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Effective management of water resources and preservation of aquatic ecosystems are pressing global challenges.
With the ongoing impacts of climate change and the increasing demands on water resources, there is a growing
need for targeted restoration of degraded inland waters and those experiencing declining levels. To achieve
meaningful outcomes, it is essential to establish measures for evaluation the effectiveness of restoration efforts
accurately. Such metrics enable clear insights into restoration progress and guide the adaptive management
needed for sustainable water resource management. This study addresses critical gaps in current methodologies
by introducing two novel, tensor-based approaches to assess inland water restoration programs. Using the
Normalized Difference Water Index (NDWI) derived from satellite imagery, these methods significantly enhance
spatio-temporal analysis and visualization of water level dynamics, providing more precise insights into resto-
ration impacts over time. The methods are applied to evaluate the effectiveness of the project connecting the
Zarineh River to the Simineh River, one of the restoration program of Urmia Lake. The analysis using two newly
introduced operators reveals significant water level patterns in the southeastern part of Lake Urmia. First, a
substantial increase in water coverage was observed on the left side of the study area in 10 of the 12 months
following restoration, indicating the program’s effectiveness. Conversely, a reduction in water presence on the
right side was noted during 5 months, suggesting areas that need further intervention. These findings demon-
strate the value of these methods for tracking water level variations and assessing restoration outcomes
effectively.

indicators to quantify and measure restoration projects. Automated
Water Extraction Index (AWEI) (Tourian et al., 2015), Tasseled Cap

1. Introduction

Restoring inland waters that are degraded or face reduced water
levels is essential for multiple reasons. Ecologically, revitalized water
bodies are crucial in maintaining balance and supporting biodiversity
(Brown and Swan, 2010). The restored water sources economically
ensure a reliable water supply for agriculture, industry, and human
consumption (Scanlon et al., 2017). They also help mitigate the impacts
of climate change by reducing the risk of floods and droughts (Schlosser
etal., 2014). In the social aspect, the inland waters restoration is vital for
providing safe drinking water, reducing health risks from waterborne
diseases, and enhancing the quality of life by supporting recreational
activities and cultural practices (Bowler et al., 2010). While restoration
efforts are expanding globally, there remains a critical need to assess
their effectiveness using reliable indicators and there are various

Wetness Index (TCW) and Augmented normalized difference water
index (ANDWI) (Chen et al., 2024) are indicators that help in monitoring
the temporal and spatial changes in lake areas, which is applicable tool
for restoration projects management. However, conventional indicators
often fall short in capturing the full complexity of restoration impacts,
highlighting the need for more robust, multi-dimensional assessment
approaches.

A wide range of approaches has been used to evaluate restoration
program effectiveness, including ecological indicators, Post-Project As-
sessments (PPAs) (Downs & Kondolf, 2002), and integrated frameworks
that combine hydrological, geomorphological, and socio-economic
metrics (Woolsey et al., 2007; Roni et al., 2008; 2018). Specific to
Lake Urmia, several studies have explored restoration outcomes through
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hydrological modeling and comparative lake assessments. Nikraftar
et al. (2021) evaluated three nearby lakes with similar rainfall patterns
to assess the effectiveness of Urmia’s restoration programs. Esmailzadeh
et al. (2023) examined the institutional roles and policy shortcomings in
the Urmia Lake restoration process. In addition to field-based ecological
and socio-environmental approaches, remote sensing has become a
critical tool for restoration assessment, particularly in large or inacces-
sible areas. Satellite imagery provides consistent and repeatable obser-
vations over time, enabling the monitoring of surface water dynamics at
regional and basin-wide scales. For example, Saemian et al. (2020)
utilized a combination of remote sensing and ground-based data-
—including GRACE gravity observations and climate recovery indica-
tors—to evaluate changes in Lake Urmia’s water level, surface area, and
volume. While remote sensing provides a powerful platform for large-
scale analysis, most existing approaches rely on aggregated indicators
or isolated time steps, offering limited temporal resolution and failing to
capture the full spatio-temporal complexity of restoration processes.
This is evident in studies that used spatio-temporal analysis to examine
inland water bodies in different regions, such as China (Li et al., 2015),
Egypt (Mohsen et al., 2018), and Romania (Serban et al., 2022). These
limitations underscore the need for methods that can jointly analyze
spatial patterns and their temporal evolution—an analytical gap
addressed in this study through the proposed tensor-based framework.

The NDWI is a widely used spectral index for detecting and delin-
eating surface water bodies using satellite imagery. It offers a straight-
forward method for classifying pixels into water and non-water
categories based on their spectral reflectance, making it a foundational
tool for large-scale hydrological monitoring (Ali et al., 2019; Ozelkan,
2020). Several studies have explored enhancements to this method to
improve its accuracy. For instance, Qiao et al. (2012) proposed an
adaptive NDWI-based extraction method to better distinguish water
features in complex environments, while Rokni et al. (2015) and Khan
(2022) demonstrated its utility in monitoring temporal fluctuations in
inland lakes. NDWI and its modifications, such as the Modified NDWI
(MNDWI) introduced by Xu (2006), have been applied across a wide
range of satellite platforms. Yang et al. (2017) evaluated Sentinel-2A’s
performance for urban surface water extraction using NDWI at high
spatial resolution. Ozelkan (2020) analyzed the performance of three
NDWI variants using Landsat-8 for Atikhisar Dam Lake in Turkey.
Extensive research has been conducted by integrating this index with
other analogous indices, yielding significant insights and advancements
in the field. For instance, Ashok et al. (2021) combined NDWI with the
Normalized Difference Vegetation Index (NDVI) to monitor seasonal
changes in the Renuka wetland of India using satellite imagery. Naher
et al. (2024) similarly employed both MNDWI and NDVI to assess the
dry and wet season dynamics of Dau Tieng Lake in Vietnam. Addition-
ally, numerous studies have been carried out to compare this index with
other indices, aiming to evaluate its performance and effectiveness.
Malahlela (2016) introduced the Simple Water Index (SWI) and
compared its performance to MNDWI and the Automated Water
Extraction Index (AWEI) using Landsat 8 data across South African
ecosystems. Liu et al. (2023) conducted a large-scale evaluation of ten
different indices including NDWI3, MNDWI, AWEI, MBWI, WRI, and
others across two study regions in China, assessing their effectiveness for
surface water extraction under varied conditions. However, even with
these advancements, most NDWI-based methods reduce spatio-temporal
analysis to simplified classifications or trend estimates, underscoring the
need for a more structured framework capable of capturing dynamic,
localized changes in restoration contexts.

Despite the widespread use of satellite imagery and NDWI-based
techniques for monitoring surface water in restoration programs, most
existing approaches remain limited in their ability to fully analyze the
spatio-temporal dynamics of inland water systems. This limitation is
particularly critical when evaluating restoration efforts in dynamic
inland water systems, where both spatial variability and temporal trends
must be jointly assessed. Furthermore, few studies offer a structured
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framework that enables pixel-level analysis of change over time while
retaining the multidimensional integrity of satellite data. To address
these challenges, this study introduces two novel methods for evaluating
and analyzing inland water restoration programs using tensor-based
approaches, employing the NDWI derived from satellite imagery.
These methods offer several key advantages: (1) they allow for the
simultaneous detection of long-term trends and short-term fluctuations,
helping to distinguish between climate-driven variability and
restoration-induced impacts; (2) by standardizing data into consistent
tensor representations, the approach enhances comparability across
time periods, regions, and even different lakes, supporting transferable
insights for broader restoration management; (3) the use of intuitive
tensor operators translates complex data into accessible visual and nu-
merical formats, improving interpretability for decision-makers; and (4)
the method improves reliability by minimizing the influence of noise
from cloud cover or anomalous pixels through multi-dimensional ag-
gregation. Two novel operators are proposed within the tensor space:
the Percentage Operator, which calculates the proportion of time each
pixel is classified as water-covered, providing a clear and interpretable
view of water presence over time at specific locations; and the Subtract
Operator, which captures temporal shifts in water coverage by
comparing pixel values across time steps, offering an alternative
perspective on dynamic changes. Additionally, in the case of Lake Urmia
one of the largest saltwater lakes in the world rehabilitation efforts have
been the focus of several studies; however, few have examined the
spatially and temporally specific effects of individual water transfer
projects, such as the connection between the Zarrineh river to Simineh
river, which played a key role in the lake’s restoration strategy. By
preserving the full spatio-temporal structure of satellite imagery, the
tensor-based method enhances both the accuracy and interpretability of
inland water monitoring, offering a novel and scalable framework for
assessing restoration outcomes and informing practical water resource
management.

2. Method

This section presents the methodology developed in this study,
focusing on applying tensor-based approaches to monitor and analyze
inland water restoration. The methodology consists of three main
components; 1) an overview of the tensor concept; 2) the design of new
tensor operators for water level analysis; 3) and the definition of
scenario-based methods to interpret and visualize the results.

2.1. Tensor concept

A tensor is a multidimensional array that extends a matrix (a two-
dimensional table) to multiple dimensions. Tensors are especially used
in fields requiring complex data structures, such as spatio-temporal
analysis, where data must be organized across different dimensions
like location, time, and additional variables. For instance, the observed
abundance of a species can vary across specific locations and times,
forming a three-dimensional (third-order) tensor with dimensions rep-
resenting species, geographical locations, and time points (Frelat et al.,
2017). In tensor based spatio-temporal analysis, researchers investigate
temporal changes in phenomena across different spatial positions,
enabling efficient storage and handling of multidimensional data. This
structured approach captures spatial and temporal attributes within a
unified model and retains the data’s original multidimensional structure
(Kharaghani et al., 2023). By preserving the spatial and temporal
characteristics of the phenomena being studied, tensors enable a deeper
analysis without losing valuable context (Frelat et al., 2017).

Remote sensing images often contain multiple bands that span
spectral and spatial dimensions, capturing details like texture and scale.
When collected over time, these images are organized into a multi-
temporal tensor that adds time as an additional dimension (Huang
et al., 2019). Mathematically, tensors extend the familiar constructs of
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scalars, vectors, and matrices are zero, one and two order tensors,
respectively. Fig. 1 illustrates the various mathematical structures.

Fig. 1(a) illustrates a scalar, a single numerical value representing a
single data. As a zero-order tensor, it is the simplest data form, con-
taining only a single piece of information. Fig. 1(b) shows a vector, an
ordered array of values representing a first-order tensor. Fig. 1(c) depicts
a matrix, a two-dimensional array representing a second-order tensor. In
geospatial analysis, matrices are often used for raster data, where each
cell corresponds to a geographic location and holds a value that repre-
sents a characteristic of that location. Matrices are essential for modeling
continuous spatial data and enable operations like filtering and spatial
transformations. Fig. 1(d) presents a 3D tensor, which extends the ma-
trix structure into three dimensions, making it a third-order tensor. In
geospatial analysis, third order tensors are used for data that vary across
two spatial dimensions with an additional dimension such as time. A 3D
tensor, for example, stores a time series of satellite images, where each
layer represents the same area at different times. This structure is
particularly valuable for analyzing temporal changes and multi-spectral
satellite data, as it preserves spectral and spatial information, like
texture and scale, without altering the original data.

The order of a tensor refers to its number of dimensions. First-order
tensors, or vectors, are indicated by bold lowercase letters (e.g., x),
while second-order tensors, or matrices, are denoted by bold uppercase
letters, such as X. Tensors of higher order (third or beyond) are repre-
sented using bold Euler script letters; for instance, y. The element at
index i in vector x is represented as x;, the element at indices (i,j) in
matrix X as x;j, and the element at indices (i,j,k) in the third-order tensor
X as Xy Slices, or two-dimensional sections of a tensor, are produced by
holding one index constant and letting the other two vary, creating
matrices within the larger tensor. Fig. 2 illustrates the types of these
slices.

Fig. 2 illustrates the concept of horizontal, lateral, and frontal slices
within a third-order tensor y, demonstrating how complex data is broken
down for detailed analysis. These slices are critical for understanding
data structure and behavior across different dimensions. In Fig. 2(a),
horizontal slices are indicated by y ;... Fig. 2(b) presents the lateral slices,
represented by y. ;. Fig. 2(c) displays the frontal slices, shown as y: .
This slicing method provides insights into temporal changes, showing
how the data evolves over time at specific geographic locations (Kolda
and Bader, 2009). In tensor analysis, fibers are analogous to the rows
and columns of matrices but extend into higher dimensions. Each fiber
represents a set of values corresponding to a fixed combination of
indices in the tensor. Essentially, fibers facilitate the analysis of data
across various dimensions or axes. This concept is further illustrated in
Fig. 3, which delineates the different types of fibers.

Fig. 3 provides a visual representation of different types of fibers in a
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3D tensor. In third-order tensors, fibers are categorized into three forms:
column fibers, row fibers, and tube fibers. In Fig. 3(a), the column fiber
is illustrated, represented by y. . Fig. 3(b) shows the row fiber, indicated
by y ix. Finally, and Fig. 3(c) presents the tube fiber, denoted as y ; ..
These fibers are fundamental components in tensor operations, as they
show the different ways in which data is accessed, manipulated, and
analyzed across three-dimensional arrays. Comprehending these fibers
is important for tasks such as tensor decomposition, data fusion, and
multi-way analysis. In the context of tensor analysis, fibers are akin to
the rows and columns found in matrices but extend into higher di-
mensions. This characteristic makes fibers particularly useful for dis-
secting and grasping complex datasets by focusing on specific
dimensions. By examining horizontal, lateral, and frontal slices, as
shown in Fig. 3, researchers gain an extensive view of how data varies
spatially and temporally (Kolda and Bader, 2009).

2.2. Tensor operators

Tensor operators are crucial for analyzing multidimensional datasets
within tensor structures, especially for spatio-temporal applications like
monitoring inland water bodies and assessing the effectiveness of
restoration programs. In this study, new tensor operators are introduced
to enhance the spatio-temporal analysis of water level changes using the
Binary Normalized Difference Water Index (BNDWI), specifically the
percentage operator and the subtract operator.

The percentage operator determines the percentage of time that a
specific location remains covered by water. By summing the binary
NDWI values for each pixel and converting these sums into percentages
provides a quantitative measure of water presence over time, revealing
patterns of consistent water cover or seasonal fluctuations.

The subtract operator, shows temporal variations by subtracting the
BNDWI values for each pixel over time, providing information about
surface changes. This method enables tracking of increases or decreases
in water coverage, providing a dynamic view of inland water level
changes over time.

By integrating these novel tensor operators and visualization tech-
niques, the dynamics of inland water bodies are extensively monitored
and analyzed. This comprehensive approach delivers valuable insights
into water body dynamics, supporting informed decisions for inland
water restoration and management programs. A binary NDWI index was
created by applying a threshold to the NDWI values in Equation (1).
Pixels with NDWI values above the threshold were classified as water
(value = 1), while those below were classified as non-water (value = 0).

1ifNDWI > a

0ifNDWI < a M

BNDWI = {

i i

(@) (b) (©)

(d)

Fig. 1. Various mathematical structures (a) scalar, (b) vector, (c) matrix, and (d) 3D tensor.
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In Equation (1), the variable a serves as a threshold value used to
distinguish between water and non-water areas within the satellite
image based on the NDWL

Equation (2) shows the process of summing binary NDWI values over
time. Equation (3) shows the process of converting these sums into
percentages:

For each pixel (i,j)

SBNDWI; = 3 BNDWIy @

where BNDWI;; is the binary NDWI value at voxel (ij.k), and K is the
total number of time points.

SBNDWI;

PSBNDWI; =~

100 3
where PSBNDWI; represents the percentage of time the pixel (ij) is
covered by water. Equation (4) shows the process of Subtracting BNDWI
values over time that subtracting the BNDWI values for each pixel over
time, providing information about surface changes

For each pixel (i,j)

DNDWI;; — BNDWI2;; — BNDWI1; )

where DNDWI; represents the change in BNDWI1 value from
BNDWI2.

These equations quantify the water presence over time and detect
changes in water coverage, enhancing the analysis of inland water

bodies.
3. Data and area

In this section, the data sources and the selected study area are
introduced to demonstrate the effectiveness of the newly developed
operators. A comprehensive dataset was utilized to precisely analyze
water level fluctuations in Urmia Lake and assess the impact of resto-
ration efforts. This dataset includes satellite-derived water indices
NDWI, which, due to high spatial resolution and extensive geographic
coverage, allow for pixel-by-pixel examination of spatio-temporal
changes in water levels. Satellite images were sourced and processed
through Google Earth Engine (GEE), a cloud-based platform designed for
large-scale geospatial data analysis. GEE offers access to an extensive
archive of satellite imagery and geospatial datasets and is supported by
robust computational resources, enabling complex environmental
research and detailed Earth systems analysis.

3.1. NDWI preparation

The NDWI has been specifically developed to identify and extract
open water features in remote sensing imagery. This index not only
enhances the visibility of water bodies but also simultaneously reduces
the influence of soil and vegetation features. Using image processing
software, open water areas a rapidly and accurately calculated in sat-
ellite images.

Water extents classified from satellite images served as validation



M. Sarkhosh et al.

sources in this study. Specifically, the distribution of surface water with
high spatial and temporal resolution was detected using the MYDO9GA
product from the MODIS (MODerate-resolution Imaging Spectroradi-
ometer) instrument. Satellite images, which is derived from the Aqua
satellite, was downloaded from GEE platform for the period of
September 2014 to September 2016. This product provided atmo-
spherically corrected surface reflectance data with a spatial resolution of
500 m and a temporal resolution of 32 days.
The NDWI was calculated for each image using Equation (5):

G —NIR

NDWI = ———
G + NIR

(5)

where G is the reflectance in the green band, and NIR is the reflectance
in the near-infrared band.
The NDWI values range as follows (Helali et al., 2022) (Table 1):
According to this classification, this study has binarized NDWI using
a threshold of 0.2.

3.2. Case study

Analyzing an area that has experienced substantial water level
fluctuations and targeted restoration programs enables a practical
assessment of the operators’ effectiveness and offers valuable insights
into their capability to capture and quantify spatial changes accurately
over time. Consequently, to demonstrate the efficacy of the newly
introduced operators, Urmia Lake, the largest inland lake in Iran and one
of the largest saltwater lakes in the world, was selected as the study area.
Located between West Azerbaijan and East Azerbaijan provinces, Urmia
Lake, spanned approximately 6,000 square kilometers in 1998, making
it the 25th largest lake globally by surface area. Its basin supports a
critical and diverse aquatic ecosystem, home to approximately eight
hundred species of birds, mammals, and inland plants, including the
unique Artemia sp. Due to these unique natural and ecological features,
the lake and its adjacent wetlands have been recognized as a National
Park, a Ramsar Site, and a UNESCO Biosphere Reserve. Urmia Lake has
largely dried up over the last two decades, resulting in socio-
environmental consequences. As depicted in Fig. 5, the water level of
the lake and its surrounding areas has been below the critical level of
1,274.67 m above sea level (Abbaspour and Nazaridoust, 2007). This
decline poses significant challenges for both the ecological health of the
lake and the socio-economic stability of the surrounding region. In
response to this, the Iranian government established the ten-year Urmia
Lake Restoration Program (ULRP) (Shadkam, 2017). The ULRP has
defined its main mission as the restoration of Urmia Lake, with the goal
of increasing the lake’s water level to reach ecological equilibrium by
2023. The target ecological water level of 1274.67 m above sea level was
established based on the water quality conditions (240 g/L of NaCl)
necessary to support the brine shrimp Artemia (Abbaspour and Naza-
ridoust, 2007). To restore the lake, the ULRP has determined three main
phases within a ten-year program (Fig. 4).

Stabilization (2014-2016): Aimed at maintaining a minimum lake
water level and mitigating adverse effects of the dried parts of the lake,
such as dust storms. Restoration (2016-2022): Focused on meeting the
entire lake water demand and gradually increasing the lake level. Final
Restoration (2023): Aimed at stabilizing the water level at the ecological
level. The hydrology of the Urmia Basin is characterized by 17 perma-
nent rivers, 12 seasonal rivers, and 39 floodways. Simineh River and

Table 1
NDWI values range.

Description NDWI values range
water surface 0.2to1

flooding, humidity 0.0 to 0.2
moderate drought, non-aqueous surfaces —0.3t0 0.0
drought, non-aqueous surfaces —1to—0.3
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Zarineh River alone contributing 41.6 % of the total surface water inflow
into the lake. One of the most significant restoration programs for Urmia
Lake has been the connection of the Zarrineh River to the Simineh River.
Due to the significance of this program, the present study evaluates the
effectiveness of connecting the Zarrineh River to the Simineh River to
demonstrate the utility of the newly introduced operators (Fig. 5).

For this purpose, the southeastern part of Urmia Lake has been
examined, as analyzing this area provides deeper insights into the
impact of the connection project on increasing the lake’s water level and
improving its environmental conditions. The project to connect the
Zarineh and Simineh rivers is designed to enhance water inflow, stabi-
lize water levels, and improve water quality in this critical region. By
redirecting and optimizing the flow of these rivers, the initiative aims to
restore the natural hydrological balance, support wetland ecosystems,
and ensure sustainable water availability.

4. Results

In this section, to demonstrate the application of the two methods
presented in this study, the effectiveness of the project connecting Zar-
ineh River to Simineh River for the restoration of Urmia Lake was
evaluated. The southeastern part of Urmia Lake was analyzed using
monthly satellite images from September 2014 to September 2016. The
revitalization program’s impact was assessed across two distinct time
periods: September 2014 to September 2015, representing the year
before its implementation, and September 2015 to September 2016,
representing the year after. This comparative framework allowed for a
focused analysis of the program’s effectiveness. Monthly analyses
facilitated a detailed examination of temporal variations, providing in-
sights into the program’s role in enhancing water levels in Urmia Lake.
According to Equation (1), a binary system is used to indicate the
presence or absence of water in each pixel, providing a detailed tem-
poral analysis across the study area. BNDWI layers are organized into a
spatio-temporal tensor, with each layer corresponding to one of the 24
months in the specified period. Pixels with a value of 1 indicate the
presence of water, while pixels with a value of 0 indicate the absence of
water. By providing a clear binary indication of water presence, it helps
quickly identify areas of concern and evaluate the effectiveness of
interventions.

4.1. Percentage operator

Using Equation (2) and Equation (3) along with monthly satellite
data, PSBNDWI matrices were constructed to analyze changes. Fig. 6
illustrates these matrices, showing the percentage of water presence for
each pixel over two periods.

Fig. 6(a) illustrates the period from September 2014 to September
2015, before the start of the restoration program connecting the Zarineh
River to the Simineh River. Fig. 6(b) represents the period from
September 2015 to September 2016, after the start of the restoration
program. This figure provides a spatial distribution of how frequently
each pixel was covered by water across the study area during these two
periods. By quantifying the water coverage for each pixel, this figure
offers valuable insights into the stability and reliability of water re-
sources in the region. For instance, a pixel showing 100 % indicates
water presence throughout all studied months, whereas if SBNDWI
values indicated water presence for 9 out of the 12 months, converting
this to PBNDWI reveals that water was present 75 % of the time at this
location. Areas with higher percentages are indicated by warm colors,
while areas with lower percentages are represented by cool colors. The
derived water presence percentages offer a clear visual and quantitative
representation of changes in the lake’s water coverage over the specified
periods and is an important metric for comprehending the persistence
and reliability of water bodies over time. By subtracting the water
presence percentage from the first period (Fig. 6(a)) from the percentage
in the second period (Fig. 6(b)) Fig. 7 is specifically designed to visualize
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the change in water presence between the two time periods.

This subtraction provides a clear, pixel-by-pixel representation of
how water coverage has changed over time, particularly in response to
the restoration program. The colors represent the difference in the
percentage of water presence for each pixel between the two time

periods. Regions where the percentage of water presence has increased
after the restoration program (shown by warm colors) are considered
areas where the program has been effective. Conversely, areas where the
water presence has decreased (shown by cool colors) still require tar-
geted interventions to improve water availability. These areas represent
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temporary water bodies that have dried up or regions where water
management strategies need to be re-evaluated. The figure provides an
extensive view of how water resources have changed across the region.

4.2. Subtract operator

Using Equation (4) and monthly satellite data from September 2014
onward for two years, DBNDWI matrices were constructed to analyze
changes in the southeastern part of Urmia Lake. These matrices provide
a detailed scientific analysis of the impact of the restoration program
connecting the Zarineh River and Simineh River, which began in
September 2015. The year preceding the start of the restoration program
serves as the baseline for all subsequent comparisons. This baseline
period, unaffected by the restoration efforts, shares similar conditions
with the year in which the restoration program was implemented. Fig. 8
illustrates these matrices, depicting water level variations over time. The
water level difference for each pixel was calculated by subtracting the
BNDWI values from the corresponding month of the previous year. For
example, the September 2015 matrix (8a) was created by subtracting the
BNDWI values from September 2014. This method was applied to each
subsequent month for instance, December 2015 was compared with
December 2014, January 2016 with January 2015, and so forth. This
approach accounts for seasonal variations and helps assess the specific
impact of the restoration program.

The subtraction of BNDWI values results in three possible outcomes:
—1, 0, and 1. Blue-colored pixels represent a value of —1, indicating
areas where water was present before the restoration program but dis-
appeared afterward. Conversely, red-colored pixels represent a value of
1, indicating locations where water appeared after the restoration pro-
gram, even though no water was present in these areas before the pro-
gram’s implementation. The white pixels indicate a value of 0,
signifying that the BNDWI values for these areas remained consistent
during both time periods analyzed. Fig. 8(a) and 8(b) predominantly
show the presence of blue pixels, indicating that, the study area expe-
rienced a greater presence of water in the months of September and
October 2014 compared to the corresponding months in 2015, prior to
the implementation of the restoration program. From Fig. 8(c) onward,
red pixels appear, representing the emergence of water in new areas, due
to the impact of the restoration project. Additionally, Fig. 8 shows that,
in the right section of the study area, continuous water presence is
indicated for October 2014 [Fig. 8(b)], November 2014 [Fig. 8(c)],
December 2014 [Fig. 8(d)], January 2015 [Fig. 8(e)], February 2015
[Fig. 8(f)], and March 2015 [Fig. 8(g)]. This sustained water presence
during the period prior to the initiation of the restoration program
contrasts with the conditions observed from April 2015 onward, where

Ecological Indicators 178 (2025) 113955

the area became nearly dry. Notably, even following the implementation
of the restoration program, the water did not return to these parts of the
area. In Fig. 8(j), (k), and (1), a more distinct pattern of increased water
presence in the area following the reclamation program is observed. The
month-by-month comparison enabled by these matrices is important for
identifying trends in water level changes over time, which are key to
showing the effects of the ongoing restoration efforts in the Urmia Lake
region. The detailed spatial representation of water level differences
across multiple months helps in identifying specific areas that benefit
most from the program and those that are still be struggling. These
analyses are important for water resource management, as they show
the areas of success and those needing further intervention. By
comparing monthly water levels from September 2014 to September
2016, these figure provide an extensive view of the program’s impact,
aiding researchers and policymakers in making informed decisions to
restore and manage the Urmia Sea’s water resources effectively.

5. Discussion

The analysis of results derived from the matrices created by the two
new operators introduced in this study reveals two distinct patterns,
demonstrating both the utility and effectiveness of these methods in
monitoring water level variations and assessing the impact of restoration
programs.

5.1. Pattern 1: increased water presence post-restoration in certain areas

In the first pattern, both the Percentage and Subtract operators
indicate a substantial increase in water cover on the left side of the study
area over time (Fig. 9). This trend highlights the positive impact of
restoration program focused on water replenishment and improved
water accessibility. The increase is particularly notable, underscoring
the effectiveness of the water transfer project from the Zarinh river to
the Simineh River, and serves as a quantitative measure of the project’s
success.

To further validate that the observed changes in water presence were
not solely the result of natural climatic variability, precipitation data
from the CHIRPS dataset was analyzed for the southeastern part of Lake
Urmia over the period from September 2014 to September 2016. The
analysis was consistent with the NDWI-based timeframes used in this
study. Specifically, the precipitation difference was calculated by sub-
tracting the monthly precipitation values of the pre-restoration year
(September 2014-September 2015) from those of the post-restoration
year (September 2015-September 2016). Fig. 10 illustrates the result-
ing bar chart of monthly precipitation differences.

The precipitation analysis for the southeastern part of Lake Urmia
(Fig. 10) revealed considerable month-to-month variability rather than a
consistent upward trend. While March and April showed relatively high
positive anomalies (+0.929 and +1.072 mm, respectively), most other
months exhibited only modest increases or even declines in rainfall. The
anomaly observed in April may explain the localized and short-lived
increase in water presence detected in the eastern part of the study
area. However, nearly half of the year’s months experienced lower or
negligible precipitation compared to the pre-restoration period, indi-
cating no systematic climatic driver for the observed hydrological im-
provements. Moreover, the spatial distribution of increased water
presence aligns closely with known restoration interventions. The most
significant changes were concentrated in the western and central zones
of the study area—particularly near the confluence of the Zarrineh river
and Simineh river, which are major inflow sources directly targeted by
the restoration program. If increased water presence were primarily
driven by precipitation, a more uniform distribution of change across
the entire lake, including the eastern basin, would be expected. The
absence of such a pattern further supports the conclusion that the
observed hydrological recovery is predominantly the result of targeted
water management interventions rather than natural -climatic
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variability.

5.2. Pattern 2: decreased water presence in certain areas

In the second pattern, a decline in water presence was observed on
the right side of the study area (Fig. 11). Both the Percentage Operator
and the Subtraction Operator revealed a decrease in water coverage on
this side over the study period.

To comprehend the underlying causes of this decrease, it is essential
to consider several influencing factors:

Decreased Precipitation: Precipitation is one of the most direct in-
fluences on water levels. A decrease in rainfall during the study period
could have significantly reduced water input into lakes, rivers, and other
water bodies. However, the analysis conducted in this study using
monthly precipitation data for the study area revealed no consistent
increasing or decreasing trend during the examined period. Therefore,
the results of this analysis indicate that the observed decrease in the
eastern part of the study area cannot be solely attributed to decreased
precipitation.

Increased Water Extraction: Increased water extraction for



M. Sarkhosh et al.

Ecological Indicators 178 (2025) 113955

‘ 44°30°€ 45°F 45°30°E 46°E 46°30°E 47°E 47°30 ‘
38°30'N J5R-38°30'N
38°N 38°N
37°30N 37°30N
379N 37N
36°30'N 36°30'N
36°N 36°N

Lake
Dry Area
35°30'N- r35°30'N
44°30°E 45°E 45°30'E 46°E 46°30'E 47°E 47°30°E

Fig. 11. Part of the study area where the presence of water has decreased.

agricultural, industrial, or urban use could also be an influencing factor.
As demand for water resources grows, over-extraction can lead to a
decline in surface water levels. For example, Abbaspour and Nazaridoust
(2007), discussed how expanding agricultural activities in the Urmia
Lake basin, particularly during drought periods, intensified water
extraction from rivers and reservoirs, exacerbating water.

Land Use Changes: Changes in land use, such as deforestation, ur-
banization, or the expansion of agricultural land, alter the hydrological
cycle in a region. These changes reduce the land’s ability to retain water,
leading to faster runoff and less infiltration into aquifers, ultimately
lowering surface water levels. A study by Morandi et al., (2014) shows
how increased urban development in the region led to greater surface
runoff and reduced natural water retention, contributing to the observed
decrease in water presence.

The findings of this study are further supported by those of Saemian
et al. (2020), who analyzed the progress of Lake Urmia’s restoration
using both ground-based and satellite observations. Their analysis
revealed positive trends in key hydrological parameters between 2015
and 2019—a period that partially overlaps with the timeframe of the
present study. Specifically, they reported annual increases of 14.5 cm in
water level, 204 km2 in surface area, and 0.42 km3 in lake volume,
attributing these improvements to restoration interventions imple-
mented in the basin. Although this study focuses specifically on the
2014-2016 period and employs a tensor-based approach, the identified
spatial and temporal patterns of increased water presence align with the
early phase of the broader restoration trajectory observed by Saemian
et al. Notably, significant increases in water coverage were detected in
the central and western zones of the lake, particularly near the conflu-
ence of the Zarrineh river and Simineh river—areas similarly recognized
by Saemian et al. as primary zones of water accumulation. This corre-
spondence reinforces the reliability of the proposed method and sup-
ports the interpretation that the detected hydrological improvements
were largely driven by targeted restoration actions rather than by
random climatic variability.
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6. Conclusion

This research highlights the efficiency of innovative tensor operators,
advanced indices, and remote sensing tools in comprehensively moni-
toring and analyzing water level fluctuations, as well as evaluating
restoration program outcomes. By applying NDWI, the study offers a
robust framework for detecting spatial and temporal changes in water
bodies. The Urmia Lake case study showcases how these tools generate
detailed insights into the dynamic responses of inland water systems to
environmental pressures and targeted restoration initiatives. Analysis of
NDWI-based matrices reveals trends and variations in water coverage,
providing clear evidence of the restoration program’s observable
impact. These findings emphasize the importance of remote sensing and
geospatial analysis in environmental assessment and resource manage-
ment. Moreover, the methods and tools employed in this study have
significant potential for application in other regions facing water scar-
city, supporting the development of data-driven management strategies
for sustainable water resource preservation. Future research could
enhance monitoring capabilities and improve restoration outcome as-
sessments by incorporating additional indices and higher-resolution
datasets.
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