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Abstract - In driving simulation, the choice of a simulator, motion cueing algorithm, and associated set of tuning
parameters for an experiment is typically made with an exclusive focus on the quality of the motion. In practice,
many other metrics could affect this choice as well, such as tuning complexity, algorithm stability, or the financial
costs of the simulation. Arguably, the complete motion cueing algorithm quality is thus more than the quality of the
motion alone. This paper presents results of a survey which attempted to identify the most important metrics from
the perspective of the main experiment stakeholders. Four stakeholder groups in typical driving simulator experi-
ments are defined: The experimenters, motion cueing engineers, operators, and participants. All groups received
the same survey, asking them to indicate how important various metrics are for them. Results show that, next to
the quality of the motion, experimenters and participants are generally interested in reducing simulator sickness.
The motion cueing engineers rank tuning effort and tuning complexity as most important metrics. Operators prefer
an easy to use and overall stable motion cueing. A typical BMW experiment is discussed as example, which shows
that the choice for a simulator and motion cueing algorithm can indeed differ when including these metrics in a
trade-off, compared to when only motion quality is considered. The presented methods allow for a better, multi-
faceted selection of the simulator, motion cueing algorithm, and associated tuning parameters, improving future
driving simulation experiments.

Keywords: Motion cueing, quality comparison, objective assessment, stakeholder survey.

1. Introduction
In motion-base driving simulators, a Motion Cueing
Algorithm (MCA) is required to reproduce the motion
of the simulated vehicle, while remaining within the
limited workspace of the motion system. Typically,
the choice of an MCA and its tuning parameters is
made to provide the highest possible perceptual or
behavioural quality (Romano, et al., 2019). In prac-
tice, operational qualities and costs can also play a
role in this choice, such as how easy it is to tune
an MCA on a certain simulator, or its induced en-
ergy consumption. Depending on the experiment re-
search question, such metrics can even be of equal
or higher importance than the attained level of mo-
tion quality. For example, a lower-quality MCA might
be perfectly acceptable for an experiment, and ad-
ditional improvements to cueing quality may not be
worth the additional time and money investments. Ar-
guably, the overall ‘quality’ of an MCA thus goes be-
yond consideration of motion cueing quality alone.

In early literature, Nahon and Reid (1990) already
stressed the importance of other metrics next to the
motion cueing quality: the number of tuning param-
eters of the MCA (as a measure of tuning effort), its
number of differential equations (as a measure of its
required computational effort), and the ‘transparency’
of the MCA (how clear it is how certain parameter set-
tings affect the MCA output). In this light, Kolff, et al.
(2020) included workspace management (how well

the MCA is able to exploit the available workspace)
and energy consumption next to objective metrics of
perceptual motion cueing quality.

Although these works provide example assessments
based on the view of the MCA designer, an evalua-
tion of what metrics are actually of importance to all
those involved in an experiment (i.e., the stakehold-
ers) does not yet exist. Overall MCA quality should ul-
timately be defined as a function of all the wishes and
requirements of these stakeholders, which may be
conflicting. For example, an experimenter may want
the best possible perceptual quality during the sim-
ulation, whereas the motion cueing engineer might
prefer as little tuning parameters as possible, at the
cost of a lower overall motion cueing quality.

This paper aims to provide a more comprehensive
view on “MCA quality” through two contributions.
First, four different stakeholders typically involved in
motion cueing experiments are defined: the exper-
imenter, the motion cueing engineer, the operator,
and the participant. Second, to identify what met-
rics are seen as important, a single survey contain-
ing 35 questions is performed amongst all four stake-
holder groups, in which they indicate how important
various metrics of MCA quality are for them. The re-
sults of a future BMW driving simulator experiment,
which has not been performed yet, are highlighted.
Based on these results, an example evaluation is per-
formed. Ultimately, the goal is not to develop a trade-
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Figure 1: Definitions of the motion cueing method and
solution, relating the MCA, simulator, and tuning parameters.

off methodology by weighing these various quali-
ties and costs, as relative weighting between metrics
would be highly subjective. Rather, the goal is to pro-
vide more insight in which metrics are of importance
for an experiment and how these compare between
various configurations.

This paper is structured as follows. Section 2 in-
troduces various metrics and introduces the survey.
Section 3 presents the obtained survey results, fol-
lowed by the future experiment evaluation in Sec-
tion 4. A discussion is presented in Section 5 and
the paper is concluded in Section 6.

2. Methods
2.1. Selection Process
The process of selecting the simulator, MCA, and
tuning parameters generally consists of various
steps. We define the simulator and MCA choice to-
gether as the motion cueing method, see Figure 1, as
they define the method of the motion cueing in which
the later tuning is performed. In practice, it is typi-
cally the simulator choice that has to be made first,
as simulators might have to be reserved well before-
hand. For the MCA choice, it must be determined
which type of algorithm is used. Different MCA op-
tions exist, each with their own (dis)advantages, such
as the Classical Washout Algorithm (CWA) (Con-
rad, Douvillier, and Schmidt, 1973; Reid and Nahon,
1985) or the Model-Predictive Control (MPC) algo-
rithm (Dagdelen, et al., 2009). Note that the qual-
ity of the MCA can be strongly related to the sim-
ulator. For example, whereas for a hexapod system
the small angle approximation is typically used (El-
lensohn, 2020), this assumption is no longer valid on
a system with a yaw-drive (allowing large yaw an-
gles). Vice versa, a complex algorithm might only be
able to exploit the simulator workspace better if it is
given enough workspace. It is therefore paramount
to realize that a single MCA can have different types
of implementations across different available simula-
tors. Hence, the complexity of adding various simu-
lators to the analysis is coupled to the MCA choice,
as different MCA approaches can perform differently
across simulators.

We name the combination of a motion cueing method
and a set of tuning parameters as selected for an
experiment the motion cueing solution. The goal of
any MCA selection and tuning is thus to choose the
best-suited motion cueing solution for a given exper-
iment. This choice is ideally made before the sim-
ulator choice, in which the exact eventual tuning is
still unknown. Thus, an approximated version of each
motion cueing solution must be used, as the actual
tuning is not yet performed. It depends on the mo-

tion cueing method choice if time will be spent on
tuning that MCA. It would be highly cost-inefficient to
tune all available algorithms for all simulators. This is
a causality dilemma: the quality of an MCA can only
be tested once it is tuned, but its selection can only
be justified if it is known how well it will perform. It is
therefore difficult to make exact and informed deci-
sions on which motion cueing method suits the use-
case best. A prediction must therefore be made to
evaluate how the different options perform with re-
spect to each other. The more accurate the prediction
tool, the more reliably the process of motion cueing
method selection can be performed.

2.2. Experiment stakeholders
To identify the importance of various quality and cost
metrics, we focus on the typical stakeholders that are
involved in driving simulator experiments at BMW:
Experimenter - Wants to perform an experiment to
answer a research question. Therefore, generally ex-
perimenters want a simulation that is most suitable
for answering this research question.
Motion Cueing Engineer - Designs and/or tunes the
MCA according to the wishes of the experimenter,
and possibly of other stakeholders, to achieve the
best-suited motion cueing solution.
Simulator Operator - Operates the simulator from
the control room during the experiment and governs
the safety and well-being of the participant. At BMW,
this role is often performed by an external company.
Participant - Participates in the experiment. They
might have the smallest impact on the design of the
experiment, but can still have clearly defined wishes
during the experiment.
Note that in some cases, the same individual may
have multiple stakeholder roles: e.g., an individual
could be the experimenter and the simulator operator
at the same time.

2.3. Quality metrics
Based on experience, several quality metrics are pro-
posed, which are all ideally as high as possible.
Perceptual Fidelity - When the presented motion
is perceived as unrealistic, perceptual fidelity is low
(Cleij, et al., 2018). To increase perceptual fidelity,
more accurate MCAs and/or larger motion simulators
are generally required. The importance of perceptual
fidelity can differ per experiment, and can also be
used as a means to the goal of reducing simulator
sickness (Hogerbrug, et al., 2020).
Behavioural Fidelity - The behavioural fidelity of the
simulation is determined through the degree of simi-
larity in driving behaviour compared to the behaviour
in its real world equivalent, rather than whether what
they perceive feels realistic. This can occur on vari-
ous levels independently, such as the lateral and lon-
gitudinal driving behaviour or the interaction with traf-
fic, as well as handling secondary driving tasks (such
as operating a navigation system).
Stability - A motion cueing solution that is unstable
can lead to unexpected and/or dangerous behaviour
of the system. This can affect the quality of the mo-
tion, but also decrease the system safety, resulting
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in a higher risk of incidents. Especially for model-
predictive control algorithms the associated inherent
stability has shown to sometimes be an issue (Fang
and Kemeny, 2016).

2.4. Cost metrics
In contrast to quality metrics, cost metrics are gener-
ally to be minimized as much as possible.
Simulator Sickness - Simulator sickness can occur
when the stimuli presented in the simulator are in-
consistent or deviate from what is expected from re-
ality (Hogerbrug, et al., 2020). Light simulator sick-
ness may affect the outcome of an experiment and is
thus generally to be avoided. Severe simulator sick-
ness can even lead to participants dropping out of the
experiment, resulting in incomplete experiment data.
Cost - The cost refers to the total financial cost of
performing the experiment. This includes the cost of
preparing the simulation (man hours) and the cost of
running the simulator (energy consumption, mainte-
nance, etc.), which generally both scale with the plat-
form size and MCA tuning complexity. For example,
the smallest simulator with the easiest to tune MCA
will likely result in the lowest cost.
Energy Consumption - Unnecessary energy con-
sumption can be undesired to save costs and to mini-
mize the environmental impact. Therefore, this metric
can be an argument for choosing the smallest simu-
lator with the least motion available that is still able to
answer the research question.
Noise - Noise and/or vibrations of the motion sys-
tem perceived inside the cabin can possibly decrease
the perceptual fidelity. Larger, heavy systems tend
to generate both more noise and vibrations due to
the combination of a high weight and large platform
movements. Secondary, noise can be perceived in-
side the building and affect other experiments.
Maintenance - Maintenance increases the cost and
reduces the time in which the simulator can be oper-
ational for other experiments. Although this aspect is
somewhat specific to the simulator design, the main-
tenance is likely to scale with the size of the system
and the amount of platform movement.

2.5. Tuning metrics
Finally, tuning metrics are generally only relevant to
the motion cueing engineer and describe inherent
properties of finding a suitable set of parameters (i.e.,
tuning) of a motion cueing method.
Number (#) of tuneable parameters per axis - As
each simulator axis requires tuning, the complexity
of each axis depends on how many parameters have
an effect on that axis. For example, a CWA might re-
quire several parameters in each axis (gains, split fre-
quencies, and washout parameters). For larger mo-
tion systems, which typically have more Degrees of
Freedom (DoFs) (DoF= 9 for BMW’s Sapphire Space
(Kolff, et al., 2022)) than hexapod-only simulators
(DoF= 6), the total number of parameters for each
axis is generally also higher, because these are re-
quired to divide the motion over the available DoFs.
Total Number (#) of parameters - Furthermore, the
total number of parameters is considered, as in Na-
hon and Reid (1990). Ideally, the number of tuneable

parameters would be as low as possible. Depend-
ing on the use-case, however, it is possible that not
all vehicle axes require tuning. This can, for exam-
ple, occur when a lateral-only use-case is performed,
in which the longitudinal direction does not require
tuning. Thus, this metric depends on the simulator
choice, MCA, as well as the considered use-case.
Transparency of parameters - The cost due to the
number of parameters also depends on how fast the
desired change in tuning can be obtained through
changing the parameters (Nahon and Reid, 1990).
Thus, the clearer it is which effect a parameter has,
the better.
Determinism of System - Some MCA types will al-
ways give the same output when the same input is
provided. An example of this is CWA, as the linear
filter structure follows a deterministic approach. In
contrast, MPC is based on optimization, which highly
depends on the initial values that are given to the
algorithm. Thus, it is highly unlikely that the same
outputs are provided, given the same inputs. A non-
deterministic system arguably leads to a higher tun-
ing complexity, because its outcome is more difficult
to predict.
Offline testing capabilities - When an MCA can be
tested outside of the normal simulation environment,
this allows for additional debugging and testing capa-
bilities, as no simulator is required for testing. Thus,
having no offline testing option can also lead to a
higher tuning complexity.

2.6. Survey
To identify which of the metrics identified in the pre-
vious subsections are important for different exper-
iment stakeholders, a survey was performed. The
same survey was given to all four stakeholder groups
to increase the comparison between them. It con-
sisted of 35 questions (in German) on MCA quality,
divided into several categories. Answers were given
on a seven-point Likert scale from fully disagree -
disagree - somewhat disagree - neutral - somewhat
agree - agree - fully agree. The questions of the sur-
vey are shown in Appendix A, translated to English.
As the last category “Tuning metrics” typically only
applies to motion cueing engineers, this category is
only filled out by this group.
In total, 14 experimenters, 4 motion cueing engineers,
4 operators and 12 participants of previously per-
formed experiments filled out the survey. The respon-
dents filled out the survey in a document themselves
after receiving a short briefing on the context of the
survey. The respondents were specifically instructed
to answer the questions in a way that corresponds to
the interests associated to their role. For further anal-
ysis, questions belonging to the same metric (e.g.,
simulator sickness) are combined by taking the mean
value of these questions.

3. Survey Results
Figures 2a-2d show the survey results, displayed as
radar charts, similar to the representation of (Fischer,
et al., 2015). For each category, a box plot is shown
along each ‘spoke’ of the radar charts. The lines on
each axis represent the data ranges, the colored ar-
eas the first and third quartiles, and the grey crosses
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(b) Motion Cueing Engineers (N= 4)
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Figure 2: Radar plots showing the box plots over all survey results for the eleven defined quality, cost, and tuning aspects.

the individual data points. The medians of the data
are visualized by the black dots, connected by black
lines for increased readability. The values (1 − 7) cor-
respond to the answers of the survey (fully disagree
- fully agree). Thus, lower values indicate less impor-
tance, higher values indicate higher importance.

For the “experimenter”, Figure 2a, the results were
collected from fourteen past or planned studies. Gen-
erally, the quality of the motion, reducing simulator
sickness, and the somewhat cost of the experiment
were shown to be the most important metrics for
these studies (i.e., > 4, so more than the answer
‘neutral’).

Four “motion cueing engineers” filled out the sur-
vey (Figure 2b). Note that here the data points do
not represent individual studies, but represent what
these engineers generally find important. Unsurpris-
ingly, aspects of tuning complexity and tuning effort
are found most important by these engineers. Ease
of use (in the operations) shows somewhat of an
importance. Although the engineer is not the stake-
holder performing the actual experiment, an easy-to-

use MCA can still be a key benefit when designing,
debugging, and testing an MCA.

The “operator” (Figure 2c) has two clear metrics of
importance. First, the ease-of-use, which is explained
by the operator having to use the motion cueing
method in an experiment. Second is stability: A sta-
ble motion cueing method avoids obstructive situa-
tions at the simulator, where valuable time is thrown
away or debugging must be performed during the ex-
periment.

Stability is a similar issue for the “participant” group
(Figure 2d). Here, twelve survey respondents indi-
cated that this metric is of medium importance, which
could be in the interest of protecting their own safety
in the simulator. Most importantly, perhaps unsurpris-
ingly, is simulator sickness, which was indicated by
all respondents to be of high importance (> 5). Note
that the results of the stakeholder “organization” are
not presented here, due to data protection reasons.
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4. Example Evaluation
4.1. Experiment use-case
To highlight the quality, cost, and tuning metrics of
a specific experiment, a real, future driving simula-
tion experiment at BMW is analyzed. Therefore, the
exact details of the experiment are unknown. The ex-
periment will investigate the role of fatigue under an
Advanced Driver Assistance System (ADAS) system.
First, participants will drive for 15 minutes on a Ger-
man highway scenario. After that, the autonomous
driving systems will be engaged until the participant
reports a high level of drowsiness. This phase can
take up to 90 minutes. After that, a second man-
ual segment is performed, lasting another 15 min-
utes. This use-case contains mainly longitudinal mo-
tion (braking/accelerating) and some lateral motion
(overtaking).
The survey results of this use-case are highlighted by
the blue lines in Figure 2a. Two large outliers com-
pared to the overall data are present. In this experi-
ment, as specific interest is taken in fatigue while driv-
ing autonomously, the noise of the simulator is to be
reduced as much as possible, as this can influence
the fatigue and attentiveness of drivers. Furthermore,
as it considers an experiment in a relatively long sce-
nario (> 120 minutes) of a single drive, stability is
important, as a simulator hardware or software crash
can render the long experiment sessions useless.
From these results, the metrics noise, stability, simu-
lator sickness, motion cueing quality and tuning com-
plexity are considered, as these were indicated as
most important metrics over all stakeholders (> 4).
To illustrate how the identification of these metrics
can be used in a trade-off, four different simulators
(the same as in Kolff, et al., 2022) considered.

4.2. Simulators
• The Vega Vector (VV) (Cruden B.V., 2021, Figure

3a) is the smallest simulator under investigation
and consists of a 6-DoF hexapod with an actuator
stroke of 64 cm. Its cylindrical 220◦ LED-wall allows
for high contrast visuals combined with high bright-
ness and vivid colors.

• The Sirius Vector (SV) (Cruden B.V., 2021, Figure
3b) has the same hexapod as the Vega Vector, but
has an additional ±175◦ yaw-drive underneath, re-
sulting in a 7-DoF system. The LED-wall is similar
to the Vega Vector, but covers the full 360◦ horizon-
tal field-of-view.

• The Ruby Space (RS) (VI-Grade, 2015, Figure 3c)
is a 9-DoF system (hexapod on tripod). The tripod
can rotate ±25◦ and also has a 1.5 m workspace in
both x and y-directions.

• The Sapphire Space (SS) (Van Halteren Tech-
nologies B.V. and AVSimulation, 2021), Figure 3d)
is BMW’s largest simulator (9-DoF). It includes a
large 6-DoF hexapod (total stroke of 1.15 m) with a
single DoF ±175◦ yaw-drive on top. Its XY-drive un-
derneath allows additional movement over an area
of 19.14 m × 15.7 m. Visuals are projected by a full
360◦ projection system inside the enclosed dome.

4.3. Motion Cueing Algorithm
A typical CWA is considered (Conrad, Douvillier, and
Schmidt, 1973; Reid and Nahon, 1985). Due to the

worst-case tuning and the CWA’s ‘blindness’ to fu-
ture states, it cannot utilize the simulator full poten-
tial. Typical for CWA is the need for tuning its large
number of parameters, a time-consuming process.

4.4. Evaluation
Motion Cueing Quality To evaluate the various
combinations in terms of the motion cueing quality,
predictions of their subjective ratings are made. Cleij,
et al. (2018) introduced the use of continuous ratings,
in which drivers continuously rate the realism of the
motion through a rating interface on a scale from 0
(perfect motion) to 10 (highly unrealistic motion). This
method is only possible in open-loop driving (i. e.,
drivers are passengers) and results in a continuous
rating signal R(t). A rating model is employed to pre-
dict the continuous ratings as function of mismatch
signals, i.e., the difference in inertial motion (specific
forces and rotational rates) between the vehicle mo-
tion S̃veh,n(t) and the simulator motion S̃sim,n(t), i. e.,
∆S̃m(t), with P̃m(t) = |∆S̃m(t)|. Here, m represents
the mismatch direction.

Kolff, et al. (2023b) proposed a linear model that
predicts the continuous rating of the average partic-
ipant using low-pass filter transfer functions Hm(s)
between the measured mismatch signals P̃m(t) (in-
puts) and a modeled rating signal R̃(t) (output):̂̃
R(jω) =

∑
m

Hm(jω)̂̃P m(jω) =
∑

m

K
P̃m

(
ωc

jω + ωc

) ̂̃
P m(jω),

(1)
with the cut-off frequency ωc and K

P̃m
the gains

of the several mismatch channels. The (̂·)-terms in-
dicate the Fourier transforms. Kolff, et al. (2023b)
showed that the continuous ratings of a classical
washout algorithm as measured in that experiment
could be largely explained when considering the mis-
match channels P̃fy

, P̃fx
, and P̃ωz

, with respective
gains of 0.93, 0.66, and 2.77, together with ωc =
0.35 rad/s.

The usefulness of predicting continuous ratings lies
in the fact that these correlate well to overall ratings
(‘OR’), which are given at the end of a drive. Kolff, et
al. (2023a) found a predictive relation between R(t)
and OR by considering the most incongruent point,
i. e., the maximum of the continuous rating:

OR = 0.67 · max[R̃(t)] − 0.14 (2)

This allows for comparing the various motion cueing
methods of the experiment in an offline manner. The
overall rating is especially useful, as it can be used to
trade off various motion cueing methods.

Note that the rating model requires vehicle and sim-
ulator data that is normally not present before per-
forming the experiment. However, in the case of the
considered experiment, driving data of a highly simi-
lar experiment were available, containing drives of 24
participants. For each drive, the modeled rating and
corresponding overall rating are calculated. The av-
erage over all participants is calculated to obtain a
prediction of the average overall rating.

Number of Parameters: The number of parameters
is considered as a measure of tuning effort and com-
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(a) Vega Vector. (b) Sirius Vector.

(c) Ruby Space. (d) Sapphire Space.

Figure 3: The four considered simulators for comparison. Pictures are property of BMW Group.

plexity. For the CWA, the number of parameters de-
pends on the motion system. For the smallest sys-
tem, Vega Vector, there are a total of 26 parame-
ters. These include gains, split frequencies, as well
as washout parameters. For the Sirius Vector there
two additional parameters, necessary for the yaw-
drive (one cut-off frequency, one washout frequency
parameter), i.e., 28 parameters. For Ruby Space and
Sapphire Space, there are another six additional pa-
rameters (two cut-off frequency, four washout fre-
quency parameters) due to the presence of an xy-
drive, resulting in 34 parameters.

Noise: Currently, no models exist to predict the
noise production of the various simulators. From ex-
perience, however, the large mechanical systems of
the Sapphire Space can induce noise and vibrations
at lower frequencies (i.e., noise is ‘high’). Similarly,
Ruby Space induces some noise due to the air pres-
sure system that controls the secondary motion sys-
tem (i.e., noise is ‘medium’). From our experience,
both the Vega Vector and Sirius Vector are indeed
the most quiet (noise is ‘low’).

Simulator Sickness: Previous research has shown
that on a highway scenario, simulator sickness is
generally low on all considered systems (Himmels,
et al., 2022). Although no explicit information on the
Ruby Space exists, the dimensions of the motion
system are in-between Sirius Vector and Sapphire
Space, such that motion-induced simulator sickness
is likely similarly as low.

Stability Stability is considered to be an important
metric in the evaluation due to the experiment length:
a stability issue would likely require restarting the

long scenario, such that large parts of the data must
be discarded. Considering the known, stable be-
haviour of an CWA, all simulators perform equally
well here (‘high’).

Metric Evaluation: Table 1 shows the most impor-
tant metrics of the considered experiment, for the four
simulators. Although important for the presented ex-
periment, the stability of a CWA is generally high and
does not vary across the motion platform.
The predicted overall rating is similar between Vega
Vector and Sirius Vector. Although Sirius Vector con-
tains an additional yaw-drive, thus potentially reduc-
ing the ratings, it is likely that the presented scenario
does not include large yaw rate errors, such that the
yaw-drive is not of a large benefit in this considered
experiment. Both Ruby Space and Sapphire Space
perform better in terms of the predicted overall rating
(lower is better) and expected simulator sickness oc-
currences. However, this comes at the cost of having
more tuning parameters and more noise. As the gain
in motion cueing quality rating is rather small, and the
high importance of noise for this specific experiment,
the Vega Vector and Sirius Vector both show to be
the best-suited options.

5. Discussion
Next to aspects of motion cueing quality (behavioural
or perceptual), the survey results revealed several
other aspects are generally of importance: The cost
and simulator sickness for the experimenter, ease of
use, tuning effort, and complexity for the motion cue-
ing engineer, stability and ease of use for the oper-
ator, and (again) the stability and the simulator sick-
ness for the participant. In the experiment use-case
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Table 1: Considered MCA quality metrics of the four motion system for the example evaluation.

Simulator MCA
Pred. Overall
Rating [0-10]

# Tuning
parameters Noise

Simulator
Sickness Stability

Vega Vector CWA 2.8 26 low medium high
Sirius Vector CWA 2.7 28 low medium high
Ruby Space CWA 2.4 34 medium low high
Sapphire Space CWA 2.4 34 high low high

example, an additional focus lies on noise, indicated
by the wishes of the experimenter. It is possible that
due to practical experience, existing metrics are re-
fined or more metrics are added. We also invite the
community to provide insights into their relative im-
portance of such metrics, as these insights might dif-
fer per institution, as different use-cases are covered.
This could also lead to more data points for the op-
erators and motion cueing engineers, which is inher-
ently limited for a single company.

Through the presented experiment example, it is
shown that the survey can serve not only as a one-
time identification tool of important metrics, but also
as the baseline for a framework of future experi-
ment design, where the survey is filled-out in early
experiment design stages to identify the best-suited
MCA for that experiment. By identifying the important
metrics for a given experiment beforehand, seem-
ingly trivial aspects, such as the noise production,
could show to be of high importance, such as in the
presented fatigue experiment example. Thus, here it
could be preferred to select and MCA and/or simu-
lator that produces little noise, while a limited repro-
duction of the motion cues is perfectly acceptable. In
this presented example, the obtained result is differ-
ent than when only motion cueing quality would have
been considered. In that case the Sapphire Space
would have been the best-suited option. This shows
that the trade-off between MCAs, simulators, and tun-
ing configuration can benefit from including these
metrics as well.

Nevertheless, several limitations in the presented
work should be mentioned. First, the identified met-
rics could benefit from a more objective measure-
ment approach, rather than the subjectively esti-
mated categories (such as low, medium, and high).
For example, the noise production of simulators could
be expressed in absolute values. Second, note that
for the survey itself, a fifth stakeholder could also be
defined, the organization. This group owns the sim-
ulator and aims to protect organizational interests,
which could be governing cost, safety, and public im-
age. In our work, we did not include this stakeholder
due to data protection reasons. Including this might
put more emphasis on financial cost and energy con-
sumption. Third, the final trade-off between the met-
rics remains subjective. It is possible to make this
choice by setting lower bounds to eliminate MCAs
that do not meet the requirements or, if no defined
lower bounds exist for the experiment, calculating
the “overall quality”, by calculating a total cost. Here,
a trade-off could be made more objective by tak-
ing the relative importance of the various metrics
into account (e.g., by the relative importance of the
considered metrics). Finally, the presented methods
only apply to metrics related to the motion cueing. In
practice, especially when considering different mo-

tion systems, other metrics might be of importance
as well, such as the availability of specific mock-ups
in a given simulator or the (type of) visual system
and/or the associated synchronization between the
visual scene and the motion. Future work could thus
aim to include such properties as well.

6. Conclusion
The successful use of motion cueing algorithms in
driving simulation does not only depend on the qual-
ity of the generated motion, but also how well the al-
gorithm performs operationally. Both the analysis of
general operational MCA qualities, as well as spe-
cific wishes of operational MCA qualities for each
experiment, can be better understood through un-
derstanding the wishes of the users, i.e., the stake-
holders. From the survey evaluations, it can be con-
cluded that, next to the motion cueing quality, the to-
tal cost, simulator sickness, easy of use, tuning ef-
fort, and stability are typically of high importance in
motion cueing experiments. In the provided experi-
ment use-case example, including such operational
aspects lead to a different best-suited motion cueing
solution than when considering motion cueing qual-
ity alone. Improving the simulations in these aspects
can therefore likely result in more successful driving
simulation experiments. With the proposed method,
therefore the best MCA with the highest overall qual-
ity for a given use case can be selected for future
driving simulator experiments.
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Appendix A: Survey Questions
The appendix contains the questions as presented
to the stakeholders. The questions have been trans-
lated from German to English.

Immersion - During the simulation, a feeling of be-
ing in the virtual world can arise (immersion). Please
use the following questions to answer whether it is
important to you that:

Q1 the perceived motion in the simulator is as realistic
as possible.

Q2 participants are immersed into the virtual world.
Q3 the simulator motion does not behave unexpect-

edly.
Q4 the simulator is never driven into its limits.
Q5 the simulation of a drive never stops working (sim-

ulation crash).

Behavior of the driver - Using the following ques-
tions, please rate whether it is important to you that:

Q6 the same driving style in the transverse direction
(steering) is induced as in the real vehicle.

Q7 the same driving style in the longitudinal direction
(pedals and/or shifting gears) is induced as in the
real vehicle.

Q8 the same behavior with certain secondary compo-
nents (navigation, radio, ABK) is induced as in the
real vehicle.

Q9 the same behavior with the surrounding traffic is
induced as in the real vehicle.

Simulator sickness - Simulator sickness can occur
during a ride. Sometimes the attempt has to be
stopped because of this. Using the following ques-
tions, please rate whether it is important to you that:

Q10 Heavy simulator sickness symptoms (nausea,
throwing up) are reduced as much as possible.

Q11 Light simulator sickness symptoms (headache,
dizziness, sweating) are reduced as much as pos-
sible.

Q12 the overall failure rate of the experiment is as low
as possible.

Q13 the drive can always last until the end.
Q14 the participant is still able to work after the study.
Q15 the recorded experiment data of each drive is al-

ways complete.

Driver safety - Using the following questions,
please rate whether it is important to you that:

Q16 the participant always feel safe in the simulator.
Q17 the health of the participant is not harmed.

Hardware - Using the following questions, please
rate whether it is important to you that:

Q18 as much electricity as possible is saved during the
study.

Q19 the simulator is not damaged.
Q20 fuel is saved by performing the study virtually,

rather than with a real vehicle.
Q21 simulator maintenance is minimized.
Q22 the simulator generates little noise while moving.
Q23 the simulator does not move unnecessarily.

Costs - Using the following questions, please rate
whether it is important to you that:

Q24 the cost for preparing and executing the experi-
ment are minimized as much as possible.

Q25 the costs for the organization are as low as possi-
ble.

Ease of use
Q26 no unclear errors in the simulation operation soft-

ware are generated.
Q27 all options in simulation operation software requir-

ing changes during a simulation are self-evident.

Tuning metrics - Using the following questions,
please rate whether it is important to you that:

Q28 there are as few tuneable parameters as possible.
Q29 the tuneable parameters can be interpreted phys-

ically.
Q30 the MCA behaves linearly between input and out-

put.
Q31 there is only one parameter for each axis.
Q32 The meaning of parameters is self-explanatory.
Q33 there are as few parameters as possible in each

degree of freedom of the simulator.
Q34 the tuning of a previously performed study can be

used.
Q35 the tuning can be tested without a simulator.
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