prescribed [30,31]. This
situation arises in complex floor geometries where a positive bending
moment is expected near the joint (Fig. 1). Top reinforcement would be
added as well in the in-situ concrete layer to account for the support
moments.

The connection reinforcement is placed onto the prefabricated wide
plates, perpendicular to the joint, before pouring the in-situ concrete
layer (Fig. 2). The design requirements assume sufficient bond and shear
strength, such that yielding of the reinforcement governs the capacity –
like in regular concrete element design. However, experiments revealed
a substantial reduction in bending capacity compared to the case in
which yielding reinforcement governs [2].

4.2. Connection detailing and failure mechanisms

Dutch standards prescribe the maximum distance between the
(centre of the) lattice girder truss and the joint, and the minimum length
of the connection reinforcement [30,31]. In the Dutch execution prac-
tice until mid-2017, the maximum distance between the lattice girder
and the joint was typically relatively large (400 mm and due to execu-
tion tolerances distances up to 450 mm). The length of the connection
reinforcement was not always on par with this large distance between
the lattice girder and the joint. Therefore the effective length, i.e. the
length of the connection reinforcement minus the distance between the
lattice girder and the joint, varied. Due to this not-well thought-out-joint
design, various additional failure mechanisms (see Fig. 3) can result in a
reduced capacity – compared to the yielding of the connection rein-
forcement (the desired failure mechanism). Three detail types typically
occur in existing buildings with wide slab floors manufactured before
the collapse of the parking garage of Eindhoven Airport in 2017 (Fig. 2):

I. The connection reinforcement is equal to, or extends more than,
100 mm behind the lattice girders. All four identified failure
mechanisms are possible.

II. The connection reinforcement extends less than 100 mm behind
the lattice girders. Failure mechanisms 1, 2 and 4 are possible.

III. The connection reinforcement ends before or at the location of
the lattice girders. Only failure mechanisms 1 and 4 are possible.

On the basis of tests and mechanical schematisations, three failure
mechanisms additional to the regular yielding of the connecting rein-
forcement were identified [2]. Depending on the effective length, the
position of the lattice girder truss and the roughness of the connection

Table 1
Overview of correlations in time and between structural elements.

Symbol Definition In time (the
same structural
element)

Between
elements,
same building

Between
elements,
different
buildings

G Permanent
action

1 a 0

Q Variable action 0 a 0
R Resistance 1 a 0
θE Model

uncertainty
load effect

1 a 0

θR Model
uncertainty
resistance

1 a 0

mθR Mean of θR 1 1 1
VθR Coefficient of

variation of θR
1 1 1

a An appropriate value based on measurements, literature or expert
judgement.
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surface in total four failure mechanisms and their interaction have been
identified. Mechanisms 1–3 act in parallel, and together they operate in
series with mechanism 4 (see Fig. 3). Failure mechanism 1 is considered
brittle since it relies on the tensile strength of the bond. Failure mech-
anisms 2–4 are considered ductile failure mechanisms – after reaching
the peak strength, some deformation capacity remains. A comprehen-
sive description of the failure mechanisms and the calculation of their
capacity may be found in the main report by TNO [32].

4.3. Considered population and subpopulations

In addition to the parking garage of Eindhoven Airport, this section
describes the subpopulations that have been distinguished. As discussed
in Section 2.3, choosing the population or subpopulation is essential
when including track record information. In identifying subpopulations,
expert knowledge was included to make distinctions based on different
types of floors, dimensions, reinforcement details, etc. The criteria for
distinctions were based on visible properties and structural engineering

knowledge as much as possible. It was tried to avoid the situation where
the reliability of a structure with a known weak detail would be updated
using the information of a large group of well-functioning structures
where the detail is absent. The subpopulation identification was there-
fore performed based on the following criteria:

1. Span length, leading to typical diameters of the connection
reinforcement.

2. Type of detail (as discussed in the previous section).
3. Type of concrete used: traditional or self-compacting concrete (SCC).
4. Whether mechanically roughening of the wide plate surface before

in-situ casting has been performed.

If wide slabs are produced using SCC or weight-saving elements have
been used, no surface treatment to promote adhesion can be performed.
The roughing process is too difficult to carry out due to the consistency
of the SCC or because of the weight-saving elements present on the
surface of the wide slab.

Fig. 1. Schematic top view of wide slab floor layouts: a simple geometry spanning wall-to-wall (left), and a complex geometry where connection reinforcement is
required (right).

Fig. 2. Detailing methods of the joint, viewing the cross-section perpendicular to the direction of the main span (not to scale).
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The encountered variation in properties is represented by 12 sub-
populations (Table 2). The subpopulations are based on common spans
in buildings and their corresponding configurations. The floors were
“designed” to be representative but conservative for their subpopula-
tion. The reinforcement diameters and spacings are derived by requiring
UC= 1 for the connection. In a unity check (UC), the design load effect is
divided by the design strength, and the result should be smaller than or
equal to unity (UC = Ed / Rd ≤ 1). A value UC = 1 indicates that the
connection strength was just sufficient according to the prevailing
building regulations at the time. In the original design calculations, only
failure mechanism 4 was considered; mechanisms 1–3 were not yet
identified. In all considered subpopulations, the wide plates have a
thickness of 70 mm. Smaller values have also been applied in practice
but will result in a slightly more favourable effective height of the
connection reinforcement. An edge span is considered in all configura-
tions, as it is the least favourable in terms of occurring internal forces. A
(regular) storey floor and the top floor (or roof floor) are considered for
all configurations. The spacing of the connection reinforcement is
adjusted to deliver a design resulting in UC = 1 for both.

4.4. Probabilistic calculation model

A calculation model has been set up to describe the resistance of each
type of floor, including the critical side-to-side connection. Note that
floors without this critical connection are not considered at all; they
meet all requirements and should not be part of the track record. Each
subpopulation is described by input parameters describing geometry
(like span length and floor height, resistance properties, actions and
model uncertainties). Next to mean values, also distribution types and
coefficients of variation are specified in Table 3 [32]. Deterioration of
the resistance was not included in the probabilistic model. If deterio-
ration is a concern, regular it is advisable to conduct regular inspections
to fulfil this assumption.

Failure of a particular floor (realisation) occurs when the overall
limit state function results in a negative value: Z < 0. The overall limit
state function is a combination of four limit state functions that are
related to the four failure mechanisms of the connection (Fig. 3):

Z = min
(
max

(
Ze1,Zp2,Zp3

)
,Zp4

)
(7)

The limit state function for the elastically modelled failure

Fig. 3. Schematic representation of the combination of failure mechanisms of the joint.

Table 2
Overview of floor and connection configurations.

Subpo-
pulation

Span length
[m]

Floor height
[mm]

Conn. detail
type

Connection
reinforcement

Conn. length
[mm]

Lattice to joint dist.
[mm]

Load
type

Concrete
type

1 5.4 260 II Ø8–150 476 400 Office Trad.
2 7.2 285 I Ø10–150 400 300 Office SCC
3 7.2 320 I Ø10–150 558 400 Office Trad.
4 7.2 320 III Ø10–150 550 550 Office Trad.
5 7.2 320 III Ø10–150 550 550 Office SCC
6 7.2 320 II Ø10–150 558 508 Office SCC
7 7.2 320 II Ø8–100 476 400 Office Trad.
8 7.2 340 II Ø10–130 400 320 Office Trad.
9 10 360 I Ø12–150 640 400 Office Trad.
10 10 350 I Ø12–150 640 370 Office SCC
11 10 420 I Ø16–150 803 400 Office Trad.
12 15 450 I Ø16–150 775 425 Parking SCC
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mechanism i = 1 is given by:

Ze1=min
[
θRMR1 − θE

(
0.07qL2+0.563Mt

)
,θRMRs − θE

(
0.125qL2 − 1.5Mt

)]

(8)

The limit state functions for plastic connection failure mechanisms i
= 2, 3, 4 are given by:

Zpi = min
[
θR(MRi + 0.375MRs) − θE

(
0.117qL2

)
,

θR(MRi + 0.422⋅0.75(μi − 1)MRiLκ/L) − θE
(
0.070qL2 + 0.563Mt

)] (9)

The meaning of the variables used in Eqs. (8) and (9) are given by:
θR is the model uncertainty of the resistance;
MRi is the moment resistance of the connection for failure mechanism i;
MRs is the moment resistance of the support;
μi is the ductility of the connection for failure mechanism i;
θE is the model uncertainty of the load effect;
Q is the distributed load caused by permanent and variable actions;
L is the span length of the floor;
Lκ is the distance between the point loads in the performed tests;
Mt is the moment caused by a temperature difference or shrinkage.

The limit state function Ze1 follows from the linear elastic analysis of
an end span. The mechanical schematisation consists of a beam that is
fixed on the left (x = 0) and simply supported on the right (x = L), see
Fig. 4. The two terms in Eq. (8) refer to yield in the field and yield at the
clamped in support.

The limit state functions for the plastic failure mechanisms were
obtained by considering a plastic deformation in the field, where the
maximum rotation capacity in the joint is described by the ductility of
the connection (μi), see Fig. 5. The ductility is defined as the ratio of the
curvature at failure and the curvature at the elastic limit. The first term
in Eq. (8) is the plate resistance if the ultimate deformation capacity is
not an issue.

Roof floors directly exposed to the sun, such as those encountered in
parking garages, suffer from temperature differences between the top
and the bottom. This temperature difference, in combination with the
edge constraints of the floor, results in an additional bending moment

(Mt). Direct temperature load effects are virtually non-existent in most
other buildings due to the applied insulation. However, these floors are
sensitive to shrinkage effects due to moisture sealing. The shrinkage
effects have been translated into an equivalent temperature load (also
indicated as Mt). Because the impact of shrinkage reduces significantly
with time as a result of concrete creep, the additional load effect is
discarded after 10 years.

For regular (intermediate) floors there will be no additional moment
caused by temperature differences (Mt = 0) and no additional load from
snow. In the Eindhoven case, specific parameters were used to reflect
that much more information was available for this structure due to the
surveys conducted following the collapse. The impact of the information
following from the structure under consideration and from other struc-
tures depends largely on the degree of correlation between the random
variables in the various limit state functions. Table 4 gives an overview
of the correlations used in the wide slab floor calculations.

5. Results for the case study

From the reliability analyses it followed that roof floors were most
critical in terms of performance – as compared to storey floors. For
brevity, in this section the results of the reliability analyses carried out
for roof floors are presented. The results apply to an edge field of a floor,
it is assumed that intermediate floor fields perform better. The calcu-
lations have been restricted to individual floors; system reliability has
not been considered as that is no requirement according to the Dutch
standards.

The update of the model uncertainty θR takes place under the con-
dition that one Eindhoven top floor field fails and 8 Eindhoven storey
floor fields do not fail. In addition, the survival of n buildings with 5 roof
floor fields in the first 10 years of the service life (2 block durations of 5
years in the load model, see Table 2). The period of 10 years is the
average age of Dutch buildings with wide slab floors. Because of the in-
service proven strength, the age of the floor plays a significant role in the
reliability calculation. The failure probability of a roof floor field with
age t is expressed as:

Table 3
Overview of random variables in the probabilistic model.

Symbol Description Distribution Mean COV

θR Model uncertainty of the resistance Lognormal mθR VθR

mθR Mean of model uncertainty of the resistance (values for prior) Lognormal 1.0 0.3
VθR Coefficient of variation of model uncertainty of the resistance (values for prior) Lognormal 0.2 1.0
MRi Moment resistance of the connection for failure mechanism i, experimentally determined a a a

MRs Moment resistance of the support Lognormal b 0.05
μ2 Ductility of the connection for failure mechanism 2 (shear) Lognormal 2.15 0.51
μ3 Ductility of the connection for failure mechanism 3 (pull out) Lognormal 2.17 0.48
μ4 Ductility of the connection for failure mechanism 4 (yielding) Lognormal 3.55 0.38
θE Model uncertainty of the load effect Lognormal 1.0 0.1
Gb Basic permanent loads following from the self-weight of the structure Normal c 0.05
Go Permanent loads following from sources other than self-weight Normal d 0.1
C0Q Time-invariant part of variable load following from office usage or parking Lognormal 1.0 0.1
Q5 Variable load following from office usage or parking, maximum in block period of 5-year Gumbel e e

C0S Time-invariant part of the snow load Lognormal 1.0 0.1
S5 Snow load, only for roof floors exposed to the elements, maximum in block period of 5-year Gumbel 0.365 kN/m2 0.4
ΔT1 Temperature difference between top and bottom of the floor due to sun radiation (uninsulated roof floors), annual maximum Gumbel 30.0 K 0.2
ΔTs Equivalent temperature difference between top and bottom of the floor due to shrinkage (insulated roof floors), annual maximum Gumbel 33.3 K 0.1

a The distribution type, mean and coefficient of variation follow from a calculation of the resistance in each of the four failure mechanisms using distributions for
basic parameters such as concrete strength, height of the cross-section, etc.
b Varies depending on the floor configuration. Reinforcement diameters between 10 and 20mmwere used with spacings chosen to satisfy unity check (UC)= 1 in the

original design.
c Varies depending on the floor height, mean values from 5.5 to 10.3 kN/m2 are used.
d Varies depending on the floor type (storey or roof) and the load type, mean values from 0.5 to 2.0 kN/m2 are used.
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where Q indicates the variable load and ΔT the temperature difference
between the upper and lower surface. In the above expression the |-sign
should be read as "given" or "under the condition that" and the ∩-sign as
"and".

The results provided in Figs. 6-8 visualise the conditional failure
probability using the reliability index β = − Φ− 1(Pf). A horizontal dashed
line is drawn for β = 2.5 which indicates the CC2 minimum reliability
index (average Eurocode reliability class) for a reference period of 15
years in the Netherlands. The starting time for the reference periods for
the structure in the three figures is chosen as 0, 5 and 10 years,
respectively. This means that in Fig. 6 actually a new structure is
considered and only information from other structures is available to

update the reliability. In the case of zero other buildings the reliability is
based solely on the prior calculation model and it is clearly not satisfying
the reliability requirement. For most subpopulations (except subpopu-
lation 11, see Fig. 6), the successful performance of 10 to 100 other
buildings may lead to the qualification of being just sufficient. In Figs. 6-
8 also the behaviour of the structure under consideration itself is taken
into account. The inclusion of this data helps to increase the reliability
estimates. Note that a maximum reliability index of β = 5 is used in the
plots because higher values could not be accurately calculated in the
Monte Carlo simulation (and provide no added value).

Subpopulations 1–11 are insulated roof floors subject to shrinkage.
The shrinkage gradient occurs only in the first years of life span and has
largely disappeared after about 10 years. The reliability in the period

Fig. 4. Elastic analysis of a floor end field schematised as 1D beam element.

Fig. 5. Plastic analysis of the 1D beam schematisation: fully developed mechanism (left) and rotational capacity limit of the connection (right).

Pf,t=P(failure of considered floor field in t to t+15 years |

no failure of considered floor field in 0-t ∩

1×failure of Eindhoven top floor field without Q and with ΔT ∩

8×no failure of Eindhoven storey floor fields without Q ∩

n×no failure of building with 5 roof floor fields in 0-10
years similar to the floor under consideration)

(10)
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0–10 years is low due to the presence of the large load following from
shrinkage in the first 10 years. (The snow load is not included in the first
10 years of analysis, because meteorological data in the Netherlands
show that in the past 10 years snow loads were much lower than would
follow from the statistical model.) After 10 years the shrinkage does not
play a role anymore. This explains the large increase of reliability for
subpopulations 1–11 in the period 10–25 years (Fig. 8).

Subpopulation 12 is a roof floor directly subject to solar radiation,
similar to the collapsed Eindhoven parking garage. In the probabilistic
analysis, the limit state is calculated using the maximum load including
the temperature difference or including the snow load, but not together.
It is observed that even roof floors with an age of 10 years do not show
sufficient reliability. This is due to the significant influence of the tem-
perature load, which is constantly present during the life of the
structure.

Given the results, only the roof floors of subpopulations 1–11 may

provide sufficient reliability given that quite a large number of buildings
(n) can be identified in the population with a similar floor type. Given
that the building, of which the floor under consideration is part, has
survived for at least 5 years, fewer buildings with good performance are
needed to arrive at a sufficient reliability level. According to the cal-
culations subpopulation 12 will never possess sufficient reliability.

6. Discussion

The results presented in the previous section indicate the effect of the
track record in terms of the updated reliability indices. The increase in
reliability with the number of buildings n is attributed to the update of
the model uncertainty for the resistance (θR). The update is performed
within the application of the Bayesian Monte Carlo (BMC) method
(Section 3.3). It is interesting to have a look at the effect of the track
record on the distribution the posterior predictive distribution of θR:

f (p)θR (θR) =
∫∞

0

∫∞

0

fθR(θR|mθR,VθR)fmθR ,VθR (mθR,VθR|D)dmθRdVθR

≈
1
m
∑m

i=1
fθR

(
θR|mθR,i,VθR,i

)
(11)

where fθR is the lognormal distribution of θR, here parametrised through
mean value mθR and coefficient of variation VθR. The bivariate posterior
distribution is denoted by fmθR,VθR and is conditional upon the data D in
the track record. The integral may be approximated using the m poste-
rior samples obtained via the BMC method.

Subpopulation 6 was selected to display the posterior predictive
distribution because it represents a commonly found wide slab floor
configuration. The scatter plots of the posterior samples and the corre-
sponding posterior predictive functions are provided in Fig. 9. It is seen
that as the number of buildings n increases, the mean value of θR be-
comes larger (positive bias) and the dispersion decreases. As an alter-
native to the adopted procedure, in which the m posterior samples from
the BMC method are used directly, a continuous distribution could have
fitted to the posterior predictive distribution. Although this would have
given more insight, the resulting distribution is not lognormal, nor does
it follow another elementary distribution. Hence, producing a fit would
have resulted in the introduction of an unnecessary error. In the scatter
plots, only a limited number of points are shown for clarity – more were
used in the reliability calculations.

The target number of samples for the posterior was 104. Only for

Table 4
Overview of correlations in time and between floors.

Symbol Definition In time
(one
floor)

Between
floors, same
building

Between
floors, other
building

GDL Dead load 1 0.8 0
GSDL Super-imposed dead

load
1 0.8 0

C0Q Time-independent
component of imposed
load

1 1 0

Q Imposed load 0 0.7 0
C0S Time-independent

component of snow
load

1 1 0

S Snow load 0 0.7 0
ΔT Temperature

difference
0 0.7 0

ΔTs Equivalent
temperature
difference for
shrinkage

1 0.7 0

MR Moment resistance 1 0 0
θE Model uncertainty

load effect
1 1 0

θR Model uncertainty
moment resistance

1 0.8 0

mθR Mean of θR 1 1 1
VθR Coefficient of

variation of θR
1 1 1

Fig. 6. Reliability index in period 0–15 years versus the number of similar buildings that have survived for 10 years.
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large values of n (562 and 1000) the target was reduced to 2⋅103 samples
to reduce the computational effort. The target was determined experi-
mentally, witnessing no significant change in calculated reliability
values when increased further. The evaluation of the likelihood given a
random prior sample, was repeated until the target number of samples
for the posterior was reached. This procedure required about 105 prior
samples with an acceptance ratio of about 10 % for small n, up to about
2⋅106 prior samples with an acceptance ratio of 0.1 % for large n. In the
subsequent reliability analysis, 5⋅103 realisations of θR were produced
for each posterior sample, resulting in a total of 107 to 5⋅107 samples. In
cases where the reliability of the subpopulation is very low, the accep-
tance ratio becomes extremely small for large n. In these cases no reli-
ability calculation could be performed (Figs. 6-8, subpopulation 12 with
n > 10). The computation time for each subpopulation on a standard
office laptop was about 10 minutes. If the evaluation of the limit state
function would require significant computational effort, then the total
calculation time for determining the posterior distribution using a
Monte Carlo-based algorithm would significantly increase.

Sensitivity analyses were performed concerning the magnitude of
imposed loads, the connection ductility, the diameter of the lattice

girder reinforcement, possible settlements, the post-processing of wide
slabs, a rotational spring instead of clamped support, a statically
determined floor field, the occurrence of two critical joints instead of
one, and the hypothetical collapse of two Eindhoven parking garages.
Only small changes in the resulting reliability indices occurred in the
sensitivity analyses – with two notable exceptions. The magnitude of the
imposed load made a significant difference. When the mean value of the
imposed load is lowered, higher reliability indices are obtained for all
subpopulations. However, its reliability is lower when a building has
been vacant for a long time. In the latter case, no in-service strength is
proven during the vacant period. Combined with detailing type III, the
post-processing (roughening) of wide slabs also significantly improved
the reliability. In this detailing type, the connection strength is governed
by the concrete bond strength, which is reduced significantly without
post-processing of the wide slab floor elements.

In several buildings, proof load tests were performed. The magnitude
of the proof load, when expressed as a fraction of the characteristic
imposed load (Qp = ξQk), ranged from ξ = 0.67 to 1.26. The target load
level was incorporated into the track record to study its effect on reli-
ability. With the highest target load (ξ = 1.26), the reliability of the

Fig. 7. Reliability index in period 5–20 years versus the number of similar buildings that have survived for 10 years.

Fig. 8. Reliability index in period 10–25 years versus the number of similar buildings that have survived for 10 years.
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tested floor itself improved markedly, but the other floors in the sub-
population benefitted only very little.

7. Conclusions

The current article provides a step forward in the probabilistic
assessment of existing structures by accounting for the track record. The
track record comprises the performance of the object itself, up to the
time of assessment, and the performance of similar objects, including
their (loading) conditions. The latter is referred to as the ‘mega-experi-
ment’ and allows for an update of the resistance model uncertainty (θR).
Use is made of statistical inference via the application of the Bayesian
method to perform the update of structural reliability.

Because of the believed poor engineering of the highly loaded lon-
gitudinal joints and the anticipated variations among the different
applied configurations, a low informative prior was adopted. The prior’s
average was based on a set of laboratory tests carried out as part of the
investigation following the roof failure of the parking garage of Eind-
hoven. In the Bayesian updating process each possible sub-population
(12 in total) was updated on the basis of the corresponding track re-
cord. The track record consisted of the behaviour of the structure itself
up to the time of assessment, as well as the survival of a certain number
of buildings with floors having a similar configuration and detailing.
Each track record included the failed floor of Eindhoven Airport to err on
the conservative side.

The adopted procedure allowed rational judgments about the con-
ditions under which the floors can be considered sufficiently reliable and

under which the Dutch reliability requirement is not met. The insulated
roof floors appeared to be the most critical due to the shrinkage load in
the first 10 years after construction. This result was attributed to the low
strength and deformation capacity of the critical joint. In addition, roof
floors irradiated directly by sunlight did not perform well.

Fortunately, this study identified numerous subpopulations with
sufficient reliability. The outcomes of the study enabled a significant
acceleration in the assessment process by indicating which floor con-
figurations do not need further investigation. This outcome underlines
the practical value of the procedure. Finally, it is important to note that
in most cases, neither a classical procedure (lab tests and standard
analysis) nor solely relying on the track record was sufficient to reach
this conclusion.
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Appendix A: Monte Carlo updating algorithm

In the Monte Carlo simulation used to update the structural reliability, two steps are performed. In the first step, the posterior distribution is
calculated using the algorithm schematically presented in Fig. A.1. The uncorrelated prior distributions for mean and variation coefficient of the model
uncertainty θR are converted to possibly correlated pairs (mθR, VθR) that describe the posterior distribution by the Bayesian Monte Carlo (BMC)
method. The algorithm is run until enough samples of the posterior have been collected. In the second step, the updated posterior distribution is used
to perform the reliability update. The Monte Carlo algorithm to perform this integration of the posterior is presented in Fig. A.2. In essence, for each
posterior sample a regular reliability analysis is performed. An important difference with the first step (Fig. A.1) is the consideration of just a single
component – hence only correlations in time (autocorrelation) need to be considered.

Fig. 9. Effect of the track record on the posterior distribution: scatter plots of a limited number of samples (left) and the corresponding approximative posterior
predictive probability density functions (right).
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Fig. A.1. Schematisation of the BMC method to calculate the posterior.
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Fig. A.2. Schematisation of the reliability calculation with posterior.
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