
 
 

Delft University of Technology

Aerodynamic Shape Optimization Using Symbolic Sensitivity Analysis

Elham, Ali; van Tooren, Michel

DOI
10.2514/6.2017-0359
Publication date
2017
Document Version
Accepted author manuscript
Published in
58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

Citation (APA)
Elham, A., & van Tooren, M. (2017). Aerodynamic Shape Optimization Using Symbolic Sensitivity Analysis.
In 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference: Grapevine,
Texas, USA Article AIAA 2017-0359 American Institute of Aeronautics and Astronautics Inc. (AIAA).
https://doi.org/10.2514/6.2017-0359
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/6.2017-0359
https://doi.org/10.2514/6.2017-0359


Aerodynamic Shape Optimization Using Symbolic

Sensitivity Analysis

Ali Elham ∗

Delft University of Technology, 2629HS Delft, The Netherlands

Michel J.L. van Tooren †

University of South Carolina, Columbia, SC 29201 USA

The least-squares finite element method is used to solve the compressible Euler equations
around airfoils in transonic regime. The symbolic analysis method is used to generate the
element stiffness and force matrices. The equations of the element matrices are derived
symbolically based on the flow primitive variables and the position of the element nodes.
The symbolic analysis is also used to compute the exact derivatives of the residuals with
respect to both design variables (e.g. the airfoil geometry) and the state variables (e.g.
the flow velocity). The symbolic analysis allows to compute the exact Jacobian of the
governing equations in a computationally efficient way, which is used for Newton iteration.
Besides, using the symbolic analysis the sensitivities of the outputs, such as the airfoil drag,
with respect to the design variables, such as the airfoil geometry, are computed using the
discrete adjoint method without the need for automatic differentiation. This makes the
analysis and optimization computationally more efficient.

I. Introduction

An aerodynamic shape optimization is performed by a combined use of computational fluid dynamics
(CFD) and numerical optimization techniques. Such an optimization includes hundreds of design variables.
Although applications of heuristic optimization algorithms for aerodynamic shape optimization can be found
in literature,1,2 gradient based algorithms are still the most efficient methods for shape optimizations based
on high fidelity CFD analysis including large number of design variables. However a sensitivity analysis is
required for using gradient based algorithms.

Adjoint methods for sensitivity analysis have been widely used in recent years for aerodynamic shape
optimization. Both continuous5–7 and discrete adjoint3,4 methods have been used. Application of the
continuous adjoint faces some difficulties. In the continuous adjoint first the flow equations are differentiated
and then discretized. Therefore there can be a mismatch between the gradient computed using the continuous
adjoint and the discrete gradient. For example the continuous adjoint results in erroneous gradient close
to the wing sharp trailing edge.6 On the other hand discrete adjoint applies the differentiation to the
discredited flow equations. However computing the partial derivatives, that are requited to use the discrete
adjoint method, is a challenge. Automatic differentiation (AD) in the reverse mode is used to solve this
issue.3,4 Although using AD enormously reduces the human effort in developing adjoint CFD codes, its
memory requirements negatively affects the computational efficiency.8

Recent development in software like Mathematica, Matlab, Maple and Mathcad allows symbolic analysis.
Using this capability, analysis such as integration or differentiation can be done symbolically. In this research
symbolic analysis is used to develop a CFD code including discrete adjoint sensitivity analysis. All the partial
derivatives required for such a purpose were initially derived using symbolic analysis and then hard-coded in
the code. Using this approach no AD is required, which makes the analysis and optimization more efficient.

∗Postdoc Researcher, Flight Performance and Propulsion, Faculty of Aerospace Engineering, AIAA Member.
†Professor, Ronald E. McNair Center for Aerospace Innovation and Research, AIAA Member.

1 of 16

American Institute of Aeronautics and Astronautics

Postprint of: Ali Elham,. "Aerodynamic Shape Optimization Using Symbolic Sensitivity Analysis", 58th AIAA/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, (AIAA 
2017-0359) 
http://dx.doi.org/10.2514/6.2017-0359



II. Finite element formulation

The least-squares finite element method is used to solve the compressible Euler equations, as proposed by
Jiang and Carey.9 Two dimensional unsteady compressible Euler equations can be presented in the following
matrix form:

dU

dt
+A1

dU

dx
+A2

dU

dy
= 0 (1)

where U = [ρ, u, v, p]T is the vector of the primitive variables and the A1 and A2 matrices are as follows:

A1 =











u ρ 0 0

0 u 0 ρ−1

0 0 u 0

0 γp 0 u











(2)

A2 =











v 0 ρ 0

0 v 0 0

0 0 v ρ−1

0 0 γp v











(3)

where u and v are the velocity components, ρ is the density, p is the pressure and γ is the specific heat
ratio. Equation (1) can be linearized by setting An = A(Un). An implicit time differentiation results in the
following equation:

R = Un+1
− Un +∆tAn

1

∂Un+1

∂x
+∆tAn

2

∂Un+1

∂y
= 0 (4)

Using a least-square finite element method,13 the L2-norm of the residual R is minimized, i.e.:

min Φ =

∫

Ω

RTR dxdy (5)

In a finite element approach the primitive variables inside each element are approximated using the
so-called shape functions as follows:

Ũ =

nn
∑

i=1

NiUi (6)

where nn is the number of nodes for each element, Ni is the ith shape function and Ui is the value of the
primitive variables at node i. Using the least-squares finite element method the following element stiffness
and force matrices are obtained:

Ke
ij =

∫

Ωe

(LNi)
T (LNj)dxdy (7)

F e
ij =

∫

Ωe

(LNi)
TUndxdy (8)

where

LNi = NiI +∆t
∂Ni

∂x
An

1 +∆t
∂Ni

∂y
An

2 (9)

I is the identity matrix. In finite element analysis the element matrices are usually computed using
numerical integration techniques such as Gauss Quadrature.10 This approach requires multiple time calcu-
lation of the integral function and also introduces numerical error. In this research the symbolic analysis
technique is used to derive the exact solution of the integrals shown in Eqs. (7) and (8).

In this research three nodes linear triangular elements are used, where the shape functions are defined
based on the local coordinates L1, L2 and L3 as shown in Eq. (10).

2 of 16

American Institute of Aeronautics and Astronautics



L1 =
A1

A
(10)

L2 =
A2

A

L3 =
A3

A

where A is the area of the triangle, and A1, A2, and A3 are the areas of the three sub-triangles as shown
in Fig.1. From this figure one can observe that A1+A2+A3 = A and L1+L2+L3 = 1. The shape functions
for this type of element are defined as:

N1 = L1 (11)

N2 = L2

N3 = 1− L2 − L2

Figure 1: Triangular element local coordinates.

To derive the equations of Ke and F e using symbolic analysis the x and y positions of the element nodes
(for 2D elements) as well as the flow variables ρ, u, v and p are defined as symbols. Matlab symbolic analysis
toolbox is used to derive the solution of Eqs. (7) and (8) symbolically. Lines 1 to 62 of the Matlab code
shown in Appendix are used to derive Ke and F e.

The resulting symbolic equations for K and F were subsequently hard-coded in a function for computing
the element matrices. This function receives the x and y positions of the nodes (x1, y1 to x3, y3 in Appendix)
and the values of the flow variables at each node (ρ1, u1, v1, p1 to ρ3, u3, v3, p3 in Appendix) as well as
the time step (dt in Appendix) and returns the stiffness and the force matrices for each element. Using the
proper assembly the global stiffness and force matrices are generated.

Two types of boundary conditions are used for airfoil analysis; the far field boundary condition, where the
pressure, velocity and density are given, and the wall boundary condition, where for inviscid flow the normal
velocity to the wall is set to zero. Applying the first type of boundary condition is easy. The values of the
variables of the nodes placed on this boundary are defined as fixed degrees of freedom. However the second
type of boundary condition requires some attention. In order to apply the wall condition the local angle
of the wall at each node, θ, is first determined from the airfoil geometry, see Section IV. A transformation
matrix, T is defined based on θ of the nodes on the walls. In order to compute K and F for the elements
with at least one node on the wall, the coordinate of the velocity variables of the node(s) on the wall are
rotated in such a way to have tangential and normal velocity to the wall instead of u and v in x and y
directions respectively. This transformation is done using the T matrix. The normal velocity of the nodes
on the wall is set to zero and defined as fixed degree of freedom.

3 of 16

American Institute of Aeronautics and Astronautics



III. Solving the nonlinear system of equations

Both Picard and Newton methods are used to solve the nonlinear system R(U) = K(U)U − F (U) = 0.
The Newton method has a larger rate of convergence compared to the Picard method, but it has a smaller
radius of convergence.11 Therefore the iteration is started using the Picard method and after a few iteration,
the Newton method is used.

Using the Picard iteration method, in this case, is identical to using the Newton method to solve the
linearized system Rn+1 = K(Un)Un+1 −F (Un) = 0, where ∂R/∂U is equal to K(Un). In such an approach
first the stiffness and force matrices are evaluated using the U vector from the previous iteration (or the
initial guess at the first iteration). Then ∆U (the change in U) is computed as:

∆U = −
∂R

∂U

−1

R(U) (12)

where as mentioned earlier ∂R/∂U is approximated to be equal to K, and R is evaluated as R(U) =
K(Un)Un − F (Un).

The next step is to solve the nonlinear system Rn+1 = K(Un+1)Un+1 − F (Un+1) = 0 using the Newton
method. In this approach the exact derivative of R with respect to U is required, which includes the partial
derivatives of K and F with respect to U . The symbolic analysis is used to derive ∂Re/∂Ue as a function
of the nodes position as well as the value of the primitive variables at each node, see lines 66 to 94 of
the Appendix. The equations for Re and ∂Re/∂Ue are hard-coded and called to evaluate the residual and
its derivatives with respect to the primitive variables for each element. Using this approach Re is directly
evaluated, therefore the need for calculating and storing the stiffness and force matrices is eliminated. It
improves the speed as well as memory requirement of the code. Using a proper assembly the values of R
and ∂R/∂U of the whole system are computed.

IV. Shape parametrization and mesh deformation

The airfoil geometry can be parametrized using different methods. In this case the Class Shape Trans-
formation (CST) method14 is used. The CST method is symbolically described as follows:

ζ(ψ) = CN1
N2 (ψ) · S(ψ) (13)

where ψ and ζ are normalized x and y positions respectively. CN1
N2 is the class function and S(ψ) present

the shape function. The class function expresses the basis class of shapes:

CN1
N2 (ψ) = (ψ)N1 (1− ψ)N2 (14)

N1 and N2 are equal to 0.5 and 1 respectively for an airfoil with round leading edge and sharp trailing edge.
The shape function is a Bernstein polynomial representation which describes the permutation around this
basic shape:

S(ψ) =

p
∑

i=0

P̄iBi,p(ψ) (15)

where p is the order of the Bernstein polynomial, P̄i is the vector of control points and Bi,p(ψ) are the
Bernstein polynomials of degree p. The values of P̄i are defined as design variables and referred to as the
CST modes. Defining the values of the CST modes, the position of the nodes on the airfoil wall as well as
the derivative of the x and y position of the wall nodes with respect to the CST coefficients are computed
analytically.

The spring analogy is used to deform the mesh. Defining the position of the nodes on the wall using the
CST method, the position of the other nodes are determined iteratively using this equation:

∆xm+1
i =

∑Ni

j=1 kij∆x
m
j

∑Ni

j=1 kij
(16)

where Ni is the number of the nodes connected to node i, and kij is the inverse of the length of the edge
ij. Using Eq. (16) the sensitivity of the position of each node with respect to the CST modes is determined
analytically.

4 of 16

American Institute of Aeronautics and Astronautics



V. Adjoint method for sensitivity analysis

Beside computing the exact Jacobian of the residuals, symbolic analysis is also used for sensitivity analysis
required for optimization. The derivative of a function of interest I, for example the drag coefficient, with
respect to a design variable X (not to be confused with x position of the nodes) is as follows:

dI

dX
=

∂I

∂X
+
∂I

∂U

dU

dX
(17)

In the discrete adjoint approach the derivatives of the residuals with respect to the design variables are
used to eliminate dU/dX from Eq. (17):

dR

dX
=
∂R

∂X
+
∂R

∂U

dU

dX
= 0 (18)

dU

dX
= −

∂R

∂U

−1 ∂R

∂X
(19)

Substituting Eq. (19) in Eq. (17), dI/dX is calculated as follows:

dI

dX
=

∂I

∂X
− λT

∂R

∂X
(20)

where the adjoint vector, λ, is calculated from the following equation:

∂R

∂U

T

λ =
∂I

∂U
(21)

In an airfoil optimization I can be the lift coefficient Cl, the drag coefficient Cd and the pitching moment
coefficient Cm. The design variables X can be the airfoil geometry as well as the angle of attack α and the
free stream Mach number M .

Beside ∂R/∂U , the partial derivatives of R and I with respect to the design variables X and the partial
derivative of I with respect to U are required to compute the total derivatives dI/dX. The symbolic analysis
is used to derive the partial derivatives of the element residuals with respect to the x and y positions of
the element nodes, i.e. ∂Re/∂xe and ∂Re/∂ye, see lines 96 to 181 of the code shown in Appendix. These
equations were hard-coded in a function that receives the nodes positions as well as the value of the primitive
variables at each node and returns ∂Re/∂xe and ∂Re/∂ye. Using a proper assembly the partial derivatives
of the global residuals with respect to the position of the nodes are computed.

The partial derivative ∂R/∂X is then computed as:

∂R

∂X
=
∂R

∂x

∂x

∂X
+
∂R

∂y

∂y

∂X
+
∂R

∂θ

∂θ

∂X
(22)

where x and y are the positions of the nodes, θ is the slope of the wall at the position of the node and X
is the vector of CST modes. The terms ∂R/∂θ and ∂θ/∂X are computed using the transformation matrix
T , and the airfoil geometry (the CST formulation) respectively.

The angle of attack and the free stream Mach number only affect the values of u and v for the nodes
defined as inlet boundary condition directly. Therefore ∂U/∂α and ∂U/∂M are nonzero only for the nodes
on the inlet boundary. For these nodes ∂U/∂α and ∂U/∂M are as follows:

∂Ue

∂α
= [0 −Msin(α) Mcos(α) 0]T (23)

∂Ue

∂M
= [0 cos(α) sin(α) 0]T (24)

The partial derivatives of Re with respect to α and M are derived as follows:

∂Re

∂α
=
∂Re

∂Ue

∂Ue

∂α
(25)

∂Re

∂M
=
∂Re

∂Ue

∂Ue

∂M
(26)

5 of 16

American Institute of Aeronautics and Astronautics



By a proper assembly ∂R/∂α and ∂R/∂M are computed.
The airfoil aerodynamic coefficients Cl, Cd and Cm are computed by a proper integration of the pressure

over the airfoil surface. The pressure coefficient on the airfoil surface is a function of U of the nodes on
the airfoil surface (defined as wall boundary condition) and the free stream Mach number. The equations
of the partial derivatives ∂Cl/∂U , ∂Cd/∂U and ∂Cm/∂U for the nodes on the airfoil surface are derived
symbolically (manually not by Matlab symbolic analysis toolbox) and hard-coded. These derivatives for
the nodes other than those on the airfoil surface are zero. Similar equations for derivatives of the airfoil
coefficients with respect to the free stream Mach number are derived. In the same way the symbolic equations
for the partial derivatives of the airfoil aerodynamic coefficients with respect to the x and y positions of the
nodes on the surface of the airfoil are derived. Eventually the partial derivatives of I with respect to X is
computed based on ∂I/∂x, ∂I/∂y, ∂x/∂X and ∂y/∂X.

VI. Validation

A Matlab code named FEMflow is developed based on the mentioned method. The code is able to use
parallel computing for solving massive CFD problems. In such an approach, the total domain is divided into
n sub-domains, where n is the number of available computing nodes. The R vector as well as the matrix of
∂R/∂U for each domain is computed in parallel. A proper assembly is used at the end of generate the R
vector and ∂R/∂U matrix for the whole domain.

In order to validate the code, the results of FEMflow for four different test cases were compared to
experimental data from AGARD report15 and shown in Table 1. Figure 2 shows the pressure contours for
the four test cases shown in Table 1.

Table 1: Validation results of FEMflow.

FEMflow AGARD

Airfoil M α Cl Cd Cl Cd

RAE2822 0.75 3 1.0713 0.0497 1.1058 ± 0.0322 0.0467 ± 0.0056

NACA0012 0.95 0 0.1078 0.1082 ± 0.0008

NACA0012 1.2 0 0.0948 0.0953 ± 0.0014

NACA0012 1.2 7 0.5170 0.1535 0.5211 ± 0.0142 0.1538 ± 0.0012

To verify the sensitivity analysis method the NACA0012 airfoil is parametrized using 20 CST modes (10
for the upper and 10 for the lower surfaces). Figure 3 shows the comparison between the derivatives of Cl,
Cd and Cm with respect to the CST modes computed by the adjoint method and the finite differencing.

Besides, computing the exact value of dR/dU allows to use the full benefit of the quadratic convergence
rate of the Newton method. Figure 4 shows the convergence history of analysis of the NACA0012 airfoil in
Mach number of 0.7 and angle of attack of 2 degrees. First the Jacobian of the residuals is approximated
by assuming a linear equation R = KU − F , where dR/dU = K. Then the exact Jacobian of the nonlinear
system derived using symbolic analysis is used. From Fig. 4 one can observe that using the exact Jacobian,
the Newton method reduced the norm of residuals by 9 order of magnitude in 10 iterations.

VII. Mesh adaptation

The least-squares residuals of the Euler equations can also be used as an error indicator for mesh adap-
tation.12 Using such an approach the element error is defined based on the least squares residuals of the
steady Euler equations:

E =
1

Ωe

Ue

∫

Ωe

[

∂Ni

∂x
A1 +

∂Ni

∂y
A2

]T [

∂Nj

∂x
A1 +

∂Nj

∂y
A2

]

dxdy Ue (27)

Using this error the elements that need to be refined are indicated. An automatic mesh adaptation code
is included in FEMflow. Two options are used for mesh refinement. In the first option the elements marked
for refinement are divided into three elements. This is done by connecting each of the three element nodes
to the point at the center of the element as shown in Fig. 5a. In the second option the elements marked for

6 of 16

American Institute of Aeronautics and Astronautics



-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(a) RAE2822, M = 0.75 and α = 3◦.

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(b) NACA0012, M = 0.95 and α = 0◦.

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(c) NACA0012, M = 1.2 and α = 0◦.

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(d) NACA0012, M = 1.2 and α = 7◦.

Figure 2: Pressure contours for the FEMflow validation test cases.

refinement are divided into two elements. The longest edge of each element is divided into two parts from
the middle point of the edge. This point is then connected to the third node of the element. In order to
make the mesh conformal, the neighbor element is also divided into two elements as shown in Fig. 5b.

Figure 6 shows an example of mesh refinement in FEMflow. The RAE2822 airfoil in Mach 0.73 and
α = 2◦ is considered in this case. Figure 6 shows the mesh before and aftere refinement using the type two
mesh refinement method. The initial mesh has 10216 elements and 5233 nodes, while the adapted mesh has
16262 elements and 8282 nodes. The Cp distributions over the airfoil for two different meshes are plotted in
Fig. 7.

VIII. Test case optimization

In the first test case optimization of the NACA0012 airfoil at M = 0.75 is considered. The optimization
is formulated as follows:

7 of 16

American Institute of Aeronautics and Astronautics



0 5 10 15 20

CST Mode Number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

dC
l/d

X

Adjoint
Finite difference

(a) dCl/dX.

0 5 10 15 20

CST Mode Number

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

dC
d/

dX

Adjoint
Finite difference

(b) dCd/dX.

0 5 10 15 20

CST Mode Number

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

dC
m

/d
X

Adjoint
Finite difference

(c) dCm/dX.

Figure 3: Verification of the sensitivity analysis. Results are for NACA0012 airfoil at M = 0.7 and α = 2◦.

min Cd(X) (28)

Xi = CST Modes i = 1..10

s.t. Cl − Clt = 0 (29)

Cmt
− Cm ≤ 0 (30)

tmaxinit
− tmax ≤ 0

(31)

The airfoil geometry is parametrized using 10 CST modes, 5 for each surface. The airfoil lift coefficient
is constrained to be equal to the lift coefficient of the initial airfoil at 2 degrees angle of attack. The airfoil
pitching moment is constrained to be equal to or larger (less negative value) than the initial airfoil pitching
moment. The airfoil maximum thickness to chord ratio is also constrained to be equal or higher than the
thickness to chord ratio of the initial airfoil. The optimization is executed using a mesh with 10216 elements,
see Fig. 8. The mesh adaptation has not been used during the optimization. The SNOPT optimization
algorithm16 is used as the optimizer.

Table 2 summarizes the results of the optimization. Figure 9 shows the convergence history of the
objective function. The geometry and the pressure distribution of the initial and the optimized airfoils are
compared in Fig. 10.

From Fig. 10b one can observe that the optimizer managed to eliminate the shock wave from the upper
surface of the airfoil. This resulted in more than 65% reduction in the airfoil inviscid drag. The airfoil

8 of 16

American Institute of Aeronautics and Astronautics



0 50 100 150 200

Iteration number

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g(

R
)

Approx. Jacobian
Exact Jacobian

Figure 4: The effect of exact Jacobina on the convergence history of NACA0012 airfoil in M = 0.7 and
α = 2◦.

(a) Type one. (b) Type two

Figure 5: Dividing elements into smaller ones for mesh refinement.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y

(a) Before refinement.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y

(b) After refinement

Figure 6: Unstructured mesh around RAE2822 airfoil before and after refinement.

maximum thickness, the lift coefficient and the pitching moment coefficient remained the same as the initial
airfoil.

As the second test case, optimization of the RAE2822 airfoil at Mach number of 0.73 is considered. The
same constraints on airfoil lift (at 2 degrees angle of attack), pitching moment and maximum thickness as
the previous case are applied. The same mesh with 10216 elements is used for this optimization as well.

9 of 16

American Institute of Aeronautics and Astronautics



0 0.2 0.4 0.6 0.8 1

X

-1.5

-1

-0.5

0

0.5

1

1.5

-C
p

Initial Mesh
Adapted Mesh

Figure 7: Effect of mesh adaptation on airfoil pressure distribution.

-0.5 0 0.5 1 1.5

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Mesh

Figure 8: Unstructured mesh around NACA0012 airfoil with 10216 elements.

Table 2: Results of NACA0012 airfoil optimization

α [deg] Cl Cd Cm

(

t
c

)

max

Initial 2 0.4202 0.0121 -0.0125 0.12

Optimized 1.73 0.4204 0.0042 -0.0125 0.12

10 of 16

American Institute of Aeronautics and Astronautics



5 10 15 20 25

Iteration Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 O
bj

ec
tiv

e 
F

un
ct

io
n

Figure 9: Convergence history of NACA0012 airfoil optimization.

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Initial
Optimized

(a) Airfoils geometry.

0 0.2 0.4 0.6 0.8 1

X

-1

-0.5

0

0.5

1

1.5

-C
p

Initial
Optimized

(b) Pressure coefficient.

Figure 10: Comparison of the initial and optimized airfoils for NACA0012 airfoil optimization.

The results of this optimization are shown in Figs. 11 and 12. Similar to the previous case, the optimizer
managed to eliminate the shock wave from the upper side of the airfoil, while keeping the airfoil lift, pitching
moment and maximum thickness the same as the initial airfoil. The inviscid drag of the airfoil was reduced
by more than 16%. Table 3 summarizes the results of this optimization.

Table 3: Results of RAE2822 airfoil optimization

α [deg] Cl Cd Cm

(

t
c

)

max

Initial 2 0.7691 0.0163 -0.1311 0.12

Optimized 1.84 0.7691 0.0136 -0.1311 0.12

IX. Conclusions

This paper presented a successful application of symbolic analysis to aerodynamic shape optimization.
The use of symbolic analysis resulted in a couple of advantages. The first advantage is that using the
symbolic analysis the equations of the residuals and the derivative of the residuals with respect to the flow
primitive variables are directly derived. Hard-coding these equations allows direct computation of the vector
of the residuals R without the need for computing and storing the stiffness matrix and the force vector. This
accelerates the computation and reduces the memory requirement.

11 of 16

American Institute of Aeronautics and Astronautics



5 10 15 20 25

Iteration Number

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

N
or

m
al

iz
ed

 O
bj

ec
tiv

e 
F

un
ct

io
n

Figure 11: Convergence history of RAE2822 airfoil optimization.

0 0.2 0.4 0.6 0.8 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Initial
Optimized

(a) Airfoils geometry.

0 0.2 0.4 0.6 0.8 1

X

-1.5

-1

-0.5

0

0.5

1

1.5
-C

p

Initial
Optimized

(b) Pressure coefficient.

Figure 12: Comparison of the initial and optimized airfoils for RAE2822 airfoil optimization.

Another advantage of using symbolic analysis is to compute exact derivatives of any function of interest
with respect to the design variables without using automatic differentiation or finite differencing method.
Applying the finite differencing method increases the computational time and also introduces errors in
sensitivity analysis. Using forward mode of AD is time consuming and the reverse mode needs high memory
requirement. However using the symbolic analysis the difficulties associated with memory requirement,
computational time and accuracy are eliminated.

The least-squares finite element method is used to solve the Euler equations for inviscid compressible
flow. A code named FEMflow is developed based on the mentioned method and the symbolic analysis to
analysis and optimize airfoil shape at transonic flow regime. The accuracy of the code for computing lift and
drag has been validated using experimental data, and the sensitivity analysis has been verified using finite
differencing. The results of two airfoil optimization test cases have been used to demonstrate the ability of
the proposed method for efficient aerodynamic shape optimization.

Appendix

1 %% Defining symbols
2

3 syms L1 L2
4 syms x1 x2 x3 y1 y2 y3

12 of 16

American Institute of Aeronautics and Astronautics



5 syms r u v p
6 syms r1 u1 v1 p1 r2 u2 v2 p2 r3 u3 v3 p3
7 syms dt
8

9 %% Defining shape functions for linear triangular elements
10

11 L3 = 1 − L1 − L2;
12

13 S1 = L1;
14 S2 = L2;
15 S3 = L3;
16

17 %% derivatives of the shape functions
18

19 dx dL1 = x1 − x3;
20 dx dL2 = x2 − x3;
21 dy dL1 = y1 − y3;
22 dy dL2 = y2 − y3;
23

24 J = [dx dL1 dy dL1; dx dL2 dy dL2];
25

26 detJ = (x1 − x3)*(y2 − y3) − (x2 − x3)*(y1 − y3);
27

28 dS1 = J\[diff(S1,L1); diff(S1,L2)]; dS1dx = dS1(1); dS1dy = dS1(2);
29 dS2 = J\[diff(S2,L1); diff(S2,L2)]; dS2dx = dS2(1); dS2dy = dS2(2);
30 dS3 = J\[diff(S3,L1); diff(S3,L2)]; dS3dx = dS3(1); dS3dy = dS3(2);
31

32 %% Euler equations
33

34 g = 1.4;
35

36 A1 = [u r 0 0
37 0 u 0 1/r
38 0 0 u 0
39 0 g*p 0 u];
40

41 A2 = [v 0 r 0
42 0 v 0 0
43 0 0 v 1/r
44 0 0 g*p v];
45

46 E = eye(4);
47

48

49 Ln1 = E*S1 + dt*A1*dS1dx + dt*A2*dS1dy;
50 Ln2 = E*S2 + dt*A1*dS2dx + dt*A2*dS2dy;
51 Ln3 = E*S3 + dt*A1*dS3dx + dt*A2*dS3dy;
52

53 L = [Ln1 Ln2 Ln3];
54 f = [r; u; v; p];
55

56 %% Matrices
57

58 SK = transpose(L)*L;
59 K = int(int(SK*detJ,L2,0,1−L1),L1,0,1);
60

61 SF = transpose(L)*f;
62 F = int(int(SF*detJ,L2,0,1−L1),L1,0,1);
63

64 %% Deriving R and dR/dU
65

66 U = [r1; u1; v1; p1; r2; u2; v2; p2; r3; u3; v3; p3];
67 R = K*U−F;
68

69 dRdr = diff(R,r);
70 dRdu = diff(R,u);
71 dRdv = diff(R,v);
72 dRdp = diff(R,p);
73

74 dRdr1 = diff(R,r1) + dRdr*S1;

13 of 16

American Institute of Aeronautics and Astronautics



75 dRdr2 = diff(R,r2) + dRdr*S2;
76 dRdr3 = diff(R,r3) + dRdr*S3;
77

78 dRdu1 = diff(R,u1) + dRdu*S1;
79 dRdu2 = diff(R,u2) + dRdu*S2;
80 dRdu3 = diff(R,u3) + dRdu*S3;
81

82 dRdv1 = diff(R,v1) + dRdv*S1;
83 dRdv2 = diff(R,v2) + dRdv*S2;
84 dRdv3 = diff(R,v3) + dRdv*S3;
85

86 dRdp1 = diff(R,p1) + dRdp*S1;
87 dRdp2 = diff(R,p2) + dRdp*S2;
88 dRdp3 = diff(R,p3) + dRdp*S3;
89

90 dRdU1 = [dRdr1 dRdu1 dRdv1 dRdp1];
91 dRdU2 = [dRdr2 dRdu2 dRdv2 dRdp2];
92 dRdU3 = [dRdr3 dRdu3 dRdv3 dRdp3];
93

94 dRdU = [dRdU1 dRdU2 dRdU3];
95

96 %% dR/dx and dR/dy for a point at the center of the element i.e. x = (x1+x2+x3)/3 and y = (y1+y2+y3)/3
97

98 syms x y
99

100 S1 = (x2*y3 − x3*y2)/(x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 − x3*y2) − (y*(x2 − x3))/ ...
101 (x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 − x3*y2) + (x*(y2 − y3))/ ...
102 (x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 − x3*y2);
103 S2 = (y*(x1 − x3))/(x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 − x3*y2) − (x1*y3 − x3*y1)/ ...
104 (x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 − x3*y2) − (x*(y1 − y3))/ ...
105 (x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 − x3*y2);
106 S3 = (x1*y2 − x2*y1)/(x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 − x3*y2) − (y*(x1 − x2))/ ...
107 (x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 − x3*y2) + (x*(y1 − y2))/ ...
108 (x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 − x3*y2);
109

110 dS1 dx1 = diff(S1,x1) + diff(S1,x)*1/3;
111 dS2 dx1 = diff(S2,x1) + diff(S2,x)*1/3;
112 dS3 dx1 = diff(S3,x1) + diff(S3,x)*1/3;
113

114 dS1 dx2 = diff(S1,x2) + diff(S1,x)*1/3;
115 dS2 dx2 = diff(S2,x2) + diff(S2,x)*1/3;
116 dS3 dx2 = diff(S3,x2) + diff(S3,x)*1/3;
117

118 dS1 dx3 = diff(S1,x3) + diff(S1,x)*1/3;
119 dS2 dx3 = diff(S2,x3) + diff(S2,x)*1/3;
120 dS3 dx3 = diff(S3,x3) + diff(S3,x)*1/3;
121

122

123 dr dx1 = r1*dS1 dx1 + r2*dS2 dx1+ r3*dS3 dx1 ;
124 dr dx2 = r1*dS1 dx2 + r2*dS2 dx2+ r3*dS3 dx2 ;
125 dr dx3 = r1*dS1 dx3 + r2*dS2 dx3+ r3*dS3 dx3 ;
126

127 du dx1 = u1*dS1 dx1 + u2*dS2 dx1+ u3*dS3 dx1 ;
128 du dx2 = u1*dS1 dx2 + u2*dS2 dx2+ u3*dS3 dx2 ;
129 du dx3 = u1*dS1 dx3 + u2*dS2 dx3+ u3*dS3 dx3 ;
130

131 dv dx1 = v1*dS1 dx1 + v2*dS2 dx1+ v3*dS3 dx1 ;
132 dv dx2 = v1*dS1 dx2 + v2*dS2 dx2+ v3*dS3 dx2 ;
133 dv dx3 = v1*dS1 dx3 + v2*dS2 dx3+ v3*dS3 dx3 ;
134

135 dp dx1 = p1*dS1 dx1 + p2*dS2 dx1+ p3*dS3 dx1 ;
136 dp dx2 = p1*dS1 dx2 + p2*dS2 dx2+ p3*dS3 dx2 ;
137 dp dx3 = p1*dS1 dx3 + p2*dS2 dx3+ p3*dS3 dx3 ;
138

139

140 dRdx1 = diff(R,x1) + diff(R,r)*dr dx1 + diff(R,u)*du dx1 + diff(R,v)*dv dx1 +diff(R,p)*dp dx1 ;
141 dRdx2 = diff(R,x2) + diff(R,r)*dr dx2 + diff(R,u)*du dx2 + diff(R,v)*dv dx2 +diff(R,p)*dp dx2 ;
142 dRdx3 = diff(R,x3) + diff(R,r)*dr dx3 + diff(R,u)*du dx3 + diff(R,v)*dv dx3 +diff(R,p)*dp dx3 ;
143

144 dRdx = [dRdx1 dRdx2 dRdx3];

14 of 16

American Institute of Aeronautics and Astronautics



145

146 %
147 dS1 dy1 = diff(S1,y1) + diff(S1,y)*1/3;
148 dS2 dy1 = diff(S2,y1) + diff(S2,y)*1/3;
149 dS3 dy1 = diff(S3,y1) + diff(S3,y)*1/3;
150

151 dS1 dy2 = diff(S1,y2) + diff(S1,y)*1/3;
152 dS2 dy2 = diff(S2,y2) + diff(S2,y)*1/3;
153 dS3 dy2 = diff(S3,y2) + diff(S3,y)*1/3;
154

155 dS1 dy3 = diff(S1,y3) + diff(S1,y)*1/3;
156 dS2 dy3 = diff(S2,y3) + diff(S2,y)*1/3;
157 dS3 dy3 = diff(S3,y3) + diff(S3,y)*1/3;
158

159

160 dr dy1 = r1*dS1 dy1 + r2*dS2 dy1+ r3*dS3 dy1 ;
161 dr dy2 = r1*dS1 dy2 + r2*dS2 dy2+ r3*dS3 dy2 ;
162 dr dy3 = r1*dS1 dy3 + r2*dS2 dy3+ r3*dS3 dy3 ;
163

164 du dy1 = u1*dS1 dy1 + u2*dS2 dy1+ u3*dS3 dy1 ;
165 du dy2 = u1*dS1 dy2 + u2*dS2 dy2+ u3*dS3 dy2 ;
166 du dy3 = u1*dS1 dy3 + u2*dS2 dy3+ u3*dS3 dy3 ;
167

168 dv dy1 = v1*dS1 dy1 + v2*dS2 dy1+ v3*dS3 dy1 ;
169 dv dy2 = v1*dS1 dy2 + v2*dS2 dy2+ v3*dS3 dy2 ;
170 dv dy3 = v1*dS1 dy3 + v2*dS2 dy3+ v3*dS3 dy3 ;
171

172 dp dy1 = p1*dS1 dy1 + p2*dS2 dy1+ p3*dS3 dy1 ;
173 dp dy2 = p1*dS1 dy2 + p2*dS2 dy2+ p3*dS3 dy2 ;
174 dp dy3 = p1*dS1 dy3 + p2*dS2 dy3+ p3*dS3 dy3 ;
175

176

177 dRdy1 = diff(R,y1) + diff(R,r)*dr dy1 + diff(R,u)*du dy1 + diff(R,v)*dv dy1 +diff(R,p)*dp dy1 ;
178 dRdy2 = diff(R,y2) + diff(R,r)*dr dy2 + diff(R,u)*du dy2 + diff(R,v)*dv dy2 +diff(R,p)*dp dy2 ;
179 dRdy3 = diff(R,y3) + diff(R,r)*dr dy3 + diff(R,u)*du dy3 + diff(R,v)*dv dy3 +diff(R,p)*dp dy3 ;
180

181 dRdy = [dRdy1 dRdy2 dRdy3];

References

1Antunes, A.P., Azevedo, J.L.F., “Studies in Aerodynamic Optimization Based on Genetic Algorithms,” JOURNAL OF
AIRCRAFT, Vol. 51, No. 3, 2014, pp.1002-1012.

2Elham, A., van Tooren M.J.L., “Weight Indexing for Wing-Shape Multi-Objective Optimization,” AIAA JOURNAL, Vol.
52, No. 2, 2014, pp. 320-337.

3Mader, C.A., Martins. J.R.R.A., Alonso, J.J., van der Weide, E., “ADjoint: An Approach for the Rapid Development of
Discrete Adjoint Solvers,” AIAA JOURNAL Vol. 46, No. 4, 2008, pp. 863-873.

4Carpentieri, G., Koren, B., van Tooren, M.J.L., “Adjoint-based aerodynamic shape optimization on unstructured meshes,”
Journal of Computational Physics, Vol. 224, 2007, pp. 267-287.

5Brezillon, J., Gauger, N.R., “2D and 3D aerodynamic shape optimisation using the adjoint approach,” Aerospace Science
and Technology Vol. 8, 2004, pp. 715-727.

6Palacios, F., Economon, T.D., Wendorf, A.D., and Alonso, J.J., “Large-scale aircraft design using SU2,” 53rd AIAA
Aerospace Sciences Meeting, 5-9 January 2015, Kissimmee, Florida, USA.

7Baysal, O., and Ghayour, K., “Continuous Adjoint Sensitivities for Optimization with General Cost Functionals on Un-
structured Meshes,” AIAA JOURNAL Vol. 39, No. 1, January 2001, pp. 48-55.

8Muller, J.D., Cusdin, P., “On the performance of discrete adjoint CFD codes using automatic differentiation,” INTER-
NATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Vol. 47, 2005, pp.939-945.

9Jiang, B.N., Carey, G.F., “Least-Squares Finite Element Methods for Compresible Euler Equations,” INTERNATIONAL
JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Vol. 10, 1990, pp. 557-568.

10Krishnamoorthy, C.S., “ Finite element analysis, theory and programming,” second edition, Mc Graw Hill Education,
New Delhi, India, 1994.

11Reddy, J.N., Gartling, D.K., “ The Finite Element Method in Heat Transfer and Fluid Dynamics,” CRC Press, Boca
Raton, Florida, USA, 2001.

12Lefebvre, D., Peraire, J., Morgan, K., “ Finite Elmenet Least Squares Solution of The Euler Equatsions Using Linear and
Quadratic Approximations,” International Journal of Computational Fluid Dynamics, Vol. 1, pp. 1-23, 1993.

13Bochev, P.B., Gunzburger, M.D., “Least-Squares Finite Element Methods,” Springer, New York, NY, USA, 2009.
14Kulfan, B., “Universal parametric geometry representation method,” Journal of Aircraft , Vol. 45, No. 1, 2008, pp.

142-158.

15 of 16

American Institute of Aeronautics and Astronautics



15Viviand, H., “Numerical solutions of two-dimensional reference test cases, in test cases for inviscid flow field methods,”
AGARD-AR-211, May 1985.

16Gill, P., Murray, W., and Saunders, M., “SNOPT: An SQP Algorithm for Large-scale Constrained Optimization,” SIAM
Review, Vol. 47, No. 1, 2005, pp. 99-131.

16 of 16

American Institute of Aeronautics and Astronautics


