The road towards a more transparent
and accurate carbon footprint of freight
transportation

Developing a tool for assessing the possible uncertainties
underlying the carbon footprint of a shipment

R.H.H Siepman

‘ 1,:;U Delft \



he road towards a more
transparent and accurate

carbon footprint of freignt
transportation

Developing a tool for assessing the
possible uncertainties underlying the
carbon footprint of a shipment

by

R.H.H. Siepman

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Friday May 26, 2023 at 10:30 AM.

Student number: 4537300

Project duration: September 19, 2022 — May 14, 2023

Thesis committee:  Prof. dr. ir. L.A. (L6ri) Tavasszy, TU Delft, chair
Dr. ir. M.W. (Marcel) Ludema, TU Delft, supervisor
Dr. ir. A.J. (Arjan) van Binsbergen, TU Delft, supervisor
Ir. R.B. (Raymond) van Zwieteren, Districon, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

'i';UDeIft DISTRICON

a company of Royal HaskoningDHV


http://repository.tudelft.nl/

Preface

This report is written in fulfillment of the Master of Science degree in Transport, Infrastructure, and
Logistics. With the completion of this report, my time as a student at TU Delft also comes to an end
- a place that has offered me many opportunities and knowledge, as well as joy and lifelong friendships.

The master’s thesis before you, titled "The road towards a more transparent and accurate carbon foot-
print of freight transportation,” aims to provide a clear insight into the current state of carbon footprint
calculations in the transportation sector, with a special focus on potential uncertainties that may arise in
these calculations. This is achieved through empirical data collection via field research and interviews,
evaluating different methods for calculating the carbon footprint and examining the possible effects of
the uncertainties on the final carbon footprint value. | hope this thesis will serve as a springboard for
further discussion and research and elevate the importance of potential uncertainties in carbon footprint
calculations on the agendas of policymakers and stakeholders in the transportation industry. Address-
ing the challenges and uncertainties surrounding carbon footprint calculations is a crucial step toward
making well-informed sustainable choices.

Defining the subject of this thesis and shaping the research was a challenge. | wanted to explore a
topic that related to sustainability and its implications throughout the supply chain - a topic | knew little
about but was eager to learn. Initially, | considered a wide range of potential topics, ultimately choosing
the main research objective of "Designing a tool to assess the uncertainties within a carbon footprint of
freight transportation.” Shortly after, | became involved in a project with Districon, which allowed me to
conduct field research. The project focused on mapping the carbon footprint of freight transportation
to a construction site, where | could immediately see potential uncertainties arising in practice. The
challenge was to further define the scope of my research during this practical experience, maintain a
scientific approach, and simultaneously consider the ultimate design. Although the process was some-
times challenging, it was also very educational and valuable, and | am pleased with the result.

This outcome would not have been possible without my insightful conversations with my thesis su-
pervisors, Marcel Ludema and Arjan van Binsbergen, who helped me remain critical and were always
available for guidance. | want to express my gratitude for the feedback sessions and enjoyable discus-
sions. Additionally, | would like to extend my gratitude to Léri Tavasszy for the enthusiastic discussions
and feedback throughout the research process.

| also want to express my appreciation to the Sustainable Logistics team from Districon, for the en-
joyable time. The team meetings were a rich source of new insights into the logistics sector and its
sustainability efforts - a topic | was excited to learn more about. In particular, | want to thank Raymond
for the weekly coffee brainstorming sessions and Linde and Maarten for allowing me to observe and
assist with the project and always being available for my questions.

Finally but not least, my friends and family have supported me through this journey a lot. | want to
thank my parents for their continuous support throughout my research; It was comforting to be able
to return home occasionally, to study, and to find a distraction when needed. | want to thank Teun for
his ongoing patience, encouragement, and motivating words while sprinting toward deadlines. And,
of course, my friends and housemates who provided much-needed laughter and distraction and were
always willing to brainstorm with me.

Allin all, these last few months have sometimes been challenging but, overall, an incredibly educational
experience. | hope you enjoy reading this thesis!

Renée Siepman
Rotterdam, May 2023
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Summary

Situation and objective

Freight transport plays a critical role in our globalized world and contributes significantly to greenhouse
gas emissions. Therefore, measuring and reporting carbon footprints in this sector has become es-
sential for regulatory compliance and purposes such as corporate sustainability reporting, informed
decision-making, winning tenders, and enhancing competitiveness. Various stakeholders are involved
in this process, including shippers, carriers, logistics service providers, freight forwarders, policymak-
ers, and consignees. All these parties have an interest in either calculating their carbon footprint or
requesting one from others. Despite its importance, measuring and reporting carbon footprints in the
freight transport sector pose significant challenges. One of the main issues lies in the data availability
required to calculate accurate carbon footprints. This can lead to uncertainty and a potential deviation of
the carbon footprint from its actual value. Current software programs offer no indication of this potential
uncertainty, which is why carbon footprints are often presented without any reference to the underlying
uncertainty. These uncertainties can lead to incorrect decisions, credibility issues, and difficulties in
demonstrating significant change. Hence, a comprehensive understanding of these uncertainties and
their implications is essential, further driving the need for research. Consequently, the primary aim of
this study is to:

Given that several software tools for calculating a carbon footprint already exist, the focus should not
be on developing a new model. Instead, the emphasis should be on identifying existing uncertainties,
understanding their origins, evaluating whether they can be prevented, and exploring how they can be
quantified. After numerous brainstorming sessions, it was concluded that the tool should be designed
as a guidance framework. This guidance framework assists in identifying possible sources of underlying
uncertainties and provides suggestions for quantifying these uncertainties, allowing to make a range
of values around a carbon footprint representable.

With this framework, the causes of uncertainties become apparent, enabling clients or decision-
makers to ask questions about how the presented carbon footprints were established and what un-
certainties may underpin them. Additionally, it can help establish data requirements that a carbon
footprint must satisfy. A consulting firm can utilize this framework as a communication tool in the out-
comes of carbon footprint analyses, and the consequences of potential uncertainties can be discussed.
A software developer can implement this framework to incorporate uncertainties in existing software
programs. A transport company can use this framework to make their carbon footprint more accurate
and be aware of the impact of their data quality on the calculated carbon footprint. Most crucially, it can
make various stakeholders aware that the carbon footprint is not necessarily an absolute figure.

Design methodology

To achieve the design and fulfill the research objective, this research employs the triple diamond
method, consisting of research, tool design, and testing and evaluation phases. Research Phase: This
phase involved studying definitions, regulations, and factors influencing carbon footprints, as well as
exploring the concept of 'uncertainty.’ It utilized Walker’s uncertainty matrix as a theoretical framework.
Potential sources of uncertainty were with this framework identified by analyzing protocols and litera-
ture, conducting three expert interviews, and undertaking field research in collaboration with Districon
to calculate the carbon footprint of freight transport to a construction site. The insights and under-
standing collected from the research phase, particularly regarding uncertainty, laid the foundation for
the subsequent tool design phase. Tool Design Phase: Utilizing the knowledge gained in the research
phase, requirements are established to incorporate uncertainties into carbon footprint calculations. The
tool was iteratively developed to address uncertainties in carbon footprint calculations. The develop-
ment process emphasized identifying, prioritizing, and quantifying uncertainties, resulting in a tool that
provides "a guidance framework to identify and deal with uncertainties in a carbon footprint analysis
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of freight transport at a trip level.” The design process resulted in a conceptual design. Testing and
Evaluation Phase: The tool's effectiveness was tested using three randomly selected trips from the
field research. Thereby its usefulness in the field research project is also evaluated. Semi-structured
interviews with sustainability and carbon footprinting experts were conducted to validate the research
findings and tool, providing valuable feedback and potential improvement suggestions.

Findings and result

This study has resulted in a guidance framework that can help identify the possible causes of underlying
uncertainties and provide recommendations to quantify these uncertainties accurately, specifically on
a trip level. The term "trip level” refers to emissions being calculated in detail rather than aggregated,
which aligns with the approach used in the field research (a project to calculate the carbon footprint
of freight transport to a construction site). This approach was chosen because multiple stakeholders
ordered goods to the construction site, implying numerous transport companies. An aggregated level
would require data on fuel consumption and transport activity on a monthly or yearly basis to allocate
emissions to the construction site, which would be very time-consuming. Therefore, instead, data
was collected regarding the trips to and from the construction site to calculate the emissions from
transportation to the construction site.

Essential data to calculate a carbon footprint includes energy consumption and transport activity.
Energy consumption can be converted to a carbon footprint using emission factors per energy type
(CO,e /l or kWh). Transport activity data (origin, destination, and payloads in tons of all shipments
delivered) allows for the allocation of emissions across shipments. When data on fuel consumption
or transport activity is missing, calculations or assumptions must be made for an approximation. This
introduces uncertainties, establishing that uncertainty and data situations are interdependent.

Based on these findings, the guidance framework is built upon various data situations. Existing
literature and protocols have highlighted the influence of various data situations on the calculation of
a carbon footprint. While the literature initially outlined four main situations, variations were observed
during the field research, identifying seven distinct data scenarios. These are based on how carbon
footprints are calculated, using available information on energy consumption and transport activity data.
Each data situation has its fundamental uncertainties that are always present and context-dependent
uncertainties. The fundamental uncertainties include variation in emission factors [F1]; for example,
diesel and petrol emission factor differences between the two databases are 3 to 4% giving uncer-
tainty in the conversion of energy to emissions, a default average energy consumption[F2]; an average
energy consumption based on industry averages has a margin of +- 16.5%, a modeled energy con-
sumption +-12.5% giving uncertainty in the conversion of energy to emissions, assumptions for other
loads or destinations on the route; uncertainty margin depends on the available information and num-
ber of stops on the route, but can lead to significant differences in the allocation of emissions[F3], and
default emission intensity factors [F4]; varying the underlying assumptions about energy consumption
and average payload by 12.5% and 15% results in an emission intensity factor with a -32% and +51%
range giving uncertainty in the conversion of ton-kilometers to emissions.

Seven data situations were identified, shown below, with the fundamental uncertainties that apply:

+ Data situation 1 [F1]: The carbon footprint of a shipment can be calculated based on the known
energy consumption of the trip and known transport activity on that trip.

 Data situation 2 [F1]: The carbon footprint of a shipment can be calculated based on emission
intensity (CO,e/ton-km) or energy intensity factor (I or kWh/ton-km) known and calculated by the
transport company, multiplied by the distance and payload of the shipment.

» Data situation 3 [F1]: The carbon footprint of a shipment can be calculated with the average
energy consumption of the vehicle in km/l or km/kWh and the transport activity of the trip.

+ Data situation 4 [F1, F2]: The carbon footprint of a shipment can be calculated with a default
average energy consumption in km/l or km/kWh and the transport activity of the trip.

» Data situation 5 [F1, F3]: The carbon footprint of a shipment can be calculated based on the
average energy consumption of the vehicle in km/I or km/kWh, but not all data on transport activity
is known, and assumptions must be made.

+ Data situation 6 [F1, F2, F3]: The carbon footprint of a shipment can be calculated with a default
average energy consumption, and not all data on transport activity is known, and assumptions
must be made.
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+ Data situation 7 [F4]: The carbon footprint of a shipment must be calculated with default emission
intensity factors, as there’s no better approximation due to missing data on transport activity and
energy consumption.

As discussed, in addition to fundamental uncertainties, other factors can also create uncertainty around
the carbon footprint. For instance, when average energy consumption is based on the number of liters
divided by the actual driven distance, and only the planned distance is available for a route, the planned
distance must be converted using a factor to switch to the actual driven distance, or vice versa. This is
not a fundamental uncertainty that always occurs in the data situation but is a possible variation in these
data situations and is thus context-dependent. The causes of the greatest uncertainties in this study
are the use of default emission intensity factors [F4], the use of default average energy consumption
[F2], the use of assumptions for other loads or destinations on the route [F3], unknown energy type
that is used because this influences the selection of the emission factor, applying a standard conver-
sion factor to convert another load unit to weight, misinterpretation of origin and destination when the
distance is needed for calculating energy consumption, and when default emission intensity factors
are used additional uncertainty can arise if the vehicle type and/or shipment type is unknown/unclear
because this influences the selection of the factor. The guidance framework assists in identifying
all (there are more than stated above) potential uncertainties depending on the data situation. Fur-
thermore depending on the nature of each uncertainty, it is determined whether the uncertainty is best
quantified using probability density functions (PDFs) and Monte Carlo simulations or scenario analyses.

The final conceptual design of this study is a guidance framework which includes the following steps
to identify and deal with different potential causes of uncertainties: Step 1: Define data situation and
identify which fundamental uncertainties are in this data situation. Step 2: Identify potential causes
of uncertainties due to definition uncertainties. Ensure that stakeholders sharing information align on
these definitions to prevent uncertainty caused by ambiguity. Step 3: |dentify additional uncertainties
that apply when the information is delivered, and the carbon footprint needs to be calculated. Step 4:
When the need is to quantify the uncertainty around the carbon footprint, follow the suggested approach
that is determined by the nature of the uncertainty. If uncertainty is caused by stochastic nature, the
guidance recommends using PDFs and Monte Carlo simulations for a more realistic representation of
potential uncertainty. By determining a confidence interval, the tool provides insights into the range
of possible outcomes, rather than presenting a best-worst case scenario. If uncertainty is caused
by assumptions made to fill in missing information, the guidance recommends scenario analysis to
understand the implications of these assumptions on the carbon footprint calculation. If Monte Carlo
simulations cannot be performed, alternative approaches such as input scenarios can be used. These
scenarios can be based on the suggested uniform or triangular distributions (PDFs), which require two
or three scenarios (best, worst, and assumption scenarios).

Besides the framework systematically addressing and displaying potential uncertainties for each of
the seven identified data situations, it also provides impact scores to assist users in comprehending
the importance of every source of uncertainty. By presenting the impact scale of uncertainties, the
tool enables users to prioritize actions for mitigating these uncertainties more effectively, allowing a
more targeted approach to addressing significant uncertainties and improving the accuracy of carbon
footprint calculations.

Verification and validation

Verification of the tool’s effectiveness and compliance with requirements was achieved through a series
of tests, which included the examination of substituting probability density functions with scenarios.
The verification process showed that most requirements were met, with two only partially met due to
unavailable data and the new ISO standard;; however, the tool can incorporate future standards.

The tool was also validated and tested within the field research project, it helped with examining
data situations and the underlying uncertainties. The tool enhanced transparency in the advisory and
provided guidance for reducing uncertainties proactively in future data requests. However, visually
presenting uncertainties using Monte Carlo simulations or scenario analyses was time-consuming and
required manual work. Integration with existing software programs would streamline this process.

The tool and insights of this research were further validated with expert interviews. The expert
feedback largely concurred with the identified uncertainties while highlighting additional uncertainties
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and aspects for future consideration. There was a common agreement that uncertainty depends on
information availability and found it logical to link these uncertainties to the data situations. A critical
point was the level of detail in the data situations, which currently makes the tool suitable for trip-level
analysis but necessitates adjustments for aggregate-level use (which will be needed in the new ISO
standard). Nevertheless, experts acknowledged that the insights on uncertainties could still be ap-
plicable at the aggregate level. Experts recognized the research findings and proposed framework
potential in raising awareness and providing an overview of the topic. Some suggested its use in con-
tracts or data improvement efforts, while others saw potential contributions to industry harmonization.
Experts emphasized that the growing awareness of upcoming regulations and increased client interest
in transportation carbon footprints might incentivize companies to address uncertainties and improve
data accuracy. Companies have begun incorporating CO, measurement and reduction plans into their
contracts and increasingly demand a certain quality of data and calculation methods. However, many
companies are not yet advanced in this area, and the focus on carrier-specific emission intensity factors
remains in its early stages.

Reflection on tool and the new ISO

The field research led to a highly detailed level of investigation of the carbon footprint, as the routes
to and from the construction site had to be modeled as accurately as possible. However, the new ISO
standard for calculating emissions, based on the GLEC Framework, calculates the emissions and allo-
cates them from a more aggregated approach. This means calculating the emission intensity factor per
Transport Operating Category (TOC). This means that the total energy consumption of this category
should be divided by the transport activity from this category and multiplied by an emission factor. To
calculate the emissions per client, this emission intensity factor is multiplied by the client’s transport
activity to allocate the emissions. Consequently, there are fewer and different data situations than in
this research, as noted by experts during validation. While the research developed a guidance frame-
work at the trip level, the guidance frameworks for data situations 2 and 7 can be directly applied at
aggregated levels. This is because data situation 2 specifically addresses the potential uncertainties
introduced by the application of calculated emission intensity factors. Moreover, in situations where
data on transport activity and energy consumption are unavailable, the GLEC framework (and the new
ISO) recommend the use of default emission intensity factors. This aligns with data situation 7, which
mandates the utilization of a default emission intensity factor when primary data is lacking. Further-
more, it is also important to identify the uncertainties that can play a role in calculating an emission
intensity factor. If the total energy consumption is unknown, it still needs to be modeled. The same
uncertainties apply when this is done at the trip level; this is similar to data situation 4 where the energy
consumption of the trip must be modeled to calculate the total emissions. Another cause of uncertainty
that might occur and will be a challenge is knowing which energy type is used in a year. If this is not
properly monitored, it can cause problems in allocating the number of liters with the relevant emission
factor. Another potential cause is also uncertainty is when assumptions must be made if part of the
transport activity is unknown and an estimated average payload must be used. Another cause of un-
certainty that might occur is the uncertainty due to the use of conversion factors to convert payload from
other units to tonnages; inconsistent application of conversion factors can lead to significant uncertainty.

Recommendations improvement tool

The following recommendations are made to enhance the tool. First, as the tool currently focuses on
road freight transport, expanding its scope to include other transport modes could increase its applica-
bility. Second, while the research examined the uncertainties and their potential effects, establishing a
reliable probability density function proved challenging due to limited data and prior research. There-
fore, itis advised to further explore this topic and refine the tool for integration with software applications.
Third, additional testing with potential users, is recommended to validate the tool’s effectiveness. Forth,
to maintain relevance, the tool should be updated to comply with the new ISO standard that emphasizes
aggregated-level calculations, ensuring alignment with current industry standards and requirements.
Lastly, the tool is primarily useful for recognizing and communicating uncertainties in practice. How-
ever, determining the bandwidth around a carbon footprint using this tool may be challenging to make
this feature more useful more research is needed to investigate how these findings can be applied in
the current software tools for calculating the carbon footprint.
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Thesis introduction

This part of the research is the Introduction, which consists of two components: ’Introduction’ and
‘Methodology’. The Introduction part delves into various subjects: problem statement, scientific and
societal contributions, as well as the design scope and context. Initially, it provides a comprehensive
exploration of the problem statement, including its scientific and societal implications. This is followed
by an examination of the general scope of the study and the specific context and purpose of the tool be-

ing designed. The Methodological part of the introduction phase focuses on the design methodology,
The Triple Diamond, that is used for this research.
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Introduction

The world around us is continuously changing, and day by day, we learn more about how we affect
the environment and how the environment affects us. One of the most significant problems the world
is currently facing is climate change. The Intergovernmental Panel on Climate Change (IPCC) reports
that depending on the trajectory of greenhouse gas (GHG) emissions, the average global temperature
could increase by 3-6 degrees Celsius by 2100 (Pachauri et al., 2014). However, there is criticism
surrounding the IPCC’s work, including concerns over potential political influence, biases, and uncer-
tainties in climate models (Curry, 2017). Nonetheless, there is a general consensus that urgent action
is needed to mitigate the effects of climate change. This remains an important topic in both societal
and political discussions. In response to the climate change challenge, the Paris Agreement is made
which aims to limit the global temperature increase to well below 2 degrees Celsius above pre-industrial
levels, with an aspirational goal of limiting the increase to 1.5 degrees Celsius (UN, 2015). To achieve
this target, there must be no net emissions of GHGs by the end of the century. As a result, increasing
attention is being paid to reducing GHG emissions. GHGs include carbon dioxide (CO,), methane
(CH,), nitrous oxide (N,O), fluorinated gases: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs),
sulfur hexafluoride (SF¢), and nitrogen trifluoride (NF3). To account for the different impacts of these
gases, the Global Warming Potential (GWP) concept is used, which measures the warming effect of
each gas relative to CO, over a specified time horizon (EEA, 2021). For example, one kg of CO,
equivalents is equivalent to the effect of one kg of CO, emission but the emission of 1 kg of nitrous
oxide (N,O) equals 265 kg of CO, equivalents, and the emission of 1 kg of methane (CH,) is equal
to 28 kg CO, equivalents. The GWPs of fluorinated gases vary greatly and levels can be substantial.
For instance, 1 kg of sulphur hexafluoride (SF¢) is equal to 23 thousand kg of CO, equivalents (World
Resources Institute, 2016).

To better understand and quantify our impact on the environment, various indicators have been devel-
oped, including Life Cycle Analysis (LCA) which assesses the environmental impacts associated with
all stages of a product’s life (Bhatia et al., 2011). One specific indicator within LCA is the carbon foot-
print, which measures the total GHG emissions, expressed as CO, equivalents, resulting from human
activities, including the production, transportation, and consumption of goods and services (Wiedmann
& Minx, 2008). This metric incorporates the previous mentioned global warming potential (GWP) of the
different green house gases. In recent years, there has been a growing trend among companies to map
their Scope 1, Scope 2, and Scope 3 emissions in a carbon footprint, which are emissions generated
through various activities involved in producing a product or service (Radoniji¢ & Tompa, 2018). Scope
1 refers to a company’s direct emissions, Scope 2 to indirect emissions caused by the company itself,
and Scope 3 to emissions created by the activities of supply chain partners (Patchell, 2018). These
emissions are categorized into different areas, including transportation of goods. Accurate mapping of
these emissions has become increasingly important due to the new Corporate Sustainability Reporting
Directive, a European Union proposal. This directive requires companies that meet at least two of the
following three requirements: 40 million euros in net sales, 20 million euros on its balance sheet, or
250 or more employees to measure and report their GHG data, including Scope 1, 2, and 3 emissions,
in accordance with the GHG Protocol, starting in 2024 (European Union, 2022).
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This study will focus specifically on the carbon footprint of freight transport, a crucial aspect of the
transportation sector’s emissions. The transportation sector, heavily reliant on fossil fuels, accounted
for 37% of CO, emissions from end-use sectors in 2021 (IEA, 2021). Additionally, it is important to
note that the transportation sector also generates significant emissions of nitrogen (N, ) and particulate
matter (PM), which contribute to air pollution, acid rain, and eutrophication (Van Fan et al., 2018). How-
ever, this study specifically focuses on the carbon footprint, due to the urgency of addressing climate
change and the growing interest among companies and governments in reducing GHG emissions to
meet the goals of international agreements such as the Paris Agreement (UN, 2015). Freight transport
represents a significant portion of these emissions, contributing approximately 42% of total transport
emissions (ITF, 2021). Road freight, in particular, has a decisive impact on transport decarbonization,
as it is responsible for 65% of all freight emissions (ITF, 2021). While this study acknowledges the
significance of N, and PM emissions, their detailed analysis is beyond the scope of this research.

Given the importance of reducing freight transport GHG emissions, it is crucial for companies to ac-
curately measure and monitor their carbon footprint, including those of their suppliers. However, even
companies with their own transportation services find it challenging to map their carbon footprint, let
alone that of their suppliers (Piecyk & McKinnon, 2010). To address this issue, various instruments,
methods, and guidelines have been developed for measuring the carbon footprint of transportation
within supply chains, such as the GLEC Framework developed by the Smart Freight Center (SFC,
2020) and the GHG protocol (Patchell, 2018). Despite the availability of these tools and methods,
a significant challenge remains in addressing the uncertainties introduced by the assumptions made
during carbon footprint calculations. While these assumptions are necessary to initiate the calculation
process, they inevitably lead to variations in the final carbon footprint, raising questions about the ac-
curacy and reliability of these measurements. This study aims to explore these uncertainties in-depth
and provide insights into the potential implications for freight transport emissions management.

1.1. Problem statement

Carbon footprint calculations serve various purposes, such as complying with EU ETS regulations,
meeting the Corporate Sustainability Reporting Directive (CSRD) requirements, gaining a competitive
edge, fulfilling customer requirements, and providing insights for sustainable decision-making (Euro-
pean Union, 2022; Choi et al., 2021; Bayne et al., 2022; Lister, 2018; Radoniji¢ & Tompa, 2018; Wiche
et al., 2022). However, accurately measuring and reporting the carbon footprint of freight transport
remains challenging, particularly regarding the uncertainties introduced during the calculation process.

Companies thus have different motives for measuring and reporting their carbon footprints. Never-
theless, there is a lack of insight into the extent to which data quality affects the carbon footprint (Lis-
ter, 2018). This can be problematic for decision-making regarding sustainability policies (Radonji¢ &
Tompa, 2018) and for determining the price of a carbon footprint when it becomes relevant in the future
(Wiche et al., 2022).

Several guidelines and frameworks have been developed to measure the carbon footprint of freight
transport, and software tools have been created based on these guidelines. Some of these software
tools assign a quality label to the carbon footprint, such as “gold,” silver,” or "bronze,” which indicates
the data quality of the input variables. However, they do not provide transparency about the variations
and uncertainties underlying the carbon footprint. Understanding these uncertainties is crucial for im-
proving carbon footprint analyses and developing a reliable methodology for comparison. Furthermore,
it can be problematic when a carbon footprint is determined for shipments or attributed to shippers with-
out addressing the uncertainty. This can lead to a distorted view of the actual environmental impact
of freight transport and undermine the credibility of carbon footprint measurements. Additionally, high
uncertainty can complicate efforts to demonstrate significant change.

Moreover, there is currently limited insight into the extent of the uncertainties surrounding freight trans-
port carbon footprints and the implications of these uncertainties for businesses and policymakers.
While some studies have investigated uncertainties in Life Cycle Analysis (LCA), research specifically
focusing on the uncertainties in freight transport carbon footprint measurements is scarce. Given the im-
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portance of carbon footprint calculations in the freight transport sector and the potential consequences
of poorly understood uncertainties, there is a clear need for a tool that can assess the uncertainties
associated with freight transport carbon footprints. Therefore, the main thesis objective is:

1.2. Scientific contribution

This project holds scientific value because it adapts an existing methodology for measuring a trans-
port’s carbon footprint to make the variation and uncertainties around a footprint visible. This will create
a novel methodology that may be used in various situations, allowing for comparison of different foot-
print measurements. Adjustments to the currently existing methodology will be based on background
and empirical research.

The existing literature, such as Bell & Spinler (2022); Rigot-Muller et al. (2013); Carsten & Nadine (2019)
highlights the importance of considering various factors that can influence the accuracy and variability
of carbon footprint measurements. However, these studies do not explicitly focus on quantifying and
addressing uncertainties in carbon footprint calculations. As a result, there is a research gap regard-
ing the extent of uncertainties surrounding freight transport carbon footprints and their implications for
businesses and policymakers.

To the best of our knowledge, there is a lack of empirical research on this subject in the current liter-
ature. By making a comparison between current theory and how a carbon footprint measurement is
accomplished in practice, this project can lead to improvements in the accuracy of measurements and
a better understanding of the uncertainties involved. This could be used for the carbon footprint trans-
portation in the whole supply chain, or for the transportation between a supplier and buying company.

By addressing the uncertainties in carbon footprint measurements, this project contributes to the sci-
entific literature on sustainable freight transport and carbon foot-printing.

1.3. Societal contribution

Value of research for actors

This research can be of interest to multiple actors, as multiple actors have interests and are involved in
the logistics process of transportation (Alacam & Sencer, 2021). Thereby a lot of those actors - even-
tually - can have the obligation to publish their Scope 1, 2 and 3 emissions. For example, the shipper is
the company where the shipment’s product comes from. The carrier or logistic service provider (LSP), is
the actor transporting the goods. These goods are then delivered to the consignee. Then sometimes,
there is also a freight forwarder, an individual or company that links shippers and carriers. Besides
that, it is also possible that carriers are organized in-house or that carriers win tenders to transport
products for a certain period of time. There are several incentives for the shipper, carrier, consignee
and LSP to map the carbon footprint of freight. The most important incentives are customer pressure,
government pressure, intrinsic motivation and competitive advantage that can be gained (bron). The
key performance indicators (KPIs) for the carbon footprint of these actors are different (Davydenko et
al., 2019). The carbon footprint KPI for carriers and LSPs is expressed in grams of CO, equivalents
created per kilometer of transporting a tonne; in other words, grams of CO,e/tonne-km. This also indi-
cates how efficiently cargo is handled in terms of sustainability. For shippers, consignees, and freight
forwarders another KPI of the carbon footprint is important. Knowing how many grams of CO, equiva-
lents were emitted while transporting their goods is more important to these actors, in short, the gram
CO,eftonne. This gives insight into the business’s environmental performance, including network se-
lection and contracted carriers. For all these companies, a lower carbon footprint can contribute to a
better reputation and provide a competitive advantage when they perform better or provide more insight
than their competitors. However, there are uncertainties that come into play when making a carbon
footprint due to data accuracy and data availability, understanding these uncertainties can therefore
add something for these companies in three ways. First, it can improve the accuracy and credibility of
carbon footprint estimates, which can inform decision-making for transportation and logistics compa-
nies, policymakers, and consumers. Second, it can help to identify and prioritize areas where there is
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significant uncertainty, and guide further research to reduce that uncertainty. Third, it can also help to
identify opportunities for carbon reduction and mitigation, and to evaluate the effectiveness of different
strategies to reduce the carbon footprint of freight.

In addition to the freight transport sector, this tool’s ability to assess uncertainties can also contribute
to transparency in various processes across different sectors and stakeholders, for example in the
construction industry, where understanding and managing carbon footprints is becoming increasingly
important. By providing a clearer picture of the carbon footprint values and the uncertainties associ-
ated with them, the tool aims to stimulate a more informed dialogue among stakeholders and encourage
them to take necessary actions to mitigate their carbon footprint. This increased awareness and un-
derstanding will ultimately contribute to a more sustainable and environmentally conscious society.

Examples how this thesis will contribute in different situations

The social relevance of this research is that it takes a critical look at existing methodologies that would
allow projects and companies to be compared more reliably. Getting an understanding of the variation
in the carbon footprint of the transportation of goods can be very valuable because it allows them to
make better policy choices. There are several situations in which this research can make social con-
tributions. These situations will be described further below.

First, it can add value to companies looking to make their fleets more sustainable. For example, a
company wants to make its goods transport more sustainable and has to make a trade-off between al-
locating money to make transport in the Netherlands and Belgium more sustainable. When the carbon
footprint is low in Belgium and high in the Netherlands, it seems like a logical choice to invest mainly in
the transportation of goods in the Netherlands. However, if the variation is visible around the carbon
footprint of the Netherlands and turns out to be really small in comparison to the variation around the
carbon footprint of Belgium the choice suddenly becomes a lot more complex. To give a better idea
of this, figure 1.1 shows what this would look like; option 2 will then be the carbon footprint of Belgium
and option 1 that of the Netherlands. Belgium’s average is lower but has greater variation. The high
variation of the CF of Belgium could lead to a underestimation. If this is not considered, wrong policy
decisions can be made.

Second, it can also add value when an organization has carriers and wants to evaluate the sustainabil-
ity of the transportation of their goods and reward sustainable transportation. For example, a company
has four carriers who all transport 25% of the goods and these carriers would all like to transport more
than that 25%. The company wants to become more sustainable in the coming years and make con-
scious choices. As a result, they want to know the carbon footprint of their freight transportation and
based on this, reallocate their transportation as an incentive for the carriers to join the company’s sus-
tainability strategy. The carbon footprint of these companies depends heavily on the data the carriers
have on their transport movements. When this data is incomplete and many assumptions have to be
made, the uncertainty surrounding the carbon footprint increases. When this is not captured it is diffi-
cult to compare the transport companies. If this is made clear, the company can make more conscious
choices and thereby also encourage the companies to improve their data quality in the future. When
the carbon footprint has little uncertainty it also becomes clearer how they can better organize their
transport. The more uncertainty there is, the more difficult it is to determine where the bottlenecks to
becoming more sustainable lie.

Thirdly, it can support efforts by transportation companies to increase the sustainability of their oper-
ations. More and more companies are choosing more environmentally friendly transportation options
as a result of the sustainability trend. A transportation company’s position in the market may bene-
fit if they take advantage of this. A transportation company can outperform their competition by being
transparent about their carbon footprint. For instance, until they are aware of their own carbon footprint,
a transportation company cannot claim that they have neutralized their carbon footprint. Additionally,
because this information is in high demand, transportation companies can attract more clients the mo-
ment they can tell their customers what the emissions share of moving their products through the chain
is. A carrier can project more assurance when they acknowledge the degree of uncertainty surrounding
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their carbon footprint. This also encourages them to keep better track of freight data and makes sure
that when people do the math, they won’t be caught off guard if the result isn’t exactly right.

Fourth, this can also add value for project situations. Typically, a client and contractor are involved
in project settings. Contractors are selected in accordance with the client’s conditions. These condi-
tions increasingly incorporate sustainability-related requirements. For instance, contractors are asked
to submit their carbon footprint’s pre- and post-calculations. Through their pre-calculation, the client
is able to offer them the contract, and through their post-calculation, the client evaluates their perfor-
mance. Understanding the uncertainty surrounding the carbon footprint is helpful for pre- and post-
calculation. This can be important for both the contractor and client. For a client, it makes it easier
to compare contractors in a fairer way in the pre-calculation and it can help the client to evaluate the
post-calculation carbon footprint. For the contractor, it helps to gain trust from the client when they are
transparent about the uncertainty surrounding their carbon footprint in the before and after calculation.

By considering the stochastic nature of the values involved, including their expectations and variances,
a more formal and standardized approach can be taken towards assessing the key performance indica-
tors (KPIs) associated with carbon footprints. By making the variation around a KPI visible, a company
can, for instance, decide to invest resources in improving the accuracy of the data used to calculate
the carbon footprint in a given region, leading to a more informed assessment. Similarly, in the context
of tenders for transportation of goods, the second KPI can be utilized to better assess outsourcing op-
tions. This approach also enables companies to gain more insight into how they can monitor the quality
of their transport flow data, which is relevant for both transport companies whose data quality affects
their scope 1 emissions and for companies that outsource transport. By identifying the input variables
that have the most impact on the accuracy of carbon footprint measurements, quality requirements that
suppliers must meet can be effectively managed.
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Figure 1.1: CF with variation, image edited from Shahmohammadi et al. (2020)

1.4. Design scope and context

In this section, we discuss the design scope and context of the tool, which aims to address uncertainties
in the carbon footprint of freight transport. The section is divided into three subsections.Section 1.4.1
highlights the need for quantifying negative external effects and the focus on the carbon footprint in this
research, Section 1.4.2 addresses various situations where a carbon footprint is calculated and the role
of uncertainty in decision-making, Section 1.4.3 explains the tool’s objective as a guidance framework
to identify and deal with uncertainties, filling the gap in existing carbon footprint calculation tools.

1.4.1. General scope

In today’s world, quantifying negative external effects is becoming increasingly important due to con-
sumer and customer pressure, regulations, and intrinsic values. The freight transport sector brings
numerous negative external effects, such as particulate matter, nitrogen oxides, black carbon, and
greenhouse gases. Particulate matter can cause health effects, nitrogen oxides are causing health
effects and environmental effects, and greenhouse gases mainly contribute to global warming. To limit
these negative external effects, regulations are being developed, partly based on obligations to comply
with new regulations, such as the application of particulate filters on vehicles. Moreover, measuring
these effects is becoming increasingly important for winning tenders or attracting customers. Measure-
ments and calculations of negative external effects can be achieved in various ways, depending on
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measuring instruments or data availability. When assumptions are made, or values with underlying
uncertainties are used, this affects the final answer, which is often not presented. This can lead to
companies being rejected based on this figure or making incorrect investments. Therefore, it is crucial
to understand these figures better.

A globally recognized indicator of environmental impact is the carbon footprint. In this study, the scope
focuses on determining the carbon footprint of freight transport. This choice was made in collaboration
with the company for which this graduation research is partly conducted, Districon, a consulting firm in
the logistics world. Districon is currently working on numerous projects related to carbon footprinting in
logistics. Understanding the extent to which assumptions or the use of default numbers influence the
final carbon footprint can help them advise companies and understand the impact of specific choices
made in the calculation process. Therefore the study focuses on the uncertainty that may underlie the
carbon footprint, leaving the impact of particulate matter/nitrogen outside the scope. However, these
environmental impacts are also becoming increasingly important to measure, especially in the con-
struction sector, where nitrogen, for example, is a critical issue. The method to design a tool that can
map the uncertainty of the carbon footprint of freight transport can thus be a basis for extending this to
particulate matter and nitrogen in follow-up research.

During the research, the scope was further refined as an opportunity arose to observe a project that
aimed to map the carbon footprint of freight transport to and from a construction site. This allowed for
a deeper understanding and practical experience in a real-world context, enhancing the quality and
applicability of the research findings. This opportunity enabled the acquisition of practical experience
through field research. These trips focused on road transport, and the carbon footprint was mapped at
a detailed trip level. This approach aimed to document each freight movement in order to calculate a
comprehensive carbon footprint. Consequently, the research and scope of the design were specifically
focused on mapping uncertainties surrounding the carbon footprint of road transport at the trip level.
However, it is important to note that uncertainties at this detailed level may also play a role at more
aggregated levels or within other transport groups. The process of narrowing down the scope of the
design can be seen visually in Figure 1.2.
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Figure 1.2: General scope
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1.4.2. Context of Tool

The context of the tool is briefly discussed here. First, the essential question to answer when creating a
carbon footprint is why it is made. This can be a requirement of a client and a criterion during a tender
process. Within this, the total carbon footprint of freight movements to and from a construction site or
a distribution center may be requested, or the emission intensity factor (CO,e/ton-km) of a transport
company may be required to win a tender to transport a company’s goods. In a tender process, there are
also two phases: the prior communication of the carbon footprint and the monitoring and subsequent
proof of this. The prior communication of a carbon footprint carries risks and is based on assumptions,
leading to uncertainties. Reporting after monitoring can also contain assumptions due to incomplete
data. It may also be that a company needs to know the emissions from its transport as part of the
totalarbon footprint for CSRD regulations or communication to stakeholders, or when a company is
mapping its scope 3 emissions, the carbon footprint of outsourced freight transport is needed to have
a view of the emissions caused by the company outside its operations when producing a product. The
risk of uncertainties in this context is that assumptions could result in a lower carbon footprint, meaning
investments in more sustainable solutions may not be reflected in the coming years. In short, there are
many situations in which a carbon footprint must be created, and uncertainty can play a role. To make
these calculations, companies can use software tools, hire consulting firms to perform the analysis
(which also use software programs or their tools), or make their calculations according to existing
frameworks and regulations. Once this carbon footprint is created, it is communicated, and decisions
are made based on this figure. However, it is questionable whether some decisions are justified or even
wise to make if there is significant variation around the figure. The tool can play a role in this context.

1.4.3. Purpose of Tool

The problem statement and rationale for the design objective have already been explained in the previ-
ous Section. Here, the purpose of the tool within the context discussed above will be briefly discussed.
Currently, when calculating a carbon footprint using various software programs, there is no indication
of potential uncertainty around the final figure of the freight transport carbon footprint. While it is known
that different accuracy levels exist for a carbon footprint, depending on the type of information used to
calculate it, it raises questions about what these accuracy levels truly mean. The tool designed in this
study should fill this gap. The following objective was established at the beginning of the research:

Since several tools are already available for calculating a carbon footprint, the focus should not be on
the development of a new tool. Instead, the emphasis should be on determining the existing uncertain-
ties, understanding how they arise, evaluating whether they are preventable, and exploring how they
can be quantified. Through brainstorming sessions, it was eventually decided that the design of the
tool should be a guidance framework:

With the help of this framework, the causes of uncertainties become clear, helping clients or potential
customers ask the right questions about how the carbon footprint was established and what uncertain-
ties may underlie it. Additionally, it can help set data requirements that a carbon footprint must meet. A
consulting firm can also use this framework as a communication tool in the outcomes of carbon footprint
analyses, and the consequences of potential uncertainties can be discussed. A software developer can
use this framework to implement uncertainties in existing software programs. A transport company can
also use this framework to make their carbon footprint more accurate and be aware of the impact of
their data quality on the calculated carbon footprint. Most importantly, it can make various stakeholders
aware that the carbon footprint is not an absolute figure, even when all data is available; for example,
there is still an error in the emission factor used for the calculation. This emission factor even changes
annually due to updates. In Figure 1.3 below, a brief overview of the tool is shown:
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1.5. Report outline

The present chapter provides an introduction to the thesis project. Chapter 2 discusses the methodol-
ogy used in this thesis, elaborating on the different phases and data collection techniques. Chapters
3 and 4 present background studies on carbon footprint and uncertainties. Chapter 5 delves into the
insights of the uncertainties in a carbon footprint measurement. In Chapter 6, requirements and func-
tionalities for the design are developed based on the insights from the previous chapters. Chapter 7
focuses on the input for the design, including the different data situations, uncertainties margins, and
prioritization of uncertainties. Chapter 8 details the development of the design and the output of the
design process, Chapter 9 presents the verification of the prototype using a case study, and Chapter
10 presents the validation of the findings from the research with experts. Chapter 11 offers a discussion
of the results and the limitations of the thesis project. Chapter 12 provides conclusions and recommen-
dations. The appendices contain additional information and deepening analyses presented in the main
text of this thesis report.



Methodology

2.1. Thesis methodology

To achieve the main objective of this thesis, which is to design a tool to assess the uncertainty of a
carbon footprint, a design method called the triple diamond is being used. This method is a modified
version of the double diamond designed by the Design Council (Design Council, 2019) . The triple
diamond method adds an extra phase to the two phases that are defined in the double diamond method.
The purpose of this extra phase (diamond) is that the 'tool’ is also tested and evaluated after the 'tool’
has been designed. It is then even possible to create an iteration to the previously defined phases.
The phases that are defined are 'the research phase’, ’a design of tool phase’ and a 'test and deliver
phase’. In these phases, research questions are also answered to arrive at requirements of a design
and to make choices to finally arrive at the design objective. In this thesis the most focus will lay on the
‘research phase’, this is because in this phase their is a need to dive deep into the scientific literature
about uncertainties and the possibilities to measure it, to eventually apply it to the design of the ’tool’.
In this way, the preliminary research is prevented from becoming superficial and the application of the
findings counts more in the research than the looks of the 'tool’. Therefore, the result will revolve more
around the application than the design of the 'tool’. The design methodology is visualized in Figure
2.2. The elaboration of each phase is further discusses in Section 2.2 . Section 2.3 provides further
information on the data collection process.
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Figure 2.2: Triple diamond phases

2.2.1. Research phase

The first diamond is called the research phase. In this diamond the scope is determined and all rele-
vant background research is done. First it is important to look at the definitions of a carbon footprint
and the regulations/standards that are set to calculate a carbon footprint. This will help in determin-
ing the definition of a carbon footprint that will be used in this research. When this scope is defined
an overview has to be created of the factors that are needed to construct a carbon footprint of freight
transport. To figure this out, background research is needed to find out which factors, according to the
literature, affect the carbon footprint of freight transport, as well as a review of how the carbon footprint
is currently calculated within existing methods. After that the next step is to dive into the literature of
uncertainties and explore which kind of uncertainties occur in literature, which will provide a theoretical
framework. With the help of this theoretical framework, the background study on the carbon footprint of
freight transportation, expert interviews and field research a translation from theory to practice is made.

Through interviews and observations, insights are gained into how the uncertainties actually occur in
practice. These interviews will be based on how the different uncertainties found in literature affect the
previously identified factors that determine a carbon footprint. Field research is used to investigate how
uncertainties emerge in practice. The field research is done by observing a project in which Districon
carries out a carbon-footprint measurement for freight movements to and from a construction site. Dur-
ing this field research, it becomes clear which uncertainties influence the output. Using the insights,
the end of the first diamond is reached. By the end of the first diamond the design requirements will be
established.

(Data collection:
i » Background research via Scopus and Google Scholar
‘ » Semi-structured interviews with experts

2.2.2. Design of tool

The second diamond is called the design phase, where the tool’s design is established. It begins by
defining the requirements and constraints for the design, using literature, the researchers’ knowledge,
and insights gathered from conversations with consultants from Districon to determine the needs. After
the constraints are established, functionalities are defined. The functionalities describe the tool’s re-
quired features, while the constraints set the tool’'s framework. Once this is set up, the tool’s foundation
must be determined. This means deciding precisely what the tool should be. Through brainstorming,
which was an iterative process, it was determined that the tool should be an approach to identify, as-
sess, and address uncertainties. This way, the tool becomes suitable for multiple stakeholders, meeting
a requirement and also aligning with what the researcher/designer felt was needed in practice during
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the investigation.

Using a design approach, the inputs for the tool were then established, along with the steps that pre-
ceded them. These steps were defined in this research as ’input for design’ to ultimately bundle and
create an ’output.” Since the research and insight phase showed that uncertainties depend on a data
situation, the input for the design first needed to be framed around the different situations and methods
for calculating a carbon footprint. Based on this, the uncertainties were classified. Next, the magnitude
of the uncertainties had to be investigated, i.e., what is the margin created in an input variable due to
uncertainty. Once this was determined, the uncertainties could be prioritized, which was done using
an analogy of the ’risk priority number,” with the uncertainties classified as 'data uncertainty reduction
priority.” This provided a foundation for the influence each uncertainty could have on the final value
and an overview of which uncertainties were difficult to reduce.

The last step for the input of the design was to determine how to address and assess uncertainty. The
uncertainties were categorized in three ways: preventing through effective communication, dealing
with the ’lack of knowledge’ of uncertainty by making assumptions and sketching scenarios of possible
values, and finally, outlining uncertainty using probability density functions due to the variability sur-
rounding the uncertainty. The steps in the design input were ultimately translated into the 'conceptual
design phase’ as seven ‘one-pagers’ with a step-by-step guidance plan for each data situation.
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Data collection:

» Background research via Scopus and Google Scholar
* Brainstorming
* Analyzing data and uncertainties

2.2.3. Test and deliver phase

The third diamond is the test and evaluation phase, in which the conceptual design is verified and
validated. The first part of this phase involves testing the 'tool’ or conceptual design. Testing is done
using data from the field research. Due to limited time, three random trips were selected from the field
research, and the uncertainty was determined and mapped using the conceptual model. This tests
whether the conceptual model works and meets the requirements. Additionally, it is explained how the
tool was used in the field research for the final report of the study conducted by Districon. This also
provides another way of checking whether the design meets the requirements or which ones it does
not meet.

The next step is to determine if the tool is 'valid.” To do this, semi-structured interviews were conducted
with experts in the field of sustainability and carbon footprinting in the transport sector. They were asked
whether they agreed with the findings on which the tool is based, how the tool could work in practice, and
some context questions to gain more insight into the world of carbon footprinting from their perspective.

With the help of verification and validation, feedback can be provided on the conceptual design and
how it can be improved. This is represented by the feedback loop in Figure 2.2. This reflects how
the design and design requirements can be improved, these are described as recommendations in the
conclusion of this research.

r----—--—----=------------------------------=-=-"-"--------"---==----~-"-~"-=--=-~"-=~== == -~ -~-~‘~=-~"=~"“~-”""”=”""”~= A
|

Data collection:

|
i + Simulation with case study
‘ + Expert validation with semi-structured interviews
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2.3. Elaboration data collection

2.3.1. Desk/background research

Desk research is the “collection of secondary data from internal sources, the internet, libraries, trade
associations, government agencies, and published reports” (Hague, 2006). Desk research and doing
a literature review have some parallels. Desk research, follows the same techniques as a literature
review, but the materials are examined as part of the primary research. The technique has certain
drawbacks, including the fact that some of the material will come from grey literature, where it might
be difficult to determine the publication’s quality (Byrne, 2017). To examine protocols, for instance, this
study will need to consult gray literature. This is one of the explanations for choosing a background
study approach over a literature review.

2.3.2. Semi-structured interviews

Using several semi-structured interviews with experts discuss what is expected of a 'tool’ that mea-
sures the carbon footprint in transportation, which current frameworks they currently think are the best,
which are the most widely used and what improvement possibilities there are. The potential uncer-
tainties that might arise when calculating the footprint are also covered in these interviews. By doing
this it might becomes clear what the bigger and smaller bottlenecks are by asking questions about
the various potential causes of uncertainties in a carbon footprint measurement. Experts in the field
of calculating the carbon footprint of transportation are therefore contacted for semi-structured face-
to-face interviews. These experts will be from Districon, and, if possible also from BigMile, Connekt
and Topsector Logistiek. Face-to-face semi-structured interviews should be conducted for a number
of reasons. The first advantage of semi-structured interviewing is that it promotes mutual cooperation
between the interviewer and the participant (Galletta, 2013). This enables the interviewer to immedi-
ately base follow-up questions on the participants’ answers (Kallio et al., 2016). Thereby, experience
has proven that in-person interviews frequently adhere to the major elements of the talk, which might
leave important information out. This gives the capacity to pick up on nonverbal clues and emotions.
However, because the interview is semi-structured, analyzing the data and taking notes takes time.
Last but not least, it limits the size of the interviewable sample. The goal is to conduct at least five
interviews to ensure significance (Dworkin, 2012).

2.3.3. Field research

Field research is a qualitative research method that involves collecting data through direct observation
and interaction with people or objects in their natural settings. The researcher immerses themselves
in the field site for an extended period, often living among the people or objects being studied. Field
research is being conducted by observing and participating in a project carried out by Districon to
determine the carbon footprint of freight transport. This approach enables the gathering of detailed
information on potential uncertainties, as well as the identification of effective measures to mitigate
them. Through close observation of the project’s process and active participation, the research can gain
unique insights into the complexities and challenges of assessing and reducing the carbon footprint of
freight transport.

2.3.4. Testing with case study

Using the data from a case study, the conceptual model is tested and suggestions for improvement are
proposed. The data comes from the field research: a project to measure the footprint of transportation
to and from the construction site. Using this data, the 'tool’ will be tested to see if it can identify the
uncertainties and how these uncertainties have an influence on the output.
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Figure 2.3: Research and Insights

This part of the research is the Research phase, which consists of two parts: 'Research’ and ’In-
sights’. The research part delves into two topics: carbon footprint and uncertainty. First, it provides
a comprehensive background study on carbon footprint, including definitions and standards for carbon
footprint measurement of freight. This is followed by examining the factors affecting the carbon footprint
of freight transport. The second topic of the research phase is a background study on uncertainties,
discussing definitions, the difference between variability and uncertainty, classification of uncertainties,
and methods to assess uncertainty. This exploration provides a theoretical framework for uncertain-
ties. With the help of the theoretical framework, expert interviews, and field research, a translation from
theory to practice is made. The insights part of the research phase focuses on identifying how uncer-
tainties occur in practice. Interviews are conducted to understand how the different uncertainties found
in literature affect the factors that determine a carbon footprint. Field research, such as observing a
project in which Districon carries out a carbon-footprint measurement for freight movements to and from
a construction site, helps to investigate how uncertainties emerge in practice and which uncertainties
influence the output.
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Background study carbon footprint

This chapter involves examining the background of the carbon footprint of freight. First, the literature
is reviewed to see which factors influence the carbon footprint of freight transport. Then the underlying
methodology of approaches and tools for calculating a carbon footprint is examined. This information
comes from established protocols. After this, the criticisms of this method from the literature are dis-
cussed, and alternative methodologies used in the literature are considered. Furthermore, the data and
parameters used for the method are also examined separately to understand how the model’s inputs
might influence the outcome.

Research questions to be answered in this chapter:
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.+ RQ1 What is a carbon footprint? l
l « RQ2 Which variables/data points are crucial to determine the carbon footprint of freight trans- |
| port? |
} « RQ3 In the existing literature, what are the different measurement methods to map a carbon |
| footprint of freight transportation? |

3.1. Definitions of carbon footprint

The earth’s atmosphere consists of a mixture of gases. This mixture is composed of approximately
78% N5, 21% O,, and other gases, of which 0.04% is CO, Dhaka & Kumar (2023). In 2019, it was
found that 76% of all greenhouse gases in the atmosphere were CO, (Yoro & Daramola, 2020), which
implies that the remaining GHGs account for approximately 0.01%. These greenhouse gases have
an impact on global warming. To counteract global warming, the Paris Agreement was established to
reduce the amount of GHGs in the atmosphere (UN, 2015).

The carbon footprint (CF) has the purpose of being a guide for these emission reductions and verifi-
cation. To eventually meet the climate goals set that were set in Paris. International standardization of
the carbon footprint is therefore considered necessary. Typically, the carbon footprint is measured in
mass units (kilograms) of CO, equivalent resulting from Global Warming Potential (GWP) (Matustik &
Koci, 2021). One kg of CO, equivalents is equivalent to the effect of one kg of CO, emission but the
emission of 1 kg of nitrous oxide (N,O) equals 265 kg of CO, equivalents, and the emission of 1 kg
of methane (CH,) is equal to 28 kg CO, equivalents. The GWPs of fluorinated gases vary greatly and
levels can be substantial. For instance, 1 kg of sulphur hexafluoride (SFy) is equal to 23 thousand kg
of CO, equivalents (World Resources Institute, 2016). To calculate the CO, equivalents of a certain
amount of GHG, the emissions of that gas (e.g., in tons) are multiplied by its GWP. For instance, if an
activity emits 10 tons of methane, the CO, equivalent is calculated as follows: 10 tons CH4 * 28 (GWP
of CH,) = 280 tons CO,.

What this CO, equivalent represents varies widely between studies. This is visible in the literature

surrounding this topic, where different definitions are used for a carbon footprint. There are disagree-
ments regarding the selection of gases and the order in which they should be included in calculations of

15
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carbon footprints. This is such a problem that there are also entire studies on the definition of a carbon
footprint. In order to compare studies, and in fact compare carbon footprints, it is important that each
study has a concrete definition of what is defined by a carbon footprint.

Carbon footprint's primary strength is certainly its intelligence and ability to communicate with a wide
audience (Alvarez et al., 2016). Since it examines the cause of one of the most pressing environmen-
tal issues of our time, climate change, CF has gained widespread popularity and helped to increase
public awareness over the past several decades. However, there are obvious risks associated with
its frequent use as the sole indicator of environmental performance. For instance, a GWP does not
intent to represent the impact of GHG emissions on temperature, which may be misleading. In addition,
limitations and methodological choices are rarely communicated alongside the results, particularly in
the media and grey literature. Given the abundance of methodological approaches to carbon footprint,
greater transparency would undoubtedly be advantageous (Matustik & Ko¢i, 2021).

Pandey et al. (2011) discusses the fact that carbon footprints are indeed calculated in different ways.
The paper shows that Wiedmann & Minx (2008) defined carbon footprint as "a measure of the exclusive
total amount of carbon dioxide emissions that is directly and indirectly caused by an activity or is accu-
mulated over the life stages of a product”. But an increasing number of new studies advocate including
the other green house gases in the calculation of a carbon footprint. While this paints a more complete
picture, it also brings difficulties regarding the standard definition of "carbon footprint”. Namely: which
green house gases do you include and which not?

Wright et al. (2011) noted that some definitions of a carbon footprint in papers include 'all’ GHGs, which
they see as too vague because the impact of many GHGs on the global climate is still debatable.
Thereby one cannot be sure what to include and what to exclude. Other definitions use legislatively
controlled GHGs, like the seven Kyoto gases (CO,, CH,4, N,O, hydrofluo-rocarbons (HFCs), perfluo-
rocarbons (PFCs), NF; and SF,). This clearly establishes a boundary, reducing misinterpretation, but
it relies on accurate data for all cases to allow comparability, which isn’t always the case. Matustik &
Koci (2021) discusses thereby that some studies only account carbonaceous gases (CO,,CH,, CO)
for estimating a carbon footprint. Furthermore the paper of Wright et al. (2011) concludes with the rec-
ommendation of the following definition for a carbon footprint: “A measure of the total amount of CO,
and CH, emissions of a defined population, system or activity, considering all relevant sources, sinks
and storage within the spatial and temporal boundary of the population, system or activity of interest.
Calculated as CO,e using the relevant 100-year global warming (GWP100)". The reasoning behind
this exclusion is that CO, and CH, are by far the most significant greenhouse gases. In addition, ac-
curate measurements of other GHGs are not always available; consequently, comparability cannot be
guaranteed. So it seems to that there is a trade-off between including additional GHGs for a more
complete picture and the accuracy of the resulting carbon footprint.

In the context of freight transport, the carbon footprint is generally related to the emissions associated
with the movement of goods over a specific distance or during a particular time period (Piecyk & McKin-
non, 2010). It can also be defined based on the emissions generated by a particular mode of transport,
such as road, rail, sea, or air transport (Du et al., 2019). Furthermore, the carbon footprint of a product
refers to the total emissions generated throughout its life cycle, from the extraction of raw materials to
production, transportation, use, and disposal (Laurent et al., 2012). Thus, the carbon footprint can be
considered in different dimensions and aspects, depending on the specific scope and objectives of a
study. Itis crucial to clearly define the boundaries and elements of the carbon footprint in each study to
ensure comparability and facilitate a common understanding of the environmental impacts associated
with freight transport and the uncertainties that arise.

3.2. Standards of a carbon footprint measurement of freight

There are different standards that help with carbon footprint calculations, namely: ISO-14067, ISO
14064-1, and the Accounting and Reporting Standard of the GHG protocol. The differences between
these standards are that the aim of calculation within ISO 14064-1 and the Accounting and Reporting
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Standard focuses on the corporate carbon footprints, while the aim of ISO-14067 centers more on the
carbon footprint of products and services (Funk et al., 2011). Although these standards mention the
carbon footprint of goods and services, they do not explicitly address transport. Therefore, their reg-
ulations regarding the carbon footprint of transport are vague and lack clarity (Ehrler & Seidel, 2014).
Which is why the European Committee for Standardisation applied a more detailed standard for the
carbon footprint of transport, called: EN 16258.

Within this standard, three different stages are defined. The first stage is the Well-to-Wheel approach
(WTW); this stage can be divided into two other stages, namely the Well-to-Tank (WTT) and Tank-to-
Wheel (TTW) stage. WTT refers to emissions in the activity’s pre-chain, such as fuel extraction and
production. TTW refers to the direct emissions from an activity, such as fuel consumption. WTW equals
TTW plus WTT; the combined emissions from the pre-chain and direct emissions (Gialos et al., 2022).
In figure 3.1, an overview of these standards is visible. Several initiatives build on EN 16258 and add
additional and strengthened methods - frameworks - for specific areas, such as the GLEC guidelines,
Clean Cargo Workgroup’s guidelines for estimating emissions and COFRET’s recommendations for
allocating road transport activities. These frameworks are collections of methods and guidelines where
users can choose standards and data levels, which will result in differences of carbon footprints. These
differences can cause emissions and intensity reporting inconsistencies. Which is why many CO,
reduction programs designate not only the frameworks they use but also add their own specifications,
such as emission intensity factors, how transport distance is calculated for allocation, and (primary)
data requirements (Topsector Logistiek, n.d.).

Overview of standards
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Figure 3.1: Standards of a carbon footprint measurement

The most widely used standard for calculating emissions is the reporting standard of the GHG Pro-
tocol. This is because most regulations also require companies to report their emissions according
to the identified scopes in this protocol: scope 1 (direct emissions), scope 2 (indirect emissions), and
scope 3 (third-party emissions) emissions. The European Commission adopted a proposal for a di-
rective on sustainability reporting on 21 April 2021: the Corporate Sustainability Reporting Directive
(CSRD). This proposal foresees that from 2024 or 2025, a larger group of companies will be required
to report on their sustainability policies and their performance therein (Topsector Logistiek, 2022). It will
become mandatory to map the greenhouse gas emissions on scope 1, scope 2, and where relevant
scope 3 (Ecochain Technologies, 2022). The standards of EN16258 and the GHG protocol can also
be combined to calculate emissions from transportation. For example, the transport of own goods by
the reporting company falls under scope1 and the emissions of transport can be calculated with the
Tank-to-Wheel principle. The fuel and energy emissions that are caused by producing the fuel for this
transport will fall into a separate category in scope 3, for which the Well-to-Tank method can be used.
If the transport is arranged by a third party, this falls entirely within scope 3 and can be calculated using
the Wheel-to-Tank principle.
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3.3. Purpose of Carbon Footprinting in Freight Transportation

The adoption of carbon footprint measurement standards such as the GHG Protocol and EN 16258
has contributed to the growing relevance of carbon footprinting in freight transportation. Various in-
centives encourage stakeholders, including shippers, carriers, logistics service providers (LSPs), and
consignees, to assess and mitigate CO, emissions. Factors such as consumer demand for sustainable
products (Zhi et al., 2019), governmental regulations and global protocols (Seuring & Miiller, 2008), and
the potential for cost savings and enhanced brand reputation have elevated the importance of carbon
footprinting in freight transportation. Government policies often require larger organizations to disclose
their carbon footprints, while smaller entities may face less rigorous mandates. Emission reporting
standards also differ across countries (Drake, 2018). To remain competitive in the market, companies
are encouraged to measure and reduce their carbon footprint, especially if their rivals already publish
such information (Okhmatovskiy & David, 2012).

The implementation of measurement standards, such as EN 16258 and the GHG Protocol, as dis-
cussed in the previous section, has shaped the way stakeholders in freight transportation report their
emissions. It has also influenced the development of industry-specific guidelines, including the GLEC
Framework, Clean Cargo Workgroup’s guidelines, and COFRET’s recommendations. These evolving
frameworks further underscore the significance of carbon footprinting in freight transportation.

Supply chain stakeholders are prompted to reveal their carbon footprints to purchasing organizations
due to buyer pressure, as well as the potential benefits of transparency and collaboration. However,
barriers such as lack of understanding, time constraints, cost, and fear of negative repercussions upon
disclosure hinder some suppliers from mapping their carbon footprints (Bayne et al., 2022). Since
freight transportation is a critical component of the supply chain, its organization can take various forms,
including in-house transportation, outsourcing to LSPs, or acquiring companies with their own trans-
portation capabilities (Jazairy, 2020). This leads to diverse responsibilities among stakeholders and
impacts carbon footprinting practices.

The relevance of carbon footprinting in freight transportation extends to a broad range of stakeholders,
including shippers, carriers, consignees, LSPs, and freight forwarders. These parties participate in the
logistics process and may be required to report their Scope 1, 2, and 3 emissions (Alacam & Sencer,
2021) in accordance with the adopted standards. Appropriate Key Performance Indicators (KPIs) re-
lated to carbon footprinting differ among stakeholders (Davydenko et al., 2019). Carriers and LSPs
focus on KPIs measured in grams of CO, equivalents per tonne-kilometer (CO,e/tonne-km), which
reflect the sustainability efficiency of cargo handling. On the other hand, shippers, consignees, and
freight forwarders prioritize KPIs based on grams of CO, equivalents per tonne (CO,e/tonne) or CO,e
per shipment to evaluate their businesses’ environmental performance, including aspects like network
selection and carrier contracts. A critical component of carbon footprinting in freight transportation is
the fair allocation of emissions among stakeholders. Proper allocation ensures accurate representation
of each party’s contribution to overall emissions, enabling more informed decision-making and targeted
emission reduction strategies.

3.4. Difference between LCA and WTW analysis

Life Cycle Assessment (LCA) and Well-to-Wheel (WTW) analyses have different scopes (European
Union, 2022). LCA is a method that examines the entire life cycle of a product or service and measures
its impact on the environment throughout the entire life cycle of the product (Weidema, 2022). When
assessing the carbon footprint of freight, LCA involves calculating the emissions that are released dur-
ing the production of the truck, the fuel used to power the truck, the production of the goods being
transported, the transport itself, and the waste disposal at the end of the truck’s life cycle. WTW anal-
ysis, on the other hand, focuses on the emissions that are released during the extraction, production,
transportation, and use of the fuel that is used to power a vehicle. In a way, WTW can be considered
as the LCA for fuel (Osorio-Tejada et al., 2022). When assessing the carbon footprint of freight, WTW
analysis involves calculating the emissions that are released during the production of the fuel that the
truck uses, as well as the emissions that are released during the transportation of the fuel to the gas
stations and the use of the fuel by the truck.
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The choice between LCA and WTW analysis for policy decisions depends on the government’s focus
(Moro & Helmers, 2017). If the government is focused on reducing the CO, emissions throughout the
entire life cycle of the freight, LCA can be useful. On the other hand, if the government is focused on
reducing the CO, emissions directly related to the transport of goods, WTW analysis can be useful.
Policy decisions based on WTW analysis can lead to a shift towards cleaner fuels or reducing transport
distances. The advantage of LCA is that it provides a broader perspective on the impact of freight
transport on the environment and allows for consideration of the entire life cycle of the product. The
advantage of WTW analysis is that it focuses on the emissions directly related to the transport of goods
and is therefore more targeted at reducing these emissions.

As the discussion around vehicle emissions evolves, the emissions from the production of batteries and
drivetrains in Battery Electric Vehicles (BEVs) have become a topic of interest. These emissions are
higher than in Internal Combustion Engine (ICE) vehicles. However, the benefit of recycling offsets a
significant portion of the lithium battery’s impact (Van Mierlo et al., 2017). This has led to an increasing
use of LCA analysis in discussions about vehicle emissions. When comparing different types of vehi-
cles, such as BEVs and ICEs, it may be helpful to limit the LCA analysis to the vehicle itself, excluding
the infrastructure, as seen in the research of Van Mierlo et al. (2017). Additionally, one of the benefits of
LCA is that it can include other substances besides the carbon footprint, such as air quality emissions
(NO2 and PM) that can be harmful to humans and the environment.

For a freight company and shippers, understanding the carbon footprint of their operations is valuable
so that it can be better managed (Grant et al., 2017). The total LCA analysis may be less relevant in
this context, as it is more complex to perform and understand. However, it is important to consider the
production of vehicles when purchasing new vehicles or transportation equipment and to be aware of
the ’real’ environmental benefits they can provide (Van Mierlo et al., 2017).

Despite the advantages of LCA, this research focuses on the WTW method because it serves as the
foundation for estimating the carbon footprint of freight transportation. Currently, transport companies
and shippers estimate the carbon footprint of their operations using the EN16258 standard, along with
software tools and guidance based on this principle as discussed in the previous section. The primary
objective of this research is to uncover the uncertainties that arise around this carbon footprint estima-
tion. However, this section on LCA and WTW analyses has been included to create more awareness
of the emissions that surround the carbon footprint of the WTW analysis, emphasizing the importance
of considering both direct and indirect emissions when evaluating the environmental impact of freight
transport. By focusing on the WTW method, this study aims to contribute valuable insights into the com-
plexities and uncertainties of carbon footprint estimation in freight transportation, while also reminding
stakeholders not to overlook the other aspects of emissions that may arise throughout the entire life
cycle of the freight transport process. This comprehensive approach ensures a more informed under-
standing of the true environmental impact of freight transportation and supports better decision-making
for sustainable transport solutions.

3.5. Scope research: carbon footprint of freight transportation

Conclusion definition of a carbon footprint for in this thesis

In the above sections, the carbon footprint of freight transport was further examined. First, the literature
regarding the definition of a carbon footprint was reviewed. This resulted in a number of interpretations,
including solely CO, emissions; CO, CO,, and CH, emissions and the seven GHG defined by the Ky-
oto protocol expressed in CO, equivalents. Next, the various standards that exist in the field of calcu-
lating a carbon footprint were examined, also for specifically the carbon footprint of freight. Based on
these standards, it became apparent that the definition of GHG emissions expressed in CO, equivalents
was used here. Based on this fact and the ultimate purpose for which a carbon footprint is calculated
(against global warming due to GHG), the following definition was selected: the number of GHGs emit-
ted, based on the seven Kyoto gases (CO,, CH,, N,O, hydrofluorocarbons (HFCs), perfluorocarbons
(PFCs), and styrene (SFg), NF3, expressed in CO, equivalents. Here the mentioned disadvantage of
(Wiedmann & Minx, 2008) should be kept in mind, CO, is often easier to calculate/convert than the
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other GHG so it is questionable how accurate the conversionsare. __________ __ __ __ ______
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The defintion of a Cabon Footprint: "The number of GHGs emitted, based on the seven Kyoto gasesjw
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|
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Conclusion scope of a carbon footprint for in this thesis

As discussed in section 3.2 and 3.4, there are several standards to calculate the carbon footprint of
freight transport. These methods all have a different scope. So there are different perspectives on the
carbon footprint of freight. It can be viewed through a Life Cycle Analysis, which includes everything
that a means of transport emits in terms of emissions. Within the Life Cycle Analysis different system
boundaries can be chosen. For example, one may include the use of road infrastructure while the
other does not. For this study it was decided to choose the system boundaries that correspond to the
EN 16258 standard, which is currently the only standard expressing how a carbon footprint of freight
transport should be calculated. An advantage of this EN16258 standard is that it can easily be applied
for the Green House Gas (GHG) protocol for a company’s scope 1, 2 and 3 analysis. Namely, the output
of the EN16258 are the carbon footprint emissions from transporting products and emissions associated
with the production of the energy used by the vehicles. The output can be used for the GHG category:
upstream/downstream transportation and for the GHG category: fuel -and energy-related activities.
The scope of the carbon footprint of freight transportation for this research has therefore focused on
the following system boundaries: Emissions that fall within the system boundaries are those released
from the production of fuel or energy (WTT) and those from the use of the energy or fuel in the vehicle
(TTW). The system boundaries are shown schematically in Figure 3.2 and 3.3.
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Figure 3.3: WTT and TTW overview obtained from com-
mission (2016)

Figure 3.2: System boundaries

3.6. Emergence of freight transport carbon emissions

According to the previous chapter, GHG emissions are comprised of six gases: CO,, N,O, CH,, HFCs,
PFCs, and SF,. CO, is the most significant greenhouse gas produced by transportation. This is due to
the fact that CO, accounts for 95% of transportation emissions, weighted by global warming potential.
CO, emissions caused by (freight) transportation are proportional to the amount of fuel consumed.
However, for electric vehicles, the relation between CO, emissions and energy consumption is more
complex, as it depends on the source of electricity.

Emissions from petroleum-based fuels

This is because petroleum-based fuels, such as diesel and gasoline, contain a substantial amount of
carbon. When these carbon-containing fuels are burned, an almost complete conversion of carbon to
carbon dioxide occurs (Gallivan et al., 2008). This is not the case when analyzing N,O (nitrogen ox-
ide) and CH, (carbon monoxide) emissions (methane). The amount of CH, and N, O released during
combustion is dependent on a number of complex combustion dynamics factors (Lipman & Delucchi,
2002). It's therefore important to note that the amount of N,O and CH, emitted depends not solely on
fuel consumption, but also on other variables, this is because both gases are created by insufficient
catalytic activity. The function of the three-way catalyst is to reduce air pollutants, but if it is not at
temperature N,O are produced, CH, can be found in the exhaust due to inefficient combustion. This
phenomenon occurs during the "warm-up period.” When the engine is operating at low speeds and
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needs to start up, this situation will occur Rodriguez & Dornoff (2019). Therefore, this happens more
frequently when the traffic intensity is high, such as during congestion or in urban areas with numerous
traffic lights. In addition, the catalytic converter becomes less efficient as it ages and as less mainte-
nance is performed on it. In contrast, high speed and heavy weight may lead to a shorter warm-up
period Popa et al. (2014). (Wallington et al., 2008). The effective fuel efficiency of a vehicle, which is
the actual use of fuel for its intended purpose, also varies due to factors such as traffic intensity, engine
age, maintenance, and weight. In addition to the GHG emissions produced by driving a vehicle, the
production and transportation of petroleum-based fuels also generate GHG emissions. These are the
greenhouse gas emissions associated with the definition of well-to-tank. These GHG can be reduced
if they are produced and transported in a sustainable manner.

Emissions from bio-based fuels

Biofuels offer a potential solution to compensating carbon dioxide emissions because they can achieve
net neutrality in CO, emissions. This is due to their ability to absorb carbon dioxide during their growth
phase and release it during combustion, effectively compensating for the CO, emitted while driving
(Wallington et al., 2008). There are various types of biofuels, such as biodiesel, second-generation
biofuel (such as hydrotreated vegetable oil (HVO)), biomethanol, third-generation biofuel (Kularathne
et al., 2019; Valeika et al., 2023). The sustainability of each biofuel type, heavily depends on the
amount of CO, absorbed by its feedstocks and the production process itself, which encompasses the
transportation of raw materials and the production of the fuel (Ahmed & Sarkar, 2018). Compared to
other biofuels, HVO generally has a lower carbon intensity and can achieve higher greenhouse gas
(GHG) emission reductions due to its efficient production process and feedstock flexibility. In addition,
HVO100 (no blend but 100% biofuel) can be used as a drop-in fuel in diesel engines without requiring
any engine modifications, which enhances its compatibility with existing infrastructure thereby HVO100
reduces 90% of the CO, emissions compared to diesel (Valeika et al., 2023).

When these factors are managed sustainably, biofuels can significantly compensate for a vehicle’s
CO, emissions and achieving net zero. However, it is crucial to consider other greenhouse gases,
like methane (CH,) and nitrous oxide (N,O), when assessing the overall carbon footprint of biofuels.
Biofuel combustion can release methane, and the amount emitted is contingent upon the fuel's com-
position (CE Delft, 2021). Furthermore, when comparing biodiesel blends and regular diesel, there
is no significant difference in N,O emissions if an oxidation catalyst is present (Kuiper et al., 2012).
Therefore, the net combustion of biofuel may not reach zero emissions as quickly due to the presence
of CH, and N, O. In conclusion, biofuels, can contribute to reducing CO, emissions and provide a more
sustainable alternative to fossil fuels. However, it is essential to address the various factors influencing
their sustainability, such as feedstock CO, absorption, production processes, and the release of other
greenhouse gases during combustion.

Emissions from electricity

Electric vehicles can indirectly contribute to greenhouse gas emissions, as the emissions are depen-
dent on the type of energy used to generate the electricity that is then stored in the vehicle. Electricity
can be derived from fossil fuels, nuclear energy, and renewable energy sources (wind, biomass, solar
and hydropower) (Athanasopoulou et al., 2018). The amount of energy then consumed by the vehicle
is influenced by factors such as charging efficiency, weather, driver’s behavior, and road conditions,
which also apply to vehicles with internal combustion engines. However, electric vehicles can addition-
ally recover energy through regenerative braking. Because electric vehicles emit no exhaust emissions,
they have no direct impact on air quality. Consequently, the GHG impact of energy consumption is de-
pendent on the type of energy used to charge the vehicle. According to World Nuclear Association
(2011), lignite (coal) is the most polluting energy source, while hydroelectric and wind energy are the
least polluting.

Emissions from air-conditioning and cooling mechanisms

In addition to these factors that affect fuel/energy efficiency and consumption, the use of electricity
or fuel for cooling and heating also impacts energy and fuel consumption. Specifically the use of air-
conditioning or cooling mechanisms (for specific goods transport), can result in another type of GHG
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emissions that can be caused by the transportation of freight. These are HFC emissions and can be
emitted from the use of certain cooling systems in vehicles, these arise by leakages or from repair of
an air condition system or cooling mechanisms.

The above text explained how energy or fuel consumption affects Tank to Wheel and Wheel to Tank
emissions. To clearly display these relationships discussed above, a causal diagram was prepared.
This diagram shows causal relationships, a "plus sign” represents a positive relationship and a "minus
sign” represents a negative relationship. This representation is shown in Figure 3.4 and Table 3.1
shows the relationships and the derived sources. Fuel and energy consumption is again influenced
by many factors. To give a more complete picture, these factors will be discussed under the heading
of Fuel/Electricity consumption discussed. Following this, the diagram below is further expanded to
include these factors. This figure is visible in Figure 3.5.
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Table 3.1: Factors that influence the WTT and TTW emissions

Causal relationships of factors

Relation in diagram?

Source

Fuel consumption ->CO,

+

Gallivan et al. (2008)

Fuel consumption ->Fuel production

+

Ahmed & Sarkar (2018);
Gallivan et al. (2008)

Fuel production ->GHG emissions production and transportation | + Ahmed & Sarkar (2018)

fuels

Sustainable transportation fuels ->GHG emissions production | - Ahmed & Sarkar (2018)

and transportation fuels

Sustainable production fuels ->GHG emissions production and | - Ahmed & Sarkar (2018)

transportation fuels

Amount of CO, absorbed ->CO, in air - Wallington et al. (2008);
Kularathne et al. (2019)

Amount of bio based fuel used ->Amount of CO, absorbed + Wallington et al. (2008);
Kularathne et al. (2019)

Absorption level of bio based fuel ->Amount of CO, absorbed + Wallington et al. (2008);
Kularathne et al. (2019)

Fuel consumption ->N,O and CH, + Lipman &  Delucchi
(2002); Rodriguez &
Dornoff (2019)

Efficient catalyst ->N,O and CH, - Lipman & Delucchi
(2002); Rodriguez &

Dornoff (2019); Popa et
al. (2014)

Energy/Fuel efficiency ->Energy consumption

Athanasopoulou et al.
(2018)

Energy/Fuel efficiency ->Fuel consumption

Gallivan et al. (2008)

Amount of cooling/heating used ->HCF

Wallington et al. (2008)

Amount of cooling/heating used ->Fuel consumption

Wallington et al. (2008)

Amount of cooling/heating used ->Energy consumption

Wallington et al. (2008)

Charging efficiency ->Energy consumption

Athanasopoulou et al.
(2018)

Energy consumption ->Energy production

Athanasopoulou et al.
(2018) World Nuclear
Association (2011);
Athanasopoulou et al.
(2018)

Energy production ->GHG emissions due to generation electricity

Athanasopoulou et al.
(2018) World Nuclear
Association (2011);
Athanasopoulou et al.
(2018)

Ratio sources renewable or nucleair / fossil ->GHG emissions due
to generation electricity

World Nuclear Associa-
tion (2011)

Fuel/Electricity consumption

Numerous studies have examined the impact of variables on fuel and energy consumption. Alwakiel
(2011), Bigazzi & Bertini (2009), Demir et al. (2014), Piecyk & McKinnon (2010), Waidyathilaka et al.
(2018), Li & Yu (2017), Sagaama et al. (2020) and Schmied & Knorr (2012) discovered several fac-
tors in the literature through their research. These factors can primarily be divided into five categories:
Environmental factors, Factors driving behaviour, Road characteristics, Vehicle characteristics and Op-
erational factors. These categories will be explained individually. Environmental factors that influence
the fuel and energy efficiency are: extreme weather, humidity, the surface and altitude. The fuel/energy
efficiency will be lower when there are extreme weather conditions (such as high winds, high temper-
atures, and black ice), when driving at high altitude, when the surrounding environment is very humid,
when driving on a road with a steep angle. For the factors altitude, humidity, and road gradient, a
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distinction must be made between their effect on electricity efficiency and fuel efficiency. As far as is
known, there is no direct effect of humidity and altitude on the energy efficiency of an electric vehicle,
although this effect does exist for fuel efficiency in a vehicle. In addition, an increasing road gradient
can have an impact on the efficiency of both electricity and fuel use, and the reverse relationship also
applies. Furthermore, it is important to note that when driving downhill, electricity can be generated
through braking when driving downhill in an electric vehicle, and this additional effect is also reflected
in the causal diagram.

Driving behaviour factors influence the fuel efficiency due to idling and aggressive driving. Idling causes
the car to waste energy without resulting in movement, aggressive driving results in ’hard breaking’ and
’hard accelerating’ this ensures that more energy is required to accelerate and decelerate than when
going in a smooth flow. However, for electric vehicles, braking can provide electricity generation. This
connection is considered separately because aggressive driving can also have a negative effect on an
electric vehicle’s battery, as continuous rapid acceleration reduces efficiency.

Road characteristics have also an influence on the fuel efficiency, these factors are: traffic flow, speed
and the surface. Driving on a higher speed requires more energy. A rough surface will lead to more
resistance from the road and therefore it requires more energy to drive on a rough surface. A high traffic
intensity means that there more any vehicles on the road in a given period. This is often caused by,
for example, congestion, traffic lights and intersections. This results in frequent stopping and starting
of the engine or battery, which reduces fuel/energy efficiency (despite regenerative braking).

Vehicle characteristics that influence the fuel efficiency are: the weight, the size, age, maintenance
and the rolling resistance of the tires.Thereby for ICE (internal combustion engine) vehicles, the en-
gine is also a crucial factor that impacts fuel efficiency, while for EVs (electric vehicle), the battery and
electric motor play a significant role in energy efficiency. A heavier vehicle needs more fuel/energy per
kilometer to move forward than a lighter vehicle and therefore has a lower fuel/energy efficiency. The
vehicle’s load capacity and its size also play a role in fuel/energy efficiency. A larger vehicle catches
more wind, requiring more energy to move forward. Additionally, the vehicle’s size or load capacity is
often related to its power, which can affect the vehicle’s weight and engine size. These factors, in turn,
can impact fuel efficiency. Age and mileage also impact the energy and fuel efficiency of a vehicle. As
a vehicle ages, its parts function less efficiently. This can be partially fixed with maintenance, which
enables the insertion of new parts or the correction of malfunctions. Therefore, the maintenance con-
dition influences the fuel/energy efficiency positively. In addition, a lower rolling resistance of the tires
can ensure a more efficient movement of the vehicle.

Operational factors directly influence fuel consumption and indirectly affect fuel/energy efficiency. These
operational factors include payload, number of stops, loading and unloading, detours, empty trips, and
the number of kilometers driven. The payload affects the vehicle’s total weight and fuel/energy effi-
ciency and is limited by the maximum weight and volume the vehicle can carry. Moreover, the vehicle’s
inherent weight and power also impact its fuel consumption, regardless of whether it is loaded or empty.
The number of stops influences the number of kilometers driven, more kilometers are traveled when
delivering to multiple locations than when making one shipment. In addition, it affects the number of
freight and shipment loading and unloading times. When this is performed, the engine is frequently
still running, which can affect a vehicle’s idling time. The number of kilometers driven is influenced
by the distance between the origin and destination. A detour, such as refueling, charging, or driving
the wrong way to an address, also impacts the total distance traveled. The distance a vehicle travels
when it has no freight (empty) also has an impact on its mileage. The number of kilometers driven
has a direct relationship with a vehicle’s fuel and energy consumption; the more kilometers driven, the
more fuel/energy is required. Additionally, the type of transport also has an influence, where shared
transport (Less than Truckload) is characterized by more stops, lower payload, and less empty run-
ning compared to dedicated transport. For dedicated transport, the payload is often higher (Full Truck
Load), there is only one stop, and there is more empty running.

This section examines a variety of factors that influence vehicle-related greenhouse gas emissions.
Earlier in this section, a causal diagram was constructed to represent the relationships between en-
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ergy consumption and the resulting emissions. This causal diagram can be seen in Figure 3.4 and
provides a basic overview of these relationships. However, to obtain a more comprehensive under-
standing of how emissions originate from driving a vehicle, it is necessary to examine the factors that
influence fuel/energy consumption. As fuel/energy consumption is dependent on numerous factors,
the relationships are further explored under the heading above 'Fuel/Electricity Consumption’. To
present a more complete picture, the diagram in Figure 3.4 is expanded to include these factors, which
can be seen in Figure 3.5.In a causal Diagram, a plus sign indicates a positive relationship, whereas a
minus sign indicates a negative relationship. An illustration of a positive correlation is the increase in
the impact of road characteristics, due to for example the number of hills. An increase in the impact of
road conditions will give an higher impact of driving conditions. When driving conditions have a greater
impact, driving becomes less efficient, which is a negative relationship.
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Table 3.2: Factors that influence the energy efficiency

Categories Causal relationships of factors Relation in diagram? | Source
Environmental Roadway gradient ->Energy/Fuel consumption - Demir et al. (2014); Bigazzi &
factors Bertini (2009)
Roadway gradient ->Regenerative Braking (EV) - Sagaama et al. (2020); Li & Yu
(2017)
Humidity ->Energy/Fuel consumption - Demir et al. (2014); Bigazzi &
Bertini (2009)
Extreme weather ->Energy/Fuel consumption - Demir et al. (2014); Bigazzi &
Bertini (2009)
Extreme weather ->Amount of cooling/heating used + Wallington et al. (2008)
Extreme weather ->Efficient catalyst - Rodriguez & Dornoff (2019);
Popa et al. (2014)
Altitude ->Energy/Fuel consumption - Demir et al. (2014),
Driving Idling ->Energy/Fuel consumption - Demir et al. (2014); Alwakiel
behaviour (2011)
Idling ->Efficient catalyst - Rodriguez & Dornoff (2019);
Popa et al. (2014)
Aggressive driving ->Energy/Fuel consumption - , Bigazzi & Bertini (2009),
Regenerative Braking (EV) ->EV: Electricity generation + Sagaama et al. (2020); Li & Yu
(2017)
Road . . . . . .
Traffic intensity ->Energy/Fuel consumption - Demir et al. (2014); Bigazzi &
characteristics Bertini (2009)
Traffic intensity ->Efficient catalyst - Rodriguez & Dornoff (2019);
Popa et al. (2014)
Speed ->Energy/Fuel consumption - Demir et al. (2014); Bigazzi &
Bertini (2009); Piecyk & McKin-
non (2010); Alwakiel (2011)
Speed ->Efficient catalyst + Rodriguez & Dornoff (2019);
Popa et al. (2014)
Rough surface ->Energy/Fuel consumption - Demir et al. (2014); Bigazzi &
Bertini (2009)
vehicle Age and mileage ->Energy/Fuel consumption - Demir et al. (2014)
characteristics
Age and mileage ->Efficient catalyst - Popa et al. (2014)
Maintenance condition ->Energy/Fuel consumption + Demir et al. (2014)
Maintenance condition ->Efficient catalyst + Popa et al. (2014)
Tires with low rolling resistance ->Energy/Fuel consumption + Demir et al. (2014)
Vehicle weight ->Energy/Fuel consumption - Waidyathilaka et al. (2018);
Demir et al. (2014); Piecyk &
McKinnon (2010)
Vehicle weight ->Efficient catalyst + Popa et al. (2014); Rodriguez &
Dornoff (2019)
Vehicle size ->Energy/Fuel consumption - Demir et al. (2014)
Vehicle size ->Maximum volume vehicle + Demir et al. (2014); Piecyk
& McKinnon (2010); Alwakiel
(2011)
Maximum vehicle weight ->Payload + Piecyk & McKinnon (2010)
Operational | b 15ad ->Vehicle weight + Pichery (2014); Waidyathilaka et
factors al. (2018)
Loading/Unloading ->Idling + Demir et al. (2014)
Number of stops ->Loading/Unloading + Waidyathilaka et al. (2018)
Number of stops ->Number of kms + Piecyk & McKinnon (2010)
Distance origin and destinations ->Number of kms + Piecyk & McKinnon (2010);
Demir et al. (2014); Alwakiel
(2011)
Detours ->Number of kms + Piecyk & McKinnon (2010);
Waidyathilaka et al. (2018)
Empty trips ->Number of kms + Piecyk & McKinnon (2010);
Demir et al. (2014)
Number of kms ->Energy consumption + Piecyk & McKinnon (2010)
Number of kms ->Fuel consumption + Piecyk & McKinnon (2010)
Dedicated transport ->Number of stops - Schmied et al. (2012)
Shared transport + >Number of stops + Schmied et al. (2012)
Dedicated transport + >empty trips - Schmied et al. (2012)
Shared transport ->empty trips + Schmied et al. (2012)
Dedicated transport + >payload + Schmied et al. (2012)

Shared transport ->payload

Schmied et al. (2012)
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3.7. Method to calculate the carbon footprint of freight

The preceding section discussed the variables that affect greenhouse gas emissions from freight trans-
portation. The carbon footprint is determined by these greenhouse gases. Numerous methods and
standards have been developed to map a shipment’s carbon footprint. These methods are based on
available data, emission factors, and the distribution of emissions when multiple shipments are present.
As discussed in section 3.2, there is one officially accepted methodology called the EN16258. In this
section the approach of EN16258 will be discussed, the critical views of this method, and other meth-
ods to calculate the carbon footprint.

3.7.1. The EN16258 approach

The description of this subsection is based on the methodology descrbed by Schmied & Knorr (2012)
The starting point of the standard is to use fuel or energy consumption (henceforth called energy con-
sumption) to calculate emissions. Energy consumption is converted into CO, equivalents using a cor-
responding emission factor of the respective energy source. This includes the emissions of CH,, N,O
and CO,. Energy consumption can be calculated based on two methods. The first method is called
the consumption-based method and the other is called the distance-based method. The appropriate
method is chosen by the amount of information available. Within the distance-based and consumption-
based methods, there are different methods based on the detailed level of the information. Under dis-
tance is the most specific level of detail when the energy consumption is known per round trip, followed
by the average energy consumption using a specific route or specific vehicle and finally, the average
energy consumption of the whole fleet (of comparable vehicles). The second method is the ’distance-
based’ method, in which energy consumption is calculated based on default factors from databases.
This energy consumption can be calculated in more detail using more information about the round trip.
When information on load utilization and empty trips is available, a different method is used than when
itis not. There are also different allocation methods by which the energy consumption is distributed in a
“fair way” when there are multiple shipments on a round-trip. This method makes it irrelevant whether a
shipment is loaded first or last, or whether the routing system plans clockwise or counterclockwise. An
overview of these allocation methods is visible in Figure 3.6. Finally, the standard also says something
about refrigeration systems; HCFs can escape into the air when they leak. The standard recommends
adding these emissions at the end by calculating how much to refill and dividing this amount using the
allocation method, and then multiplying this by the relevant emission factor. A detailed description of
the standard can be found in Appendix C.

Allocstion unit Standard trip Round-trip (deliveryicollection trip)
Ton-kilometer (default) —Ton: shipment weight —Ton: shipment weight

— Kilometers: real travelled distance — Kilometers: great circle distance or shortest feasible distance
Volume-kilometer — Volume: pallet, parcel, TEL, etc — Volume: pallet, parcel, TEL, eic

— Kilometers: real travelled distance — Kilometers: great circle distance or shoriest feasible distance
Ton Shipment weight Shipment weight
WYolume Cubic meter, paletie, TEU, eic Cubic meter, paletie, TELU, etc
Kilometer Distance ravelled, great circle distance, or shortest feasi-  Grest circle distance or shortest feasible distance

ble distance

Figure 3.6: Allocation units named in EN-16258 obtained from Kellner (2022)

3.7.2. Discussions around the EN16258 standard

EN-16258 must be accepted by the standardization institutes of 33 European nations. Several studies,
however, have shown that the current version of EN-16258 has gaps and ambiguities that leave room
for interpretation in a number of areas (Kellner, 2022). This makes it hard to compare how well different
supply chains treat the environment and makes it harder to find the best ways to do things (Davydenko
et al. (2014); Auvinen et al. (2014); Lewis et al. (2016)). The standard uses multiple allocation op-
tions and recommends ton-km as an allocation. For the distance, the standard recommends using the
greatest circle distance (GCD) or shortest travel distances (STD) for the allocation for distribution trips.
The actual driven distance (ADD) can be used for other types of trips. Several papers advocate using
only the GCD or STD in the allocation method because it causes less bias than actual driven distances
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(Davydenko et al. (2014); Lewis et al. (2016); Kirschstein et al. (2022)). Furthermore Davydenko et
al. (2019) researched the various distances that can be used for allocations and found that GCD has
the most support to use for allocation. Lewis et al. (2016) suggests that allocation using weight or
ton-km is not always easy and can lead to non-optimal allocation. Kellner & Schneiderbauer (2019)
examined the optimal allocation unit according to EN16258 in their analysis and simulation of road
shipments. They considered primarily weight, volume, and distance. Consequently, the most precise
allocation unit is distance (GCD). However, distance does not affect operator effectiveness. CO, per
tonne-kilometer assesses the effectiveness of a carrier’s network in terms of carbon emissions (Davy-
denko et al., 2019). In addition, the tonne-kilometer technique encourages operators to increase their
efficiency and allows them to compare their performance to those of previous years directly. In addition,
Wild (2021) discusses that other researches studied multidimensional capacity allocation techniques
(Davydenko et al., 2014), revenue-driven allocation (Davydenko et al., 2019), and game-theoretic allo-
cation methodologies (Naber et al., 2015). However, the ton-kilometer method has apparent benefits
in terms of simplicity at the end (Wild, 2021). Ehrler & Seidel (2014) discusses also the problem of
data sources and data accessibility is one of the essential concerns that must be addressed in each
subsequent step toward a worldwide standard. On the one hand, the amount of detail may vary, re-
sulting in the possibility of diverse outcomes for equivalent transport activities. Another critical issue
discussed in the literature is the definition of Vehicle Operating System, this definition in the EN16258
is very broad which creates ambiguity. The VOS is the scope determination of the carbon footprint.
This can be defined as, for example: the entire activity of a carrier’s fleet during a year. All round trips
between two specific locations per quarter. Or a single leg in a pickup and/or delivery trip (Ehrler &
Seidel, 2014; Wild, 2021). A couple of these problems are also addressed in the COFRET project of
the EU, they made recommendations based on ambiguities and problems that arise from the EN16258
methodology. After this, many tools and methods were devised that built on this, such as BigMile,
GLEC and Objectif CO, (Davydenko et al., 2019).

3.7.3. Other methodologies and tools

In the literature, there are different ways to calculate energy use and emissions. Demir et al. (2014) dis-
cusses different methods of measuring energy consumption at different levels of accuracy (Kirschstein
et al., 2022). Demir et al. (2014) distinguishes between the microscopic and macroscopic methods
of determining energy consumption. The microscopic models give a more accurate estimate of how
much energy a vehicle uses and how much pollution it puts out. The output of macroscopic models is
the emission factor for a specific vehicle and driving mode, which is figured out by taking the average
of the values over a certain driving cycle. The paper says that macro models are useful when there
is not enough information about traffic flow and operational factors. Nunes et al. (2017) distinguishes
top-down and bottom-up approaches to calculating emissions in addition to micro and macro models.
The bottom-up approach is based on detailed vehicle specifications, whereas the top-down approach is
based on aggregated global data such as fuel quantities, sales, fuel type, and corresponding emission
factors. The bottom-up method is more accurate, but there are challenges. Due to the use of average
input parameters, such as engine load factors, time spent in operating modes, fuel consumption rate,
and emission factors, which are dependent on the size, age, fuel type, and market conditions, create
uncertainty in the anticipated emissions.

Currently, the tools that are used in practice are macroscopic and bottom-up aproaches. The reason
for using macro scopic model is due to its simplicity. Wild (2021) made an overview of the most relevant
types of methods. These are visible in Figure3.7.



30 3. Background study carbon footprint

Standards & Methods Legal basis GeographicScope Modes of Transport Trans- Remarks
shipping
EN16258 Official Europe All
SmartWay Program North America All
CE Delft Research Global Partly
GHG Protocols Method Global Several specific areas
IS0 NGO Global
GLEC Framework Global All Based and further developed on existing
methods
EcoTransIT Commercial Global All Based on EN16258, GLEC
BigMile Commercial Global All v
IMO Official Global SEA United Nation
CCWG Initdarve Global SEA
ICAD Official Global AlIR
IATA Associadon Global AIR
Green Logistics Research Europe v
Green Efforts Research Europe v
Green Freight Europe/ Program
Asia
ITEC Initiative Europe v ECOHubs
CarbonCare Commercial Global All v

Figure 3.7: Standards and Methods obtained from Wild (2021)

3.7.4. Data accuracy of input variables

As described earlier, data quality and accuracy is a challenge when calculating a carbon footprint. To
determine the accuracy of a carbon footprint, both Objectif CO, and BigMile have created data levels
within which footprints can be compared. Davydenko et al. (2019) describes these data levels as
follows:

1. Individual journeys for which both transport activity and fuel (energy) use are known;

2. A collection of journeys by a single or multiple vehicles over a specified time (week, month, year)
for which both transport activity and fuel (energy) use are known.

3. A journey or a collection of journeys by a single or many vehicles during a certain time, when
transport activity is known but fuel (energy) consumption is unknown;

4. Ajourney or collection of journeys by a single or many vehicles during a certain time period, when
transport activity can only be approximated and fuel (energy) consumption is unknown.

Some intermediate degrees of data resolution are feasible, for instance when fuel use is only partially
known or when transport activity is approximated. Currently it has yet to be discovered how great the
variation of the footprint is over the different levels. In section 3.9 this will be further discussed.

3.8. Ideal scenario carbon footprint estimation

The best case scenario for estimating a carbon footprint is when all necessary information is available,
including the type of trip, fuel consumption, allocation strategy, stop data, distance, weight of loads, and
CO, emission factors (Schmied & Kndrr, 2012; Nunes et al., 2017). Trip type refers to the fact that a trip
can be a shared or a single trip. A shared trip is one that travels to more than one location, whereas a
single trip only transports the load to one location before returning to the original location or to the next
loading location. In Figure 3.14 a flow chart is visible from the steps of calculating a carbon footprint
in the best case scenario. What is meant by this best case scenario is that all information is available
for the most simple calculation. In this simplest calculation, the fewest assumptions have to be made,
so this calculation should give the most accurate carbon footprint. Nevertheless, this calculation can
be calculated in different ways due to the choices that have to be made for the scope, the allocation
method and the data base to be used for the emission factors. In the text below the figure is further
described.
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Figure 3.8: flow chart ideal scenario CF calculation

For a shared trip, it is best to have information on the fuel that is used between each stop and throughout
the entire journey. The distribution of fuel consumption among the number of stops is then calculated
using an allocation method. In ideal circumstances, the number of ton-km is calculated for each stop
and should be used in this allocation method. The weight and distance of each shipment must be
known for this. Different methods can be used to calculate the distances between the stops; these
methods are already illustrated and explained in Figure 3.7. Additionally, it is essential to know the
weight of the loads between each stop. Additionally, knowing a shipment’s weight is also crucial for a
single trip when calculating, for instance, the carbon footprint per unit.

In addition, for shared and single trips it is also important to know the type of vehicle and/or fuel used.
Using this data, the most accurate calculation can be made in terms of converting fuel consumption
to CO, equivalents. There are multiple options for emission factors, just as there are for the various
allocation methods and distance calculation methods. The well-to-wheel (WTW), well-to-tank (WTT), or
tank-to-wheel (TTW) methods can be used to estimate emissions. The method that is chosen depends
on the definition of the carbon footprint measurement’s scope, as well-to-tank emission factors take
both emissions from fuel production and use into account. Additionally, the data source from which the
emission factor is derived must be chosen. Finally, with the help of the chosen emission factor, the
number of liters of fuel or number of kWh can be converted to the number of CO, equivalents. As a
result, the total carbon footprint of a shipment is calculated.

3.9. Data and parameters for a carbon footprint estimation

Section 3.8 describes how a carbon footprint is calculated under ideal conditions. In the ideal condi-
tions, there is precise data of each trip. This section further explains the extent to which data quality
can affect the accuracy of the carbon footprint. First, the relationship between data quality, model qual-
ity and outcome is discussed. It then discusses how Lean and Green, a European program for the
transportation sector with the goal of reducing CO,, assesses data quality when it comes to calculating
a carbon footprint.

3.9.1. Relationship between data quality, model quality and outcome

When a model is used to estimate an outcome because direct measurement is not possible, two things
are particularly decisive in making a reasonable estimate. The first is model quality. Model quality rep-
resents the extent to which a model represents the actual world and its relationships. In addition, data
quality is also important. Data quality is defined as the suitability of data for its intended use (Klobas,
1995). In the context of carbon footprints, the input data is used to quantify the carbon footprint of a
shipment as precisely as feasible. The evaluation of the suitability and quality of data is seen as multi-
dimensional (Pipino et al., 2002), whereas completeness and accuracy are two essential dimensions.
Incomplete data is imperfect, particularly when at least one characteristic must be substituted by sur-
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rogate measures (Wederhake et al., 2022). In the context of the carbon footprint of freight a surrogate
estimate is for example the amount of CO,e emitted per ton-km for a particular vehicle type. In ad-
dition to any other data quality problem, inaccurate (quantitative) or mislabeled (qualitative) data can
also contribute to imperfect data. In general, imperfect input data cannot provide more accurate con-
clusions than perfect input data for any deterministic approach without the model having a systematic
inaccuracy, often known as bias (Schwarz & Kockler, 2011). The data quality also influences the model
quality, because the completeness and accuracy determine which calculations need to be performed
to arrive at the carbon footprint. These relationship are showed in Figure 3.9.
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Figure 3.9: Influence data quality

3.9.2. Lean and green data quality indicators

The European program Lean and Green focuses on sustainable and carbon footprint determination
of freight transportation. This program has developed indicators to compare carbon footprints based
on data quality Logistiek (2021). Shipment data and fuel consumption data are distinguished. Quality
levels for fuel consumption are described as bronze, silver, gold, and gold plus, with gold plus being
the most accurate data. These levels are differentiated by the aggregation level of the data and the
source of the data. Bronze fuel data means that the source of the data is an estimate, regardless of
the aggregation level and is therefore considered the least accurate. The silver level is characterized
by an average fuel consumption (e.g., I/lkm) calculated over a year or a month for several vehicles in
a fleet or an annual average for a specific vehicle. Gold data means that fuel consumption has been
measured for a specific vehicle over a month or a week. Finally, there is also the gold plus category,
which means that fuel consumption is known for each trip for a specific vehicle.

For shipment data, the levels are also described as bronze, silver, gold, and gold plus, with gold plus
being the most accurate data. Bronze shipment data means that the source of the data is an estimate,
regardless of the aggregation level, and an estimate on a yearly or monthly basis remains an estimate
and is therefore considered the least accurate. Silver shipment data means that the source of the data
is a measurement of the transport volume aggregated over a year, a month, or a week across different
license plates, or the transport volume over a year per license plate. Gold shipment data means that
the volume per month or week is known per license plate. Gold plus shipment data means that the
volume per trip is known per license plate. The ultimate quality of the carbon footprint is determined
by the lowest data level. In total, there are 72 possible combinations of data, with 50% resulting in a
carbon footprint with bronze data quality, 41.2% resulting in a carbon footprint with silver data quality,
and 12.5% resulting in a carbon footprint with gold data quality. This is shown in Table 3.4.
A few things are noteworthy about the choice of categorization of 'data quality’:

» The same level of data quality is assumed between the average on a yearly basis of a fleet
compared to the average on a yearly basis of a specific vehicle. However, a difference in the
level of data quality is made on a monthly basis.

» Shipment data quality is evaluated based on volume, but this also depends on the level of detail
known about the locations of these shipments and the distances of the shipments. This is further
explained under the heading Shipment Data and Allocation.

» The use of aggregation levels can impact the final outcome. When the data is used at the trip
level, emissions are allocated accordingly, meaning that they vary from day to day. This can have
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the disadvantage of revealing sensitive information to customers and competitors, resulting in the
possibility of calculating fuel consumption and the associated costs. However, a high aggregation
level where only data from multiple vehicles over a longer period is known does not help optimize
greenhouse gases. The high aggregation level only provides insight into how efficient a carrier
or logistics service provider is with regard to the entire network when looking at the number of
emissions per tonne-km, but not about detailed insights into the GHG emissions generated by
specific shipments (Lewis et al., 2016).

Table 3.3: Data quality indicators

Estimated | Estimated | Average | Average | Average per | Measured per | Measured per | Measured per

Fuel data . X X .
numbers numbers | total total license plate | license plate license plate license plate
Shipment data | Aggregation | Year Month Year Month Year Month Week Trip
Estimated Year B,B B,B B,S B,S B,S B,G B,G B, G+
Estimated Month B,B B,B B,S B,S B,S B,G B,G B, G+
Measured total | Year S,B S,B S,S S,S 'S8 S,G S,G S,G+
Measured total | Month S,B S,B S,S S,S S,S S,G S,G S,G+
Measured total | Week S,B S,B S,S S,S S,S S,G S,G S,G+
Measured per
licence plate Year S,B S,B S,S S,S ’ S,S S,G S,.G S,G+
Measured per
licence plate Month G,B G,B G,S G,S G,S G,G G,G G,G+
Measured per |\ GB GB G,S G,S G.S GG GG GG+
licence plate
Measured Trip G+,B G+,B G+,S G+,S G+,S G+,G G+,G G+,G+
Gold + | Gold | Silver | Bronze
Fuel data

Fuel consumption can be measured in several ways. First, the best situation is when the data per
shipment is as accurate as possible. When the latest innovations in board computer systems is used,
it is possible to keep track of the actual fuel consumption for each trip (lacob et al., 2013). When this
option is possible, the resulting data is most accurate. Another option is to read the fuel consumption
through the fuel gauge, but since this is difficult to read in many cars, this is not very convenient and
accurate.

Secondly, diversions or estimates can also be made to arrive at the fuel consumption of a shipment.
For example, a fuel card is often used to find out how many liters a vehicle has used. It is possible
to estimate a vehicle’s fuel consumption by keeping track of this information. Data on a fuel card is
frequently aggregated because it is frequently based on multiple trips. It also happens that companies
do not track this per vehicle but only track the fuel consumption of their total fleet. The accuracy of the
fuel consumption data from a fuel card is therefore based on two things: the period for which the data
is available and whether the data is for a single vehicle or a fleet. The disadvantage of approximating
fuel consumption based on fuel payment cards is that the data does not reflect the fluctuations in fuel
consumption between refueling trips (or between the aggregation levels) (Ayyildiz et al., 2017).

Then the third and last option is to calculate the amount of fuel used based on a prefix/default factor.
This is the least preferred option because the fuel consumption depends on several things, such as:
the type of road, the traffic density, the payload, driving behaviour, etc. When a default factor is used,
the influences of these factors cannot be seen. However, there are still different levels for using default
factors. For example, there are ways to take into account as many factors as possible when estimating
fuel consumption. Several models have been created for this purpose (Demir et al., 2014). Thereby,
interpolating the fuel consumption of an empty and fully loaded truck is a widely used strategy in re-
search and practise (Guajardo, 2018). This formula (3.1) calculates fuel consumption by multiplying
the vehicle’s fuel consumption per kilometer and by the distance traveled. The fuel consumption per
kilometer is derived from the fuel consumption of a vehicle over 100 kilometers. This is interpolated
from the specific fuel consumption of a vehicle when driving at full truckload (F Cs,;) and when empty
(FCempty) and the load factor (payload p / maximum payload C) over the transport route. In this ap-
proach, a linear relationship between payload and (extra) fuel consumption is assumed. FCempty and
F Cy, data can be extracted from different databases (Kellner, 2022).
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Fuel consumption = (FCempty + (FCfu” - FCempty) * %) /100 = distance (3.1)

Fuel data

BN G

Based on board computer. Based on fuel card information. Based on default factors
Information per vehicle per trip. Accuracy depends on aggregation level of: time and vehicle Accuracy depends on knowledge of vehicle specifications and
specification accuracy of default factor of source

Figure 3.10: fuel data

Shipment data and allocation

In addition to fuel data, load data is also crucial to know. This is important for the allocation of emis-
sions; this principle was discussed earlier in section 3.7.2 but will be repeated briefly. The allocation
principle is about dividing the amount of energy used in a trip or period according to the load. This
can be distributed in several ways, called the allocation method. The choice of allocation method is
determined by: the available data, the limiting cargo unit, or the billable cargo unit. Examples include
allocating fuel based on ton-km, cubic meters, distance, or pallets. Many studies have been done on
the ideal allocation method, but to date, the ideal allocation method has not been determined. In short,
load data is needed to allocate the energy used for customer shipments (loads). The allocation method
commonly recommended is the number of tons distributed over the great-circle distance from the origin
to the load’s destination (Wild, 2021). To achieve the allocation for this, several pieces of information
are necessary: the origin of the loads, the destination of the loads, and the weight of the loads.

Furthermore, depending on the level of detail of the fuel data, more data is required; when the fuel
consumption in I/lkm is known or default factors are used, the trip’s distance is also required. There has
also been research on which distance is best used for this, the research of Davydenko et al. (2021)
shows that the actual driven distance clearly comes out best to use when fuel consumption data is not
available. The data that needs to be available also depends on the type of shipment, when the fuel
consumption of a dedicated trip is known (the trip goes only to one customer), it does not need to be
distributed to other shipments and the fuel consumption of that trip can be allocated to the respective
customer. This is also dependent on the fuel data.

Freight data can also be accurate through a detailed description on the freight documents. This in-
cludes the address of the origin, the adress of the destination, details about the type of transportation
(bulk, pallets, for example), and the quantity expressed in freight units. It is also possible that this in-
formation is only available on an aggregated level or that the information of an entire trip is only known
and not per stop. The three dimensions on which the accuracy of the data depends is whether the
data (quantity, origin, destination) are available by stop, by license plate and the period. When data is
missing, estimates of the quantity transported must be made based on turnover, for example.

©, &)}

Based on information on the shipping documents Based on aggregated information. Based on default factors
Information per vehicle per trip. Information about shipment in periods or per route Estimated with help of the turnover per client.

Figure 3.11: payload data

3.9.3. Emission factors

Freight emission factors can vary based on the type of vehicle, fuel, and cargo being transported.
There are various types of emission factors and, additionally, diverse databases from which these fac-
tors are derived. Depending on the scope, either WTW, TTW, or WTT emission factors are applied.
The preferred method for calculating the total greenhouse gas emissions is to multiply the amount of
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fuel and/or electricity used by the various modes of transportation (in units like liters, kg, or kWh) by
the emission factors from the relevant category (fuels, vehicles, electricity) (Rijkswaterstaat, 2022).
Since these calculations are based on actual fuel consumption, they are the most accurate. In the
absence of fuel consumption data, emissions can be estimated using the estimated emission factors
for each freight transport category. The level of detail varies between databases. Some databases
assume average loading, average road conditions, etc., while others have different emission factors
for each vehicle and circumstance. There are different databases from which emission factors can be
extracted. For example, there are European, North American, and Canadian values for fuel emission
factors. There are also national emission factor values within Europe, such as those of France and
the Netherlands. A graph shows how far apart these emission factors are using various data sources.
Figure 3.12 shows diesel emission factors and Figure 3.13 gasoline emission factors. The European
and North American emission factors came from the Smart Freight Centre’s GLEC Framework (SFC,
2020), the Netherlands’ factors from the CO,emissiefactoren website that used the CE Delft database
(Rijkswaterstaat, 2022), Australia’s emissions factors came from the report of the Department of Cli-
mate Change, and the emission factors of France are obtained from a guideline of the Ministry for an
Ecological and Solidarity Transport (for an ecological & solidary Transition, 2019). Each source dis-
cussed variables from WTW, TTW, and WTT and calculated CO, equivalent from N,O, CH,, and CO,
emissions. Both graphs show also the factor averages to compare values. For example, it can be seen
that the Australian WTT deviates a lot and this is also reflected in the WTW value.
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Figure 3.14: fuel data

3.10. The new ISO 14083 standard

During the writing of this thesis, it was learned that a new ISO standard will be published in March 2023.
This ISO standard will attempt to address the criticism of EN16258 and further harmonise the carbon
footprint of freight. To take this somewhat into account, this section reflects on the knowledge gained
in this chapter and how ISO standard is expected to change this.
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The basis of the new ISO standard will correspond to the GLEC framework (Gould, 2023). A general
recommendation of the GLEC framework and the future 1ISO 14083 standard is to aggregate TOC
activities over a year to smooth out the effects of seasonality related to climate and demand; in justified
cases, aggregation over time may be smaller to a lower level of time aggregation and may be reduced
to individual trips (Davydenko et al., 2022). TOC implies a specific uniform transport category, a group
of transport activities with similar characteristics. The points below reflect how the new standard would
modify the above sections:

This methodology is somewhat similar to the consumption-based method already discussed in the
EN16258 method. However, the preferred method is based on fleet averages, with the condition
that this should be an average of the comparable modes of transportation instead of measured
per trip or license plate. This method is already described in section 6.2.1. and Appendix C.

The method proposed corresponds to the aggregation level 2 discussed in section 6.2.4., the
preferred level is yearly.

This means the ’ideal scenario carbon footprint estimation’ explained in section 6.3. most likely
change. A new diagram has been made to illustrate what the new ’ideal’ calculation should look
like, this is shown in Figure 3.15. This uses the great circle distance, as the most recent literature
recommends this as an allocation method. However, it is not sure whether this will be used in
the new ISO standard; if not it can be replaced by another distance method (GCD would then
become PD; planned distance, for instance).

In addition, the question is whether the Lean and Green quality indicators should be kept the
same. That depends on what the ultimate goal of the indicator is. For example, if the goal is to
have insight into fuel consumption per chauffeur, it is essential to have data available per trip. The
better these kinds of details are available, the more a transport company can make decisions at a
detailed level. When a transport company has to report emissions from shipments to the shipper,
the question is whether this detail is necessary and fair. Should specific influences be explicitly
charged to a customer, or should they be spread across customers? When working with the
principle of the GLEC framework, specific influences should be spread out. This may mean that
Bronze data estimates can remain key figure-based. The silver quality indicator should focus then
on derived fuel consumption or aggregated data across multiple vehicles. Gold would then mean
a specific measurement per license plate. The separation of quality between trip, week, month
and year aggregation levels should remain the same within this as GLEC looks at an annual basis
This is visible in Table 3.4.
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Figure 3.15: Ideal CF estimation GLEC

Table 3.4: Data quality indicators new

Fuel dat Estimated | Estimated | Average | Average | Average per | Measured per | Measured per | Measured per
uel data numbers numbers total total license plate | license plate license plate license plate

Shipment data | Aggregation | Year Month Year Month Year Month Week Trip
Estimated Year B,B B,B B,S B,S B,S B,G B,G B, G+
Estimated Month B,B B,B B,S B,S B,S B,G B,G B, G+
Measured total | Year S,B S,B S,S S,S S,S S,G S,G S,G+
Measured total | Month S,B S,B S,S S,S S8 S,G S,G S,G+
Measured total | Week S,B S,B S,S S,S S,S S,G S,G S,G+
Measured per
licence plate Year G,B G,B G,S G,S GG GG GG G,G+
Measured per
licence plate Month G,B G,B G,S G,S ’ G,G G,G G,G G,G+
Measured per
licence plate Week G,B G,B G,S G,S G,G G,G G,G G,G+
Measured Trip G+,B G+,B G+,S G+,S G+,G G+,G G+,G G+,G+

Gold + | Gold | Silver | Bronze

3.11. Conclusion carbon footprint

A carbon footprint is a measure that encapsulates the total greenhouse gas (GHG) emissions asso-
ciated with a particular activity, product, or system, quantified in CO2 equivalents. There’s a level of
disagreement in the literature on which GHGs to consider in the calculation. Some studies include
all GHGs, others focus on legislated GHGs such as the seven Kyoto gases (CO2, CH4, N20, HFCs,
PFCs, SF6 and NF3), or solely carbonaceous gases (CO2, CH4, CO). Consequently, it becomes crucial
to explicitly define the boundaries and scope of the carbon footprint for each study to ensure compa-
rability, transparency, and better understanding of associated environmental impacts. The European
standard EN 16258 is specifically designed for calculating the carbon footprint of freight transportation,
providing a robust methodology for computing and declaring the energy consumption and greenhouse
gas emissions associated with transport services. The scope of this standard includes GHG emissions
from the production, distribution, and usage of fuel or energy in a vehicle.

The determination of the carbon footprint of freight transport relies on the EN16258 standard, which
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presents two different calculation approaches: consumption-based and distance-based. The consumption-
based approach involves primary data and focuses on total energy consumption to obtain emission
figures, which are then allocated to shipments or customers using a transport activity-based alloca-
tion factor. The distance-based method uses default data and calculates total consumption using an
average factor, which is then allocated based on customer or shipment data. Key inputs for these
calculations are energy consumption for a trip and associated transport activity (like load, origin, and
destination of each shipment).

Existing literature presents various measurement methods for mapping a carbon footprint of freight
transportation. At the beginning of this thesis, the EN16258 was the prevailing standard. However,
numerous software tools and updated methods have since been developed based on this standard,
such as the GLEC Framework. The GLEC Framework advocates for distributing emissions on an
annual basis and distinguishes between primary and secondary/default data. If data is missing, fuel
consumption can be modeled; if transport activity is unknown, an average load factor can be used;
and if both are unknown, default emission intensity factors can be employed. Towards the end of this
research, a new ISO standard was published, which largely adopts the GLEC Framework’s method.
The primary difference between the ISO standard and EN16258 lies in the aggregation level and the
decision to allocate emissions based on ton-kilometers. The ISO standard determines the distance
using either the Great Circle Distance or the Shortest Feasible Distance, with possible exceptions.
This more detailed conclusion provides an overview of the research and insights phase, emphasizing
the importance of understanding and addressing the carbon footprint of freight transportation.



Background study uncertainties

In this chapter, we examine the meaning of uncertainty in the literature and the types of uncertainty that
occur. Ultimately, a definition or framework will be selected to define uncertainties for the purpose of
this chapter. The following question must be addressed in this chapter.
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Research questions to be answered in this chapter:

r---

* RQ4 What is uncertainty and what types of uncertainties currently exists in literature?

4.1. Definitions of the concept 'Uncertainty’

According to Klir & Yuan (1996) uncertainty occurs when there is not enough knowledge about some-
thing to describe the current situation or predict what might happen. Multiple logical statements are
true about the world in many different forms. These statements are needed to capture knowledge and
to use the knowledge to apply it to different concepts. However, sometimes a statement is only true
in a certain context and not in the totality of the logical universe. Klir & Yuan (1996) shows that the
concepts of information and uncertainty are strongly connected. The most important aspect about this
connection is that uncertainty in any problem-solving situation is caused by a lack of information. The
information about the situation’s model may be missing, vague, contradictory, or otherwise flawed. In
general, the lack of these different kinds of information can lead to different kinds of uncertainty. Due to
the fact that while modeling and calculating something, assumptions are made and a portion of reality is
quantified, different types of models contain varying degrees of uncertainty. Consequently, it is crucial
to be aware of this when these models are utilized in decision-making. The above papers argued that
uncertainty follows from a lack of information. However, this is contradicted in the paper of Walker et
al. (2003). He discusses that uncertainty is not just simply the absence of knowledge. They discuss
that even in a situation with a lot of knowledge, uncertainty can still exist. Thereby he argues that new
information can also increase the uncertainty. Because previously unknown or underestimated uncer-
tainties in complicated processes may suddenly be revealed by new information. In such manner, more
information reveals that our understanding is more limited or that processes are more complex than
previously believed. In addition, the paper distinguishes between uncertainty arising from variability
and uncertainty arising from a lack of knowledge. Tonin et al. (2016) also examines many viewpoints
on what uncertainty means. Uncertainty is defined simply as the description of the margin of doubt built
into every measurement. This definition states that in addition to the measurement’s result, it is also
required to describe the interval’s width and the degree of certainty that can be placed on the "actual
value” contained within it (the confidence interval). Furthermore, Sigel et al. (2010) states that uncer-
tainty lies between certainty and lack of knowledge. They argue that a person will not make statements
on a topic about which they have no knowledge of. However, when a person has only partial knowledge
of a subject, he or she may make a statement; this knowledge gap is the result of uncertainty. They
describe this as the confidence degree about if a person can trust his or her knowledge. Nilsson et
al. (2007) makes a distinction between precision, accuracy and mistakes within uncertainty. A lack of
precision will lead to a measurement error, a lack of correctness will lead to a systematic error (i.e. a
bias) and mistakes lead to incorrect measurements.
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From the reviewed papers, it can be deduced that uncertainty generally arises when a number deviates
from its actual value. However, it is challenging to draw a definite conclusion regarding the concept
of uncertainty. This is because the literature discusses numerous types of uncertainties and causes.
Additionally, a distinction is made between uncertainties resulting from variability and lack of knowledge.
This will be examined in the following sections for a more profound understanding.

4.2. The difference between ’Variability’ and ’Uncertainty’

One important distinction that has been made in the literature on uncertainty is the difference between
variability and uncertainty. Uncertainty and variability are two terms that are frequently used inter-
changeably, but a look at their definitions in the literature reveals that they differ in a certain way. Tonin
et al. (2016) discusses that uncertainty is imperfect knowledge of a true value of a particularly quantity.
Whereas variability is a variation within a measured value. The reduction of uncertainty is possible
by collecting additional data, while this is not the case for variability (Nilsson et al., 2007). A practical
example to indicate the difference between variability and uncertainty is for example that a dice has an
outcome of 1, 2, 3, 4, 5 or 6, this is the variability of the outcome. Uncertainty, however, is which out-
come the dice lands on (Abrahamson, 2007). Variability can therefore contribute to uncertainty, within
certain limits of outcomes since you know that the outcome can be no more than 6 and no less than 1.
Begg et al. (2014) states that the key idea of the relationship between variability and uncertainty is as
follows: the probabilities we select to describe uncertainty can be informed by variability.

4.3. Uncertainties in the context of a carbon footprint

Background research reveals that uncertainties in carbon footprint measurements have mainly been
investigated in the context of life cycle analyses (LCAs). Quality assurance is important for reducing
uncertainties, Weidema & Wesnaes (1996) developed a pedigree matrix with five quality indicators to
assess the data quality of a life cycle inventory. The two main sources of uncertainty are basic uncer-
tainty related to measurement errors and normal fluctuations, and additional uncertainty due to poor
data quality. Hong et al. (2016) discussed three types of uncertainty sources in LCA-related studies:
scenario uncertainty, parameter uncertainty, and model uncertainty.He et al. (2018) used the definition
of uncertainty from the standard PAS-2050:2011 and classified it into two types: technical uncertainty
arising from incomplete modeling, poor data quality, and other evaluation flaws, and natural variability
that is accounted for in a product’'s average or representative carbon footprint. A brief description of
these uncertainties is given in Table 4.1.

Table 4.1: Uncertainty types in the context of carbon foot-printing calculations

Uncertainty Description Context | Source
Related to all sampled data
Basic uncertainty (typically measurement errors and LCA Weidema & Wesnaes (1996)

normal fluctuations)

Additional uncertainty | Due to poor data quality

Scenario uncertainty Due to normativ.e choices, different choices LCA Ho.r‘19 et al. (2016)
may generate different outcomes Huijbregts et al. (2003)

Due to imprecise measurements,

(expert) estimates, and assumptions.

Due to assumptions and simplifications that

affect the model’s real-world validity

Due to incomplete modeling, poor data quality,

Technical uncertainty | ineffective sampling, wrong assumptions, PLC

and other evaluation flaws

Due to variability in a product’s average or

representative carbon footprint

Parameter uncertainty

Model uncertainty

He et al. (2018)
British Standards Institute (2011)

Natural variability
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4.4. Classification of uncertainties

As described in section 4.1 and 4.3 there are various ways to characterize uncertainty, and therefore,
different types of "uncertainties” emerge in the literature. Uncertainties that have been identified include
those arising from missing data, flaws, vague descriptions, assumptions, measurement errors, system-
atic errors, uncertainties due to poor data quality and uncertainties due to normative choices. Many
different papers and literature studies have attempted to define these different uncertainties within a
framework. One such framework is the uncertainty matrix developed by Walker. Walker designed a
tool for identifying and classifying uncertainties in a model-based decision support context. With the
help of various experts, three dimensions were established to characterize uncertainty: the level of
uncertainty, the location of uncertainty, and the nature of the cause of uncertainty. For this research, it
was decided to build on this framework. The rationale for this decision is as follows:

» The uncertainty types discussed in the previous section, which deals specifically with the uncer-
tainties in a carbon footprint calculation, overlap with the classification of Walker’s uncertainty
matrix. With the help of the matrix, it is possible to represent them more comprehensively. A
synthesis between them is thus possible. This is discussed more fully in subsection 4.4.

» The Walker uncertainty matrix allows for the identification of uncertainties at different stages of
modeling because it distinguishes between different locations where uncertainty can arise. When
examining a carbon footprint calculation for freight, models or methodologies are used to map a
carbon footprint, and uncertainty may arise at different stages of using these models.

» Because the uncertainty is also described in terms of the cause of uncertainty and the level of
uncertainty, it provides a clear and concise way to communicate uncertainties to stakeholders,
such as policymakers, investors, or the general public. This can help to build trust and credibility
in the carbon footprint calculation and the conclusions drawn from it.

This section will further explore the application of the uncertainty framework to determine how the clas-
sification of uncertainty is determined for this thesis research.

Tscheikner-Gratl et al. (2017) describes three dimensions of uncertainty that where found in the papers
of Walker et al. (2003), Refsgaard et al. (2007) and Van der Keur et al. (2008). These dimensions are:
the location or source of uncertainty, the nature of uncertainty and the level of uncertainty. Within those
dimensions there are different types of uncertainties defined. Despite the previously mentioned papers
use the same dimensions, it appears that the definitions of uncertainties overlap and even sometimes
use different terminologies. To create clarity, Tscheikner-Gratl et al. (2017) has developed a decision
tree to determine the types of uncertainty based on the decision tree of (Warmink et al., 2010). A
combination of both decision trees is eventually chosen to be used for the definitions in this research.
This decision tree is visible in Figure 4.1.
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Dimensions of uncertainties
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Figure 4.1: Uncertainty decision tree, obtained from Tscheikner-Gratl et al. (2017) and Warmink et al. (2010)

When looking at the decision tree it can be concluded that there are actually five sources of uncertainty,
these sources can have four levels of uncertainty. The lowest level of uncertainty is determinism and
the highest level will be deep uncertainty. Three potential causes underlie these uncertainties; stochas-
tic, ambiguity and epistemic natures. Ambiguity represents the different views that people may have
looked at a model or variable. Because people have their own interpretations, uncertainty arises in the
actual definition chosen. Epistemic nature occurs due to lack of knowledge, for example: limited and
inaccurate data, measurement error and incomplete knowledge. Measurement error is interpreted as
the definition used by Longley et al. (2015): a measurement error occurs due to the fact that different
researchers or observers will generate unique data. Because each instrument has different classi-
fications and objectives, the instrument used by the observer also affects the information gathered.
Stochastic nature is the randomness originating from external input data, functions, parameters, and
model structures. The stochastic nature could be explained by variability, that is discussed in Section
4.2.

To make the concepts clearer, figure 4.2 has been created in which these three dimensions are repre-
sented. These figure forms the basis of the classifications of uncertainties in this research. The levels
are listed below the types and nature of uncertainties. Where ’determinism’ means that there is no un-
certainty, 'statistical’ means that possible outcomes are known and the probabilities of these outcomes
can be described statistically, 'scenario’ means that probabilities can be described as 'statistical means’
but possible outcomes have to be estimated, 'deep uncertainty’ means that not all probabilities of the
outcomes are known and the outcomes cannot all be estimated. These levels are also described by
(Daniel & Daniel, 2018), however the names are different; 'determinism’ is called deterministic certainty
where an action will lead to a unique consequence, ’statistical’ is called probabilistic certainty where
an action will lead to a set of known probabilities of occurrence, 'scenario’ is called stable uncertainty
where there is a lower degree of knowledge of the relationship of an action and its consequence and
‘deep uncertainty’ is called 'unstable uncertainty’.
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Nature of uncertainty:

1. Stochastic: Randomness originating from external input data
2. Ambiguity: Because people have different interpretations, uncertainty arises in the actual definition chosen
3. Epistemic: Occurs due to lack of knowledge
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Figure 4.2: Classification framework uncertainties

Synthesis for classification framework and uncertainties within a Carbon Footprint measure-
ment

Because different terms are used for the classifications in the previous section and the uncertainties
within a carbon footprint calculation it is important to see if a synthesis is possible. The description of
parameter uncertainty in the LCA studies seems to be divisible into input uncertainty and parameter
uncertainty shown in Figure 4.2. The definition of scenario uncertainty seems to correspond to context
uncertainty. Thereby, model uncertainty seems to correspond to model structure uncertainty.

4.5. Uncertainty analysis

Uncertainty analyses are conducted to identify and assess the impact of uncertainties. These analyses
of uncertainty are conducted in numerous domains. For instance, it is used in the analysis of chemical
processes, environmental concerns, and economic developments. Despite the fact that these uncer-
tainty analyses are applied in various fields, the "main steps” of this analysis are essentially the same.
The steps of the uncertainty analysis used in Warmink et al. (2010), Committee et al. (2018) and Traple
et al. (2014) are combined into the five steps below.

1. Specification of measurand.

Identify and classify uncertainties.
Importance assessment.
Quantification of sources uncertainty.

Propagation of sources of uncertainty.

@ o &~ DN

Communication of analysis.

The first step involves elucidating the measurement process. It is necessary to describe the process
and the steps required to achieve the desired outcome. Consequently, it is essential that it is evident
which inputs lead to which outcomes and what the relationship between variables is. In essence, this
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step defines the variables being measured and establishes the connection between the input quantities
and the final result. Step two must be carried out after this. This is the process of identifying uncer-
tainties. This step generates a list of potential sources of uncertainty. Van der Keur et al. (2008) stated
that uncertainty identification is a qualitative process involving expert opinion, literature review, brain-
storming sessions, group discussions, and stakeholder interviews. However, numerous methods for
identifying uncertainties have also been identified in other publications. The Delphi Method is a tech-
nique for gathering the information and opinions of a group of experts on a specific topic (Melander,
2018); for an uncertainty analysis, the topic will be the possible measurement uncertainties. Once
the uncertainties have been identified, they can be categorized into various categories. These types
are elaborated in Section 4.4. Step three involves identifying the most significant uncertainties. This
can be accomplished, for instance, through sensitivity analysis or expert interviews. Based on this, the
most significant uncertainties can be prioritized. The fourth step involves quantification of uncertainties.
In this case, estimates must be made regarding the various sources of uncertainty. Collecting data,
performing calculations, or using statistical methods may be necessary steps in this process. The fifth
step is to examine how uncertainties affect the final output; there are several methods for this. The
sixth step is communicating the results of the analysis.

4.6. Methods to assess uncertainty

4.6.1. Uncertainty analysis

Uncertainty analysis consists of the quantification and propagation of uncertainties. Quantification in-
volves determining the uncertainties of the input factors. Propagation involves looking at how all these
factors affect the model’s outcome. The Intergovernmental Panel on Climate Change (IPCC) is an
organization that makes scientific assessments on climate change and writes reports on it. They also
describe how to deal with uncertainties in emission inventories. They describe two methods for propa-
gation, monte carlo simulation, and simple error propagation. These output of these methods is typically
a range of possible values for the estimated emissions or removals, along with an indication of the like-
lihood or confidence associated with those values.

For monte carlo simulation, the uncertainties of input factors must be defined as probability distribu-
tions. Uncertainty quantification may be conducted in a variety of methods, computing the uncertainty
distribution based on empirical data, expert judgement to generate estimates, or by characterizing the
data using quality indicators (Weidema & Wesnaes, 1996). There are five distribution functions that are
commonly used; the normal, lognormal, uniform distribution, triangular and fractal distributions. The
(Frey et al., 2006) describes in which situations a particular distribution can be chosen. The normal
distribution can be chosen when the range of uncertainties is narrow; the lognormal distribution can be
chosen when there is non-negative uncertainty and when the uncertainty is larger. The uniform distri-
bution can be chosen when the uncertainty is physically bounded between a lower and upper bound
(or by expert judgment). The triangular distribution can be chosen when there is an upper bound, a
lower bound, and a preferred value. When there is an empirical distribution in which the relative prob-
abilities of different ranges of values for a variable are calculated, a fractal distribution can be used.
When the parameters are specified by a probability distribution, the computation of the output factor is
performed several times, with a random parameter value from the probability distribution being used
each time. The results of a Monte Carlo (MC) simulation consist of a number of potential outcomes
of the computation, so providing a representation of the likelihood of distinct possibilities based on the
uncertainty and fluctuation of the input data (Rd6s et al., 2010). This involves the expected values
and standard deviations of the model outputs based on the probability distributions of the inputs and
parameters (Kroese et al., 2007).The challenges of this method are that finding probability distributions
that characterize the input data can be time-consuming and difficult. Available data rarely occur in the
quantities and form needed, to do classical statistical analysis. As a result, expert judgment is often
required to determine probability distributions and their parameters. Besides that, correlations between
parameters must also be taken into consideration while doing MC simulations, since failure to do so
might lead to an overestimation of uncertainty in the final findings (Bojaca & Schrevens, 2010).

Simple error propagation requires estimates of the mean and standard deviation of each input, as well
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as the equation through which all inputs are combined (Frey et al., 2006). If estimates are derived
from models, the uncertainty associated with the activity data and model parameters must be entered,
and expert judgement or error propagation calculations may be necessary to separate the uncertainty
estimate (Marland et al., 2014). The approach assumes that the relative ranges of uncertainty in the
emission and activity factors are the same in the base year and in year t, and that the standard deviation
divided by the mean value is theoretically less than 0.3 (Frey et al., 2006). Once the uncertainties in
the categories have been determined, they can be combined to provide uncertainty estimates for the
entire inventory in any year and the uncertainty in the overall inventory trend over time.

4.6.2. Scenario analysis

Scenario analysis is usually used to determine how future events affect a result. These future events
are uncertainties. By looking at how they affect the outcome, it is possible to get a grip on possible
outcomes in the future. Frequently, a theoretical best-case scenario and worst-case scenario are used
to determine the range of possible outcomes (Balaman, 2019). In addition, R66s & Nylinder (2013)
discusses that scenario analysis can be used not only for future situations but also as a kind of sensitivity
analysis for model assumptions. Examples mentioned are allocation methods, system boundaries,
allocation methods, and data choices. Scenario analysis can be used to test how these choices affect
the result.

4.6.3. Sensitivity analysis

Sensitivity Analysis (SA) is a technique that measures the effect of uncertainty on one or more in-
put variables on output variables (Pichery, 2014). There are several methods to perform a sensitivity
analysis. The first method is the one-at-a-time sensitivity analysis, which is conceptually the simplest
method. A sensitivity ranking may be achieved rapidly by changing each parameter by a fixed percent-
age while holding the others constant and measuring the change in model output (Hamby, 1994). This
type of analysis is called ’local sensitivity analysis’. The most significant disadvantage of sensitivity
analysis is that system variables are often interrelated, thus modifying one of the elements would likely
influence the others. Assigning an optimistic or pessimistic value to the parameter also relies on the
subjective interpretation of the decision maker, which may negatively impact the objectivity and, there-
fore, the precision and dependability of the study (Balaman, 2019). To make this 'simple’ analysis more
power full, the parameters can be evaluated by the standard deviation around the mean value (Hamby,
1994). Factorial design is another type of one-at-a-time analysis (Hamby (1994), Hunter et al. (1978)).
Within this method a number of samples of each parameter are combined with each other. Factorial
sensitivity analysis is a global sensitivity analysis since it entails systematically altering all input param-
eters throughout a range of values, as opposed to merely examining the output’s sensitivity to a single
parameter or set of parameters. By analysing the impact of all possible combinations of input param-
eters, factorial sensitivity analysis provides a comprehensive evaluation of the model’s sensitivity and
can aid in the identification of the most significant input parameters and their interactions. The sen-
sitivity index is another method to calculate the sensitivity. Hoffman & Miller (1983) advocate varying
each parameter by its maximum and minimum allowable values and then observing the effect on the
model’s output in relative terms. The remaining variables remain unchanged. Using actual minimum
and maximum values for input parameters as opposed to arbitrary percentage values provides a more
accurate depiction of the model’s sensitivity. This is also known as uncertainty importance analysis
(R66s & Nylinder, 2013).

4.6.4. Choosing the right method to quantify uncertainty

In this section, three different methods for evaluating uncertainties have been discussed, each with their
own advantages, disadvantages, and intended purposes. Maier et al. (2021) has published a paper
that discusses the relationship between these methods and identifies which method is best suited for
different situations. The suitability is determined according to two characteristics: the desired outcome
and whether uncertainties occur in the input of the model or not. This paper focuses primarily on sce-
nario analysis from the perspective of representing possible future scenarios. However, as discussed
in section 4.6.2, scenario analysis can also be used for other purposes, namely it also can be used as
a kind of sensitivity analysis for model assumptions.
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Figure 4.3: Guidance framework suitability of methods Maier et al. (2021)

4.7. Conclusion uncertainties

This research aims to design a tool to determine the uncertainty of a carbon footprint measurement
of freight transportation. The previous chapter determined the scope of the carbon footprint of freight
transport. This chapter looked at the different types of uncertainties in the literature. It also looked at
how a general uncertainty analysis is performed. The steps for this analysis can be of great impor-
tance in this research because these steps can help design the tool. The first step is to identify the
uncertainties that arise in a carbon footprint of freight. Using the theoretical framework presented in
Figure 4.2, uncertainties can be investigated in a structured manner. During the identification phase,
attention will be focused on the five locations where uncertainty can arise. Additionally, it is now known
that the cause of uncertainty can be attributed to ambiguity, which represents the different views that
people may have when looking at a model or variable, epistemic uncertainty, which occurs due to lack
of knowledge such as limited and inaccurate data, measurement error and incomplete knowledge, and
stochastic uncertainty, which arises from the randomness originating from external input data, func-
tions, parameters, and model structures. By employing these two dimensions, the uncertainties of
freight transport can be identified through reflection on the background research on the carbon foot-
print of freight transport, observing a project that measures carbon footprint to gain practical knowledge
and insight into the complexity of the subject that may not be known in the literature. Additionally, in-
terviews are conducted to uncover other uncertainties. The next steps involve determining the most
significant uncertainties and attempting to quantify their effects to provide a tool that clarifies not only
the carbon footprint, but also the uncertainty.



Insights of the uncertainties in a Carbon
Footprint measurement

The previous chapters were part of the research phase. This means that all relevant background re-
search has been done. First, the term "carbon footprint” is researched and how this scope is defined
in this research. Then the topic of uncertainty was examined, a framework was chosen that deter-
mines how this research defines uncertainties. This chapter represents the insight phase, meaning
that insights are created based on the information gathered. The insights provide insight into the un-
certainties that arise in a carbon footprint measurement. The uncertainties have been identified based
on the framework drawn up in chapter 4. Various data inputs were used for this: interviews, field
research, and literature.
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' Research questions to be answered in this chapter: !
l « RQ5 What types of uncertainties can be identified from the literature and practice and how can
l they affect carbon footprint mapping? l

5.1. Method to identify uncertainties

Identification of uncertainties in the carbon footprint of freight transport involves a structured approach
that incorporates several research methods. The theoretical framework that is discussed in the pre-
vious chapter outlines the five locations and causes of uncertainties and is a significant input for this
approach and enables a targeted search for potential uncertainties in the various components of the
carbon footprint calculation. To identify uncertainties in the carbon footprint of freight transport, a re-
flection of the background research is done. Subsequently, interviews are conducted with experts in
carbon footprinting of freight transport. During the interviews, the most significant uncertainties and
challenges in the carbon footprint of freight transport are identified. Furthermore, field research is con-
ducted to measure and analyze the carbon footprint of freight transport in practice. By combining these
various research methods, a comprehensive understanding of the complexity of the subject is obtained,
and the most significant uncertainties in the carbon footprint of freight transport are identified. The ap-
proach is visible in Figure 5.1.

Interviews: the first input consists of three interviews with experts in the field of carbon footprint mea-
surements of freight. The interviews are available in Appendix A. Semi-structured interviews were
conducted. This means that a few questions were the same for each respondent, but follow-up ques-
tions were created based on each respondent’s responses in order to get to the heart of the answer. In
addition, the responses were compared to determine which uncertainties were named multiple times
and which uncertainties were not mentioned as frequently.

Field research: The second data inputis knowledge gained from field research, which includes partic-
ipating in a project of Districon to calculate the carbon footprint of freight transport to a construction site.
During the field research, insights were gained through site visits, interviews with co-makers (subcon-
tractors), review of provided data, and project-related meetings. This is elaborated upon in Appendix
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D. Field research is an important methodology in studying and understanding real-world phenomena.
In the context of carbon footprinting, it can provide valuable insights into the actual operations and
practices of the transport and logistics industry. This is particularly important because the accuracy of
carbon footprint calculations relies heavily on the quality of the data used, and field research can help
to verify and validate the data collected through other sources.

Background study: the third data input is the discussed literature from the Research phase. To
identify uncertainties in the carbon footprint of freight transport, this background research is conducted
initially. This background study examines relevant studies, reports, and norms related to the carbon
footprint of freight transport. The results of the background research served also as an input for this
phase. Uncertainties can be identified by examining the literature on freight transport emissions and
then examining the theory, its critiques, and its applications.

Nature of uncertainty:

1. Stochastic: Randomness originating from external input data
2. Ambiguity: Because people have different interpretations, uncertainty arises in the actual definition chosen
3. Epistemic: Occurs due to lack of knowledge
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5.2. Uncertainties found in the Context

The first location where potential uncertainties arise is the scope of the context. This stage involves
determining exactly what will be measured. When the context is unclear, the first uncertainties can
arise; these uncertainties can then spill over into data collection and even the incorrect application of
a calculation method. To identify potential uncertainties in this phase of the project, factors influenc-
ing the context and scope determination of a carbon footprint measurement were examined, as well
as how this works in practice. These findings are summarized in Table Y, which further classifies the
uncertainties. In addition to the location where the uncertainty occurs, the nature of the uncertainty is
assigned and the level of uncertainty is appropriated. Using a ’level of uncertainty’ approach to classify
uncertainty on a scale ranging from 'complete certainty’ to 'total lack of knowledge’. The ’nature of
uncertainty’ distinguishes whether uncertainty arises mainly from inherent variability within a system or
from a lack of knowledge or ambiguity.

Definition of carbon footprint - Data input: Literature and interviews

The scope of the context starts with the definition of the carbon footprint. It is already indicated from
the literature (Matudtik & KocCi (2021); Pandey et al. (2011); Wiedmann & Minx (2008); Wright et al.
(2011)) that this definition is not always clear, as discussed in chapter 3. This was confirmed in the
interviews conducted with experts: "Carbon footprint for me is CO2, we are also working on nitrogen
emissions and PM10 and PM 2.5 but | don'’t see that as carbon footprint” - Expert BigMile, ”If | had
to define it, | would say, it is about all greenhouse gas emissions. From either a company, a product
or a service.” "With NOX, Black metal and hydrogen, it is often still under discussion whether or not
to include these in the Carbon Footprint” - Expert CEDelft, "A carbon footprint is the creation of an
emissions profile of certain business processes. In a literal sense, it is the number of CO, equivalents
emitted.” - Expert Districon. From these quotes, it can be seen that two experts give the same kind of
answer, and one only discusses CO,. The expert of CE Delft additionally names three other emissions
that are often under discussion. Consequences of this uncertainty: incomplete data may be requested
when it is unclear what is being investigated. An example is HCFs, a substance that falls under 'green
house gases’ but not CO,. When refrigerated transport is used, a separate calculation is needed for
the number of CO, equivalents to be included in the carbon footprint if the scope is to cover all green
house gases.

Boundary freight movements - Data input: Literature, interviews and field research

In addition, it is essential to be clear about exactly what one wants to map. The carbon footprint of
freight can be enormously broad, so it must be clearly stated what is to be mapped in the chain. This
could include transshipment and storage, international freight, all modes of transport or just one. Dis-
tricon’s expert also outlines this importance: "The carbon footprint depends on how broadly you draw
the scope. So is it only about the transport a company performs alone or is it also about the transport a
company causes. And is it about the emissions from also producing the vehicle or just the activity?”. In
addition, in the current theory (EN16258), the scope of the calculation is called the Vehicle Operating
System (VOS). However, it is unclear how it should be described; this point is also criticized in the
literature because this can result in ambiguity (Ehrler & Seidel, 2014; Wild, 2021). This results in a
possible cause for uncertainty. When the scope is unclear, the wrong thing can be calculated, and the
wrong information requested. This uncertainty was also reflected in practice during the field study.

This uncertainty occurred at several points in the project. It first became apparent when cross-validation
was observed on the construction site. Cross-validation was used to see if the data provided by the
co-makers matched what was seen in practice. During cross-validation, truck drivers were asked what
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the origin of the shipment was and whether this was the endpoint of the shipment. However, the
"origin” seemed not well defined beforehand. During cross-validation, truck drivers were asked about
the shipment’s origin and whether this was the final destination. In practise, some truck drivers provided
the shipping document’s address, which did not always indicate the shipment’s origin, while others
provided the shipment’s intended pickup location. However when truck drivers were asked, "Where
are you coming from?” other answers emerged. After some questioning of drivers, it was found that
there were mainly six options in terms of transportation movements to the construction site. These
options are shown in Figure 5.2. This prompted the following discussion: what is considered as "freight
movement to and from the construction site? And what do we see as ’origin and 'destination?”. Since
the goal is to calculate the carbon footprint of freight transport to and from a construction site, it would be
incomplete when the movement from the holding place of the truck to the supplier is not included since
this is already part of the movement to the construction site. When requesting data from the co-makers,
it was also found that the definition of origins, destinations, and stops could be unclear in the beginning.
For example, CO-maker X said in an interview, "The scope and purpose of the carbon footprint must be
clear from the beginning; otherwise, we are comparing apples to oranges. So do you include or exclude
the drive to the distribution center?”. Consequences of this uncertainty: These findings show that when
the project’s scope is not clearly defined beforehand, there is ambiguity regarding the boundaries of
freight movements. This can cause confusion regarding whether “origin” refers to the origin of the
freight movement or the shipment’s origin. If it is not specified in the data request, a different type of
carbon footprint may be calculated. This creates uncertainty regarding the actual number and whether
or not the numbers can be compared.
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Table 5.1: Context uncertainty, classification

Context

Cause of uncertainty Explanation Nature Level

Definition of carbon footprint | There are different interpretations of a ’carbon | Ambiguity Scenario
footprint’, other interpretations can lead to an-
other scope and leads to including or excluding
emissions in the measurement.

Boundary carbon footprint of | There are different system boundaries that can | Ambiguity Scenario
transportation be defined for a carbon footprint of freight, for ex-
ample: taking all the transport elements in the
chain or only between two segments. Or includ-
ing empty trips or not. When these boundaries
are not clear, different interpretations can arise.

Context uncertainty

5.3. Uncertainties found in the Model Structure

The second potential source ('location’) of uncertainty that will be discussed is uncertainty within the
model’s structure. Uncertainties in the model structure can occur by the representation of the reality
to the model. This can be due to uncertainty in relationships between inputs or outputs and variables,
among variables and definitions or assumptions. The calculation methods behind most tools/models
to map a carbon footprint of freight transport are based on the EN16258 method. Although more and
more tools also base themselves on the GLEC Framework because the future ISO sees this as the ba-
sis. To identify uncertainties arising from assumptions of reality, the interrelationships between factors
in the calculation method were examined to determine which relationships were excluded.

Linear relationship CH, and N, O with fuel consumption - Data input: Literature and protocol

It was found in the literature that the relationship between nitrous oxide (N,O) and methane (CH,) is not
linear with fuel consumption (Lipman & Delucchi, 2002; Rodriguez & Dornoff, 2019). As the effect from
the catalyst is not incorporated in the carbon footprint calculation, due to the linear effect of energy con-
sumption and emission factor, this means that the amount of CH, and N,O might be underestimated.

Different allocation methods - Data input: Literature, protocol and interviews

Moreover, there is uncertainty in the allocation method. Multiple allocation methods have been tested
(Davydenko et al., 2014; Lewis et al., 2016; Kirschstein et al., 2022; Wild, 2021). In reality, when a truck
drives a certain route, emissions are generated, and the sequence of stops determines the amount of
fuel consumed to reach a particular customer. To prevent, for example, the direction of the route from
affecting the emissions of a shipment to a customer, an allocation method is used to distribute the
emissions of the entire route as fairly as possible. This means that the allocation method does not
affect the total emissions, but only the distribution of emissions among customers. The uncertainty
arises from the fact that there are different ways to apply the allocation method. Currently (according
to the EN16258 standard), an allocation method must be chosen that represents the ’limiting factor’
of the cargo in combination with the distance. There is much discussion about the limiting factor of a
shipment, as it can have different meanings and can be misapplied. Therefore, recent studies recom-
mend using the ton-km allocation method, where the distance used represents the great-circle distance.
When there is no such standard or regulation in place, uncertainty can persist due to differences in in-
terpretation and the definition of the limiting factor. Therefore, it is important to document the allocation
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method used and any assumptions made, and to quantify the uncertainty associated with the allocation
method. This is also confirmed in an interview with the expert from CE Delft: ”if you’re talking about
services, then it's very important to allocate in a certain way. There are still many possibilities to allocate
in different ways. One tool does it based on great-circle distance, while other parties do it based on
the shortest feasible distance, and these kinds of things do lead to significant differences. In addition,
there is often a discussion about whether to combine these distances with the load in tons, based on
volume, or based on packages.”. In essence, allocation methods are essential for assigning emissions
fairly to each customer in a freight transport route. The choice of allocation method can significantly
impact the distribution of emissions among customers, though the total emissions remain unchanged.
It is crucial to understand that the varying interpretations and definitions of the limiting factor contribute
to the uncertainty in allocation methods. By clearly documenting the chosen method, its assumptions,
and the associated uncertainty, transparency and comparability between different studies and assess-
ments can be promoted. Ultimately, a widely accepted and standardized allocation method, such as
the ton-km method with great-circle distance, which is favored by the future ISO standard, could help
reduce this uncertainty and improve the consistency of emissions reporting in the freight transport sec-
tor. However, it is important to note that even this future ISO standard may have exceptions, which
underscores the need for continuous improvement and refinement of allocation methods in the industry.

Assumptions and different approaches in calculating emissions - Data input: Literature, protocol
and interviews

The carbon footprint calculations are based on the amount of data and information available. When
data is missing there are options to reconstruct the data as best as possible to make an accurate
estimation. Due to these certain assumptions, certain factors cannot be included 100%. This creates
uncertainty because the chosen model or method mimics part of reality, and cannot include everything.

Table 5.2: Model structure uncertainty, classification

Model structure

Cause of uncertainty Explanation Nature Level

Different allocation methods There are multiple options to allocate emissions, the method that is used has | Ambiguity Scenario
a big influence on the carbon footprint of a shipment of the customer. In liter-
ature, multiple methods are discussed (see Subsection 3.7.2). The EN16258
standard recommends ton-km with GCD, STD, or ADD depending on the trip
type, the new ISO standard recommends allocation by the ton-great circle dis-
tance or ton-shortest feasible distances. However, there are some exceptions
to replace ton with another unit.

Lineair approach calculating | In literature, it was found that the emissions N,O and CH, have not exactly | Epistemic Scenario
emissions a linear relationship with energy use as CO,. This is a simplification of the

model.
Assumptions and different ap- | Based on the amount of information available on energy consumption and | Epistemic Scenario

proaches in calculating emis- | transport activities, other approaches exist to calculate the carbon footprint
sions of a shipment.

e
=)

5.4. Uncertainties found in the Input

The third potential source ('location’) of uncertainty that will be discussed is uncertainty within the
model’s input data. There may be uncertainties in the data used as input for the model or due to
external factors. The data input can consist of information that is necessary for estimating the results.
Multiple inputs are needed to create a carbon footprint of freight transportation. Depending on the avail-
ability and detail level of information, certain inputs are required. All data inputs required are discussed
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below. These inputs can have multiple types of uncertainties.

Energy type - Data input: Field research

To calculate the carbon footprint based on kWh or number of liters of fuel requires knowledge of the
energy type. Using this information, the appropriate emission factor is selected to arrive at CO, equiv-
alents. In practice, several uncertainties for this have been found: the fuel type is unknown or the fuel
type has not been made specific. When the fuel type is unknown but the license plate type is known,
the fuel type can be looked up on sites such as 'rdw kentekencheck’. However, one then ends up
with the second type of uncertainty: these types of websites do not distinguish between, for example,
HVO-100 or B7 diesel. These emission factors are quite different, so the effect of this uncertainty can
be large (Rijkswaterstaat, 2022). This also applies to electricity. There are differences in the emission
factors for "unknown” power, green power, gray power or biomass. So details of the energy type are
also important when electric cars are used. For electric energy, an additional unknown is the ’energy
mix’, i.e., the mix of fossil, bio, renewable, and nuclear fuels. The uncertainty is further increased by
the international nature of the electricity market. Gray energy refers to all electricity generated from
non-renewable sources, such as fossil fuels, nuclear energy, and others. The emission factor is deter-
mined by this energy mix. Emission factors for "unknown” power are influenced by the total energy mix.

Distance - Data input: Field research and background research

When the amount of fuel in liters or kWh consumed by a vehicle during a trip is unknown, an estimation
is often performed using the average fuel consumption per kilometer or ton kilometer and therefore the
distance of the trip is needed. However, uncertainty can arise in the definition of distance or due to
the absence of data. These are discussed separately, along with their effects. There are five differ-
ent meanings of distance: the first is great-circle distance, the second is planned distance, the third is
shortest feasible distance, the fourth is actual driven distance, and the fifth is network distance. This
uncertainty was clearly visible in the field research, as it was observed that companies saw the planned
distance as the actual driven distance, but also constructed routes themselves using Google Maps and
reported these as the actual driven routes. This was discovered by critically examining the provided
data and asking specific questions about the distance. Thereby uncertainty can arise when these dis-
tances are assumed to be equal. For example, if the average fuel consumption is calculated using the
number of liters and the total planned distance, and then multiplied by the number of kilometers actually
driven, an incorrect calculation is made. In addition, it is questionable whether the carbon footprint can
be compared when different distances are used. When calculating emissions for an entire route, it is
most realistic to use the actual driven distance, as it includes detours. When distance is unknown, an
estimation must also be made, for which Google Maps can be used, which requires input of address
data. If shortest feasible distance is interpreted as shortest time to drive from A to B then this approach
is a form of the shortest feasible. However, when shortest feasible distance is seen as shortest distance
in kilometers this approximation is not representative with the shortest feasible distance (Davydenko et
al., 2021). So the question is whether reconstructing routes in Google Maps falls within the 'range’ of
five defined distances, or whether this actually involves another type of distance. Another aspect that
should be considered is the concept of 'consolidation distance’, which refers to the shared transporta-
tion of goods with different origins and destinations. In this case, the goods are transported together,
resulting in a relatively longer distance due to detours. However, this disadvantage can be partly or
entirely offset by the fact that separate trips do not need to be made (e.g., no empty positioning trips
are required). This is often dependent on the Shipment type and will be discussed further in that piece.

Amount of energy - Data input: Interviews

The amount of energy transmitted per trip or used to calculate average energy consumption per km/ton-
km/unit-km can also contain uncertainty depending on the measurement method. The total amount of
energy can be measured using the latest on-board computers; here, energy consumption is accurately
tracked through in-car systems, or it is measured using data on fuel cards. The uncertainty lies in the
use of data from fuel cards. If the average energy consumption for the month of January is calculated
and the number of liters used that were refueled in January then it is possible that some of this energy is
used in February; these kilometers are then not included in the calculation. This results in a measure-
ment uncertainty. This uncertainty was discovered during an interview with an expert: "When reading
data from a fuel card, it may happen that if you refuel on the 31st, the number of liters is recorded in a
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month in which you did not actually consume those liters. This overlap decreases when you look at a
higher level of detail”.

Average fuel consumption ”delivered” - Data input: Background research

The perfect information would be if the fuel consumption of the trip is available. When this information
is not available, averages are used. One of the uncertainties of provided averages is the uncertainty
about how it was calculated. This has already been briefly discussed in Amount of energy, but it also
applies to the denominator it is divided by. Namely, it is divided by great circle distance, actual driven
distance, or planned distance. One uncertainty is that the average fuel consumption per ton kilometer
(CPI) is provided, but the method used to calculate this is unknown. Interpretation of the CPI may vary,
which might lead to uncertainty in its use, particularly with respect to differing definitions of payload and
distance. This is discussed under the headings Payload and Distance. Additionally, uncertainty in the
representatives of the CPI arises due to its use of an average value, which may not accurately reflect
specific delivery scenarios due to differences in route characteristics, driving behavior, environmental
influences, and vehicle characteristics. Similarly, the average fuel consumption per vehicle-km may
also be affected by payload, but this effect is dampened by averaging over multiple deliveries. In situ-
ations where the average fuel consumption is unknown, default factors based on industry averages for
specific vehicle types can be utilized. However, this method introduces its own level of uncertainty, as
it involves the selection of an industry average for a specific vehicle type, which is discussed in detail
under the section labeled Vehicle type. Thereby this average does not account for route characteris-
tics, driving behavior, environmental influences, payload, and vehicle characteristics of the carrier. A
more specific estimation of fuel consumption can be achieved by modeling the fuel consumption using
established models that incorporate standard values, such as payload, to calculate the fuel consump-
tion. The Lean and Green program and the BigMile tool differentiate between levels of aggregation
and the accuracy of data. The more aggregated the data, the less accurate the figure is, which means
that the actual situation is less accurately reflected. This also applies to whether the data is available
at the vehicle level or the fleet level. The less representative the average is for the situation, the more
uncertainty this creates. To illustrate visually what the use of averages means for the actual situation,
Appendix D shows which factors are obscured by the use of averages and default factors.

w ' Discussion point of the use of average fuel consumption and aggregation level: :
! ' A dilemma and point of discussion herein is whether variation in the carbon footprint, due to for exam-
| ple, bad driving behaviour, seasonal variations or a high road gradient on one trip should be passed w

‘on to the specific customer(s) of that trip. The GLEC framework advocates that with aggregating the :
w emissions of one year and allocate these emission will even out ‘'seasonal variations’ and outlying !
w values (SFC, 2020). However, one might argue that for example a factor as driving behavior is gener-
w ally not attributable to a particular customer, road gradient and customer location can be location and w
w customer-specific. For example, customers located in busy areas, such as city centers, might cause w
w more emissions due to increased congestion, while those on the outskirts of a city might contribute w
w less. These insights or options to differentiate are limited when emissions are calculated and allocated w
w on annual basis. This is also still a point of discussion in the literature, this was also discussed in sec-
w tion 3.10 and 3.9.1 because it is a fact that a lower level of aggregation does allow for more detailed w

| |n3|ghts |

Vehicle type - Data input: Field research and interviews

The type of vehicle used to transport goods is important to know when there is no average fuel con-
sumption available from the transporter or shipper. In such cases, an estimate needs to be made
regarding the fuel consumption of a vehicle. Alternatively, a default emission factor may be selected
based on the type of vehicle. Uncertainty arises in the classification of vehicles into specific categories.
Misclassification of a vehicle leads to the selection of an incorrect energy consumption or emission
factor. During the field research and site visits, it was observed that there are many different types
of trucks and delivery vans coming to the construction site. One truck, for example, has a grab arm,
while another does not. As a result, the classification of such vehicles was found to be quite difficult.
In addition, trucks with different weights have different average fuel consumption, which further adds
to uncertainties in defining the same vehicle class. This was also confirmed in an interview with an
expert, who stated that "For example, when talking about smaller trucks, you already notice that the
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definition of that truck becomes difficult”.

Shipment type - Data input: Background research

Another source of uncertainty arises when the shipment type is unknown, meaning it is unclear whether
the type of goods being transported falls into the ’bulk’, 'average’, or 'volume’ goods category. More-
over, there is room for interpretation, which may lead to the incorrect selection of goods type. This
uncertainty affects the choice of emission intensity factors. The type of goods determines assumptions
about the amount of empty running of the vehicle and its occupancy, as discussed in Subsection 3.9.
Schmied & Kndrr (2012) provides an example that a characteristic of heavy bulk transport is that the
weight of the transport is often a limiting factor, resulting in trips being nearly 100% loaded in terms of
maximum weight capacity. However, these trips are almost always dedicated (not shared) and have a
high percentage of empty trip kilometers. This differs from volume and general goods, where the lim-
iting factor is often not weight but volume, with a weight-related occupancy rate of around 30 to 40%.
However, these trips are often shared, and the proportion of empty trip kilometers is lower. Therefore,
when it is unknown or incorrectly determined which category a shipment falls into, this can have a sig-
nificant impact on the emission intensity factor.

Amount of trips - Data input: Field research

Another source of uncertainty that was observed is the number of trips that were made. During the
field research, it was found several times that some trips that were made were not reported, this is a
reporting omission. This was verified with delivery notes that were provided at the construction site and
the reported data. This results in an unrealistic picture of the total emissions because a part of it is not
taken into account.

Origin, stops and destinations - Data input: Field research, background research and interviews

The origin, stops, and destinations are important for various reasons in calculating the carbon footprint.
For instance, in the absence of distance, these data are required to reconstruct the route to calculate
the total emissions of the route. Furthermore, these data are important in calculating the allocation
based on the great-circle distance. Additionally, misinterpretation of these definitions may result in in-
correct data regarding the distance and stops. Also, the data may be incomplete, which can lead to
uncertainties. The causes of these uncertainties and their consequences will be discussed one by one,
all of these are experienced during field research. Misinterpretation of definitions can result in missing
parts of the route. This uncertainty is discussed in the context section. The scope of the calculation
may not be well understood by the person providing the route data. For example, when the total energy
consumption is needed to calculate the total emissions based on the average energy consumption and
distance based on the origin of the truck to the final destination of the route of the truck (Guajardo,
2018). When the origin is interpreted as the origin of the cargo, a different address may be provided
than when asked where the truck comes from. It may be the case that the truck comes from a base
or another customer and has to pick up the cargo and deliver it to, for example the construction site.
However, this distance is still caused by the cargo. The same applies to the interpretation of stops
on a route and the destination. The person providing the data may understand that stops should only
be reported until the delivery destination and not beyond (leaving empty trip information missing). If
these definitions are not interpreted correctly and the cargo is a shared cargo, this can lead to a lot of
uncertainty about the actual route taken and, therefore, the distribution of emissions. The level of detail
of the origin, stops, and destination. When an address is provided, the shortest feasible distance and
the great-circle distance can be accurately calculated, but this accuracy decreases as fewer details
are known (for example, if only the place name of the stopover is provided). This is also mentioned
by an expert in a interview: "Furthermore, there are uncertainties in the definition of origin and des-
tination. So what we often see or like to have is that there are postcodes, which we can then view
with our Geo code to see where they are located and what the intermediate distances are, but not all
companies have that information, especially shippers. Then they only know that a shipment went from
New York to Rotterdam. But Rotterdam is very large and so is New York, so that is also quite uncer-
tain”. Lastly, there is also the possibility that no data is available about intermediate stops or the base
of the truck. This results in assumptions that need to be made, which can lead to significant uncertainty.

Payload - Data input: Interviews and Background research
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The payload is an important input when the KPI CO,-equivalents/ton or CO,-equivalents/ton-km is
requested. Thereby payload can be expressed in different units, such as ton, m3, m2, load meters,
pallets etc. This can also introduce uncertainty. This is particularly important because goods are het-
erogeneous, and the choice of reference unit can make a significant difference in calculations. This
uncertainty is also dependent on the conversion factors. When the payload needs to be converted
to tons for an emission intensity or fuel intensity figure (expressed in units/ton-km). Additionally this
is a crucial element in case of a shared trip, where emissions need to be allocated based on ton-km.
Thirdly, it is essential for estimating fuel consumption, where payload is an input. Uncertainty can arise
in the payload when it is interpreted differently, for example, when the load carriers (the weight of a
pallet or container) are included. This was specifically observed in an interview with the expert from
CE-Delft: "However, sometimes there is discussion about the calculation of weights in transportation.
We always calculate based on the content of the container, for example, and we base the emissions
per ton-kilometer on that. So, we only consider the weight of the cargo that is actually inside the con-
tainers as the effective load. While some others also take the weight of the container into account and
consider the container itself as a type of commodity”. Moreover, uncertainty can also arise when the
payload is unknown and is estimated using an average payload.
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Table 5.3: Data input uncertainty, classification

Input

Data input

Cause of uncertainty

Explanation

Nature

Level

Average  energy
consumption/unit-
km during a certain
time

Average value, the more aggregated the less
detail about a certain situation or trip is known.

Specific route characteristics, driving behaviour, en-
vironmental influences and when multiple vehicles
are used; also the vehicle characteristics are less re-
flected in the output.

Stochastic

Statistical

Unknown how average
consumption/unit-km is calculated

energy

When it is unknown how the average energy
consumption/unit-km is calculated, there is a possi-
bility that wrong calculations are made.

Epistemic

Deep uncer-
tainty

Average  energy
consumption/km
during a certain
time

Average value, the more aggregated the less
detail about a certain situation or trip is known.

Specific route characteristics, loading characteris-
tics, driving behaviour, environmental influences
and when multiple vehicles are used; also the ve-
hicle characteristics are less reflected in the output.

Stochastic

Statistical

Unknown how average energy consump-
tion/km is calculated

When it is unknown how the average energy con-
sumption/km is calculated, there is a possibility that
wrong calculations are made.

Epistemic

Deep uncer-
tainty

Amount of energy

Measurement error amount of energy

When the fuel consumption is based on data from
fuel cards, there exists a measurement error, when
someone tanked on the 31st of the month, the data
is included in the past month but is used in the next
month.

Epistemic

Statistical

Default energy
consumption/km

Approximation of fuel consumption

No specific route characteristics, driving behaviour,
environmental influences and vehicle characteristics
of trip reflected in the output. Due to approximation
effect of load included (default factors fuel consump-
tion empty, full and capacity).

Stochastic

Statistical

Industry average

No specific route characteristics, loading character-
istics, driving behaviour, environmental influences
and vehicle characteristics of trip reflected in the out-
put.

Stochastic

Statistical

Energy type

Specifications or the energy type is unknown

It might be the case that, for example, the fuel type
is defined as "diesel” while there are multiple types
of diesel.

Epistemic

Scenario

Origin, stops and
destination  ship-
ment

Different interpretations of origin

Often the destination of a shipment is known, the ori-
gin of the transport of a shipment can have ambiguity
when this is not defined clearly.

Ambiguity

Deep uncer-
tainty

Aggregated level ’'origin’ and ’destinations’
due to lack of knowledge or privacy reason

It might be that organizations only know the origin as
“city” and have no specifications at the 'postal code’
level.

Epistemic

Statistical

Information stops are unknown, or only a part
is known.

When only a part of the trip data is known or the trip
data is unknown, assumptions have to be made.

Epistemic

Deep uncer-
tainty

Payload

Multiple definitions of "weight” payload

When average fuel consumption is defined as per
tonne-km, there could be different interpretations of
tonne (packaging included or not).

Ambiguity

Deep uncer-
tainty

Information payloads are unknown, or only a
part is known.

When only a part of the payload is known or the pay-
load is unknown, assumptions have to be made.

Epistemic

Scenario

Shipment type

Different interpretations of shipment type

When the shipment type is interpreted differently, the
wrong emission intensity factor can be applied.

Ambiguity

Deep uncer-
tainty

Shipment type unknown

When the shipment type is unknown, there is arange
of possible emission intensity factors that can be ap-
plied.

Epistemic

Scenario

Distance

Multiple definitions of distance

Uncertainty can arise when these distances are as-
sumed to be equal. For example, if the average fuel
consumption is calculated using the number of liters
and the total planned distance, and then multiplied
by the number of kilometers actually driven, an incor-
rect calculation is made. In addition, it is question-
able whether the carbon footprint can be compared
when different distances are used.

Ambiguity

Scenario

Distance unknown

When the distance is unknown, an estimation must
also be made, for which Google Maps can be used,
which requires input of address data. When done in
this way, the shortest feasible distance is calculated.
This means that there is a deviation from the real
driven distance.

Epistemic

Statistical

Vehicle type

Different interpretations of vehicle types

There are multiple ways and interpretations to de-
scribe a vehicle type. Due to this, the input for fuel
consumption estimation can be wrong or the wrong
emission factor will be applied.

Ambiguity

Scenario

Vehicle type unknown

When the vehicle type is unknown, there will be a
broad range of possible vehicle types. Due to this,
the input for fuel consumption estimation can be
wrong or the wrong emission factor will be applied.

Epistemic

Scenario

Amount of trips

The amount of trips is unknown or only a part
of the trips is known.

When only a part of the total trips is known or the trip
data is unknown, assumptions have to be made, for
example based on the total demand and capacity of
a vehicle. This brings uncertainty in the amount of
trips as input data.

Epistemic

Deep uncer-
tainty
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5.5. Uncertainties found in the Parameters

The fourth potential source ('location’) of uncertainty that will be discussed is uncertainty within the
model's parameters. Uncertainties can occur within a priori chosen or calibrated parameters. In the
calculation of a carbon footprint, two types of parameters are commonly used: a priori defined param-
eters and calibrated parameters. A priori defined parameters are based on theoretical considerations
or previous experiences, and are often used when empirical data is lacking or incomplete. In contrast,
calibrated parameters are based on empirical data or measurements, and are adjusted to better reflect
the actual conditions.

Measurement error conversion factors - Data input: Literature and interview

Conversion factors are typically calibrated based on empirical data or measurements. Conversion fac-
tors are used to convert other types of ’payload’ to weight, to allocate the emissions according to the
weight (and distance), to use the default emission intensity factors or to calculate the CPI (kg CO,e/ton-
km) or KPI (kg CO,e/ton) when companies do not know the weight of their units, which is quite common
according to the expert of BigMile. These standard conversion factors, are not without uncertainties.
Measurement errors and variations in measurement conditions or methodologies can lead to uncer-
tainties in conversion factors. This is confirmed by an expert from Districon, she/he discusses the use
of standard conversion factors within models or tools for for example convert a ’pallet’ to an amount
of 'tonne’: "It differs significantly what is on a pallet, how much the pallet actually weighs in tons. For
example, a pallet with beer and a pallet with cushions weigh something completely different.”.

Measurement error emission factors - Data input: Literature and interview

Emission factors are important parameters used in carbon footprint calculations, which may be either a
priori defined or calibrated. This is confirmed by an expert from CE Delft in an interview: "the emission
factors actually come from a test, these tests are partially based on tests on the road and partially in a
test environment”. Emission factors are used to convert activities or amounts of energy into emissions.
A priori defined emission factors are based on theoretical considerations, while calibrated emission
factors are based on empirical data or measurements. Measurement errors and variations in mea-
surement conditions or methodologies can lead to uncertainties in emission factors. For example,
emission factors based on laboratory measurements of tailpipe emissions or on-road measurements
of real-world driving conditions may contain errors or variations in measurement conditions. Further-
more, the choice of database used to obtain these factors can also introduce uncertainty. Different
databases may contain different sets of emission factors, which may vary depending on the data and
methods used to generate them. This means that the accuracy of the final results obtained from the
use of these factors depends on the reliability and accuracy of the database used.

Default emission intensity factors - Data input: Literature and interview

In carbon footprint calculations, emission intensity factors are typically used as a last resort when more
direct measurement methods or modelling based on fuel consumption (and the corresponding emission
factors) are not feasible. These factors can be a priori defined or calibrated based on actual measure-
ments, with calibration typically requiring additional testing and modelling to make the factors more
specific to a given situation, such as vehicle type, road type, and load factor. Notably, the accuracy of
emission intensity factors is impacted by the variability and uncertainty of the data used for calibration.
Uncertainty arises when using emission intensity factors due to several reasons, such as data quality
and availability, methodological differences and variability in real-world conditions. Thereby it is im-
portant to notice that these emission intensity factors take account for load utilization and empty trips
made by the vehicle, linking the energy consumption calculation to the allocation step and resulting in a
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single-step calculation process. Utilizing these specific values also implies that the allocation variable
remains constant (Schmied & Knorr, 2012). Using predetermined values and assumptions for payload
and empty journeys may lead to uncertainty in the results, as these assumptions may not accurately
reflect the real situation. The expert from CE Delft explained the following uncertainty that exists with
using default emission intensity factors: "The default intensity factors are actually what Stream pro-
vides. And those are numbers that indicate how much is emitted per ton-kilometer. There is very little
primary data in this calculation. When you talk about those ton-km key figures, however there is con-
sensus on how to calculate them. So, we are not the only ones making these calculations; for example,
EcoTransit also does this too. But behind these calculations, there are a lot of assumptions that can
lead to differences.” Consequently, despite the fact that emission intensity factors can be a useful tool
for estimating carbon footprints in certain circumstances, it is crucial to recognize their limitations and
strive to use more accurate and precise methods whenever possible to obtain reliable carbon footprint
estimates.

Different databases for emission (intensity) factors - Data input: Background research and inter-
view

During the investigation of emission factors and examination of various databases, it becomes appar-
ent that emission factors (Kg CO,e/unit) can differ, as discussed in Subsection 3.9.3. This may be due
to varying test conditions in laboratories or on-road testing in different countries. These on-road tests
take into account factors that can vary by country (such as temperature, elevation differences, road
gradient). However, there are also emission factors published by the GLEC Framework, which specify
European emission factors; these, however, deviate from Dutch emission factors. Consequently, dif-
ferences in the carbon footprint can arise from using different databases, creating uncertainty regarding
the correct value and how to compare results. This is also the case for emission intensity factors (kg
CO,e/ton-km), as mentioned by the expert from CE Delft, both Stream and EcoTransit serve as sources
(and there are many more), each providing a database containing potential emission intensity factors.

Table 5.4: Parameter uncertainty, classification

Parameter uncertainty

Cause of uncer- | Explanation Nature Level
tainty
Measurement error | Due to multiple measurements of the tank-to-wheel emission fac- | Epistemic Statistical
emission factor | tors, there will be a measurement error.
TTW
Measurement error | Due to multiple measurements of the well-to-tank emission fac- | Epistemic Statistical
emission factor | tors, there will be a measurement error.
WTT
Different emission | Due to different databases, there are multiple emission factors | Ambiguity Statistical
(intensity)  factor | that can be used for specific situations.
databases
Default  emission | The default emission intensity factors are the amount of CO,- | Epistemic Statistical
intensity factors equivalent per ton-km. This is a general factor which can deviate

from reality.
Conversion factor When the payload is measured in different metrics than the pre- | Epistemic Statistical

ferred allocation method, a conversion factor is needed. This fac-

tor may have measurement errors.

5.6. Conclusion insight phase

The aim of the chapter was to identify and categorize uncertainties related to the carbon footprint of
freight transportation. Through interviews, literature review, and field research, uncertainties were iden-
tified for each "location” and categorized based on the nature in which they can arise, such as differing
interpretations, lack-of-knowledge, or stochasticity. The location 'model technical uncertainty’ was ex-
cluded from consideration because codes of software tools were not looked into in this study. The field
study revealed that the main challenge in assessing carbon footprint is the time-consuming and com-
plex process of data collection. Most potential causes of uncertainty were found in data input, which
depends on the available information regarding energy consumption and transport activity. If either of
these components is partially or completely missing, alternative calculations must be made to arrive at
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a reasonable estimate, leading to more uncertainties.

The chapter further classified uncertainties based on the level of uncertainty they bring. Stochastic
uncertainties arise when the cause of uncertainty can be expressed as a variable with a probabilistic
distribution. Scenario uncertainties arise when it is not possible to assign a probability distribution to a
value due to uncertainty, but there are possible scenarios that can be performed to assess the impact of
assumptions caused by the uncertainty. Finally, deep uncertainty refers to cases where it is difficult to
make assumptions or generate probability distributions due to the complexity or novelty of the situation.
When all the correct information is available, a precise estimation of emissions can be made using
known energy consumption data, and emissions can then be allocated to clients. This process pro-
vides clients with an understanding of their carbon footprint per shipment. However, the field study
and interviews revealed that obtaining accurate information is often not feasible in practice, leading to
a significant source of uncertainty.

This situation raises the question of whether the carbon footprint can be considered an absolute value
and how to address the inherent uncertainties. To tackle this issue, a tool is needed that provides
insight into when and where uncertainties arise, helps identify preventable uncertainties, and offers
guidance on how to reduce and manage uncertainties when they occur. This tool will enable a more
accurate and reliable assessment of the carbon footprint of freight transportation.
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Figure 5.3: Research and Insights

The Design phase is focused on creating a tool to identify, assess, and address uncertainties in car-
bon footprint calculations. This phase starts with defining requirements, constraints, and functionalities
based on literature, researchers’ knowledge, and insights from conversations with consultants. The de-
sign input part involves framing data situations, classifying uncertainties, investigating their magnitude,
and prioritizing them. Additionally, it covers addressing and assessing uncertainties through effective
communication, making assumptions, sketching scenarios, and using probability density functions. The
design output includes the development of a step-by-step guidance framework for each data situation,
resulting in a tool suitable for various stakeholders.
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Requirements and functionalities

This study was established based on a problem statement. This problem statement represents a re-
search gap that was discovered through a literature review and has also garnered interest from Distri-
con. The research objective derived from the problem statement is as follows:

L e o e e e e e e e e e e m— .

Subsequently, during the research phase, the background of carbon footprint calculations was exam-
ined, and the topic of uncertainty was investigated. Using the theoretical framework that was devel-
oped, uncertainties were identified. The final conclusion of the previous chapter highlighted certain
needs that the tool must fulfill, namely: a tool is needed that provides insight into when and where
uncertainties arise, helps identify preventable uncertainties, and offers guidance on how to reduce and
manage uncertainties when they occur. These needs are further elaborated in this chapter, and the
functionalities for the tool are described.

6.1. Design requirements

The engineering design process commences with a design problem expressed as a need (i.e., initial
requirements) that must be fulfilled by creating a physical product or system Brace & Cheutet (2012).
A need identified in the literature, as well as being an area of interest for gaining deeper insights at
Districon, is the influence of uncertainties on the carbon footprint. Identifying requirements is the initial
step in designing a model or tool.

According to Bahill et al. (2017), conducting interviews is likely the most common method for gathering
requirements. By participating in a project at Districon and conducting several interviews with experts
in the field of transport carbon footprint measurements, uncertainties were discovered. Additionally,
during conversations and interviews with consultants at Districon (D1, D2, D3), requirements for the
design were established. Although not directly asked for, these requirements were derived based on
the observed information, needs, and the absence of an overview of uncertainties and their influences
that were mentioned.

Based on findings in these interviews, conversations, in the literature, and requirements formulated by
the researcher, the requirements in Table 6.1 were formulated. During the discussed field research
in the previous section, it was discussed what requirements are needed to determine whether they
should be "essential” or "nice-to-have” for developing a tool to assess the uncertainty of transport carbon
footprint measurements. Finally, based on this, the essential requirements were determined in Table
Y, which forms the definitive list of requirements.
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6. Requirements and functionalities

Table 6.1:

Requirements of tool

”Design of a ’tool’ to assess the uncertainty of a transport carbon footprint measurement”

# Requirement Reference Need-to-
have/Nice-to-
have

Uncertainty prevention, identification and quantification

1 The basis of the tool are the identified uncertainties from previous | R. Siepman Need-to-have
Chapter 4.4.

2 The tool should provide guidance on how to gather accurate and | D1, D2* Need-to-have
reliable data to minimize uncertainty from the start.

3 The tool must provide an approach for identifying and quantifying | D1, D2* Need-to-have
uncertainty in transport carbon footprint measurements.

4 The tool provides insights into the different data 'quality’ levels. Subsection 3.7.4 Need-to-have
The tool must provide guidance on how to prioritize efforts to re- | D1, D2* Need-to-have
duce uncertainty based on their impact on the overall measure-
ment.

6 The tool could allow users to select different probability distribu- | Section 4.6 Nice-to-have
tions or specify their own distributions for sources of uncertainty.

7 The tool should include a set of best practices for handling vari- | Section 4.4 Need-to-have
ous types of uncertainties, such as data gaps, assumptions, and
modeling limitations.

8 The tool should provide a clear method for modelling uncertainties | Section 4.6 Nice-to-have
through the analysis, such as incorporating uncertainty ranges or
Monte Carlo simulations.

Usability and compatibility

9 The tool must be user-friendly and easy to understand. D1, D2* Need-to-have

10 The tool must be adaptable to and compatible with various and | R. Siepman Need-to-have
up-to-date carbon footprint measurement methodologies.

11 The tool must be designed to facilitate collaboration between dif- | R. Siepman Need-to-have
ferent stakeholders.

12 The tool could allow users to vary input parameters (e.g., dis- | D1, D2* Nice-to-have
tance, fuel consumption, etc.) to explore how they affect the final
carbon footprint measurement.

13 The tool could offer visualization options that display the impact | D2 Nice-to-have
of uncertainties on the final carbon footprint measurement, em-
phasizing the range or interval of possible values.

14 The tool should state clear definitions of all subjects. D1* Need-to-have

15 The tool can be used for different KPI’s. D3 Nice-to-have

Communication and decision-making

16 The tool could be designed to support scenario analysis to explore | Section 4.6 Nice-to-have
different what-if scenarios and their impact on the carbon footprint
measurement.

17 The tool should provide guidance on how to communicate uncer- | R. Siepman Need-to-have
tainty in a clear and effective way to different stakeholders.

18 The tool should support decision-making by providing guidance | D1, D2* Need-to-have
on the best strategies for reducing uncertainty.

19 The tool should be able to account for uncertainty related to the | R. Siepman Need-to-have
use of different accounting frameworks (e.g., Scope 1, Scope 2,

Scope 3).

Additional Requirements

20 Is based on information from traceable sources. D1, D2* Need-to-have

21 The tool functions as a widely applicable methodology to gain ini- | D3* Need-to-have

tial insight into the uncertainties of factors that influence the car-

bon footprint.

*conversations and interviews with consultants at Districon (D1, D2, D3)
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Firstly, based on the previous analysis, the tool should incorporate all the identified uncertainties [1].
Additionally, it is required that the tool helps in limiting uncertainties prior to a carbon footprint analysis
to minimize uncertainty as much as possible at the outset [1]. The tool should also serve as an aid
for identifying uncertainties and provide a way to quantify them in the output [2]. This entails knowing
which uncertainties have the greatest impact so that this information can be communicated to stake-
holders, both when requesting information and when presenting the results [4]. Furthermore, the tool
should assist with best practices to address various types of uncertainties [7].

Since different calculation methods exist and the quality of a carbon footprint is determined based on
these methods, the tool should provide insight into what this quality entails [5]. Currently, Districon uses
a tool (software program) to determine the carbon footprint of freight transport, which already calculates
the end figure, making the development of a new model less relevant. However, to clearly demonstrate
the effect of uncertainties, it is necessary to use analyses (scenario and uncertainty analyses) to show
the impact of uncertainties, as discussed in the background research. Therefore, the tool can be used
as an add-on for implementing uncertainty spreads in existing tools. A model for quantification is con-
sidered a nice-to-have [6, 12, 13, 16], but showing how to handle uncertainty and providing examples
of deviations is essential for interpreting uncertainties, making it a must-have to offer possibilities and
examples [2, 7]. There<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>