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Preface

Akram Chakrouni and llyaas Shousha
Delft, June 2024

This paper is part of a Bachelor’s graduation project to develop a streaming Brain-Computer Interface
(BCI) to play a game using EEG signals. The project is divided into three groups: classification, mea-
surements, and interface. Our group, the classification group, is specifically responsible for decoding
EEG signals and providing outputs to the interface group based on the user’s intentions. Various meth-
ods for pre-processing and classification are explored in this paper.

We would like to express our deepest gratitude to our supervisor, Prof. Dr. B. Hunyadi, for her guidance
and support.

We hope this project will be continued and further developed after completing this thesis, as it is a
fascinating subject with significant potential for future exploration and development.



Abstract

The thesis focuses on developing a brain-computer interface (BCl) aimed at differentiating between left-
hand and right-hand motor imagery using EEG signals. Its primary objective was to create a scalable
and user-specific model for accurately interpreting motor imagery tasks. The study involved the devel-
opment of one SVM and two advanced deep learning models: the Advanced-EEG-MI-CNN and the
Advanced-EEG-MI-CNN-LSTM-Transformer. These models were tested on the Physionet and BCIC
IV 2a datasets, as well as on self-gathered data. Results indicated that the SVM model achieved an
accuracy of 65% for all subjects and 78% for one subject, while the Advanced-EEG-MI-CNN model
achieved an accuracy of 65% for all subjects and 78% for a single subject on average. The Advanced-
EEG-MI-CNN-LSTM-Transformer demonstrated promising results in capturing temporal dependencies,
with an accuracy of 80% for all subjects and 92% for a single subject on average. Future work includes
enhancing user-specific model implementation, applying Independent Component Analysis (ICA) for
cleaner data, and improving data pre-processing to minimize noise.
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Introduction

1.1. Background

Brain-Computer Interfaces (BCls) represent a groundbreaking technology that enables direct commu-
nication between the brain and external devices without the need for muscular activity. This technology
has significant implications for individuals with severe motor disabilities, providing them with new means
of interaction and control. BCls typically rely on the interpretation of Electroencephalogram (EEG) sig-
nals, which are electrical signals produced by the brain. These signals are captured using electrodes
placed on the scalp and are analyzed to infer the user’s intentions.

BCls have come a long way since the 1970s and 1980s when early research focused on basic signal
acquisition and classification of mental states. Recent advances in machine learning and signal pro-
cessing have led to the development of more accurate BCI systems. For example, research by Wolpaw
et al. [29] demonstrated the potential of BCls in enabling control over external devices through EEG
signal classification. Furthermore, studies by Pfurtscheller and Neuper [17] explored the use of motor
imagery for BCI control, laying the foundation for modern motor imagery-based BCI systems.

In addition to medical applications, BCls are also being explored for their potential in the gaming industry.
Gaming with BCls allows players to control game elements using their brain signals alone, offering an
immersive experience, especially for users who may be unable to use traditional input devices due
to physical limitations. BCls in gaming can also enhance the overall gaming experience by providing
more intuitive and natural control mechanisms.

However, EEG signals are often noisy and vary considerably between individuals, posing challenges
for the development of reliable BCl systems. To address these challenges, researchers have em-
ployed various machine learning techniques to improve the classification accuracy of EEG signals,
with Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs) being among the
most commonly used models in this context.

1.2. Motivation

The motivation behind this research is to improve the accuracy and scalability of BCI systems, particu-
larly for motor imagery tasks. Accurate classification of motor imagery is critical for developing effective
BCI systems, which can be used in various applications such as medical rehabilitation, assistive tech-
nologies, and gaming. The integration of advanced machine learning techniques promises to enhance
the interpretability of EEG signals, which are often complex and noisy. By achieving higher classifi-
cation accuracy, BCls can become more reliable and user-friendly, thereby expanding their practical
applications and improving the quality of life for users with motor impairments.
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1.3. Contributions
This thesis contributes to the field by:

» Developing one SVM and two advanced deep learning models for motor imagery classification.
» Implementing a scalable approach that improves with the addition of new user data.
» Providing a detailed comparative analysis of model performances on different datasets.

1.4. Constrains

Constraints include limited computational resources and variability in EEG signal quality across differ-
ent users and sessions, which impact the generalizability of the models. Additionally, there is a time
constraint of 10 weeks.

1.5. Thesis Structure
The thesis is organized as follows:

» Chapter 2: Literature review of BCI systems, motor imagery, and machine learning applications.
» Chapter 3: Theory behind SVM, CNN, and advanced models.

» Chapter 4: Methodology detailing data acquisition, preprocessing, and model development.

» Chapter 5: Presentation of results from various models.

» Chapter 6: Discussion of findings and their implications.

» Chapter 7: Conclusion summarizing the research and suggesting future work.



1.5. Thesis Structure
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Figure 1.1: Overview of the implementation of the total BCI, with in red the aspects discussed in this report




Program of Requirements

This chapter will discuss the program of requirements that the design should contain.

General Specifications

Our general market focuses on Gaming, with a future focus on medical applications. This should be
represented in the general specifications. Gamers generally would like reliability with less delay; errors
in accuracy can be forgiven if priced adequately. The general specifications are listed below:

» The delay from headset to prediction should be less than 0.75 seconds.
» The classification accuracy must be at least 75%.
* The machine learning and streaming must be done in Python to ensure easy compatibility.

The Requirements for the machine learning group are as follows:

Must:
» Accuracy on online data should be at least 80 per cent.

» Accuracy on own data (OpenBCl) should be at least 75%.

» The time taken to process incoming data and classify it must be at most 500 ms. This ensures
that users enjoy an immersive gaming experience without experiencing noticeable delays.

» The product should be ready to integrate with the other subgroups. Therefore, it should also work
for a continuous input signal and provide a continuous output signal.

Should:

» The model can create user-specific models coupled to the user’s account to improve the classifi-
cation accuracy for each user independently.

* |t should be scalable to accommodate potential data volume and user base increases over time.



[Literature Review

3.1. Model

Today, many machine learning models are accessible for motor imagery tasks. Hosseini et al. [10]
offers a comprehensive overview of machine learning applications utilised in EEG analysis. This in-
cludes well-established models such as Support Vector Machines (SVM), Linear Discriminant Analysis
(LDA), and k-nearest Neighbors (kNN). The overview encompasses a detailed examination of each
method, highlighting their strengths and the specific applications to which they best suit. This resource
serves as a valuable guide for selecting the most appropriate machine learning approach tailored to
EEG-based motor imagery analysis requirements.

In addition to traditional machine learning models, deep learning has emerged as a prominent force
in Motor Imagery (MI) Brain-Computer Interface (BCI) research and applications. Deep learning tech-
niques bring several advantages to MI-BCI tasks, such as Automatic Feature Learning, End-to-End
Learning, and Adaptability. These capabilities enable deep learning models to extract relevant fea-
tures from EEG signals automatically, learn complex patterns directly from raw data, and adapt to
varying conditions without extensive manual intervention. As a result, deep learning holds significant
promise for advancing the field of MI-BCI by facilitating more robust and efficient signal processing and
classification techniques.

Unlike traditional machine learning models, deep learning models like Convolutional Neural Networks
(CNNs) can interpret EEG signals as pseudo-images. For instance, in Schirrmeister et al. [21], the
authors propose a deep learning approach using CNNs to decode EEG signals recorded during MI
tasks. They represent EEG data as spectrogram-like images and feed them into a CNN architecture
for classification. The study demonstrates the effectiveness of CNNs in automatically learning spatial
and temporal features from EEG signals for Ml classification tasks, achieving competitive performance
compared to traditional machine learning methods.

3.2. Transformation

Transformation of EEG signals holds paramount importance in motor imagery classification. The spe-
cific transformation applied to EEG signals before feature extraction significantly impacts the accuracy
of the model.

In past research, various transformation methods have been explored to enhance classification accu-
racy. One of the most common feature extraction methods is Common Spatial Patterns (CSP) [16].
CSP operates by maximising the variance of EEG signals for one class (e.g., imagining moving the left
hand) while simultaneously minimising the variance for another class (e.g., imagining moving the right
hand).
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Additionally, researchers have investigated alternative transformation techniques. Forinstance, Samiee
et al. [19] employed the short-time Fourier transform (STFT) to process EEG signals, known for its ef-
fectiveness in providing time-frequency analysis. Furthermore, Alyasseri et al. [3] proposed an EEG
denoising method based on wavelet transform (WT). The WT method offers several advantages, in-
cluding multiresolution analysis, time-frequency localisation, artifact removal, dimensionality reduction,
adaptability, and robustness to noise. These methods contribute to the refinement of EEG signals for
subsequent classification tasks in MI-BCI systems.

3.3. Feature Engineering

The influence of various features or input representations on the performance of machine learning mod-
els is widely acknowledged as a fundamental aspect of model optimisation. It is empirically observed
that the selection and engineering of features significantly impact the model’s ability to learn and gen-
eralise from the data accurately.

Feature selection methods are typically classified into three categories: wrapper, filter, and embed-
ded. Wrapper methods evaluate feature subsets based on the accuracy of a preselected classifier. In
contrast, filter methods assess subsets independently of a classifier, often using an upper bound or
approximating the optimal Bayes error. Embedded feature selection mechanisms are integrated within
specific classifiers. Notably, embedded feature selection tends to be faster than wrapper methods and
yields higher classification accuracy than filter methods [11].

In recent years, research has focused on extracting novel features from existing datasets through
algorithms for nonlinear dimensionality reduction. These algorithms facilitate the transition from high-
dimensional spaces to two-dimensional representations. The resulting features are then integrated
with the original dataset’s features to enhance signal classification quality using trained classifiers or to
construct new datasets for visualisation purposes [8].

3.4. Model Deployment and Scalability

Considerations for deploying machine learning models in real-world applications, including scalability,
latency, and resource constraints, are vital for ensuring optimal performance and reliability. Exploring
frameworks for deployment and implementing techniques for model monitoring and maintenance are
essential steps to maintain the effectiveness and sustainability of deployed models over time.



Theory

4.1. Theory of SVM Model
41.1. Introduction to SVM

Support Vector Machines (SVM) are supervised learning models widely used for classification and re-
gression tasks. Introduced by Vladimir Vapnik and his colleagues, SVMs are built on the fundamental
principle of finding an optimal hyperplane that best separates the data points of different classes. This
separation is achieved by maximising the margin, which is the distance between the hyperplane and
the nearest data points from either class. The data points that lie closest to the hyperplane are known
as support vectors, and they play a critical role in defining the position and orientation of the hyperplane.
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Figure 4.1: Classification non-linear with Kernel Source: [12].

The power of SVMs is significantly enhanced by using kernel functions. Kernels enable SVMs to handle
non-linearly separable data by implicitly mapping the input features into a higher-dimensional space
where a linear separation is possible, shown in figure 4.1. This mapping is done without explicitly
computing the coordinates in the higher-dimensional space, making the computation efficient even for
very high-dimensional spaces. Commonly used kernel functions include:

* Linear kernel: This is the simplest kernel function, defined as K(x,y) = x - y. Itis suitable for
linearly separable data.

« Polynomial kernel: Defined as K (x,y) = (x -y + ¢)?, where c is a constant and d is the degree
of the polynomial. This kernel can model more complex relationships by increasing the degree d.

* Radial Basis Function (RBF) kernel: Also known as the Gaussian kernel, it is defined as
K(x,y) = exp(—v||x — y||?), where ~ is a parameter that determines the spread of the kernel.
The RBF kernel is widely used because of its ability to handle non-linear relationships.

+ Sigmoid kernel: Defined as K (x,y) = tanh(kx -y + ¢), where x and c are kernel parameters.
This kernel behaves similarly to neural networks with a sigmoid activation function.

The figure(4.2) below illustrates how each kernel classifies the data:
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Figure 4.2: Different Kernels Source: [18].

4.1.2. Mathematical Formulation
The objective of an SVM is to find a hyperplane that maximises the margin between two classes. For
a linearly separable dataset, this hyperplane can be mathematically defined by the equation:

w-x—b=0 4.1)

where w is the weight vector and b is the bias term.

The margin is the distance between the hyperplane and the closest data points from each class, known
as support vectors. The primary goal of an SVM is to find a hyperplane that not only separates the
classes but also maximises the distance to the nearest points (support vectors) from both classes.
This maximisation ensures that the classifier is as robust as possible to any misclassifications on the
training data.

For a linearly separable dataset, the distance d from a point x; to the hyperplane is given by:

g Xl 4.2)
[[wl
For the support vectors, this distance is exactly 1 unit away from the hyperplane, which gives:
yi(w-x; —b) =1 (4.3)

where y; is the class label (+1 or —1).

The margin is, therefore, 2 times the distance from the hyperplane to the nearest point on either side,
which simplifies to:
2

margin =
[Iwll

(4.4)

To maximise the margin, we need to maximise ﬁ This is equivalent to minimising 1||w]||* since

minimising the square of the norm simplifies the calculations and is a standard form for optimisation
problems.

This optimisation problem can be formalised as follows:

minimize ||w]|?
2 (4.5)
subjectto y;(w-x; —b)>1, i=1,...,n

where y; € {—1, 1} are the class labels of the data points.
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To solve this constrained optimisation problem, we use the method of Lagrange multipliers. The La-
grangian for this problem is given by:

L(w,b,a) = %||WH2720@[%(W~X1’fb)fl] (4.6)

=1
where «; > 0 are the Lagrange multipliers.

The dual form of the optimisation problem is derived by taking the partial derivatives of the Lagrangian
with respect to w and b and setting them to zero:

n

n n
. 1
maximize E o — = E o055 (X - X5)

; 2 4= 4
=1 1=1 j=1
. 4.7
subject to Zo‘iyi =0 @7
=1
aiZO, i=1,...7n
Once the optimal values of «; are found, the weight vector w and bias b can be calculated as:
W = Z QiYiXq (4.8)
=1
b=y, —w-x; forany support vector xy (4.9)
The decision function for classifying new data points x is then given by:
f(x) = sign (Z aiyi(Xi - X) — b) (4.10)
=1

4.1.3. Applications in BCI
Support Vector Machines (SVMs) are widely used for Brain-Computer Interface (BCl) classification due
to several advantageous properties [23] :

+ Effective in High-Dimensional Spaces: SVMs handle high-dimensional feature spaces well,
which is common in BCI data.

* Robust to Overfitting: By maximising the margin between classes, SVMs reduce the risk of
overfitting, which is crucial for small BCI datasets.

» Kernel Trick Flexibility: SVMs can use various kernel functions to handle non-linear relation-
ships in BCI data effectively.

» Good Generalization Performance: The margin maximisation principle ensures good perfor-
mance on unseen data, essential for real-time BCI applications.

* Noise Handling: SVMs, with appropriate regularisation, can handle noisy BCI data effectively.

» Binary Classification Suitability: Many BCI tasks are binary, well-suited for SVMs, and multi-
class problems can be handled with techniques like one-vs-one or one-vs-all.

4.2. Theory of Neural Networks, CNNs, and LSTMs

4.2.1. Introduction to Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the human brain’s structure
and function. They consist of interconnected layers of nodes (neurons) that process input data to learn
patterns and make predictions. Each connection between neurons has an associated weight, which is
adjusted during training to minimise the error in the network’s output. This process is known as learning
or training the network.
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The basic structure of an ANN includes an input layer, one or more hidden layers, and an output layer.
Each neuron in a layer applies an activation function to the weighted sum of its inputs to introduce non-
linearity, allowing the network to model complex relationships. Common activation functions include:

+ Sigmoid: Defined as o(z) = 1+ —, it squashes the input to a range between 0 and 1.

* ReLU (Rectified Linear Unit): Defined as f(x) = max(0, z), it introduces sparsity and mitigates
the vanishing gradient problem

* Tanh: Defined as tanh(x) = it maps inputs to a range between -1 and 1.

z+€ x
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Figure 4.3: General visualization of a Neural Network, [25].

4.2.2. Convolutional Neural Networks (CNNSs)

Convolutional Neural Networks (CNNs) are specialised neural networks that are well-suited for process-
ing grid-like data, such as images. Introduced by Yann LeCun and colleagues [30], CNNs leverage the
spatial structure of the data through convolutional layers, pooling layers, and fully connected layers.

Convolutional Layers
Convolutional layers apply a set of learnable filters (kernels) to the input data, producing feature maps
that capture spatial hierarchies and local patterns. The convolution operation is defined as:

1= X[i+m,j+n] Klm,n] (4.11)

X is the input, K is the kernel, and Y is the output feature map.

The filter is a small matrix that extracts features from an image through a convolution operation. This
involves performing a dot product, where the filter matrix is multiplied element-wise with the correspond-
ing input values and then summed to produce a single value. The filter is then moved across the input
image, sliding over it until the entire image has been processed through convolution.

H a4 0 0 1 2

L 2 2 o 0 0

Input Image Filter/Kernel Feature Map

Figure 4.4: A convolutional layer filter sliding across the input image and creating a feature map through corresponding dot
product operations, [5].
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Pooling Layers
Pooling layers reduce the feature maps’ spatial dimensions, which helps decrease the computational
load and mitigate overfitting. Two common types of pooling are:

» Max Pooling: Takes the maximum value in each patch of the feature map.
* Average Pooling: Takes the average value in each patch of the feature map.

5 6 7 8 6 8
Max Pooling
Filter size = 2x2
9 10 11 12 Stride = (2, 2) 14 16
13 14 15 16
Feature Map Pooled Feature Map

A max pooling operation.

Figure 4.5: Max Pooling of the Feature Map, [5].

Average Pooling

Filter size = 2x2

9 | 10 | 11 | 12 | i (o 9) 12 | 14
13 14 15 16
Feature Map Pooled Feature Map

An average pooling operation

Figure 4.6: Average Pooling of the Feature Map, [5].

Fully Connected Layers

After several convolutional and pooling layers, the output is flattened and fed into fully connected layers,
which perform the final classification or regression task. These layers are similar to traditional neural
network layers and contribute to the model’s decision-making process.

Pooled Feature Map Flattened Pooled FC Layer
Feature Map

Figure 4.7: A pooled feature map being flattened and inputted into a fully connected (FC) network layer, [5].

4.2.3. Long Short-Term Memory Networks (LSTMs)
Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN) designed
to model temporal sequences and long-range dependencies. Introduced by Hochreiter and Schmid-
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huber, [24], LSTMs address the vanishing gradient problem common in traditional RNNs through a
sophisticated gating mechanism.

LSTM Architecture
An LSTM unit consists of three main gates:

* Forget Gate: Decides what information to discard from the cell state.
fr=0W;y - [he—1, 2] + by)

where o is the sigmoid function, h,_; is the previous hidden state, z, is the current input, W are
the weights, and by is the bias.

* Input Gate: Determines which new information to store in the cell state.
iy = o(Wi - [he—1,2¢] + ;)

C, = tanh(We - [he—1, 2¢] + bo)

where i, is the input gate activation, C, is the candidate cell state, W; and W are the weights,
and b; and bo are the biases.

» Cell State Update: Updates the cell state using the forget and input gates.
Ci = fy % Cr1 + iy x Cy

where C;_; is the previous cell state and C; is the updated cell state.
* Output Gate: Determines the output of the LSTM cell.

or=0(Wy - [hi—1, 2] + Do)

hi = ot x tanh(C})

where o, is the output gate activation, h; is the current hidden state, W, are the weights, and b,
is the bias.

These gates collectively enable the LSTM to maintain and update information over long sequences,
making it well-suited for tasks such as time-series prediction, natural language processing, and EEG
signal analysis in BCI applications.

Long Short-Term Memory [LSTM]

Updated cell state to help
LSTM Recurrent Unit determine
new hidden state
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. -c:

a
/——) X
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T ; K-
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Input Output
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Figure 4.8: Structure of an LSTM cell, highlighting the flow of information and the roles of various gates, [26]

4.2.4. Combined CNN-LSTM and Transformer Architectures

Recent advancements in deep learning have seen the combination of CNNs and LSTMs to leverage
both spatial and temporal data features. This hybrid approach benefits applications where data indi-
cates spatial hierarchies and temporal dependencies, such as EEG signal processing.
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CNN-LSTM Hybrid Models

In a CNN-LSTM hybrid model, the convolutional layers are responsible for extracting spatial features
from the input data, while the LSTM layers capture temporal dependencies. This architecture is partic-
ularly effective for tasks where spatial features evolve over time.

Incorporating Transformers

Originally introduced for natural language processing tasks, transformers have been adapted to en-
hance sequence modelling in various domains. In EEG signal processing, transformers can be inte-
grated into CNN-LSTM architectures to capture complex temporal dependencies and attention mech-
anisms further. This results in a robust model capable of learning complex patterns in the data.

4.2.5. Applications in BCI

Neural Networks, CNNs, and LSTMs are extensively utilised in Brain-Computer Interface (BCl) systems
because they handle complex, high-dimensional data and capture intricate patterns. Their applications
in BCl include:

» Feature Extraction and Classification: CNNs are highly effective in automatically extracting
relevant features from raw EEG signals and classifying them into different mental states or com-
mands.

» Temporal Dynamics Modeling: LSTMs excel in modelling the temporal dynamics of EEG sig-
nals, making them suitable for tasks requiring the analysis of temporal dependencies, such as
predicting user intent over time.

» Hybrid Architectures: Combining CNNs with LSTMs allows for capturing both spatial and tem-
poral features in EEG data, enhancing the accuracy and robustness of BCI systems.

» Attention Mechanisms: Integrating transformers into CNN-LSTM architectures enables atten-
tion mechanisms to focus on the most relevant parts of the EEG signal, improving classification
performance.

* Real-Time Applications: These models can process EEG signals from streaming data, making
them suitable for applications like neurofeedback, rehabilitation, and external control through
mental commands.

* Noise Robustness: Advanced neural network architectures can be trained to be robust against
the inherent noise in EEG signals, ensuring reliable performance in practical BCI scenarios.

4.3. Theory of Transformations for Feature Extraction

In Brain-Computer Interface (BCl) systems, effective feature extraction from EEG signals is crucial for
accurate classification. Various transformations are used to extract relevant features from the raw EEG
data. This section discusses three commonly used transformations: Short-Time Fourier Transform
(STFT), Wavelet Transform, and Common Spatial Patterns (CSP).

4.3.1. Short-Time Fourier Transform (STFT)

Over time, the Short-Time Fourier Transform (STFT) analyses the frequency content of non-stationary
signals, such as EEG signals. It divides the signal into short overlapping segments and applies the
Fourier Transform to each segment.

Basics:

» The STFT represents a signal in both time and frequency domains.

+ Itinvolves windowing the signal into short segments and computing the Fourier Transform of each
segment.

Mathematical Formulation:
* The STFT of a signal z(t) is defined as:
Xt f)= / z(T)w(r — t)e 27 dr (4.12)

—0o0
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where w(T —t) is a window function that slides over the signal z(¢). To minimise spectral leakage,
the window function w(r — t) is typically chosen as a Gaussian or Hamming window.

Application:

» STFT is used in EEG analysis to observe how the spectral content of EEG signals evolves over
time, which is crucial for identifying time-varying patterns in brain activity.

Advantages in EEG Analysis:

* Provides a time-frequency representation, useful for identifying transient events and changes in
brain activity.

+ Allows for detecting frequency-specific patterns associated with different mental states or tasks.

» The resolution trade-off between time and frequency can be managed by selecting appropriate
window lengths.

4.3.2. Wavelet Transform
The Wavelet Transform is a time-frequency analysis method that decomposes a signal into components
at various scales and positions. It is well-suited for analysing non-stationary signals like EEG.

Overview:

* Unlike STFT, the Wavelet Transform provides multi-resolution analysis, offering good time res-
olution for high-frequency components and good frequency resolution for low-frequency compo-
nents.

Mathematical Formulation:
» The Continuous Wavelet Transform (CWT) of a signal z(t) is defined as:

W(a,b) = % /: (1) (t_b) it (4.13)

a

where v is the mother wavelet, a is the scale parameter, and b is the translation parameter. The
mother wavelet 1) can be chosen from various types, such as Morlet, Mexican Hat, or Daubechies
wavelets, depending on the specific requirements of the analysis.

Application in Time-Frequency Analysis of EEG Signals:

» Used to extract features that capture both the temporal and spectral characteristics of EEG sig-
nals, which is essential for understanding the dynamics of brain activity.

Advantages:
« Effective in detecting transient phenomena and abrupt changes in EEG signals.
» Provides a more flexible and detailed time-frequency representation compared to STFT.

» The ability to zoom in on short-time high-frequency events and long-time low-frequency trends
makes it particularly suitable for analysing EEG signals with varying frequency characteristics.

4.3.3. Common Spatial Patterns (CSP)
Common Spatial Patterns (CSP) is a method used to enhance the discriminative power of features
extracted from multi-channel EEG data, especially in motor imagery classification tasks.

Basics:

» CSP finds spatial filters that maximise one class’s variance while minimising the other class’s
variance.

 This technique transforms the EEG signals into a feature space where the differences between
classes are more pronounced.

Mathematical Formulation:
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» Given EEG data from two classes, CSP aims to find a projection matrix W that maximises the
variance for one class while minimising it for the other. This is done by solving the generalised
eigenvalue problem:

YW = A8, W (4.14)

Where X; and X, are the covariance matrices of the two classes, the solution involves finding the
eigenvectors corresponding to the largest eigenvalues for one class and the smallest eigenvalues
for the other class.

Usage in Feature Extraction for Motor Imagery Classification:

» CSP is handy for classifying motor imagery tasks, where the goal is to distinguish between differ-
ent imagined movements by enhancing the spatial patterns of EEG signals.

» The spatial filters obtained from CSP transform the EEG data into a space where the differences
between motor imagery classes are maximised.

Advantages:

» Enhances the separability of different mental states or tasks in the feature space, improving clas-
sification performance.

* Reduces dimensionality and computational complexity while maintaining or improving classifica-
tion accuracy.

* Provides interpretable spatial patterns that can offer insights into the neural correlates of different
mental states.



Methodology

5.1. Data Acquisition

The Data Acquisition group was tasked with optimizing the processing of EEG signals recorded during
a motor imagery exposure setup, which are essential for developing models that meet specific require-
ments.

The EEG data recorded by the Data Acquisition group consists of 8 channels. This number is signifi-
cantly fewer compared to the average number of channels typically found in online datasets (ranging
from 25 to 64 channels). The limitation in the number of channels is primarily due to resource con-
straints; specifically, the group only had access to the OPENBCI headset, which supports a maximum
of 8 channels, [27].

The channels selected by the Data Acquisition group are as follows:

Nose (frontal)

Figure 5.1: Electrode placement of Data Acquisition Group

5.2. Online Dataset

To ensure synchronous progress with the development of classification models, online datasets are
utilized initially, while the Data Acquisition group gathers EEG data. The online datasets used are as

follows:

16



5.2. Online Dataset 17

+ BCI Competition IV 2a [7]
* PhysioNet [20], [goldberger2000physiobank]

Below is a brief description of each dataset:

5.2.1. BCI Competition IV 2a

Setup
» Subjects: 9

+ Sessions: 2 per subject, recorded on different days

* Runs per Session: 6 runs with short breaks in between

* Trials per Run: 48 trials (12 for each motor imagery class)
 Total Trials per Session: 288

Tasks
Motor Imagery Classes:

1. Left hand movement
2. Right hand movement
3. Both feet movement
4. Tongue movement

Data Recording
* EEG Channels: 22 (recorded using Ag/AgCl electrodes)

+ EOG Channels: 3 (monopolar recording)
+ Sampling Rate: 250 Hz

» Bandpass Filtering: 0.5 Hz to 100 Hz

* Notch Filter: 50 Hz to suppress line noise

The figure below shows the placement of the electrodes during the recording:

Figure 5.2: Electrode placement BCl| Competition IV 2a, [7].

5.2.2. PhysioNet Dataset
This dataset consists of over 1500 one- and two-minute EEG recordings, obtained from 109 volunteers,
as described below.

Experimental Protocol

Subjects performed different motor imagery tasks while 64-channel EEG recordings were taken using
the BCI2000 system, [1]. Each subject performed 14 experimental runs: two one-minute baseline runs
(one with eyes open, one with eyes closed), and three two-minute runs for each of the following four
tasks:
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1. A target appears on either the left or right side of the screen. The subject opens and closes the
corresponding fist until the target disappears, then relaxes.

2. Atarget appears on either the left or right side of the screen. The subject imagines opening and
closing the corresponding fist until the target disappears, then relaxes.

3. A target appears on either the top or bottom of the screen. The subject opens and closes ei-
ther both fists (if the target is on top) or both feet (if the target is on the bottom) until the target
disappears, then relaxes.

4. A target appears on either the top or bottom of the screen. The subject imagines opening and
closing either both fists (if the target is on top) or both feet (if the target is on the bottom) until the
target disappears, then relaxes.

In summary, the experimental runs were:
1. Baseline, eyes open
Baseline, eyes closed
Task 1 (open and close left or right fist)
Task 2 (imagine opening and closing left or right fist)
Task 3 (open and close both fists or both feet)
Task 4 (imagine opening and closing both fists or both feet)

N o ok w N

. Repeat Tasks 1-4 in the same order

The data are provided in EDF+ format (containing 64 EEG signals, each sampled at 160 samples per
second, and an annotation channel). The .event files and the annotation channels in the corresponding
.edf files contain identical data.

Each annotation includes one of three codes:

* TO: Rest

* T1: Onset of motion (real or imagined) of the left fist (in runs 3, 4, 7, 8, 11, and 12) or both fists
(inruns 5, 6, 9, 10, 13, and 14)

» T2: Onset of motion (real or imagined) of the right fist (in runs 3, 4, 7, 8, 11, and 12) or both feet
(inruns 5, 6, 9, 10, 13, and 14)

Figure 5.3: Electrode placement PhysioNet Dataset

Again, the dataset has been filtered to be similar to ours. Therefore, the right channels and tasks have
been selected.
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5.3. Preprocessing
To get the signals of the online datasets in the same format as the data of the Data Acquisition group,
the following steps have been applied:

» Channel Selection: The online datasets consist of more channels than those used by the Data
Acquisition group and have different channel names. To make the processing scripts universal
for all datasets, the 8 channels mentioned in Section 5.1 are selected from the online datasets
and renamed to match the channel names used by the Data Acquisition group.

* Resampling: The sampling rate of the online datasets needs to match the sampling rate of the
Data Acquisition group. This ensures that the filtering process yields consistent results across all
datasets.

The preprocessing applied to both online datasets follows the similar processing scheme used by the
Data Acquisition group, for their recordings. This scheme consists of several steps:

+ Bandpass Filtering: The EEG signals are filtered between 8 and 30 Hz using a 5th order But-
terworth bandpass filter. This step focuses on extracting the frequency band relevant for motor
imagery (MI) brain activity. By filtering out frequencies outside this range, subsequent processing
steps can be standardized across different datasets.

» Blink Removal: Blink artifacts in the EEG signal create spikes that do not contain meaningful
information for MI. These artifacts are removed to ensure that the model does not learn patterns
from irrelevant spikes.

» Normalization: Normalization using z-score is applied to each channel. This normalization en-
sures that each channel has a mean of zero and a variance of 1 across all samples. Standardizing
the data in this way helps in maintaining consistent scaling across different recordings.

* Epoching: The EEG signal is segmented into epochs using the Python library MNE [15]. Epochs
are created precisely at the trigger execution of movements, aligning each epoch with a specific
event related to motor imagery. This segmentation organizes each recording into a sample matrix
of shape (number of samples, time points), which is suitable for subsequent machine learning
models.

These preprocessing steps are crucial for preparing the EEG data for input into SVM and CNN models,
ensuring that the data is standardized and relevant features are extracted for accurate classification of
motor imagery tasks.

5.4. Model Development

5.4.1. SVM Model

Transformation

Before extracting the features, first should be discussed which transformation is going to be used to ex-
tract the features from. EEG patterns during motor imagery/execution is an oscillation, and is thus non-
stationary. Transformations that are specifically designed to extract information from non-stationary
signals, are short-time Fourier transform (STFT) [9] and wavelet transform (WT) [6].

Features

Various features from different transformations, such as STFT, WT, time domain, and CSP, were in-
cluded in the analysis. These features were then visualized using a boxplot or subjected to a Wilcoxon
Signed-Rank Test to assess the Null Hypothesis Hy: There is no difference between Left and Right.

Concerning the time domain, the following features were extracted:
* Mean Voltage: average value of the EEG signal over a given period.
» Standard Deviation: measures the amount of variation or dispersion of the EEG signal values.

» Variance: the square of the standard deviation, representing the spread of the signal values
around the mean.

» Skewness: measures the asymmetry of the signal distribution around the mean.
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Kurtosis: measures the "tailedness” or peakedness of the signal distribution.

Root Mean Square (RMS): the square root of the average of the squares of the signal values.
Zero-Crossing Rate: the rate at which the signal crosses the zero voltage level.

Waveform Length: the cumulative length of the waveform over a given period.

Max Amplitude: the highest voltage value observed in the signal.

Peak-to-Peak Amplitude: the difference between the maximum and minimum voltage values in
the signal.

Mean Absolute Value (MaV): the average of the absolute values of the signal.

Area Under the Curve (AUC): the integral of the signal over a given period, representing the
total signal accumulation.

Below it shows the boxplot(5.4) of the time-domain:
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Figure 5.4: Boxplot Timedomain Features

As can be seen from the boxplot, some features show a big difference between left and right. From
this, it can be concluded that some features are useful, for example, the feature Mean Voltage. The
body of the right signal (orange) is larger than that of the left signal (blue), and they don’t overlap. On
the other hand, some features are not useful. For example, in MaV; the body of the right signal and
the left signal are approximately the same. But the important thing is that the entire right signal body is
inside the left signal body.

The Features for STFT and WT are the following:

Mu Band Power (STFT): the power of the EEG signal within the mu frequency band (8-13 Hz).

Beta Band Power(STFT): the power of the EEG signal within the beta frequency band (13-30
Hz).

Mean Power(STFT): average power of the EEG signal over all frequency bands.
Variance: the spread of the power values around the mean power across the frequency bands.

Average Power(STFT): average power of the EEG signal, possibly over a specific period or
condition.

SPD Average Power(STFT): average power of the signal power density (SPD), representing the
average power per unit frequency.

Power(WT): overall power of the EEG signal as measured by wavelet transform.
Relative Power(WT): power of the EEG signal relative to a specific frequency band or total power.

Peak Frequency(WT): frequency at which the power spectrum density (PSD) reaches its maxi-
mum.

Bandwidth(WT): range of frequencies within which most of the signal’'s power is contained.
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» Spectral Entropy(WT): measure of the complexity or irregularity of the EEG signal’s frequency
distribution.

For the following features, Wilcoxon Signed-Rank Test was performed. The result was that the Null
Hypothesis H, was rejected. Which means that there is a difference between left and right.

Additional features that are used are Phase Locking Value (PLV) and Common Spatial Pattern (CSP):

* PLV: measures the synchronization between two EEG signals by assessing how often their
phases align over time. High PLV indicates strong synchronization, while low PLV indicates weak
synchronization. During motor imagery tasks, like imagining left-hand movement, the right motor
cortex becomes more active, leading to a larger phase difference with the left motor cortex, re-
sulting in lower PLV. This change in synchronization patterns can be used to distinguish between
different motor imagery tasks, enhancing the accuracy of brain-computer interfaces (BCIs).

» CSP: is a technique that extracts features from EEG data by finding spatial filters that maximize
variance differences between two classes of brain signals, such as imagining left-hand versus
right-hand movement. CSP highlights the differences in brain activity, making it easier to classify
these signals accurately. By enhancing these distinctions, CSP improves the reliability of BCls
in interpreting motor imagery, leading to better performance in applications where users control
devices with their thoughts.

Also here Wilcoxon Signed-Rank Test was performed. The result was that the Null Hypothesis H, was
rejected. Which means that there is a difference between left and right.

The PLV and CSP were the most important features. For example, the accuracy didn’t change signifi-
cantly when only these features were used.

Hyperparameters tuning
The following parameters are tuned in the svm model:

+ Gamma: Controls the influence range of training examples.
— High gamma can lead to overfitting.
— Low gamma may cause underfitting.

» C: Regularization parameter that balances training error and model complexity.
— High C focuses on classifying all training examples correctly, possibly overfitting.
— Low C results in a smoother decision surface.

* Kernel: Defines the transformation type applied to data to find an optimal boundary.
— Common types include linear, polynomial, RBF, and sigmoid.
— The choice of kernel significantly affects model performance.

To determine which values are the best for the parameters, Cross-Validation is performed. This is how
Cross-validation works:

Cross-validation is a technique to estimate a model’s performance and generalizability. It involves:
+ Splitting the dataset into & folds.
* Training the model on &k — 1 folds.
* Validating on the remaining fold.
* Repeating the process k times, with each fold used as a validation set once.
» Averaging the results to ensure the model’s robustness across different data subsets.

This method helps in tuning hyperparameters and ensures the model’s robustness across different data
subsets.
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4-fold validation (k=4)

Fold 1 €4
Fold 2 ]
Fold 3 ]
Fold 4 €4

Figure 5.5: How Cross-Validation Works [14]

5.4.2. CNN Model

The neural network used for motor imagery classification is a Convolutional Neural Network (CNN).
CNNs are chosen because they effectively capture patterns in EEG signals. Their layers learn and
extract features from EEG data, which improves classification accuracy for different brain activities.
CNNs also handle variations in EEG signals over time and space, making them ideal for interpreting
complex brain patterns related to motor imagery [22]. According to research by Ali Al-Saegh et al., [2],
CNNs are the most commonly used model for motor imagery classification, with a usage rate of 73.9%.

Input Preparation

Wavelet pseudo-images serve as inputs for the CNN model. Pseudo-images represent time-series
data transformed into a format suitable for CNNs, resembling the structure of typical images used in
CNNSs. This representation includes:

» Channels: representing EEG channels.

+ Wavelet scales: representing frequency ranges obtained from Continuous Wavelet Transform
(CWT).

» Time points: representing the temporal dimension of EEG signals.
Wavelet transformation is applied independently to different frequency bands:

* mu band (8-13 Hz)
* beta band (14-30 Hz)

This results in 22 scales. Continuous Wavelet Transform is used approximately 45% of the time for
creating these pseudo-images [2].

Neural Network Layers
CNN models incorporate combinations of ReLU layers, LSTM layers, Transformer layers, and Dropout
layers.

ReLU (Rectified Linear Unit) layers are effective in CNNs because they introduce non-linearity, en-
abling complex pattern learning in EEG data. They also enhance computational efficiency and prevent
vanishing gradients, thereby improving classification performance [4].

LSTM (Long Short-Term Memory) layers** are beneficial in CNNs for capturing temporal dependencies
in EEG signals, enhancing overall classification accuracy [31].

Transformer layers excel in capturing long-range dependencies and handling temporal dynamics in
EEG signals. They incorporate an attention mechanism that focuses on relevant parts of the input
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sequence, leading to improved classification performance.

Dropout layers are used to prevent overfitting in CNNs by randomly dropping units during training. This
regularization technique enhances model generalization and performance on unseen data, [4].

Combining CNNs, ReLU, LSTM, Transformer, and Dropout layers enhances motor imagery classifica-
tion accuracy. CNNs extract spatial features from EEG signals, ReLU layers introduce non-linearity,
LSTM layers capture temporal dependencies, Transformers manage long-range dependencies with
attention mechanisms, and Dropout layers prevent overfitting, collectively improving model robustness

and accuracy [4].

Proportion use of input formulations

Figure 5.6: Proportion use of input formulation types across all the reviewed studies with the used techniques for achieving
them., [2].

Proportion use of DNN architectures and activatin functinos

Figure 5.7: Proportion use of the DNN architectures across all the reviewed studies with the employed activation functions, [2].

Hyperparameter Tuning
Their is no scheme/recipe to get the best set hyperparameters for achieving the best preforming model,
the selection of the paramaters is done by trail and error. The parameters that play a role in the perfor-

mance of the CNN model are:

» Depth of Layers: The number of convolutional layers in the network. According to Schirrmeister
et al., [22], deeper networks tend to yield better results in EEG classification by capturing com-
plex patterns. Due to resource constraints (using personal laptops), the model was limited to 3
convolutional layers to balance performance and runtime.

* Number of Filters: The depth of the output volume from a convolutional layer. For this study, 32,
64, and 128 filters were chosen per layer, suitable for extracting meaningful features from EEG

data.
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Filter Size (Kernel Size): The dimensions of convolutional filters. A 3x3 kernel size was se-
lected as it effectively captures spatial hierarchies in EEG signals, aligning with findings from
Schirrmeister et al., [22].

Stride: Is the number of pixels by which the filter moves across the input matrix. In the study
of Schirrmeister et al., [22], the typically used stride size is 1. This allowed the model to capture
fine-grained spatial information in EEG signals, which is crucial for Ml classification.

Padding: Extra layers of zeros around the input matrix to preserve spatial dimensions after con-
volution. The 'padding=1'" has been applied to each convolutional layer, 'padding=1'" means
"same” padding, which ensures that the output feature map has the same spatial dimensions as
the input.

Pooling: Operations like max pooling or average pooling to downsample the input. Some studies
in EEG classification have shown that both average and max pooling can be effective depending
on the specific context and preprocessing steps applied to EEG data. During the developement
of the model average pooling has been used, with the idea that it preserves more information
about all parts of the input, compared to max pooling.

Regularization Method: Regularization methods refer to techniques used to prevent overfitting
and improve generalization capabilities. Dropout Rate has been chosen, which is the probability
of neurons being randomly dropped out during training. In the review of Ali Al-Saegh et al., [2],
the most used regularization method across the 40 papers was Dropout Rate, see figure A.3.

Learning Rate: Determines how much to change the model in response to the estimated er-
ror. A starting point of 0.001 was chosen, which is a commonly used starting point and is often
considered a reasonable choice for many deep learning tasks, including motor imagery tasks.

Batch Size: Number of training examples used per iteration. A batch size of 256 was chosen for
the Physionet dataset to balance runtime efficiency given its size ( 5000 samples). For the BCIC
IV 2a dataset, a batch size of 64 was selected due to its smaller sample size. For the data of the
Data Acquisition group a batch size of 4 has been used, due the scarcity of the data.

Optimizer: Type of optimization algorithm used. The used optimizer it the Adam Optimizer, In
the review of Ali Al-Saegh et al., [2], the Adam Optimizer was the most used, with an usage rate
of 47%, see 5.9.

Usage of regularizations
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Figure 5.8: Amount of using the regularization methods across the reviewed articles, [2].
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Proportion use of optimization algorithms

Bayesian
3%
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Figure 5.9: Proportion use of the different optimization algorithms across all the reviewed studies, [2].

5.5. Scalability and User-Specific Models
5.5.1. Scalability

Scalability is crucial for enhancing the performance of classification models in EEG motor imagery
(MI) applications. As the amount of data increases, the model can learn from a more diverse set of
examples, leading to better generalization and accuracy.

Our scripts are designed to automatically detect and integrate new data uploaded by the Data Ac-
quisition group. This process uses online learning techniques to retrain the model incrementally. By
continuously updating the model with new data, we ensure that it remains up-to-date and improves over
time. This approach is supported by research of Steven C.H. Hoi et. [32], which provides empirical
evidence showing that more data generally leads to improved classification accuracy.

When a new user is added, their calibration dataset also contributes to the scalability of our data. This
means that each new user’s data not only helps in personalizing their model but also enhances the
overall dataset, benefiting the general performance of the system. Studies have shown that including
diverse user data can improve the robustness and accuracy of EEG-based models, [22].

5.5.2. User-Specific Models

Motor imagery activity varies significantly from person to person. This variation necessitates the use
of user-specific models to achieve optimal performance. Research has demonstrated that tailoring
models to individual users can substantially improve classification accuracy, [13].

In our implementation, when a new user is added, we start with the latest updated pre-trained model
and fine-tune it using the user’s calibration dataset. This fine-tuning process involves giving more
weight to the calibration data, emphasising the model’s user-specific characteristics. This method has
effectively adapted pre-trained models to individual users, enhancing the user-specific performance of
EEG classification systems, [28].

Our system aims to provide high accuracy and personalised performance in EEG motor imagery appli-
cations by focusing on scalability and user-specific adaptation.

5.6. Evaluation Metrics
The following methods are used to evaluate the models:
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Accuracy
Accuracy is the proportion of correctly predicted instances out of the total instances. It shows how often
the classifier is right overall. The formula is as follows:

Number of Correct Predictions

Accuracy = Total Number of Predictions

(5.1)

Accuracy is a simple and widely used measure that gives a general idea of how well the model performs.
It's especially helpful for datasets where the number of items in each group is about the same. For BCI
motor imagery, where the detection of motor imagery signals is critical, accuracy helps in understanding
the overall effectiveness of the model.

Precision
Precision measures the accuracy of the positive predictions by calculating the ratio of correct positive
predictions to all predicted positive outcomes. Below is the formula:

Precision — True Positives (5.2)
" True Positives + False Positives :

It's important to be precise when the cost of making a wrong guess is high. For BCl motor imagery,
being precise means accurately detecting the signals related to imagining movement, which reduces
the chances of the system giving out the wrong commands. This is important for users to trust the
system and for it to work reliably.

Recall
Recall (or sensitivity) refers to the proportion of correctly identified positive outcomes compared to all
positive outcomes. It indicates the model’s ability to recognise all positive instances accurately.

True Positives
Recall = True Positives + False Negatives (5:3)

In BCI motor imagery, picking up on all the relevant signals is crucial. If we miss a valid signal, the
user’s intended action might not be recognised, which can be a big problem for assistive technologies
and communication devices. High recall helps ensure the system is sensitive to all the right motor
imagery signals.

F1 Score
The F1 Score is a method of combining precision and recall into a single measure. It provides a
balanced view of both aspects. The formula can be seen below:

Precision x Recall
F1 Score =2 x Precision + Recall (54)

The F1 Score is especially useful for imbalanced datasets where one class might be significantly un-
derrepresented. In BCI motor imagery, where certain motor imagery signals might be rare compared
to others, the F1 Score provides a balanced evaluation, ensuring that both precision and recall are
considered. This helps in developing a more reliable BCI system that accurately detects and responds
to motor imagery signals.



Results

6.1. SVM

The SVM model is performed on different datasets; the results of each dataset are shown below.

6.1.1. Physionet

Table 6.1: Performance Metrics for SVM on Physionet Dataset

6.1.2. BCICIV 2a

Metric | All Subjects | One Subject (average)
Accuracy 59% 66%
Precision 56% 63%

Recall 55% 64%
F1 Score 56% 65%

Table 6.2: Performance Metrics for SVM on BCIC IV 2a Dataset

Metric | All Subjects | One Subject (average)
Accuracy 65% 78%
Precision 64% 74%

Recall 62% 74%

F1 Score 64% 75%

6.1.3. Data Acquisition group

Table 6.3: Performance Metrics for SVM on Data Acquisition Dataset

Metric One Subject (average)
Accuracy 55%
Precision 54%

Recall 55%
F1 Score 54%

6.1.4. Comparative Analysis

As can be seen from the results above, the BCIC IV 2a dataset performs the highest for this model,
with an accuracy of 65% for all subjects. After that comes Physionet with 59% and, at last, the Data
Acquisition group with 55%.

27
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6.2. CNN

6.2.1. Models

During the experiments, two advanced deep learning models were employed: the Advanced-EEG-MI-
CNN and Advanced-EEG-MI-CNN-LSTM-Transformer mo. These models were evaluated to compare
their performance on the same EEG dataset. Below is a detailed description of the experimental setup.

+ Advanced-EEG-MI-CNN:

— Convolutional Layers: The model consists of three convolutional layers with batch normali-
sation and average pooling. Each convolutional layer uses a 3x3 kernel with a padding of 1
to preserve the spatial dimensions of the input.

— Fully Connected Layers: Following the convolutional layers, the output is flattened and
passed through three fully connected layers with ReLU activations and dropout for regu-
larisation. The final output layer has two neurons corresponding to the two classes in the Ml
task: left-hand movement and right-hand movement.

* Advanced-EEG-MI-CNN-LSTM-Transformer:

— Convolutional Layers: Similar to the Advanced-EEG-MI-CNN model, this architecture starts
with three convolutional layers with batch normalisation and average pooling.

— LSTM Layer: The output from the convolutional layers is reshaped and fed into an LSTM
layer to capture temporal dependencies in the data.

— Transformer Encoder: Following the LSTM, a Transformer encoder layer is applied to fur-
ther model sequential dependencies. The output from the Transformer is used for the final
classification.

— Fully Connected Layers: The final part of the network consists of three fully connected layers
with ReLU activations and dropout, leading to the output layer with two neurons.

6.2.2. Results

Model: Advanced-EEG-MI-CNN
Physionet Dataset

Table 6.4: Performance Metrics for Advanced-EEG-MI-CNN on Physionet Dataset

Metric | All Subjects | One Subject (average)
Accuracy 65% 78%
Precision 62% 74%

Recall 58% 73%
F1 Score 60% 73%

BCIC IV 2a Dataset

Table 6.5: Performance Metrics for Advanced-EEG-MI-CNN on BCIC IV 2a Dataset

Metric | All Subjects | One Subject (average)

Accuracy 80% 92%
Precision 76% 87%
Recall 74% 83%

F1 Score 75% 85%
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Data Acquisition Dataset

Table 6.6: Performance Metrics for Advanced-EEG-MI-CNN on Data Acquisition Dataset

Metric One Subject
Accuracy 54%
Precision 51%

Recall 48%

F1 Score 49%

Model: Advanced-EEG-MI-CNN-LSTM-Transformer
Physionet Dataset

Table 6.7: Performance Metrics for Advanced-EEG-MI-CNN-LSTM-Transformer on Physionet Dataset

Metric | All Subjects | One Subject (average)

Accuracy 63% 72%
Precision 59% 68%
Recall 56% 66%

F1 Score 58% 66%
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BCIC IV 2a Dataset

Table 6.8: Performance Metrics for Advanced-EEG-MI-CNN-LSTM-Transformer on BCIC IV 2a Dataset

Metric | All Subjects | One Subject (average)
Accuracy 78% 92%
Precision 74% 82%

Recall 70% 87%
F1 Score 72% 85%

Data Acquisition Dataset

Table 6.9: Performance Metrics for Advanced-EEG-MI-CNN-LSTM-Transformer on Data Acquisition Dataset

Metric | One Subjects (average)
Accuracy 53%
Precision 47%

Recall 50%
F1 Score 49%

6.2.3. Comparative Analysis

The BCIC IV 2a dataset consistently showed higher accuracy than the Physionet dataset across both
Advanced-EEG-MI-CNN and Advanced-EEG-MI-CNN-LSTM-Transformer models. For all subjects,
the accuracy for the BCIC IV 2a dataset was notably higher, with Advanced-EEG-MI-CNN achiev-
ing 80% and Advanced-EEG-MI-CNN-LSTM-Transformer achieving 78%. In contrast, the Physionet
dataset yielded lower accuracies of 65% for Advanced-EEG-MI-CNN and 63% for Advanced-EEG-MI-
CNN-LSTM-Transformer. This trend was also evident when evaluating a single subject, where the BCIC
IV 2a dataset again outperformed the Physionet dataset. The own dataset showed significantly lower
accuracy, with both models achieving only around 50%, suggesting that it may not contain enough data
to effectively differentiate between the two classes.

The analysis highlights the differences in performance between the Physionet, BCIC, and Data Acquisi-
tion datasets using Advanced-EEG-MI-CNN and Advanced-EEG-MI-CNN-LSTM-Transformer models.
The BCIC dataset demonstrated higher accuracy across both models, suggesting it is a more reliable
dataset for these types of analyses. The Acquisition dataset has a low accuracy indicates that the
data may be insufficient or not well-suited for class differentiation. Future research should focus on
improving the quality of the Physionet and Data Acquisition datasets or exploring additional datasets
to ensure robust model performance. Further investigation into precision, recall, and F1 score metrics
will provide a more comprehensive understanding of model efficacy.

6.3. User Specific Models

Due to time constraints, we were unable to experiment with varying the weights on the user dataset to
create user specific models. This prevented us from fully implementing a comprehensive evaluation to
individual users.



Discussion

This research aimed to develop a BCI system that can effectively distinguish between left-hand and
right-hand motor imagery using EEG signals. This section discusses the findings, compares the per-
formance of different models, and outlines potential future work.

Performance of SVM Model

The SVM model was tested on the BCIC IV 2a dataset, achieving an average accuracy of 65% for
all subjects and 78% for a single subject. The precision, recall, and F1 score metrics also indicated
moderate performance, with the highest values being 74% for precision and 73% for the F1 score in the
single-subject scenario. This suggests that while the model shows potential for direct implementation
in gaming experiences, it is not yet developed enough for practical use. Its performance is not ground-
breaking, and significant progress is needed for medical applications to achieve the high accuracy
required in this field.

Performance of CNN Models

Two CNN models were developed: the Advanced-EEG-MI-CNN and the Advanced-EEG-MI-CNN-
LSTM-Transformer. The Advanced-EEG-MI-CNN model performed with an accuracy of 80% for all
subjects and 90% for a single subject. Adding LSTM and Transformer layers in the Advanced-EEG-MI-
CNN-LSTM-Transformer model aimed to capture temporal dependencies in the data. However, this
model did not significantly outperform the simpler CNN model, suggesting that the temporal depen-
dencies were not as critical for this specific task or that the implementation requires further refinement.
Once again, the model shows potential but requires significant progress to be effectively utilised in the
gaming and medical fields.

Comparative Analysis

A comparative analysis revealed that while the Advanced-EEG-MI-CNN and Advanced-EEG-MI-CNN-
LSTM-Transformer models showed similar accuracy levels, the simpler Advanced-EEG-MI-CNN was
more computationally efficient. The SVM model achieved an accuracy of 65% across all subjects
and 78% for a single subject; as for the Advanced-EEG-MI-CNN, it was 80% across all subjects and
92% for a single subject. Adding LSTM and Transformer layers in the Advanced-EEG-MI-CNN-LSTM-
Transformer model did not provide a significant performance improvement over the simpler CNN model.
In practical applications with limited computational resources, the Advanced-EEG-MI-CNN may be
preferable due to its efficiency. Further refinement and optimisation are necessary for all models to
achieve higher accuracy and practical usability in gaming and medical applications.

The model performance on the self-gathered data is significantly lower than the objective performance,
primarily due to the scarcity of the data. With more data, the accuracy of the Convolutional Neural
Network (CNN) models would likely improve, as they would have more examples to learn from. Fur-
thermore, the blink noise was not correctly removed, which could be a contributing factor to the low
validation accuracy observed during the training of the CNN models.
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Future Work
Due to the time constraint of 10 weeks, not every objective could be completed or optimised. The
remaining work necessary to achieve more respectable results includes:

* Enhancing User-Specific Model Implementation: Future research should focus on refining
user-specific models to better adapt to individual differences in EEG signals.

» Applying ICA for Data Cleaning: Implementing ICA can help isolate and remove noise from
EEG data, leading to cleaner signals and potentially higher classification accuracy.

» Improving Data Preprocessing: Further efforts are needed to enhance the preprocessing steps
to minimise noise and artifacts in the EEG data, thereby improving the overall performance of the
models.



Conclusion

This research successfully developed and evaluated an SVM model and two advanced deep-learning
models for BCI motor imagery classification. The models demonstrated moderate accuracy levels, with
the Advanced-EEG-MI-CNN model achieving up to 80% accuracy for All subjects. The SVM model,
tested on the BCIC IV 2a dataset, also achieved an accuracy of 65% across all subjects. The preci-
sion, recall, and F1 score metrics indicated moderate performance, with the highest values from the
Advanced-EEG-MI-CNN model being 76% for precision, 74% for recall and 75% for the F1 score in the
single-subject scenario.

While adding LSTM and Transformer layers in the Advanced-EEG-MI-CNN-LSTM-Transformer model
did not significantly enhance performance, it provided valuable insights into the potential and limitations
of these architectures. This underscores the importance of user-specific models and highlights areas
for future improvement, including data-cleaning techniques and preprocessing methods.

These findings lay the groundwork for more robust and scalable BCI systems, with the potential for
significant impact in assistive technologies and beyond. Further refinement and optimisation are nec-

essary for all models to achieve higher accuracy and practical usability in gaming and medical applica-
tions.
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Source Code

Here are the links to the GitHub repositories:

* CNN
+ SVM

A.1. CNNs models
A.11. Advanced-EEG-MI-CNN

nnn

The Advanced_EEG_MI_CNN implementation.

nnn

class Advanced_EEG_MI_CNN(nn.Module):

def

def

def

__init__(self):

super (Advanced_EEG_MI_CNN, self).__init__()

self.convl = nn.Conv2d(in_channels=8, out_channels=32, kernel_size=(3, 3), padding=1)

self.bnl = nn.BatchNorm2d (32)

self.pooll = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2))

self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), padding
=1)

self.bn2 = nn.BatchNorm2d (64)

self.pool2 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2))

self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding
=1)

self.bn3 = nn.BatchNorm2d (128)

self .pool3 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2))

self.dropout = nn.Dropout(p=0.5)

# Compute the size of the input to the fully connected layer
dummy_input = torch.zeros(l, 8, 43, 1251)

dummy_output = self._forward_conv_layers (dummy_input)
fc_input_size = dummy_output.numel ()
self.fcl = nn.Linear(fc_input_size, 256)

self.fc2 = nn.Linear (256, 64)
self.fc3 = nn.Linear (64, 2)

forward_conv_layers(self, x):

x = self.pooll(F.relu(self.bnl(self.convi(x))))
x = self.pool2(F.relu(self.bn2(self.conv2(x))))
x = self.pool3(F.relu(self.bn3(self.conv3(x))))
return x

forward(self, x):

x = self._forward_conv_layers(x)

x = x.view(x.size(0), -1)

x = self.dropout(F.relu(self.fc1(x)))
x = F.relu(self.fc2(x))
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self.fc3(x)
return x

X =

A.1.2. Advanced-EEG-MI-CNN-LSTM-Transformer

nnn

The Advanced_EEG_MI_CNN_LSTM_Transformer implementation.

nnn

class Advanced_EEG_MI_CNN_LSTM_Transformer (nn.Module):
def __init__(self):

super (Advanced_EEG_MI_CNN_LSTM_Transformer, self).

_init__Q)

# Convolutional layers

self.convl = nn.Conv2d(in_channels=8, out_channels=32, kernel_size=(3, 3), padding=1)

self.bnl = nn.BatchNorm2d (32)

self.pooll = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2))

self.conv2 = nn.Conv2d(in_channels=32, kernel_size=(3, 3),
=1)

self.bn2 = nn.BatchNorm2d (64)

self.pool2 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2))

out_channels=64, padding

self.conv3 = nn.Conv2d(in_channels=64, kernel_size=(3, 3),
=1)
self.bn3 = nn.BatchNorm2d (128)

self .pool3 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2))

out_channels=128, padding

# LSTM layer
self.lstm =
True)

nn.LSTM(input_size=128%6%157, hidden_size=128, num_layers=1, batch_first=

# Transformer layer

self.transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=128, nhead=8)

self.transformer_encoder = nn.TransformerEncoder(self.transformer_encoder_layer,
num_layers=1)

# Fully connected layers
self.fcl = nn.Linear (128,
self.fc2 = nn.Linear (256,
self.fc3 = nn.Linear (64,

256)
64)
2)

# Dropout layer

self.dropout = nn.Dropout(p=0.5)

def _forward_conv_layers(self, x):

= self
= self
= self

Mo M

.pooll(F.relu(self.
.pool2(F.relu(self.
.pool3(F.relu(self.

bnl(self.convi(x))))
bn2(self.conv2(x))))
bn3(self.conv3(x))))

return x
def forward(self, x):
batch_size = x.size(0)
# Forward pass through convolutional layers
x = self._forward_conv_layers(x)
# Flatten for LSTM

x = x.view(batch_size, -1, 128*6%157)
# Forward pass through LSTM

(hn, cn) = self.lstm(x)

# Transformer encoding
x = self.transformer_encoder (x)

# Take the output from the last sequence step for classification
x = x[:, -1, :]

# Forward pass through fully connected layers
self.dropout (F.relu(self.fcl1(x)))
F.relu(self.fc2(x))

X =

»
]
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x = self.fc3(x)
return x
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Figure A.1: Overview of performance of SVM model across the datasets.

Accuracy for Advanced-EEG-MI-CNN Model

Precision for Advanced-EEG-MI-CNN Model

100
80 4
. 60
=)
a
[
& 404
204
mm  All Subjects B All Subjects
I One Subject Im One Subject
T - T
Physionet BCIC IV 2a Data Acquisition Physionet BCIC IV 2a Data Acquisition
Dataset Dataset
Recall for Advanced-EEG-MI-CNN Model F1 Score for Advanced-EEG-MI-CNN Model
100
o
g
&a
. H .
s
mmm All Subjects mmm All Subjects
mmm One Subject mmm One Subject

BCIC IV 2a Data Acquisition

Dataset

Physionet

BCIC IV 2a Data Acquisition

Dataset

Physionet

Figure A.2: Overview of performance of Advanced-EEG-MI-CNN model across the datasets.
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Statement use of Al

Al tools were used while writing this report. To summarize curtain papers and explain methods. And
improve the vocabulary and make self-written alinea’s more concise. Grammarly is also used to correct
our grammar throughout the paper.
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