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SUMMARY 
The space layout design is one of the most important phases 
of the architectural design, and the automatic generation of 
space layout has shown great potential as a design aid. 
Research has shown that space layouts can have a 
significant impact on the improvement of energy 
performance. The combination of the automatic generation of 
space layout and the optimization of energy performance is 
expected to be greatly helpful for the development of an 
energy efficient design in the early design phase. This paper 
presents a literature review of the current research about the 
automatic generation of space layout related to the energy 
performance.  

The following conclusions can be drawn: space layouts have 
an important impact on the thermal performance of buildings; 
only several researches have tried to combine automatic 
generation of space layout with the energy performance 
optimization; an in-depth investigation into achievements of 
past researchers on automatic space layout generation 
integrated with energy performance optimization is thus 
promising. Besides, these investigations have resulted in 
outlining several challenges such as: the calculation of the 
energy performance lacks the integration of different aspects 
of energy performance; the current automatically generated 
space layouts lack the flexibility of shapes, and its application 
in 3D geometry is limited; the generation of space layouts 
lack the consideration of specific characters of different types 
of buildings. 

KEY WORDS 
space layout, automatic generation, computer-aided design, 
energy performance, optimization design 

INTRODUCTION 
Architectural space layout design is a stage within the 
architectural design process that takes place between the 
“schematic design” phase and the “design development” 
phase. The space layout design is one of the most important 
phases of the architectural design, which is relevant to all 
physical design problems (Michalek et al. 2002). The space 
layout design is a process to assign relationships to a given 
function and then a geometry to this function, during which 
architects translate the client’s needs into an architectural 
programmatic language (Lobos and Donath 2010). Spatial 
layout is concerned with finding feasible locations and 
dimensions for a set of interrelated objects that meet all 
design requirements and maximize design quality regarding 
design preferences (Michalek et al. 2002). 

Different properties of space layout have been researched, 
including layouts for vision accessibility (Penn and Turner 

2003), physical activity (Zimring et al. 2005), occupant 
behaviour (Goldstein et al. 2011), etc. The Space and 
Organization Workshop (SPORG) at MIT’s School of 
Architecture and Planning, created in 1990, is explicitly 
directed towards exploring the interdependence between 
physical space and organizational behaviour (Horgen 1999). 
As for the physical performance, Hsu (2000) creates a 
database with the relationships between spaces and the 
surrounding (site, sun, light, wind). Space layout, in addition 
to the common engineering objectives such as cost and 
aesthetic, is especially concerned with usability qualities and 
performance (Michalek and Papalambros 2002). 

The automatic generation of space layouts uses 
computational processes to generate designs (Lobos and 
Donath 2010). There are numerous works focusing on 
different methods for automatically generated architectural 
space layouts, and many solutions have been presented and 
discussed: prototypes, tests, depth computer programming, 
and optimization formulas embedded in the architectural field 
(Lobos and Donath 2010). Various studies have been 
conducted, which show that the automatic generation of 
space layout has great potential to support architectural 
design. We especially see potential making buildings net 
zero energy or energy producing. 

The rest of the paper is structured as follows. In section 2, 
the different methods of automatic generation of space 
layouts are presented. In section 3, the relationship between 
space layouts and energy performance is discussed. Section 
4 provides conclusions and future research directions to be 
investigated. 

AUTOMATIC GENERATION OF SPACE LAYOUT 
Research on the automatic space layout generation started 
around 50 years ago (Levin 1964). Since then, plenty of 
studies have been conducted. The outcomes show great 
potential and serve as inspiration for architects. Kornberger 
and Clegg (2004) also discussed the relationship between 
generation and organisational function, which implies that 
generation will inspire greater possibilities of space layouts, 
rather than being a passive container. In common, there are 
basic criteria or constraints that space layouts should satisfy. 
These can be roughly divided into typology and geometry 
(Medjdoub and Yannou 2000; Rodrigues et al. 2013b). The 
geometric constraints include the dimensional requirements 
for different spaces, like width, length or height. The 
typological constraints include the adjacencies to different 
spaces and also to the perimeter of the building, and exterior 
orientation. 

There are numerous works focusing on the problem of 
automatically identifying optimal architectural layout 
configurations with different methods. According to the 
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research (Ibrahim 2011), the processes of automatic space 
layout generation can be divided into generation, search and 
optimization. The different methods of automatic space 
layout generation can be grouped within two different 
categories (Table 1): representation and generation. 

Representation of space layout 

The representation strategies imply the ways in which 
shapes and relationships can be represented. 

- Coordination-based layout

Spaces are designed based on a coordinate system, with a 
point for location and width, length or height for dimensions. 
The adjacencies and connections are represented as 
constraints, with a cost function for minimization or 
maximization (Michalek et al. 2002). The cons traints are 
separated into typological and geometric constraints. 
Mathematical programming methods are used to compute 
the constraints, like integer programming, nonlinear 
programming (Jankovits et al. 2011, Fig 1) and mixed integer 
programming (Ahmadi and Akbari Jokar 2016). Pros: This 
method separates the constraints definition from the 
resolution algorithm, which brings a great flexibility in the 
constraint utilization and is able to incorporate different 
constraints. It also shows promising capability of application 
in 3D geometry, with the incorporation of vertical 
transportation, like elevators and stairs. Cons: This method 
needs lots of computational effort, and the calculation time 
increases with the number of constraints and variables.  

a. Solution of the first-stage b. Final space layout

Figure 1. Example of space layout for a 30-department 
(Jankovits et al. 2011) 

- Grid-based layout

In this method, a 3D-grid matrix is used to represent spaces 
and adjacencies, and the building geometry is simplified to 
be a set of unit cubes with sequential order. The problem of 
space layout is thus formulated as a binary integer 
programming (Yi and Yi 2014). Some studies also use the 
method of “space-filling curve” to  define a continuous path to 
generate spaces on the matrix (Yi 2016) (Fig 2). In the 
research (Dino 2016), the building form is discretised into a 
number of equal-area voxels, represented by a 3D matrix 
(Fig 3). Space layout generation is transformed to match the 
space with the voxel, thus effectively avoiding the expensive 
geometric overlap detection. In the study by Guo and Li 
(2017), spaces are represented by spheres and capsules 
with point-vector within a 3-D grid matrix. The 3-D space 
layouts are obtained with the integration of attraction, 
repulsion, swap and compression behaviours. Pros: This 
method is time saving and it is easy to develop in 3D. Cons: 
Mostly, the building geometry needs to be pre-defined and 
the size of spaces needs to be multiples of a single module. 

Figure 2. Representation 
of spaces (Yi 2016). 

Figure 3. Representation of 
spaces (Dino 2016) 

- Tree data structure representation

Spaces are stored as nodes within a binary tree data 
structure and another matrix is used to represent the 
adjacency. This method acquires spaces by repeatedly 
subdividing a given area in vertical and horizontal directions 
(Aiello, La Scalia, and Enea 2012) (Koenig and Knecht 2014) 
(Das et al. 2016). The site space is the root node, and it is 
divided into two according to the coordinate of the slicing 
point. All points are located on the right or left branch of the 
tree, according to the coordinates. The process repeats until 
all spaces are stored in the tree. In the study by Das et al. 
(2016), different splitting strategies are developed, e.t. split 
by distance, split by area, split by line, split to meet minimum 
dimensions, split by offsetting polyline points (Fig 4). A 
pathfinding algorithm is employed to find the shortest paths 
between points in the space. Pros: Each space node 
contains the data of the neighbouring spaces, which makes it 
easy to represent the adjacency. Cons: It has not been 
developed into 3D layouts. Besides, rectangular shapes are 
needed for both spaces and the boundary of buildings.  The 
characters of final layouts deeply depend on the splitting 
strategies, which are difficult for architects to understand. 

Figure 4. Space data tree construction based on K-d data 
structure b inary tree (Das et al. 2016) 

- Graph theory representation

With Graph Theory, spaces and relationships are 
represented separately by nodes and edges (Lobos 2011). 
By transforming the information of adjacencies and 
connections, the graphs are capable of reducing the 
complexity of buildings. Different algorithms from graph 
theory are applied to space layout generation. In the study by 
Lobos and Trebilcock (2014), a schematic space plan is 
turned into a simplified graph with nodes and edges. Then, 
the graphs are tuned into XML language and additional 
information about performance parameters are added to the 
graph structure. In the research (Hua 2016), space activities 
and adjacencies are noted in matrix, and regions are 
detected from raster images and parameter vector graphics 
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(Fig 5). Then, subgraph matching techniques are used to find 
the valid mapping from the activities to the detected regions.  
The Voronoi diagram is another method that is also 
discussed, which is a set of regions partitioning a plane, 
where each point is closest to one of several predefined 
seed points. Chatzikonstantinou (2014) extended the 
Rectangular Voronoi Diagram, developed by Choi and Kyung 
(1991), to 3D with a constraint of vertical intersection to avoid 
overlapping with neighbour spaces. Pros: Combining with the 
predefined images or segments, the irregular shapes of 
layouts are easily generated. The generation process is 
capable of involving designers’ intervention. Cons: Most of 
them are developed based on predefined space layout or a 
predefined building boundary, which is not suitable for the 
early design phase.  

a. Input segments
from users

b. Given
dimensions and
adjacencies

c. Resolution
represented by
polygons

Figure 5. Procedure of space layouts generation (Hua 2016) 

Generation of space layout 

Depending on the different methods for the representation of 
space layouts, there are mainly two methods for the 
generation of final solutions. 

- Extend the representation method

Some of the methods of representation can be developed for 
the generation, satisfying the specific requirements of 
typology and geometry. It is commonly used in the non-
complex problem with limited amount of resolutions. It can be 
seen in the method of tree data structure that the data 
structure and slicing algorithm has determined the 
resolutions of space layouts (Das et al. 2016). Also in the 
graph theory representation, the designer’s intervention is 
included in the design process and the generation is 
depended on an independent graphic software. So, no other 
algorithm is needed for the generation (Lobos and Trebilcock 
2014).  

- Combine with evolutionary method

With the increase of design variables and constraints, the 
complexity of the problem is aggravated and the enumerative 
method is not appropriate. Evolutionary methods have been 
validated to be efficient in solving complex layout problems. 
Design variables are selected according to the definition in 
the representation method, and the typological and 
geometric requirements are translated or formulated into 
fitness or objectives. Some of the common evolutionary 
methods are genetic algorithm (Guo and Li 2017) and 
simulated annealing (Hua 2016; Yi 2016). In some studies, 
the generation of space layouts is divided into different 
stages, with different suitable optimization algorithms. The 
combination of different evolutionary algorithms is also 
explored, like Evolutionary strategy with Simulated Annealing 

(Rodrigues et al. 2013b) and Simulated Annealing & Genetic 
Algorithm (Michalek et al. 2002). 

CONCLUSION
In conclusion, different methods and tools have been 
explored for the automatic generation of space layouts. 
Nevertheless, no applicable tool has been broadly used in 
architectural design. Besides, the current methods of 
automatic space layout generation are mostly limited to 2D 
applications, and only a handful of studies have explored 3D 
applications. Most of the explorations of architectural 
automatic space layout generation are developed from the 
research of automatic facility layout generation, which lack 
the consideration of different functions of building spaces, as 
well as the typologies  of different types of buildings. 

Table1. references of different methods of automatic space 

layout generation 

Author Year Representation Model Optimization 

Jankov its 

et al. 

2011 Circles 

within 

coordination 

Multi-stage 

Mathematical 

programming 

Semidef inite 

optimization 

Ahmadi & 

Jokar 

2016 Circles within 

coordination 

3-stage 

Mathematical 

programming 

conv ex 

optimization 

Rodrigues 

et al. 

2013 Rectangles 

within 
coordination 

Mathematical 

model 

Ev olutionary  

strategy  & SA 

Michalek 

et al. 

2002 Rectangle within 

coordination 

Mathematical 

geometry  

SA & GA 

Medjdoub 

& Yannou 

2000 Rectangles 

within 
coordination 

 Mathematical 

model 

exhaustiv e 

enumeration; 

Y i & Yi 2014 3D Grid Matrix binary  integer 

programming 

SA 

Yi 2016 3D Grid matrix Space-f illing 
curv e 

SA 

Dino 2016 3D Grid matrix Match the 

space with the 

v oxel 

Ev olutionary  

optimization 

Guo & Li 2017 3-D grid matrix Integration of  

attraction, 
repulsion, 

swap, 

compression 

GA 

Das et al. 2016 tree data 
structure 

K-d tree 
algorithm

- 

Aiello et al 2012 tree data 

structure 

Guillotine cut GA 

Koening & 

Knecht 

2014 tree data 

structure 

Def ined rules 

of  subdiv ision 

GA 

Chatzikon 

stantinou 

2014 Rectangle Rectangular 

Voronoi 
Diagram 

NSGA-II 

Lobos & 

Trebilcock 

2014 Nodes, edges, Graph theory - 

y ED 

- 

Hua 2016 regions f or 
location; 

detection 
algorithms 

SA 
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SA: Simulated Annealing; GA: Genetic Algorithm  

RELATIONSHIP BETWEEN SPACE LAYOUT AND 

ENERGY PERFORMANCE  
Research on the impact of space layouts  on building’s 
energy performance has been conducted for decades. Here, 
the energy performance can be divided into thermal 
performance (for heating and cooling demand), daylight 
performance and ventilation, all aspects having impact on 
the energy use of a building. Plenty of studies have shown 
the importance of space layout for the improvement of 
different aspects of energy performance. But, most of the 
current studies are related to the thermal performance. There 
are also some studies about the thermal zoning strategies, 
which can also imply the impact of space layouts. Besides , 
the current exploration about how to combine the automatic 
generation of space layout with energy performance 
optimization is also presented. 

Space layouts’ impact on thermal performance 

Musau and Steemers (2008) investigated the impact of 
different office space layouts on the energy demands for 
heating, cooling, and lighting. In the calculation, the influence 
of daylighting and natural ventilation on the thermal loads is 
considered. It explored typical UK office layouts, with 
different utilisation densities and intensities. The combined 
thermal and lighting loads vary 19% in peak winter, and 51% 
in peak summer. Since occupancy rates are regarded, the 
variation is also given per capita or user in the building. Per 
capita, the combined thermal and lighting loads vary 16% in 
peak winter, and 80% in peak summer. This phenomenon is 
also demonstrated in their research with laboratory buildings 
(Musau and Steemers 2007). They tested the difference 
between open, closed and mixed layouts, and also 5 
different closed space layouts. The test result shows that the 
winter loads vary 40%, and 50% in summer. In the study of 
Rodrigues et al. (2013a), the different space layouts, which 
are generated with same requirements, are sorted according 
to the thermal discomfort. The factor is a weighted sum of 
differences between the interior hourly air temperature in 
each space and the operative comfort temperature limit. The 
result shows that the difference between the best and worst 
thermal performance reach up to 17% for the single-level 
house and 35% for the two-level house. These studies 
demonstrate that space layouts have significant impacts on 
thermal and lighting demands. 

Zoning strategies’ impact on thermal behaviour 

Beside the general impact of space layout on the energy 
performance, there are also some studies about the zoning 
strategies’ impact on thermal behaviour. The thermal zone is 
a single space or a collection of indoor spaces whose 
desired thermal conditions are similar (ASHRAE 2016). As 
they have the similar position in the design process, the 
combination of space layout and thermal zone benefits 
higher degree of improvement of final energy performance 
(Yi 2016). The research of zoning strategies’ impact on 
thermal behaviour also hints the impact of space layouts. 

Most current research on zoning is about the energy 
prediction in the software, which shows that the energy 
consumption may be quite different with different zoning 

strategies (O’Brien et al.2011； Harrou et al. 2016). Bleil de 

Souza and Alsaadani (2012) explored the relationship 
between different zone divisions and the prediction of annual 

energy demands for heating and cooling in office buildings, 
and they tested three different zoning strategies: a ‘single 
zone’ model, a ‘5 zone’ model, and an ‘office in use’ model. 
Although the paper doesn’t provide more details about the 
setting of simulation like the temperature for different zones, 
the result shows that different zoning strategies impact the 
energy demands with significant variations, from 5.59 
kWh/m2 to 11.69 kWh/m2 for heating and from 28.04 
kWh/m2to 37.06 kWh/m2 for cooling. Dogan et al. (2014) 
tested the impact of the internal-zone heat flows on the 
internal loads, with a perimeter and core subdivision with 
different inter-zonal heat and mass transfer scenarios, by 
adding conduction, solar radiation and different levels of air 
mixing step by step to the adiabatic interior zone boundaries. 
The result shows that the differences of heating and cooling 
demands vary from 3.6% to 41% for heating and from 2.2% 
to 10.4% for cooling. In the study by Yi  (2016), the result 
shows that the annual heating and cooling loads of different 
thermal zone configurations varies from 50 kWh/m 2 to 72 
kWh/m2.  

Automatic generation with energy performance 
optimization 

Space layouts have a great impact on the building’s energy 
performance as indicated. There is limited research about 
the combination of automatic generation of space layouts 
with energy performance (Table 2). Rodrigues et al. (2014) 
explored how to improve the thermal performance of the 
automatically generated space layout, with an optimization 
algorithm (Fig 6). The thermal performance is calculated in 
the method of dynamic simulation with EnergyPlus. The 
design variables are floor plan orientation, window 
orientation and size, overhang size, fin size, and wall 
translation. Yi (2016) developed a method of optimal thermal 
and spatial zoning integrating the building thermal 
performance simulation, with a simulated annealing 
algorithm (Fig 7). The criteria are annual energy use intensity 
(including heating and cooling loads), PMV (Predicted Mean 
Vote), indoor daylight level, interior shading. But, as for the 
calculation of energy use for heating and cooling, the method 
is an approximation of heat balance-based analysis with 
Ecotect, which lacks accuracy. Michalek et al. (2002) 
explored the automatic generation of space layout, satisfying 
the criteria of minimal heating (monthly) and cooling 
(monthly) loss, minimal lighting (hourly) cost, etc, in which, 
the calculation was based on simple mathematical functions. 
The combination of feasible sequential quadratic 
programming and simulated annealing is used for 
optimization. 

Figure 6. Examples of the generated layouts (Rodrigues et al. 
2014) 
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Figure 7. Samples of layouts generated (Yi 2016) 

The studies have shown that space layouts have great 
potential to improve the energy performance and the 
combination of space layout and energy performance has 
shown promising solutions. Several challenges are 
highlighted: time consumption for simulation is the common 
problem met with these researches; the shapes of geometry 
are based on rectangles and lack flexibility, compared with 
the real design projects; only thermal performance is 
included and sometimes calculated in a very simplified way; 
the evaluation criteria are separately decided, which makes it 
difficult to compare the different studies. 

Table 2. researches on automatic space layout generation 
with energy performance optimization 

Authors Constant 

parameters 

Design variables Energy performance 

Rodrigue
s et al., 

2014 

-occupancy
schedule 

-dimensions
- adjacent buildings

- gross area

- orientation
- openings

- pref erable space 

location 

-thermal discomf ort
(a sum of  dif f erences

between the interior 

air temperature and 
the operativ e comf ort

temperature) 

Y i, 2016 -boundary -building perimeter
-core

-internal space 

occupancy
- f enestration

-annual heating and 
cooling loads

- PMV

- indoor day light lev el

Michalek 

et al., 

2002 

-boundary - space location

- distance to wall

- size of  windows

- day lighting:

horizontal illuminance

- heating loads
- cooling loads

CONCLUSION 
A comprehensive survey associated with automatic space 
layout generation with energy performance optimization is 
presented in this paper. With this study, several conclusions 
are obtained. The automatic generation of space layout is a 
great aid for architectural design; space layouts can improve 
the energy performance significantly; the combination of 
automatic space layout generation with energy performance 
optimization is promising; but there is only limited research 
aiming at the combination. More future research is  needed, 
and several directions that should be following are suggested 
here: 

- The geometry of building should have higher 
flexibility in both 2D and 3D;

- The space layout should include different 
characteristics of different types of buildings;

- The time consumption for simulation and generation 
should be less;

- The evaluation should include the integration of 
different aspects of energy performance.
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