
Răzvan Nane

Automatic Hardware Generation
for Reconfigurable Architectures

Automatic Hardware Generation for
Reconfigurable Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op

donderdag 17 april 2014 om 10:00 uur

door

Răzvan NANE

Master of Science in Computer Engineering
Delft University of Technology
geboren te Boekarest, Roemenië

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. K.L.M. Bertels

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. K.L.M. Bertels Technische Universiteit Delft, promotor
Prof. dr. E. Visser Technische Universiteit Delft
Prof. dr. W.A. Najjar University of California Riverside
Prof. dr.-ing. M. Hübner Ruhr-Universität Bochum
Dr. H.P. Hofstee IBM Austin Research Laboratory
Dr. ir. A.C.J. Kienhuis Universiteit van Leiden
Dr. ir. J.S.S.M Wong Technische Universiteit Delft
Prof. dr. ir. Geert Leus Technische Universiteit Delft, reservelid

Automatic Hardware Generation for Reconfigurable Architectures
Dissertation at Delft University of Technology

Copyright c© 2014 by R. Nane

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without permission of the author.

ISBN 978-94-6186-271-6

Printed by CPI Koninklijke Wöhrmann, Zutphen, The Netherlands

To my family

Automatic Hardware Generation for
Reconfigurable Architectures

Răzvan Nane
Abstract

RECONFIGURABLE Architectures (RA) have been gaining popularity
rapidly in the last decade for two reasons. First, processor clock fre-
quencies reached threshold values past which power dissipation be-

comes a very difficult problem to solve. As a consequence, alternatives were
sought to keep improving the system performance. Second, because Field-
Programmable Gate Array (FPGA) technology substantially improved (e.g.,
increase in transistors per mm2), system designers were able to use them for an
increasing number of (complex) applications. However, the adoption of recon-
figurable devices brought with itself a number of related problems, of which
the complexity of programming can be considered an important one. One
approach to program an FPGA is to implement an automatically generated
Hardware Description Language (HDL) code from a High-Level Language
(HLL) specification. This is called High-Level Synthesis (HLS). The avail-
ability of powerful HLS tools is critical to managing the ever-increasing com-
plexity of emerging RA systems to leverage their tremendous performance po-
tential. However, current hardware compilers are not able to generate designs
that are comparable in terms of performance with manually written designs.
Therefore, to reduce this performance gap, research on how to generate hard-
ware modules efficiently is imperative. In this dissertation, we address the tool
design, integration, and optimization of the DWARV 3.0 HLS compiler.

Dissimilar to previous HLS compilers, DWARV 3.0 is based on the CoSy com-
piler framework. As a result, this allowed us to build a highly modular and ex-
tendible compiler in which standard or custom optimizations can be easily inte-
grated. The compiler is designed to accept a large subset of C-code as input and
to generate synthesizable VHDL code for unrestricted application domains.
To enable DWARV 3.0 third-party tool-chain integration, we propose several
IP-XACT (i.e., a XML-based standard used for tool-interoperability) exten-
sions such that hardware-dependent software can be generated and integrated
automatically. Furthermore, we propose two new algorithms to optimize the
performance for different input area constraints, respectively, to leverage the
benefits of both jump and predication schemes from conventional processors
adapted for hardware execution. Finally, we performed an evaluation against
state-of-the-art HLS tools. Results show that application execution time wise,
DWARV 3.0 performs, on average, the best among the academic compilers.

i

Acknowledgments

IT is a great pleasure to write this (last) part of my dissertation. The period
spent on working towards this goal has not always been easy, and, at
times, finalizing the thesis did not even seem possible. Fortunately, I am

lucky to have a very supporting family and warmhearted friends alongside, and
to have met very helpful, understanding and skilful people that made the task
of completing the work both realizable and enjoyable. I am confronted now
with words that cannot express my deepest gratitude I have for all these family
members, friends and colleagues. For all the people who I forget at the time of
writing, please accept my apology.

First of all, I want to thank my supervisor, prof. dr. Koen Bertels, for giving
me the opportunity, research freedom and self-confidence to complete a Ph.D.
study. I am also grateful for including me in different European projects that
allowed me to travel to project meetings, as well as to various international
conferences. This allowed me not only to extend my professional network by
meeting, working and collaborating with well-known people in the field, but
also to discover different parts and cultures of the world. Thank you!

I want to thank my office colleagues who provided me with valuable infor-
mation that aided me in the various tasks performed along the years. First,
I want to specially thank Vlad-Mihai Sima for all discussions both work and
non-work related as well as for his immediate help with diverse Linux related
tool issues. Furthermore, I am very thankful for the time taken to read the
draft version of the thesis and for providing insightful comments and improve-
ment suggestions. Second, I want to thank Yana Yankova for helping me in the
beginning of the study and for creating the first version of the DWARV com-
piler. Third, I thank Giacomo Machiori for providing me insights into various
hardware processes and for helping me solve some of the backend tool issues.

I thank all people involved in the European projects with whom I had the im-
mense pleasure of working. I want to thank Bryan Olivier from ACE, who
helped me kick-start my CoSy experience, as well as to Hans van Someren also
from ACE for the optimization related discussions. Furthermore, I am grateful

iii

for the collaborations with Pedro Diniz, João Cardoso, Zlatko Petrov, Michael
Hübner, Georgi Kuzmanov in the Framework Programme 7 REFLECT project,
as well as with Bart Kienhuis, Sven van Haastregt and Todor Stefanov in the
MEDEA+ SoftSoc project.

I consider myself very fortunate to have worked in an international department
that allowed me to meet people from all over the world. I want to thank Com-
puter Engineering (CE) colleagues Cuong, Gustavo, Seyab, Roel, Changlin,
Shanshan and many others for broadening my knowledge about other cultures.
I thank also to CE colleagues Berna and Joost for helping me translate in Dutch
the propositions and the abstract. At the same time, I am grateful to fellow Ro-
manian colleagues Bogdan, Cătălin, George, Marius, Mihai, Nicoleta, Anca
for the interesting back home related discussions. I am thankful to the always
friendly and helpful staff members Lidwina Tromp, Eef Hartman and Erik de
Vries who made administrative and technical support issues go unnoticeable.

A Latin expression says ‘mens sana incorpore sana’. I am very thankful that
the CE department has a healthy attitude and encourages both sport and social
activities. I am therefore very grateful to Said Hamdioui for organizing the CE
weekly football games, and to the many enthusiast colleagues, Joost, Motta,
Faisal, Imran, Lei, Adib and Innocent to name just a few who participate in
this activity. CE social events give lab members the chance to interact outside
work hours and have fun together. This made the work environment to feel
more than just a work place and for this I specially thank to Koen Bertels, who
always encouraged such activities. I am also grateful to the organizers of the
diverse social outings, Mafalda, Mahroo, Kamana and Mihai.

I need to thank also to my Monday football team members Bogdan, Wouter,
Christian, Manuel, Sebastian, Ilian, Mehdi, Robert and Fernando, with whom
I enjoyed many outdoor matches in the TU Delft ‘kunstgrass’ competition.
For the pool competition fun, I thank my fellow pool team members over the
years Cristi, Pieter, Stein, Frank, Niels, Xavier, Michiel and Maurice. I want
to thank our very close friends Dana and Alin, Anca and Dan, Mafalda and
Vlad, Giacomo not only for great moments together, but also for their help and
advice regarding technical details on how to raise a child. Furthermore, I am
grateful to Mariana for her help during the intense months after the birth of my
twin daughters, period in which I finalized this thesis.

I am extremely grateful for the big family I have and for all the support they
have given me over the years. I have no words to describe the appreciation I
have for all my parents and grandparents for creating the environment in which
I was raised, for introducing me to mathematics since an early age or for en-

iv

couraging and supporting me to study abroad. I am grateful to my parents and
parents-in-law for their help and support in organizing precious family events
and for their invaluable help with the children. I thank my sister Ana for look-
ing at life from a non-technical perspective and for fully committing to what
she believes in. I thank my brother Robert for all the great moments spent
together and for the many more to come. Flori and Ionuţ, you are the best
siblings-in-law I could wish for and I am very happy to have you in my life. I
also thank our (wedding) godparents Remus and Dana for their support, help
and for the many happy memories we have together. Nasu’, you are the first
who suggested to me that doing a PhD is “not that bad”, and I am immensely
grateful for those talks in which I started to reconsider my future plans. Fur-
thermore, I am very thankful to my extended family, Luci and Natalia, Andrei
and Olesea, Mircea and Anca, Petre and Gina, who make each visit back home
one to remember and each family excursion to the mountains a dream.

Last, but most important, I cannot even begin to sketch how much I appreciate
all the love and support I have received during the Ph.D. study from my wife.
I am forever grateful that she made me understand that home means much
more than the place where you were born, that she is extremely understanding
especially in not my best moments, for the many great memories we have
together, but by far the most important, for being the best mother I could wish
for the three beautiful and healthy daughters we have together. Ti...ccm!

I want to express my gratitude towards all the above once again as the words
cannot express enough. I consider this dissertation the product of a truly won-
derful journey that encompassed much more than the current text. It has been a
journey filled with professional, personal and cultural realizations, with plenty
of ups and downs, period in which I did plenty of mistakes but from which I
learned a lot. It is the the outcome of an extraordinary period in my life. I
now look happily towards the future and for the new challenges it will bring.
However, until then, ‘Carpe diem!’

Răzvan Nane Delft, The Netherlands, April 2014

v

Table of contents

Abstract . i

Acknowledgments . iii

Table of Contents . vii

List of Tables . xi

List of Figures . xiii

List of Listings . xvii

List of Acronyms and Symbols . xix

1 Introduction . 1
1.1 Problem Overview . 3

1.1.1 Dissertation Scope and Challenges 6
1.1.2 Contribution of the thesis 7

1.2 Dissertation Organization . 9

2 Related Work . 13
2.1 High-Level Synthesis Tools 14

2.1.1 Domain-Specific Languages 16

2.1.1.1 New Languages 16

2.1.1.2 C-dialect Languages 18
2.1.2 General-Purpose Languages 22

2.1.2.1 Procedural Languages 23

2.1.2.2 Object-Oriented Languages 32
2.2 Summary of Tool Features 34
2.3 Conclusion . 37

vii

3 Background Work . 39
3.1 Introduction . 39
3.2 Molen Machine Organization 40
3.3 Delft Workbench Tool-Chain 42
3.4 Back-end Work Flows . 43

3.4.1 Synthesis Flow . 43
3.4.2 Simulation Flow . 44

3.5 Software vs. Hardware Compilers 45
3.6 DWARV 1.0 . 47
3.7 CoSy Compiler Framework 49
3.8 C-to-FPGA Example . 51

4 DWARV2.0: A CoSy-based C-to-VHDL Hardware Compiler 59
4.1 Introduction . 59
4.2 Related Work . 60
4.3 DWARV 2.0 . 61

4.3.1 DWARV2.0 Engines: The Tool-Flow 61
4.3.2 New Features and Restrictions 62

4.4 Experimental Results . 64
4.5 Conclusion . 69

5 IP-XACT Extensions for Reconfigurable Computing 71
5.1 Introduction . 71
5.2 Related Work . 73
5.3 Integrating Orthogonal Computation Models 74

5.3.1 IP Core Integration 74
5.3.2 Framework Solution 75

5.4 IP-XACT Extensions . 76
5.4.1 Hardware Compiler Input 77
5.4.2 Hardware-Dependent Software 77
5.4.3 Tool Chains . 78

5.5 Experimental Results . 79
5.5.1 Validation of Approach 79
5.5.2 Productivity Gain . 79

5.6 Conclusion . 80

6 Area Constraint Propagation in High-Level Synthesis 81
6.1 Introduction . 81

viii

6.2 Background and Related Work 83
6.3 Area Constrained Hardware Generation 84

6.3.1 Motivational Example and Problem Definition 84
6.3.2 Optimization Algorithm 87
6.3.3 Integration in DWARV2.0 88

6.4 Experimental Results . 89
6.4.1 Experimental Environment 90
6.4.2 Test Cases . 90
6.4.3 Discussion . 92

6.5 Conclusion and Future Research 99

7 A Lightweight Speculative and Predicative Scheme for HW Execution 101
7.1 Introduction . 101
7.2 Related Work and Background 102
7.3 Speculative and Predicative Algorithm 104

7.3.1 Motivational Examples 105
7.3.2 Algorithm Description and Implementation 108

7.4 Experimental Results . 111
7.5 Conclusion . 114

8 DWARV 3.0: Relevant Hardware Compiler Optimizations 115
8.1 Introduction . 115
8.2 Hardware-Specific Optimizations 116
8.3 CoSy Compiler Optimizations 124
8.4 Conclusions . 133

9 Hardware Compilers Evaluation . 135
9.1 Introduction . 135
9.2 Tool Selection Criteria . 136
9.3 Overview Selected Compilers for Evaluation 137
9.4 Benchmark Overview . 140
9.5 Generated Hardware Overview 142
9.6 Experimental Results . 144
9.7 Conclusion . 148

10 Conclusions and Future Work . 149
10.1 Summary . 149
10.2 Dissertation Contributions 151
10.3 Future Work . 153

ix

A Complete DWARV 3.0 Comparison Results 155

B Return on Investment Graphs . 161

Bibliography . 163

List of Publications . 173

Samenvatting . 177

Curriculum Vitae . 179

x

List of Tables

2.1 Overview of Existing High-Level Synthesis Tools. 35

2.2 Overview of Existing High-Level Synthesis Tools. (Cont) . . . 36

3.1 DWARV 1.0 Allowed Data Types. 48

3.2 DWARV 1.0 Allowed Statements. 48

4.1 DWARV 2.0 vs. DWARV 1.0 Allowed Data Types. 63

4.2 DWARV 2.0 vs. DWARV 1.0 Allowed Statements. 64

4.3 Evaluation Numbers - DWARV2.0 vs. LegUp 2.0. 67

6.1 Experimental results of the test cases and their corresponding
solutions for different area design constraints. 98

7.1 Implementation metrics for the different schemes. 113

8.1 Selected Optimisation Engines. 125

8.2 Overview of New Optimizations in DWARV 3.0. 134

9.1 Overview Selected Compilers. 138

9.2 Overview Selected Compilers (Cont). 139

9.3 Comparison Benchmark Characteristics. 141

9.4 Generated Accelerator Characteristics Showed as <#FSM :
#registers> and <#lines:#components:#files> Tuples. 143

9.5 Execution Time Slowdowns compared to Vivado HLS. 148

xi

A.1 Complete Performance and Area Metrics for Vivado HLS and
CommercialCompiler tools. 156

A.2 Complete Performance and Area Metrics for DWARV 2.0 and
3.0 tool versions. 158

A.3 Complete Performance and Area Metrics for LegUp 2.0 and
3.0 tool versions. 159

A.4 Complete Performance and Area Metrics for PandA 0.9.0 and
0.9.1 tool versions. 160

xii

List of Figures

1.1 High-Level Overview of Tool-Chain Used to Program MOLEN. 5

1.2 Overview of the Connections Between Challenges, Chapters,
Contributions and Publications. 10

1.3 DWARV Version Evolution Based on Thesis Chapters. 12

2.1 Classification of High-Level Synthesis Tools based on Input
Language. 15

3.1 An Overview of the Molen Platform with an Indication of the
Flow of Instructions Through the Platform [60]. 40

3.2 Overview of the Delft Workbench Tool-Chain [60]. 42

3.3 Molen Backend Synthesis Flow. 44

3.4 Simulation Flow for Verifying Delft Workbench Auto-
mated Reconfigurable VHDL Generator (DWARV) Generated
VHDL Kernels. 45

3.5 CoSy Framework Elements: Supervisor, Engines, Views and
Intermediate Representation (IR). 50

3.6 Xilinx Virtex-5 ML510 Hardware Platform. 51

3.7 Molen Implementation on the ML510 Hardware Platform. . . 52

3.8 C-to-FPGA steps: (a) CFG; (b) BB2 DFG; (c) BB2 generated
Hardware. 55

4.1 DWARV 2.0 Engines. Clock-wise Sequential Execution of
Engines Starting from CFront. 63

4.2 DWARV 2.0 Speedups vs. LegUp 2.0 times. 66

xiii

4.3 DWARV 2.0 vs. LegUp 2.0 Execution Time per Area Com-
parison. 69

5.1 H.264 Generation Tool-Chain Flow. 75

5.2 Connection between CCU and processor (left) and HdS layers
(right). IMEM is the instruction memory of the processor,
while DMEM is the data memory that is shared between both
the processor and the CCU. 77

5.3 HdS IP-XACT extensions for layer 1. 78

6.1 Motivational Examples: a) Formal Representation; b) No Un-
roll and 1+, 1*, 1/ units; c) 2 Unroll and 1+, 1*, 1/ units; d) 2
Unroll and 2+, 1*, 1/ units; e) 2 Unroll and 1+, 1*, 1/ units; f)
2 Unroll and 1+, 1*, 2/ units; g) 4 Unroll and 1+, 1*, 1/ units;
h) 4 Unroll and 4+, 4*, 4/ units; 85

6.2 optimizeForArea Main Function of the Algorithm. 89

6.3 Algorithm Integration with DWARV2.0 Compiler. 90

6.4 VectorSum test case. 91

6.5 MatrixMult test case. 91

6.6 FIR test case. 91

6.7 Matrix multiplication: 20% area design constraint. 93

6.8 Matrix multiplication ROI for 20% area design constraint. . . 95

6.9 Matrix multiplication: 30% area design constraint. 95

6.10 Matrix multiplication: 50% area design constraint. 96

6.11 Matrix multiplication: 100% area design constraint. 97

7.1 (a) C-Code; (b) Jump- ; (c) Predicated-Scheme. 103

7.2 Jump Scheme . 104

7.3 Balanced if branches. 105

7.4 Unbalanced if branches . 105

7.5 Synthetic Case Studies. 106

7.6 Execution Sequence of FSM States. 107

7.7 Engine Flow to Implement SaPA. 109

xiv

7.8 Data Dependency Graphs. 110

7.9 Predicated Execution (PE) and SaPA speedups vs. JMP Scheme. 112

8.1 Various If Resolution Possibilities. 117

8.2 Period-Aware Scheduling Flow. 119

8.3 Results for Placing Loop-Optimising Engines after Static Sin-
gle Assignment (SSA) Engines. 126

8.4 Comparison of DWARV without (baseline) and with loop-
unrolling (unroll factor set to 128). 127

8.5 Influence of the maxfactor option on the execution time. . . . 130

8.6 Average execution time speedup of the different optimization
engines. 131

8.7 Impact of optimisations for DWARV2.0 and LegUp 2.0. The
graph shows pairwise normalized results of optimized vs base-
line version for each compiler. The goal is to show the opti-
mization potential. Results between compilers are thus not
comparable. 132

9.1 Hardware Accelerator Required Memory Connections. 137

9.2 Execution Time Speedups of DWARV 3.0 compared to
DWARV 2.0 . 144

9.3 Execution Times Normalized to DWARV3.0 Execution Time. . 145

9.4 Execution Cycles Normalized to DWARV3.0 Cycles. 146

9.5 Estimated Max. Frequencies Normalized to DWARV3.0 Fre-
quency. 147

B.1 Matrix multiplication ROI for 30% area design constraint. . . 161

B.2 Matrix multiplication ROI for 50% area design constraint. . . 162

B.3 Matrix multiplication ROI for 100% area design constraint. . . 162

xv

List of Listings

3.1 C-to-FPGA Example Application and Instrumented Assembly
Code . 53

3.2 C-to-FPGA Example Function Code 54

3.3 C-to-FPGA Generated VHDL Excerpt for BB2 DFG 56

8.1 Engine setlatency Excerpt 119

8.2 Example of a Procedure Declaration with Multiple Memory
Spaces. 122

8.3 The loop of the count alive kernel 128

8.4 The modified loop of the count alive kernel 128

8.5 The main loop of the bellmanford kernel 129

xvii

List of Acronyms and Symbols

ASIC Application-Specific Integrated Circuit

CCU Custom Computing Unit

CDFG Control Data Flow Graph

CSP Communication Sequential Processes

DDG Data Dependency Graph

CPU Central Processing Unit

CSE Common Subexpression Elimination

DSE Design Space Exploration

DSL Domain-Specific Language

DSP Digital Signal Processor

DWARV Delft Workbench Automated Reconfigurable VHDL Generator

DWB Delft Workbench

ELF Executable and Linkable Format

FF Flip Flop

FMax Maximum Frequency

FP Floating-Point

FPGA Field-Programmable Gate Array

FSM Finite State Machine

gcc GNU Compiler Collection

GPL General-Purpose Language

GPP General-Purpose Processor

xix

GPU Graphics Processing Unit

GUI Graphical User Interface

HDL Hardware Description Language

HdS Hardware-dependent Software

HLL High-Level Language

HLS High-Level Synthesis

HW/SW Hardware/Software

ILP Instruction Level Parallelism

IT Information Technology

IR Intermediate Representation

IP Intellectual Property

ISA Instruction Set Architecture

LLVM Low Level Virtual Machine

LUT Lookup Table

RA Reconfigurable Architecture

RC Reconfigurable Computing

RTL Register Transfer Level

SaPA Speculative and Predicative Algorithm

SoC System on Chip

SSA Static Single Assignment

VLIW Very Long Instruction Word

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuits

XREG eXchange Register

xx

1
Introduction

COMPILERS are nowadays an indispensable software tool and are one
of the enablers behind the exponential growth of the Information
Technology (IT) domain in the last decades. A compiler can be

defined as software that performs a translation of a code written in a high-
level language (HLL) to a different, lower-level language, which is closer
to the specific representation used by the target computer. The importance
of having compilers was immediately clear after the appearance of the first
computers on the market, i.e., the Atanasoff-Berry Computer (ABC) [87] and
the ENIAC [67] in the 1940s, for which the low-level manual programming
method (i.e., configuring the computers to perform useful work) was very
time consuming besides being error-prone. As a consequence of the difficulty
of writing programs in the lowest-level programming language, the idea of
higher abstractions appeared. Subsequently, an automated process (the com-
piler) would translate from the abstract language to the low-level language.

Since Grace Hopper designed the first compiler for the A-0 System language in
1952, a substantial number of compilers have been implemented and released
by the software community for an increasing number of high-level program-
ming languages. From these compilers, it is worth mentioning the FORTRAN
compiler designed by John Backus for the IBM-704 computer in 1954-57,
the ALGOL58 compiler for the first general imperative language in 1958, and
the first cross-compiler COBOL demonstrated on the UNIVAC II computer
in 1960. This first generation of compilers influenced all subsequent com-
pilers, such as Ada, C, Pascal, Simula. The increasing number of available
compilers and high-level languages, coupled with the fast increasing proces-
sor frequencies, the decreasing price for hardware resources, and the invention
of the internet are the main reasons for the wide-spread adoption of general-
purpose computers in the late 1980s. The under-the-hood general Central Pro-
cessing Unit (CPU)s of these computers is what made the IT domain one of

1

2 CHAPTER 1. INTRODUCTION

the biggest technological revolutions of the 20th century. Nevertheless, this
progress would not have been possible without the availability of high-level
abstraction languages and associated compilers that hid the complexity of pro-
gramming these general-purpose machines and that allowed for the fast cre-
ation of general-purpose software by a wide range of engineers.

However, by the first decade of the 21st century, the frequency scaling problem
of a CPU was becoming more evident as the size of the elemental unit of hard-
ware, i.e., the transistor, was reaching its threshold value. At the same time,
the demand for computational power was growing higher than ever before be-
cause every industry was adopting IT. Until recently, the increasing processing
requirements were satisfied by increasing the frequency of the CPU. As this
becomes increasingly difficult to achieve, new solutions to maintain the same
performance increase per year ratio are investigated. One straightforward solu-
tion is to increase the number of processing units, i.e., homogeneous multi-core
computing. Unfortunately, this approach does not always scale. For example,
for single applications containing large parts of parallelizable code, increasing
the number of cores beyond a small amount of cores (e.g., four cores) does
not increase the application’s performance further. The main reason for this
performance wall is the communication overhead, which increases greatly as
the number of cores increases and end up taking more time than the actual
computations [23]. Furthermore, the fixed amount of computational resources
on CPUs is also a limiting factor in the possible speedup that can be achieved
on these multi-core platforms. These problems, coupled with the drastic de-
crease in price for the transistor, which led to the possibility of directly using
hardware as a general-purpose platform, made heterogeneous computing an
economically feasible alternative.

A heterogeneous computing system can be defined as an electronic system that
is composed of different types of computational elements or cores, with each
core being able to perform a different set of tasks than the others. What makes
this approach more flexible and has the potential to increase the system per-
formance beyond the wall that homogeneous systems hit, is that some of the
cores used in a heterogeneous system do not have predefined, generic, execu-
tion pipeline stages that are needed to work for every scenario. Instead, these
cores can be programmed on the fly for the specific functionality required and
can allocate as many hardware resources as needed. This is particularly true
for Reconfigurable Architecture (RA)s applications used mostly in the embed-
ded systems domain. However, the programmability of these new systems that
can reconfigure based on system requirements poses major challenges, similar
to how software compilers had their own challenges when they first appeared

1.1. PROBLEM OVERVIEW 3

more than 50 years ago; and as the history had taught us, the success and rate
of adoption of these heterogeneous systems depends greatly on the maturity
of tools (i.e., compilers) that do allows us to program them easily. Therefore,
in this thesis we will address some of the issues regarding hardware compilers
for RA using applications from the embedded systems domain.

1.1 Problem Overview

Heterogeneous systems can be considered the next evolutionary step in the
history of (high-performance) computers after homogeneous systems. Their
advantage is the combination of general-purpose processors with predefined
specific accelerators to perform the expensive (i.e., time-consuming) computa-
tions for a particular (set of) application(s), thus increasing the overall system
performance by delegating the computationally intensive tasks to those specific
accelerators (cores). However, designing predefined heterogeneous systems is
not always enough to guarantee their success. One of the most widely known
examples of a heterogeneous system is the IBM’s Cell Broadband Engine pro-
cessor [46]. Although the heterogeneous approach offers more flexibility and
higher performance than the standard homogeneous multi-core computing, the
lack of reconfigurability of these architectures is still restrictive when it comes
to performing well for various classes of computations. Consequently, the
adoption of such a system can be prohibited by its high application develop-
ment cost which cannot be amortized. Furthermore, implementing new algo-
rithms on a predefined architecture can be also a very time consuming task. In
our opinion, even though the Cell processor was a success for the Playstation 3,
because the Cell architecture did not include reconfigurable hardware to allow
for a different utilization of resources, it could not be easily applied in other
types of applications. Although, at that time, due to the lack of mature tools
and languages to program reconfigurable devices, supporting reconfigurability
wouldn’t have had a different impact on the outcome of the Cell processor,
which was abandoned in 2009, the story of the Cell architecture showed the
advantages and the need to design reconfigurable devices.

Reconfigurable computing can be defined as a heterogeneous computer ar-
chitecture with increased flexibility by allowing the specific hardware accel-
erator resources available on the system to be reconfigured. The concept of
reconfigurable computing was introduced by computer scientist Gerald Estrin
in the 1960s [25]. However, due to the lack of reconfigurable hardware avail-
able that could be used for general-purpose applications, research for this type

4 CHAPTER 1. INTRODUCTION

of computing platforms stagnated until the second part of the 1990s. With the
appearance of FPGA devices that could be reconfigured and were not expen-
sive for general-purpose usage, the stage was set for a renaissance in this area.
One of the first reconfigurable systems to be designed was the Garp proces-
sor [17] from Berkeley University in 1997. The success of this research project
marked the shift from homogeneous to heterogeneous reconfigurable systems,
and in the first decade of the 21st century a number of academic reconfigurable
processor architectures were proposed.

MOLEN Machine Organisation [24, 73] is a reconfigurable architecture de-
veloped at TU Delft and one of those first heterogeneous reconfigurable sys-
tems introduced in the 2000s. The MOLEN programming paradigm consists
of a one-time extension of the Instruction Set Architecture (ISA) to implement
arbitrary functionality. In this thesis, we employ MOLEN as the reconfigurable
platform on which all experiments will be performed. This machine organiza-
tion will be described in detail in Chapter 3. For the scope of this introduction,
it is sufficient to understand that this architecture is essentially composed of
a CPU tightly connected to an FPGA, exchanging data via a shared memory.
Figure 1.1 depicts the Delft Workbench tool-chain showing a simplified high-
level overview of the steps involved in programming both the software and
the hardware parts of the MOLEN machine illustrated by the Heterogeneous
Hardware Platform box on the bottom of the figure.

One of the Molen objectives is to improve the performance of legacy code.
Starting from an application completely written in a HLL, i.e., C in this par-
ticular case denoted by *.c box, the first step is to profile the application and
identify the spots in the code that have high computational demands. In this
work, unless stated otherwise, the application under discussion is written in C.
The result of the Profiling and Cost Estimation execution will identify hotspots
that are good candidates for acceleration when moving these parts to hardware.
Based on a Quantitative Model that contains information about how to quan-
tify the amount of computational resources required by a particular piece of
code and how many resources it would allocate, coupled with particular User
Directives that indicate how to interpret those quantifications in terms of what
can be moved to hardware and what should not, the next step in the tool-chain
restructures the application. This is denoted by the C2C: application restruc-
turing box in the figure, which transforms the code in such a way that further
tools down the tool-chain can process it. MOLEN Compiler is the tool that
compiles the software part, outputting an assembly file *.s instrumented with
calls to hardware. These calls are set up according to a predefined Architecture
Description that contains information regarding sizes of exchange registers

1.1. PROBLEM OVERVIEW 5

Heterogeneous Hardware Platform

General Purpose

Processor
CCU1 CCUn

*.c

Profiling and Cost

Estimation

C2C: application

restructuring

Quantitative Model

User Directives

Architecture Description

Molen

Compiler

HDL Generation
Manual Design

IP Library

*.s *.vhd

Figure 1.1: High-Level Overview of Tool-Chain Used to Program MOLEN.

(i.e., registers used to transfer function parameter values to/from hardware),
memory data and address sizes and memory access times (i.e., the number of
cycles required to access the memory).

To obtain the hardware design required to implement the custom hardware
logic depicted in the figure by the Custom Computing Unit (CCU) boxes, three
approaches can be used. The first is to use already available, i.e., off-the-shelf,
possibly third-party IP cores from an existing IP Library. This is the easiest
method offering a balanced trade-off between the core performance and the
time spent to obtain the hardware solution. However, this method is not al-
ways available or satisfactory from a performance point of view. Therefore,
a second option is to manually design the required functionality. This gives
the best performance, and it is usually used for highly critical applications for
which automated generation of the hardware is not satisfactory. However, this
requires long design times that conflict with nowadays decreasingly smaller
times-to-market. Therefore, this option is also gradually becoming unavail-
able. This fact leaves automation, i.e., HDL Generation, as the only viable
solution to obtain hardware solutions for and from software programs.

However, currently there is a substantial gap between the performance ob-
tained with manual implementation versus automated generation. The main

6 CHAPTER 1. INTRODUCTION

reason is that “programming” the hardware is not trivial. Several issues re-
garding the programmability of the hardware are addressed in this work, such
as what optimizations are necessary, how to map software constructs to hard-
ware logic elements, how to integrate hardware compilers in large tool-chains
and others. The main challenges addressed in this work are summarized in
the next section. Similar to the research performed in software compilers from
more than five decades ago, likewise research and optimizations are neces-
sary to close the gap between automatically generated hardware and manual
designs as it is still the case today. Therefore, in this thesis we focus on the
development, optimization, and integration of a hardware compiler.

1.1.1 Dissertation Scope and Challenges

The work performed in the scope of this dissertation was conducted within the
seventh Framework Programme (FP7) REFLECT [70] and the Medea+ Soft-
Soc European Union (EU) projects. The first project focused on a holistic
approach to integrate the concept of software “aspects” into the software/hard-
ware co-design flow by developing, implementing, and evaluating a novel
compilation and synthesis system approach for FPGA-based platforms. The
REFLECTs approach intended to solve some of the problems that appear when
efficiently mapping computations to FPGA-based systems. In particular, the
use of aspects and strategies was proposed to allow developers to try differ-
ent design patterns and to achieve solutions design-guided by non-functional
requirements. In this respect, the need of a modular and easily extendable hard-
ware compiler was essential to allow the run-time adaptation of the hardware
generation process based on different aspect requirements that implied that
different selections and orderings of compiler optimizations are possible. The
second project, SoftSoC, aimed at solving the main System on Chip (SoC) pro-
ductivity bottleneck by providing Hardware-dependent Software (HdS)1 solu-
tions to enable SoC designers to aggregate multiple HW IPs with their associ-
ated HdS into an efficient design. Concretely, a method was sought to allow a
seamless integration of different party tools based on HdS and IP-XACT [1]
descriptions. IP-XACT is a XML-based standard to describe hardware, i.e.,
Intellectual Property (IP) cores, to facilitate a seamless integration in third-
party SoC. One particular case study investigated how to integrate two orthog-
onal computational models, namely DWARV2.0 respectively Compaan Design
(described in Chapter 5), using the above mentioned descriptions. The com-
putational models differ in the way they treat the memory, i.e., the former tool

1HdS is an IP (software) driver. These two definitions are used interchangeably in the text.

1.1. PROBLEM OVERVIEW 7

assumes a shared memory interface, whereas the latter assumes a distributed
memory model.

Therefore, the challenges addressed in this thesis can be directly derived from
a subset of goals of the above-mentioned projects and can be summarized as
follows:

1. Analyze, design, and implement a highly modular hardware compiler
that can be seamlessly extended with new or existing optimizations. Fur-
thermore, the compiler should allow integration of external modules to
facilitate an aspect-oriented design methodology.

2. Analyze, test, and propose a first set of IP-XACT extensions to support
modeling of HdS in order to facilitate the automatic integration of gen-
erated hardware descriptions into large multi-vendor IPs SoC projects.
Furthermore, the implications regarding the support available in a hard-
ware compiler should be studied.

3. Analyze how area constraints are propagated through a hardware com-
piler. Concretely, investigate and devise an optimization model that sup-
ports the propagation of area constraints to the final generated HDL code
output.

4. Analyze what well-known software optimizations can be applied to
hardware generation. Look at classes of software optimizations and
study if, how, and when these are beneficial in a hardware context. At
the same time, consider individual optimizations and investigate how
they should be changed given the new hardware context in which more
resources became available.

5. Provide an overview and extensive comparison of different hardware
compilers, both commercial and academic.

1.1.2 Contribution of the thesis

The main contributions of the work proposed in this dissertation are directly
related to the described challenges. The following list briefly describes the
contributions, where each numbered contribution corresponds exactly to the
challenges with the same number from the previous list:

1. Design, implement, and evaluate a new research compiler based on the
CoSy commercial compiler framework. This new version of DWARV

8 CHAPTER 1. INTRODUCTION

has a higher coverage of accepted C-language constructs. This is par-
tially because the underlying compiler framework offers standard low-
ering (i.e., from high-level to low-level constructs mapping) transforma-
tions, which essentially allow the developer to implement just the impor-
tant hardware primitives (e.g., goto state) from which all high-level con-
structs are composed. Furthermore, using CoSy, we obtain a highly ro-
bust and modular compiler that can be integrated in different tool-chains
by extending it with custom compiler transformations to process third
party information (e.g., coming from aspect oriented descriptions) and
configure the process of hardware generation accordingly. We validate
and demonstrate the performance of the DWARV2.0 compiler against
another state-of-the-art research compiler. We show kernel-wise perfor-
mance improvements up to 4.41x compared to LegUp 2.0 compiler [18].

2. Propose HdS based IP-XACT extensions and show how hardware ker-
nels can be integrated into third party tool(-chains) automatically by us-
ing such descriptions. Therefore, we elaborate on the expressiveness of
IP-XACT for describing HdS meta-data. Furthermore, we address the
automation of HdS generation in the Reconfigurable Computing (RC)
field, where IPs and their associated HdS are generated on the fly, and,
therefore, are not fully predefined. We combine in this respect two
proven technologies used in MPSoC design, namely IP-XACT and
HdS, to integrate automatically different architectural templates used in
RC systems. We investigate and propose a first set of three IP-XACT
extensions to allow this automatic generation and integration of HdS in
RC tool-chains.

3. Propose for streaming applications, i.e., loop-based, an optimization to
control the unroll factor and the number of components, e.g., Floating-
Point (FP) cores, when the area available for the kernel is limited. We
assume thus that the hardware area for which a to be generated hardware
accelerator is limited. In this respect, two important parameters have to
be explored, namely the degree of parallelism (i.e., the loop unrolling
factor) and the number of functional modules (e.g., FP operations) used
to implement the source HLL code. Determining without any human
intervention these parameters is a key factor in building efficient HLL-
to-HDL compilers and implicitly any Design Space Exploration (DSE)
tool. To solve this problem, we propose an optimization algorithm to
compute the above parameters automatically. This optimization is added
as an extension to the DWARV2.0 hardware compiler.

1.2. DISSERTATION ORGANIZATION 9

4. Propose for control based applications, i.e., executing path selection
statements, a predication scheme suitable and generally applicable
for hardware compilers called Speculative and Predicative Algorithm
(SaPA). This technique takes into account the characteristics of a C-to-
VHDL compiler and the features available on the target platform. In-
struction predication is a well-known compiler optimization technique,
however, current C-to-VHDL compilers do not take full advantage of
the possibilities offered by this optimization. More specifically, we pro-
pose a method to increase performance in the case of unbalanced if-
then-else branches. These types of branches are problematic because,
when the jump instructions are removed for the predicated execution, if
the shorter branch is taken, slowdowns occur because (useless) instruc-
tions from the longer branch still need to be executed. Based on both
synthetic and real world applications we show that our algorithm does
not substantially increase the resource usage while the execution time is
reduced in all cases for which it is applied.

5. Provide an extensive evaluation of state-of-the-art hardware compilers
against DWARV3.0. At the same time, a thorough retrospection of ex-
isting high-level tools has been performed. The comparison included a
number of hardware compilers that comply with some predefined crite-
ria in which DWARV can be included, as well. In particular, we looked
at VivadoHLS, another ComercialCompiler, LegUp2.0 and 3.0, PandA
0.9.0 and 0.9.1, and two versions of DWARV, i.e. 2.0 and 3.0. The
results obtained will show how all these compilers compare to Vivado
HLS, which on average generated the most efficient hardware.

1.2 Dissertation Organization

The work described in this dissertation is organized in 10 chapters. Figure 1.2
highlights the chapters by relating them visually to the addressed challenges
and the specific contributions made, while showing the chapter connections
to the published papers and journals in the scope of this dissertation. The
oval box represents a conference proceeding while the hexagon represents a
journal publication. Furthermore, incoming chapter edges depict the fact that
the source chapter was published in the target publication while the reverse
represent the fact that the source publication was based on the target chapter.
The dotted hexagon on the bottom of the figure represents the fact that the
publication is submitted. The topic of each chapter is described below.

10 CHAPTER 1. INTRODUCTION

Chapter 2
Related Work

Chapter 4
DWARV 2.0

Chapter 5
IP-XACT for RA

Chapter 6
Area Constraint

Propagation in HLS

Chapter 8
HW&SW Optimization

Integration

Chapter 7
SaPA Optimization

Chapter 9
HW Compilers

Evaluation

Challenge 1
Analyse, design and implement a highly

modular hardware compiler.

FPL’12 ASAP’11

ReConFig’12 FPT’12TCAD’14

TRETS’13MICPRO’13

Challenge 2
Analyse, test and propose IP-XACT

extensions to support modelling of HdS
to facilitate multi-vendor IPs integration.

Challenge 3
Analyse how the hardware physical area
constraint parameter influences different
optimizations available in a HW compiler.

Challenge 4
Analyse existing software optimizations
and adapt them correspondigly for the

hardware generation compilation.

Challenge 5
Overview HLS state-of-the-art compilers
and asses the performance of DWARV3

against these other tools.

Contribution 1
Design, implement and evaluate a HLS

tool based on the CoSy compiler
framework.

Contribution 2
Proposed IP-XACT extensions to model
Hardware dependent Software required
to integrate generated IPs automatically.

Contributio 3
Proposed an optimization to control the
resource count and unroll factor based
area contraint given as input parameter.

Contribution 4
Proposed a predicative and speculative

scheme inspired by the traditional if-conv
scheme tailored to hardware execution.

Contribution 5
Survey and evaluated state-of-the-art
HLS tools. Compared DWARV3.0 vs.
them. Overviewed SW OPT for HW.

Figure 1.2: Overview of the Connections Between Challenges, Chapters, Contribu-
tions and Publications.

In Chapter 2, we present related work in which we describe past and present
hardware compilers. The survey will be categorised based on the design (i.e.,
accepted) input language in domain-specific compilers respectively generic
HLS tools. The particular tool description includes information such as for
what application domain the tool can be used, what extensions are required,
if the tool offers verification support, as well as under what type of license
it is available (commercial or academic). Finally, we show for each tool the
differences versus DWARV.

In Chapter 3, the previous (i.e., background) work is presented. We describe
the Delft Workbench tool-chain, the Molen Machine Organization, and the
simulation and synthesis flows used to validate and implement automatically
generated hardware designs. Subsequently, we discuss important similarities
and differences between software and hardware compilers, after which, we
present the first version of the DWARV compiler that provided the inspiration
for the current version. We also present the CoSy compiler framework used

1.2. DISSERTATION ORGANIZATION 11

to implement the new version of DWARV. Finally, we describe the complete
C-to-FPGA tool-flow based on a simple example.

In Chapter 4, we describe DWARV2.0, the first DWARV version implemented
in CoSy. The performance of the new version will be benchmarked by com-
paring and evaluating it against the LegUp 2.0 academic compiler.

Chapter 5 presents the HdS IP-XACT based extensions required when gen-
erating code for RC applications. These extensions are needed because the
current IP-XACT standard supports only hardware modeling (i.e., IP related),
but it does not allow to model software, that is, to model IP drivers that are re-
quired to integrate generated hardware automatically in SoC. The IP-XACT
standard is used to facilitate the automatic integration of existing hardware
components used by hardware designers in SoC design.

In Chapter 6, an optimization algorithm to generate hardware kernels subject to
input area constraints is presented. These area constraints are highly important
in the Molen context, where we can have a maximum number of accelerators
that can be executed in parallel by a specific architecture implementation. In
this respect, generating hardware accelerators that can fit these a prior defined
FPGA slots is very important.

In Chapter 7, we present another hardware specific optimization. This op-
timization, called SaPA, is based on a relaxation of the traditional software
if-conversion technique. The results obtained indicate that this optimization
could be universally applied in each hardware compiler, because it does not de-
crease the accelerator performance (not even in unbalanced if-then-else cases),
while, at the same time, the hardware area is negligibly increased.

In Chapter 8, we present important hardware optimizations that allowed us to
optimize DWARV2.0 by a factor of 2x to 3x. Furthermore, we present current
work oriented towards the automation of selecting and integrating optimiza-
tions in a compiler on a case by case basis. The reason behind this work is the
fact that including existing standard optimizations randomly in a compiler is
not a recipe for success. The order in which these are applied and how they are
configured play a very important role, as well.

Finally, Chapter 9 will show comparison results for DWARV3.0 against a
newer version of LegUp (i.e. LegUp 3.0) and other three compilers, i.e. Vivado
HLS, PandA 0.9.1 and another CommercialCompiler (CC2). Conclusions are
presented in Chapter 10, where we summarize the main contributions of this
thesis, and we propose a list of open questions and future research directions.

2CC is not a real name. This is hidden to avoid license issues w.r.t publication rights

12 CHAPTER 1. INTRODUCTION

DWARV 1.0 DWARV 2.0 DWARV 3.0

Chapter 4
Chapter 6
Chapter 7
Chapter 8

used in Chapter 1,2,3 used in Chapter 5 used in Chapter 9

Figure 1.3: DWARV Version Evolution Based on Thesis Chapters.

A final remark is needed before describing each chapter to clarify the DWARV
version scheme. Figure 1.3 depicts DWARV’s version evolution based on dis-
sertation chapters. We see that three versions of DWARV were involved. We
started with a legacy version of DWARV (i.e. 1.0), then, based on arguments
described in Chapter 4 we reimplemented the compiler in the CoSy [26] com-
piler framework to obtain a second major version (i.e. DWARV2.0), to arrive
in Chapter 9 at DWARV3.0 by implementing the optimizations described in
Chapters 6 to 8.

2
Related Work

HARDWARE compilers that take as input a High-Level Language (HLL),
e.g., C, and generate Hardware Description Language (HDL), e.g.,
VHDL, are maybe not a new but increasingly important research

topic. These compilers have been used increasingly in the last decade to gener-
ate hardware for various application domains in order to accelerate the compu-
tationally intensive part(s), when adopting the Hardware/Software (HW/SW)
co-design paradigm. One example is to speedup a MJPEG application by gen-
erating VHDL code for the DCT function (called also a kernel), synthesiz-
ing it, and merging the generated bit file with the Executable and Linkable
Format (ELF) file generated by the software compiler for the rest of the ap-
plication and running it on a mixed platform, i.e., processor (e.g., ARM, Pow-
erPC) combined with a co-processor (e.g., FPGA) [73].

To do fast design space exploration of the different configuration options avail-
able and select the best mapping (i.e., HW/SW partitioning depending on
the available area and required throughput), we need to be able to evaluate
the hardware implementations for the different functions chosen for hardware
execution. Performing this task by hand requires not only hardware design
knowledge to implement these application functions in hardware, but also re-
quires the developer to go through the typical iterative implement-test-debug-
implement cycle, which is very time consuming. This, in turn, will drastically
limit the effectiveness of the design space exploration analysis. As a result, the
ever-increasing time-to-market pressure will not be reduced. A solution to this
problem are hardware generators, referred to also as high-level synthesis tools,
which are essentially HLL-to-HDL compilers. This allows the designer to
immediately obtain a hardware implementation and skip the time-consuming
iterative development cycle altogether.

13

14 CHAPTER 2. RELATED WORK

2.1 High-Level Synthesis Tools

In this section, we present related research projects that addressed the process
of automating HDL generation from HLLs. We will describe here important
features such as supported input/output languages, underlying compiler frame-
work upon which the tool has been built (where this information is available),
and as a direct consequence, the optimizations available, the target applica-
tion domains, support for floating- and/or fixed-point arithmetic, and if the
tool supports automatic verification by means of automatic test bench genera-
tion. Therefore, in this chapter we will emphasize on the HLS state-of-the-art
and describe how the DWARV compiler compares to this other work in the
field. The goal is to show that our compiler, when compared with the oth-
ers, accepts a large sub-set of unmodified C-language constructs, and that it
generates code for any application domain code, which is one of the design
goals behind DWARV. In subsequent chapters, we will show that DWARV is
modular, and it can be easily extended by including two custom designed op-
timizations (Chapters 6 and 7), as well as that it has great potential for further
improvement by adding standard CoSy framework optimizations (Chapter 8).
Finally, Chapter 9 will show that DWARV3.0’s performance, the final version
at the time of writing this dissertation, is comparable with commercial com-
pilers, and, that between the compared academic compilers, for the presented
applications and requirements, it performs the best.

The tool presentation will be done according to a classification depending
only on the design input language as shown in Figure 2.1. We distinguish
between two major categories, namely tools that accept Domain-Specific
Language (DSL)s and tools that are based on General-Purpose Language
(GPL)s. DSLs are composed of new languages invented specially for a par-
ticular tool-flow and C-based dialects, which are languages based on C ex-
tended with pragmas/annotations to convey specific hardware information to
the tool. GPLs are also split in two categories, namely procedural languages
and object-oriented languages. Under each category, the corresponding tools
are listed in green, red or blue fonts standing for in use, abandoned, respec-
tively, no information is known about the status of the tool. Furthermore, the
bullet type, defined in the figure’s legend, denotes the target application do-
main for which the tool can be used. Finally, the underline in the figure means
the tool supports also SystemC, that is a combination of both procedural and
object-oriented language, extended with constructs to model hardware-specific
information.

We emphasize that the focus in this chapter is on existing High-Level Synthesis

2.1. HIGH-LEVEL SYNTHESIS TOOLS 15

High Level Synthesis
Tools

Domain Specific
Languages

Generic
Languages

NEW
Languages

C-extended
Languages

Procedural
Languages

Object Oriented
Languages

 CyberWorkBench (BDL)

 Bluespec (BSV)

 PipeRench (DIL)

 HercuLeS (NAC)

 CoDeveloper (ImpulseC)

 DK Design Suite (HandelC)

 SA-C (SA-C)

 Garp (C pragmas)

 Napa-C (C pragmas)

 eXCite (CSP pragmas)

 ROCCC (C extended)

 Vivado HLS CtoVerilog

 CatapultC C2H

 CtoS SynphHLS

 SPARK MATCH

 CHC AccelDSP

 LegUp CHiMPS

 Bambu DEFACTO

 GAUT gcc2verilog

 Trident

 Maxeler (MaxJ)

 KIWI (C#)

 SeaCucumber (Java)

 Cynthesizer (SystemC)

All domains

Streaming
Imaging

Stream/Image
Loop/Pipeline
DSP
DataFlow
.NET

DSE

Application domains: Tool status:

● In Use
● Abandoned
● N/A

Figure 2.1: Classification of High-Level Synthesis Tools based on Input Language.

(HLS) tools. Complementary approaches intended for defining and program-
ming the different heterogeneous (reconfigurable) hardware system compo-
nents are considered generic and situated at a higher level of abstraction than
the tools described in this work. Therefore, these multi-platform languages are
not considered in the reminder of the chapter. Two such well-known program-
ming languages not described here are OpenCL [36] and SystemC [50].

We present next the different compilers available, whereas Tables 2.1 and 2.2
in the next section summarizes all the important findings. However, before
we start to describe each related compiler, it is important to note that all these
tools differ in one important aspect from DWARV2.0. The tool proposed in
this work is built upon a commercial compiler framework, the CoSy compiler
framework, inheriting the advantage that it is extremely robust and flexible
to extend. Furthermore, the large amount of framework optimizations offer a
great potential for experimenting with already existing software optimizations.
The CoSy compiler framework will be described in detail in Chapter 3.

16 CHAPTER 2. RELATED WORK

2.1.1 Domain-Specific Languages

DSLs are languages created for a specific purpose. As a result, these can give
very good results for the domain in which they are applied. However, their
restricted applicability by construction limit the application domain. In our
work, we target to support all application domains, and as such, our approach
is orthogonal to DSLs.

2.1.1.1 New Languages

These are languages that are not based on any previous language or that re-
semble the syntax of an existing language, but, it adds many and complex
extensions that require a considerable amount of time to be learned. The syn-
tax and semantic (extensions) are defined from scratch to take advantage of
tool-flow organization and hardware characteristics optimally.

CyberWorkBench

CyberWorkBench (CWB) [62, 94] is a set of synthesis, verification and sim-
ulation tools intended for the hardware system-level designer of very large
Application-Specific Integrated Circuit (ASIC)s and System on Chip (SoC)s.
The tool-set is offered by NEC, a Japanese multinational provider of informa-
tion technology, since the beginning of the 21st century. However, actual HLS
capabilities have been commercially available since 2011. The tool input is Be-
havioral Description Language (BDL), which is a super-set of the C language,
extended with constructs to express hardware knowledge in the high-level de-
scription. For example, user-defined variables bit-width, synchronization, ex-
plicit clock boundaries specification, and concurrency constructs are some of
these C language extensions. Furthermore, the programmer can express in
BDL the mapping of variables to wires, arrays to memories or register files,
the binding of modules or the amount of loop unrolling.

The synthesis flow of the CyberWorkBench offers the possibility to select
between three types of scheduling approaches: fixed scheduling, automatic
scheduling with resource sharing between alternative branches, and pipeline
scheduling. The fixed scheduling is driven by the user-specified clock bound-
aries and strictly follows the control flow of the input description. The au-
tomatic allows concurrent execution between independent basic-blocks. The
pipeline scheduler can be invoked for data-dominated descriptions and relies
on user-specified pipeline initiation interval. The tool can generate both VHDL

2.1. HIGH-LEVEL SYNTHESIS TOOLS 17

and Verilog based hardware designs. Furthermore, two types of verification are
supported, i.e., formal by running C-RTL equivalence checkers and informal
by performing cycle-accurate simulations. The tool supports both floating and
fixed-point arithmetic.

Bluespec

Bluespec Compiler (BSC) [13], developed by BlueSpec Inc. and available
since 2007, is a tool that uses Bluespec SystemVerilog (BSV) as design lan-
guage. BSV is essentially a high-level functional HDL based on Verilog and
inspired by Haskell, where modules are implemented as a set of rules using
Verilog syntax. The rules are called Guarded Atomic Actions and express be-
havior in the form of concurrent cooperating FSMs [63]. The use of these
concepts make this language, and implicitly the BSC tool, appropriate only for
developers that have hardware design knowledge. Furthermore, verification
can be done only by manually writing test benches in BSV as well and con-
necting them to the generated designs. Although the company claims that it
offers solutions very close to the performances and areas obtained by manual
designs, the use of the tool requires both manual rewrites in the BSV language
as well as hardware knowledge.

PipeRench

PipeRench [32] [85] project was also one of the first that proposed reconfig-
urable architectures. The research was done at Carnegie Mellon University
around 2000. The PipeRench compiler was a restrictive one intended solely
for pipeline reconfiguration and generation in stream-based media applica-
tions. The source language is a dataflow intermediate language, DIL, that
is basically a single-assignment language with C operators. The output of the
tool is a bit stream representing the generated pipeline. In the process of obtain
this pipeline, the PipeRench compiler employs automatic bit width inference,
unrolls all loops and decomposes operators that exceed the target cycle time.

HercuLeS

HercuLeS [51, 52] is a new commercial product offered by Ajax Compilers
since 2013. HercuLeS targets whole-program hardware compilation featuring
ease of extension through pluggable analyzes and optimizations. NAC (N-
address code) is the IR used which is a new typed-assembly language created

18 CHAPTER 2. RELATED WORK

by a frontend available through GCC Gimple. The tool generates RTL VHDL
and self-checking VHDL test benches and it supports scalar, streaming and
array ports. VHDL-2008 fixed point and IEEE-754 and custom floating point
arithmetic can be generated as well. HercuLeS offers both frontend optimiza-
tions such as loop unrolling, array flattening through gcc and target specific
optimizations such as operation chaining.

2.1.1.2 C-dialect Languages

These are languages that are based on a previous language extended with a few
mechanisms (e.g., pragmas, keywords) to model hardware specific concepts
such as concurrency. These extensions are fairly easy to learn and do not
require a lot of time. Nevertheless, the fact that extensions are still required,
the applicability of these languages is impaired, as well.

CoDeveloper - Impulse-C

CoDeveloper is the HLS design environment provided by Impulse Acceler-
ated Technologies. This commercial product first released in 2003 includes
an Impulse-C compiler, based on the SUIF compiler framework [89], and re-
lated library functions intended for FPGA-based applications. Impulse-C is
the design language, and the commercialization of Streams-C [30] academic
language developed in 2000 at Los Alamos National Laboratory. Impulse-C
is based on a C-language subset and adds CSP style extensions required for
parallel programming of mixed processor and FPGA platforms. The gener-
ated HDL output can be in the form of both VHDL or Verilog files. Because
the basic principle of the CSP programming model consists of processes that
have to be independently synchronized and streams through which communi-
cation between processes must be performed, the application domain is limited
only to image processing and streaming applications. Hence, applications that
cannot be described in this model are not supported. In addition, the paral-
lelization of the algorithm has to be performed manually. The communication
between the processes and the streams implementation also has to be specified
explicitly through pragmas. Therefore, accelerating existing C applications in
the context of software/hardware co-execution is not a trivial task because both
manual rewrites as well as learning a new programming language are neces-
sary before the application can be compiled.

The tool supports several optimizations such as loop-invariant code motions,
common sub-expression elimination, constant propagation or constant fold-

2.1. HIGH-LEVEL SYNTHESIS TOOLS 19

ing. Furthermore, floating point operation can be supported through external
libraries. However, fixed point arithmetic is not permitted. Finally, CoDevel-
oper’s CoValidator tool offers automatic verification capabilities by means of
generating test vectors and HDL test bench only for stream (co stream) inter-
faces as well as scripts to invoke ModelSim for simulating the test bench.

DK Design Suite - Handel-C

DK Design Suite [33] from Mentor Graphics is an integrated environment that
since the acquisition of Agility in 2009 includes HLS capabilities by being
able to generate VHDL/Verilog from HLL descriptions. The design language
is Handel-C [34], first developed at Oxford University in 1996, and which is
based on a rich subset of the C language, but extended with language con-
structs required to aid the hardware synthesis process. Using these extensions,
the user needs to specify explicit timing requirements, and to describe the par-
allelization and synchronization segments in the code explicitly. In addition,
the data mapping to different memories has to be manually performed. Be-
cause of these language additions, the user needs advanced hardware knowl-
edge. Therefore, the tool is oriented more towards the hardware/FPGA de-
signer rather than the software developer.

The Handel-C input language does not support floating point types. How-
ever, the programmer can define data types with variable widths for fixed-point
arithmetic. Because Handel-C is based on the Communicating Sequential Pro-
cess (CSP) programming model, any original C-code has to be rewritten not
only to add the Handel-C language directives, but has also to be structurally
modified to cope with concepts such as combinational loops, i.e., breaking
them by adding extra delay statements in the code on undefined if-else paths.
Furthermore, because of the underlying CSP model, the application domain is
oriented towards streaming applications. Finally, the user manual downloaded
did not describe neither if automated verification through test bench generation
is possible nor what hardware compiler optimizations are available. Therefore,
using this tool is not trivial and is not intended for the general use considered
in this work.

Single-Assignment C

Single-Assignment C (SA-C) [61] is a C language variant in which variables can
be set only once, when the variable is declared. The language and its accom-
panied hardware compiler were developed in 2003 primarily at Colorado State

20 CHAPTER 2. RELATED WORK

University. This work provided the inspiration for the later ROCCC compiler.
Given that image processing algorithms were the target application domain,
this work falls into the category of compilers that have the application do-
main drawback, making it thus not comparable with DWARV2.0. Furthermore,
the language introduces new syntactical constructs, which require application
rewriting. Another big limitation is the fact that it did not accept pointers.
The authors of SA-C describe it as a language that is the closest to Streams-
C, but with the difference that their work focuses on loops and arrays and not
on streams and processes. The SA-C compiler included many optimizations
to reduce circuit size and propagation delay by performing constant folding,
operator-strength reduction, dead-code elimination, invariant-code motion and
common subexpression elimination. The output of the compiler was VHDL.
However, it did not offer any verification capabilities nor floating or fixed point
arithmetic support.

Garp

The Garp [17] architecture and C compiler were developed in 2000 at Berkeley
University. The main goal of the project was to accelerate loops of general-
purpose software applications. It accepts C as input and generates a bitstream
for the actual loop module. The compilation process implemented in the SUIF
compiler framework tackled two challenges, namely, excess code in loop bod-
ies and how to extract Instruction Level Parallelism (ILP) from sequential
code. The solution taken was very similar to those chosen in Very Long In-
struction Word (VLIW) processors, and it was based on the hyperblock con-
cept. Advanced techniques such as predication, speculative loads, pipelining
and memory queues were employed to obtain efficient designs.

Napa-C

Napa-C [31] project was one of the first to consider high-level compilation
for systems which contain both a microprocessor and reconfigurable logic.
The Sarnoff Corporation conducted this project around 1998. The Napa-C
language was a C variant that provided pragma directives so that the pro-
grammer (or an automatic partitioner) can specify where data is to reside and
where computation is to occur with statement-level granularity. The NAPA
C compiler, implemented in SUIF and targeting National Semiconductor’s
NAPA1000 chip, performed semantic analysis of the pragma-annotated pro-
gram and co-synthesized a conventional program executable combined with a

2.1. HIGH-LEVEL SYNTHESIS TOOLS 21

configuration bit stream for the adaptive logic. Loop pipelining was a powerful
optimization that Napa-C compiler employed. However, being one chip target
specific language, several language restrictions were present, such as pointers
usage and control constructs not being allowed. Furthermore, no floating or
fixed point operations were possible.

eXCite

eXCite [28] from Y Explorations is one of the first HLS tools available since
2001. The tool distinguishes itself by starting from a C-input that has to be
manually partitioned with the help of pragmas and select what parts are to be-
come hardware (both VHDL and Verilog RTL code supported). To perform
the communication between the software and hardware communication chan-
nels have to be inserted manually as well. This is one of the most important
tasks the user has to perform. These channels can be streaming, blocking or in-
dexed (e.g., arrays). Although different types of communications between the
software and hardware parts (e.g., streaming, shared memory) are possible, be-
cause the channel insertion is done manually, this step is time consuming and
requires the original application code to be modified.

eXCite support automated verifications by means of testbench generation that
is automatically created from the HLL application after the synthesis step. This
testbench can then be used with any RTL simulation tool to verify the same
inputs and outputs that were tested on the C behavior. The tool offers also a
number of powerful optimizations that can be fine-tuned, e.g., pipelining, bit
reduction, constant folding, loop flattening, algebraic eliminations or common
subexpression elimination.

ROCCC

The Riverside Optimizing Configurable Computing Compiler was one of the
first academic high-level synthesis tools, developed at University of Califor-
nia, Riverside, in 2005. The first version of the compiler [38] [39] was built
using SUIF2 [89] and Machine-SUIF [86] compiler frameworks from Stanford
respectively Harvard Universities. The project focused mainly on the paral-
lelization of the high computational intensity parts within low control density
applications. This restricts the application domain to streaming applications
mostly, and it means that the input C language accepted must be restricted only
to a small subset of the C-language. For example, only perfectly nested loops
with fixed stride, operating on integer arrays are allowed. Other examples of

22 CHAPTER 2. RELATED WORK

not allowed C-constructs include generic pointers, non-for loops, shifting by a
variable amount, multidimensional arrays or stream accesses other than those
based on a constant offset from loop induction variables. This last restriction
is needed to facilitate the generation of smart buffers, which can be defined as
customizable and reconfigurable caches in the hardware for the fetched mem-
ory values. This is a powerful concept that allows the optimization of the
memory sub-system by enabling to fetch live variables (i.e variables that will
be used again) only once.

In 2010, the tool underwent a major revision to transition to ROCCC2.0 [93].
At the same time, the tool was branched from being an academic tool to a
commercial one offered by Jacquard Computing Inc. [48]. One of the major
modifications was the replacement of the underlying compiler framework from
SUIF and Machine-SUIF, which were no longer supported, to LLVM [66]. Al-
though the new tool accepts the same fixed C subset and generates VHDL
code as well, major improvements have been done regarding modularity and
reusability. In the new version, VHDL can be generated for modules or for sys-
tems. Modules represent concrete hardware implementations of purely com-
putational functions and can be constructed using instantiations of previously
defined modules in order to create larger components. System code performs
repeated computations on streams of data implemented as loops that iterate
over arrays. System code may or may not instantiate modules, represent the
topmost perspective, and generate hardware that interfaces to memory systems
through array accesses.

In ROCCC2.0, a number of system specific optimizations (e.g., loop fusion,
loop interchange, loop unrolling or temporal common sub-expression elimi-
nation), optimizations for both systems and modules (e.g., multiply by const
elimination, inline modules, division by const elimination) and low level opti-
mizations (e.g., arithmetic balancing, maximize precision) are available. Fur-
thermore, floating point operations are supported by the use of library compo-
nents that need to be described in the ROCCC’s internal database. However,
neither fixed point arithmetic is supported, nor automatic verification by means
of automatic testbench generation is possible.

2.1.2 General-Purpose Languages

GPLs are, as the name suggests, existing languages that are used for any ap-
plication domain.

2.1. HIGH-LEVEL SYNTHESIS TOOLS 23

2.1.2.1 Procedural Languages

Procedural, or imperative, languages are languages where the computations
are expressed in functions using abstractions of machine code instructions and
executed sequentially. The C-language is used by the majority of the presented
tools in this section.

Catapult-C

Catapult-C [78] is a commercial high-level synthesis tool released by Mentor
Graphics in 2004, but currently maintained by Calypto Design Systems which
acquired it in 2011. Initially oriented towards the ASIC hardware developer,
over time, the product has become a powerful, complex but also complete de-
sign environment targeting both the ASIC and FPGA hardware design flows. It
offers high flexibility in choosing the target technology, external libraries, set-
ting the design clock frequency, mapping function parameters to either register,
RAM, ROM or streaming interfaces to name just a few options. Furthermore,
it accepts unrestricted ANSI C/C++ and SystemC inputs and generates both
VHDL and Verilog register transfer level (RTL) netlists as well as SystemC
code.

However, from the perspective of a software programmer, learning to use the
tool can be a difficult process given that little automated support is provided
by the tool in selecting which optimizations are best to apply. For example,
the memory organization and communication protocols have to be defined,
resources have to be selected and constrained, code transformations such as
loop unrolling, loop merging or loop pipelining have to be manually enabled.
This amount of extensive designer input required by the tool with respect to
both the applied optimizations and the actual mapping process makes it less
viable for a software designer that does not have in-depth hardware knowledge.
Nevertheless, good tool documentation and books [14] [29] exist on how to use
Catapult-C.

An important feature of the tool is verification. This can generate test benches
for ModelSim, for cycle accurate as well as RTL and gate level implementa-
tions of the design. On top of that, a verification test bench can be generated
that combines the original C++ design and test bench with the generated design
which applies the same input data to both designs and compares the output.
This speeds up verification substantially. Furthermore, fixed point arithmetic
is supported via SystemC fixed-point data types. However, Catapult-C will
not convert float or double into floating point hardware but will convert these

24 CHAPTER 2. RELATED WORK

operations to fixed point arithmetic. The developer will need to write a float-
ing point class to implement the portion of the floating point arithmetic that is
required for the design.

C-to-Silicon

C-to-Silicon (CtoS) [15] [16] is Cadence’s high-level synthesis tool dating back
to 2008. The tool does not restrict the application domain allowing for both
control- and data-flow types of codes to be compiled, with the exceptions of
a few minor syntax constructs such as post-incremental arithmetic or multi-
dimensional pointers. CtoS can generate different interface types, that is, it
can pass function array parameters both as a flat structure or implement an ad-
dressing scheme by either sending read and write requests for specific indexes
or streaming the array into the design. Loop related optimizations (e.g., loop
pipelining, loop unrolling) are the only compiler optimizations possible, and
they have to be selected and configured manually by the user. Floating-point
operations, variables, constants, and literal values are not supported and they
must be replaced with integer approximations or emulated via synthesized in-
teger arithmetic. However, arbitrary bit-width and fixed-point data types are
supported through SystemC data types.

CtoS accepts either timed or untimed applications written in C, C++ or Sys-
temC, and it outputs IEEE-1364 Verilog. However, if the input is not SystemC,
the tool will generate a SystemC wrapper for the corresponding input files us-
ing the import function design flow. This separate flow for non-SystemC appli-
cations causes the verification flow to be tool-dependent because the generated
SystemC wrappers contain extensions that do not comply with the OSCI Sys-
temC standard. As a result, the verification wrapper can be executed only by
Cadence IES - Incisiv Entreprise Simulator (SimVision tool). Furthermore, the
tool can perform only cycle-accurate verification by means of cycle-accurate
test benches, which implies that automated verification based on test bench
generation is not possible because if designs change timing (e.g., we want to
explore a different unroll factor; therefore, we need to schedule operations dif-
ferently), the test bench would need to be (manually) changed as well. More
precisely, each time we modify the design we would need to obtain accurate
latency and throughput numbers to rewrite the test bench accordingly. How-
ever, obtaining these numbers for data-dependent applications is not possible,
a typical scenario in HLS.

Although imposing SystemC as the main design language and requiring cycle-
accurate test benches renders possible a large number of system configurations

2.1. HIGH-LEVEL SYNTHESIS TOOLS 25

(e.g., implementation of different communication protocols between different
functions/modules), this highly increases the complexity of the tool as well,
making it accessible only for the hardware/ASIC designer. Furthermore, the
documentation is not always clear and terms such as combinational loops are
not well defined, resulting in a steep learning curve. According to the docu-
mentation, ”A loop is said to be combinational if at least one program execu-
tion from the top to the bottom of the loop does not include waiting for a clock
edge.” and ”Combinational loops must be eliminated before synthesis because
they cannot be implemented in hardware. CtoS considers a loop to be combi-
national if it cannot prove at compile time that any execution from the top to
the bottom of the loop takes more than one clock cycle.” Furthermore, ”some
functions can not be synthesizable because different paths through the function
require a different number of clock cycles to execute. This can be resolved by
inlining the function or by balancing the paths through the function to have the
same number of states”. However, doing this manually is not always easy nor
feasible given limited hardware knowledge.

SPARK

SPARK [41, 84] is a modular and extensible high-level synthesis research sys-
tem developed at University of California at Irvine in 2003. The SPARK com-
piler accepts ANSI-C without any restrictions on the input code, and it gener-
ates RTL VHDL code. The main goal of the project was particularly targeted
to multimedia and image processing applications along with control-intensive
microprocessor functional blocks. Hence, they provide support for broader
application domains. The optimizations set of the SPARK compiler include
frontend transformation such as loop unrolling, loop invariant code motion,
copy propagation, inlining, dead code elimination, but also specific scheduling
optimizations such as percolation/trailblazing speculative code motions, chain-
ing across conditions or dynamic cse. However, similar to related academic
projects of the time, no automated verification of the generated hardware de-
sign is possible. In addition, explicit specification of the available hardware
resources like adders, multipliers, etc. is required. Finally, no floating or fixed
point data types are allowed.

C to Hardware

Altium’s C to Hardware Compiler (CHC) [8] is a feature available since 2008
inside the Altium Designer integrated design environment. It contains two

26 CHAPTER 2. RELATED WORK

operation modes. The default mode synthesizes all functions to hardware as
connected modules, whereas the second works in the context of an Altium’s
Application Specific Processor (ASP) defined processing core. This is where
accelerators are offloaded from the processor side onto hardware. This is ac-
complished either by Graphical User Interface (GUI) interaction in the Altium
Designer IDE, or by code transformations. The input application has to be
specified in the C-language, and the tool generates VHDL or Verilog hardware
descriptions. During the compilation process, fixed point arithmetic optimiza-
tions are performed to save hardware area. Floating point operations are also
supported.

Altium offers a free evaluation license. Verification has to be done manu-
ally by loading and executing the generated design on an actual Altium Desk-
top NanoBoard NB2DSK01 because no simulation capabilities are available
to verify the correctness of the generated hardware. Furthermore, before any
hardware design can be generated, a completely mapped and routed target plat-
form has to be defined. This includes defining and configuring a TSK3000
which is the only processor supported to run the software application. Because
this processor is based on a Harvard architecture, memories for both instruc-
tions and data have to be defined along with their interconnections. Finally, the
required number of ASPs (i.e., drag and drop a WB ASP core in the platform
design sheet) executing the generated hardware and their memory connections
have to be specified as well. As a consequence, the time to design a system in
which generated hardware modules can be tested is very long, besides being
technology dependent. This is a very important difference between our com-
piler and CHC as we neither require a complete system configuration to be
able to generate hardware designs, nor we restrict the target platform to one
particular board/processor combination.

Vivado HSL

Vivado HLS [49], former AutoPilot, was developed initially by AutoESL until
it was acquired by Xilinx in 2011. The new improved product, which is based
on LLVM as well, was released early 2013, and it includes a complete design
environment with abundant features to fine-tune the generation process from
HLL to HDL. All applications written in C, C++ and SystemC are accepted as
input, and hardware modules are generated in VHDL, Verilog and SystemC.
During the compilation process, different optimizations can be selected de-
pending on the final goal. For example, operation chaining, loop pipelining
and loop unrolling are some of the optimizations that influence the generated

2.1. HIGH-LEVEL SYNTHESIS TOOLS 27

design’s performance. Furthermore, different parameter mappings to mem-
ory can be specified. Streaming or shared memory type interfaces are both
supported to allow for both streaming and control domain application to be
compiled. Because the provided GUI is simple and the drop-down menu op-
tions are well described, the time required to compile a function to hardware is
minimal. Verification of the generated designs is fast as well due to the pow-
erful test bench generation capabilities. Finally, both floating point and fixed
point variables and arithmetic operations on these are supported.

LegUp

LegUp [18, 68] is a research compiler developed in 2011 at Toronto Univer-
sity using LLVM [66]. It accepts standard C-language as input and generates
Verilog code for the selected input functions. Its main strength is that it can
generate hardware for complete applications or only for specific application
functions, i.e., accelerators. In this latter case, a TigerMIPS soft processor [65]
is then used to execute the remainder of the application in software. The con-
nection between these two main components is made through an Avalon sys-
tem bus. This is similar to the Molen machine organization. The tool can
automatically generate test benches which allows easy validation of the gen-
erated accelerators. Furthermore, the latest release of the tool (version 2.0 in
2013) accepts also floating point arithmetic. This makes the tool one of the
research competitors for DWARV, and this tool will be used in later chapters
to benchmark against.

Bambu

Bambu is a tool for the high-level synthesis currently under development since
2012 at Politecnico di Milano in the context of the PandA framework [22]. “It
integrates compiler optimizations by interfacing with the GCC compiler and
implements a novel memory architecture to synthesize complex C constructs
(e.g.,, function calls, pointers, multi-dimensional arrays, structs) without re-
quiring three-states for its implementation. It also integrates floating-point
units and thus deals with different data types, generating the proper architec-
tures. Moreover, it is also possible to target both ASIC and FPGA technolo-
gies by automatically generating customizable scripts for commercial logic
and physical synthesis tools. It is also possible to generate different implemen-
tation solutions by trading off latency and resource occupation, to support the
hardware/software partitioning on heterogeneous platforms. Finally, thanks to

28 CHAPTER 2. RELATED WORK

its modular organization, it can be easily extended with new algorithms, ar-
chitectures or methodologies, targeting different application domains or user’s
requirements. Constraints, options and synthesis scripts are easily configurable
via XML files and it is also possible to generate test benches for automatically
comparing the results with the software counterpart”. The tool is available for
download under a standard free license, and, being similar in design goals as
well as how the hardware accelerators are generated, this compiler will be used
in Chapter 9 to compare against the results obtained with DWARV3.0.

GAUT

GAUT [20] [21] from Universite de Bretagne-Sud is a HLS tool that generates
VHDL from bit-accurate C/C++ specifications. GAUT was designed specially
for DSP applications, and since it first appeared in 2010 it can be freely down-
loaded. A distinct feature for the tool is that besides the processing unit, i.e.,
the accelerator, GAUT can generate both communication and memory units.
Furthermore, to validate the generated architecture, a testbench is automat-
ically generated to apply stimulus to the design and to analyse the results.
Fixed point arithmetic is supported through Mentor Graphics Algorithmic C
class library. Although GAUT resembles DWARV, there are also major differ-
ences. First of all, because GAUT targets mostly the DSP application domain,
its generated designs are pipelined and, therefore, offer a streaming interface
to the outside system. This implies that all loops are fully unrolled, which is
not always a good idea especially when there is a limit on the hardware area
available. On the contrary, DWARV assumes a shared memory type of inter-
face. Furthermore, experimenting with the tool revealed a few drawbacks. The
function to be compiled has to be renamed to main with type void, and all
original function parameters have to be made global. This requires application
rewriting. No warning is given to understand why the compiler is not generat-
ing any code. Finally, array parameters are not supported and no warnings are
given why the code cannot be compiled.

Trident

Trident [55] [82], developed by Los Alamos National Laboratory, is a research
compiler available as open source since 2007. It builds on the Sea Cucumber
compiler, and it generates VHDL-based accelerators for scientific applications
operating on floating point data starting from a C language input. Its strength
consists in allowing users to select floating point operators from a variety of

2.1. HIGH-LEVEL SYNTHESIS TOOLS 29

standard libraries, such as FPLibrary and Quixilica, or to import their own. The
compiler uses LLVM, and as such, it can include any optimization available in
this framework. Furthermore, module scheduling is one of the four scheduling
algorithms supported that enables the loop pipelining optimization. However,
the tool has some issues such as non comprehensible errors, testbenches not
being generated which rendered automated verification impossible and func-
tions not being able to have arguments or return values.

C-to-Verilog

C-to-Verilog [11] [72] is a hardware compiler developed around 2008 which
accepts C code and generates Verilog RTL. The compiler is available online
from the University of Haifa. The lack of available documentation prevents
us to describe it here in detail. However, the brief testing performed revealed
major problems. The most important was that it does not support a lot of C lan-
guage features. Furthermore, from the runs performed with C function/kernels
available in the Computer Engineering department showed that c-to-verilog
can compile only 38% of those functions. Finally, the simplest test (cmultconj)
from the testbench that will be used in Chapter 9 failed to compile without any
meaningful error message. As a result, we can conclude that this tool is useful
for specific purposes and cannot be compared to DWARV. Therefore, we will
not attempt to include it in the final hardware compilers evaluation.

C-to-Hardware

C2H [6] is a HLS tool offered by Altera Corporation since 2006. The tool
is target dependent and generates VHDL or Verilog hardware designs from C
descriptions only for accelerators that communicate via an Avalon bus with
a NIOS II configurable soft processor. Furthermore, using this tool requires
advanced hardware design knowledge. To main disadvantage is that it is not
possible to create, simulate and evaluate accelerators using the C2H tool fast.
The user needs to create a NIOS II valid system before it can create accelera-
tors, which is realized by creating a SOPC Builder system file. Creating and
connecting the different components in a system is not a trivial task. Neither
floating nor fixed point arithmetic is supported. The available documentation
explains that in order to verify designs the IOWR 32DIRECT directive has to
be used to generate a testbench. Furthermore, even if this is performed it is
very hard to identify the performance of the generated accelerator as this is
embedded and only applicable for the NIOS tool-flow. As a consequence of

30 CHAPTER 2. RELATED WORK

the fact that this is not a general HLS product, therefore, one needs to build first
a fully connected and configured Processor-Memory-Peripherals-Bus Systems
before one can generate hardware from a HLL, Altera announced that C2H
will be discontinued in future products [7].

Synphony HLS

Synphony HLS [77] product is a HLS tool for hardware DSP design offered by
Synopsys. It was acquired in 2010 from Synfora under the name of the PICO
tool [5]. The input design languages can be either C or C++ whereas the out-
put is in the form of VHDL or Verilog. The tool can support both streaming
and memory interfaces and allows for performance related optimizations to be
fine-tuned (e.g., loop unrolling, loop pipelining). Floating point operations are
not permitted, but the programmer can use fixed point arithmetic which is sup-
ported. Finally, verification is automated by generating test vectors and scripts
for RTL simulators. Comparison results published by BDTi [10] showed that
performance and area metrics are comparable with those obtained with the
former Vivado HLS, i.e., AutoESL.

MATCH

MATCH [9, 88] is a software system developed by the University of North-
western Illinois in 2000. The goal is to translate and map matlab code descrip-
tions to heterogeneous computing platforms for signal and image processing
applications. The MATCH system included besides a MATLAB to VHDL
compiler, also two MATLAB to C compilers for the embedded and Digital
Signal Processor (DSP) processors of the system. The translation from MAT-
LAB to C was done by converting each function into a VHDL process, each
scalar variable in MATLAB into a variable in VHDL, each array variable in
MATLAB was assumed to be stored in a RAM adjacent to the FPGA, hence a
corresponding read or write function of a memory process was called from the
FPGA computation process. Furthermore, control statements such as if-then-
else constructs in MATLAB were converted into corresponding if-then-else
constructs in VHDL. Assignment statements in MATLAB were converted into
variable assignment statements in VHDL. Loop control statements were con-
verted into a finite state machine. That is, for each loop statement, a finite
state machine with four states was created. The first state performed the ini-
tialization of loop control variables and any variables used inside the loop. The
second state was used to check if the loop exit condition is satisfied. If the con-

2.1. HIGH-LEVEL SYNTHESIS TOOLS 31

dition is valid, it transfers control to state four, which is the end of the loop. If
the condition is not valid, it transfers control to state three, which performs the
execution of statements in the loop body. If there is an array access statement
(either read or write), one needs to generate extra states to perform the memory
read/write from external memory and wait the correct number of cycles. The
MATCH technology was later transferred to a startup company, AccelChip,
bought in 2006 by Xilinx.

AccelDSP

AccelDSP [96] was a tool acquired from AccelChip DSP by Xilinx in 2006.
However, the tool has been discontinued since 2010, with the release of ISE
edition 12.1. The tool was one of the few on the market that started from a
MATLAB input description to generate VHDL or Verilog for DSP algorithms.
Key features of the product were automation of floating- to fixed-point conver-
sion, generation of synthesizable VHDL or Verilog and testbench generation
for verification. Finally, it also offered some optimization possibilities such as
loop and matrix multiplication unrolling, pipelining and memory mapping.

CHiMPS

The CHiMPS compiler [71] (Compiling High-level Languages into Massively
Pipelined Systems), developed by the University of Washington in collabora-
tion with Xilinx Research Labs in 2008, targets applications from the High-
Performance Computing (HPC) domain. The platforms targeted are CPU-
FPGA based platforms communicating via a shared memory system. The de-
sign language is C and the output generated is VHDL. This make the design
goals of CHiMPS very similar to DWARV. The distinctive feature of CHiMPS
is the many-cache which is a hardware model that adapts the hundreds of small,
independent FPGA memories to the specific memory needs of an application.
This allows for simultaneous memory operations per clock cycle. Further-
more, the programmer can fine tune the generation process via pragmas. For
example, cache parameters, separate memory spaces, loop unrolling factor and
manual bit-width can be specified manually. However, no floating or fixed
point capabilities are mentioned, nor any support for automated accelerator
verification.

32 CHAPTER 2. RELATED WORK

DEFACTO

DEFACTO [53] is one of the early design environments that proposed hard-
ware/software co-design solutions as an answer to the ever increasing demand
in computational power. The research regarding this environment took place at
the University of South California in 1999. DEFACTO is composed of a series
of tools such as profiler, partitioner and software and hardware compilers. The
main benefit of the tool suite was that it allows the designer to perform fast
Design Space Exploration (DSE) and choose the best solution given a set of
design constraints. SUIF compiler framework was the underlying brick stone
use to build the individual tools. The DEFACTO paper does not describe float-
ing, fixed or verification capabilities.

Gcc2Verilog

GCC2Verilog [45] is a tool that, just as the name suggests, translates C code
into Verilog. It was developed at the University of South Korea in 2011,
and it uses the GCC frontend to translate the C code into the Intermediate
Representation (IR) format used by GCC, and as such, it was designed for the
purpose of having a HLS tool that uses unrestricted C code. However, this was
not accomplished, and problems such as dynamic pointer allocations are left
for the software-side of the program. To generate the hardware, a customized
back-end then translates the IR into Verilog. The compiler does not make use
of any optimization techniques to extract parallelism other than scheduling and
the techniques already built into GCC. A Verilog design generated by the com-
piler consists of a data-path and a Finite State Machine (FSM). The back-end
translates each of the instructions from the GCC IR into a part of the data-path
and a part of the FSM, adding a new state whenever it is necessary. Finally, no
information was available about other features such as floating and fixed point
data types and automated verification support.

2.1.2.2 Object-Oriented Languages

Object-oriented languages offer a higher degree of abstraction than procedural
languages. This improves the maintenance of the code and allows for a more
structured design approach. These languages have been used increasingly in
the last two decennia, and, as a result, HLS tools based on C++ or Java were
developed as well.

2.1. HIGH-LEVEL SYNTHESIS TOOLS 33

MaxCompiler

MaxCompiler [81] is a data-flow specific HLS tool used by Maxeler since 2010
to program their data-flow hardware. The compiler accepts MaxJ, a Java based
language, as input language and generates synthesizable RTL code used to
program the hardware data-flow engines provided by the Maxeler’s hardware
platform. Consequently, besides being oriented towards the streaming data-
flow domain, the fact that existing applications would need to be rewritten in
MaxJ clearly differentiate the target audience of Maxeler from the one targeted
in this work.

Kiwi

The Kiwi [35] parallel programming library and its associated synthesis system
generates FPGA (Verilog-based) co-processors from C# parallel programs.
This system has been developed by the University of Cambridge and Microsoft
Research Cambridge in 2008, and it was oriented towards software engineers
that are willing to express the application code as parallel programs. The nov-
elty of this system consists in the fact that it allows the programmer to use more
parallel constructs such as events, monitors and threads, which are closer to the
hardware concepts than the conventional C language constructs. The lack of
further information available made it impossible to provide details about the
optimizations support, testbench generation capabilities or whether float and/or
fixed point arithmetic is allowed.

Sea Cucumber

Sea Cucumber [83] is a Java based compiler that generates directly EDIF
netlist files. It was developed in the early 00’s (2002) at the Birgham Young
University with the goal to generate circuits that exploit the coarse- and fine-
grained parallelism available in the input class files. Sea Cucumber adopts
the standard Java thread model and augments it with a communication model
based on Communication Sequential Processes (CSP). The tool employed
many conventional compiler optimizations such as dead-code elimination,
constant folding and if-conversion. Furthermore, by using the BitWidth spe-
cific Sea Cucumber package, support for both floating and fixed data types and
arithmetic was available. However, designs generated by this tool could not be
verified automatically because of the lack of test bench generation capabilities.

34 CHAPTER 2. RELATED WORK

Cynthesizer

Cynthesizer [79] from Forte Design Systems was the first HLS tool to provide
an implementation path from SystemC to Verilog RTL code. The tool was first
released in 2004, and since then it became a proven product offering features
such as verification and co-simulation, formal equivalence checking between
RTL and gates, power analysis, a number of optimizations such as operation
chaining, and support for floating point datatypes available in IEEE754 single
and double precision as well as other combinations of exponent and mantissa
width defined by the user.

2.2 Summary of Tool Features

Tables 2.1 and 2.2 summarize the important aspects of every hardware com-
piler described in the previous section. For each compiler shown in the first
column, we list in the second and third columns the company or university
that developed the tool and whether this is commercially or freely available
(academic license). The fourth and fifths columns show what input languages
are accepted, respectively in what HDL language the output is produced. The
next two columns show the year in which the tool was first released and at
what application domain it was targeted. For some commercial tools, the ap-
plication domain was not restricted. This is denoted in the Domain column
as All domains are supported. Based on this observation, we note that if, in
the literature available, no information was found about the target application
domain of the toolset, particularly true for academic compilers, also an All do-
mains was assumed. Finally, the last three columns provide information about
verification capabilities of the synthesized hardware designs by means of au-
tomatic test bench generation, and whether floating and fixed point arithmetic
is supported in the input language of the tool.

One of the biggest difference with most of the early compiler frameworks is
that DWARV does not restrict the application domain. That is, it can gen-
erate HDL code for both control- and data-based application domain. For
example, tools such as ROCCC, Impulse-C, SPARK, CoDeveloper or Gaut
restrict the application domain to either streaming applications, image process-
ing, control-based or DSP algorithms. The consequence is that the generated
interface for these designs can then support only one particular communication
protocol, which is efficient only for one type of application.

Another drawback of the fact that tools limit the application domain, is that

2.2. SUMMARY OF TOOL FEATURES 35
Ta

bl
e

2.
1:

O
ve

rv
ie

w
of

E
xi

st
in

g
H

ig
h-

L
ev

el
Sy

nt
he

si
s

To
ol

s.

C
om

pi
le

r
O

w
ne

r
L

ic
en

se
In

pu
t

O
ut

pu
t

Ye
ar

D
om

ai
n

Te
st

B
en

ch
FP

Fi
xP

R
O

C
C

C
1.

0
U

.C
al

.R
iv

er
A

ca
de

m
ic

C
su

bs
et

V
H

D
L

20
05

St
re

am
in

g
N

o
Y

es
N

o
R

O
C

C
C

2.
0

Ja
cq

ua
rd

C
om

p.
C

om
m

er
ci

al
C

su
bs

et
V

H
D

L
20

10
St

re
am

in
g

N
o

Y
es

N
o

C
at

ap
ul

t-
C

C
al

yp
to

D
es

ig
n

C
om

m
er

ci
al

C
/C

++
V

H
D

L
/V

er
ilo

g
20

04
A

ll
Y

es
N

o
Y

es
Sy

st
em

s
Sy

st
em

C
Sy

st
em

C

C
to

S
C

ad
en

ce
C

om
m

er
ci

al
Sy

st
em

C
V

er
ilo

g
20

08
A

ll
O

nl
y

cy
cl

e
N

o
Y

es
T

L
M

/C
++

Sy
st

em
C

ac
cu

ra
te

D
K

D
es

ig
n

M
en

to
r

C
om

m
er

ci
al

H
an

de
l-

C
V

H
D

L
20

09
St

re
am

in
g

N
o

N
o

Y
es

Su
ite

G
ra

ph
ic

s
V

er
ilo

g
C

oD
ev

e-
Im

pu
ls

e
C

om
m

er
ci

al
Im

pu
ls

e-
C

V
H

D
L

20
03

Im
ag

e
Y

es
Y

es
N

o
lo

pe
r

A
cc

el
er

at
ed

V
er

ilo
g

St
re

am
in

g
SA

-C
U

.C
ol

or
ad

o
A

ca
de

m
ic

SA
-C

V
H

D
L

20
03

Im
ag

e
N

o
N

o
N

o
SP

A
R

K
U

.C
al

.I
rv

in
e

A
ca

de
m

ic
C

V
H

D
L

20
03

C
on

tr
ol

N
o

N
o

N
o

C
H

C
A

lti
um

C
om

m
er

ci
al

C
su

bs
et

V
H

D
L

/V
er

ilo
g

20
08

A
ll

N
o

Y
es

Y
es

V
iv

ad
oH

L
S

X
ili

nx
C

om
m

er
ci

al
C

/C
++

V
H

D
L

/V
er

ilo
g

20
13

A
ll

Y
es

Y
es

Y
es

Sy
st

em
C

Sy
st

em
C

L
eg

U
p

U
.T

or
on

to
A

ca
de

m
ic

C
V

er
ilo

g
20

11
A

ll
Y

es
Y

es
N

o
Pa

nd
A

U
.P

ol
im

i
A

ca
de

m
ic

C
V

er
ilo

g
20

12
A

ll
Y

es
Y

es
N

o
H

er
cu

L
eS

A
ja

x
C

om
pi

le
r

C
om

m
er

ci
al

C
/N

A
C

V
H

D
L

20
12

A
ll

Y
es

Y
es

Y
es

G
A

U
T

U
.B

re
ta

gn
e

A
ca

de
m

ic
C

/C
++

V
H

D
L

20
10

D
SP

Y
es

N
o

Y
es

Tr
id

en
t

L
os

A
la

m
os

N
L

A
ca

de
m

ic
C

su
bs

et
V

H
D

L
20

07
Sc

ie
nt

ifi
c

N
o

Y
es

N
o

36 CHAPTER 2. RELATED WORK
Ta

bl
e

2.
2:

O
ve

rv
ie

w
of

E
xi

st
in

g
H

ig
h-

L
ev

el
Sy

nt
he

si
s

To
ol

s.
(C

on
t)

C
om

pi
le

r
O

w
ne

r
L

ic
en

se
In

pu
t

O
ut

pu
t

Ye
ar

D
om

ai
n

Te
st

B
en

ch
FP

Fi
xP

C
to

V
er

ilo
g

U
.H

ai
fa

A
ca

de
m

ic
C

V
er

ilo
g

20
08

A
ll

N
o

N
o

N
o

C
2H

A
lte

ra
C

om
m

er
ci

al
C

V
H

D
L

/V
er

ilo
g

20
06

A
ll

N
o

N
o

N
o

Sy
np

ho
ny

Sy
no

ps
ys

C
om

m
er

ci
al

C
/C

++
V

H
D

L
/V

er
ilo

g
20

10
A

ll
Y

es
N

o
Y

es
H

L
S

Sy
st

em
C

M
A

T
C

H
U

.N
or

th
w

es
t

A
ca

de
m

ic
M

A
T

L
A

B
V

H
D

L
20

00
Im

ag
e

N
o

N
o

N
o

C
yb

er
-

N
E

C
C

om
m

er
ci

al
B

D
L

V
H

D
L

20
11

A
ll

C
yc

le
/

Y
es

Y
es

W
or

kB
en

ch
V

er
ilo

g
Fo

rm
al

B
lu

es
pe

c
B

lu
eS

pe
c

In
c.

C
om

m
er

ci
al

B
SV

Sy
st

em
V

er
ilo

g
20

07
A

ll
N

o
N

o
N

o
A

cc
el

D
SP

X
ili

nx
C

om
m

er
ci

al
M

A
T

L
A

B
V

H
D

L
/V

er
ilo

g
20

06
D

SP
Y

es
Y

es
Y

es
K

iw
i

U
.C

am
br

id
ge

A
ca

de
m

ic
C

#
V

er
ilo

g
20

08
.N

E
T

N
o

N
o

N
o

C
H

iM
PS

U
.W

as
hi

ng
to

n
A

ca
de

m
ic

C
V

H
D

L
20

08
A

ll
N

o
N

o
N

o
M

ax
C

om
pi

le
r

M
ax

el
er

C
om

m
er

ci
al

M
ax

J
R

T
L

20
10

D
at

aF
lo

w
N

o
Y

es
N

o
Se

aC
uc

um
be

r
U

.B
ri

gh
am

Y.
A

ca
de

m
ic

Ja
va

E
D

IF
20

02
A

ll
N

o
Y

es
Y

es
D

E
FA

C
TO

U
.S

ou
th

C
ai

lf
.

A
ca

de
m

ic
C

R
T

L
19

99
D

SE
N

o
N

o
N

o
Pi

pe
R

en
ch

U
.C

ar
ne

gi
e

M
.

A
ca

de
m

ic
D

IL
bi

ts
tr

ea
m

20
00

St
re

am
N

o
N

o
N

o
G

ar
p

U
.B

er
ke

le
y

A
ca

de
m

ic
C

su
bs

et
bi

ts
tr

ea
m

20
00

L
oo

p
N

o
N

o
N

o
N

ap
a-

C
Sa

rn
of

fC
or

p.
A

ca
de

m
ic

C
su

bs
et

V
H

D
L

/V
er

ilo
g

19
98

L
oo

p
N

o
N

o
N

o
gc

c2
ve

ri
lo

g
U

.K
or

ea
A

ca
de

m
ic

C
V

er
ilo

g
20

11
A

ll
N

o
N

o
N

o
C

yn
th

es
iz

er
FO

R
T

E
C

om
m

er
ci

al
Sy

st
em

C
V

er
ilo

g
20

04
A

ll
Y

es
Y

es
Y

es
eX

C
ite

Y
E

xp
lo

ra
tio

ns
C

om
m

er
ci

al
C

V
H

D
L

/V
er

ilo
g

20
01

A
ll

Y
es

N
o

Y
es

2.3. CONCLUSION 37

the input language has to be restricted, modified or extended. For example,
SA-C, DK Design Suite, Impulse-C, CyberWorkbench, BlueSpec, PipeRench
or Garp all limit in some way the input language by not accepting for instance
pointers or control statements. Furthermore, some tools require the addition
of specific code/language constructs to convey specific platform information,
such as PipeRench or Napa-C. This increases the time required to learn how
to use the tool and to transform the existing HLL code to an accepted syntax
before any useful output can be generated. DWARV does not require any ad-
ditional language constructs and can generate code from (almost) any function
as it is.

Another important difference is that some tools are available as integrated com-
pilers in larger design environments (e.g., CHC, C2H, Synphony HLS or Ac-
celDSP), most of which are targeted at the hardware designer and not the soft-
ware developer. That tool is then very hard to use without actually having hard-
ware design knowledge. Considering the scenario assumed in this work where
a software designer moves software to hardware to accelerate specific com-
putations (i.e., only a particular function needs to be accelerated), designing
the whole (hardware) system is inconvenient and limited to a number of hard-
ware designers. These frameworks are thus not intended for the vast majority
of software programmers as DWARV’s target audience is, but it is intended
to obtain (fast) hardware IPs by a hardware designer performing system-wide
DSE before he can choose a solution for its ASIC.

Finally, some of the (early) tools were based on immature research compiler
frameworks which led to the their abandonment. We list ROCCC1.0, Napa-
C, Garp or AccelDSP. Furthermore, this underlying compiler framework can
play a very big role in the high-level language coverage and the compiler opti-
mization support of a hardware compiler. The latest version of DWARV differs
from all previous tools by using CoSy compiler framework. This highly modu-
lar and extensible framework offers both lowering (i.e., high-level to low-level
construct mapping) transformations so that all HLL constructs can be accepted
as well as support for automatic selection of which compiler optimizations to
be applied removing the user need of performing this selection manually at the
command line (or in a GUI).

2.3 Conclusion

In this chapter, we described a number of academic and commercial high-level
synthesis compilers. Although we could observe an increase in the amount of

38 CHAPTER 2. RELATED WORK

both research tools and commercial products available, especially in the last
three to four years, our evaluation of these tools showed that knowledge on
how to generate efficient hardware accelerators is still not mature enough to
replace the manual design completely. As a result, the need of research in how
to design hardware compilers is justified. Furthermore, the last version of the
compiler at the time of writing this thesis, i.e., DWARV3.0, is different in at
least one aspect from the related compilers as shown in the previous section.

Note.

The content of this chapter was submitted as part of the following publication:

R. Nane, V.M. Sima, K.L.M. Bertels, A Survey of High-Level Synthesis Tools
and Comparison with DWARV 3.0, Submitted to IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, April 2014.

3
Background Work

IN this chapter, we present the environment in which the work pre-
sented in this dissertation was done. First, we describe the Delft Work-
bench tool-chain, which consists of several tools to enable automated

Hardware/Software (HW/SW) co-design. Subsequently, we present in detail
the Molen machine organization, we show the synthesis and verification flows
used to validate generated accelerators, and we discuss important similarities
and differences between software and hardware compilers. Finally, we present
the first version of the DWARV compiler that provided the inspiration for the
current version, we describe the CoSy compiler framework used to construct
DWARV3.0, and we give a simple C-to-FPGA example showing the tool-flow.

3.1 Introduction

The Delft Workbench (DWB) [12] is a semi-automatic tool chain for inte-
grated HW/SW co-design. The goal is to facilitate heterogeneous computing
and to enable fast Design Space Exploration (DSE) on Molen type heteroge-
neous systems by automating, where possible, the profiling, estimation, map-
ping and implementation processes that are part of the development process.
One of the tools developed in the scope of this workbench was the DWB Au-
tomated Reconfigurable VHDL (DWARV) [97] generator. As explained in the
introduction, DWARV takes parts (i.e., functions1) of high-level programs and
transforms them into hardware accelerators to be run on a Molen machine. Al-
though the DWB targets implementations of Molen on Xilinx boards because
of its availability and expertise, any other type of heterogeneous computing
platform could have been used instead. For example, the Convey [19] HC
machines can be considered instantiations of the Molen machine organization

1functions and kernels are used interchangeably throughout the text

39

40 CHAPTER 3. BACKGROUND WORK

and could have been used as well in the experiments performed throughout this
dissertation.

Main MemoryMain Memory

Exchange Exchange
registersregisters

ArbiterArbiter

GPP Instructions
SET CCU1
GPP Instructions
MOVET XREG1, R1
EXECUTE CCU1
MOVEF R1, XREG1

In
st

ru
ct

io
n

s
In

st
ru

ct
io

n
s

GPP Instructions
NOP
GPP Instructions
NOP
NOP
NOP
NOP...To

 G
P

P
To

 G
P

P

...

SET CCU1
...

EXECUTE CCU1
...To

 R
P

To
 R

P

...

MOVET XREG1, R1
...

MOVEF R1, XREG1
...To

 X
R

E
G

s
To

 X
R

E
G

s

Core Core
ProcesorProcesorC

o
re

C

o
re

re

g
is

te
rs

re
g

is
te

rs

Memory Memory
(DE)MUX(DE)MUX

ρ
μ

-c
o

d
e

ρ
μ

-c
o

d
e

u
n

it
u

n
it

CCU CCU 11

CCU CCU nn

...
DSPDSP

InstructionInstruction
FetchFetch

DataData
Load/StoreLoad/Store

Molen Programming
Paradigm:
- set & execute
- movtx & movfx
- break
→ Sequential Consistency

Exchange Registers

Shared Memory

Application Binary:
- Configuration bitstreams,
- DSP code
- GPP Code
- Setup commands

M
o

le
n

M
o

le
n

A
b

st
ra

ct
io

n
A

b
st

ra
ct

io
n

L
ay

er
L

ay
er

M
o

le
n

M
o

le
n

M
ac

h
in

e
M

ac
h

in
e

O
rg

an
iz

at
io

n
O

rg
an

iz
at

io
n

Figure 3.1: An Overview of the Molen Platform with an Indication of the Flow of
Instructions Through the Platform [60].

3.2 Molen Machine Organization

The Molen Machine Organization [24, 73] is an architecture developed at TU
Delft intended to define how different heterogeneous computing elements can
be used together to execute applications faster and in a power efficient way.
Figure 3.1 gives a high-level view of the organization in which we can see
that it is composed of three main elements. These are a shared memory
and a General Purpose Processor(GPP) tightly coupled with Custom Com-
puting Unit (CCU)s. The CCU can be anything such as Graphics Process-
ing Unit (GPU), Digital Signal Processor (DSP) or Field-Programmable Gate

3.2. MOLEN MACHINE ORGANIZATION 41

Array (FPGA) based kernels. The Molen organization has been successfully
implemented and demonstrated using DSP and FPGA kernels.

This setup allows taking advantage of inherent parallelism in applications from
various domains, by allowing to move computationally intensive parts of code
to hardware (CCU) while keeping the rest of the application in software (GPP).
The Molen supporting tool-chain (i.e., DWB) performs in this respect the fol-
lowing tasks: searches for pragma annotations in the source application code,
usually set manually by the user or automatically by a previously running pro-
filing tool, invokes the Molen primitives that deal with loading the function pa-
rameter values in the eXchange Register (XREG)s, place from where the CCU
can access its input values, and finally, calls the actual function that will run
in the FPGA. Depending on the data dependency analysis this can be block-
ing or non-blocking. The CCU can be the hardware generated by invoking
the DWARV compiler described in Chapter 4. This setup enables DSE by
allowing the user to perform and evaluate various configurations of HW/SW
partitioning.

To exploit the Molen machine organization efficiently, the Molen program-
ming paradigm [91] was devised. The concepts defined by this paradigm are
shown in the upper part of Figure 3.1. They address the inherent problem
caused by the flexibility of reconfigurable computing where different instruc-
tions can be accommodated, and, as a result, there is no fixed instruction set.
The solution to this issue consisted in a one-time extension of the (Polymor-
phic) Instruction Set Architecture (πISA) such that any number of processor
extensions with a variable number of arguments can be supported. This exten-
sion was implemented by the following instructions:

• SET instruction configures (i.e., loads) the computation on the process-
ing element (e.g., FPGA).

• MOVET/MOVEF instructions are used to transfer data to and from the
processing element’s local memory.

• EXECUTE instruction gives the start signal for the processing element
to begin execution.

• BREAK instruction polls the processing element to check whether exe-
cution has finished.

The Molen machine organization implements a parallel execution model, and
its supporting Molen programming paradigm is compatible with parallel pro-
gramming frameworks such as OpenMP [69]. As a consequence, it is very

42 CHAPTER 3. BACKGROUND WORK

important to note that sequential consistency (i.e., execution on the heteroge-
neous platform produces the same results as when the original program would
have been executed sequentially on a General-Purpose Processor (GPP)) is en-
forced by the above instructions. This is accomplished by adopting the shared
memory computational model.

Profiling andProfiling and
Cost EstimationCost Estimation

Profiling andProfiling and
Cost EstimationCost Estimation

HW/SW PartitioningHW/SW Partitioning
and Mappingand Mapping

HW/SW PartitioningHW/SW Partitioning
and Mappingand Mapping

Graph TransformationsGraph Transformations
and Optimizationsand Optimizations

Graph TransformationsGraph Transformations
and Optimizationsand Optimizations

Runtime SupportRuntime SupportRuntime SupportRuntime Support

HW
 a
re
a

ho
ts
po
ts

po
we
r

me
mo
ry

SWSWHWHW

FPGA
DSP
etc.

GPP

Designer

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%ecx
movl $1,%eax

unsigned f(unsigned n)
{
 int i, result = 1;
 for(i=1; i<n; i++) {
 result *= i;
 }
 return result;
}

Application GCC

#pragma area stratixV 560
#pragma gprof 90
#pragma memory 0
#pragma area virtex5 700
unsigned f(unsigned n)
{
...

#pragma map generate_hw
#pragma map virtex5
unsigned f(unsigned n)
{
...

unsigned f(unsigned n) {
 register int i;
 unsigned result = 1;
 for(i=2; i<=n; i+=2) {
 result *= i*(i+1);
 }
 if(i==(n-1))
 result *= i;
 return result;
}

HardwareHardware
GenerationGeneration

HardwareHardware
GenerationGeneration

RetargetableRetargetable
CompilationCompilation

RetargetableRetargetable
CompilationCompilation

Quipu
model

executable
binary

Feedback to earlier stages

<?xml version="1.0"?>
<ORGANIZATION>
 <HARDWARE>
 <NAME>ML510</NAME>
 <FUNCTIONAL_COMPONENT>
 <NAME>PPC</NAME>
 <TYPE>GPP</TYPE>
 <MASTER>YES</MASTER>
 <FREQUENCY>200</FREQUENCY>
 </FUNCTIONAL_COMPONENT>
 <FUNCTIONAL_COMPONENT>
 <NAME>VIRTEX5</NAME>
 <TYPE>FPGA</TYPE>
 <MASTER>NO</MASTER>
 <FREQUENCY>100</FREQUENCY>
...A

rc
h

it
ec

tu
re

 D
es

cr
ip

ti
o

n
A

rc
h

it
ec

tu
re

 D
es

cr
ip

ti
o

n

O
ri

g
in

al
O

ri
g

in
al

A
n

n
o

ta
te

d
A

n
n

o
ta

te
d

M
ap

p
ed

M
ap

p
ed

Tr
an

sf
o

rm
ed

Tr
an

sf
o

rm
ed

DWARV

Figure 3.2: Overview of the Delft Workbench Tool-Chain [60].

3.3 Delft Workbench Tool-Chain

Figure 3.2 shows the complete design flow within the DWB. The first process
in the flow is the Profiling and Cost Estimation. The objective is to identify
the computational intensive parts of an application that are good candidates for
hardware acceleration. Furthermore, design data such as the maximum perfor-
mance improvement, resource occupation and power requirements is gathered
to drive the subsequent partitioning, mapping and optimization stages. HW/SW
Partitioning and Mapping uses the previous acquired design characteristics to
partition the original application into different parts and map them onto the dif-
ferent computational elements available on the heterogeneous computing plat-

3.4. BACK-END WORK FLOWS 43

form. Graph Transformations and Optimizations processes are used to trans-
form the application code to a form suitable for hardware implementation. For
example, parts of the graph can be duplicated or factored out depending on the
available hardware resources. Retargetable Compilation is an important step
in the context of the complete tool-chain. It is here that a retargetable compiler
generates code for the embedded GPP and combines generated bitstreams for
FPGAs, DSPs, etc., into a final Executable and Linkable Format (ELF) file that
can be executed on the heterogeneous platform. The generation of bitstreams
is done with technology dependent synthesis tools, but Hardware Description
Language (HDL) code required as input by these synthesis tools is obtained
in the Hardware Generation stage. DWARV is the compiler that generates
such HDL (i.e., VHDL) from High-Level Language (HLL) (i.e., C) code and
is, therefore, executed in this stage. Finally, Run-time Support is intended
to offer support for (dynamic) system reconfiguration and management in a
multi-tasking environment.

3.4 Back-end Work Flows

There are two possible work flows: the synthesis flow and the simulation flow.
The first one can be used for fast prototyping and mapping exploration, while
the later is used to verify the generated hardware kernel automatically before
running it on the actual hardware. Both flows rely on same high-level concepts.

3.4.1 Synthesis Flow

The synthesis flow is presented in Figure 3.3. The input of the flow is C code
while the output is an executable binary for a specific platform (for example the
ML510 platform). The blue boxes represent the tools/components of the DWB
tool-chain while the grey components represent external components like the
gcc compiler or the Xilinx tool-chain. The green boxes show intermediary files
related to the application.

The purpose of the frontend is to partition and map the application in prepa-
ration to the invocation of the back-end compilers. This was illustrated and
described in the previous section (3.3). Then, each part of the application goes
to each back-end compiler (e.g., for the ML510 platform). The platform com-
piler will directly generate object code in the ELF format. For the part that
has to go to the FPGA, Delft Workbench Automated Reconfigurable VHDL
Generator (DWARV) is invoked first to generate the VHDL. The generated

44 CHAPTER 3. BACKGROUND WORK

C code

Modified C code
(pragma, transformations)

Front end
(mapping, instrumentation)

platorm
compiler

object code

Linker

DWARV
C2VHDL
compiler

Xilinx
synthesizer

and P&R tools

VHDL
code

Bitstream
platform
runtime
library

Executable

Figure 3.3: Molen Backend Synthesis Flow.

VHDL is passed to the Xilinx tools which perform synthesis, place and route.
The final bitstream is included in the executable as an ELF symbol by the
linker.

3.4.2 Simulation Flow

The simulation flow can be used to rapidly assess the performance of imple-
menting a function in hardware. We call the hardware implementation of a
function a CCU. Another possible usage of the flow is to ensure that the
output of the CCU is functionally correct. Because the tool-chain supports
floating-point operations, and the rounding and order of operations affect the
final result, the simulation is an important step to ensure a successful imple-
mentation.

The overall flow is depicted graphically in Figure 3.4. A C file, annotated with
pragmas, is provided by the developer or a previous running tool-chain (e.g.,
DWB frontend) as input. Using special scripts, the memory inputs and outputs
of the function that has to be synthesized to VHDL, are dumped to files. Then,
the VHDL is generated together with a simulation test bench that provides all
the necessary signals for the CCU to run. The VHDL is simulated using the

3.5. SOFTWARE VS. HARDWARE COMPILERS 45

C applications, with
kernels and calls to

kernel annotated

VHDL file

Generate VHDL
(using DWARV)

Instrument application
(using Molen compiler)

Instrumented
executable for x86

For each call to a
hardware kernel,

dumped input and
output data

Dumped output data

Simulate the
VHDL using the
input data
dumped

Compare output data
from software with
output data from
hardware simulation

Execute the
application

Figure 3.4: Simulation Flow for Verifying DWARV Generated VHDL Kernels.

memory inputs, and the outputs are also dumped in a file. The final step is to
compare the outputs obtained from software with the outputs obtained from
hardware.

An important note is that all memory locations that are sent through pointer
parameters to the CCU-s must be allocated through malloc function calls (no
local or global variables). If the function parameters are arrays (and thus, the
compiler can determine their size at compile time), any memory location can
be sent to the function.

3.5 Software vs. Hardware Compilers

Different books are available on how to write a compiler such as [37]. For the
purposes of this section, it is sufficient to highlight that a compiler is composed
of several main passes that transforms the input high-level language code to a
format accepted by the target machine. We define a software compiler as a
compiler that transforms a HLL to assembly type instructions, whereas a hard-
ware compiler is one that transforms a HLL code to an equivalent HDL repre-
sentation. The first two steps in any compiler are to scan and parse the input

46 CHAPTER 3. BACKGROUND WORK

file. After these steps, an Intermediate Representation (IR) form is created that
enables transformations and optimizations to be performed on the original in-
put code. Important transformations are lowering transformations, Static Sin-
gle Assignment (SSA), Data Dependency Graph (DDG) construction, instruc-
tion selection, instruction scheduling and register allocation. Important opti-
mizations include Common Subexpression Elimination (CSE), constant fold-
ing and propagation, dead code elimination, if-conversion, loop unrolling, loop
pipelining, polyhedral analysis and peephole optimizations such as strength re-
duction. Finally, the last step is the generation of code. This process outputs
in a file the schedule obtained by including all the previous information gath-
ered and by printing architectural dependent strings representing the instruc-
tion rules matched in the instruction selection step.

Building a hardware compiler is not very different than building a software
compiler. In principle, all above steps can be applied. However, because on
(raw) (re)configurable hardware the number of resources is not fixed, and, as
such, we can (to some extent) accommodate as many resources as required,
we have to change how some of the traditional software compiler passes are
applied in the context of hardware generation. Although this kind of analy-
sis can apply to various compiler transformations and optimizations, for the
scope of this section, we discuss here only a few: CSE, if-conversion, register
allocation, operation chaining and memory spaces.

CSE is an optimization that computes common expressions once, places the
result in a register or memory, and refers this location for subsequent uses.
The advantage is that we can save time and resources by not computing the
expression again because loading the already computed value is faster on a
Central Processing Unit (CPU). However, for hardware generation this has to
be carefully considered. That is, if the allocated register and the expression
where this replaced expression should be used is not in the immediate prox-
imity of the calculation, the routing to that place might actually decrease the
design frequency. Therefore, applying this optimization is not always useful
in High-Level Synthesis (HLS). In this case, replacing only a particular subset
and recomputing the expression for others to enforce a better locality of the
operations, would provide better results. If-conversion provides the opposite
scenario, which will be described in detail in Chapter 7.

Register allocation is a highly important transformation that should be treated
differently. Because in hardware we have an unlimited number of registers, the
allocation of variables to these can be considered simpler. That is, whenever
we need a register, we allocate a new one. However, if the generated design

3.6. DWARV 1.0 47

does not fit into a given area constraint, the register allocation becomes more
difficult to solve because it is not easy to decide how many registers should
be removed and which ones in order to successfully implement the generated
design on the given area. Operation chaining is an optimization that is specially
designed for hardware compilers. Because in hardware the clock period is
user defined, we use this optimization to schedule dependent instructions in
the same clock cycle if their cumulative execution time is less than the given
clock cycle time. This operation optimizes significantly the wall clock time
(i.e., execution time) of the entire function implemented on hardware. Finally,
memory spaces can be allocated for different array parameters so that multiple
memory operations can be performed in the same cycle.

3.6 DWARV 1.0

DWARV’s [97] first implementation was based on the SUIF compiler frame-
work from Stanford university [89]. The framework provided methods to cre-
ate an IR from a HLL program and passes/mechanisms to access that IR to
process the data in a way most suitable for the compiler developer. However,
being a research project, the SUIF framework had many drawbacks such as:

• No longer supported and the documentation was scarce.

• No optimization passes available.

• No dependency analysis and aliasing disambiguation available.

• No extendible IR.

Furthermore, given the fact that no lowering transformations (i.e., from high-
to low-level constructs, e.g., from switch statement to simple compare-jump
statements) were available in SUIF, not all syntax was supported by DWARV
1.0. Tables 3.1 and 3.2 list all restrictions available in the initial version of
DWARV. Given the many drawbacks and the missing features, especially given
the fact that development of SUIF was abandoned and it become unsupported,
a change to another compiler framework was necessary. Nevertheless, despite
all the drawbacks, this first compiler inspired the FSM plus Datapath compu-
tational model along with the hardware accelerator VHDL file structure also
used in the second version (see Chapter 4).

48 CHAPTER 3. BACKGROUND WORK

Table 3.1: DWARV 1.0 Allowed Data Types.

Data Type Supported Not Supported
Boolean Bool
Integer Up to 32 bits 64 bit

Real Floating-Point all
Complex and Imaginary all

Pointer data pointer function pointer

Aggregate uni-dimensional array
multi-dimensional arrays

struct
Union all

Table 3.2: DWARV 1.0 Allowed Statements.

Statement Type Supported Not Supported

Expression
unary,add,mul div,mod

shift,bitwise,assign logic and, logic or, cast
Labeled case,label

Jump return, break, goto, continue
Selection if switch
Iteration for while, do-while

Calls functions

3.7. COSY COMPILER FRAMEWORK 49

For the new version of DWARV, four candidate compiler frameworks were
considered. LLVM was the first one, but because, at that time, the frame-
work was not mature enough (e.g., frontend integration was not easy), it was
not selected. gcc was another candidate, however, this framework was going
through major changes in the IR from version 4.5; therefore, it was not consid-
ered stable. ROSE is a compiler framework that deals only with high-levels of
abstraction, and; therefore, it is used only for HLL to HLL compilers. Further-
more, it does not include backend code generator features that are required for
a compiler generating low-level code. Finally, the last candidate was the CoSy
compiler framework. Due to its maturity, robust, and extendible features, cou-
pled with the close collaboration with the ACE company in the REFLECT [70]
project, this framework was selected to reimplement the DWARV 1.0 compiler.

3.7 CoSy Compiler Framework

The CoSy [26] compiler development system is a commercial compiler con-
struction system licensed by ACE Associated Compiler Experts. The develop-
ment system is composed of several tools building on innovative concepts that
allow the user to build and extend a compiler easily. The central concept in
CoSy is the Engine that can be regarded as an abstraction of a particular trans-
formation or optimization algorithm. The framework includes a total number
of 208 engines that target different parts of the compilation flow, from the fron-
tend (i.e., code parsing and IR creation) processing, high-level (e.g., loop op-
timization, algebraic optimizer, code analysis, lowering transformations) and
low-level (e.g., register allocation, instruction selection and scheduling) trans-
formations and optimizations to backend code generation template rules used
in the final emission step. The general functionality of (custom user-defined)
engines can be programmed in C or in C++ while for IR specific initializations
and assignments, CoSy-C, an extension of the C-language, is used.

Figure 3.5 depicts graphically the connections between CoSy concepts that
combined form a CoSy compiler. Each engine accesses the IR through specific
Views generated in the Supervisor during compiler build time. This is possi-
ble because each engine contains a list of parameters that are typed handles
on IR fragments. The IR is described in a CoSy specific description language,
i.e., full-Structure Definition Language (fSDL), and contains the data structures
on which engines operate. The strength of this language is its distributed na-
ture in the sense that multiple definitions of the same data structure augment
each other. This allows to specify IR extensions easily and locally in each

50 CHAPTER 3. BACKGROUND WORK

C/C++
Front‐en

Supervisor

Custom
Engines

IRCompiler IRCompiler
Configuration

Scheduler

Code
Analys

+
nd

Loop
Optimizer

R Algebraic
ViR g

OptimizerView

Register
Allocator

e
sis

Figure 3.5: CoSy Framework Elements: Supervisor, Engines, Views and IR.

engine by (re)defining and extending the target data structure in the engine’s
〈engine name〉.sdl file. From this file, specific views are inferred based on the
access rights defined for each data structure’s operator fields (e.g., new, read,
write, walk, etc). That is, a view can be thought of as a special set of acces-
sor and mutator method(s) for a data structure. These concepts improve the
productivity of the compiler designer because they enforce at compile time the
clear separation between engines, thus making a CoSy based compiler very
modular by nature.

The control and data flow through the compiler is coded in *.edl files that
are written in another CoSy-specific language, the Engine Description Lan-
guage (EDL). This language provides mechanisms to form an engine class
hierarchy by defining composite engine classes as groups of engines. Fur-
thermore, it allows the user to specify different interaction schemes between
engines. For example, a particular set of engines can be run sequentially, in
a pipeline, in parallel or in a loop. A supervisor is generated from the EDL
and fSDL specifications. Therefore, it implements the control and data flow
through the compiler and protects the IR against conflicting accesses. To gen-
erate code, the supervisor uses the instantiated (i.e., implemented) versions
of CoSy template rules (e.g., mirPlus(rs1:register;rs2:register) -〉 rd:register)
defined in *.cgd files. A compiler is composed of the generated supervisor in-
stantiated in a small main program that reads command line options, processes
them if necessary, and passes them on to the supervisor. Finally, below the
supervisor we find the independent codes of all simple engines that form the
bulk of the compiler.

Therefore, the main strength of the framework is that it consist of loosely inte-

3.8. C-TO-FPGA EXAMPLE 51

grated engines that perform various transformations and optimizations on the
IR, engines that can be skipped easily depending on user set options. This en-
ables us to design custom engines that deal with different aspects of the hard-
ware optimization and/or generation phase(s) without conflicting with existing
passes or existing IR data types. More information about the CoSy conventions
can be found in the Engine Writer’s Guide framework documentation [27].

Figure 3.6: Xilinx Virtex-5 ML510 Hardware Platform.

3.8 C-to-FPGA Example

In this section, we describe the complete compilation flow of a simple C appli-
cation and show what the backend tools generate, as well as how this is inte-
grated into the final target platform executable. One of the hardware platforms
used in this thesis is the Xilinx Virtex-5 ML510 board shown in Figure 3.6.
This platform is based on the Xilinx Virtex-5 XC5VFX130T FPGA, which
has 20480 slices, 1580 Kb distributed memory blocks and two PowerPC 440

52 CHAPTER 3. BACKGROUND WORK

FPGA (XC5VFX130T)

PPC 440

D
D

R
 (

2
G

B
)

Memory
controller

MOLEN

Ethernet UART

B
R

A
M

 (
64

k)

Reconfigurable area

B
R

A
M

 (
64

k)
B

R
A

M
 (

64
k)

B
R

A
M

 (
64

k)
B

R
A

M
 (

64
k)

DMA

ICAP

Control
signals

FPU

SysACE

P
LB

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

DCM
Clock
signals

Reconf.
signals

Figure 3.7: Molen Implementation on the ML510 Hardware Platform.

(PPC440) processor hard cores embedded that run at a maximum of 400 MHz.

To use this platform, the Molen machine organization was implemented using
a custom Fabric Coprocessor Module (FCM), shown in the simplified plat-
form schematic in Figure 3.7 as the Molen box. The FCM is designed to en-
able custom instruction extensions of the PPC440 processor’s Instruction Set
Architecture (ISA). Newly added instructions are recognized in the decode
phase by the PPC440 processor’s Auxiliary Processor Unit (APU) (not shown
in the figure) as custom instructions, and, subsequently, dispatched to the FCM
unit for the execution stage. In Figure 3.7, we see five reconfigurable slots (slot
one to five) reserved for custom accelerators. Each of these areas can be in-
dependently reconfigured and executed at run-time. This is not a limitation of
the Molen architecture, but merely a design choice considering the hardware
area available on this FPGA board and the reconfigurability requirement.

To show how applications can be accelerated on the ML510 platform using
reconfigurable logic, we use the simple C-application given in Listing 3.1i).
This is composed of some arbitrary code, that will keep running on the PPC440
processor, followed by a call to the absval arr function, which is the target
function for acceleration. To mark that this function should be implemented
in hardware, we annotate its call with a pragma directive. This annotation

3.8. C-TO-FPGA EXAMPLE 53

can be performed manually or automatically by executing the frontend tools
shown in Figure 3.2, which perform profiling, partitioning and mapping for the
complete application. Finally, the absval arr call is followed by some other
code that will execute on the software processor. This code is translated to
standard PowerPC assembly instructions, and, because we focus on the custom
instructions, the standard instructions are omitted from the listing. Therefore,
in Listing 3.1ii) we show only the custom instructions generated by the Molen
platform compiler (see Figure 3.3), which is essentially a modified version of
the GNU Compiler Collection (gcc) compiler, to perform the necessary steps
to invoke a reconfigurable accelerator.

Listing 3.1: C-to-FPGA Example Application and Instrumented Assembly Code

i) C code ii) Assembly code
void main() {
int a[16],b[16],c[16],res;
... // some other code ...

//set CCU_ID, ADDR_bitstream
set 1, 0

//pragma inserted by previous partitioning and
//mapping tool; movet CCU_ID,XREG_ID,addr,size,type
#pragma call_hw VIRTEX5 1 movet 1,1,0,a,0
res = absval_arr(a,b,c); movet 1,1,1,b,0

movet 1,1,2,c,0
execute 1
break_end 1
movef 1,0

... // some other code ...
}

First, the set 1,0 instruction is used to configure slot 1 on the reconfigurable
logic with the bitstream at address 0 in the main memory. Number 1 is given
as the second parameter to the call hw attribute to represent that this func-
tion should use the first slot in the Virtex5 reconfigurable area. The actual
(re)configuration of the hardware is performed by the Internal Configuration
Access Port controller (denoted as ICAP in Figure 3.7), which loads the gen-
erated configuration bitstream from memory. The actual generation of the bit-
stream is discussed below. Second, the movet instructions are used to transfer
the data of the three arrays (a,b,c) from the shared main memory (DDR 2GB)
via the Direct Memory Access (DMA) module to the local slot’s BRAM(64k)

54 CHAPTER 3. BACKGROUND WORK

memory on the FPGA. This is required when the accelerator uses pointers to
access data. After the data is transferred, the function is executed in the hard-
ware while the break end(1) instruction polls whether the accelerator in slot 1
has finished execution. Finally, the movef instruction retrieves the accelerator’s
return value located at address 0 in the BRAM of slot 1. The communication
between the PPC440 and the reconfigurable logic is performed through the
Processor Local Bus (PLB). The Digital Clock Manager (DCM) module has
the role to drive the slots frequencies, which can be different from each other.

Listing 3.2: C-to-FPGA Example Function Code

1: int absval_arr(int* a, int *b, int *c) {
2: int i, a_tmp, b_tmp;
3: for (i=0; i<16; i++) {
4: a_tmp = a[i] * a[i];
5: b_tmp = b[i] * b[i];
6: if (a_tmp < b_tmp)
7: c[i] = b_tmp - a_tmp;
8: else
9: c[i] = b_tmp - a_tmp;
10: }
11: return c[0];
12: }

To obtain the bitstream required to configure the FPGA reconfigurable slots,
we need to synthesize, place, and route a hardware description file correspond-
ing to the function moved to FPGA. These final implementation steps are
well-known problems and are addressed by commercial FPGA vendor tools.
Therefore, we use these tools in the last phase of the compilation process (see
Xilinx box on the right-hand side tool-chain flow in Figure 3.3).

To illustrate the translation process of a computation expressed in a HLL, to
a hardware model expressed in a HDL, consider the example shown in List-
ing 3.2. The first step in the hardware generation process is to transform the
input source into an IR that reflects the control and data dependencies in the
algorithm. For this purposes, a hierarchical Control Data Flow Graph (CDFG)
is used. Figure 3.8a depicts the control flow graph of the whole program, in
which the nodes are basic blocks containing one or more program statements
that are always on the same path through the code.The edges represent con-
trol dependencies between these blocks. Figure 3.8b zooms in basic block

3.8. C-TO-FPGA EXAMPLE 55

BB1

BB2

BB3 BB4

BB5

BB6

fo
r -

 e
xit

exit

for - loop

for-body

if-falseif-tru
e

LD

CC

* *

LD

<
CC

*

<

*

 MEM
 A
 D

MUX
FSM
control
signal

addr a addr b

DEMUXFSM
control
signal

a b

(a) (b) (c)

Figure 3.8: C-to-FPGA steps: (a) CFG; (b) BB2 DFG; (c) BB2 generated Hardware.

two corresponding to the statements in the for loop before the branch deci-
sion is taken about which if path to execute next. That is, two multiplications
and one comparison that stores the outcome in the CC conditional register.
Because there is no dependency between these instructions, they can run in
parallel as illustrated by the data dependency graph. Here, the nodes repre-
sent simple hardware instructions to implement the statements and the edges
represent the data dependencies between these instructions. The hierarchy lev-
els in the CDFG reflect thus the enclosure level of the statements. The outer
nodes of this graph are basic blocks corresponding to grouped statements or
called functions. The outer edges of the graph represent the control dependen-
cies, while the basic block inner edges represent data dependencies. The basic
blocks nodes contain data flow graphs (DFGs) that describe the data dependen-
cies within the corresponding basic block (Figure 3.8b). From the CDFG, the
VHSIC Hardware Description Language (VHDL) compiler has to infer a hard-
ware model for the computation. The arithmetic and logic operations within
the basic blocks are mapped to combinational hardware logic (Figure 3.8c).
For loop-back edges, i.e. when a control structure such as the for-loop in
absval arr is found, sequential hardware logic is used.

Both combinational (i.e., simple arithmetic operations that depend only on cur-
rent inputs) and sequential (i.e., operations that output values based on both
current inputs and past outputs) logic is expressed in a HDL. There are several
HDLs, but only two of them are widely supported by the FPGA vendors both
for simulation and synthesis (i.e., VHDL and Verilog). Because the hardware

56 CHAPTER 3. BACKGROUND WORK

logic is always active (i.e., every hardware element is, in every clock cycle,
outputting a value based on its current inputs), a controller is required to select
which part of the circuit is actually performing useful computations. These
controllers, called Finite State Machine (FSM)s, are generated by performing
a scheduling of the CDFG.

Listing 3.3: C-to-FPGA Generated VHDL Excerpt for BB2 DFG

when "S" =>
-- multiply by 4 because i has int type

4: sig_load_index := var_i << 2;
4: sig_load_a := var_addr_a + sig_load_index;
5: reg_load_b <= var_addr_b + sig_load_index;
3: var_i <= var_i + 1;
4: DATA_ADDR <= sig_load_a;

-- FSM instructs now to move to state "S+1"
when "S+1" =>
5: DATA_ADDR <= reg_load_b;

-- FSM move to "S+2"(empty)->"S+3"(empty)->"S+4"
when "S+4" =>

-- assuming a 4 cycles delay to access memory
4: sig_data_a := READ_DATA;
4: reg_a_tmp <= sig_data_a * sig_data_a;

-- FSM move to "S+5"
when "S+5" =>

-- data reads are pipelined, so read next value
5: sig_data_b := READ_DATA;
5: sig_b_tmp := sig_data_b * sig_data_b;
6: CC <= CMPLT(reg_a_tmp,sig_b_tmp);

-- FSM move to "S+6"
when "S+6" =>
6: -- FSM move to IF(CC) ? "S+7" ; "S+8"

Listing 3.3 shows an excerpt of how BB2 was scheduled in terms of a simpli-
fied VHDL syntax. The listing shows five states from the schedule generated
by the hardware compiler when it created the FSM. These states are expressed
in terms of the variable S to underline the existing dependencies between the
states. The actual FSM control, which is part of a different hardware process, is
not shown. The listing shows only instructions that belong to the data-pah pro-
cess. Nevertheless, comments are placed to highlight what is the next state the

3.8. C-TO-FPGA EXAMPLE 57

FSM will take and when. Furthermore, the number in the beginning of the line
refers to the actual C-code line in Listing 3.2 and is intended to immediately
visualize how C-code constructs are mapped to VHDL specifications. Finally,
variables preceded by var and reg are registered, whereas those preceded by
sig denote that only wires are inferred (i.e., no register is required to store their
value) because they are used immediately in the same cycle. As a result, their
value does not need to be remembered. DATA ADDR and READ DATA are
interface ports of the accelerator through which (dynamic, pointer based) data
is loaded and used inside the hardware logic from the local BRAM memory.

One final remark is needed regarding the usability of these kind of C-to-FPGA
frameworks. Namely, these frameworks are useful in the embedded software
domain, where processor speeds are far less than the full-blown performant
CPU frequencies found in modern-day general-purpose computers. For the
embedded system domain, other design constraints such as hardware area and
power consumption play a very important role, and, as a result, embedded
processor speeds are trade-offed with such other constraints. This implies that,
when we talk about speedups compared to execution only in software, we refer
to software execution on an embedded hard-core software processor.

4
DWARV2.0: A CoSy-based C-to-VHDL

Hardware Compiler

IN the last decade, a considerable amount of effort was spent on implement-
ing tools that automatically extract the parallelism from input applications
and to generate Hardware/Software (HW/SW) co-design solutions. How-

ever, the tools developed thus far either focus on a particular application do-
main or they impose severe restrictions on the input language. In this chapter,
we present the DWARV2.0 compiler that accepts general C-code as input and
generates synthesizable VHDL for unrestricted application domains. Dissimi-
lar to previous hardware compilers, this implementation is based on the CoSy
compiler framework. This allowed us to build a highly modular compiler in
which standard or custom optimizations can be easily integrated. Validation
experiments showed speedups of up to 4.41x when comparing against another
state-of-the-art hardware compiler.

4.1 Introduction

Even though hardware compilers, which take as input a High-Level Language
(HLL) and generate a Hardware Description Language (HDL), are no longer
seen as exotic technology, they cannot yet be seen as a mature technology to the
same extent as software compilers. Hardware compilers are especially used to
develop application-specific hardware where for various application domains
the computational intensive part(s) are accelerated. They are a vital compo-
nent of the HW/SW co-design effort needed when FPGA based kernels are
involved. In this chapter, we specifically look at FPGA based platforms where
parts of the application will stay on the General-Purpose Processor (GPP) and
other parts will be transformed into Custom Computing Unit (CCU). To per-

59

60
CHAPTER 4. DWARV2.0: A COSY-BASED C-TO-VHDL HARDWARE

COMPILER

form fast Design Space Exploration (DSE), it is necessary to quickly evaluate
the different mappings of the application, with their corresponding HDL im-
plementation, on the hardware platform. For this purpose, hardware compilers
allow the designer to obtain immediately a hardware implementation and skip
the manual and iterative development cycle altogether.

However, current hardware compilers suffer from a lack of generality in the
sense that they support only a subset of a HLL, for example, no pointers or
Floating-Point (FP) operations are accepted. Even more, only a few allow the
application programmer to use other function calls inside the kernel (i.e., unit)
function. This leads to manual intervention to transform the input code to syn-
tax accepted by the compiler, which is both time consuming and error prone.
These problems are caused by the fact that hardware generators are typically
bound to one particular application domain or are implemented in compiler
frameworks that provide cumbersome ways of generating and processing the
Intermediate Representation (IR) of the input code. Our contribution is three-
fold:

• Provide a redesign of the DWARV hardware compiler [97] using the
CoSy compiler framework [26] to increase the coverage of the accepted
C-language constructs.

• Provide a general template for describing external Intellectual Property
(IP) blocks, which can be searched and used from an IP library, to allow
custom function calls.

• Validate and demonstrate the performance of the DWARV2.0 compiler
against another state-of-the-art research compiler. We show kernel wise
performance improvements up to 4.41x compared to LegUp 2.0 com-
piler [18].

The rest of the chapter is structured as follows. In Section 4.2 we present
an overview of existing HDL generators. Section 4.3 gives details about the
compiler tool-flow and the template descriptor used for external IP blocks sup-
porting custom function calls. Section 4.4 validates DWARV2.0 by presenting
the comparison results while Section 4.5 draws the conclusion.

4.2 Related Work

Plenty of research projects addressed the issues of automated HDL generation.
The ROCCC project [93] aims at the parallelization and acceleration of loops.

4.3. DWARV 2.0 61

Catapult-C [14] and CtoS [16] are commercial high-level synthesis tools that
take as input ANSI C/C++ and SystemC inputs and generate register transfer
level (RTL) code. The optimizations set of the SPARK [41] compiler is benefi-
cial only for control-dominated code, where they try to increase the instruction
level parallelism. In addition, the explicit specification of the available hard-
ware resources such as adders, multipliers, etc. is required. In contrast to these
compilers, DWARV2.0 does not restrict the application domain and it is able to
generate hardware for both streaming and control intensive applications. Fur-
thermore, it does not restrict the accepted input language. DWARV2.0 allows a
large set of C constructs including pointers and memory accesses. Finally, no
additional user input is necessary.

Altium’s C to Hardware (CHC) [8], LegUp [18] and DWARV2.0’s predecessor
[97] are the compilers that resemble DWARV2.0 the closest. They are intended
to compile annotated functions that belong to the application’s computational
intensive parts in a HW/SW co-design environment (although the latter can
compile the complete application to hardware as well). They are therefore
intended to generate accelerators for particular functions and not autonomous
systems. This is typical for Reconfigurable Computing (RC) Systems and the
same assumption is true for DWARV2.0 as well. However, there are also two
major differences, the IP reuse and the more robust underlying framework.
The first feature allows custom function calls from the HLL code to be mapped
to external IP blocks provided they are available in external IP libraries. The
second feature enables seamless integration of standard or custom optimization
passes.

4.3 DWARV 2.0

In this section, we describe the DWARV2.0 compiler by highlighting the im-
proved aspects comparing with the previous version. We present the engine
flow, the new features and describe the IP library support.

4.3.1 DWARV2.0 Engines: The Tool-Flow

DWARV2.0 targets reconfigurable architectures following the Molen [73] ma-
chine organization and is built with CoSy [26]. Compilers built with CoSy are
composed of a set of engines which work on the IR of the input program. In
the following text, the engines in italics are standard CoSy engines available
for use in the framework, and as such, they were used by simply plugging

62
CHAPTER 4. DWARV2.0: A COSY-BASED C-TO-VHDL HARDWARE

COMPILER

them in the DWARV2.0 compiler. The engines in bold are custom written en-
gines designed specifically for the hardware generation process. The initial IR
is generated by the C frontend, which is a CoSy standard framework engine.
To generate VHDL from C code, DWARV2.0 performs standard and custom
transformations on the combined Control Data Flow Graph (CDFG) created
in the IR by the CFront engine. Figure 4.1 depicts this process graphically,
highlighting on the left side the three main processing activities required for
C-to-VHDL translation. On the right side of the same figure, we show in clock-
wise order an excerpt of the most important engines used in each activity box
shown on the left side.

The CFront (ANSI/ISO C front end) creates the IR. The cse and ssa engines
perform common subexpression elimination and static single assignment trans-
formations. The match engine creates rule objects by matching identified tree
patterns in the IR while the psrequiv engine annotates which register/variable
actually needs to be defined in VHDL. fplib searches and instantiates hardware
templates found in the library. hwconfig reads in parametrizable platform pa-
rameters, e.g., memory latency. setlatency places dependencies on def/use
chains for registers used by IP cores. It also sets the latencies on memory
dependencies. sched schedules the CDFG and dump prints IR debug infor-
mation. Finally, the emit engine emits IEEE 754 synthesizable VHDL. The
engines given in bold in Figure 4.1 are custom and thus written specifically for
VHDL generation. The remaining ones are standard framework engines. A
total of 52 (43 standard - 9 custom) engines were used in DWARV2.0.

4.3.2 New Features and Restrictions

Tables 4.1 and 4.2 summarize DWARV2.0’s new features. Leveraging the
availability of generic lowering engines, which transform specific constructs
to basic IR operations, most of the previous syntax restrictions were removed.
The best example is the support for structured aggregate data types. Another
major development was the FP and the template library. This not only facili-
tates the addition of FP operations, but provides also a generic mechanism to
support function calls.

To add support for the basic FP arithmetic, we use the Xilinx tool coregen first
to generate FP cores (e.g., for multiplication). Then, we describe these gener-
ated IP cores in a library that DWARV2.0 is able to search for an appropriate
core for each of the floating point operations. Important fields that DWARV2.0
must know in order to find the proper core, instantiate, and schedule it in the
design are IP name, list of input and output ports, operation type and operand

4.3. DWARV 2.0 63

psrequiv

IR
emit

cse

CFront

fplib

match

ssa

hwconfig

setlatency

sched

dump

C file

VHDL file

Legend:
• Modifies IR:
• Engine Flow:
• Input/Output:

C file

VHDL Generation

CDFG Scheduling

CDFG Building

VHDL file

Figure 4.1: DWARV 2.0 Engines. Clock-wise Sequential Execution of Engines Start-
ing from CFront.

Table 4.1: DWARV 2.0 vs. DWARV 1.0 Allowed Data Types.

Data Type DWARV 1.0 DWARV 2.0 DWARV 2.0
Supported New Features Not Supported

Boolean Bool
Integer 32 bits 64 bit custom sizes

Real Floating Point all
Fixed Point DSP-C

Complex and Imaginary all

Pointer
non-local limited local func ptr
pointer pointer ptr to ptr

Aggregate 1-dim array
n-dim array

local struct
global struct

Union all

64
CHAPTER 4. DWARV2.0: A COSY-BASED C-TO-VHDL HARDWARE

COMPILER

Table 4.2: DWARV 2.0 vs. DWARV 1.0 Allowed Statements.

Statement DWARV 1.0 DWARV 2.0 DWARV 2.0
Type Supported New Features Not Supported

Expression
unary,add,mul div,mod, cast global

shift,bitwise,assign logic and, logic or variables
Labeled case,label

Jump
return, break

goto, continue
Selection if switch
Iteration for while, do-while

Calls functions recursion

sizes as well as latency and frequency of the core. The same syntax can be
used also to describe and support generic function calls. The only exception is
that for the operation field name, instead of using an operation type identifier,
we simply use the function name.

Although the new version eliminates most restrictions from the first version
of DWARV, there are still some restrictions left. The first two restrictions are
related to the fact that there is no stack on an FPGA. This implies that func-
tions can not be recursive and that static data is not supported. Implementing
a stack would be possible, but would defeat the purpose of hardware execu-
tion because it will limit the available parallelism. The third restriction is that
mathematical functions present in the standard C library are not available. This
restriction can be lifted in the future using the described function call support.

4.4 Experimental Results

To assess the performance of DWARV2.0, we compared cycle, frequency and
area information obtained by generating and simulating the CCU hardware for
eight kernels against the hardware IP produced by the LegUp 2.0 compiler
from Toronto University [18]. In this section, we briefly describe the LegUp
2.0 compiler, the platform and the comparison experiments.

4.4. EXPERIMENTAL RESULTS 65

LegUp 2.0 Compiler

LegUp 2.0 [18] is a research compiler developed at Toronto University which
was developed using LLVM [66]. It accepts standard C-language as input,
and generates Verilog code for the selected input functions. Its main strength
is that it can generate hardware for complete applications or only for specific
application functions, i.e., accelerators. In this latter case, a TigerMIPS soft
processor [65] is then used to execute the remainder of the application in soft-
ware. The connection between these two main components is made through
an Avalon system bus. This is similar to the Molen machine organization,
therefore comparing the execution times of accelerators generated by this tool
is relevant to assess the performance and development state of DWARV2.0.
LegUp 2.0 was reported [18] to perform close to an industrial HLS compiler,
i.e., eXCite [28], which, assuming transitivity of results, was another reason to
use LegUp 2.0 as our benchmark.

Experimental Platform

To compare the DWARV2.0 and LegUp 2.0 compilers, we followed a two-
step approach. First, we simulated the generated kernels to obtain the cycle
information. The simulation infrastructure for DWARV2.0 is in such a way
designed to return only the execution time for the individual kernel invocation.
However, for the LegUp 2.0 simulation, care has to be taken to obtain only
the execution time for the kernel itself and not for the complete testbench as
it is currently reported when the hybrid execution is chosen. To obtain the
correct number, the ModelSim wave-form had to be opened, and the difference
between the start and finish signals had to be computed.

Subsequently, we ran a full post-place and route synthesis to obtain the maxi-
mum frequency and area numbers for the Xilinx Virtex5 ML510 development
board. To obtain a meaningful comparison, we needed to integrate the LegUp
2.0 generated kernels in the Molen workflow to target the same board. To this
purpose, we wrote wrappers around the LegUp 2.0 interface. Note that these
wrappers do not influence the performance comparison. We use these wrappers
only for integration purposes to be able to target a different platform than the
one for which LegUp kernels were generated. Doing so, we are interested only
in the area numbers obtained for Xilinx instead of Altera board. The perfor-
mance numbers are computed thus in the original setting without any wrappers
included. Given that the tools target similar heterogeneous platforms with the
accelerated kernels running on the Xilinx board as co-processors of the Pow-

66
CHAPTER 4. DWARV2.0: A COSY-BASED C-TO-VHDL HARDWARE

COMPILER

Speedup

Page 1

sr
a

lo
op fft fir

sa
td

id
ct

gr
id
Ite
r

fil
te
r

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

DWARV Speed-up @ Maximum Frequency

Post Place and Route Metrics

S
p

ee
d

u
p

Figure 4.2: DWARV 2.0 Speedups vs. LegUp 2.0 times.

erPC processor vs. Altera/TigerMIPS platform, the mismatch in interfaces was
minimal and easy to correct. Both interfaces contained ports to start the accel-
erator, query its status and read/write data from the shared memory. Therefore,
bridging the gap between these interfaces was only a matter of connecting the
proper ports to each other, e.g., DATA ADDR to memory controller address.

DWARV vs. LegUp Comparison

We perform two kinds of comparisons: one that focuses on speedup and area
consumption and one on the restrictions imposed on the C-code. To measure
the speedup and area, we have selected eight kernels for testing. The first
four, i.e., loop, sra, fft, fir, were extracted from the examples directory in the
LegUp 2.0 distribution, whereas the other four were taken from DWARV2.0’s
testbench. All eight functions compiled without any C-language syntax mod-
ifications in both tools. Furthermore, the approach described above was fol-
lowed. The results are summarized in Table 4.3, whereas Figure 4.2 shows
DWARV2.0 speedup information for all test cases relative to the times ob-
tained for LegUp 2.0. The computed speedups were obtained by considering
the number of cycles at the maximum frequency reported by the Xilinx post
place and route synthesis, except for the idct kernel. For this kernel, the initial

4.4. EXPERIMENTAL RESULTS 67
Ta

bl
e

4.
3:

E
va

lu
at

io
n

N
um

be
rs

-
D

W
A

R
V

2.
0

vs
.L

eg
U

p
2.

0.

K
er

ne
l

Sl
ic

es
C

yc
le

s
M

ax
.F

re
q

E
TA

M
F1

Sp
ee

du
p

M
ax

.F
re

q
E

TA
M

F
Sp

ee
du

p
(x

st
2)

(x
st

)
(x

st
)

(r
ea

l3)
(r

ea
l)

(r
ea

l)
sr

a-
le

gu
p

37
0

70
26

1
0.

27
0.

82
20

2
0.

35
0.

82
sr

a-
dw

ar
v

33
8

64
29

0
0.

22
1.

22
22

5
0.

28
1.

22
lo

op
-l

eg
up

12
2

29
2

35
2

0.
83

1.
24

25
1

1.
16

1.
30

lo
op

-d
w

ar
v

12
2

38
0

36
8

1.
03

0.
80

25
2

1.
51

0.
77

ff
t-

le
gu

p
19

80
73

77
12

5
59

.0
2

0.
76

98
75

.2
8

0.
71

ff
t-

dw
ar

v
31

98
80

53
18

0
44

.7
4

1.
32

15
0

53
.6

9
1.

40
fir

-l
eg

up
32

0
22

3
12

4
1.

80
0.

33
80

2.
79

0.
23

fir
-d

w
ar

v
10

63
12

7
21

3
0.

60
3.

02
20

1
0.

63
4.

41
sa

td
-l

eg
up

11
89

13
2

17
5

0.
75

1.
29

15
0

0.
88

1.
31

sa
td

-d
w

ar
v

12
01

26
5

27
2

0.
97

0.
77

23
0

1.
15

0.
76

id
ct

-l
eg

up
N

/A
24

00
4

88
32

0.
05

1.
00

N
/A

N
/A

N
/A

id
ct

-d
w

ar
v

95
19

41
33

8
15

1
27

3.
76

1.
00

75
55

1.
17

N
/A

gr
id

It
er

at
e

fix
ed

-l
eg

up
45

5
47

13
48

10
2

46
21

.0
6

0.
26

10
0

47
13

.4
8

0.
33

gr
id

It
er

at
e

fix
ed

-d
w

ar
v

13
43

35
58

10
29

4
12

10
.2

4
3.

82
22

6
15

74
.3

8
2.

99
fil

te
r

su
bb

an
d

fix
ed

-l
eg

up
34

2
21

46
4

15
8

13
5.

85
1.

46
10

3
20

8.
39

1.
17

fil
te

r
su

bb
an

d
fix

ed
-d

w
ar

v
38

6
55

13
7

27
8

19
8.

33
0.

68
22

6
24

3.
97

0.
85

1
E

xe
cu

tio
n

T
im

e
A

tM
ax

im
um

Fr
eq

ue
nc

y
2
E

st
im

at
ed

M
ax

im
um

Fr
eq

ue
nc

y
af

te
rB

eh
av

io
ur

al
Sy

nt
he

si
s

3
R

ea
lM

ax
im

um
Fr

eq
ue

nc
y

af
te

rP
os

tP
la

ce
an

d
R

ou
te

Sy
nt

he
si

s

68
CHAPTER 4. DWARV2.0: A COSY-BASED C-TO-VHDL HARDWARE

COMPILER

maximum frequency estimation was used. LegUp 2.0 idct kernel could not be
synthesized targeting Xilinx because it contained an instantiation of an Altera
proprietary/specific IP block used for integer division. We compared the exe-
cution times at the kernel level only which gives an indication of the quality of
the generated HDL.

Analyzing the last column in Table 4.3, we observe that performance-wise,
DWARV2.0 gave a speedup for four kernels, icdt provided no improvement
or degradation (6th column), whereas the other three functions incurred a de-
crease in performance. These speedup numbers were computed by first calcu-
lating the Execution Time achieved At Maximum Frequency (ETAMF) re-
ported for the two hardware versions, i.e., ETAMF = Cycles/Max .Freq..
Next, Speedupdwarv = ETAMFlegup/ETAMFdwarv .

With respect to the hardware area, DWARV2.0 produces less than optimal hard-
ware designs because no optimization passes that target area reduction were
used. Our primary focus was functional correctness and to obtain a basis for
comparison for future research. As an example of such future research, con-
sider the loop kernel case study. Only by integrating the standard CoSy frame-
work engines loopanalysis and loopunroll, which annotate respectively unroll
simple loops, we decreased the number of cycles for this kernel from 380 to
113. Given the newly obtained frequency of 256 MHz, we were able to ob-
tain a speedup of 1.90 for this example as well (initial numbers are given in
Table 4.3 where we can see that the first implementation in DWARV2.0 gave
a 0.77 slowdown). Figure 4.2 shows the final results obtained after this sim-
ple optimization was applied. Even though the loopunroll engine can provide
considerable performance benefits, determining an unroll factor is not a trivial
problem. If the unroll factor is too big, the generated VHDL will not synthe-
size due to lack of available area. Chapter 6 will address this problem.

To gain more insight on how the two tools compare and decide if a tool is per-
forming better than the other one, we illustrate in Figure 4.3 the performance
ratios in terms of area ratios. This graph shows that for three kernels (i.e.,
fir, griditerate and fft), DWARV2.0 generated designs perform better, but at
the cost of more hardware logic. This means that these points are not actually
comparable because LegUp 2.0 generates more balanced area-performance de-
signs, while for DWARV2.0 the focus is only on performance. filter, loop and
satd are kernels for which DWARV2.0 is slower than LegUp 2.0, given area is
about the same. Finally, sra is faster in DWARV2.0 under the same conditions.

The second comparison focused on the extent that the compilers are capable
of compiling a large subset of the C-language without requiring substantial

4.5. CONCLUSION 69

Sheet1

Page 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

LegUp 2.0 / DWARV 2.0 Area Ratio

L
e

g
U

p
 2

.0
 /

 D
W

A
R

V
 2

.0
 E

x
e

c
.

T
im

e
 R

at
io

D
W

A
R

V
 faster

DWARV
 bigger

sra

loop
satdfilter

fft

griditerate

fir

Figure 4.3: DWARV 2.0 vs. LegUp 2.0 Execution Time per Area Comparison.

rewrites. To do this, we used our internal benchmark, which is a database of
324 kernels from a wide variety of application domains. For example, the cryp-
tography domain contains 80 kernels and the mathematical domain contains 70
kernels. Other domains available in the benchmark are physics, multimedia,
DSP, data processing and compression. Simply invoking the two compilers
with this database, we observed that DWARV2.0 is able to generate synthesiz-
able VHDL for 82.1% of the kernels, whereas LegUp 2.0 for 65.7%. However,
LegUp 2.0 does not support FP operations and, as such, the ability to gener-
ate correctly VHDL for our kernel library is degraded. When we ignored the
kernels containing FP operations, the performance increased to 87.7%.

4.5 Conclusion

In this chapter, we presented the DWARV2.0 compiler, and we did a perfor-
mance comparison with another academic hardware compiler. We conclude
that the current version provides a good basis for future research of hardware
related optimizations. One of the most important advantage of DWARV2.0,
compared to the previous version, is that it is highly extensible. Extending
the compiler can be achieved by including standard CoSy or custom (new) en-
gines, or can involve extensions in the IR. CoSy’s mechanism of extending the
IR guarantees that the correctness of the code already written is not affected.

70
CHAPTER 4. DWARV2.0: A COSY-BASED C-TO-VHDL HARDWARE

COMPILER

Note.

The content of this chapter is based on the following paper:

R. Nane, V.M. Sima, B. Olivier, R.J. Meeuws, Y.D. Yankova, K.L.M. Bertels,
DWARV 2.0: A CoSy-based C-to-VHDL Hardware Compiler, 22nd In-
ternational Conference on Field Programmable Logic and Applications (FPL
2012), Oslo, Norway, September 2012.

5
IP-XACT Extensions for Reconfigurable

Computing

MANY of today’s embedded multiprocessor systems are implemented
as heterogeneous systems, consisting of hardware and software
components. To automate the composition and integration of mul-

tiprocessor systems, the IP-XACT standard was defined to describe hardware
Intellectual Property (IP) blocks and (sub)systems. However, the IP-XACT
standard does not provide sufficient means to express Reconfigurable Comput-
ing (RC) specific information, such as Hardware-dependent Software (HdS)
metadata, which prevents automated integration. In this chapter, we propose
several IP-XACT extensions such that the HdS can be generated and inte-
grated automatically. We validate these specific extensions and demonstrate
the interoperability of the approach based on an H.264 decoder application
case study. For this case study we achieved an overall 30.4% application-wise
speedup and we reduced the development time of HdS from days to a few
seconds.

5.1 Introduction

Heterogeneous systems combine different hardware cores (e.g., different pro-
cessor types) to enable the execution of software on different pieces of hard-
ware to increase performance. A trivial example is a general-purpose processor
tightly coupled with a co-processor to perform floating-point operations fast.
Such a system can thus be used to off-load computational-intensive application
codes onto specialized hardware units. The objective is to gain performance.
However, such a system is beneficial only in predefined scenarios. The sys-
tem’s specialized hardware units are not useful for other software algorithms.

71

72
CHAPTER 5. IP-XACT EXTENSIONS FOR RECONFIGURABLE

COMPUTING

To extend the range in which heterogeneous systems can be applied, reconfig-
urable hardware devices were introduced. These have the advantage that the
hardware design can be customized and configured on a per case basis.

A widely adopted practice within Reconfigurable Computing (RC) design is
to accelerate part(s) of applications, using custom hardware architectures, that
are specifically tailored for a particular application. These specialized archi-
tectures can be IP blocks written at the Register Transfer Level (RTL) by a
designer, or IP blocks generated by a High-Level Synthesis (HLS) tool from a
functional specification written in a High-Level Language (HLL) [97]. To cope
with the diversity of IP blocks coming from different sources, IP-XACT [1]
was introduced. Using IP-XACT, hardware components can be described in
a standardized way. This enables automated configuration and integration of
IP blocks, aiding hardware reuse and facilitating tool interoperability [56].

In a Hardware/Software (HW/SW) system, connecting the different HW and
SW components, using for instance buses or point-to-point connections, is
not sufficient to fully implement a system. Typically, a SW component con-
nected to a HW component needs a driver program, also known as Hardware-
dependent Software (HdS) [98], to control the HW component. IP blocks that
can be controlled from a SW component are typically shipped with particu-
lar HdS to ensure proper control from SW. However, in RC systems, the IP
blocks are automatically generated by HW tool-chains for application kernels
selected for hardware acceleration. Therefore, the HdS driving these new hard-
ware blocks has to be generated automatically as well. The compilation pro-
cess in such RC systems, i.e., from HLL application source code to a combined
HW/SW executable, is done by different tools, such as partitioning, mapping
and HW/SW generation tools. This implies that there is no central place from
where the HdS can be generated. That is, the compiler used to generate the IP
has no knowledge about what HW primitives are used for example to commu-
nicate data in the system, which prevents it from generating a proper driver.
This information is available, however, in the partitioning and mapping tool.
Therefore, we adopt a layered solution in which different parts of the HdS are
generated at different points in the tool-flow. Furthermore, to allow the tools
involved in this HdS generation process to communicate seamlessly with each
other, we need to describe the software requirements of each step in IP-XACT
as well. One example of such a software requirement is the number of func-
tion input parameters. However, unlike the RTL constituents of an IP block,
which can be already described using the current IP-XACT standard, there is
no standardized way to describe the driver information for an IP.

5.2. RELATED WORK 73

In this chapter, we elaborate on the expressiveness of IP-XACT for describing
HdS metadata, addressing the second challenge of this dissertation. Further-
more, we address the automation of HdS generation in the RC field, where IPs
and their HdS are generated on the fly, and, therefore, are not fully predefined.
The contribution of this chapter can be summarized as follows:

• We combine two proven technologies used in MPSoC design, namely
IP-XACT and HdS, to automatically integrate different architectural
templates used in RC systems.

• We investigate and propose IP-XACT extensions to allow automatic
generation of HdS in RC tool-chains.

The rest of the chapter is organized as follows. Section 5.2 presents IP-XACT,
other HdS solutions, and already proposed IP-XACT extensions. Section 5.3
describes a HdS generation case study and investigates the IP-XACT sup-
port for automation. Section 5.4 elaborates on the identified shortcomings and
proposes IP-XACT extensions to support software related driver descriptions.
Section 5.5 respectively Section 5.6 validates the automated integration and
concludes the chapter.

5.2 Related Work

The IP-XACT standard (IEEE 1685-2009) [1] describes an XML schema for
metadata modeling IP blocks and (sub)systems. The metadata is used in the
development, implementation, and verification of electronic systems. In this
chapter, we focus on Component schema for associating HdS to HW IP blocks
and we focus on Generator-Chain schema to express compiler specific require-
ments. The current schema provides limited support for software descriptions.
Namely, one can only attach software file-sets to a component and describe
the function parameter’s high level types. However, it does not offer means
to assign semantics to the attached file-set and how it should be used during
integration of a complete system. Furthermore, it lacks means to model tool
chains in which complex software generators are to be integrated. In Section
5.4, we propose solutions to these problems.

The OpenFPGA CoreLib [95] working group focused on examining the IP-
XACT Schema and proposed extensions for facilitating core reuse into HLLs.
Wirthlin et al. [4] used XML to describe common IP block elements and de-
fined their own schema using IP-XACT syntax. They proposed a lightweight

74
CHAPTER 5. IP-XACT EXTENSIONS FOR RECONFIGURABLE

COMPUTING

version intended for Reconfigurable Computing (RC) systems, such as inter-
face specifications and capturing HLLs data types information.

Other IP-XACT related research is focusing on extending the schema to incor-
porate semantic information about IP elements. Kruijtzer et al. [54], proposed
adding context labels to provide additional meaning to IP-XACT components.
They use this to assess the correctness of interconnections in the system. Strik
et al. [76] studied aspects regarding IP (re)configurability to reuse these after a
partial change of some parameters. They underline that IP-XACT is missing
expression evaluation fields to support flagging illegal (sub)system composi-
tion. However, all proposed extensions discussed so far in this section consider
only the HW IP block. As mentioned in Section 5.1, for systems involving
both HW and SW, one also needs to describe the HdS belonging to the HW IP
to enable automated integration of a system. Therefore, we propose software
related extensions for IP-XACT.

5.3 Integrating Orthogonal Computation Models

To investigate the IP-XACT capabilities to model HW/SW co-design tool
chains supporting HdS generation and tool interoperability, we used an H.264
decoder application implemented on an Field-Programmable Gate Array
(FPGA) as a case study. The goal is to integrate different tools and models
such that we can automatically generate application specific MPSoC imple-
mentations of sequentially specified applications. To realize this, we use the
Daedalus [64] system-level synthesis toolset to implement an MPSoC from
sequential C code. In particular, from the Daedalus tool set we use the PN
compiler [92] to partition a sequential application into Polyhedral Process
Networks (PPN) and ESPAM [42] to map the partitioned application onto an
FPGA. Outside the Daedalus toolset, we use DWARV2.0 (see Chapter 4) to au-
tomatically generate hardware IP blocks for performance critical parts of the
sequential C code. We first describe the problems observed when integrating
the two tools in Section 5.3.1. Subsequently, we present our extended frame-
work in Section 5.3.2.

5.3.1 IP Core Integration

In [90], the PICO compiler from Synfora Inc. [3] was incorporated in the
Daedalus tool-flow. This approach was used to achieve higher performance for
PPN implementations by replacing computational-intensive nodes with func-

5.3. INTEGRATING ORTHOGONAL COMPUTATION MODELS 75

DWARVDWARV

P1P1

P2P2

P3P3

ESPAMESPAM

FPGA

back endback end

HdS
 1

HdS
 1

HdS
2&3
HdS
2&3

IP-X
ACT
IP-X
ACT

IP-X
ACT
IP-X
ACT CC

CCUCCU

front endfront end

HdS
1

HdS
1

PNPN
seq.
C

code

seq.
C

code

Figure 5.1: H.264 Generation Tool-Chain Flow.

tionally equivalent hardware IP cores generated by PICO from the available
C code. The replacement was done smoothly, as both tools were operating
under the same memory model, i.e., a distributed memory model. However,
several restrictions were imposed on the C code that can be processed by the
PICO compiler. For instance, each loop body could contain only one other
loop. Therefore, using PICO as the hardware compiler was not feasible for the
H.264 application where multiple nested loops are present. DWARV2.0 is a
compiler which has less restrictions than PICO, making it suitable for generat-
ing hardware blocks for our case study.

However, integration of a Custom Compute Unit (CCU), generated by
DWARV2.0, in a PPN created by Daedalus is not straightforward. The CCU
has an interface suitable for interacting with Molen [73] based platforms,
which employ a shared memory model. The PPN node, on the other hand,
into which the CCU has to be integrated, has multiple input and output FIFO
channels typical for the stream-based distributed memory model. The chal-
lenge therefore is to find a way to specify the requirements for Daedalus such
that DWARV2.0 can automatically generate the correct interface.

5.3.2 Framework Solution

We show our solution in Figure 5.1. We use the PN compiler to create a PPN
from the sequential C code of the H.264 top level function. Subsequently,
we use ESPAM to implement the H.264 PPN as a system of point-to-point
connected MicroBlaze processors on an FPGA, as shown in the left part of
Figure 5.1. This means the functional part of each process is implemented as

76
CHAPTER 5. IP-XACT EXTENSIONS FOR RECONFIGURABLE

COMPUTING

a software program running on a MicroBlaze. Based on profile information
we have decided to accelerate the Inverse Discrete Cosine Transform (IDCT)
process using a specialized hardware component. We use the DWARV2.0 C-
to-VHDL compiler to generate a CCU from the C code of the IDCT function,
which requires the C function to be communicated from ESPAM to DWARV2.0.

To solve the interface mismatch problem between DWARV2.0-generated
CCUs and Daedalus’ PPNs, DWARV2.0 generates a wrapper for the CCU. This
wrapper provides memory to the CCU which stores the input/output channel
data before/after the CCU is started/stopped.

The HdS controlling the CCU is structured into three different layers. The right
side of Figure 5.2 shows the HdS hierarchy. We distinguish platform prim-
itives (layer 1), IP- and OS-specific driver code (layer 2) and an application
layer (layer 3). The primitives in layer 1 strongly depend on the processor the
HdS is running on, and the way the CCU is connected to the processor running
the HdS. For instance, for one processor these primitives use memory-mapped
I/O, whereas for another processor dedicated instructions are available. This
information is known only by ESPAM. Therefore, the HdS layer 1 primitives
are generated by ESPAM. HdS layer 2 provides functions that control the CCU
by sending and receiving commands and data to and from the CCU using the
primitives provided by layer 1. The separation of HdS layers 1 and 2 makes
the HdS layer 2 code independent of the actual platform. HdS layer 3 pro-
vides user level functions, which are invoked by a user application to perform
the task for which the CCU was designed. The functions in layer 3 only use
functions provided by HdS layer 2. The HdS layer 3 function(s) provide a
transparent interface to the CCU, essentially making the CCU available as a
regular software function.

5.4 IP-XACT Extensions

In this section, we elaborate on the expressiveness of the current IP-XACT
standard to describe the scenario presented in the previous section. Based on
this analysis, we describe three possible extensions, namely hardware compiler
input, HdS and tool-flow integration related extensions. We implemented the
proposed extensions using the vendorExtensions extension construct that is
already part of IP-XACT. This allows vendor specific information to be added
to IP-XACT descriptions.

5.4. IP-XACT EXTENSIONS 77

CCUCCU

MicroBlaze
processor

MicroBlaze
processor

Communication with
other processes

Hardware dep. Software (HdS)Hardware dep. Software (HdS)

Layer 3: user functions
 idct()

Layer 3: user functions
 idct()

Layer 2: device operations
 ccu_load_arguments()
 ccu_start()

Layer 2: device operations
 ccu_load_arguments()
 ccu_start()

Layer 1: low level operations
 send_command()
 read_obus()

Layer 1: low level operations
 send_command()
 read_obus()

IMEMIMEM

DMEMDMEM CPI

shared
memory

bus

Figure 5.2: Connection between CCU and processor (left) and HdS layers (right).
IMEM is the instruction memory of the processor, while DMEM is the data memory
that is shared between both the processor and the CCU.

5.4.1 Hardware Compiler Input

The DWARV2.0 compiler accepts a C function as input and generates a VHDL
component that implements the original C function. In our case study, we send
the C function together with an IP-XACT metadata description to DWARV2.0.
DWARV2.0 assumes that a function argument can be both input and output at
the same time, if the argument is a pointer into shared memory. However,
arguments to functions inside a PPN process are always unidirectional. For
each function argument, unidirectional First In, First Out (FIFO) channels are
created according to the process network topology. Therefore, we need to
inform DWARV2.0 about the direction of each function argument, such that the
appropriate FIFO input or output connection can be generated. We therefore
add a direction field to the IP-XACT description that is passed along with the
C file defining the function implementation. The values this field can take are:
in, out and inout.

5.4.2 Hardware-Dependent Software

Using HdS in heterogeneous MPSoCs abstracts hardware and OS details away
from the application level. In our case study, we have partitioned the HdS into
three different layers, as described in Section 5.3.2. HdS layer 1 is generated
by the Daedalus environment and then passed to DWARV2.0. This enables
DWARV2.0 to generate HdS layers 2 and 3 that make use of the primitives

78
CHAPTER 5. IP-XACT EXTENSIONS FOR RECONFIGURABLE

COMPUTING

<spirit:function>
<spirit:entryPoint>send_data</spirit:entryPoint>
<spirit:fileRef>f-hds1_h</spirit:fileRef>
<spirit:returnType>void</spirit:returnType>
<spirit:argument spirit:dataType="int">
<spirit:name>data</spirit:name>
<spirit:value>0</spirit:value>

</spirit:argument>
<spirit:vendorExtensions>
<spirit:hdstype>write</spirit:hdstype>

</spirit:vendorExtensions>
</spirit:function>

Figure 5.3: HdS IP-XACT extensions for layer 1.

provided by HdS layer 1.

To create a semantic link between two different HdS layers, we need to spec-
ify the purpose of the functions found in HdS1. For HdS layer 1, we classify
a function as read, write or command. An example of such a description in
IP-XACT is shown in Figure 5.3. The read identifier classifies the function
as one that reads data from the CCU-Processor Interface (CPI), which has
been implemented using two small FIFO buffers. The write identifier classi-
fies the function as one that writes application data to the CPI and the command
identifier classifies a function as one that writes control data to the CPI. Be-
cause hardware primitives are typically limited in number, we define a new
IP-XACT type HdS type to establish a semantic link between layers 1 and 2.

Similarly, we can create a link between layers 2 and 3. However, layer 2 is
concerned with abstracting OS specific implementation details for the custom
IP block, and since there is no OS present in our case study, we leave the
definition of this type as future work. Nevertheless, we imagine that this type
could include identifiers for the POSIX standard such as opening and closing
file handles.

5.4.3 Tool Chains

To fully automate the tool flow shown in Figure 5.1, IP-XACT provides means
to model generator chains. For example, the current IP-XACT standard pro-
vides a generatorExe field which contains the executable to be invoked for
a generator. However, we observe that IP-XACT currently lacks a way to
describe the tool-specific configuration files. For example, DWARV2.0 uses
an external Floating-Point (FP) library description file listing the available FP
cores, such that floating-point arithmetic in the C code can be implemented us-

5.5. EXPERIMENTAL RESULTS 79

ing available FP cores. To allow seamless cooperation of different tools from
different vendors, we observe the need to include tool-specific descriptions and
files in IP-XACT generatorChain schema.

5.5 Experimental Results

In this section, we report on two kinds of results. First, we show the appli-
cability and usefulness in a real world application and second, we report the
overall productivity gain. We base this on our experience with the H.264 case
study, for which the first implementation was done manually.

5.5.1 Validation of Approach

In our experiments, we target a Xilinx Virtex-5 XC5VLX110T-2 FPGA and
use Xilinx EDK 9.2 for low-level synthesis. We use QCIF (176x144 pixels)
video resolution and a 100 MHz clock frequency. To validate the approach,
we implement the H.264 decoder application twice. The first time we map all
processes of the PPN onto MicroBlaze processors, which means all PPN pro-
cesses are implemented as software. This serves as our reference implemen-
tation. The second time we replace the software IDCT node with a hardware
version obtained using the methodology described in the previous sections. We
obtain a speedup of approximately 30.4%.

5.5.2 Productivity Gain

Besides proving the usefulness of the approach to obtain a faster implemen-
tation of a PPN, we discuss the productivity gain observed when adopting
an automated IP-XACT based approach. If the automated support was not
available, manually patching the tools would have been time consuming and
error-prone. Depending on the application knowledge of the system designer
and application complexity, activities like writing the HdS or the CCU wrap-
per can take from a few hours up to even weeks. Moreover, validation may
take a similar amount of time. For example, a memory map has to be specified
as C code in the HdS and as VHDL in the RTL. For correct operation of the
system, these two representations need to be fully consistent, which may be an
important source of errors when manual action is involved. We eliminate such
errors by taking the information from a central source (e.g., an IP-XACT de-
scription) and then automatically generate the different representations. This

80
CHAPTER 5. IP-XACT EXTENSIONS FOR RECONFIGURABLE

COMPUTING

substantially reduces the time needed for validation. To fully understand the
specific challenges and properly design the modifications required by the tools
to enable automated integration, our first implementation of the system was
manual. Based on this experience, we estimate that building a fully working
system for the H.264 decoder application by hand would take one week. Using
the approach described in this work, one could obtain a working system in less
than an hour, which is a considerable gain in productivity.

5.6 Conclusion

In this chapter, we have presented a new approach for automated generation
of RTL implementations from sequential programs written in the C language.
This is achieved by combining the Daedalus framework with the DWARV2.0
C-to-VHDL compiler with the aid of the IP-XACT standard. With these con-
cepts, even different architectural templates can be reconciled. We investigated
the capabilities of the IP-XACT standard to model automated integration of
MPSoCs consisting of both hardware and software components. We found that
the Hardware Dependent Software needed to control the hardware component
cannot be described in the current IP-XACT standard. We identified three
possible concepts that could be added as extensions to the IP-XACT standard
to realize automated integration of HW/SW systems. Using an H.264 video
decoder application we validated our approach.

Note.

The content of this chapter is based on the following paper:

R. Nane, S. van Haastregt, T.P. Stefanov, B. Kienhuis, V.M. Sima, K.L.M. Ber-
tels, IP-XACT Extensions for Reconfigurable Computing, 22nd IEEE Inter-
national Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP 2011), Santa Monica, USA, September 2011.

6
Area Constraint Propagation in

High-Level Synthesis

HARDWARE compilers, which generate hardware descriptions from
high-level languages, are rapidly gaining in popularity. These gen-
erated descriptions are used to obtain fast implementations of soft-

ware/hardware solutions in heterogeneous computing platforms. However, to
obtain optimal solutions under certain platform constraints, we need intelligent
hardware compilers that choose proper values for the different design parame-
ters automatically. In this chapter, we present a two-step algorithm to optimize
the performance for different area constraints. The design parameters under
investigation are the maximum unroll factor and the optimal allocation of re-
source1 types. Experimental results show that generated solutions are mapped
into the available area at an occupancy rate between 74% and 99%. Further-
more, these solutions provide the best execution time when compared to the
other solutions that satisfy the same area constraint. Finally, a reduction in de-
sign time of 42x on average can be achieved when these parameters are chosen
by the compiler compared to manually selecting them.

6.1 Introduction

Heterogeneous multi-core architectures are a direct consequence of the end of
Moore’s law. In many cases, this heterogeneity is being implemented by means
of FPGA based custom computing units. The Xilinx Zynq at the embedded
side and the Convey HC-1 on the supercomputing side are just a couple of the
telling examples. The FPGA blades allow to provide application-specific hard-
ware support, which can even be modified at run-time, and thus, provide a tai-

1resources and functional units are used interchangeably in the text

81

82
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

lored support for different application domains. The gain that can be obtained
by combining a traditional processor with a Reconfigurable Architecture (RA)
can be tremendous (e.g., between 20x and 100x [40]). However, before the
potential of this technology can be fully exploited, a number of challenges
have to be addressed. One of the challenges is the automatic generation of the
hardware units through e.g., C-to-VHDL generation, while a second important
challenge is to have an efficient way to explore the design space. This chapter
primarily focuses on the second challenge.

The strength of RAs is that they offer much more design freedom than a
General-Purpose Processor (GPP). In this work, we rely on such architec-
tures to maximize the application performance by automatically exploiting the
available parallelism subject to area constraints. In particular, we look at appli-
cation loops in more detail as these constructs provide a greater source of per-
formance improvement, also in hardware synthesis. Considering the scenario
where Hardware Description Language (HDL) code is automatically gener-
ated, two important parameters have to be explored, namely, the degree of
parallelism (i.e., the loop unrolling factor) and the number of functional mod-
ules used to implement the source High-Level Language (HLL) code. De-
termining these parameters without any human intervention, is a key factor
in building efficient HLL-to-HDL compilers and implicitly any Design Space
Exploration (DSE) tools.

This chapter presents an optimization algorithm to compute the above pa-
rameters automatically. This optimization is added as an extension to the
DWARV2.0 hardware compiler (see Chapter 4) which generates synthesizable
VHDL on the basis of C-code. The contributions of this chapter are:

• The automatic determination of the maximum unroll factor to achieve
the highest degree of parallelism subject to the available area and the
function characteristics.

• The automatic computation of the number of functional units instanti-
ated by the compiler, to optimize the performance given the previously
identified unroll factor and respecting the given design constraints.

• The validation of the algorithm through an implementation on an opera-
tional platform.

The rest of the chapter is organized as follows. Section 6.2 presents the back-
ground and related research. In Section 6.3 the details of the algorithm are

6.2. BACKGROUND AND RELATED WORK 83

presented while in Section 6.4 the experimental results are discussed. Finally,
Section 6.5 draws the conclusions and highlights future research activities.

6.2 Background and Related Work

The MOLEN Machine Organization [73] is an architecture developed at TU
DELFT that facilitates Hardware/Software (HW/SW) co-design. It includes
three main components, a GPP, Custom Computing Unit (CCU) used as an
accelerator and a shared memory between them. The CCUs are implemented
on a reconfigurable (FPGA based) platform. In order to create an accelerator
for this platform, we use DWARV2.0, a C-to-VHDL compiler, that generates
a CCU for an application kernel. More information about DWARV2.0 will
be given below. The generated CCU complies with a simple interface that
contains ports to enable the exchange of data and control information. This
allows changing the CCU while the system is running, without modifying the
hardware design, thus allowing multiple applications and CCUs to execute at
the same time. Given enough resources, multiple CCUs can be executed in
parallel, taking advantage of inherent application parallelism. To manage the
reconfigurable area we divide it (logically) into slots, in which one CCU can be
mapped. Each slot can be used by a different application. However, these slots
can be combined to allow different sized kernels to be mapped corresponding
to different design goals. For example, possible layouts include 5 CCUs that
each use an equal area or 2 CCUs, having an area ratio of 3/2. Having only
one slot using all the available area is another possible scenario.

DWARV2.0 (see Chapter 4) is a C-to-VHDL hardware compiler built with
CoSy Compilers Framework [26]. Compilers built with CoSy are composed
of a set of engines which work on the Intermediate Representation (IR) gener-
ated based on the input program. The initial IR is generated by the frontend. To
generate VHDL from C code, DWARV2.0 performs standard and custom trans-
formations to the combined Control Data Flow Graph (CDFG). The ROCCC
project [48, 93] aims at the parallelization and acceleration of loops. Catapult-
C [14] and CtoS [15] are commercial high-level synthesis tools that take as
input ANSI C/C++ and SystemC inputs and generate register transfer level
(RTL) code. However, these compilers are complex and require extensive de-
signer input in both the applied optimizations and the actual mapping process,
making it less viable for a software designer that does not have in-depth hard-
ware knowledge. Both Altium’s C to Hardware (CHC) [8] and LegUp [18]
compilers are intended to compile annotated functions that belong to the ap-

84
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

plication’s computational intensive parts in a HW/SW co-design environment.

However, none of these compilers, including DWARV2.0, currently posses
any capabilities to generate hardware that satisfies a particular area constraint,
while maximizing performance. More precisely, requiring that a function’s
generated HDL takes no more than a given area is not possible. Neither the
unroll factor, nor the number of functional units used are determined taking
into account the execution time or the area. Performing this optimization auto-
matically would enable high-level tool-chains to analyze different application
mappings in a shorter amount of time. For example, the algorithm presented
in [74], where the best mapping of CCUs is selected given a fixed number of
resources and fixed kernel implementations, would be improved if the imple-
mentations would be generated according to some determined area constraint.

6.3 Area Constrained Hardware Generation

In this section, we present the model that allows the compiler to decide the
unroll factor and the number of resources. In the first part, we describe and
define the problem while, in the second part, we elaborate on the details of the
algorithm. Finally, we conclude the section by showing how this model has
been integrated in the DWARV2.0 compiler.

6.3.1 Motivational Example and Problem Definition

To describe the problem, we make use of a synthetic case study. We con-
sider a simple function that transforms each element of an input array based
on simple arithmetic operations with predefined weights (as in e.g., FIR fil-
ter). The function has no loop-carried dependencies as each array element is
processed independently of the others. Figure 6.1(b) shows this graphically,
where Lb marks the beginning of the loop (i.e., compute the new value for
each of the array elements) and the number four in the superscript represents
the total number of loop iterations (i.e., we use an input array size of four ele-
ments). The body of the loop is delimited by the rectangle box. The Le marks
the end of the four loop iterations. Furthermore, we see that, in this body, three
operations are performed taking one cycle each for a total function execution
time of 12 cycle time (CT). Unrolling once and given there are no loop-carried
dependencies, we can speedup the application by a factor of two if we would
double the resources. However, the overall speedup will depend on the avail-
able hardware resources and is thus constrained by this. For instance, if we use

6.3. AREA CONSTRAINED HARDWARE GENERATION 85

L
b

n

L
e

n

IP
1

IP
m C

m

IP
2

C
1

C
2

(a) CT = Cm ∗ n

L
b

4

L
e

4

+

3

*

1

2

/

(b) CT = 12

L
b

2

L
e

2

+

3

*

1

2

/

+

*

/
4

(c) CT = 8

L
b

2

L
e

2

+

3

*

1

2

/

+

*

/
4

(d) CT = 8

L
b

2

L
e

2

+

3

*

1

2
+

4

*

5

6

(e) CT = 12

L
b

2

L
e

2

+

3

*

1

2
+

4

*

5

(f) CT = 10

L
b

1

L
e

1

3

1

2

4

5

6

+

*

/

+

*

/

+

*

/

+

*

/

(g) CT = 6

L
b

1

L
e

1

3

1

2

+

*

/

+

*

/

+

*

/

+

*

/

(h) CT = 3

Figure 6.1: Motivational Examples: a) Formal Representation; b) No Unroll and 1+,
1*, 1/ units; c) 2 Unroll and 1+, 1*, 1/ units; d) 2 Unroll and 2+, 1*, 1/ units; e) 2
Unroll and 1+, 1*, 1/ units; f) 2 Unroll and 1+, 1*, 2/ units; g) 4 Unroll and 1+, 1*, 1/
units; h) 4 Unroll and 4+, 4*, 4/ units;

86
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

only one resource of each type as in the initial case, the speedup would be less
than the maximum possible (CT = 8 in Figure 6.1(c)).

Doubling only one resource type, as, for example, the addition unit (Figure
6.1(d)), and keeping the initial assumption that each of the three computa-
tions takes the same number of clock cycles (i.e., one clock cycle), does not
decrease the execution time while increasing the area. This is a suboptimal
allocation of resources for the achieved execution time. It is important to note
that this scenario can falsely allow one to draw the conclusion that, for such
loop body types, the number of resources that should be used for each type
is the number corresponding to the resource with the minimum count in the
loop. However, this is true only for the case where all resources compute the
output in the same number of cycles. However, if this is not the case, which
is a fair assumption for real world applications, having different counts of re-
sources is possible without obtaining a suboptimal resource allocation. This
is illustrated in Figures 6.1(e) and 6.1(f). In the first illustration, we have the
scenario when one resource of each type is used, while, in the second, only the
number of division units is doubled. This leads to a decrease in CT from 12
to 10 because the number of cycles for one loop iteration is decreased by one
due to the availability of a second division unit that can be used before the first
division finished execution.

Finally, fully unrolling the loop and using only one resource of each type
achieves a yet better execution time. This is illustrated in Figure 6.1(g) where
CT has been reduced to six cycles. Nevertheless, the best execution time (CT

= 3) is achieved when fully unrolling the loop and using the maximum possible
units for each operation as shown in Figure 6.1(h). However, this can increase
the area past the available area for the function. This is specially important in
our scenario, where the reconfigurable area is divided among differently sized
slots. For example, in the current implementation of the MOLEN machine
organization, we have available a maximum of five slots. Given run-time and
partial reconfigurability, the slots can be merged or split depending on the ap-
plication’s requirements. This would lead to a different area requirement for
one kernel. Therefore, it is necessary to have hardware compilers that auto-
matically generate hardware designs that map onto the available area given as
an input constraint. This would avoid iterating over the design choices to find
the optimal unroll factor and the maximum number of resources of each type,
thus reducing the design space exploration time.

Summarizing, there is a trade-off between the number of unrolls one can do
and the number of resources used for each unroll. The goal of our model is

6.3. AREA CONSTRAINED HARDWARE GENERATION 87

to compute the best combination given performance as the main design objec-
tive. Given the general form of applications with loop body types as shown in
Figure 6.1(a), we define the problem as follows: be the loop delimited by Ln

b

and Ln
e iterating n times, performing operations that use m different hardware

modules, IP1 to IPm, for which we know the sizes and latencies c1 to cm re-
spectively, determine the unroll factor and the maximum number of modules
for each of the m IP types such that the input area constraint is satisfied while
the performance is maximized.

6.3.2 Optimization Algorithm

The algorithm consists of two parts, one for each parameter that needs to be de-
termined. In the first step, we determine the unroll factor based on the available
FPGA area as well as the area increase due to wiring when more parallelism is
available after an unroll is performed. Wiring is the total amount of hardware
logic (i.e., wires) that is used for routing register and memory resources to cor-
responding arithmetic unit(s) logic and vice-versa. To obtain the unroll factor
(uf) we solve inequality 6.1 for the maximum value of uf :

Ai + uf ∗ wi <= At (6.1)

,where Ai , At and wi represent the initial area of the kernel, the total area
available for the kernel on the target FPGA and the wiring increase per unroll,
respectively. Furthermore, we have uf ∈ N and have obtained both Ai and wi
after a complete behavioral synthesis and estimation of the kernel’s generated
HDL. The initial kernel refers to the code ’just as is’, i.e., the code without any
unroll optimization applied and using the minimum number of resources for
each of the required IPs necessary to implement its functionality. The compiler
is executed once without activating any specific optimization regarding the
number of IPs and unroll. The compiler is executed a second time with the
loop unrolled once. Then, the wi is the difference between the estimated area
of these two generated kernels. The estimation is based on [59].

In the second step, we determine the necessary component counts to fit the
hardware design onto the FPGA area available. This step assumes the IP sizes
are available and can be loaded from an external library. However, if these
are not available, the netlist of the IP should be synthesized for the specific
device, and the number of slices required for it should be saved in the external
database. Furthermore, the available parallelism for each IP has been fixed
by the previous step which unrolled the loop body. That means that no more

88
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

than some value n of IPs of type m (conditions 6.5 and 6.6 below) can execute
in parallel (inequality 6.4). The second constraint according to the problem
definition involves the area of the IPs itself, which leads to the constraint that
the sum of all IP sizes multiplied by the number of their instantiations should
not exceed the total area given as a parameter (inequality 6.3). Finally, the
objective is to minimize the time it takes to compute each level in the graph
by instantiating as many resources of that type possible (6.2). The solution of
the algorithm is obtained by selecting the maximum between these minimums
chosen for each level in the CDFG. Note that minimizing the number of cycles
only for a level in the CDFG is ineffective if the other levels with different
operations are not minimized, as well. The complete set of (in)equations is
shown below:

min : MAX{countIPi/xi + countIPi%xi?1 : 0} (6.2)
m∑
i=1

xi ∗ area{IPi} <= At (6.3)

xi <= tIPi
∗ uf (6.4)

countIPi = MAX{tIPi
∗ uf } (6.5)

xi ∈ N,∀i ∈ {1, ...,m} (6.6)

,where area is the area of the component accounting for both the number of
slices and on board Digital Signal Processor (DSP)s cores it requires. xi s are
the variables which represent how many IPs of type i can be used inside the
total area available (At). Furthermore, tIPi

represents how many instances of
type IPi are used in the initial version of the code when no unroll has been
performed.

6.3.3 Integration in DWARV2.0

The algorithm is shown in Figure 6.2 and includes two function calls corre-
sponding to the above two steps described. In determineUnrollFactor(), we
first load the necessary parameters to solve inequality 6.1. These are obtained
by (pre)compiling the kernel and using any estimation tool (such as Quipu [60]
from the Delft Workbench tool-chain) on the generated HDL to predict the ini-
tial area. Therefore, the result of the estimation is used to extract and store
the parameters required for the algorithm. These are fed into the compiler in
the second run for the same kernel. Figure 6.3 shows how the compiler flow

6.4. EXPERIMENTAL RESULTS 89

int determineUnrollFactor(int At) {
wi = importWI(); //import estimated wiring increase (see Section III.C)
return solveUF(wi,At)// solve inequality (1);

}

struct areagenparams optimizeForArea(int At) {
I) uf = determineUnrollFactor(At);
ipsizes = loadIPsizes(); // import component sizes
II) return solveIPcounts(uf,ipsizes,At); // return solution found by (2)

}

Figure 6.2: optimizeForArea Main Function of the Algorithm.

has been extended to compute these values and how the algorithm has been
integrated in DWARV2.0. In the stripped upper box, we see the internals of
the DWARV2.0 compiler as it was described in section 6.2. This is composed
of a series of loosely integrated engines, executing different optimizations and
transformations on the globally available IR. The small engine box denoted
Plug-ins represents the implementation of our algorithm, which performs no
action if there are no input parameters, i.e., for the first two runs to obtain the
parameters for the initial area and the area of the kernel with the loop unrolled
once. The difference between these estimated areas gives us the estimated
wiring increase for unrolling.

After these preliminary compilations (maximum two), the algorithm can be
applied. Using the computed wiring increase and the initial area obtained, the
unroll factor can be computed by solving inequality 6.1. The solution is feed
into the unroll engine which obtains a new intermediary version of the code
with an increased parallelism. Note that the unroll engine is encompassed by
the ”Plug-ins” engine which was built around it, i.e., it is composed actually of
two smaller engines corresponding to the two steps. One it is run before and
the other after the unroll engine. Finally, based on the determined parallelism,
the inequalities 6.2 to 6.6 are initialized and solved in function solveIPcounts().

6.4 Experimental Results

In this section, we describe the experimental environment, the test cases and
provide a discussion of the obtained solutions for the different design options
available.

90
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

CFrontCFront

.c.c IRIR
SSASSA Plug-insPlug-ins emitemit

.vhdl.vhdl

parametersparameters Estimation toolEstimation tool

DWARV 2.0

Parameter
extraction

Parameter
extraction

TODO: maybe add DataBase from where target-specific IP sizes are loaded!???

Figure 6.3: Algorithm Integration with DWARV2.0 Compiler.

6.4.1 Experimental Environment

The environment used for the experiments is composed of three main parts:

i) The C-to-VHDL DWARV2.0 compiler, extended with an optimization
engine applying the two-step algorithm described in the previous sec-
tion,

ii) the Xilinx ISE 12.2 synthesis tools, and

iii) the Xilinx Virtex5 ML510 development board.

The board contains a Virtex 5 xc5vfx130t FPGA consisting of 20480 slices and
2 PowerPC processors. From these, 9600 slices are allocated to the reconfig-
urable part of the MOLEN design as presented in section 6.2, and constitute
the maximum area that DWARV2.0 generated designs target. More precisely,
we use in the experiments 1920, 2880, 4800 and 9600 slices corresponding to
20%, 30%, 50% and respectively the full area of the reconfigurable part to test
the capability of the algorithm to generate designs that during synthesis will fit
within these predefined area constraints.

6.4.2 Test Cases

To validate the correctness and usefulness of the algorithm, we used three case
studies based on real applications. These are a simple vector summation of 128
elements, a 10x2 with a 2x10 matrix multiplication and a 5-tap-FIR filter com-
puting 27 values. Figures 6.4, 6.5 and 6.6 graphically show the characteristics
of these kernels. The vector summation contains 64 additions in parallel, the

6.4. EXPERIMENTAL RESULTS 91

+1 +2 +64

+1

+1

…...

+32…...

…...

result_sum

Figure 6.4: Vec-
torSum test case.

 result_matrix

i <= 100

No

Yes

+

*

Loop iteration i

*

Figure 6.5: MatrixMult
test case.

 result_FIR

i <= 27

No

Yes

Loop iteration i

*
+
* * * *

+
+

+

Figure 6.6: FIR
test case.

matrix multiplication iterates 100 times to compute each element of the 10x10
resulting matrix by doing two parallel multiplications followed by an addition,
whereas the FIR test case consists of 5 parallel multiplications and 2 parallel
additions for each computed element. All the arithmetic operations are done
on floating-points numbers, therefore, the IPs (i.e., resources) of interest in the
experiments are floating-point adders and multipliers. However, the general
approach described in the previous section can apply to any IP block, not just
floating-point adders and multipliers.

The first step of the algorithm is to determine the unroll factor. To do this, we
first compute the set of values available for the unroll parameter based on the
loop bound. This set is composed of the loop bound’s divisors and is necessary
because we restrict the search space only to unroll factors that divide the loop
bound. Furthermore, we consider only compile-time known loop bounds and
leave as future research the case when these bounds are variable. For example,
in the matrix multiplication test case that iterates 100 times, the set of unroll
factors is composed of the divisors of 100, i.e., {1,2,4,5,10,20,25,50,100}, with
one representing no unroll and 100 the fully unrolled version of the code. Next,
the inequality for determining the unroll factor is derived. This is achieved by
taking the increase in the area due to wiring when unrolling once, multiplying
it with the unroll variable and adding the area size of the minimum kernel
implementation (i.e., no unroll). The increase in the area due to unrolling
is computed by subtracting the size of the estimated area for the ’no unroll’
implementation from the area obtained for the ‘2 unroll’ implementation. Both
of these numbers are obtained using the methodology described in Section
6.3.3.

The reason why this model is viable is that the wiring increase per unroll fac-
tor is the biggest between the ‘unrolling’ once’ and ‘no unroll’ kernel imple-
mentations. If the body of the loop is unrolled further, the wiring increase

92
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

decreases because more resources become available for reuse. More specif-
ically, by packing the routing logic into logic already partially occupied by
previous unrolls, the increase in the area for subsequent unrolls is becoming
smaller. Therefore, solving inequality 6.1 using the maximum wiring implies
that the unroll factor obtained will satisfy the area constraint for unrolls bigger
than two. Our experiments showed that this is true. Nevertheless, in future
research, we will investigate this matter in more depth and propose a formal
model for this increase.

To verify that the obtained uf is valid, we use the divisor set obtained previ-
ously and check that the value is included in the set. However, note that the
unroll factor can fall in between the values present in the set. In this case, we
select the next smaller value in the set because the design would be guaran-
teed to fit into the constrained area. Furthermore, the slack area that becomes
available by choosing a smaller unroll factor than the computed one allows
the second step of the algorithm to duplicate more IP cores and thus achieve a
higher degree of parallelism for the computation.

The second step is to decide how many IPs can be instantiated based on the
available code parallelism after unrolling the number of times identified in
the previous step (Table 6.1 third column). This is done by solving the sys-
tem composed of inequalities 6.2 to 6.6 described previously in section 6.3.2.
The parameters are set according to the operations with their predefined area
loaded from the target-dependent external library. Furthermore, we set the
main constraint for the objective function, i.e., maximum area available in
terms of slices. Table 6.1 fifth column shows the various solutions obtained
for the corresponding area constraints given in the second column.

6.4.3 Discussion

To gain insight in the results and understand why the design process benefits
from such an optimization, we look at the generated hardware under various
area constraints, different unroll factors and number of IP cores. That is, we
analyze the Pareto points obtained for different configurations. Due to resem-
blance reasons, we discuss only the matrix multiplication example and give for
the other two only the final results. This function consists of a loop iterating
100 times to compute each of the elements of the resulting 10x10 matrix. Each
iteration contains one addition and two parallel multiplications. Fully unrolling
this code would lead to a maximum of 100 additions and 200 multiplications
to execute in parallel. Clearly this can easily lead to a HDL implementation
that would not fit into the available area. Therefore, we perform an analysis

6.4. EXPERIMENTAL RESULTS 93

m_20

Page 1

name area

no unroll 299 20030 27315
328 21030 28315

2 unroll 381 11530 18815
454 10030 17315

4 unroll 500 6780 14065
709 5030 12315

5 unroll 525 5830 13115
822 4030 11315

10 unroll 900 3930 11215
2000 2030 9315

20 unroll 1213 2980 10265
20unroll_10MUL_5ADD 1736 1180 8465

2050 1030 8315
25 unroll

1299 2790 10075
6MUL_3ADD 1612 1150 8435
8MUL_4ADD 1680 1070 8355
9MUL_5ADD 1771 1030 8315

10MUL_5ADD_SOL 1854 990 8275
11MUL_6ADD 2100 990 8275
12MUL_6ADD 2150 990 8275

2200 830 8115
50 unroll

2250 2410 9695
2300 430 7715

100 unroll
2350 2120 9405
2400 130 7415

nounroll_lim

2unroll_unlim

4unroll_unlim

5unroll_unlim

10unroll_unlim

20unroll_unlim

lim

unlim

lim
unlim

lim
unlim

2
0

0

7
0

0

1
2

0
0

1
7

0
0

2
2

0
0

0

5000

10000

15000

20000

no unroll

2 unroll

4 unroll

5 unroll

10 unroll

20 unroll

25 unroll

50 unroll

100 unroll

Area (slices)

La
te

n
cy

 (
n

s)

m
ax

 a
re

a
=

19
20

 s
lic

es(1*,1+)

(2*,1+)

(1*,1+)

(4*,2+)

Solution
 (10*,5+)

(20*,10+)

(1*,1+)

(1*,1+)

(10*,5+)

(8*,4+)

(1*,1+)

(200*,100+)

(100*,50+)

(8*,4+)

(11*,6+)

(9*,5+)

(10*,5+)

(50*,25+)

(12*,6+)

(1*,1+)
(1*,1+)

(1*,1+)
(6*,3+)

Figure 6.7: Matrix multiplication: 20% area design constraint.

with the DWARV2.0 compiler extended with the new optimization engine and
investigate its capability to generate CCUs that fit into different sized slots
available in the current MOLEN design.

We begin by constraining the available area for the CCU to the smallest size
slot that has 1920 slices accounting for 20% of the available reconfigurable
FPGA area. Figure 6.7 shows different points corresponding to different con-
figurations of the matrix function. To explain the points in the graph, we define
the tuple 〈x , y∗, z+〉 notation that represents the solution point with the loop
body unrolled x times, instantiating y multipliers and z adders. In the graphs,
the first element of the tuple is represented by a different shape and color. For
example, the most left side point in the figure is 〈1, 2∗, 1+〉 denoting the im-
plementation of the initial code (i.e., no unroll) and using two multiplication
and one addition units. This implementation executes in 20030 ns and occu-
pies 299 slices. Note that the implementation using the minimum number of
resources, i.e., 〈1, 1∗, 1+〉 is slower (21030 ns) and occupies 29 slices more.
The execution time is bigger because using only one multiplication core we do
not take full advantage of the available parallelism, whereas the increase in the
area is due to the more slices required to route multiple inputs to one unit com-
pared to the increase obtained by duplication. This confirms also the wiring

94
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

increase model used, which assumes that the wiring increase is the highest
when there is a small area available for reuse as is for this minimum kernel
implementation.

The vertical line on the right of Figure 6.7, denoted by max area, repre-
sents the threshold after which the generated configurations will not fit into
the requested area constraint. The fastest solution obtained by fully unrolling
the loop and using the maximum number of cores for both operations, i.e.,
〈100, 200∗, 100+〉, does not meet the design constraint of 1920 slices being
situated on the right of the threshold line. The rest of the points show rep-
resentative design configurations. That is, for each possible unroll factor we
show the minimum (i.e., using one core of each unit) and the maximum imple-
mentations. However, for each unroll we can have more configurations than
the minimum and maximum, for example, the 〈20, 10∗, 5+〉 and 〈25, 8∗, 4+〉
solutions, with the second being faster and smaller.

Analyzing all these solutions manually is very time consuming; therefore, the
benefit of having the compiler perform this automatically has tremendous ef-
fects in terms of saved design time. Considering the 20% area constrained ma-
trix example and assuming a binary search through the design space, we would
need to evaluate at least seven designs manually to obtain the 〈25, 10∗, 5+〉
optimal solution. Assuming 30 minutes to obtain the bitstream for each imple-
mentation, we would need at least 210 minutes to arrive at the optimal solution.
The automation of this search and running the compiler along with the estima-
tor takes on average five minutes. This leads to an average speedup in design
time of 42x.

Figure 6.8 shows the return on investment (ROI) for the 20% area design con-
straint. ROI is computed as the factor-wise increase in performance over the
factor-wise increase in area. We show the ROI at discrete points on the x-axis
obtained by the division of the corresponding (new) solution area number in
terms of slices to the initial solution. The origin of the graph represents the
initial solution, which is occupying 328 area slices and executes in 21030 ns.
Such a graph is important when we are confronted with many optimization
choices and choosing the best solution given a limited budget is not trivial. In
this case, we can see immediately what is the effect of unrolling vs. increasing
the number of resources. For example, if resources are at a premium, a cost
efficient solution is usually one chosen from the ones with a smaller unroll
factor and less functional units. Appendix B shows the ROI for the other three
cases of the matrix multiplication example described in this section.

Figure 6.9 illustrates the design points for the 30% area constraint. For this

6.4. EXPERIMENTAL RESULTS 95

m_20

Page 1

name area X investment X gain ROI MAX area increase 7285
328 21030 28315 0.00 0.00 0.00 5.85
299 20030 27315 0.91 1.05 1.15

2 unroll 381 11530 18815 1.16 1.82 1.57
454 10030 17315 1.38 2.10 1.51 NOTE: this graph I did not make it final! Because we can have different types of graphs

4 unroll 500 6780 14065 1.52 3.10 2.03
709 5030 12315 2.16 4.18 1.93

5 unroll 525 5830 13115 1.60 3.61 2.25
822 4030 11315 2.51 5.22 2.08

10 unroll 900 3930 11215 2.74 5.35 1.95
2000 2030 9315 6.10 10.36 1.70

20 unroll 1213 2980 10265 3.70 7.06 1.91
20unroll_10MUL_5ADD 1736 1180 8465 5.29 17.82 3.37

2000 1030 8315 6.10 20.42 3.35
25 unroll

1299 2790 10075 3.96 7.54 1.90
6MUL_3ADD 1612 1150 8435 4.91 18.29 3.72
8MUL_4ADD 1680 1070 8355 5.12 19.65 3.84
9MUL_5ADD 1771 1030 8315 5.40 20.42 3.78

10MUL_5ADD_SOL 1854 990 8275 5.65 21.24 3.76
11MUL_6ADD 2000 990 8275 6.10 21.24 3.48
12MUL_6ADD 2000 990 8275 6.10 21.24 3.48

2000 830 8115 6.10 25.34 4.16
50 unroll

2000 2410 9695 6.10 8.73 1.43
2000 430 7715 6.10 7.54 1.24

100 unroll
2000 2120 9405 6.10 9.92 1.63
2000 130 7415 6.10 9.92 1.63

exec.time without memtransferexec.time with mem transfer
nounroll

no unroll_unlim

2unroll_unlim
what I can do here is to show for how much increase in area (until 100% procent) the evolution of performance

4unroll_unlim

5unroll_unlim

10unroll_unlim

20unroll_unlim

lim

unlim

lim
unlim

lim
unlim

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

nounroll

2 unroll

4 unroll

5 unroll

10 unroll

20 unroll

25 unroll

50 unroll

100 unroll

Investment Factor

R
et

u
rn

 o
n

 I
n

ve
st

m
en

t
(R

O
I)

m
ax

 a
re

a
=

19

20
 s

li
ce

s

Solution
 (10*,5+)

Figure 6.8: Matrix multiplication ROI for 20% area design constraint.

m_30

Page 1

name area
25 unroll

13MUL_6ADD 2325 80 38 990 8275 13*,6+ 50*, 25+
13MUL_7ADD_SOL 2432 84 40 950 8235 13*,7+ 50*, 25+

14MUL_7ADD 2407 83 42 950 8235 14*,7+ 50*, 25+
15MUL_7ADD 2900 N/A ERROR: unplaced 22 FF950 8235 15*,7+ 50*, 25+
16MUL_8ADD 2388 82 48 950 8235 16*,8+ 50*, 25+
17MUL_9ADD 2950 N/A ERROR: !DSP (52>48)910 8195 17*,9+ 50*, 25+

50 unroll #VALUE!
2MUL_1ADD 2277 79 6 1410 8695 2*,1+ 100*, 50+
4MUL_2ADD 2327 80 12 910 8195 4*,2+ 100*, 50+
6MUL_3ADD 2418 83 18 750 8035 6*,3+ 100*, 50+
8MUL_4ADD 2577 89 24 670 7955 8*,4+ 100*, 50+

10MUL_5ADD 2709 94 30 610 7895 10*, 5+ 100*, 50+
12MUL_6ADD 2805 97 36 590 7875 12*,6+ 100*, 50+

13MUL_7ADD_SOL 3000 N/A ERROR: !sites 570 7855 13*,7+ 100*, 50+
100 unroll #VALUE!

3050 N/A ERROR: FF 15450 > 115202120 9405 1*,1+ 200*,100+
2MUL_1ADD 3100 N/A ERROR: FF 15452 > 115201120 8405 2*,1+ 200*,100+
4MUL_2ADD 3150 N/A ERROR: FF 15896 > 11520620 7905 4*,2+ 200*,100+
6MUL_3ADD 3200 N/A ERROR: !sites FF (14390>11520)460 7745 6*,3+ 200*,100+

lim

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

300

500

700

900

1100

1300

1500

1700

1900

2100

25 unroll

50 unroll

100 unroll

Area (slices)

La
te

n
cy

 (
n

s)

m
ax

 a
re

a
=

28
80

 s
lic

es

(2*,1+)

(2*,1+)

(6*,3+)

Solution
 (12*,6+)

(13*,7+)
(10*,5+) (6*,3+)

(16*,8+)

(8*,4+)

(13*,6+)
(17*,9+)

(13*,7+)

(1*,1+)

(4*,2+)

(14*,7+)

(18*,9+)

Figure 6.9: Matrix multiplication: 30% area design constraint.

96
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

m_50

Page 1

name area
50unroll

20MUL_10ADD 3705 time smaller SOLtime smaller SOL 510 7795 20*,10+ 100*, 50+
25MUL_12ADD 4266 time smaller SOLtime smaller SOL 510 7795 25*,12+ 100*, 50+

25MUL_13ADD_SOL 4228 88 76 490 7775 25*,13+ 100*, 50+
34MUL_16ADD 4900 N/A ERROR: !DSP (100>80)490 7775 34*,16+ 100*, 50+
34MUL_17ADD 4950 N/A ERROR: !DSP (102>80)470 7755 34*,17+ 100*, 50+

100unroll #VALUE!
2MUL_1ADD 4171 1120 8405 2*,1+ 200*,100+
4MUL_2ADD 4324 620 7905 4*,2+ 200*,100+
6MUL_3ADD 4174 86 18 460 7745 6*,3+ 200*,100+
8MUL_4ADD 4362 90 24 370 7655 8*,4+ 200*,100+

10MUL_5ADD 4427 92 30 320 7605 10*, 5+ 200*,100+
20MUL_10ADD 4797 99 60 220 7505 20*,10+ 200*,100+
25MUL_13ADD 5000 N/A ERROR:!sites(FF 19290>19200)200 7485 25*,13+ 200*,100+

3
7

0
0

3
9

0
0

4
1

0
0

4
3

0
0

4
5

0
0

4
7

0
0

4
9

0
0

150

350

550

750

950

1150

50unroll

100unroll

Area (slices)

La
te

n
cy

 (
n

s)

m
ax

 a
re

a
=

48
00

 s
lic

es

(6*,3+)

Solution
 (20*,10+)

(8*,4+)

(34*,16+)

(25*,13+)

(25*,12+)(25*,13+)(20*,10+)

(4*,2+)

(2*,1+)

(34*17+)

(10*,5+)

Figure 6.10: Matrix multiplication: 50% area design constraint.

experiment, the figure shows only configurations after the loop body was un-
rolled by at least a factor of 25 because, from the previous experiment with the
smaller area constraint, we know that the design choices up to 25 unroll factor
cannot be the optimal solution. Therefore, we highlight several possible imple-
mentations for the 25, 50 and full unroll factors. Analyzing the performance
for these implementation, we observe that unrolling has a bigger impact on
performance than using more parallelism with a smaller unroll factor. For ex-
ample, the 〈50, 6∗, 3+〉 kernel implementation is faster and occupies less area
than the one represented by the 〈25, 18∗, 9+〉 point. However, if we unroll too
much, we might not obtain any valid solutions as is the case with all the 100
unroll points. Therefore, finding the optimum unroll factor is a key step in the
area constraint driven HDL generation. The optimal solution obtained for the
30% area constraint is the 〈50, 12∗, 6+〉 implementation point.

Finally, Figures 6.10 and 6.11 illustrate design points for the 50% and 100%
area constraint, respectively. The solutions obtained are close to the minimum
latency achieved when all 200 multiplications and 100 additions are used in
the fully unrolled version. However, because of the high number of arith-
metic units required by this implementation, and given the maximum number
of slices available in the current setup, this best solution cannot be achieved.

6.4. EXPERIMENTAL RESULTS 97

m_100

Page 1

name area 7285
100 unroll

40MUL_20ADD 7845 81 120 170 7455
50MUL_24ADD 8484 88 148 170 7455

50MUL_25ADD_SOL 8470 88 150 160 7445
67MUL_33ADD 9700 N/A ERROR: !DSP (200>160)160 7445
67MUL_34ADD 9800 N/A ERROR: !DSP (202>160)150 7435

MAX 9900 130

7
8

0
0

8
3

0
0

8
8

0
0

9
3

0
0

9
8

0
0

120

130

140

150

160

170

180

100 unroll

MAX

Area (slices)

La
te

n
cy

 (
n

s)

m
ax

 a
re

a
=

96
00

 s
lic

es

Solution
 (50*,25+)

(67*,34+)

(200*,100+)

(40*,20+) (50*,24+)

(67*,33+)

Figure 6.11: Matrix multiplication: 100% area design constraint.

Therefore, a compiler that cannot handle area constraints and always fully un-
roll loops to achieve the highest code parallelism using the maximum possible
resources will always fail to give a valid solution.

The same experiments were subsequently performed for the VectorSum case
study, as well. Because this function does not contain any loops, only the
second step of the algorithm was applied. This case study shows thus that the
algorithm can be applied also for applications that do not contain loops and
thus it can be used in a general way. The solutions are summarized in Table
6.1. For each constraint, we verified that the solutions are the optimal ones by
checking that allocating a smaller number of resources gives a bigger latency
for the kernel execution time. At the same time, synthesizing the next solution
confirmed that this fails to meet the area constraint.

Finally, we tested the FIR kernel that has as input an array of 32 values and 5
parameters to compute 28 output values. Each of the output values is computed
thus in a loop iterating 28 times. Therefore, the unroll factor set is composed
of {1,2,4,7,14,28}. Table 6.1 summarizes the solutions obtained for all case
studies. The second column shows the area restriction for which the results are
given. The third column shows the unroll factor obtained in the first step of the
algorithm while the next column gives the maximum operations of each type

98
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

Ta
bl

e
6.

1:
E

xp
er

im
en

ta
lr

es
ul

ts
of

th
e

te
st

ca
se

s
an

d
th

ei
rc

or
re

sp
on

di
ng

so
lu

tio
ns

fo
rd

iff
er

en
ta

re
a

de
si

gn
co

ns
tr

ai
nt

s.

Fu
nc

tio
n

C
as

e
U

nr
ol

l
M

ax
.I

Ps
So

lu
tio

n
A

re
a

O
cc

up
an

cy
L

at
en

cy
Fr

eq
.

Po
w

er
fa

ct
or

(s
lic

es
)

(%
)

(n
s)

(M
H

z)
(m

W
)

Ve
ct

or
Su

m

20
%

N
/A

64
+

10
+

18
88

98
92

5
21

3
10

6
30

%
64

+
22

+
28

17
97

88
5

24
0

12
6

50
%

64
+

64
+

45
26

94
86

5
33

8
29

4
10

0%
64

+
64

+
55

81
78

86
5

33
8

29
4

M
at

ri
x

20
%

25
50

*,
25

+
10

*,
5+

18
54

96
99

0
30

0
95

30
%

50
10

0*
,5

0+
12

*,
6+

28
05

97
59

0
28

3
14

0
50

%
10

0
20

0*
,1

00
+

20
*,

10
+

47
97

99
22

0
28

0
32

4
10

0%
10

0
20

0*
,1

00
+

50
*,

25
+

84
70

88
16

0
28

0
40

3

FI
R

20
%

14
70

*,
28

+
8*

,3
+

18
97

98
10

20
25

0
10

6
30

%
14

20
*,

28
+

14
*,

7+
27

38
95

90
0

32
5

15
5

50
%

28
14

0*
,5

6+
28

*,
12

+
47

38
98

50
0

33
9

24
5

10
0%

28
14

0*
,5

6+
47

*,
19

+
71

74
74

48
0

32
7

29
3

6.5. CONCLUSION AND FUTURE RESEARCH 99

that could be executed in parallel for the previous unroll factor. The solution
of the second step of the algorithm for how many instances to use for each
operation is shown in the fifth column. The next two columns highlight the
number of slices the obtained solution takes as well as how much of the avail-
able area for the experiment is used. Kernel latency and frequency information
are showed in columns eight and nine. This maximum frequency reported is
obtained after behavioral synthesis. We do not report the post place and route
frequency because we set the target clock cycle to 6.66 ns. This restriction is
imposed by the 150 MHz frequency required by the MOLEN static part.

It is important to look at the power consumption and how this is influenced by
the size of the generated implementation. The dynamic power consumed by
the unoptimized, initial kernel implementations (i.e., using only one IP of each
type and not unrolling) is 81 mW, 8 mW, and 38mW for the vector summation,
the matrix, and the FIR function, respectively. The power consumption for the
solution points for the experimented area constraints is given in the last column
of the results table. The power data offers another motivation why a hardware
compiler should be able to generate different hardware implementation based
on different input constraints. We mostly discussed in this chapter the case
where the user would want to map different kernels on the reconfigurable area
and optimize the performance. However, using the area as a design constraint,
the user could just as well optimize the power consumption. This is especially
true for cases when the area increases rapidly, but only with a small increase
in performance. For example, consider the vector summation solutions for the
20% and 100% experiments. The speedup of the second compared to the first
is small, i.e., 1.1x, however, the increase in power is 2.8x. If the performance
of the system is not critical, the designer could choose to restrict the area to
reduce the power consumption. Therefore, the presented algorithm could be
used to minimize the power consumption as well, not only the performance.
Nevertheless, a formal power model is needed in order to include the power
constraint in the decision model. Such an extension is part of the future work
of this approach.

6.5 Conclusion and Future Research

In this chapter, we presented an optimization algorithm to compute the optimal
unroll factor and the optimum allocation of resources during the HLL-to-HDL
generation process when this is subject to area constraints. The described al-
gorithm was added to an existing C-to-VHDL hardware compiler, and three

100
CHAPTER 6. AREA CONSTRAINT PROPAGATION IN HIGH-LEVEL

SYNTHESIS

case studies were used to validate the optimization. The experiments showed
that the generated solutions are mapped into the available area at an occupancy
rate between 74% and 99%. Furthermore, these solutions provide the best ex-
ecution time when compared to the other solutions that satisfy the same area
constraint. Furthermore, a reduction in design time of 42x on average can be
achieved when these parameters are chosen automatically by the compiler.

Future research includes analyzing other applications and investigating how
different graph characteristics influence the optimization presented. Another
model extension involves dealing with variable loop bounds. In addition, more
accurate prediction models for the wiring increase as well as for the power
consumption are needed.

Note.

The content of this chapter is based on the following paper:

R. Nane, V.M. Sima, K.L.M. Bertels, Area Constraint Propagation in High
Level Synthesis, 11th IEEE International Conference on Field-Programmable
Technology (FPT 2012), Seoul, South Korea, December 2012.

7
A Lightweight Speculative and

Predicative Scheme for HW Execution

IF-CONVERSION is a known software technique to speedup applications
containing conditional expressions and targeting processors with predi-
cation support. However, the success of this scheme is highly dependent

on the structure of the if-statements, i.e., if they are balanced or unbalanced,
as well as on the path taken at run-time. Therefore, the predication scheme
does not always provide a better execution time than the conventional jump
scheme. In this chapter, we present an algorithm that leverages the benefits
of both jump and predication schemes adapted for hardware execution. The
results show that performance degradation is not possible anymore for the un-
balanced if-statements as well as a speedup between 4% and 21% for all test
cases.

7.1 Introduction

As the increase in frequency of the general-purpose processors is becoming
smaller and harder to obtain, new ways of providing performance are investi-
gated. One of the promising possibilities to improve the system performance
is to generate dedicated hardware for the computational-intensive parts of the
applications. As writing hardware involves a huge effort and needs special ex-
pertise, compilers that translate directly from high-level languages to hardware
languages have to be available before this method is widely adopted. As C and
VHDL are the most popular used languages in their fields, of embedded and
hardware system development respectively, we will focus on compilers for C-
to-VHDL. The algorithm presented here can be applied in theory to any such
compiler. A C-to-VHDL compiler can share a significant part with a compiler

101

102
CHAPTER 7. A LIGHTWEIGHT SPECULATIVE AND PREDICATIVE

SCHEME FOR HW EXECUTION

targeting a general-purpose architecture, still, there are areas for which the
techniques must be adapted to take advantage of all the possibilities offered.

In this context, this chapter presents an improved predication algorithm, which
takes into account the characteristics of a C-to-VHDL compiler and the fea-
tures available on the target platform. Instruction predication is an already
known compiler optimization technique; however, current C-to-VHDL com-
pilers do not fully take advantage of the possibilities offered by this optimiza-
tion. More specifically, we propose a method to increase performance in the
case of unbalanced if-then-else branches. These types of branches are prob-
lematic because, when the jump instructions are removed for the predicated
execution if the shorter branch is taken, slowdowns occur because (useless)
instructions from the longer branch still need to be executed. Based on both
synthetic and real world applications we show that our algorithm does not sub-
stantially increase the resource usage while the execution time is reduced in all
cases for which it is applied.

The chapter is organized as follows. We begin by presenting a description of
the predication technique and previous research, emphasizing on the missed
optimization possibilities. In Section 7.3 we present our algorithm and de-
scribe its implementation. The algorithm is based on a lightweight form of
speculation because it does not generate logic to roll back speculated values.
It employs a lightweight form of predication because only some branch in-
structions are predicated, as well as keeping jump instructions. Section 7.4
discusses the results and Section 7.5 concludes the chapter.

7.2 Related Work and Background

Given the code in Figure 7.1 (a), the straightforward way of generating assem-
bly (or low-level code) is presented in Figure 7.1 (b). We note that, for any of
the two branches, there is at least one jump that needs to be taken. If the block
execution frequency is known, an alternative approach exists in which the two
jumps are executed only on the least taken branch.

Branches are a major source of slowdowns when used in pipelined processors
as the pipeline needs to be flushed before continuing if the branch is mis-
predicted. Furthermore, branches are also scheduling barriers, create I-cache
refills and limit compiler scalar optimizations. In order to avoid these nega-
tive effects, the concept of predication was introduced, which does not alter
the flow but executes (or not) an instruction based on the value of a predicate.
An example is given in Figure 7.1 (c). In this scheme, no branches are intro-

7.2. RELATED WORK AND BACKGROUND 103

duced, but, for a single issue processor, (sometimes) useless instructions are
executed. In case of a multiple issue processor, such instructions can be “hid-
den” because the two code paths can be executed in parallel. We emphasize
that the advantage of the predication for processors comes from the fact that
there are no branches in the code.

if (x)
r = a + b;

else
r = c - d;

(a)

cond = cmp x,0
branchf cond, else
add r,a,b
branch end

else:
sub r,c,d

end:

(b)

cond = cmp x,0
[cond] add r,a,b
[!cond] sub r,c,d

(c)

Figure 7.1: (a) C-Code; (b) Jump- ; (c) Predicated-Scheme.

The predication scheme assumes that the penalty of the jump is huge, and thus
branching has to be avoided. This is no longer true in the case of VHDL code.
For the VHDL code, there are no “instructions” but states in a datapath, con-
trolled by a Finite State Machine (FSM). A straightforward implementation in
VHDL of the jump scheme is presented in Figure 7.2. We will present in the
later sections the implications of the fact that the jumps are not introducing a
huge delay. For this case, applying predication decreases the number of states
from 4 to 2. We will show in the later sections how our algorithm can reduce
the number of states even for unbalanced branches, a case not treated in the
previous work.

A seminal paper on predication is [58], where a generic algorithm is presented
that works on hyperblocks which extends the concept of basic blocks to a set
of basic blocks that execute or not based on a set of conditions. It proposes
several heuristics to select the sets of the basic blocks, as well as several op-
timizations on the resulted hyperblocks and discusses if generic optimizations
can be adapted to the hyperblock concept. Compared to our work, their heuris-
tic does not consider the possibility of splitting a basic block and does not
analyze the implications for a reconfigurable architecture, e.g., branching in
hardware has no incurred penalty.

The work in [57] proposes a dynamic programming technique to select the
fastest implementation for if-then-else statements. As with the previous ap-
proach, any change in the control flow is considered to add a significant per-
formance penalty. In [43], the authors extend the predication work in a generic
way to support different processor architectures. In this work, some instruc-
tions are moved from the predicated basic blocks to the delay slots, but as delay

104
CHAPTER 7. A LIGHTWEIGHT SPECULATIVE AND PREDICATIVE

SCHEME FOR HW EXECUTION

datapath
state_1:

cond = cmp x,0
state_2:
state_3:

r=a+b;
state_4:

r=a-b;
state_5:

.... -- code after if-statement
FSM

state_1:
next_state = state_2

state_2:
if(cond)

next_state = state_3
else
next_state = state_4

state_3:
next_state = state_5

state_4:
next_state = state_5

state_5:
....

Figure 7.2: Jump Scheme

slots are very limited in nature there is no extensive analysis performed about
this decision.

Regarding the C-to-VHDL compilers, we mention Altium’s C to Hardware
(CHC) [8] and LegUp [18]. They translate functions that belong to the appli-
cation’s computational-intensive parts in a hardware/software co-design envi-
ronment. Neither of these compilers considers specifically predication coupled
with speculation during the generation of VHDL code.

7.3 Speculative and Predicative Algorithm

In this section, we describe the optimization algorithm based on two simple but
representative examples which illustrate the benefit of including Speculative
and Predicative Algorithm (SaPA) as a transformation in High-Level Synthesis
(HLS) tools.

7.3. SPECULATIVE AND PREDICATIVE ALGORITHM 105

void balanced_case(int *a, int *b, int *c, int *d, int *result) {
if (*a > *b)

*result = *c + *d;
else

*result = *c - *d;
}

Figure 7.3: Balanced if branches.

void unbalanced_case(int *a, int *b, int *c, int *d, int *result) {
int tmp;
if (*a > *b) {

tmp = *c + *d;

*result = tmp /5; }
else

*result = *c - *d;
}

Figure 7.4: Unbalanced if branches

7.3.1 Motivational Examples

To understand the problems with the predication scheme (PRED) compared
to the jump scheme (JMP), we use two functions that contain each one if-
statement. The first, shown in Figure 7.3, considers the case when the then-
else branches are balanced, i.e., they finish executing the instructions on their
paths in the same amount of cycles, whereas the second case deals with the
unbalanced scenario (Figure 7.4). In these examples, we assume the target
platform is the Molen machine organization [73] implemented on a Xilinx
Virtex-5 board. This setup assumes that three cycles are used to access memory
operands, simple arithmetic (e.g., addition) and memory write operations take
one cycle, whereas the division operation accounts for eight cycles.

The FSM states corresponding to the two examples are listed in Figure 7.5(a)
and 7.5(b). For each example, the first column represents the traditional jump
scheme ((1) and (4)), the middle columns ((2) and (5)) represent the predi-
cated one and columns (3) and (6) shows the SaPA version. This column will
be explained in more detail in the next section as it is presenting the solution
to the problem described here. Because each state executes in one cycle, the
first five states are needed to load the a and b parameters from memory. In the
first two states, the address of the parameters is written on the memory address
bus. State three is an empty state and, therefore, is not shown in the figures.
Finally, in states four and five the values of the parameters are read from the

106
CHAPTER 7. A LIGHTWEIGHT SPECULATIVE AND PREDICATIVE

SCHEME FOR HW EXECUTION

if (*a > *b)
*result = *c + *d;

else
*result = *c - *d;

S1: ld *a
S2: ld *b
S4: read a;
S5: read b;
S6:TB = cmp_gt (a,b)
S7: if (TB) jmp S16;
S8: ld *c;
S9: ld *d;
S11: read c;
S12: read d;
S13: result = c-d;
S14: write result;
S15: jmp S23;
S16: ld *c;
S17: ld *d;
S19: read c;
S20: read d;
S21: result = c+d;
S22: write result;
S23: return;

S1: ld *a
S2: ld *b
S4: read a;
S5: read b;
S6: TB = cmp_gt (a,b)
S7: ld *c;
S8: ld *d;
S10: read c;
S11: read d;
S12: if (TB)

 result = c+d;
else

 result = c-d;
S13: write result;
S14: return;

S1: ld *a
S2: ld *b
S3: ld *c
S4: read a;
 ld *d;
S5: read b;
S6: read c;
 TB = cmp_gt (a,b)
S7: read d;
S8: if (TB)

 result = c+d;
 else
 result = c-d;
S9: write result;
S10: return;

(1) JMP_B (2) PRED_B (3) SaPA_B

(a) Balanced Example

S1: ld *a
S2: ld *b
S4: read a;
S5: read b;
S6: TB = cmp_gt (a,b)
S7: if (TB) jmp S16;
S8: ld *c;
S9: ld *d;
S11: read c;
S12: read d;
S13: result = c-d;
S14: write result;
S15: jmp s32;
S16: ld *c;
S17: ld *d;
S19: read c;
S20: read d;
S21: tmp = c+d;
S22: INIT → tmp/5;
S30 result← tmp/5;
S31: write result;
S32: return;

S1: ld *a
S2: ld *b
S4: read a;
S5: read b;
S6:TB = cmp_gt (a,b)
S7: ld *c;
S8: ld *d;
S10: read c;
S11: read d;
S12: tmp = c+d;

 If (!TB) result = c-d;
S13: INT→ tmp/5;
S21: if (TB)
 result ← tmp/5;
S22: write result;
S23: return;

S1: ld *a
S2: ld *b
S3: ld *c
S4: read a;

 ld *d;
S5: read b;
S6: read c;
 TB = cmp_gt (a,b)
S7: read d;
S8: if (TB) tmp = c+d;
 else { result = c-d;

 jmp S18; }
S9: INT→ tmp/5;
S17: if (TB)

 result ← tmp/5;
S18: write result;
S19: return;

if (*a > *b) {
tmp = *c + *d;
*result = tmp / 5; }

else
*result = *c - *d;

(4) JMP_U (5) PRED_U (6) SaPA_U

(b) Unbalanced Example

Figure 7.5: Synthetic Case Studies.

7.3. SPECULATIVE AND PREDICATIVE ALGORITHM 107

1 7 8 15 23

16 23

6 1 7 1
TE = 16 cycles;

1

TT = 15 cycles;
11 7 (1) JMP_B

1 7 8 14

8 14

6 1 6
TE = 14 cycles;

1

TT = 14 cycles;
11 6 (2) PRED_B

1 7 8 10

8 10

6 1
TE = 10 cycles;

1

TT = 10 cycles;
11 2 (3) SaPA_B

1 7 8 15 32

16 32

6 1 7 1
TE = 16 cycles;

1

TT = 24 cycles;
11 16 (4) JMP_U

1 7 8 23

8 23

6 1 15
TE = 23 cycles;

1

TT = 23 cycles;
11 (5) PRED_U

1 7 8 18 19

8 19

6 1 1 1
TE = 10 cycles;

1

TT = 15 cycles;
11 7 (6) SaPA_U

2

15

(a) Balanced Example

(b) Unbalanced Example

Figure 7.6: Execution Sequence of FSM States.

data bus. These operations are common for all possible implementations (i.e.,
for all combinations of balanced/unbalanced case study and JMP/PRED/SaPA
schemes) shown by the (1) to (6) numbered columns in the two figures. Subse-
quently, the then-branch (TB) predicate is evaluated for the JMP cases (column
(1) and (4)). Based on this value, a jump can be made to the then-branch states
(states 16 to 22), or, in case the condition is false, execution falls through to
the else-path (states 8 to 15). The number of states required for the unbalanced
case, i.e., (4) JMP U, is larger due to the additional division operation present
in the then-branch. That is in state 22 we initialize the division core with the
required computation, whereas, in state 30, we read the output.

Applying the predication scheme to the balanced example results in a reduc-
tion in the number of states. This is achieved by merging both then- and else-
branches and by selecting the result of the good computation based on the
predicate value. This optimization is ideal for HLS tools because decreasing
the number of states reduces the total area required to implement the function.
For the examples used in this section, a reduction of nine states was possi-
ble, i.e., when comparing (1) and (4) with (2) and (5) respectively. However,
because branches can be unbalanced, merging them can have a negative im-
pact on performance when the shorter one is taken. For example in column
(5) PRED U, when the else-path is taken, states 13 to 21 are superfluous and
introduce a slowdown for the overall function execution.

Figure 7.6 shows all possible paths for both examples as well as their execu-
tion times in number of cycles, e.g., from state 1 to state 23. TE represents the
execution Time for the Else path while TT is the Time when the Then path is

108
CHAPTER 7. A LIGHTWEIGHT SPECULATIVE AND PREDICATIVE

SCHEME FOR HW EXECUTION

taken. The upper part of the figure corresponds to the balanced if-function and
the lower for the unbalanced case. Furthermore, there is a one-to-one corre-
spondence between the columns in Figure 7.5 and the scenarios in Figure 7.6.
The numbers on the edges represent the number of cycles needed to reach the
next state shown. The last arrow in the paths represents the cycle required to
execute the return statement in the last state of the FSM. First, considering the
balanced flows, we observe that the predication scheme improves performance
compared to the jump scheme (i.e., (2) is better than (1)). This is because jump
instructions are removed.

However, care has to be taken to avoid performance degradation when shorter
paths are taken. This is shown in Figure 7.6 (5) compared to (4), where the exe-
cution time increased from 16 to 23 cycles. Therefore, for hardware execution
the predication scheme has to be adjusted to cope with unbalanced branches.
This is described next.

7.3.2 Algorithm Description and Implementation

To alleviate the short branch problem from the PRED scheme, we need to in-
troduce a jump statement when the shorter branch is finished. Fortunately, for
hardware execution this is possible without any penalty in cycles as opposed
to conventional processors. This extension to the predicated scheme is shown
in state S10 of Figure 7.5 (6). Including jump instructions in the FSM when-
ever a shorter path has finished guarantees that no extra cycles are wasted on
instructions that are superfluous for the path taken. This is possible because,
in hardware execution, there is no penalty when performing jumps. This moti-
vates that this transformation can be applied for hardware generation because
a hardware kernel is always seen as running on an n-issue slot processor with
a jump penalty equal to 0. Furthermore, the flows in (3) and (6) of Figure 7.6
show that speculation improves performance even more by starting the branch
operations before the predicate is evaluated. It is important to note that specu-
lation in the case of hardware execution comes without any penalty as we do
not have to roll back if the predicate value did not select the proper branch for
execution. In hardware we can use more resources to accommodate specula-
tive operations, i.e., sacrifice area, in favor of improving performance.

The compiler modifications required to implement the algorithm are shown in
Figure 7.7 in the lower dashed rectangle. In the upper part of the figure, the
global flow of the DWARV 2.0 compiler is shown. Here, standard and cus-
tom engines performing various transformations and optimizations are called
sequentially to perform the code translation from C to VHDL. In this existing

7.3. SPECULATIVE AND PREDICATIVE ALGORITHM 109

CFrontCFront

.c.c IRIR

SSASSA SaPA flowSaPA flow emitemit

.vhdl.vhdl

DWARV

SaPA flow

schedulerscheduler

pefilterpefilter predicablepredicable pecostspecosts

peallocatepeallocatepepropagatepepropagateSaPASaPA

ddgddg

Figure 7.7: Engine Flow to Implement SaPA.

flow, the SaPA flow wrapper engine was added. This wrapper engine is com-
posed of seven standard CoSy engines and one custom engine that implements
the SaPA algorithm.

The first engine required is the data dependency graph (ddg) engine, which
places dependencies between the predicate evaluation node and all subsequent
nodes found in both branches of the if-statement. Next, the pefilter engine is
called to construct the if-then-else tree structures. That is, basic blocks contain-
ing goto information coming from an if-statement are included in the structure,
however, basic blocks with goto information coming from a loop are not. The
predicable engine annotates the Intermediate Representation (IR) with infor-
mation about which basic blocks can be predicated. The compiler writer can
also express in this engine if he does not want the if-construct to be predi-
cated. pecosts computes the cost for each branch of the if-statement based on
the number and type of statements found in these and decides what scheme
should be used to implement this if-statement. For hardware generation, this
engine was reduced to simply returning SaPA. peallocate allocates registers in
which if conditions are stored, whereas pepropagate propagates those registers
to instructions found in both if-branches.

The SaPA engine implements the lightweight predication by introducing a
jump instruction in the case of unbalanced branches. That is, when one of
the branches has reached the end. Whenever this point is reached, a jump to
the end of the other branch is inserted. The SaPA engine performs this step.
Furthermore, the control flow edges from the predicate register to the expres-
sions found in both branches are also removed here. That is, for simple expres-
sions with local scope, dependency edges coming from the if-predicate are not

110
CHAPTER 7. A LIGHTWEIGHT SPECULATIVE AND PREDICATIVE

SCHEME FOR HW EXECUTION

State 1: ld *a
State 2: ld *b
State 4: read a;
State 5: read b;
State 6: then_branch = cmp_gt (a,b)
State 7: if (then_branch) jmp state 16;
State 8: ld *c;
State 9: ld *d;
State 11: read c;
State 12: read d;
State 13: result = c-d;
State 14: write result;
State 15: jmp state 21;
State 16: ld *c;
State 17: ld *d;
State 19: read c;
State 20: read d;
State 21: result = c+d;
State 22: write result;
State 23: return;

LD LD

read read

cmp_gt

LD LD

read read

+ -

WRITE WRITE

(a) Predicated Graph

State 1: ld *a
State 2: ld *b
State 4: read a;
State 5: read b;
State 6: then_branch = cmp_gt (a,b)
State 7: if (then_branch) jmp state 16;
State 8: ld *c;
State 9: ld *d;
State 11: read c;
State 12: read d;
State 13: result = c-d;
State 14: write result;
State 15: jmp state 21;
State 16: ld *c;
State 17: ld *d;
State 19: read c;
State 20: read d;
State 21: result = c+d;
State 22: write result;
State 23: return;

LD LD

read read

cmp_gt

LD LD

read read

+ -

WRITE WRITE

JMP
end-if

Insert in short
branch, if any

(b) SaPA Graph

Figure 7.8: Data Dependency Graphs.

needed. These expressions can be evaluated as soon as their input data is avail-
able. We name this lightweight speculation because, by removing the control
flow dependencies from the if-predicate, we enable speculation; however, we
do not introduce any code to perform the roll back in case the wrong branch
was taken as this is not necessary in our hardware design. The dependencies
to the memory writes, however, remain untouched to ensure correct execution.
Figure 7.8(b) exemplifies the removal of unnecessary dependency edges for the
balanced case study. It shows as well in the dashed box the (optional) insertion
of the jump instruction that in the case illustrated, was not necessary.

Finally, the scheduler is executed which can schedule the local operations be-
fore the if-predicate is evaluated, i.e., speculating. Furthermore, when the FSM
is constructed, whenever the branches become unbalanced, a conditional jump
instruction is scheduled to enforce the SaPA behaviour. If the predicate of the
jump instruction is true, the FSM jumps to the end of the if-block, therefore,
avoiding extra cycles to be wasted when the shorter branch is taken. This en-
sures no performance degradation is possible with this scheme. If the predicate
is false, the default execution to move to the next state is followed.

7.4. EXPERIMENTAL RESULTS 111

7.4 Experimental Results

The environment used for the experiments is composed of three main parts:
i) The C-to-VHDL DWARV 2.0 compiler (see Chapter 4), extended with the
flow presented in Section 7.3, ii) the Xilinx ISE 12.2 synthesis tools, and iii)
the Xilinx Virtex5 ML510 development board. This board contains a Virtex
5 xc5vfx130t FPGA consisting of 20,480 slices and 2 PowerPC processors.
To test the performance of the algorithm presented, we used seven functions.
Two are the simple synthetic cases introduced in the previous section while
the other five were extracted from a library of real world applications. These
applications contain both balanced and unbalanced if-branches.

Figure 7.9 show the speedups of the PRED and SaPA schemes compared
to the JMP scheme. The balanced function shows how much speedup is
gained by combining the predication scheme with speculation. Similar to
this, the speedup of the unbalanced function, tested with inputs that select
the longer branch (LBT), shows a performance improvement compared to the
JMP scheme due to speculation. However, when the shorter branch is taken
(SBT), the PRED scheme suffers from performance degradation. Applying
the SaPA scheme in this case allows the FSM to jump when the shorter branch
finishes and, therefore, obtaining the 1.14x speedup.

The execution times for both schemes for the gcd function are the same be-
cause both paths found in this arithmetic function have length one, i.e., they
perform only one subtraction each. Therefore, the only benefit is derived from
removing the jump-instruction following the operands comparison. It is impor-
tant to note that applying speculation is useful in all cases where both branches
and the if-predicate computation take more than one cycle. Otherwise, the
PRED scheme is enough to obtain the maximum speedup. Nevertheless, the
speedup that can obtained by simply predicating the if-statement and thus sav-
ing one jump instruction per iteration can be considerable, e.g., 20% when
the gcd input numbers are 12365400 and 906. mergesort provided a test case
with a balanced if-structure where each of the paths contains more than one
instruction. Therefore, the benefit of applying SaPA was greater than using the
PRED scheme. This example confirms that whenever the paths are balanced,
the application can not be slowed-down.

Finally, the last three cases show results obtained for unbalanced cases with
inputs that trigger the shorter branches in these examples. As a result, for
all these functions the PRED scheme generates hardware that performs worse
than the simple JMP strategy. Applying the SaPA algorithm and introducing

112
CHAPTER 7. A LIGHTWEIGHT SPECULATIVE AND PREDICATIVE

SCHEME FOR HW EXECUTION
Results_chart

Page 1

Speed-up
1 415 PE

PE 1.02 405 balanced 1.02 1.14
SPPA 1.14 365 unbalanced_LBT 1.01 1.08

 unbalanced_SBT 0.59 1.14
1.2 1.2

Speed-up 0.96 1.04
1 715 1.11 1.18

PE 1.01 705 0.79 1.08
SPPA 1.08 665 0.97 1.21

Speed-up
1 415

PE 0.59 705
SPPA 1.14 365

REAL APPLICATIONS
GCD Speed-up

1 820145
PE 1.20 683505

SPPA 1.20 683505

Speed-up
1 342965

PE 0.96 355515
SPPA 1.04 330515

Speed-up

1 5585
PE 1.11 5035

SPPA 1.18 4715

Speed-up
1

PE 0.79
SPPA 1.08

LCS Speed-up
1

PE 0.97
SPPA 1.21

simplePE latency(ns)
noPE SaPA

gcd
unbalancedPE_LBT latency(ns) adpcm

noPE mergesort
idct
lcs

unbalancedPE_SBT latency(ns)
noPE

latency(ns)
noPE

adpcm latency(ns)
noPE

mergesort latency(ns)
noPE

idct latency(ns)
noPE

latency(ns)
noPE

balanced
unbalanced_LBT

unbalanced_SBT
gcd

adpcm
mergesort

idct
lcs

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

PE
SaPA

S
p

e
e

d
u

p

Figure 7.9: Predicated Execution (PE) and SaPA speedups vs. JMP Scheme.

a jump instruction after the short branch will allow the FSM to break from
the “predication mode” execution of the if-statement and continue further with
executing useful instructions.

To verify that the presented algorithm does not introduce degradation of other
design parameters, i.e., area and frequency, we synthesized all test cases using
the environment described in the beginning of this section. Table 7.1 sum-
marizes the outcomes for the SaPA, PRED as well as the base JMP scheme.
Column three shows the number of FSM states needed to implement the corre-
sponding scheme from column two. Column four shows how much the com-
plete generated design, i.e., FSM with datapath, took in actual FPGA slices
for the target device. Finally, the estimated frequency is reported in column
five. Studying the numbers, we can observe that the area does not increase
nor does the frequency decrease substantially when we combine both paths of
if-statements. Our experimental results, therefore, support the claim that SaPA
brings additional performance improvement while not substantially increasing
the area nor negatively affecting the execution frequency. Nevertheless, future
research is necessary to investigate the impact in terms of frequency and area
for a large number of test cases.

7.4. EXPERIMENTAL RESULTS 113

Table 7.1: Implementation metrics for the different schemes.

Function Scheme FSM states Area (slices) Freq. (MHz)

balanced
JMP 31 258 644

PRED 20 461 644
SaPA 16 411 644

unbalanced
JMP 61 780 644

PRED 50 910 629
SaPA 46 855 335

gcd
JMP 16 161 350

PRED 14 153 357
SaPA 14 153 357

adpcm
JMP 113 1409 328

PRED 100 1470 328
SaPA 95 1424 352

mergesort
JMP 102 726 324

PRED 73 666 304
SaPA 69 740 360

idct
JMP 240 2361 211

PRED 162 2048 211
SaPA 151 2409 211

lcs
JMP 76 748 329

PRED 52 740 300
SaPA 49 786 300

114
CHAPTER 7. A LIGHTWEIGHT SPECULATIVE AND PREDICATIVE

SCHEME FOR HW EXECUTION

7.5 Conclusion

In this chapter, we argued that the typical JMP and PRED schemes found in
conventional processors are not performing ideally when we consider hard-
ware execution. The problem with the first is that we lose important cycles to
jump from the state where the if-condition is evaluated to the correct branch
state corresponding to the path chosen for execution. The PRED scheme
solves this issue; however, it suffers from performance degradation when the
if-branches are unbalanced.

To combine the advantages of both schemes, we presented a lightweight spec-
ulative and predicative algorithm which does predication in the normal way;
however, it introduces a jump instruction at the end of the shorter if-branch
to cope with the unbalanced situation. Furthermore, to leverage the hardware
parallelism and the abundant resources, SaPA also performs partial specula-
tion, i.e., no roll back necessary. This gains extra cycles in performance when
the if-predicates take more than one cycle to evaluate.

We demonstrated based on two synthetic examples the benefit of this optimiza-
tion and we validated it using five real world functions. The results show that
performance degradation will not occur anymore for unbalanced if-statements
and that the observed speedups range from 4% to 21%. Therefore, SaPA is a
transformation that should be considered for inclusion in any HLS tool. Future
research will analyze the impact of SaPA on a large number of kernels and
investigate if any systematic relation can be observed between the input pa-
rameters (e.g., number of instructions per path or nested ifs) and the measured
hardware metrics (i.e., area, frequency).

Note.

The content of this chapter is based on the following paper:

R. Nane, V.M. Sima, K.L.M. Bertels, A Lightweight Speculative and Pred-
icative Scheme for Hardware Execution, IEEE International Conference on
ReConFigurable Computing and FPGAs (ReConFig 2012), Cancun, Mexico,
December 2012.

8
DWARV 3.0: Relevant Hardware

Compiler Optimizations

IN this chapter, we discuss several optimizations that have a great potential
of improving the performance of DWARV2.0. In particular, we discuss in
Section 8.2 period-aware scheduling and memory space allocation hard-

ware specific optimizations, as well as an optimization to distribute the single
conditional code register to selection operations in order to take advantage of
the inherent hardware space locality propriety. Furthermore, in Section 8.3 we
investigate several existing optimizations, available in CoSy as default engines,
to assess the impact of using an optimization intended for generating assembly
code in a hardware compiler. Software pipelining is one such optimization.

8.1 Introduction

In Chapter 4, we presented the DWARV2.0 compiler and described how it is
implemented using the CoSy compiler framework. This first CoSy version in-
cluded only basic code transformations, such as common subexpression elim-
ination or static single assignment, but no other more advanced optimizations
were analyzed and integrated in DWARV2.0. As a result, the performance of
this version (i.e., 3.0) of the compiler greatly increased by using both hard-
ware specific optimizations as well as studying and integrating the standard
CoSy optimizations into DWARV.

In this chapter, we consider these two types of optimization sources and de-
scribe how the identified optimizations were integrated. First, we look at op-
timizations designed specially for the hardware generation process. In this re-
spect, we consider two optimizations that have the role to increase the usability
and applicability of generated hardware modules in the context of reconfig-

115

116
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

urable computing. The goal is to be able to exploit the flexibility offered by a
configurable hardware platform to implement different operating frequencies
and different memory system architectures.

These optimizations are period-aware scheduling, also called operation chain-
ing, and memory space allocation optimization, respectively. The first has the
clock period of the module as a design parameter and performs an operation
scheduling within clock cycles. Concretely, it optimizes the number of cy-
cles the design requires to complete execution. That is, if two dependent and
subsequent operations (i.e., they are the vertexes of a dependency edge in the
data dependency graph) can both complete execution in a time smaller than the
given clock period for the system, then they can be placed in the same cycle. If
that is not the case, then for these two operations at least two cycles are needed
to finish execution. The second optimization relates to the designed memory
system architecture, that is, it allows the compiler to partition the hardware’s
memory array parameters into different system memory banks to take full ad-
vantage of a distributed memory system architecture that is typically available
on a reconfigurable platform.

In addition, we also want to investigate how existing optimizations designed
for the generation of assembly code can perform when integrated into a com-
piler that generates Hardware Description Language (HDL). This is very use-
ful to leverage the vast amount of CoSy framework standard optimizations. In
section 8.3, we present work performed with M.Slotema in the context of his
master project that investigates these optimizations individually to assess what
contribution a particular transformation has on the generated hardware.

8.2 Hardware-Specific Optimizations

In this section, we provide implementation details of how we integrated into
DWARV3.0 the distributed condition code, operation chaining and memory
space allocation hardware specific optimizations.

Distributed Condition Codes

One of the advantages that hardware devices such as FPGAs have over conven-
tional CPUs is their inherent predication support. Because of this feature, we
showed in Chapter 7 that a High-Level Synthesis (HLS) tool targeting FPGAs
should consider an optimization pass that performs if-conversion to enable the
predicated execution. This was demonstrated in the same chapter, where a

8.2. HARDWARE-SPECIFIC OPTIMIZATIONS 117

Original

 CC EXPR←S1:

 IF(CC) JMPS2:

 (branch)
COMPUTE

S3:

Orig-Pred

 CC EXPR←

 IF(CC) Select

 (branch)
COMPUTE

New

 CC EXPR←
 IF(CC) JMP

 (branch)
COMPUTE

New-Pred

 CC EXPR←
 IF(CC) JMP

 (branch)COMPUTE

Barrier

Figure 8.1: Various If Resolution Possibilities.

lightweight scheme was proposed that always performs at least as good as the
typical jump scheme found in processor based systems. However, the con-
cluding remark for the presented optimization was that it is beneficial only in
cases where the predicate evaluation was performed in multiple cycles. This is
an understatement because the observed results were negatively biased by the
way DWARV2.0 was implemented.

That is, given a better design of the compiler, the optimization could achieve
better results also for the cases where the predicate evaluation takes only one
cycle, which is more common in real world applications. To illustrate this, con-
sider the following abstract example showed in Figure 8.1 - Original. Here, we
have a simple if statement, denoted by IF (CC) JUMP-SCHEME, where the
jump-scheme represents the typical then-else paths that have to be followed
based on the true/false evaluation of the predicate. CC is the (Conditional
Code) register holding the evaluation of the predicate and COMPUTATION
represents both computational paths that could be taken after a decision was
made based on the if-condition. In DWARV2.0, this was taking a minimum
of 3-cycles (COMPUTATION contains one or more operations totalling min-
imum 1 cycle of actual computation) because each of the described steps was
kept in a different cycle.

This suboptimal approach was caused by the allocation of one register for the
condition values as is usually the case in a processor. This register, CC, was
thus always used to hold the value of the predicate; therefore, we needed to
have one cycle between its definition and use in the if-evaluation. Further-
more, because an if-statement is considered in every compiler framework as
a barrier, we had to evaluate it completely before any subsequent instruction

118
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

could be executed; therefore, introducing another cycle. However, because in
hardware we can have multiple CC registers, we redesigned the compiler to
use locally distributed CC registers. These if local registers can be actually
transformed into hardware variables that can allow the definition and use to be
performed in the same cycle. This is illustrated in Figure 8.1 - New where the
whole computation takes fewer cycles, i.e., minimum two cycles. Therefore,
this modification improves both the execution time and the area required to im-
plement all logic because now we have fewer wires connecting local variables
to if-statements opposed to long wires that cross the whole chip going from
the central unique CC register location used previously.

This New scenario described above is equivalent to the case shown in Figure
8.1 - Orig-Pred, where the if-conversion optimization also reduced the mini-
mum required cycles from three to two by allowing the COMPUTATION to be
performed at the same time with the CC evaluation, with the computation re-
sult being selected in the second cycle. Therefore, in cases where the CC eval-
uation took only one cycle, the predicated single CC register implementation
gives the same performance results as in the new situation, that is, when the
condition codes are distributed locally to selection operations, but then without
any if-conversion optimization applied (Figure 8.1-New). However, in the new
design, the removal of the if-statement with barrier by enabling if-conversion
reduces the clock cycles to one. This situation is depicted graphically in Fig-
ure 8.1 - New-Pred. Therefore, this last case is possible when we distribute
the condition code register locally to selection operations (e.g., if statements),
taking advantage of the inherent hardware space locality propriety.

Period-Aware Scheduling

We implemented the operation-chaining optimization in CoSy by making the
standard framework scheduling engine aware of a global period set by the user.
This was implemented in the form of an additional engine that performs Data
Dependency Graph (DDG) annotations and allows the scheduler to consider
different edge latencies when performing the final scheduling. This can be
seen as an extension to the CoSy standard framework scheduling and DDG
engines. The flow of engines to support the period-aware scheduling is de-
picted graphically in Figure 8.2.

The engines in dark green boxes represent the engines written for this transfor-
mation, whereas the other two, sched and ddg, are CoSy standard engines. The
first engine in the flow, setperiod, sets the global period in the IR for the cur-
rent function. Furthermore, it initializes all nodes with a MAX period so that

8.2. HARDWARE-SPECIFIC OPTIMIZATIONS 119

Period-Aware Scheduling Flow

ddgddg setlatencysetlatency setregssetregs

Figure 8.2: Period-Aware Scheduling Flow.

we start from the case where each in/out dependency edge between two nodes
represents one cycle in the final schedule. To obtain these edges, we need to
call the DDG engine that creates these edges between IR nodes. Subsequently,
we run a version of the sched engine, pre-scheduler, to obtain an initial sched-
ule based on the default edge latencies. This information is needed later by
the setlatency engine to consider only the edges of nodes that are scheduled
one cycle apart for possible chaining. The setlatency is thus the core engine
that modifies the edge latencies defined by the ddg engine for nodes that are
scheduled one cycle apart. The algorithm that performs these annotations is
shown in Listing 8.1.

Listing 8.1: Engine setlatency Excerpt

edgeSlack = ‘psc->slackPeriod - ‘psc->nodePeriod;
if(edgeSlack >= ‘tgt->nodePeriod) {

‘edge->latency = 0;
if (edgeSlack < ‘tgt->slackPeriod &&

!‘tgt->beginCycle)
‘tgt->slackPeriod = edgeSlack;

}
else {

‘edge->latency = 1;
‘tgt->beginCycle = TRUE;
‘tgt->slackPeriod = ‘tgt->period;

}

First, for each dependency edge, its (computational) slack time is computed
(edgeSlack) as the difference between the slack and actual period of the DDG
source node. If the difference is bigger or equal to the edge target node’s
period, i.e., the target node can execute in the same cycle as its predecessor
from DDG, then the latency of the edge is made zero. A dependency edge

120
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

latency of zero implies that the source and target nodes can be scheduled in the
same cycle. Furthermore, if this remaining slack is the smallest between all
incoming node predecessor slack periods and this target node was not pushed
to the next cycle (i.e., beginCycle is false), its slack period is updated to this
new value. Otherwise, the latency of the DDG dependency edge is made one
so that the scheduler knows to create a new cycle whenever it needs to schedule
the target node. Finally, the target node is annotated to mark the beginning of
a new cycle and its slack period is reset to the original value.

With this new information annotated on the DDG edges, we can call the sched-
uler again to generate the final schedule in which instructions are merged to-
gether because their periods can be executed within the global period. The flow
is completed with the setregs engine that is used to annotate register variables
in the IR to mark the fact that this virtual register is also a (VHDL) variable be-
cause of the cycle merge. Furthermore, those registers that are now used only
as variables are annotated accordingly so that no register will be generated for
them any more in the final emit phase. Finally, the last modification required
is to annotate all the rules that generate instructions with a computational class
that represents the maximum time required to complete the computation. For
example, a shift operation is classified as conversion and will be initialized
with 100 picoseconds. This operation is faster than, for example, an integer
addition that is classified as arithmetic fast. The following list enumerates all
the classes used in DWARV3.0 as well as their allocated computation time. The
initialization of the mentioned times is done in the setperiod engine.

• conversions: 100 picoseconds

• memory: 1000 picoseconds

• comparison: 1500 picoseconds

• arithmetic fast: 3000 picoseconds

• arithmetic slow: 4000 picoseconds

We note first that these class execution times are now experimental (they are
based on approximations given to various computations extracted from Xilinx
documentation manuals) and should be further evaluated to allocate more re-
alistic execution times. However, the absolute time that such a computational
class can take depends on multiple factors, such as design density, computa-
tional cores and their location relative to the computation or the routing of the
design. Therefore, deriving more accurate numbers is not trivial and it will

8.2. HARDWARE-SPECIFIC OPTIMIZATIONS 121

be considered in future work. We envision some heuristic model that could
dynamically allocate different node periods based on different situations. Sec-
ond, when validating this transformation, we observed that it has a bonus effect
by always scheduling register initializations with constants in the same cycle
with the corresponding use of that constant; therefore, allowing the synthesizer
tool to remove these redundant registers efficiently. This reduces the total area.
Finally, as mentioned in the beginning of the section, this transformation al-
lows also for the predication to take effect for cases when the if computation
does not take more than one cycle.

Memory Space Optimization

The previous DWARV implementation was designed on the MOLEN machine
organization which defined one global shared memory from which all func-
tion parameters were accessed. This suboptimal design was motivated by
the fact that typical software applications also have only one shared memory
which contain the application data. Therefore, to support the same computa-
tional model, MOLEN was designed to keep these differences to a minimum
when moving specific kernels to hardware. As a result, the generated kernel
hardware had to access its parameters from a similar on FPGA single shared
memory. However, this is a severe restriction for hardware kernels running on
an FPGAs that contain multiple memory modules in the form of distributed
BRAMs across the entire area. Therefore, DWARV2.0 was under-performing
because only one memory operation could be scheduled each cycle. The logi-
cal and simple solution to this problem is to use different BRAMs for different
function parameters, thus, allowing the scheduling to perform multiple mem-
ory operation in one cycle if different parameters are used in that cycle. This
would be possible because, in this new case, we would not have a memory con-
tention for the same BRAM. This feature is known in the embedded systems
domain as using different memory spaces.

For this optimization, we assume that a previous running partitioning tool (see
Chapter 3) places restrict clauses on parameters. This implies that the seman-
tics of the program are not affected by this transformation. Any parameter
that cannot be disambiguated and, therefore, it does not have a restrict clause
before it, will be placed by default in the generic memory space.

The CoSy framework supports memory spaces through its embedded C99 [47]
frontend extension. This allows memory spaces to be defined and used in
the compiler. The code snippet shown in Listing 8.2 illustrates how a simple
function prototype has been extended to state explicitly that parameter p1 is

122
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

Listing 8.2: Example of a Procedure Declaration with Multiple Memory Spaces.

void exampleMultipleBramSpaces
(

bram1 int* p1, bram2 int* p2, bram3 int* p3
)
{

....
}

defined in bram1 memory space, p2 in bram2 respectively p3 in bram3. How-
ever, given that the DWARV compiler is part of a complex Hardware/Software
(HW/SW) co-design tool-chain that does not accept as input Embedded C99,
in which the whole application has to be run and instrumented by gcc based
tools, the definition of such bram keywords in the function prototype is not
allowed. Without the explicit definition of these keywords representing mem-
ory spaces in the function prototype, the CoSy frontend would assume that we
have only one memory space, the generic one. This leads to a schedule where
memory operations have to be given different cycles even if they are not de-
pendent. Furthermore, the CoSy frontend generates only one memory space
metadata structure in the IR to be referred by all types in the function. This is
important to keep in mind for the subsequent implementation details.

To implement support for different memory spaces such that the complete tool-
chain can still compile the whole application automatically, we must not anno-
tate the function definition with CoSy-specific memory space identifiers, but
we need to use one of the following two methods:

1. Use pragmas to define the parameter to memory space mapping.

2. Assume each function parameter is mapped to a different memory space.

For the current implementation, it is sufficient to use the second option. There-
fore, we assume that each new encountered function parameter will be allo-
cated in 〈bram〉i memory space, where i is the number of the parameter in the
list of the respective function prototype. For example, parameter p2 from the
function prototype in Listing 8.2 will be allocated implicitly in bram2.

The next step after the creation of different memory space metadata structures
in the Intermediate Representation (IR) is to modify the parameter types to
use the new metadata instead of the original space metadata representing the

8.2. HARDWARE-SPECIFIC OPTIMIZATIONS 123

generic memory space. In CoSy, to change the memory space information for
a type, we need to clone that type and make its memory space pointer point
to one of the new created memory space metadata. This step is implemented
in the hwconfig engine and is essentially a walk over the list of parameters,
getting and cloning their type, increasing an iteration index after it is concate-
nated into a bram string which is allocated to a newly created space structure’s
name. Finally, we associate the space with the new type, and the type with
the parameter. After completing this step, we have each parameter pointing to
unique types with a different memory space each.

However, performing this cloning and dissociating the parameters from the
original type, we introduce an invalid state in the CoSy IR. That is, parameters
have a new type now, whereas the expressions and statements that use these
parameters still point to the old type with the generic memory space. To keep
memory space related modification consistent, we have to propagate these new
types to all expressions and statements accordingly. This is implemented in a
new engine called setmbramtypes. First, to propagate the type to expressions
we perform a depth-first traversal with a pre- and post-action function for each
node traversed. The CoSy framework offers a specific function for such traver-
sals named prepost exprs in proc, which takes as arguments the function to
perform the pre-action, a function to perform the post-action and a base param-
eter to a structure to keep common information through all calls. Furthermore,
we use a stack to remember the expression that has the pointer type on higher
levels. For this one, we need to set the type to the type obtained from the leaf
parameter node underneath it. This setting is done in the post-action of the
traversal.

Second, to propagate the types also to statements and expressions containing
locals derived from pointer parameters, we need to iterate over all statements
in the procedure as well and look at local definitions and instantiations from
pointer parameters. For these pointer type assignments, we copy the type of
the right hand side to the local on the left leaf side of the assignment tree.
We subsequently make a global 〈modified〉 variable true, so that we remember
to iterate once more over all expressions, as well. We need to perform this
action to propagate these newly allocated real space types to locals up the tree
of expressions, as well. We perform these expression and statement traversals
as long as we still have modifications. The final touches are to implement
the disambiguation function to return true for different memory spaces and
create resources, templates, and dynamic rule function templates for the CoSy
sched scheduler engine. The disambiguation function is called implicitly by
the default sched engine, whereas the resource, template, and rule function

124
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

templates are used to select the resources which have to be used by each rule
instance. Because for each memory parameter we define different (memory)
resources, the memory disambiguator will report that memory operations with
different memory spaces assigned are independent. Therefore, we can now
perform two or more memory operations in parallel.

We mention that the current implementation of CoSy is restrictive from the
point of view of creating above elements dynamically. In other words, we can-
not accommodate on the fly the necessary number of resources and templates
that are to be associated with the corresponding number of memory spaces.
These have to be specified when DWARV is built from sources and have a
maximum limit that is defined at compile time (currently set to 60). How-
ever, considering the current FPGA implementation and the allocated number
of BRAMs available on them, we believe that this limitation will not restrict in
any way the working of the compiler.

8.3 CoSy Compiler Optimizations

In this section, we present one work in progress which is aiming at taking ex-
isting software optimizations and customizing them to exploit the hardware
characteristics fully. We will do this by restricting ourself to the optimizations
available in CoSy in the form of engines. In Chapter 3, we presented all en-
gines available in CoSy, and in this section we select only a few for further
investigation. That is, the techniques covered here are loop unrolling, loop
invariant code motion, software-sided caching and algebraic simplifications.
Table 8.1 shows how these techniques are divided into CoSy engines and it
describes briefly what specific task the engine performs. We believe that lever-
aging on existing software optimizations and extending or relaxing them for
the hardware compilation process, will allow us to close the performance gap
between a manually written versus generated HDL code. The goal of this sec-
tion is thus to investigate software optimizations from a hardware perspective
in order to be able to understand how these existing optimizations could be ap-
plied for the hardware generation process. The inherent benefit is to possibly
leverage on the large amount of previous research done for software compilers.
In this sense, work has been started which concluded in a master thesis [75].
The discoveries are briefly summarized in this section.

8.3. COSY COMPILER OPTIMIZATIONS 125

Table 8.1: Selected Optimisation Engines.

Engine name Brief description
algebraic Performs algebraic simplifications
cache Reducing memory accesses by delaying memory writes
constprop Performs constant propagation
demote Reduces the bitwidth of operations
loopfuse Rewrites two successive loops into a single loop
loophoist Applies loop-invariant code motion on statements
loopinvariant Applies loop-invariant code motion on expressions
loopscalar Reduces memory accesses by delaying memory writes
loopunroll Performs loop unrolling
scalarreplace Rewrites structures into local variables

lrrename
Rewrites a variable with separate life ranges

into different variables

Engines and Test Cases

To present the issues that arise when integrating (software) optimizations into
a hardware compiler‘s engine-flow, we use 19 test cases. Using these kernels,
we study both the individual and cumulative effect on the compiler perfor-
mance when integrating the selected engines shown in Table 8.1. The test
cases were carefully selected to contain different C-language characteristics,
i.e., loops without conditional paths that can be easily unrolled, loops that con-
tain conditional paths and which are not easy to parallelize after unrolling,
loops containing loop-invariant code or accessing repetitively array entries,
loops with variable or constant bounds, functions operating on floating-point
and fixed-point numbers. This variety of C-language characteristics allows to
show objectively if, when, and how a particular optimization is useful.

Optimization Order

Before we investigate which optimizations are useful from a hardware gen-
eration perspective, it is important to understand that not only the particular
optimization should be investigated if and how it should be applied in the new
context, but also in which order the optimizations should be applied. That is,
given a sequence of compiler transformations, the question of where to insert
a particular optimization is as important as the content of the optimization.

126
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

To demonstrate this, we inserted the loopunroll engine in different places in
DWARV2.0’s sequence of transformations.

 0

 0.5

 1

 1.5

 2

 2.5

 3

ff
t

fir

flo
a

tP
o

in
t_

II
R

7

F
ra

cS
h

ift

g
ri
d

_
ite

ra
te

lo
o

p

sa
td

S
p

e
e

d
u

p

baseline
loopanalysis

loopfuse
loophoist

loopinvariant
loopscalar
loopunroll

Figure 8.3: Results for Placing Loop-Optimising Engines after SSA Engines.

First, we inserted loopunroll before the SSA transformation is performed.
Considering the satd kernel that contains two for-loops, which can be unrolled
four times, a speedup should have been observed. However, this was not the
case. Detailed output from the loopunroll and loopanalysis engines showed
that the loop induction variable is not recognized. This is caused by two en-
gines: the ssabuild engine and the ssaconv that combined perform the SSA
transformation in CoSy. Because we do not have only one loop induction vari-
able, all memory access that belong to different variables originating from the
induction variables are serialized, and as a result, no parallelism between mem-
ory operations can be extracted. The solution is to move loopunroll after SSA
engines. Figure 8.3 shows that, in this case, a speedup of 1.5 can be achieved,
confirming that the order in which compiler optimizations are applied is very
important in the context of hardware compilers.

8.3. COSY COMPILER OPTIMIZATIONS 127

Optimization Configuration

An optimization (using the same configuration/values for its parameters) can
have different impacts on different kernels. That is, for one kernel it can be
beneficial and, therefore, when the optimization is applied, it will lead to a
boost in performance. However, for other kernels the same optimization can
experience a slowdown. To illustrate that an optimization is beneficial only in
certain circumstances, we took the same loopunroll engine and investigated its
impact on different kernels for different values of the maximum unroll factor
configurable parameter.

 0

 0.5

 1

 1.5

 2

 2.5

 3

b
e

llm
a

n
fo

rd

c
o

u
n

t_
a

liv
e

c
o

u
n

t_
a

liv
e

_
m

o
d

e
v
o

lv
e

_
h

w fi
r

fl
o

y
d

w
a

rs
h

a
ll

F
ra

c
S

h
if
t

h
a

m
m

in
g

m
u

lt
ip

ly

ra
d

ix
s
o

rt

s
a

td

s
o

b
e

l

v
it
e

rb
i

S
p

e
e

d
u

p

baseline
loopunroll

Figure 8.4: Comparison of DWARV without (baseline) and with loop-unrolling (un-
roll factor set to 128).

Figure 8.4 shows the effects of loop unrolling on different kernels. Five of the
kernels, the fir, FracShift, hamming, sobel and viterbi kernels, show a good
speedup of over 1.5, some even approaching three times speedup. Three ker-
nels show a decent speedup upto 1.5. Four kernels show a significant drop in
performance. These kernels are the bellmanford kernel, the count alive kernel,
the floydwarshall kernel and the multiply kernel. The average speedup of the
loopunroll over all kernels is 1.26. In order to understand what is the reason,

128
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

we analyzed the kernels more closely.

Listing 8.3: The loop of the count alive kernel

for(x = i - 1; x <= i + 1; x++) {
for(y = j - 1; y <= j + 1; y++) {

if((x == i) && (y == j))
continue;

if((y < size) && (x < size)
&& (x >= 0) && (y >= 0)) {

a += CELL(x, y);
}

}
}

The count alive kernel is part of a Game of Life implementation. The kernel is
responsible for the counting of the number of neighbors which are alive. This
is achieved by looping through three rows, starting from the row above the cell,
and three columns, starting from the column to the left of the cell. However,
the kernel is written in an unusual manner. Instead of looping from−1 to 1, the
kernel loops from i − 1 to i +1, where i is one of the coordinates of the center
cell. This loop is shown in Listing 8.3. Because of this, the loopunroll engine
cannot determine these fixed bounds of three by three. A modified version of
the kernel, the count alive mod kernel, loops from−1 to 1 and uses additional
variables to determine the coordinate of the cell that is to be checked. The
modified loop is shown in Listing 8.4. According to the results from Figure
8.4, the count alive mod kernel achieves a speedup of 1.25.

Listing 8.4: The modified loop of the count alive kernel

for(k = -1; k <= 1; k++) {
x = i + k;
for(l = -1; l <= 1; l++) {

y = j + l;
...

}
}

The problem with the bellmanford and floydwarshall kernels is the structure
of the loop bodies. The bodies of these kernels are governed by if-statements.

8.3. COSY COMPILER OPTIMIZATIONS 129

Because of this conditional statement, statements from the i th loop iteration
cannot be merged into the same basic block as statements from iteration i −
1 or i + 1 after performing loop-unrolling. Thus, no additional Instruction
Level Parallelism (ILP) is exposed. The main loop of the bellmanford kernel
is shown in Listing 8.5. However, this structure is not the only cause. The
count alive mod kernel has a similar structure but does actually experience a
speedup. The major difference between the count alive mod kernel and the
other kernels is the fact that the count alive mod kernel contains a constant
number of iterations, and, when a loop has a non-constant number of iterations,
a pre-processing loop is required. This pre-processing loop in combination
with no exposed ILP results in the execution time decrease. Something similar
happens with the multiply kernel. The statements in the main loop of this
kernel are dependent on the results of the previous iteration of the loop. Due
to this, the amount of ILP is limited. Combined with the pre-processing loop,
a drop in the execution time of this kernel occurs.

Listing 8.5: The main loop of the bellmanford kernel

for (i=0; i < nodecount; ++i) {
for (j=0; j < edgecount; ++j) {

if (distance[source[j]] != INFINITY) {
new_distance = distance[source[j]]+weight[j];
if (new_distance < distance[dest[j]])

distance[dest[j]] = new_distance;
}

}
}

These first results indicate that an optimization is not always useful, showing
that compilers used for the generation of hardware behave in the same way as
compilers generating assembly code (i.e., software). For the latter category,
previous research [2] extensively studied the relationships between optimiza-
tions passes and concluded that optimizations are sensitive to the particular
order in which they are called as well as the test case for which they are ap-
plied. To exemplify this from a hardware point of view, we make use of the
unrolling factor configurable parameter of the loopunroll engine and show the
influence of this option on the execution time. Please note that the result graph
does not show all kernels, even though they may have a decent speedup. A
representative selection of kernels was made to keep the description brief. The
kernels that are not depicted here behave similar to kernels that are depicted.

130
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 4 8 12 16 20 24 28 32 36

S
p

e
e

d
u

p

Maximum unrolling factor

count_alive
fir

floydwarshall
FracShift

Figure 8.5: Influence of the maxfactor option on the execution time.

The influence of the maxfactor option can be seen in Figure 8.5. For the fir and
FracShift kernels, as well as most other kernels not depicted in the figure, the
higher the unrolling factor, the better the result. However, this is not true for
the count alive and the floydwarshall kernels. These kernels do not perform
well due to overhead in the pre-processing that is necessary. However, Figure
8.5 shows that when the maximum factor is a power of two, the results are
improved. This happens because, inside the pre-processing loop, a modulo op-
eration is normally necessary. However, when the unrolling factor is a power
of two, this module is replaced by a logical operator. Nevertheless, for these
two kernels, the best execution times (i.e., no slowdown) are obtained when
the unroll factor is zero, that is, when no unrolling is applied, proving that an
optimization is not always beneficial.

Discussion

Figure 8.6 shows the total speedup for six optimizations both individually and
cumulative. These optimization techniques were integrated with DWARV and
included loop unrolling, loop invariant code motion, software-sided caching of

8.3. COSY COMPILER OPTIMIZATIONS 131

memory operations and algebraic simplifications. The speedup in this figure is
with respect to DWARV2.0 without any added optimizations. The goal of the
exercise was to show that different aspects such as the optimization sequence
order, as well as the optimization configuration, play an important role in the
final performance of the compiler. The relative minor 1.45 average speedup
shown in Figure 8.6 can be explained by the fact that these six optimizations
were neither extensibility inspected on how to integrate with the rest of the
compiler’s existing transformations, nor properly configured on a per case ba-
sis. As an example, in the introductory chapter of [75], the satd kernel was
modified manually resulting in a speedup of 3.3, whereas when applying the
six optimizations only a 1.4 speedup could be achieved. This proves that these
six optimizations should be both better configured and integrated in the engine
flow. Furthermore, other optimization engines could be applied.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

S
p

e
e

d
u

p

loopunroll
loopinvariant/loophoist

cache
loopscalar
algebraic

combined
combined w/o algebraic

Figure 8.6: Average execution time speedup of the different optimization engines.

To show that other optimizations are needed, such as software pipelining, poly-
hedral optimization, array partitioning or peephole optimizations like strength
reduction, a comparison with LegUp has been performed with respect to its
optimized output. LegUp makes use of optimization passes built into the
LLVM framework [66]. As described in [75], the impact of these passes
on the performance was evaluated and compared to the results obtained with
DWARV2.0. Figure 8.7 shows both the impact of the six optimizations inte-

132
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

grated in DWARV2.0 with respect to DWARV2.0 without any optimizations,
and the impact of the LLVM optimization passes on LegUp, with respect to
LegUp without any optimizations. Overall, the optimizations in LegUp pro-
duce a speedup in every kernel, except for the fft kernel. The difference with
DWARV2.0 is due to the fact that LegUp simply uses more optimization tech-
niques than DWARV2.0.

 0

 1

 2

 3

 4

 5

 6

 7

b
e

llm
a

n
fo

rd

c
o

u
n

t_
a

liv
e

c
o

u
n

t_
a

liv
e

_
m

o
d

e
v
o

lv
e

_
h

w ff
t

fi
r

fl
o

y
d

w
a

rs
h

a
ll

h
a

m
m

in
g

m
a

n
d

e
lb

ro
t

q
u

ic
k
s
o

rt

s
h

e
lls

o
rt

s
o

b
e

l

v
it
e

rb
i

S
p

e
e

d
u

p

DWARV without optimisations
DWARV with optimisations

LegUp without optimisations
LegUp with optimisations

Figure 8.7: Impact of optimisations for DWARV2.0 and LegUp 2.0. The graph shows
pairwise normalized results of optimized vs baseline version for each compiler. The
goal is to show the optimization potential. Results between compilers are thus not
comparable.

The figure also shows that there are promising optimization techniques not
yet integrated with DWARV2.0 that can produce good speedups. This can
be seen in the hamming kernel, the mandelbrot kernel and the viterbi ker-
nel where the speedup obtained by LegUp is much more than the one ob-
served in DWARV2.0. Nevertheless, the impact of the optimizations on the
count alive mod, evolve hw, fir, floydwarshall and sobel kernels is larger than
the impact that the LLVM optimization passes have. This confirms the hy-
pothesis that when more CoSy optimization engines are included, noticeable
speedups will be achieved. However, future research is needed.

8.4. CONCLUSIONS 133

One of the research directions is to study how an optimization parameter has
to be configured on a per case basis. More concretely, an optimization has
different parameters that can be tweaked, such as loop unroll maximum factor
or the number of nested loop levels that will be unrolled. To obtain a good
speedup, simply including a software optimization with its parameters set to
default values is not sufficient. One would need to provide sensible values for
these parameters on a per case basis to obtain good results. Furthermore, we
need not only to change the configurations of the different optimizations, but
we need also to include/exclude or change the optimizations sequence based on
a per case basis. Anything less than that will not give optimal results as it was
shown in this section. Future work will analyze what strategies are necessary
to devise algorithms able to decide automatically when and how to include a
particular optimization in a hardware compiler.

One final remark is needed to acknowledge the software pipelining optimiza-
tion as one of the most promising to integrate in DWARV3.0. According to
discussions with Hans van Sommeren from ACE bv. and Stephen Neuendorf-
fer from Xilinx Research Labs, this optimization has potential of speeding up
kernels by a few orders of magnitude. The CoSy framework has the advan-
tage of supporting the software pipelining optimization in the form of a set
of standard engines that can be included in any compiler. To test the bene-
fit of this powerful optimization for hardware designs, we simply plugged the
software pipelining related engines in DWARV3.0. The implementation was
straightforward, and it was done by following the CoSy documentation that
gives precise step-by-step instructions about what engine to include in the en-
gine flow. However, the experiments performed on simple tests revealed that
this optimization is rarely enabled. This is mostly caused by the vast amount
of configurable options that need to be fine-tuned to make this optimization
fully functional. Given the time limit, we leave the proper configuration and
performance analysis of the software pipelining optimization as future work.

8.4 Conclusions

In this chapter, we presented a few hardware relevant techniques intended to
improve the performance of the unoptimized DWARV2.0 hardware compiler.
We argued that and described how supporting predicated execution, chaining
operations and using multiple memory spaces reduces this performance gap.
Results for the new DWARV3.0 compiler that includes these optimizations will
be presented in the next chapter. Finally, section 8.3 showed that there is room

134
CHAPTER 8. DWARV 3.0: RELEVANT HARDWARE COMPILER

OPTIMIZATIONS

Table 8.2: Overview of New Optimizations in DWARV 3.0.

Optimization Name Optimization Origin Included in Evaluation
Area Constrained

Chapter 6 No
Generation

If-conversion Chapter 7 No
Distributed

Chapter 8 Yes
Condition Codes

Period-Aware
Chapter 8 Yes

Scheduling
Memory Space

Chapter 8 Yes
Allocation
algebraic CoSy Framework Yes

loop unroll CoSy Framework No

for improving DWARV3.0 with existing optimizations available in the CoSy
framework. However, we did not include these already because, as showed in
the mentioned section, this is not a simple matter of just plugging-and-using
an engine (similar research efforts are also performed in the LegUp compiler
and published in [44]). First, we need to adapt these engines to better suit the
hardware generation process. Second, we also need to understand the order
in which to integrate them. As a consequence, future research is necessary to
devise algorithms of how and when a particular optimization is useful and, as a
result, it should be activated. In this sense, CoSy offers great mechanisms (skip
engine option) that can be used to do this activation/deactivation of engines and
a powerful mechanism to pass command line options to optimization engines.

Table 8.2 summarizes the optimizations added in this version of DWARV. First
column list the optimization name, the second column lists the origin of the
optimization, and finally, third column highlights whether this will be included
in the compiler used in the final evaluation of the next chapter.

Note.

The content of this chapter was submitted as part of the following publication:

R. Nane, V.M. Sima, K.L.M. Bertels, A Survey of High-Level Synthesis Tools
and Comparison with DWARV 3.0, Submitted to IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, April 2014.

9
Hardware Compilers Evaluation

IN this chapter we evaluate state-of-the-art High-Level Synthesis (HLS)
tools by investigating their performance with respect to a number of pre-
defined performance criteria. After formally introducing the goal of this

chapter, we present in Section 9.2 the four selection criteria we require to in-
clude a tool in the comparison. Subsequent section describes the tools selected.
Sections 9.4 and 9.5 present software and hardware metrics for both the bench-
mark functions used in the comparison as well as for the generated hardware
kernels, respectively. The comparison results are shown in Section 9.6 while
the last section draws the conclusions of the evaluation.

9.1 Introduction

To obtain the most realistic state-of-the-art quantification, we need to evaluate
as many compilers as possible. The related work section presented an abundant
number of available hardware compilers. Because the number of compilers
available today both in the industry and academia is not small, coupled with
the fact that not all tools from industry offer an evaluation license, we could
not include all compilers in the evaluation. From the list of tools presented in
Chapter 2, we investigated approximately half of them. However, after a closer
investigation, we decided to exclude some of them because they did not fulfil
all the selection criteria (i.e., the tool output is not comparable to DWARV3.0)
defined in the next section. We will briefly describe in Section 9.3 what were
the specific issues that led to the decision of not including a particular tool into
the final comparison. However, before reasoning about this tool selection, we
need first to describe the specific selection criteria.

135

136 CHAPTER 9. HARDWARE COMPILERS EVALUATION

9.2 Tool Selection Criteria

We number the criteria with (1), (2), (3) and (4) respectively, for ease of refer-
ence in the next section:

1. The first and most important requirement to include a tool in the com-
parison was to generate accelerators that are able to connect with a
shared memory via their generated interface. The reason is that we
want to focus on tools that are closely related to the design princi-
ples of DWARV3.0, and, therefore, allow us to compare and eval-
uate their performance against that of DWARV3.0. Figure 9.1 de-
picts the minimum requirements for the generated accelerator’s inter-
face graphically. Signals such as set data address Xi, get data value Xi,
write data value Xi, write enable Xi should be part of the interface to
allow values for parameter named Xi to be read/written from/to the
shared memory. This requirement is directly derived from one of the
assumptions in DWARV3.0, namely from the MOLEN context where its
generated accelerators are integrated. Although derived from MOLEN,
this requirement is generic for any shared/distributed type of system.
Other signals necessary for synchronization are reset, clock, start and
done of the accelerator.

2. The second criterion concerns the availability and completeness of tool
documentation, if it is still maintained, the time required to learn how to
use it and the time required to adapt the benchmark kernels to syntax ac-
cepted by the compiler. This implies that compilers requiring a modified
or extended subset of the C language will fail this criterion because it is
time consuming to learn the necessary language extension to rewrite the
benchmark kernels to a form accepted by the tool.

3. The third criterion concerns the availability of a free evaluation or aca-
demic license. When this was not the case, no further action was taken
to include it in the evaluation.

4. The fourth and final criterion requires that the tool in question can gen-
erate a test bench. This is needed not only to test the correctness of the
generated hardware, but also to run simulations to obtain actual simula-
tion cycle counts based on a particular input data set.

Before we start describing the tools and present the results, it is worth noting
that, for the various tools, there are different optimizations and features avail-

9.3. OVERVIEW SELECTED COMPILERS FOR EVALUATION 137

Hardware
start
done

P1

P2Hardware
Accelerator

done

reset
clock

P2

Pireset

Connections on po

set_data_addr_Xi
get_data_value_Xi

it d t l Xiwrite_data_value_Xi
write_enable_Xi

memory block
for parameter X1
memory block
for parameter X2

...
for parameter X2

memory block
for parameter Xi

Shared
Memory

for parameter Xi

Memory

ort Pi

out

out
in

out

Figure 9.1: Hardware Accelerator Required Memory Connections.

able, especially in the commercial tools. For practical reasons, we describe
only the performance out-of-the-box. That is, no effort is made to enable any
optimization or feature manually. This is important because we also want to
assess the automation support in applying hardware optimizations. Ideally, op-
timizations should not be enabled manually, but should be included automat-
ically if beneficial. This would make the transition and acceptance between
software developers faster and seamless. Furthermore, due to a limited time
budget, the evaluation of tool specific optimizations and features is out of the
scope of this work. Therefore, the presented results are for a simple compar-
ison. Nevertheless, we intend to show as well the optimization support and
results as future work. However, this would be possible only with the compiler
company’s help, which knows best how and what would be the best particular
optimizations choice for a specific kernel. Only in this way we could obtain
realistic and accurate optimized performance results that would not be influ-
enced by the unintended omission of an optimization or of its wrong appliance
by a neutral reviewer.

9.3 Overview Selected Compilers for Evaluation

In Chapter 2, we described a plethora of hardware compilers. In this section,
we will revisit those compilers, and reason about the possibility to include

138 CHAPTER 9. HARDWARE COMPILERS EVALUATION

Ta
bl

e
9.

1:
O

ve
rv

ie
w

Se
le

ct
ed

C
om

pi
le

rs
.

C
om

pi
le

r
O

w
ne

r
L

ic
en

se
Ye

ar
In

te
rf

ac
e

In
pu

t
Av

ai
la

bl
e

Te
st

B
en

ch
C

N
M

R
O

C
C

C
1.

0
U

.C
al

.R
iv

er
.

A
ca

de
m

ic
20

05
St

re
am

C
su

bs
et

E
va

lu
at

io
n

N
o

1,
2,

4
R

O
C

C
C

2.
0

Ja
cq

ua
rd

C
om

p.
C

om
m

er
ci

al
20

10
St

re
am

C
su

bs
et

E
va

lu
at

io
n

N
o

1,
2,

4
C

at
ap

ul
t-

C
C

al
yp

to
D

es
ig

n
C

om
m

er
ci

al
20

04
A

ll
C

/S
ys

C
N

o
Y

es
3

C
to

S
C

ad
en

ce
C

om
m

er
ci

al
20

08
A

ll
Sy

sC
T

U
D

lic
.

O
nl

y
C

yc
le

2,
4

D
K

D
es

ig
n

Su
ite

M
en

to
rG

ra
ph

ic
s

C
om

m
er

ci
al

20
09

St
re

am
H

an
de

lC
N

o
N

o
1,

2,
3,

4
C

oD
ev

el
op

er
Im

pu
ls

e
A

cc
el

er
at

ed
C

om
m

er
ci

al
20

03
St

re
am

Im
pu

ls
eC

E
va

lu
at

io
n

Y
es

1,
2

SA
-C

U
.C

ol
or

ad
o

A
ca

de
m

ic
20

03
St

re
am

Sa
C

N
o

N
o

1,
2,

3,
4

SP
A

R
K

U
.C

al
.I

rv
in

e
A

ca
de

m
ic

20
03

A
ll

C
N

o
N

o
3,

4
C

H
C

A
lti

um
C

om
m

er
ci

al
20

08
A

SP
C

E
va

lu
at

io
n

N
o

1,
4

V
iv

ad
o

H
L

S
X

ili
nx

C
om

m
er

ci
al

20
13

A
ll

C
/S

ys
C

T
U

D
lic

.
Y

es
L

eg
U

p
U

.T
or

on
to

A
ca

de
m

ic
20

11
Sh

ar
ed

C
Fr

ee
Y

es
Pa

nd
A

U
.P

ol
im

i
A

ca
de

m
ic

20
12

Sh
ar

ed
C

Fr
ee

Y
es

H
er

cu
L

eS
A

ja
x

C
om

pi
le

r
C

om
m

er
ci

al
20

12
A

ll
C

N
o

Y
es

3
G

A
U

T
U

.B
re

ta
gn

e
A

ca
de

m
ic

20
10

St
re

am
C

/C
++

Fr
ee

Y
es

1
Tr

id
en

t
L

os
A

la
m

os
N

L
A

ca
de

m
ic

20
07

Sh
ar

ed
C

su
bs

et
Fr

ee
N

o
2,

4
C

to
V

er
ilo

g
U

.H
ai

fa
A

ca
de

m
ic

20
08

N
/A

C
Fr

ee
N

o
1,

4
C

2H
A

lte
ra

C
om

m
er

ci
al

20
06

A
SI

C
C

T
U

D
lic

.
N

o
1,

4

9.3. OVERVIEW SELECTED COMPILERS FOR EVALUATION 139

Ta
bl

e
9.

2:
O

ve
rv

ie
w

Se
le

ct
ed

C
om

pi
le

rs
(C

on
t)

.

C
om

pi
le

r
O

w
ne

r
L

ic
en

se
Ye

ar
In

te
rf

ac
e

In
pu

t
Av

ai
la

bl
e

Te
st

B
en

ch
C

N
M

Sy
np

ho
ny

H
L

S
Sy

no
ps

ys
C

om
m

er
ci

al
20

10
A

ll
C

/C
++

N
o

Y
es

3
M

A
T

C
H

U
.N

or
th

w
es

t
A

ca
de

m
ic

20
00

D
SP

M
at

la
b

N
o

N
o

1,
2,

3,
4

C
yb

er
W

or
kB

en
ch

N
E

C
C

om
m

er
ci

al
20

11
A

ll
B

D
L

N
o

C
yc

le
/F

or
m

al
2,

3,
4

B
lu

es
pe

c
B

lu
eS

pe
c

In
c.

C
om

m
er

ci
al

20
07

A
ll

B
SV

N
o

N
o

2,
3,

4
A

cc
el

D
SP

X
ili

nx
C

om
m

er
ci

al
20

06
D

SP
M

at
la

b
N

o
Y

es
1,

2,
3

K
iw

i
U

.C
am

br
id

ge
A

ca
de

m
ic

20
08

.N
E

T
C

#
N

o
N

o
1,

2,
3,

4
C

H
iM

PS
U

.W
as

hi
ng

to
n

A
ca

de
m

ic
20

08
Sh

ar
ed

C
N

o
N

o
3,

4
M

ax
C

om
pi

le
r

M
ax

el
er

C
om

m
er

ci
al

20
10

St
re

am
M

ax
J

N
o

N
o

1,
2,

3,
4

Se
aC

uc
um

be
r

U
.B

ri
gh

am
Y.

A
ca

de
m

ic
20

02
A

ll
Ja

va
N

o
N

o
2,

3,
4

D
E

FA
C

TO
U

.S
ou

th
C

ai
lf

.
A

ca
de

m
ic

19
99

St
re

am
C

su
bs

et
N

o
N

o
1,

2,
3,

4
Pi

pe
R

en
ch

U
.C

ar
ne

gi
e

M
.

A
ca

de
m

ic
20

00
Pi

pe
s

D
IL

N
o

N
o

1,
2,

3,
4

G
ar

p
U

.B
er

ke
le

y
A

ca
de

m
ic

20
00

L
oo

p
C

su
bs

et
N

o
N

o
1,

2,
3,

4
N

ap
a-

C
Sa

rn
of

fC
or

p.
A

ca
de

m
ic

19
98

L
oo

p
C

su
bs

et
N

o
N

o
1,

2,
3,

4
gc

c2
ve

ri
lo

g
U

.K
or

ea
A

ca
de

m
ic

20
11

Sh
ar

ed
C

N
o

N
o

3,
4

C
yn

th
es

iz
er

FO
R

T
E

C
om

m
er

ci
al

20
04

A
ll

Sy
sC

N
o

Y
es

2,
3

eX
C

ite
Y

E
xp

lo
ra

tio
ns

C
om

m
er

ci
al

20
01

A
ll

C
+p

ra
gm

as
E

va
lu

at
io

n
Y

es
2

140 CHAPTER 9. HARDWARE COMPILERS EVALUATION

them in the final evaluation. To present the selection in a compact way, we
make use of Tables 9.1 and 9.2. These tables show in the first four columns the
name of the tool, who distributes it , under what type of license it is available
and since what year. The fifth column highlights what type of interface the tool
can generate, i.e., streaming, shared, or both, while the sixth column lists how
the tool input should be specified. The next two columns indicate if the tool
can generate test benches and whether the tool is available for download. If
the latter is true, this column will specify if it is freely available (or if TU Delft
had a license already for it or if it is available under an evaluation license).
Finally, the Criteria Not Met (CNM) column, shows which of the four above
mentioned criteria are not met by the tool, and, therefore, will not be included
in the tool comparison. By negation, a tool is included in the comparison only
when this column is empty, that is, all criteria were fulfilled.

Tables 9.1 and 9.2 show thus that it is impossible to obtain results for all the
tools given in the related work chapter (Chapter 2). As a result, in the subse-
quent we will focus on tools intended for multiple domains and that are able
to generate shared memory interface based accelerators. Although some of the
tools can support different types of interfaces, to make results comparable, we
only look at this particular interface. This is because we want to quantify the
performance of DWARV3.0 at the same time as well, and as this supports only
the shared memory interface, we restrict ourselves only to similar tools.

9.4 Benchmark Overview

The test bench used for the evaluation is composed of 11 carefully selected
kernels from six different application domains. Although, CHSTONE is be-
coming the test bench used for benchmarking HLS tools, we didn’t use it en-
tirely because of two reasons. First, we wanted to be objective and evaluate
compilers that were not particularly designed to give good performance only
for kernels in this test suite. Therefore, we selected kernels from the examples
directory found in the releases of different tools, in particular we used kernels
from Vivado HLS, DWARV and LegUp. Please note that LegUp supports the
CHSTONE benchmark, therefore, the kernels selected from its test bench are
actually kernels originating from CHSTONE. However, these have been man-
ually changed to transform global parameters to function parameters to enable
DWARV compilation. The second reason for not using CHSTONE entirely,
is thus that DWARV is not supporting global parameters, and the CHSTONE
kernels not selected make heavily use of these variables. As DWARV will sup-

9.4. BENCHMARK OVERVIEW 141

Ta
bl

e
9.

3:
C

om
pa

ri
so

n
B

en
ch

m
ar

k
C

ha
ra

ct
er

is
tic

s.

Fu
nc

tio
n

A
pp

lic
at

io
n

B
en

ch
m

ar
k

C
-la

ng
ua

ge
C

ha
ra

ct
er

is
tic

s
N

am
e

D
om

ai
n

Su
ite

L
oo

p
A

dd
M

ul
D

iv
Sh

if
t

IF
s

L
D

s
ST

s
Fu

nc
C

al
ls

#
lin

es
m

at
ri

xm
ul

t
M

at
he

m
at

ic
s

V
iv

ad
o

H
L

S
3

1
1

0
0

0
3

2
0

8
ad

pc
m

-e
nc

od
e

Te
le

co
m

.
C

H
ST

O
N

E
2

17
9

0
7

2
15

3
15

65
ae

s-
en

cr
yp

t
C

ry
pt

og
ra

ph
y

C
H

ST
O

N
E

3
1

1
0

0
7

3
0

6
50

ae
s-

de
cr

yp
t

C
ry

pt
og

ra
ph

y
C

H
ST

O
N

E
3

1
0

0
1

7
3

0
6

60
gs

m
Te

le
co

m
.

C
H

ST
O

N
E

0
0

0
0

0
0

0
0

4
5

sh
a

C
ry

pt
og

ra
ph

y
C

H
ST

O
N

E
1

0
0

0
0

0
2

0
3

10
cm

ul
tc

on
j

M
at

he
m

at
ic

s
D

W
A

RV
0

5f
p

3f
p

0
0

0
8

2
0

6
sa

td
M

ul
tim

ed
ia

D
W

A
RV

2
32

0
0

0
0

49
21

0
50

so
be

l
Im

ag
e

Pr
oc

.
D

W
A

RV
4

14
5

0
9

5
4

1
0

50
vi

te
rb

i
Te

le
co

m
.

D
W

A
RV

10
17

0
0

36
8

12
13

0
12

0
be

llm
an

fo
rd

L
og

is
tic

s
D

W
A

RV
4

2
0

0
2

3
12

3
0

30

142 CHAPTER 9. HARDWARE COMPILERS EVALUATION

port global variables in the future, we didn’t allocate time to rewrite all the
CHSTONE kernels to be DWARV compliant.

The functions selected for hardware acceleration are introduced by means of
Table 9.3, where we mention in the second and third columns the application
domain of the corresponding kernel as well as the belonging benchmark from
where the function was extracted. The fourth column shows C-code charac-
teristics, e.g., number of code lines, number of loops and arithmetic int opera-
tions.

9.5 Generated Hardware Overview

The HLS tools were configured to generate hardware for the Kintex7 board
xc7k325t-2-ffg900. Because we now use a newer Virtex board to relate to the
previously obtained results (see Section 4.4), the following adjustment can be
made: to compare the area for the Virtex 5 platform the number of registers and
LUTs should be roughly divided by 2 because the newer version of boards have
more logic elements in a slice [80]. Furthermore, in obtaining the hardware
metrics, we used Xilinx ISE 14.3 with no physical constraints for the synthesis.

Before we present the actual results, it is important to note that the tools gen-
erate code differently. For example, some of the tools generate modules for
functions called inside the kernel, whereas others do inline them. Therefore,
for the latter the result will be a big file containing the whole design. Table
9.4 summarizes the characteristics for all generated hardware by the different
tools, in terms of lines of generated code, number of FSM states, number of
generated modules, registers and files. The metrics are extracted thus by look-
ing at the HDL files generated. No automatic post-processing was performed
to extract the numbers. This implies that the presented numbers are approx-
imations of the actual numbers. Nevertheless, the style of declaration of the
modules and registers was checked to make sure results are comparable (e.g.,
we checked that only one line is used for each new port declaration). However,
comments or empty lines were not removed. In other words, the data extrac-
tion process was manual, and some approximations were introduced in some
cases, but overall, we ensured that the results are comparable.

The numbers given in Table 9.4 can be studied to gain more knowledge about
the static features of the DWARV3.0 generated designs, i.e., understand if there
is more room for reducing the FSM or the number of registers, but also to un-
derstand how these features relate to the actual implementation numbers given
in later tables in terms of Lookup Table (LUT)s, Flip Flop (FF)s or Maximum

9.5. GENERATED HARDWARE OVERVIEW 143
Ta

bl
e

9.
4:

G
en

er
at

ed
A

cc
el

er
at

or
C

ha
ra

ct
er

is
tic

s
Sh

ow
ed

as
<

#F
SM

:#
re

gi
st

er
s>

an
d
<

#l
in

es
:#

co
m

po
ne

nt
s:

#fi
le

s>
Tu

pl
es

.

K
er

ne
l

V
iv

ad
o

H
L

S
C

C
D

W
A

R
V

2
D

W
A

R
V

3
L

eg
U

p2
L

eg
U

p3
Pa

nd
A

0
Pa

nd
A

1

m
at

ri
xm

ul
t

6
:4

4
11

:1
05

39
:4

1
24

:3
5

52
:1

41
39

:1
00

18
:5

6
21

:3
6

30
7:

1:
0

71
9:

4:
3

50
0:

1:
1

38
7:

1:
1

26
21

:1
:0

22
99

:1
:0

10
42

:1
2:

0
10

66
:1

8:
0

ad
pc

m
-e

nc
od

e
88

:6
54

23
:6

66
67

0:
33

0
21

7:
58

5
34

1:
14

04
90

:5
61

27
5:

39
8

27
5:

39
8

31
25

:3
0:

31
27

91
:3

:6
40

26
:1

:0
63

37
:2

:0
19

69
6:

14
:0

78
26

:1
:0

83
24

:5
4:

48
83

24
:5

4:
48

ae
s-

en
cr

yp
t

14
4:

13
77

11
7:

12
13

28
79

:2
34

4
11

93
:1

01
8

10
18

:2
17

9
50

9:
17

85
95

9:
14

36
75

4:
13

07
92

6:
6:

14
54

08
:3

:8
18

08
0:

3:
0

17
04

6:
3:

0
35

02
9:

8:
0

28
20

8:
12

:0
33

93
0:

47
:8

29
69

4:
52

:5

ae
s-

de
cr

yp
t

14
3:

14
20

11
7:

11
39

28
95

:2
34

9
11

56
:9

99
10

93
:2

28
7

57
0:

18
76

92
3:

13
80

79
7:

12
98

99
6:

6:
12

57
35

:3
:5

18
16

7:
3:

0
17

65
7:

3:
0

36
85

8:
8:

0
29

76
1:

12
:0

32
37

8:
48

:9
30

03
5:

51
:5

gs
m

72
:9

68
81

:7
08

96
6:

70
7

49
2:

42
3

40
0:

22
95

30
4:

19
98

63
1:

10
23

66
6:

10
05

71
8:

4:
18

38
13

:2
:6

66
60

:1
:0

59
51

:1
:0

25
21

6:
15

:0
22

51
4:

19
:0

22
77

2:
63

:1
21

87
3:

71
:4

sh
a

40
:3

43
N

/A
36

4:
64

8
19

8:
32

4
37

1:
11

11
28

4:
11

21
16

4:
32

4
14

8:
29

2
86

8:
3:

4
N

/A
36

26
:0

:0
38

04
:0

:0
15

02
3:

9:
0

14
66

6:
9:

0
71

50
:4

7:
6

70
66

:5
5:

1

cm
ul

tc
on

j
18

:3
0

5:
29

50
:3

4
37

:2
5

16
:9

4
72

:1
42

30
:4

7
14

0:
18

7
54

4:
4:

9
29

8:
2:

3
53

2:
3:

0
42

2:
3:

0
10

48
:3

:0
23

09
:3

:0
10

26
:9

:3
49

82
:3

7:
10

sa
td

39
:2

82
27

:1
55

93
:2

28
48

:1
20

50
:7

25
37

:6
54

14
4:

31
9

21
4:

34
4

12
40

:1
:1

84
9:

2:
3

15
93

:0
:0

10
84

:0
:0

60
61

:3
:0

54
01

:3
:0

64
37

:1
9;

0
85

46
:4

5:
8

so
be

l
19

:1
07

14
:9

8
13

3:
11

6
45

:4
2

52
:4

58
40

:4
57

32
:1

08
18

8:
29

4
63

1:
2:

2
73

3:
2:

3
12

07
:2

:0
73

5:
2:

0
46

82
:3

:0
42

66
:3

:0
19

52
:2

4:
0

72
01

:5
7:

6

vi
te

rb
i

20
:2

04
31

:5
01

18
5:

19
9

11
7:

12
6

N
/A

12
0:

57
1

98
:2

23
82

:1
70

11
66

:2
:2

23
71

:2
:8

16
98

:0
:0

18
81

:1
:0

N
/A

71
11

:3
:0

44
29

:2
9:

0
39

94
:3

9:
3

be
llm

an
fo

rd
13

:4
3

20
:1

11
92

:6
2

50
:4

3
44

:1
68

43
:1

97
47

:7
7

19
2:

35
8

45
5:

0:
0

84
5:

2:
3

81
8:

0:
0

68
6:

0:
0

22
83

:3
:0

26
46

:3
:0

18
51

:1
6:

0
71

64
:4

0:
4

144 CHAPTER 9. HARDWARE COMPILERS EVALUATIONFig

Page 1

mattrix adpcm_
encode

aes_encrypt aes_decrypt gsm sha cmultconj satd sobel belmannford
1.00

1.50

2.00

2.50

3.00

3.50

4.00

Figure 9.2: Execution Time Speedups of DWARV 3.0 compared to DWARV 2.0 .

Frequency (FMax). For example, we can see that, on average, the CC compiler
(see below) gives the smallest numbers of FSM states, however, when we com-
pute the execution time (i.e., #cycles / FMax) Vivado HLS generated hardware
designs execute in less time (see Section 9.7). This implies that generating as
few states as possible is not a criterion of success.

9.6 Experimental Results

We will now present the obtained performance results for the selected compil-
ers. Besides DWARV2.0 and DWARV3.0, we investigate the compilers selected
in section 9.3, that is Vivado HLS, LegUp and PandA. For the last two com-
pilers, the latest two releases are investigated to track their evolution as well
in a similar manner to the one performed for DWARV. The complete results,
including area numbers for all compilers, are presented in Appendix A while,
in this section, we show only the performance related metrics. Besides these
compilers, we include a fifth tool, called here CommercialCompiler (CC) to
hide the actual name of the compiler. We do this in order to avoid any license
related issues regarding publishing these results. We note that for Figures 9.3
and 9.4, the smaller the compiler bar, the better its performance.

9.6. EXPERIMENTAL RESULTS 145
Sheet1

Page 1

mattrix adpcm_
encode

aes_encrypt aes_decrypt gsm sha cmultconj satd sobel viterbi belmannford
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Vivado HLS CC LegUp 3.0 PandA 0.9.1

10.65.75

DWARV3.0
reference line

25.588.16

Figure 9.3: Execution Times Normalized to DWARV3.0 Execution Time.

Figure 9.2 illustrates the speedup of the last version of DWARV compared to
the previous one, which was used in the evaluation of Chapter 4. The new
version improved every test case from the benchmark with speedups between
1.25x and 3.51x. To keep the figures readable, we show in the subsequent
figures only the comparisons for the last versions of the compilers. Results
that show the evolution for the other two academic compilers is included in the
tables presented in Appendix A.

Figure 9.3 shows normalized execution times with respect to the corresponding
execution times obtained with DWARV3.0. The horizontal line at 1.00 denotes
the baseline execution time, obtained with DWARV3.0 for that particular test
case. It is important to note that the presented results are concerned only with
one execution of the kernels. That is, they were executed only with the prede-
fined input with which the kernel test bench came. No attempt has been made
in trying to derive a different valid input which could trigger a different exe-
cution path in the kernel to obtain different performance metrics. Given the
fact that the input was defined by a third party that created the application and
its test bench, we considered this input as valid and meaningful to obtain the
execution time metric. Figures 9.4 and 9.5 show the normalized cycle counts
and the corresponding frequencies obtained. Please note that all numbers pre-
sented in this section are obtained after behavioral synthesis. No design was

146 CHAPTER 9. HARDWARE COMPILERS EVALUATION
Fig

Page 1

mattrix adpcm_
encode

aes_encrypt aes_decrypt gsm sha cmultconj satd sobel viterbi belmannford
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Vivado HLS CC LegUp 3.0 PandA 0.9.1

3.53.04

DWARV3.0
reference line

21.254.41

Figure 9.4: Execution Cycles Normalized to DWARV3.0 Cycles.

fully implemented, and as such the final numbers could be different. Referring
to Chapter 4 where we performed both behavioral synthesis and implementa-
tion, we can estimate that the execution times could be potentially higher due
to actual lower obtained frequencies and the area numbers could also be higher.

We observe in figure 9.3 that Vivado HLS generated the fastest executing hard-
ware designs for the majority of kernels. adpcm encode and viterbi are the
only exceptions for which only CC was faster. The reason for this is the con-
siderable smaller number of cycles generated by CC (Figure 9.4). Analyzing
this figure in more detail, we observe that CC was able to generate more com-
pact (i.e., smaller number of cycles) designs than Vivado HLS for the other
three kernels. However, because the maximum obtainable frequency plays an
equally important role, the execution time for these three kernels was smaller
or equal for Vivado HLS (i.e., gsm, satd and sobel). This can be explained by
the higher operation density in each cycle (i.e., many operations scheduled in
a cycle) for CC generated kernels that led to a very big clock period (i.e., small
frequency shown in Figure 9.5).

Comparing DWARV3.0 to the commercial compilers, we notice that, execution
time wise, both Vivado HLS and CC generated hardware designs were faster
than the Custom Computing Unit (CCU)s generated by DWARV3.0. The only
exceptions are the aes encrypt||decrypt designs generated by CC, which can be

9.6. EXPERIMENTAL RESULTS 147
Fig

Page 1

mattrix adpcm_
encode

aes_encrypt aes_decrypt gsm sha cmultconj satd sobel viterbi belmannford
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Vivado HLS CC LegUp 3.0 PandA 0.9.1

2.23

DWARV3.0
reference line

3.22

Figure 9.5: Estimated Max. Frequencies Normalized to DWARV3.0 Frequency.

explained by the fact that the frequency was 5x faster for DWARV3.0, whereas
the number of cycles obtained with CC was only 2.5x smaller than that of
DWARV3.0. This shows again that correctly balancing operations over a mini-
mum number of cycles is key. This can be seen when comparing, for the same
kernels, DWARV3.0 with Vivado HLS. The latter obtained even smaller cycle
counts than CC, but because Vivado HLS was able to split the operations more
efficiently over the small number of cycles generated, the frequency obtained
was only marginally smaller than that of DWARV3.0. As a result, Vivado HLS
execution times were 4.51x respectively 2.94x faster than those of DWARV3.0.

Finally, comparing DWARV3.0 to the academic compilers, we make two ob-
servations. First, DWARV3.0 generated designs were better than the ones gen-
erated by both LegUp 3.0 and Panda 0.9.1 with the exception of three kernels,
i.e., matrix, satd and sobel. These three kernels were obtained with LegUp
3.0, and the speedup was due to the smaller number of cycles generated while
the estimated frequency was comparable with the one of DWARV3.0. For the
other kernels, DWARV3.0 is faster. Second, we observe that PandA 0.9.1 uses
on average the same number of cycles for the generated designs as DWARV3.0,
however, because the longer operations are not split in multiple cycles by using
arithmetic multiplier cores, the design frequencies are all smaller than the ones
of DWARV3.0.

148 CHAPTER 9. HARDWARE COMPILERS EVALUATION

Table 9.5: Execution Time Slowdowns compared to Vivado HLS.

F. Name V.HLS CC D2.0 D3.0 L2.0 L3.0 P0.9.1
matrixmult 1 1.79 20.77 8.84 11.81 6.16 11.77

adpcm-encode 1 0.46 3.93 1.43 5.83 8.20 15.11
aes-encrypt 1 9.49 8.87 4.51 15.84 9.67 4.39
aes-decrypt 1 5.90 10.37 2.94 21.03 10.85 4.72

gsm 1 1.51 5.13 2.01 38.04 2.60 6.30
sha 1 N/A N/A 9.28 20.09 16.22 9.96

cmultconj 1 N/A 0.64 0.45 1.78 N/A 3.65
satd 1 1.00 3.34 2.60 2.28 2.34 66.49
sobel 1 1.42 5.45 2.69 2.50 2.31 3.80
viterbi 1 0.92 N/A 1.95 N/A N/A 2.84

bellmanford 1 2.41 10.02 4.49 6.82 4.94 6.18
AVERAGE 1 3.11 7.92 3.74 12.60 7.03 12.29
GEOMEAN 1 1.96 5.53 2.81 8.10 5.66 7.24

9.7 Conclusion

In this chapter, we compared a number of hardware compilers that comply
with all the criteria defined in Section 9.2 for a hardware compiler evalua-
tion in which DWARV can be included, as well. In particular, we looked at
Vivado HLS, ComercialCompiler, LegUp2.0 and 3.0, PandA 0.9.0 and 0.9.1,
and two versions of DWARV, i.e., 2.0 and 3.0. Table 9.5 shows the final ex-
ecution time slowdowns when comparing to Vivado HLS, which on average
generated the most efficient hardware. The final row shows the geometric
means for the performance of all tools compared to Vivado HLS. We can see
here that DWARV3.0 is 2.81x slower than Vivado HLS, but also that a visible
progress has been obtained since DWARV2.0 only by adding the optimizations
described in Chapter 8. That is, DWARV3.0 is 1.96x faster than DWARV2.0.
Finally, the performed experiments revealed that DWARV3.0 performed the
best between all versions of all academically available compilers.

Note.

The content of this chapter was submitted as part of the following publication:

R. Nane, V.M. Sima, K.L.M. Bertels, A Survey of High-Level Synthesis Tools
and Comparison with DWARV 3.0, Submitted to IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, April 2014.

10
Conclusions and Future Work

IN this dissertation, we addressed different problems related to the process
of automatic hardware generation for reconfigurable architectures. Con-
cretely, we analyzed, designed, and implemented a hardware compiler

in a commercial retargetable compiler framework. Subsequently, we studied
two optimization problems concerning how area input constraints should be
propagated in a High-Level Synthesis (HLS) tool as well as how the software
if-conversion optimization can be applied in a hardware generation context.
At the same time, we started to investigate the general problem of how ex-
isting software optimizations can be included in a hardware compiler. Fur-
thermore, we investigated how and what is required to be generated, so that
automatically generated hardware blocks can be integrated in complex (i.e.,
hardware/software co-designed) systems automatically. Finally, we performed
a thorough evaluation of past and present HLS tools, while, at the same time,
we benchmarked DWARV3.0 against both state-of-the-art commercial and aca-
demic compilers.

10.1 Summary

The different problems addressed in this work are split in chapters as follows:

In Chapter 2, we presented related work in which a vast number of past and
present hardware compiler were described. These were categorized based on
the design language in domain-specific respectively generic HLS tools. The
particular tool description included information such as for what application
domain the tool can be used, what extensions are required, if the tool offers
verification support, as well as under what type of license it is available (com-
mercial or academic). Finally, we commented for each tool how it is different
from DWARV.

149

150 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

In Chapter 3, the underlying concepts and the compiler framework used
throughout the work were presented. We described the Molen Machine Orga-
nization, the first version of the DWARV compiler which provided the inspira-
tion for the current version, and we provided detailed information regarding the
CoSy compiler framework used to implement the new version of DWARV. We
also described the simulation and synthesis flows used to validate and imple-
ment automatically generated hardware designs. Finally, we discussed impor-
tant similarities and differences between software and hardware compilers and
we described the complete C-to-FPGA tool-flow based on a simple example.

Chapter 4 presented the first DWARV implementation in CoSy. The per-
formance of this version was benchmarked by comparing and evaluating it
against the LegUp 2.0 academic compiler. The results obtained showed that
DWARV2.0 was outperforming LegUp 2.0.

In Chapter 5, we described the need for Hardware-dependent Software (HdS)
when integrating automatically generated hardware blocks in complex System
on Chip (SoC) systems. Furthermore, the use of HdS for hardware blocks led
to the proposition of HdS related extensions to the IP-XACT standard, stan-
dard that facilitates the automatic integration of existing hardware components
used by hardware designers for SoC design.

In Chapter 6, an optimization algorithm to generate hardware kernels subject
to input area constraints was presented. These area constraints are highly im-
portant in the Molen context, where a maximum number of accelerators can
be executed in parallel by a particular machine implementation. In this re-
spect, generating hardware accelerators that can fit these previously defined
FPGA slots is very important. However, the approach is generic enough to be
applicable on different hardware platforms.

Next chapter, Chapter 7, presented another hardware specific optimization.
This optimization, called Speculative and Predicative Algorithm (SaPA), is
based on a relaxation of the traditional software if-conversion technique. The
results obtained indicate that this optimization could be universally applied in
each hardware compiler because it does not decrease the accelerator perfor-
mance in unbalanced if-then-else cases, while, at the same time, the hardware
area is negligibly increased.

In Chapter 8, we presented important hardware optimizations that allowed to
optimize DWARV2.0 by a factor of 2x to 3x. Furthermore, we initiated work
towards the automation of selecting and integrating optimizations in a compiler
on a case by case basis. The reason behind this work is the fact that including
existing standard optimizations randomly in a compiler is not a recipe for suc-

10.2. DISSERTATION CONTRIBUTIONS 151

cess. The order in which these are applied and how they are configured play a
very important role, as well.

Finally, Chapter 9, showed comparison results for DWARV3.0 against a newer
version of LegUp (i.e., LegUp 3.0) and other three compilers, i.e., Vivado HLS,
PandA 0.9.1 and another CommercialCompiler.

10.2 Dissertation Contributions

In recent years, we have seen an increase in the use of reconfigurable devices
such as FPGAs, as well as an increase in the availability of commercial het-
erogeneous platforms containing both software processors and reconfigurable
hardware. Examples include Convey HPC, Xilinx Zync and IBM Power7 with
FPGA blades. However, as we argued in the introduction, programming these
devices is still very challenging. As a result, the main goal of this disserta-
tion was to advance the field of HLS. Concretely, we proposed methods to
both integrate and optimize hardware compilers used for generating efficient
hardware code that can be executed on such heterogeneous computers.

The specific contributions of this thesis are summarized as follows:

• We designed, implemented, and evaluated a new research compiler
based on the CoSy commercial compiler framework. This new ver-
sion of DWARV has a higher coverage of accepted C-language con-
structs. This is because the underlying compiler framework offers stan-
dard lowering (i.e., from high- to low-level constructs mapping) trans-
formations, which essentially allows the developer to implement just the
important primitives (e.g., goto) from which all high-level constructs are
composed. Furthermore, using CoSy, we obtained a highly robust and
modular compiler that can be integrated in different tool-chains by ex-
tending it with custom compiler transformations to process third party
information (e.g., coming from aspect oriented descriptions) and config-
ure the process of hardware generation accordingly. We validated and
demonstrated the performance of the DWARV2.0 compiler against an-
other state-of-the-art research compiler. We showed in this initial com-
parison kernel wise performance improvements up to 4.41x compared
to LegUp 2.0 compiler (Chapter 4).

• We proposed IP-XACT extensions and showed that HdS should accom-
pany hardware kernels to make them generally integrable into third party

152 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

tool(-chains). Therefore, we elaborated on the expressiveness of IP-
XACT for describing HdS meta-data. Furthermore, we addressed the
automation of HdS generation in the Reconfigurable Computing (RC)
field, where Intellectual Property (IP)s and their associated HdS are gen-
erated on the fly, and, therefore, are not predefined. We combined in this
respect two proven technologies used in MPSoC design, namely IP-
XACT and HdS, to integrate automatically different architectural tem-
plates used in RC systems. We investigated and proposed IP-XACT
extensions to allow this automatic generation and integration of HdS in
RC tool-chains (Chapter 5).

• We proposed an optimization to control the unroll factor and the number
of components when the area available for the kernel is limited. We as-
sumed thus that the hardware area for which a to be generated hardware
accelerator is limited. In this respect, two important parameters had to be
explored namely, the degree of parallelism (i.e., the loop unrolling fac-
tor) and the number of functional modules (e.g., Floating-Point (FP) add
operation) used to implement the source High-Level Language (HLL)
code. Determining without any human intervention these parameters is a
key factor in building efficient HLL-to-Hardware Description Language
(HDL) compilers, and implicitly any Design Space Exploration (DSE)
tools. To solve this problem, we proposed an optimization algorithm
to compute the above parameters automatically. This optimization was
added as an extension to the DWARV2.0 hardware compiler (Chapter 6).

• We proposed a predication scheme suitable and generally applicable for
hardware compilers called SaPA. This technique takes into account the
characteristics of a C-to-VHDL compiler and the features available on
the target platform. Instruction predication is an already known compiler
optimization technique, however, according to our knowledge and liter-
ature searches, current C-to-VHDL compilers do not take fully advan-
tage of the possibilities offered by this optimization. More specifically,
we proposed a method to increase the performance in the case of un-
balanced if-then-else branches. These types of branches are problematic
because, when the jump instructions are removed for the predicated exe-
cution if the shorter branch is taken, slowdowns occur because (useless)
instructions from the longer branch still need to be executed. Based on
both synthetic and real world applications we showed that our algorithm
does not substantially increase the resource usage while the execution
time is reduced in all cases for which it is applied (Chapter 7).

10.3. FUTURE WORK 153

• We provided an evaluation of state-of-the-art hardware compilers
against DWARV3.0. At the same time, a thorough retrospection of ex-
isting HLS tools has been performed. The comparison included a num-
ber of hardware compilers that comply with some predefined criteria in
which DWARV can be included, as well. In particular, we looked at Vi-
vadoHLS, another ComercialCompiler, LegUp2.0 and 3.0, PandA 0.9.0
and 0.9.1, and two versions of DWARV, i.e., 2.0 and 3.0. The results ob-
tained showed how all these compilers compare to Vivado HLS, which
on average generated the most efficient hardware (Chapters 2, 8 and 9).

10.3 Future Work

We identify five major follow up research directions that we summarize below:

• The first and most important one is the continuation of the investiga-
tion related to how existing software optimizations can be applied to the
hardware generation process. In this respect, questions such as what is
the best place to insert an optimization in the compiler’s flow of trans-
formations, or how should a software optimization be customized and/or
configured to generate optimal hardware, are very important. The im-
portance of these questions, explained in Chapter 8, can be summarized
briefly by stating that only including existing standard optimizations ran-
domly in a compiler is not a recipe for success. The order in which these
are applied and how they are configured are also important. Further-
more, given that there is still a considerable performance gap between
the manually written hardware designs and those automatically gener-
ated, the search and invention of new specific hardware optimizations
can play a major role also in the success and wide adoption of HLS
tools. In this respect, the search of such new optimizations can be in-
spired by existing software optimizations, as it was the case with SaPA
presented in Chapter 7.

• The second major research direction concerns the further investigation
of the IP-XACT standard to support automatic generation of complete
reconfigurable systems that embed automatically generated hardware
blocks. That is, given that, for an individual core, we know how and
what to generate to facilitate its integration in a SoC system (see Chapter
5), the question of what IP-XACT extensions are needed to allow the
inference of system knowledge about interface and interconnect types

154 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

necessary to generate complete SoC systems automatically should be
researched subsequently.

• Third, the model presented in Chapter 6 should be extended to allow
dealing with variable loop bounds. In addition, more accurate prediction
models for the wiring increase as well as for the power consumption are
needed.

• Fourth, we intend to extend the comparison performed in Chapter 9 to
create a state-of-the-art benchmarking reference result point to which all
future compilers can relate. We will do this not only restricting it for the
general domain, but also extending it to a broader scope of including
particular domains and their corresponding audience tools. For exam-
ple, one such domain would be the streaming one, where tools such as
ROCCC could be included.

• Finally, a very interesting topic, which was not addressed in this disser-
tation, is to study the impact on performance of data partitioning and/or
memory architecture generated by HLS tools. Topics, such as how many
memory banks are sufficient for a particular hardware accelerator to sat-
isfy the required performance throughput, or what type of accelerator
interconnection can be used to communicate/transfer data efficiently in
the system are examples of such system level design questions.

A
Complete DWARV 3.0 Comparison

Results

IN this Appendix, we present with the help of Tables A.1 to A.4 the com-
plete set of results obtained in Chapter 9 for all compilers. Furthermore,
we explain for each tool the difficulties faced in compiling particular ex-

amples or we comment on the correctness of the result.

Vivado HLS and CommercialCompiler (CC)

We start the presentation with the commercial compilers. The results ob-
tained from (behaviorally) synthesizing the kernels obtained by compiling the
C benchmark functions, with the clock period set to 10 ns, are shown in Table
A.1. We note for these tools two benchmarks that we need to explain. First,
the cmultconj caused problems for both commercial compilers. Because CC
does not have floating-point capabilities, it could not compile this kernel at
all. VIVADO HLS was able to compile it; however, the result obtained is the
only one that is performing worse than the corresponding result obtained with
DWARV3.0. A closer examination revealed that this is caused by the place-
ment of the floating-point core in relation to the input register. This critical
path with total delay of 16.096 ns is composed of 5.465 ns logic and 10.631
ns routing. Why Xilinx ISE’s xst compiler was unable to place the input reg-
ister closer to the floating-point core, is not clear. A possible cause could be
an incompatibility between Vivado and ISE synthesis algorithms. That is, we
suspect the problem could be caused by the fact that the hardware design ob-
tained with Vivado HLS was synthesized using ISE’s xst tool, which relies on
older synthesizing algorithms. Finally, the sha function could not be compiled
with CC because the tool gave a segmentation fault in this case.

155

156 APPENDIX A. COMPLETE DWARV 3.0 COMPARISON RESULTS

Ta
bl

e
A

.1
:C

om
pl

et
e

Pe
rf

or
m

an
ce

an
d

A
re

a
M

et
ri

cs
fo

rV
iv

ad
o

H
L

S
an

d
C

om
m

er
ci

al
C

om
pi

le
rt

oo
ls

.

Fu
nc

tio
n

V
iv

ad
o

H
L

S
-x

c7
k3

25
t-

2-
ff

g9
00

C
C

-x
c7

k3
25

t-
2-

ff
g9

00
N

am
e

C
yc

le
s

FM
ax

R
eg

s
L

U
T

E
xe

c.
Ti

m
e

(u
s)

C
yc

le
s

FM
ax

R
eg

s
L

U
T

E
xe

c
Ti

m
e

(u
s)

m
at

ri
xm

ul
t

10
6

68
5

29
43

0.
15

11
5

41
6

60
11

1
0.

28
ad

pc
m

-e
nc

od
e

26
9

17
1

28
04

32
27

1.
57

61
85

49
08

60
80

0.
72

ae
s-

en
cr

yp
t

16
60

18
0

18
96

3
14

50
0

9.
22

27
13

31
29

28
44

66
87

.5
2

ae
s-

de
cr

yp
t

24
34

17
2

18
78

3
13

94
1

14
.1

5
30

88
37

25
81

41
08

83
.4

6
gs

m
42

88
20

5
20

19
38

53
20

.9
2

26
26

83
27

62
50

37
31

.6
4

sh
a

20
65

84
16

0
40

55
39

04
12

91
.1

5
N

/A
N

/A
N

/A
N

/A
N

/A
cm

ul
tc

on
j

17
62

51
1

43
55

0.
27

N
/A

N
/A

N
/A

N
/A

N
/A

sa
td

10
4

39
9

97
0

92
1

0.
26

44
16

9
75

5
11

88
0.

26
so

be
l

74
61

42
7

56
9

57
0

17
.4

7
29

18
11

8
48

4
83

0
24

.7
3

vi
te

rb
i

13
27

5
21

5
46

55
40

90
61

.7
4

12
87

4
22

7
12

05
17

08
56

.7
1

be
lm

an
nf

or
d

15
98

39
4

37
3

60
3

4.
06

19
68

20
1

43
5

63
4

9.
79

157

DWARV 2.0 and DWARV 3.0

Table A.2 shows the complete results for the last two versions of DWARV,
without and with the modifications of Chapter 8. We notice two cases here,
i.e. sha and viterbi functions that DWARV2.0 was able to compile, however,
the simulation results did not match the golden reference obtained by running
the function in software. As a result, we considered these hardware designs
incorrect, and we didn’t attempt to synthesize them.

LegUp 2.0 and LegUp 3.0

Table A.3 gives the results for 2.0 and 3.0 versions of LegUp. We see in the
table that, for the older version, the viterbi function did not compile. This is
denoted by the ERR entry in the table. We note that all the kernels compiled
with LegUp 2.0 were synthesized with Quartus toolset 10.0 for the Stratix IV
EP4SGX70HF35C2 FPGA. For LegUp 3.0, we used two FPGAs, one from
Altera and one from Xilinx. The reason is because we wanted to keep the
consistency in the comparison by comparing outputs of the same synthesizing
compiler for the same target FPGA. However, because LegUp is designed for
Altera, we could not synthesize all kernels for Xilinx. The ones requiring
special cores, i.e. a lpm divide Altera specific divider, were synthesized with
Quartus 11.1sp for the Cyclone 2 EP2C35F672C6 FPGA. We did not choose
for the Stratix version because LegUp 3.0 gives errors when we try to select
it. Furthermore, with LegUp 3.0, two functions caused problems. cmultconj
function could not be compiled due to missing floating-point cores and viterbi
kernel did not give correct results in simulation.

PandA 0.9.0 and PandA 0.9.1

Finally, Table A.4 presents the results for PandA 0.9.0 and PandA 0.9.1 tool
versions. We notice that the former version could not generate test benches
for all the cases, although the tool was able to compile that particular func-
tion. This is the case for the adpcm-encode, aes-encrypt‖decrypt and sha
functions. As a result, we were not able to calculate performance numbers
for them. However, the latest tool version is able to generate both kernels and
their corresponding test benches correctly for all benchmark functions.

158 APPENDIX A. COMPLETE DWARV 3.0 COMPARISON RESULTS

Ta
bl

e
A

.2
:C

om
pl

et
e

Pe
rf

or
m

an
ce

an
d

A
re

a
M

et
ri

cs
fo

rD
W

A
RV

2.
0

an
d

3.
0

to
ol

ve
rs

io
ns

.

Fu
nc

tio
n

D
W

A
R

V
2.

0
-x

c5
vf

x1
30

t-
2-

ff
17

38
D

W
A

R
V

3.
0

-x
c7

k3
25

t-
2-

ff
g9

00
N

am
e

C
yc

le
s

FM
ax

R
eg

s
L

U
T

E
xe

c.
Ti

m
e

(u
s)

C
yc

le
s

FM
ax

R
eg

s
L

U
T

E
xe

c
Ti

m
e

(u
s)

m
at

ri
xm

ul
t

67
8

21
1

65
1

47
5

3.
21

42
0

30
7

39
1

29
1

1.
37

ad
pc

m
-e

nc
od

e
12

17
19

7
76

21
59

33
6.

18
50

9
22

7
27

66
34

52
2.

24
ae

s-
en

cr
yp

t
14

15
1

17
3

31
41

2
14

61
9

81
.8

0
79

48
19

1
17

58
2

10
03

9
41

.6
1

ae
s-

de
cr

yp
t

26
27

8
17

9
30

22
2

13
27

4
14

6.
80

79
51

19
1

15
87

1
81

99
41

.6
3

gs
m

18
77

8
17

5
14

58
8

12
23

0
10

7.
30

98
57

23
5

37
28

64
19

41
.9

4
sh

a
E

R
R

E
R

R
E

R
R

E
R

R
E

R
R

21
24

99
22

9
13

72
2

33
54

9
92

7.
94

cm
ul

tc
on

j
71

40
6

78
5

49
1

0.
17

37
30

2
99

9
88

0
0.

12
sa

td
24

3
27

9
32

95
31

05
0.

87
84

12
4

71
3

17
62

0.
68

so
be

l
25

05
5

26
3

13
94

11
86

95
.2

7
13

42
8

28
6

71
1

79
6

46
.9

5
vi

te
rb

i
E

R
R

E
R

R
E

R
R

E
R

R
E

R
R

33
78

2
28

0
57

82
81

46
12

0.
65

be
lm

an
nf

or
d

11
09

8
27

3
12

24
10

35
40

.6
5

67
01

36
8

71
6

62
3

18
.2

1

159

Ta
bl

e
A

.3
:C

om
pl

et
e

Pe
rf

or
m

an
ce

an
d

A
re

a
M

et
ri

cs
fo

rL
eg

U
p

2.
0

an
d

3.
0

to
ol

ve
rs

io
ns

.

Fu
nc

tio
n

L
eg

U
p

2.
0

-E
P4

SG
X

70
H

F3
5C

2
L

eg
U

p
3.

0
-x

c7
k3

25
t-

2-
ff

g9
00
‖

E
P2

C
35

F
67

2C
6

N
am

e
C

yc
le

s
FM

ax
R

eg
s

L
U

T
E

xe
c.

Ti
m

e
(u

s)
C

yc
le

s
FM

ax
R

eg
s

L
U

T
E

xe
Ti

m
e(

us
)

m
at

ri
xm

ul
t

29
6

16
2

71
6

96
2

1.
83

30
7

32
2

64
8

11
79

0.
95

ad
pc

m
-e

nc
od

e
69

7
76

40
99

44
39

9.
17

15
48

12
0

27
02

37
95

12
.9

0
ae

s-
en

cr
yp

t
11

10
5

76
13

27
6

14
35

6
14

6.
12

81
14

91
97

01
13

30
7

89
.1

6
ae

s-
de

cr
yp

t
19

93
7

67
15

46
3

16
63

3
29

7.
57

13
96

7
91

11
28

1
15

55
7

15
3.

48
gs

m
89

92
1

11
3

67
10

66
09

79
5.

76
67

33
12

4
58

46
80

73
54

.3
0

sh
a

30
33

61
15

1
90

81
71

90
20

09
.0

1
27

24
28

16
8

91
90

11
28

1
16

21
.6

0
cm

ul
tc

on
j

75
15

4
39

5
39

7
0.

49
N

/A
N

/A
N

/A
N

/A
N

/A
sa

td
12

2
20

5
22

65
28

89
0.

60
14

5
23

8
21

24
36

86
0.

61
so

be
l

51
17

11
7

24
48

27
56

43
.7

4
50

85
12

6
22

17
28

52
40

.3
6

vi
te

rb
i

E
R

R
E

R
R

E
R

R
E

R
R

E
R

R
N

/A
22

3
21

80
29

17
N

/A
be

lm
an

nf
or

d
55

90
20

2
69

2
95

1
27

.6
7

56
14

28
0

62
5

11
43

20
.0

5

160 APPENDIX A. COMPLETE DWARV 3.0 COMPARISON RESULTS

Ta
bl

e
A

.4
:C

om
pl

et
e

Pe
rf

or
m

an
ce

an
d

A
re

a
M

et
ri

cs
fo

rP
an

dA
0.

9.
0

an
d

0.
9.

1
to

ol
ve

rs
io

ns
.

Fu
nc

tio
n

Pa
nd

A
0.

9.
0

-x
c7

k3
25

t-
2-

ff
g9

00
Pa

nd
A

0.
9.

1
-x

c7
vx

33
0t

-1
-f

fg
11

57
N

am
e

C
yc

le
s

FM
ax

R
eg

s
L

U
T

E
xe

c.
Ti

m
e

(u
s)

C
yc

le
s

FM
ax

R
eg

s
L

U
T

E
xe

c
Ti

m
e

(u
s)

m
at

ri
xm

ul
t

26
7

16
2

38
9

80
3

1.
65

34
8

19
1

39
1

51
5

1.
82

ad
pc

m
-e

nc
od

e
E

R
R

75
37

71
15

26
0

E
R

R
17

83
75

37
71

15
26

0
23

.7
7

ae
s-

en
cr

yp
t

E
R

R
15

55
83

35
31

5
E

R
R

62
29

15
4

83
42

18
88

7
40

.4
5

ae
s-

de
cr

yp
t

E
R

R
15

57
21

42
74

3
E

R
R

10
28

7
15

4
85

15
21

48
2

66
.8

0
gs

m
52

36
11

4
33

64
12

86
8

45
.9

3
16

72
3

12
7

64
84

99
04

13
1.

68
sh

a
E

R
R

17
13

88
11

10
8

E
R

R
33

27
33

33
4

42
61

66
94

99
6.

21
cm

ul
tc

on
j

28
44

23
7

29
62

0.
64

16
3

16
3

19
63

41
57

1.
00

sa
td

24
8

13
6

12
23

51
63

1.
82

17
85

10
3

21
99

65
19

17
.3

3
so

be
l

72
67

12
8

74
4

17
65

56
.7

7
98

90
14

9
18

43
43

45
66

.3
8

vi
te

rb
i

26
88

3
10

5
56

4
41

86
25

6.
03

29
07

2
16

6
14

78
27

43
17

5.
13

be
lm

an
nf

or
d

59
07

14
2

27
3

14
61

41
.6

0
42

39
16

9
20

89
45

01
25

.0
8

B
Return on Investment Graphs

IN this Appendix, we illustrate in Figures B.1, B.2 and B.3 the correspond-
ing return on investment (ROI) for the other three cases of the matrix
example described in Chapter 6.

m_30

Page 1

name area transfer time: 7285
PrevSolution20% 25u,10+,5* 1854 990 0 0 0

25 unroll X investment X gain ROI
13MUL_6ADD 2325 990 8275 13*,6+ 50*, 25+ 1.25 1.00 0.80

13MUL_7ADD_SOL 2432 950 8235 13*,7+ 50*, 25+ 1.31 1.04 0.79
14MUL_7ADD 2407 950 8235 14*,7+ 50*, 25+ 1.30 1.04 0.80
15MUL_7ADD 2900 950 8235 15*,7+ 50*, 25+ 1.56 1.04 0.67
16MUL_8ADD 2388 950 8235 16*,8+ 50*, 25+ 1.29 1.04 0.81
17MUL_9ADD 2950 910 8195 17*,9+ 50*, 25+ 1.59 1.09 0.68

50 unroll
2MUL_1ADD 2277 1410 8695 2*,1+ 100*, 50+ 1.23 0.70 0.57
4MUL_2ADD 2327 910 8195 4*,2+ 100*, 50+ 1.26 1.09 0.87
6MUL_3ADD 2418 750 8035 6*,3+ 100*, 50+ 1.30 1.32 1.01
8MUL_4ADD 2577 670 7955 8*,4+ 100*, 50+ 1.39 1.48 1.06

10MUL_5ADD 2709 610 7895 10*, 5+ 100*, 50+ 1.46 1.62 1.11
12MUL_6ADD 2805 590 7875 12*,6+ 100*, 50+ 1.51 1.68 1.11

13MUL_7ADD_SOL 3000 570 7855 13*,7+ 100*, 50+ 1.62 1.74 1.07
100 unroll

3050 2120 9405 1*,1+ 200*,100+ 1.65 0.47 0.28
2MUL_1ADD 3100 1120 8405 2*,1+ 200*,100+ 1.67 0.88 0.53
4MUL_2ADD 3150 620 7905 4*,2+ 200*,100+ 1.70 1.60 0.94
6MUL_3ADD 3200 460 7745 6*,3+ 200*,100+ 1.73 2.15 1.25

exec.time

lim

1.20 1.30 1.40 1.50 1.60 1.70 1.80
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

25 unroll

50 unroll

100 unroll

Investment Factor

R
et

u
rn

 o
n

 I
n

ve
st

m
en

t
(R

O
I)

m
ax

 a
re

a
=

 2
88

0
sl

ic
es

Solution
 (12*,6+)

Figure B.1: Matrix multiplication ROI for 30% area design constraint.

161

162 APPENDIX B. RETURN ON INVESTMENT GRAPHS

m_50

Page 1

name area exec time exec. Time: 7285
2850 590

50unroll X investment X gain ROI
20MUL_10ADD 3705 510 7795 20*,10+ 100*, 50+ 1.30 1.16 0.89
25MUL_12ADD 4266 510 7795 25*,12+ 100*, 50+ 1.50 1.16 0.77

25MUL_13ADD_SOL 4228 490 7775 25*,13+ 100*, 50+ 1.48 1.20 0.81
34MUL_16ADD 4900 490 7775 34*,16+ 100*, 50+ 1.72 1.20 0.70
34MUL_17ADD 4950 470 7755 34*,17+ 100*, 50+ 1.74 1.26 0.72

100unroll
2MUL_1ADD 4171 1120 8405 2*,1+ 200*,100+ 1.46 0.53 0.36
4MUL_2ADD 4324 620 7905 4*,2+ 200*,100+ 1.52 0.95 0.63
6MUL_3ADD 4174 460 7745 6*,3+ 200*,100+ 1.46 1.28 0.88
8MUL_4ADD 4362 370 7655 8*,4+ 200*,100+ 1.53 1.59 1.04
10MUL_5ADD 4427 320 7605 10*, 5+ 200*,100+ 1.55 1.84 1.19

20MUL_10ADD 4797 220 7505 20*,10+ 200*,100+ 1.68 2.68 1.59
25MUL_13ADD 5000 200 7485 25*,13+ 200*,100+ 1.75 2.95 1.68

Prevsol 30%25unroll, 13*,6+

1.20 1.30 1.40 1.50 1.60 1.70 1.80
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

50unroll

100unroll

Investment Factor

R
et

o
rn

 o
n

 I
n

ve
st

m
en

t
(R

O
I)

m
ax

 a
re

a
=

 4
80

0
sl

ic
esSolution

 (20*,10+)

Figure B.2: Matrix multiplication ROI for 50% area design constraint.

m_100

Page 1

name area exec time 7285
4797 220

100 unroll X investment X gain ROI
40MUL_20ADD 7845 170 7455 1.64 1.29 0.79
50MUL_24ADD 8484 170 7455 1.77 1.29 0.73

50MUL_25ADD_SOL 8470 160 7445 1.77 1.38 0.78
67MUL_33ADD 9700 160 7445 2.02 1.38 0.68
67MUL_34ADD 9800 150 7435 2.04 1.47 0.72

MAX 9900 130 2.06 1.69 0.82

prevsol: 100unroll, 20*,10+ prevsol: 100unroll, 20*,10+

1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

100 unroll

MAX

Investment Factor

R
et

u
rn

 o
n

 I
n

ve
st

m
en

t
(R

O
I)

m
ax

 a
re

a
=

 9
60

0
sl

ic
es

Solution
 (50*,25+)

Figure B.3: Matrix multiplication ROI for 100% area design constraint.

Bibliography

[1] Ip-xact ieee 1685-2009 standard. [Online]. Available:
http://www.accellera.org/home. 6, 72, 73

[2] Milepost project. [Online]. Available: http://ctuning.org/wiki/index.php?
title=Dissemination:Projects:MILEPOST. 129

[3] Synphony c compiler. pico technology. [Online]. Available:
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-
Compiler.aspx. 74

[4] N. Rollins A. Arnesen and M. Wirthlin. A multi-layered xml schema and
design tool for reusing and integrating fpga ip. In Field Programmable
Logic and Applications, FPL ’09, pages 472 – 475. 73

[5] Shail Aditya and Vinod Kathail. Algorithmic synthesis using pico. In
Philippe Coussy and Adam Morawiec, editors, High-Level Synthesis:
from Algorithm to Digital Circuit, pages 53–74. Springer Netherlands,
2008. 30

[6] Altera. C2h compiler. [Online]. Available:
http://www.alterawiki.com/wiki/C2H?GSA pos=1&WT.oss r=1&
WT.oss=c2h. 29

[7] Altera. C2h compiler - discontinued. [Online]. Available:
www.altera.com/literature/pcn/pdn1208.pdf. 30

[8] Altium. Altium designer: A unified solution. [Online]. Available:
http://www.altium.com/en/products/altium-designer. 25, 61, 83, 104

[9] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Hal-
dar, P. Joisha, A. Jones, A. Kanhare, A. Nayak, S. Periyacheri, M. Walk-
den, and D. Zaretsky. A matlab compiler for distributed, heteroge-
neous, reconfigurable computing systems. In Field-Programmable Cus-
tom Computing Machines, 2000 IEEE Symposium on, pages 39–48,
2000. 30

[10] BDTi. Bdti high-level synthesis tool certifi-
cation program results. [Online]. Available:
http://www.bdti.com/Resources/BenchmarkResults/HLSTCP. 30

[11] Y. Ben-Asher and N. Rotem. Synthesis for variable pipelined function
units. In System-on-Chip, 2008. SOC 2008. International Symposium on,
pages 1–4, 2008. 29

163

164 BIBLIOGRAPHY

[12] Koen Bertels, Stamatis Vassiliadis, Elena Moscu Panainte, Yana
Yankova, Carlo Galuzzi, Ricardo Chaves, and Georgi Kuzmanov. De-
veloping applications for polymorphic processors: The delft workbench.
Technical report, Delft University of Technology, 2006. 39

[13] BlueSpec. High-level synthesis tools. [Online]. Available:
http://bluespec.com/high-level-synthesis-tools.html. 17

[14] Thomas Bollaert. Catapult synthesis: A practical introduction to inter-
active c synthesis. In Philippe Coussy and Adam Morawiec, editors,
High-Level Synthesis: from Algorithm to Digital Circuit, pages 29–52.
Springer Netherlands, 2008. 23, 61, 83

[15] Cadence. C-to-silicon compiler. [Online]. Available:
http://www.cadence.com/products/sd/silicon compiler/pages/default.aspx.
24, 83

[16] Cadence. Cadence c-to-silicon compiler delivers on the promise of high-
level synthesis. Technical report, Cadence, 2008. 24, 61

[17] Timothy J. Callahan, John R. Hauser, and John Wawrzynek. The garp
architecture and c compiler. Computer, 33(4):62–69, April 2000. 4, 20

[18] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed
Kammoona, Jason H. Anderson, Stephen Brown, and Tomasz Cza-
jkowski. Legup: high-level synthesis for fpga-based processor/accel-
erator systems. In Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, FPGA ’11, pages 33–
36, New York, NY, USA, 2011. ACM. 8, 27, 60, 61, 64, 65, 83, 104

[19] Convey Computer. The hc series. [Online]. Available:
http://www.conveycomputer.com/products/hcseries/. 39

[20] Philippe Coussy, Cyrille Chavet, Pierre Bomel, Dominique Heller, Eric
Senn, and Eric Martin. Gaut: A high-level synthesis tool for dsp appli-
cations. In Philippe Coussy and Adam Morawiec, editors, High-Level
Synthesis, pages 147–169. Springer Netherlands, 2008. 28

[21] Universite de Bretagne-Sud. Gaut - high-level synthesis tool from c to
rtl. [Online]. Available: http://hls-labsticc.univ-ubs.fr/. 28

[22] Politecnico di Milano. Bambu: A free framework for the
high-level synthesis of complex applications. [Online]. Available:
http://panda.dei.polimi.it/?page id=31. 27

BIBLIOGRAPHY 165

[23] J. Diamond, M. Burtscher, J.D. McCalpin, Byoung-Do Kim, S.W. Keck-
ler, and J.C. Browne. Evaluation and optimization of multicore per-
formance bottlenecks in supercomputing applications. In Performance
Analysis of Systems and Software (ISPASS), 2011 IEEE International
Symposium on, pages 32–43, 2011. 2

[24] K. Bertels E. Panainte and S. Vassiliadis. Compiling for the molen pro-
gramming paradigm. In In Field-Programmable Logic and Applications
(FPL), pages 900–910, 2003. 4, 40

[25] G. Estrin. Reconfigurable computer origins: the ucla fixed-plus-variable
(f+v) structure computer. Annals of the History of Computing, IEEE,
24(4):3–9, 2002. 3

[26] ACE Associated Compiler Experts. Associated compiler experts ace:
Cosy compiler platform. [Online]. Available: www.ace.nl. 12, 49, 60,
61, 83

[27] ACE Associated Compiler Experts. Engine writers guide. [CoSy Re-
lease]. 51

[28] Y Explorations. excite: C to rtl behavioral synthesis. [Online]. Available:
http://www.yxi.com/products.php. 21, 65

[29] Michael Fingeroff. High-Level Synthesis Blue Book. Xlibris Corporation,
2010. 23

[30] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-oriented
fpga computing in the streams-c high level language. In Field-
Programmable Custom Computing Machines, 2000 IEEE Symposium on,
pages 49–56, 2000. 18

[31] M.B. Gokhale and J.M. Stone. Napa c: compiling for a hybrid risc/fpga
architecture. In FPGAs for Custom Computing Machines, 1998. Pro-
ceedings. IEEE Symposium on, pages 126–135, 1998. 20

[32] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi,
Matt Moe, R. Reed Taylor, and R. Reed. Piperench: A reconfigurable
architecture and compiler. Computer, 33:70–77, 2000. 17

[33] Mentor Graphics. Dk design suite: Handel-c to fpga for algorithm design.
[Online]. Available: http://www.mentor.com/products/fpga/handel-c/dk-
design-suite. 19

166 BIBLIOGRAPHY

[34] Mentor Graphics. Handel-c synthesis methodology. [Online]. Available:
http://www.mentor.com/products/fpga/handel-c. 19

[35] David Greaves and Satnam Singh. Kiwi: Synthesis of fpga circuits from
parallel programs. In IEEE Symposium on Field-Programmable Custom
Computing Machines, 2008. 33

[36] Khronos Group. Opencl - the open standard for parallel pro-
gramming of heterogeneous systems. [Online]. Available:
https://www.khronos.org/opencl/. 15

[37] D. Grune, K. van Reeuwijk, H. Bal, C. Jacobs, and K.G. Langendoen.
Modern Compiler Design (2nd edition). Springer, 2012. 45

[38] Zhi Guo, Betul Buyukkurt, and Walid Najjar. Optimized generation of
data-path from c codes for fpgas. In Int. ACM/IEEE Design, Automa-
tion and Test in Europe Conference (DATE 2005, pages 112–117. IEEE
Computer Society, 2005. 21

[39] Zhi Guo, Walid Najjar, and Betul Buyukkurt. Efficient hardware code
generation for fpgas. ACM Trans. Archit. Code Optim., 5(1):6:1–6:26,
May 2008. 21

[40] Zhi Guo, Walid Najjar, and Frank Vahid. A quantitative analysis of the
speedup factors of fpgas over processors. In Processors, Int. Symp. Field-
Programmable gate Arrays (FPGA, pages 162–170. ACM Press, 2004.
82

[41] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: a high-level syn-
thesis framework for applying parallelizing compiler transformations.
In VLSI Design, 2003. Proceedings. 16th International Conference on,
pages 461–466, 2003. 25, 61

[42] T. Stefanov H. Nikolov and E. Deprettere. Systematic and automated
multi-processor system design, programming, and implementation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 27, March 2008. 74

[43] M. Hohenauer, F. Engel, R. Leupers, G. Ascheid, H. Meyr, G. Bette, and
B. Singh. Retargetable code optimization for predicated execution. In
Design, Automation and Test in Europe, 2008. DATE ’08, pages 1492–
1497, 2008. 103

BIBLIOGRAPHY 167

[44] Qijing Huang, Ruolong Lian, A. Canis, Jongsok Choi, R. Xi, S. Brown,
and J. Anderson. The effect of compiler optimizations on high-level syn-
thesis for fpgas. In Field-Programmable Custom Computing Machines
(FCCM), 2013 IEEE 21st Annual International Symposium on, pages
89–96, 2013. 134

[45] Giang Nguyen Thi Huong and Seon Wook Kim. Gcc2verilog compiler
toolset for complete translation of c programming language into verilog
hdl. ETRI, 33(5):731–740, October 2011. 32

[46] IBM. The cell project at ibm research. [Online]. Available:
https://www.research.ibm.com/cell/. 3

[47] ISO / IEC. Tr 18037: Embedded c. [Online]. Available: www.open-
std.org/jtc1/sc22/wg14/www/projects#18037. 121

[48] Jacquard Computing Inc. Roccc 2.0: Intelligent code accelerator solu-
tions. [Online]. Available: http://www.jacquardcomputing.com/. 22, 83

[49] Xilinx Inc. Vivado design suite - vivadohls. [Online]. Available:
http://www.xilinx.com/products/design-tools/vivado/index.htm. 26

[50] Accellera System Initiative. Systemc standard
- ieee std. 1666TM-2011. [Online]. Available:
http://www.accellera.org/downloads/standards/systemc. 15

[51] Nikolaos Kavvadias. The hercules high-level synthesis tool. [Online].
Available: http://www.nkavvadias.com/hercules/. 17

[52] Nikolaos Kavvadias and Kostas Masselos. Automated synthesis of fsmd-
based accelerators for hardware compilation. 2013 IEEE 24th Inter-
national Conference on Application-Specific Systems, Architectures and
Processors, 0:157–160, 2012. 17

[53] Phillip Duncan John Granacki Mary Hall Rajeev Jain Heidi Ziegler Ki-
ran Bondalapati, Pedro Diniz. Defacto: A design environment for adap-
tive computing technology. In Reconfigurable Architectures Workshop
(RAW), 1999. 32

[54] Wido Kruijtzer, Pieter van der Wolf, Erwin de Kock, Jan Stuyt, Wolf-
gang Ecker, Albrecht Mayer, Serge Hustin, Christophe Amerijckx, Serge
de Paoli, and Emmanuel Vaumorin. Industrial ip integration flows based

168 BIBLIOGRAPHY

on ip-xact standards. In Proceedings of the conference on Design, au-
tomation and test in Europe, DATE ’08, pages 32–37, New York, NY,
USA, 2008. ACM. 74

[55] Los Alamos National Laboratory. Trident high level synthesis tool. [On-
line]. Available: http://trident.sourceforge.net/. 28

[56] Christopher K. Lennard, Victor Berman, Saverio Fazzari, Mark Indov-
ina, Cary Ussery, Marino Strik, John Wilson, Olivier Florent, François
Rémond, and Pierre Bricaud. Industrially proving the spirit consortium
specifications for design chain integration. In Proceedings of the con-
ference on Design, automation and test in Europe: Designers’ forum,
DATE ’06, pages 142–147, 3001 Leuven, Belgium, Belgium, 2006. Eu-
ropean Design and Automation Association. 72

[57] R. Leupers. Exploiting conditional instructions in code generation for
embedded vliw processors. In Design, Automation and Test in Europe
Conference and Exhibition 1999. Proceedings, pages 105–109, 1999.
103

[58] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and
Roger A. Bringmann. Effective compiler support for predicated execu-
tion using the hyperblock. In Proceedings of the 25th Annual Interna-
tional Symposium on Microarchitecture, MICRO 25, pages 45–54, Los
Alamitos, CA, USA, 1992. IEEE Computer Society Press. 103

[59] R. Meeuws, C. Galuzzi, and K. Bertels. High level quantitative hardware
prediction modeling using statistical methods. In Embedded Computer
Systems (SAMOS), 2011 International Conference on, pages 140–149,
2011. 87

[60] R.J. Meeuws. Quantitative hardware prediction modeling for hardware/-
software co-design. PhD thesis, TU Delft, 2012. xiii, 40, 42, 88

[61] W.A. Najjar, W. Bohm, B.A. Draper, J. Hammes, R. Rinker, J.R. Bev-
eridge, M. Chawathe, and C. Ross. High-level language abstraction for
reconfigurable computing. IEEE Computer, 36(8):63–69, 2003. 19

[62] NEC. Cyberworkbench: System lsi design environ-
ment to implement all-in-c concept. [Online]. Available:
http://www.nec.com/en/global/prod/cwb/. 16

BIBLIOGRAPHY 169

[63] Rishiyur Nikhil. Bluespec system verilog: efficient, correct rtl from high
level specifications. In Formal Methods and Models for Co-Design, 2004.
MEMOCODE ’04. Proceedings. Second ACM and IEEE International
Conference on, pages 69–70, 2004. 17

[64] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. Deprettere. Daedalus: toward composable multi-
media mp-soc design. In Proceedings of the 45th annual Design Automa-
tion Conference, DAC ’08, pages 574–579, New York, NY, USA, 2008.
ACM. 74

[65] University of Cambridge. The tiger mips processor 2010. [Online]. Avail-
able: http://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html.
27, 65

[66] University of Illinois at Urbana-Champaign. The llvm compiler infras-
tructure. [Online]. Available: http://llvm.org, 2008. 22, 27, 65, 131

[67] University of Pennsylvania. Eniac computer. [Online]. Available:
http://www.seas.upenn.edu/about-seas/eniac/. 1

[68] University of Toronto. Legup high-level synthesis tool. [Online]. Avail-
able: http://legup.eecg.utoronto.ca/. 27

[69] OpenMP. The openmp api specification for parallel programming. [On-
line]. Available: http://openmp.org/wp/. 41

[70] Reflect Project. Rendering fpgas to multi-core embedded computing.
[Online]. Available: http://www.reflect-project.eu/. 6, 49

[71] A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan, and
S. Eggers. Chimps: A c-level compilation flow for hybrid cpu-fpga ar-
chitectures. In Field Programmable Logic and Applications, 2008. FPL
2008. International Conference on, pages 173–178, 2008. 31

[72] Nadav Rotem. C to verilog: automating circuit design. [Online]. Avail-
able: http://www.c-to-verilog.com/. 29

[73] G. N. Gaydadjiev K. Bertels G. Kuzmanov S. Vassiliadis, S. Wong and
E. M. Panainte. The molen polymorphic processor. In IEEE Transactions
on Computers, pages 1363–1375, 2004. 4, 13, 40, 61, 75, 83, 105

170 BIBLIOGRAPHY

[74] V.-M. Sima, E.M. Panainte, and K. Bertels. Resource allocation algo-
rithm and openmp extensions for parallel execution on a heterogeneous
reconfigurable platform. In Field Programmable Logic and Applications,
2008. FPL 2008. International Conference on, pages 651–654, 2008. 84

[75] Marcel Slotema. Integration of existing optimisation tech-
niques with the dwarv c-to-vhdl compiler. [Online]. Available:
http://repository.tudelft.nl/view/ir/uuidb5d4/, September 2012. 124, 131

[76] Marino Strik, Alain Gonier, and Paul Williams. Subsystem exchange in a
concurrent design process environment. In Proceedings of the conference
on Design, automation and test in Europe, DATE ’08, pages 953–958,
New York, NY, USA, 2008. ACM. 74

[77] Synopsys. Synphony c compiler. [Online]. Available:
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-
Compiler.aspx. 30

[78] Calypto Design Systems. Catapult: Product family overview. [Online].
Available: http://calypto.com/en/products/catapult/overview. 23

[79] Forte Design Systems. Cynthesizer 5. [Online]. Available:
http://www.forteds.com/products/cynthesizer.asp. 34

[80] CORE Technologies. Fpga logic cells comparison. [Online]. Available:
www.1-core.com/library/digital/fpga-logic-cells/. 142

[81] Maxeler Technologies. Maxcompiler. [Online]. Available:
https://www.maxeler.com/products/software/maxcompiler/. 33

[82] J.L. Tripp, M.B. Gokhale, and K.D. Peterson. Trident: From high-level
language to hardware circuitry. Computer, 40(3):28–37, 2007. 28

[83] Justin L. Tripp, Preston A. Jackson, and Brad Hutchings. Sea cucum-
ber: A synthesizing compiler for fpgas. In Proceedings of the Reconfig-
urable Computing Is Going Mainstream, 12th International Conference
on Field-Programmable Logic and Applications, FPL ’02, pages 875–
885, London, UK, UK, 2002. Springer-Verlag. 33

[84] San Diego Univ. Of California. Spark: A parallelizing aproach
to the high-level synthesis of digital circuits. [Online]. Available:
http://mesl.ucsd.edu/spark/. 25

BIBLIOGRAPHY 171

[85] Carnegie Mellon University. Piperench: Carnegie mel-
lon’s reconfigurable computer project. [Online]. Available:
http://www.ece.cmu.edu/research/piperench/. 17

[86] Harvard University. Machine-suif. [Online].Available:
http://www.eecs.harvard.edu/hube/software/, 2004. 21

[87] Iowa State University. Atanasoff berry computer. [Online]. Available:
http://jva.cs.iastate.edu/operation.php. 1

[88] Northwestern University. Match compiler. [Online]. Available:
http://www.ece.northwestern.edu/cpdc/Match/. 30

[89] Standford University. Suif compiler system. [Online].Available:
http://suif.stanford.edu, 2004. 18, 21, 47

[90] Sven van Haastregt and Bart Kienhuis. Automated synthesis of streaming
c applications to process networks in hardware. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’09, pages
890–893, 3001 Leuven, Belgium, Belgium, 2009. European Design and
Automation Association. 74

[91] Stamatis Vassiliadis, Georgi Gaydadjiev, Koen Bertels, and Elena Moscu
Panainte. The molen programming paradigm. In in Proceedings of the
Third International Workshop on Systems, Architectures, Modeling, and
Simulation, pages 1–10, 2003. 41

[92] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. pn: a tool for
improved derivation of process networks. EURASIP J. Embedded Syst.,
2007:19–19, January 2007. 74

[93] Jason Villarreal, Adrian Park, Walid Najjar, and Robert Halstead. De-
signing modular hardware accelerators in c with roccc 2.0. In Proceed-
ings of the 2010 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM ’10, pages 127–
134, Washington, DC, USA, 2010. IEEE Computer Society. 22, 60, 83

[94] K. Wakabayashi and T. Okamoto. C-based soc design flow and eda tools:
an asic and system vendor perspective. Trans. Comp.-Aided Des. Integ.
Cir. Sys., 19(12):1507–1522, November 2006. 16

172 BIBLIOGRAPHY

[95] M. Wirthlin, D. Poznanovic, P. Sundararajan, A. Coppola, D. Pellerin,
W. Najjar, R. Bruce, M. Babst, O. Pritchard, P. Palazzari, and G. Kuz-
manov. Openfpga corelib core library interoperability effort. Parallel
Comput., 34:231–244, May 2008. 73

[96] Xilinx. Acceldsp synthesis tool. [Online]. Available:
http://www.xilinx.com/tools/acceldsp.htm. 31

[97] Yana Yankova, Georgi Kuzmanov, Koen Bertels, Georgi Gaydadjiev,
Yi Lu, and Stamatis Vassiliadis. Dwarv: Delftworkbench automate d re-
configurable vhdl generator. In VHDL generator, the 17th International
Conference on Field Programmable Logic and Applications (FPL07),
pages 697–701, 2007. 39, 47, 60, 61, 72

[98] Sungjoo Yoo, Mohamed wassim Youssef, Aimen Bouchhima, and
Ahmed A. Jerraya. Multi-processor soc design methodology using a
concept of two-layer hardware-dependent software. In In Proceedings
of Design Automation and Test in Europe, DATE’04, 2004. 72

List of Publications

International Journals

1. R. Nane, V.M. Sima, K.L.M. Bertels, A Survey of High-Level Synthe-
sis Tools and Comparison with DWARV 3.0, To be submitted to IEEE
TCAD Transactions on Computer-Aided Design of Integrated Circuits
and Systems, April 2014.

2. J.M.P. Cardoso, T Carvalho, J G de F. Coutinho, R Nobre, R. Nane,
P. Diniz, Z. Petrov, W. Luk, K.L.M. Bertels, Controlling a complete
hardware synthesis toolchain with LARA aspects, MICPRO Micro-
processors and Microsystems, volume 37, issue 8, November 2013.

3. R.J. Meeuws, S.A. Ostadzadeh, C. Galuzzi, V.M. Sima, R. Nane, K.L.M.
Bertels, Quipu: A Statistical Modelling Approach for Predicting
Hardware Resources, ACM TRETS Transactions on Reconfigurable
Technology and Systems, volume 6, issue 1, May 2013.

International Conferences

1. J G de F. Coutinho, J.M.P. Cardoso, T Carvalho, R Nobre, S Bhat-
tacharya, P. Diniz, L Fitzpatrick, R. Nane, Deriving resource efficient
designs using the REFLECT aspect-oriented approach (extended ab-
stract), 9th International Symposium on Applied Reconfigurable Com-
puting, Los Angeles, USA, 25-27 March 2013.

2. R. Nane, V.M. Sima, K.L.M. Bertels, A Lightweight Speculative and
Predicative Scheme for Hardware Execution, International Confer-
ence on ReConFigurable Computing and FPGAs, Cancun, Mexico, 5-7
December 2012.

3. R. Nane, V.M. Sima, K.L.M. Bertels, Area Constraint Propaga-
tion in High-Level Synthesis, International Conference on Field-
Programmable Technology, Seoul, Korea, 10-12 December 2012.

4. R. Nane, V.M. Sima, B Olivier, R.J. Meeuws, Y.D. Yankova, K.L.M.
Bertels, DWARV 2.0: A CoSy-based C-to-VHDL Hardware Com-
piler, 22nd International Conference on Field Programmable Logic and
Applications, Oslo, Norway, 29-31 August 2012.

173

174 LIST OF PUBLICATIONS

5. R. Nane, S. van Haastregt, T.P. Stefanov, B. Kienhuis, V.M. Sima,
K.L.M. Bertels, IP-XACT Extensions for Reconfigurable Comput-
ing, 22nd IEEE International Conference on Application-specific Sys-
tems, Architectures and Processors, Santa Monica, USA, 11-14 Septem-
ber 2011.

6. J.M.P. Cardoso, R. Nane, P. Diniz, Z. Petrov, K Kratky, K.L.M. Bertels,
M Hubner, F Goncalves, G. Coutinho, G Constantinides, B Olivier, W.
Luk, J.A. Becker, G.K. Kuzmanov, A New Approach to Control and
Guide the Mapping of Computations to FPGAs, International Con-
ference on Engineering of Reconfigurable Systems and Algorithms, Las
Vegas, USA, 18-21 July 2011.

Book Chapters

1. R. Nobre, J.M.P. Cardoso, B. Olivier, R. Nane, L. Fitzpatrick, J.G.F. de
Coutinho, J. van Someren, V.M. Sima, K. Bertels and P.C. Diniz, Hard-
ware/Software Compilation, Chapter 5 in Compilation and Synthesis
for Embedded Reconfigurable Systems: An Aspect-Oriented Approach,
Springer, August 2013

2. J.M.P. Cardoso, P. Diniz, Z. Petrov, K. Bertels, M. Hübner, J. van
Someren, F. Gonçalves, J.G.F. de Coutinho, G.A. Constantinides, B.
Olivier, W. Luk, J. Becker, G. Kuzmanov, F. Thoma, L. Braun, M.
Kühnle, R. Nane, V.M. Sima, K. Krátký, J.C. Alves, and J.C. Ferreira,
REFLECT: Rendering FPGAs to Multi-core Embedded Comput-
ing, Chapter 11 in Reconfigurable Computing - From FPGAs to Hard-
ware/Software Codesign, Springer, August 2011.

Local Conferences

1. R. Nane, V.M. Sima, K. Bertels, DWARV 2.0 Support for Scheduling
Custom IP Blocks, ICT Open - ProRisc 2012, Rotterdam, The Nether-
lands, 22-23 October 2012.

2. R. Nane, V.M. Sima, J. van Someren, K.L.M. Bertels, DWARV: A HDL
Compiler with Support for Scheduling Custom IP Blocks, 48th De-
sign Automation Conference Work-In-Progress poster session, 5-10 June
2011, San Diego, USA.

LIST OF PUBLICATIONS 175

3. R. Nane, S. van Haastregt, T.P. Stefanov, B. Kienhuis, K.L.M. Bertels,
An HdS Meta-Model Case Study: Integrating Orthogonal Compu-
tation Models, Workshop DATE 2011 : Hardware Dependent Software
(HdS) Solutions for SoC Design, Grenoble, France, 18 March 2011.

4. R. Nane, K.L.M. Bertels, A Composable and Integrable Hardware
Compiler for Automated Heterogeneous HW/SW co-design Tool-
Chains, 6th International Summer School on Advanced Computer Ar-
chitecture and Compilation for High-Performance and Embedded Sys-
tems (ACACES 2010), Terrassa, Spain, 11-17 July 2010.

5. S. van Haastregt, R. Nane, B. Kienhuis, HdS Generation, SoftSoc Work-
shop in Embedded Systems Week (ESWeek 2009 Workshop), Grenoble,
France, 16 October 2009.

6. R. Nane, K.L.M. Bertels, Scheduling in the Context of Automatic
Hardware Generation, 8th Architectures and Compilers for Embedded
Systems Symposium (ACES 2008), Edegem, Belgium, 17-18 September
2008.

Samenvatting

Herconfigureerbare architecturen (RA Reconfigurable Architectures) zijn snel
populairder geworden tijdens het laatste decennium. Dit heeft twee redenen.
De eerste is vanwege de processor klokfrequenties die een omslagpunt hebben
bereikt waarbij het energieverbruik een groot probleem wordt. Als gevolg hier-
van moest er naar alternatieven worden gezocht om toch de prestaties te kun-
nen blijven verbeteren. De tweede reden is dat, omdat zij een substantiele
toename hebben ondervonden wat betreft oppervlakte (dat wil zeggen het aan-
tal transistoren per mm2), systeemontwerpers Field Programmable Gate Array
(FPGA) apparaten konden gaan gebruiken voor een toenemend aantal (com-
plexe) toepassingen. Echter, het in gebruik nemen van herconfigureerbare ap-
paraten bracht een aantal gerelateerde problemen met zich mee, waarvan de
complexiteit van het programmeren als een zeer belangrijke beschouwd kan
worden. Eén manier om een FPGA te programmeren is door stukken code
uit een hoge programmeertaal automatisch om te zetten naar een hardware
taal (HDL). Dit wordt High Level Synthesis genoemd. De beschikbaarheid
van krachtige HLS tools is cruciaal om met de steeds toenemende complex-
iteit van opkomende RA systemen om te gaan en zo hun enorme potentie voor
hoge prestaties tot uiting te laten komen. Huidige hardware compilers zijn nog
niet in staat om ontwerpen te genereren die qua prestaties vergelijkbaar zijn
met handmatig gecreëerde ontwerpen. Om deze reden is onderzoek naar het
efficiënt genereren van hardware modules van groot belang om dit verschil te
verkleinen. In deze dissertatie richten we ons op het ontwerpen, integreren, en
optimaliseren van de DWARV 3.0 HLS compiler.

Anders dan eerdere HSL compilers is DWARV 3.0 gebaseerd op het CoSy
compiler framework. Hierdoor kunnen we een zeer modulaire en uitbreid-
bare compiler bouwen waar standaard- of specifieke optimalisaties gemakke-
lijk in kunnen worden geı̈ntegreerd. De compiler is ontworpen om een grote
subset van de C programmeertaal te accepteren als invoer en om VHDL
code te genereren voor onbeperkte applicatiedomeinen. Om DWARV 3.0 ex-
terne tool-integratie mogelijk te maken stellen we verscheidene IP-XACT (een
XML-gebaseerde standaard voor tool-interoperabiliteit) uitbreidingen voor zo-
dat hardware-afhankelijke software automatisch gegenereerd en geı̈ntegreerd
kan worden. Verder stellen we twee nieuwe algoritmes voor die respectievelijk
de prestaties optimaliseren voor verschillende invoer wat betreft oppervlakte
beperking, en die toelaat de voordelen te exploiteren van zowel jump en pred-
ication schemes die op een meer efficiënte wijze kunnen worden uitgevoerd in

vergelijking met conventionele processoren.. Ten slotte hebben we een eval-
uatie gedaan in vergelijking met de meest geavanceerde HLS tools van dit
moment. De resultaten laten zien dat wat betreft de uitvoeringstijd van ver-
schillende toepassingen, DWARV 3.0 gemiddeld het best presteert van alle
academische compilers.

178

Curriculum Vitae

Răzvan Nane was born on 17th of August 1980 in
Bucharest, Romania. He received his B.Sc. degree in
Computer Science and his M.Sc degree in Computer En-
gineering both from Delft University of Technology, Fac-
ulty of Electrical Engineering, Mathematics and Computer
Science in 2005 and 2007, respectively. In 2008 he started
work as a Technical Programmer in the Computer Engi-
neering group, where he was involved in compiler support

and extension activities. In 2011 he started his Doctoral Research at the Com-
puter Engineering Laboratory, TU Delft, where he worked under the supervi-
sion of prof. dr. Koen Bertels. He was involved in multiple projects related to
reconfigurable architectures such as Reflect, SoftSoc, hArtes and IFEST. The
work focused on compiler technology for high-level synthesis. His current
research interest include: high-level synthesis, compiler technology, reconfig-
urable architectures, hardware/software co-design and embedded systems.

179

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	List of Acronyms and Symbols
	Introduction
	Problem Overview
	Dissertation Scope and Challenges
	Contribution of the thesis

	Dissertation Organization

	Related Work
	High-Level Synthesis Tools
	Domain-Specific Languages
	New Languages
	C-dialect Languages

	General-Purpose Languages
	Procedural Languages
	Object-Oriented Languages

	Summary of Tool Features
	Conclusion

	Background Work
	Introduction
	Molen Machine Organization
	Delft Workbench Tool-Chain
	Back-end Work Flows
	Synthesis Flow
	Simulation Flow

	Software vs. Hardware Compilers
	DWARV 1.0
	CoSy Compiler Framework
	C-to-FPGA Example

	DWARV2.0: A CoSy-based C-to-VHDL Hardware Compiler
	Introduction
	Related Work
	DWARV 2.0
	Dwarv2.0 Engines: The Tool-Flow
	New Features and Restrictions

	Experimental Results
	Conclusion

	IP-XACT Extensions for Reconfigurable Computing
	Introduction
	Related Work
	Integrating Orthogonal Computation Models
	IP Core Integration
	Framework Solution

	IP-XACT Extensions
	Hardware Compiler Input
	Hardware-Dependent Software
	Tool Chains

	Experimental Results
	Validation of Approach
	Productivity Gain

	Conclusion

	Area Constraint Propagation in High-Level Synthesis
	Introduction
	Background and Related Work
	Area Constrained Hardware Generation
	Motivational Example and Problem Definition
	Optimization Algorithm
	Integration in Dwarv2.0

	Experimental Results
	Experimental Environment
	Test Cases
	Discussion

	Conclusion and Future Research

	A Lightweight Speculative and Predicative Scheme for HW Execution
	Introduction
	Related Work and Background
	Speculative and Predicative Algorithm
	Motivational Examples
	Algorithm Description and Implementation

	Experimental Results
	Conclusion

	DWARV 3.0: Relevant Hardware Compiler Optimizations
	Introduction
	Hardware-Specific Optimizations
	CoSy Compiler Optimizations
	Conclusions

	Hardware Compilers Evaluation
	Introduction
	Tool Selection Criteria
	Overview Selected Compilers for Evaluation
	Benchmark Overview
	Generated Hardware Overview
	Experimental Results
	Conclusion

	Conclusions and Future Work
	Summary
	Dissertation Contributions
	Future Work

	Complete DWARV 3.0 Comparison Results
	Return on Investment Graphs
	Bibliography
	List of Publications
	Samenvatting
	Curriculum Vitae

