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ABSTRACT

Gas permeation through graphene membranes has received considerable
attention for water purification and molecular sieving applications. How-
ever, characterization of the permeation has been limited to long timescales
of minutes. This thesis shows a method for measuring gas permeation
through porous graphene membranes at the microsecond timescale. Sus-
pended porous graphene membranes, with an average pore size of 14 nm
and a single 400 nm pore, are brought into sinusoidal motion by optother-
mal actuation. By monitoring the frequency dependent phase delay between
actuation signal and mechanical motion, the gas dependent permeation time
of the porous membrane is determined. The permeation time constant is
demonstrated to be proportional to the square root of the molecular mass,
indicating an effusion dominated permeation mechanism. The determina-
tion of permeation at timescales below 1 µs using a femtoliter gas cavity
opens up opportunities for novel nanoscale porous graphene based gas sen-
sors, with very fast response times.

v





PREFACE

If this be error and upon me prov’d,
I never writ, nor no man ever lov’d.

– W. Shakespeare

Reflections on graphene — the phrase I believe is most appropriate to
condense the true nature of this thesis. It represents the many thoughts
that have been given to the topic in the course of countless discussions, the
long experimenting and the writing. At the same time it hints to what was
observed in fact: the light reflected from a tiny area of graphene. Showing
in this way a glimpse of the bending, heating, flowing and moving, taking
place on a scale otherwise obscure.

In a manifold of observables and unknowns it is of the greatest worth to
have a guiding voice near. For that I thank my direct supervisors and my
lab comrades. Robin and Peter, for making me look farther than my gaze
would allow for. Martin, Mick, Makars and Dejan, being truly comrades in
the field. My thesis committee and staff, for putting time and effort into this
work. My fellow peers and students with whom I shared the experience
of writing a thesis. And finally I would like to thank my Króliczek, my
mum and my dad for patiently listening to my ever continuing stories on
membranes.

A last word on the citation. In no case I would dare to state that my work
is flawless. The true-truth is that it has been put onto paper with enthusiasm
and fervor, as result of a year of passionate work. I hope you, the reader,
will find that passion too.

Irek Rosłoń

Delft,
July 13, 2018
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1 INTRODUCT ION

The unique physical characteristics of suspended sheets of graphene are
promising for realizing novel sensors.1 Graphene is an ultimately thin mate-
rial consisting of only one layer of carbon atoms. Its atomic thickness makes
it a perfect example of a 2D material, whose physics can be simplified to
that of a flat sheet. Not only is graphene one atom thick, it is also the
strongest material known.2 In theory, a sheet of graphene of one square me-
ter is strong enough to support a cat laying on it. Together with its particular
electrical properties,3 this material is outstanding for use in next-generation
electronics and sensors.

While pristine graphene is impermeable for all gasses and liquids, perfo-
rations cause selective permeability which can be adapted for filtration, sep-
aration and chemical sensing purposes.4–7 Bombardment with swift heavy
ions to form nanometer sized pores has been proved successful in function-
alizing graphene membranes for these purposes.8,9 Theoretical studies pre-
dict that perforating graphene with nanometer sized pores leads to molecu-
lar sieving, allowing for unprecedented selectivity.10 However, the detection
of the permeability of such membranes is limited to large timescales, as it
is relaying on devices with long response times like flow and pressure me-
ters.11 This thesis demonstrates a fast, low-power and miniaturizable device
for detecting gasses using perforated graphene membranes. The principle
of operation is based on the distinct effusion rates of gasses, deriving from
differences in molecular mass and particle velocity.

1.1 graphene nanodrums

Microsized devices generally profit from low cost of production, low power
consumption, high portability and low environmental impact. These advan-
tages very well agree with current needs for innovation. Recent progress
in micro- and nanomechanical systems (MEMS and NEMS) is visible in
readily available applications as accelerometers,12 mass sensors,13 pressure
meters14 and RF devices.15 The configuration of graphene nanodrum, first
reported in 2008,16 is applied in this thesis for gas sensing purposes.

A nanodrum is an equivalent of a percussion drum on the nanoscale.
Several pictures from recent work on nanodrums are shown in figure 1.1.
The graphene is suspended over a cavity and can be brought into motion by
electrical or optical impulses. In the last years research has been focusing
on understanding the physics of these devices, arriving at beautiful results
such as the experimental displacement mapping of a vibrational mode.17

The next step is finding commercialisable applications of the nanodrums.
Perforated graphene sheets are investigated for their capabilities in water

3
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Figure 1.1: Pictures taken from recent work on graphene. 16–19 A) Artist impression
of graphene nanodrums. B) SEM image of a graphene drum with a
milled nanopore with scalebar 1 µm. C) Excitation of the second mode
of a circular membrane is either performed by electric gating or laser
actuation. D) Measured displacement map of a graphene membrane
using laser interferometry.

purification and separation of substances in general, promising to outper-
form existing devices.

1.2 nanoporous sieving
Nanoporous materials allow for unprecedented separation of substances
with both high selectivity and throughput. A first account on filtration using
nanoporous graphene is given by Celebi et al., who discusses permeation
through pores ranging from 10 nm to 1000 nm. The small dimensions of
the pores are beneficial for selectivity, as the differences in atomic structure
become a dominant factor for selectivity at the small scale. Usually, perfora-
tions are created using a focussed ion beam, but recent development works
toward more versatile and general approaches for bombardment of large
areas.20 Selective transport of gasses has been shown for H

2
/CO

2
, H

2
/N

2

and N
2
/CO

2
using graphene oxide membranes.21 For perforated graphene

membranes the permeation speed of a range of gasses (H
2
, CO

2
, Ar, N

2
,

CH
4

and SF
6
) has been shown to depend on the mass of the gas.22 Similar

permeation mechanisms are investigated in this thesis.

1.3 outlook
This thesis is the account of nearly one year of work towards understand-
ing, modeling and measuring gas permeation through porous graphene.
The reader is first introduced to the theory and the model describing the
mechanics of a perforated graphene membrane in motion, after which the
surface characteristics of the nanodrums are discussed. Then, the vacuum
measurements are presented, showing the influence of perforations onto
the mechanics. Finally, the measurements in gaseous environment are dis-
cussed. The frequency responses of the drums are used to distinguish the
various gasses, thereby demonstrating a gas sensing device making use of
perforated graphene membranes.



2 THEORY

The theory section aims to give a brief and insightful summary of physical
concepts used in this thesis. It is by no means a comprehensive story, like
the ones found in school books, but intends to be a good introduction to
the models presented in the following chapters. It starts with describing the
motion of a harmonic oscillator. The concept of phase is given its own sec-
tion, since phase detection lays at the heart of the measurements performed
in this thesis. Finally, this chapter ends with an overview on the theory of
gas permeation.

2.1 the harmonic oscillator
A classical problem in mechanics is describing the motion of a mass on a
spring. Once put into motion, the mass starts moving there and back again.
This repeated motion is called an oscillation. The oscillations occur because
the spring exerts a restoring force, pulling the mass back to arrive at its
starting position after a period of time. The force acting on the mass m de-
pends on the displacement from equilibrium z and the spring constant k of
the spring, a law first described by Robert Hooke.23 By applying Newton’s
laws of motion,24 one can write:

ΣFmass = m
d2z
dt2 + kz

Since solutions to the trajectory of the mass can be described by sinusoids,
the oscillator is called harmonic. In reality the amplitude of the motion
will slowly decay. Damping causes energy loss from the system. Damping
forces depend on the velocity of the mass dz

dt and the damping constant c:

ΣFmass = m
d2z
dt2 + c

dz
dt

+ kz

In order to overcome the energy losses caused by damping one can drive the
system by an external force. When the mass on the spring almost stops, one
can pull it again to continue the movement. The addition of the external
driving force Fext makes us arrive at the final expression for the displace-
ment of the mass on a spring:

Fext(t) = m
d2z
dt2 + c

dz
dt

+ kz (2.1)

The importance of this equation cannot be stressed enough. It does not only
describe the motion of a simple mass on a spring, but extends to various
mechanical systems (speakers, car suspensions, clocks) as well as electrical
(filters, amplifiers) and quantum systems.25,26 In this thesis it is used to
describe the movement of the center of the graphene membrane.

5
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Figure 2.1: A) Motion of a mass on a spring as described by eq. 2.1, performing
a harmonic oscillation. B) Frequency response of a harmonic oscillator
around its resonance frequency.

2.2 sinusoidally driven oscillator
In the experiments performed for this thesis the membranes are driven by a
sinusoidal drive. To investigate the behavior of a sinusoidally driven oscilla-
tor we rearrange eq. 2.1 with different constants: ω0 =

√
k/m and ζ = c

2
√

mk
.

The meaning of these constants will become clear shortly. Together with the
replacement of the external drive term with a sinusoidal force F0sin(ωt) this
gives the following expression:

d2z
dt2 + 2ζω0

dz
dt

+ ω2
0z =

F0

m
sin(ωt) (2.2)

Solutions to this equation for the displacement z are sinusoidal oscillations
at the same frequency as the driving force. A typical response of a driven
harmonic oscillator is shown in figure 2.1. The amplitude gain of the solu-
tion relative to the driving amplitude varies with driving frequency ω, as
shown in panel B. At driving frequency ω = ω0 a resonance peak appears
in the frequency response. This special frequency is called the resonant
frequency. The graphed behavior can be understood as follows.

• ω << ω0 : The drive oscillates very slow. The inertia of the mass is
small as compared to the stiffness of the spring and the displacement
z simply follows the applied drive. Therefore, the amplitude gain is 1.

• ω = ω0 : The drive oscillates at exactly the right frequency to add
energy to the system. This is comparable to pushing a swing to make
someone get higher. The force is in phase with the velocity and the
amplitude gain reaches a peak value.

• ω >> ω0 : The drive oscillates very fast. The inertia of the mass is too
big as compared to the stiffness of the spring and movement cannot
keep up with the drive. The force is in antiphase with respect to the
velocity and the gain diminishes; the mass is almost at rest.

The parameter ζ sets the width of the resonance peak. This parameter is
called the damping term. With low damping, the peak is very high and
narrow. With high damping instead, the peak lowers and broadens. The
sharpness of the peak is expressed in the full bandwidth at half maximum
(FBHM) of the magnitude ∆ω = ωright,HM − ωleft,HM. The Q - factor is a
related parameter, defined as the ratio of the bandwidth of the resonance
peak over the center frequency. It can be expressed in the damping term ζ:

Q ≡ ω0

∆ω
=

1
2ζ

(2.3)
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2.3 damping
Several mechanisms can cause energy dissipation in an oscillating microsys-
tem. An obvious damping mechanism is gas friction, which can be mini-
mized by operating in high vacuum conditions. Two specific mechanisms
are discussed more in depth: thermoelastic Zener damping and Akhiezer
damping.

2.3.1 Thermoelastic damping

First described by Zener in 1937, thermoelastic damping is an internal dis-
sipation mechanism arising from heat gradients in the material.27 The orig-
inal theory considers that elastic strains in the material cause heating. The
induced heat flow consumes energy from the oscillating system. For an
infinitely thin material the internal damping can be written as:

Q−1 =
α2TE

cp

ωτth

1 + ω2τ2
th

(2.4)

where cp is the specific heat, T is temperature, α is the thermal expansion
coefficient, E the Young’s modulus and τth a thermal constant describing the
speed of temperature equilibration.28 This equation reaches a peak value at
ωτth = 1, indicating that damping is highest close to a specific frequency.

2.3.2 Akhiezer damping

The scattering of phonon modes among each other can be a source of in-
ternal damping, as first described by Bommel et al.29 Approximating to
scattering between two bands in bulk, the Akhiezer damping can be written
as:

Q−1 =
cpTλ2

av

ρv2

ωτph−ph

1 + ω2τ2
ph−ph

(2.5)

where cp is the specific heat, T is temperature, λ2
av is the Grüneisen param-

eter, ρ the material density and τph−ph a constant describing the intensity of
phonon interactions. However, simulations suggest that this is not the right
expression for a two dimensional material.30 It is rather correct to solve the
Boltzmann transport equation to find exact values, for which the following
relation holds:

Q−1 ∝ ω (2.6)

This kind of behavior has been recently reported for carbon nanotubes.31 It
is therefore likely to be applicable for the case of graphene membranes.

2.4 phase
To fully describe a sinusoidal motion with given frequency, one needs to
know both its amplitude and phase. Phase describes a relative point in time.
The phase can be relative to a zero crossing as well as to another signal. Pro-
fessional dancers are generally a good example of two motions that are in
phase. Beginning dancers are often out of phase - both in respect to the mu-
sic as well as their partner - with all consequences. The sinusoidal motion of
the membrane and the driving force can be shifted in phase with respect to
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.

each other. Using Euler’s formula one can write for two sinusoidal signals
with amplitudes A1 and A2:

A1eiωt = A2eiωt+φ (2.7)

The relation between the signals is represented in the complex plane by
a phase angle φ and a magnitude Z = A2

A1
. Figure 2.2 shows two sets of

signals. One set is in phase and the other set is out of phase. Projections
onto the real and imaginary axis are shown, representing the component in
phase and out of phase. In the experiments, the membranes motion with
respect to the driving force is measured, which in essence is a measurement
of the transfer function of the system. The representation with a real and
an imaginary part will be used throughout the thesis to distinguish the
component of the membrane motion that is in phase with respect to the
drive from the component that is out of phase with respect to the drive.

2.5 impact of defects

The harmonic oscillator describes the motion of the center of the membrane
with two key parameters: its resonance frequency ω0 and its Q-factor. The
presence of pores alters these parameters by changing several characteristics.
The effect of defects caused by ion bombardment on the membrane mechan-
ics are not obvious. The perforations can be seen as changes in either the
macroscopic values of the Young’s modulus, material density and in plane
stress or changes on the atomistic scale in chemistry and grain boundaries.
Each of these is discussed separately. For graphene nanodrums, it can be
stated as a general rule that structural defects decrease the resonant fre-
quency and chemical defects increase the resonant frequency. This has been
confirmed by Robinson et al. for argon irradiated graphene.
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2.5.1 Young’s modulus

Theoretical studies suggest that the Young’s modulus of graphene will de-
crease with increasing porosity p by a value of 24GPa per cent porosity
fraction.33 Porosity is defined as the ratio between the total permeation area
Apore and the area of the nanodrum Adrum:

p = Apore/Adrum (2.8)

Assuming that the the Young’s modulus is proportional to the stiffness of
the oscillator, E ∝ k, both the resonance frequency and the Q-factor should
decrease with increasing porosity. Based on porosities found in chapter 4,
changes in the Young’s modulus could attribute to a decrease in frequency
and Q factor of up to 5%.

2.5.2 Density

Variation in the membrane density, which is proportional to 1− p, changes
the characteristics of the mechanical resonance to a negligible extent of less
than 1%. Oxidation of the graphene might affect this value.

2.5.3 Stress

The membranes have a pretension induced by the process of transfer. MD
simulations suggest a decrease in the pretension after perforation, attributable
to a decrease in the Young’s modulus.34 A lower pretension would decrease
the mechanical resonance frequency and Q factor accordingly.35

2.5.4 Grain boundaries

Several publications found counter intuitive results using MD simulations,
indicating that grain boundary defects can strengthen the graphene.36 Wei
et al. concludes that grain boundary defects can either increase or decrease
the Young’s modulus of graphene, and the mechanism relies on the detailed
arrangement of the defects, and not just their density. On the other hand,
indentation tests on CVD graphene show that heat induced oxidation of the
boundaries weakens the material, but the effect on the Young’s modulus is
not addressed.38 In summary, the impact of changes to the graphene surface
and grain boundaries on the mechanical properties of graphene is not yet
fully understood.

2.6 gas flow
Nanopores facilitate gas permeation through the membrane. The perme-
ation speed depends on the pore size and the type of gas. A core parameter
for the physics of gas permeation through perforated membranes is the
Knudsen number.39 It relates the mean free path of gas molecules λ to the
characteristic dimension dp of the aperture:

Kn =
λ

dp
(2.9)
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Figure 2.3: A) Selectivity of gas particles with different size as compared to the pore
size in a membrane. A trade-off exists between permeance and selectiv-
ity B) Typical permeability regimes. Figure reproduced from Boutilier
et al.

Permeation is dominated by a certain mechanism according to the value of
the Knudsen number.40,41 As depicted in Figure 2.3, three regimes can be
identified for porous materials.

• Kn� 1: Continuum flow

• Kn > 1: Knudsen effusion

• daperture ≈ dmolecule: Molecular sieving

For large perforations, when Kn � 1, continuum physics describe the flow
through the pores. In the Knudsen effusion regime, it is statistical physics
that describes the particle interactions. For even smaller pores, the interac-
tions of single atoms need to be studied. The solution-diffusion area applies
to dense (non-porous) materials, in which gasses dissolve and diffuse.

2.6.1 Continuum flow

When perforations are large, and Kn � 1, the gas flow is described by the
viscosity µ of the flowing medium and the geometry of the perforation. For
the viscosity, the particle interactions among each other are more important
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than interactions with the surrounding. Therefore, the viscosity is gas spe-
cific. For an infinitely thin geometry Sampson’s model describes the flux Φ
through an orifice of diameter dp.42

Φ =
∆Pd3

p

24µ
(2.10)

The ratio between gas viscosities µB
µA

determines the selectivity for a mixture
of gasses. In the continuum flow regime a high permeance can be achieved
at the exchange of low selectivity.

2.6.2 Classical effusion

In the Knudsen regime, where Kn > 1, the average distance between gas
particles is higher than the size of the aperture. The outflow of gas is there-
fore governed by the incident rate of free gas particles on the aperture area.
Generalized to a flux Φ the equation sounds:

dΦ(v) = nvz f (~v)d3~v

Where n is the number of particles, f (~v) is the three dimensional particle
speed distribution and vz is the speed component perpendicular to the aper-
ture area |v|cos(θ).43 For an ideal gas with N particles having a Maxwellian

speed distribution < v >=
√

8KBT
πm , the flux Φ can be expressed in the mass

m of the gas particles, and the ensemble pressure P and temperature T:

Φ = N

√
KBT
2πm

=
P√

2πmKBT
(2.11)

The escape rate of particles from a closed cavity with volume V depends
on the aperture area A and the escape probability γ. Solving the follow-
ing differential equation leads to a time constant τ characterizing the gas –
aperture interaction:

dn
dt

=
∆PAγ√
2πMRT

n = n0e
Aγ
V

√
RT

2πM t
= n0et/τ

In the Knudsen regime the time constant τe f f characterizing gas effusion
through pores of cumulative area A is given by:

τe f f =
V

Aγ

√
2πM
RT

(2.12)

where V is the volume of the cavity from which the gas escapes, M is the
molar mass of the gas and RT the thermal energy. The ratio between the
molar masses MB

MA
determines the selectivity for a mixture of gasses.

2.6.3 Molecular sieving

In the molecular sieving regime the aperture size is similar to the molecule
size and Van der Waals forces constitute to a potential bump that has to be
overcome by the sieved particles. For pores bigger than the molecule size
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this interaction can be modelled by introducing an effective aperture area
Aeffect which depends on the pore and molecule diameters dp and dm:

Aeffect = π/4(dp − dm)
2 (2.13)

Whenever to molecule dimensions are comparable or bigger than the aper-
ture dimensions a more elaborate model has to be thought of. Arrhenius’
concept of activation energy can be used to picture that the aperture is a po-
tential bump that can be overcome by thermal energy fluctuations.44 Using
the error function we arrive at an expression for the escape probability γ:

γ = 1/2erfc

(√
Ea

KBT

)
(2.14)

The potential barrier Ea can be modeled as a Leonard-Jones potential.45 For
precise solutions which include effects of adsorption and surface diffusion,
molecular dynamics modeling is required. An approximation can be given
in terms of the gas-carbon interaction parameters ε and σ and the graphene
bond length a = 0.154 nm:

Ea ≈
πdp

a
4ε

((
σ

dp/2

)12
−
(

σ

dp/2

)6
)

(2.15)

Molecular sieving can achieve highest selectivities at the cost of low flow
rates. Achieving consistent performance is hard, since pores need to be
extremely small and have a narrow size distribution.



3 METHODS

The samples discussed in this thesis consist of a perforated graphene layer
covering circular cavities. The devices are measured optically, using lasers
to actuate the graphene membranes and at the same time read out the de-
flection. The experiments consist of varying pressure and gas while mea-
suring the changes in mechanical response of the moving membranes. This
chapter first discusses the interferometric setup used throughout the exper-
iments. Afterwards, it goes in depth on the actuation through modulated
absorption and read-out by interferometry.

3.1 interferometry setup

The frequency response curves of the samples are measured with an inter-
ferometry setup. The measurement setup shown in figure 3.1 consists of
two lasers aimed at the Fabry-Perot cavity in a pressure chamber. The red
laser is used for interferometry with the membrane acting as a moving mir-
ror and the bottom of the cavity as rigid mirror, whereas the modulated
blue laser actuates the membrane.17 The beams are focused on the sample
with a 1.5 µm spot size. The red and blue laser power are 2 mW and 0.3
mW respectively. A network calibration measurement is performed, which
involves directly aiming the blue laser at the photodiode, to eliminate sys-
tematic parasitic delays due to imperfections in equipment and wiring.

3.2 actuation

One layer of graphene absorbs around 2.7% of the incoming light.46 Ab-
sorption of light causes heating of the graphene. Blue laser absorption is
two times higher than that of the red laser, since its wavelength is closer to
the absorption peak in the ultraviolet region at 270 nm. Therefore, the blue
laser (λ = 405 nm) is used to actuate the membrane. The laser intensity
is modulated, causing periodic variation of the membrane tension by ther-
mal expansion.47 The periodic stretching and shrinking of the membrane
sets it in motion. This way of actuation will be referred to as optothermal
actuation.

3.3 read-out

The deflection of the graphene membrane is measured by interferometric
read-out using a red laser (λ = 632.8 nm). The fraction of the light reflected
directly from the membrane interferes with the fraction reflected from the
silicon substrate. When the two signals are in phase, they interfere construc-

13



14 methods

Blue laser
PBS

VNA

λ/4
Red laser

ObjectivePD

DM

Gas

Vacuum

PID

SiO2

Permeable 
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Figure 3.1: Interferometry setup used to perform the experiments. The red laser
passes subsequently through the polarized beam splitter (PBS) and the
quarter-wave plate (λ/4), after which it is combined with the blue laser
using a dichroic mirror (DM) and focused on the nanodrum. The readout
is performed by a high frequency photodiode (PD) which output is fed
into the Vector Network Analyzer (VNA). The VNA modulates the blue
laser which actuates the membrane. Gas pressure inside the vacuum
chamber is controlled by a PID controller.

tively and a high reflectivity is measured. Instead, when the signals are out
of phase, the apparent reflectivity is low. Small changes in the distance be-
tween the two mirrors in the order of nanometers cause big changes in the
apparent reflectivity.

A polarized beam splitter and a quarter-wave plate are used to separate
the reflected light from the incident laser light. The polarized beam splitter
is transparent for one polarization and reflects light with a perpendicular
polarization. The reflected light passes the quarter-wave plate twice, effec-
tively changing polarization in such way that the light that passed on its
way towards the membrane will reflect on its way back and shine into the
photodiode. A diagram of the setup is shown in 3.1. In the figure the path
of the light rays can be tracked from the laser onto the sample and back into
the photodiode.



4 CHARACTER I ZAT ION

Experiments are performed on devices accommodating the measurement
of gas permeation trough porous graphene membranes on a silicon chip.
The devices consist of a perforated graphene layer covering circular cavi-
ties. The nanodrums are made on a silicon substrate patterned with circular
wells of 300 nm depth and diameters of 1, 2 and 3 µm using Reactive Ion
Etching. A single layer of CVD graphene is transferred on top of the wells.
The graphene has been exposed to highly energetic ion bombardment with
129Xe23+0.71MeV/u, with a flux ranging from 5.09 · 107 to 5.09 · 109 ions
per square centimeter at the SME beamline of GANIL (Caen, France). This
is similar to the treatment described by Madauß et al. Also, unperforated
devices are available for reference. The defects induced to the graphene
layer have been characterized by atomic force microscopy (AFM). An unper-
forated sample is discussed first. Then, two samples that are shown in the
gas permeation results chapter are discussed more in depth. The gas perme-
ation samples have been bombarded with a flux of 5.09 · 109 ions per square
centimeter, unless stated otherwise. This agrees with around 360 pores on a
3 µm drum.

4.1 an unperforated nanodrum

Figure 4.1 shows an AFM scan of an unperforated nanodrum with a diam-
eter of 3 µm. The graphene is clearly wrinkled and a prominent vertical
crease is visible. This kind of imperfections, caused by straining during
transfer or thermal fluctuations, are expected to occur and are discussed in
depth by Deng and Berry. Since no holes or other defects are visible, this
membrane is a good example of a pristine drum which is expected to be
fairly impermeable. The membrane is noticeably lower at the borders of the
drum, which might indicate slight wall adhesion.

4.2 gas permeation sample 1

The AFM measurements in figure 4.2 show a height scan of sample 1. The
enlarged area in B proves that ion bombardment has created nanopores with
an average size of 14 nm. The pores are most pronounced in the inset, where
they are visible as black dots surrounded by a white area. The white areas
might consist of graphene oxide that has grown after the pores have been
exposed to the laser.49 The white areas do not show up on samples before
laser measurements. Moreover, they are most pronounced in the center of
the membrane where the laser spot was focused. The pores are distributed
evenly, which is best seen outside of the membrane area. Tiny, white spots
mark the defective areas in the graphene. The picture resolution is not
sufficient to distinguish the indentations them selfs in this area.

15
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Figure 4.1: Characterization of an unperforated 3 µm drum using AFM. Both the
height channel (A) and the phase channel (B) are shown. The scans
show that the graphene is wrinkled but not perforated.
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Figure 4.2: Characterization of the indentations on sample 1 using AFM. A) Full
height scan of the drum with an inset square indicating the enlarged
area. B) Nano pores are visible as small, black dots surrounded by a
white area. (C) Nano pore size distribution with mean 14 nm and a
standard deviation 6 nm based on statistics on 54 pores.

The scans show that the membrane is ruptured on a square area of 470

by 120 nm in the top right part. This big hole accounts for 52% of the total
effusion area of 0.1 µm2. The large, white circle on the left is probably a
water droplet.

4.3 gas permeation sample 2

The AFM measurements in figure 4.3 show a height scan of sample 2. The
enlarged area in B again proves that ion bombardment has created nanopores,
here with an average size of 10 nm. The pores are most pronounced in the
inset, where they show up as black dots surrounded by a white area. The
white areas might consist of graphene oxide that has grown after the pores
have been exposed to the laser.49 The white areas do not show up on sam-
ples before laser measurements. Moreover, they are most pronounced in the
center of the membrane where the laser spot was focused. The pores seem
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Figure 4.3: Characterization of the indentations on sample 2 using AFM. A) Full
height scan of the drum is shown in A with an inset squares indicating
the enlarged area. B) Nano pores are visible as small, black dots sur-
rounded by a white area. (C) Nano pore sizes are distributed normally
with mean 10 nm and standard deviation 5 nm based on statistics on 51

pores.

to have induced several cracks in the graphene. On the left side of the drum
a vertical fold is visible in the graphene, consisting of stacked graphene lay-
ers.50 The scans show that the membrane is ruptured on an area of 450 by
125 nm in the top right part. This big hole accounts for 66% of the total
effusion area of 0.15 µm2.

4.4 mechanical characterization

The mechanical response of both perforated and unperforated samples has
been measured in vacuum. The changes in mechanical properties of the
graphene caused by the bombardment are studied by performing measure-
ments of the frequency and the Q-factor of the first mechanical resonance.
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Figure 4.4: Frequency (A & B) and Q-factor (C & D) of the first mechanical resonance
for varying pore density. The mean and standard deviation is indicated
by red marks. Results of 2 and 3 µm drums are presented separately.
The measurements hint a trend of increasing frequency with higher pore
density, but the error margins are large. Values are obtained by fitting a
Lorentzian to the response (E).

In figure 4.4 panel A to D display the relation between the fluence and
the resonant frequency and the Q-factor for 2 and 3 µm drums. These val-
ues are obtained by fitting a Lorentzian shape to the measured frequency
response as shown in panel E. Naturally, the small drums show higher me-
chanical resonance frequency and Q factor. The effect of defects caused by
ion bombardment is less obvious. The measurements of the frequency of the
first mechanical resonance suggest a correlation with the porosity, but the
error margins caused by inter device variations are too big to make defini-
tive conclusions. Assuming that the visible trend is indeed true, this kind of
behavior would indicate that chemical defects play a dominant role in the
tension of the membrane.





5 GAS PERMEAT ION MODEL

This chapter presents the model describing the response of a perforated
graphene membrane in the presence of gas. First, the important aspects
of the model are summarized. The following sections go in depth into the
exact derivation of the model. The differential equations are compared to
an equivalent electric circuit, which is simulated using Simulink.

5.1 model summary
The motion of the membrane responds both to the optothermal actuation
by a modulated blue laser and the pressure build-up inside the cavity. The
optothermal response in vacuum is used by Dolleman et al. to characterize
the heat transport from a membrane to the substrate. The temperature of
the membrane T is shown to follow a first order differential equation de-
pending on the thermal flux delivered by the laser PAC

CT
eiωt and the thermal

equilibration time constant τth for heat escaping the system:

d∆T
dt

+
∆T
τth

=
PAC
CT

eiωt (5.1)

Here CT is the effective thermal capacity of the system. In the presence of
gas, this model has to be extended. We consider two mechanisms that can
change the pressure inside the cavity: gas expansion upon heating of the
gas and gas compression by the movement of the membrane.

The pressure inside the cavity changes isometrically as a result of direct
laser heating PAC

Cgas
eiωt and isothermally by compression from the movement

of the membrane γdz/dt, where z is the membrane deflection. Energy flows
through the walls of the cavity are neglected. The permeation resistance
Rgas governs the gas flow driven by the pressure difference between the
cavity and the outside. The RC model with gas permeation time constant
τgas = RgasCgas for the pressure inside the cavity can now be written:

d∆P
dt

+
∆P
τgas

=
PAC
Cgas

eiωt + γ
dz
dt

(5.2)

Here Cgas is the effective gas capacity of the system. The contributions
of both the thermal drive and the pressure inside the cavity need to be
added to obtain the driving force causing the membrane to deflect. The one
dimensional harmonic oscillator describes the motion of the center of the
membrane:

m
d2z
dt2 + c

dz
dt

+ kz = α∆T + β∆P (5.3)

Here α is an effective thermal expansion coefficient and β is the linear
pressure-deflection relation which has been derived in chapter 5.3. The re-
sulting complex expression for a sinusoidal drive representing the frequency

21
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Figure 5.1: Schematic of the membrane deflection and the pressure inside the cavity
as a response to the optothermal drive. At low frequencies the gas has
sufficient time to permeate. At a frequency ωgas = 1/τgas the phase dif-
ference between the drive and the motion of the membrane is maximal.

response of the membrane below the resonance frequency is fully derived
in the following chapters. The imaginary part of this expression is used to
fit the experimental results with a, b, τth and τgas as free variables:

Im(zω) = a
ωτth

1 + ω2τ2
th

+ b
ωτgas

1 + ω2τ2
gas

+ ab
γωτgas(1−ω2τthτgas)

(1−ω2τthτgas)2 + (ωτth + ωτgas)2

(5.4)

At frequencies close to the reciprocal permeation time ωgas = 1/τgas the
contribution of ∆P will cause motion out of phase with respect to the drive,
as visualized in figure 5.1. The imaginary part of the response will reach a
peak value at this characteristic frequency.

5.2 gas pressure inside cavity

This section shows a derivation of the RC model for gas effusion. It is as-
sumed that the gas trapped inside the cavity acts as a ’pressure reservoir’
from which gas is escaping with a characteristic time constant. Remember-

ing the results for the gas effusion time constant τe f f = V
A

√
2πM

NAKBT , one can

write: R =
√

2πMNAKBT
Aγ and C = V

NAKBT . Here, C is the ’pressure capacity’
of the system with pressure RC product τe f f = RC. It represents the excess
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amount of pressure inside the cavity. The gas resistance Rgas governing the
RC product comes from the flow rate equation, which sounds:

Φgas =
Pcav − Psur

Rgas
(5.5)

Gas flow is governed by the pressure difference between the cavity and the
outside and the effusion resistance R. To describe the interaction with the
moving membrane system we need to know the pressure increase when the
gas is heated by the laser. With given gas specific heat capacity cp we can
find the expression for the pressure capacity and call it Cgas:

Cgas = nMcp(
∂P
∂T

)−1
V,n =

VMcP
NAKB

(5.6)

Next, we derive a relation between the membranes compression dz
dt and the

pressure change d∆P
dt . For an infinitesimal part of the membrane we apply

Boyle’s law, which states that pressure and volume are inversely propor-
tional. Approximating the trapped layer of gas as a squeezed film, one may
write:

P0z0 = P1(z0 + δz) (5.7)

Substitution of ∆P = P0 − P1 leads to:

P0δz = ∆P(z0 + δz) (5.8)

Now, as long as ∆P� P0 and δz� z0 we get the following expression:

∆P =
P0

z0
δz = γδz (5.9)

The RC model with permeation time constant τgas = RgasCgas for the pres-
sure inside the cavity can now be written:

d∆P
dt

+
∆P
τgas

=
PAC
Cgas

eiωt + γ
dz
dt

(5.10)

This is the same as equation 5.2 in chapter 5.1.

5.3 pressure - deflection relation
A pressure difference ∆P between the two sides of the membrane bulges the
membrane up, constituting to an increased tension in the membrane. As the
force applied by the pressure is evenly distributed over the membrane, the
membrane will attain the shape of a truncated sphere with uniform curva-
ture r. A force balance for a pressurized sphere with a thin wall of thickness
t, relates the tensile stress σ in the walls of the sphere to the pressure:

σ2πrt = ∆Pπr2

∆P =
2σt

r
(5.11)

As long as the deflection in the center of the graphene membrane with
radius a is small, it can be approximated using the formula:

δz ≈ (2a)2

2r
(5.12)
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Therefore, for small deflections, one may write:

β =
δz
∆P

=
a2

σt
(5.13)

The factor β relates the pressure difference to the deflection of the membrane
and its tensile forces.

5.4 full model derivation
The equation of motion for the membrane sounds:

m
d2z
dt2 + c

dz
dt

+ kz = α∆T + β∆P (5.14)

Here, α, β are respectively the linear thermal expansion coefficient and the
linear coefficient from the pressure - deflection relation. For frequencies well
below the resonance frequency the induced amplitude can be approximated
by:

zωeiωt ≈ α∆Tω + β∆Pω (5.15)

This can be inserted into equation 5.10 to arrive at an expression for ∆Pω:

d∆P
dt

+
∆P

(1− βγ)τgas
=

γα

(1− βγ)

d∆T
dt

+
PAC
Cgas

eiωt (5.16)

The expression still depends on the temperature ∆T of the membrane. A
solution for ∆T following equation 5.1 is given by Dolleman et al.:

∆Tω =
RthPAC

iωτth + 1
eiωt (5.17)

This solution is used to arrive at:

d∆P
dt

+
∆P

(1− βγ)τgas
=

γαRthPAC
(1− βγ)

iωeiωt

iωτth + 1
+
PAC
Cgas

eiωt

∆Pω = γαRthPACτgas
iωeiωt

iωτth + 1
1

iωτgas + 1
+

(1− βγ)RgasPAC

iωτgas + 1
eiωt

∆Pω = γαRthPACτgas
iωeiωt

−ω2τthτgas + iωτth + iωτgas + 1

+
(1− βγ)RgasPAC

iωτgas + 1
eiωt

(5.18)

By inserting expressions 5.17 and 5.18 into formula 5.15, the complex ampli-
tude zω can be obtained:

zωeiωt =
αRthPAC
iωτth + 1

eiωt +
(1− βγ)βRgasPAC

iωτgas + 1
eiωt

+
αβγRthPACτgas · iωeiωt

−ω2τthτgas + iωτth + iωτgas + 1

(5.19)
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The imaginary part of this expression is calculated and used for fitting:

Im(zω) =
αωτthRthPAC

1 + ω2τ2
th

+
(1− βγ)βωτgasRgasPAC

1 + ω2τ2
gas

+
αβγωτgasRthPAC(1−ω2τthτgas)

(1−ω2τthτgas)2 + (ωτth + ωτgas)2

(5.20)

This is the same as equation 5.4 in chapter 5.1.

5.5 equivalent electric model

The mechanisms governing the motion of the porous membrane are anal-
ogous to the currents running in an electric circuit. The equivalent circuit
consists of a thermal, a mechanical and a pneumatic domain. In the follow-
ing sections the domains are discussed one by one, highlighting similarities
with the differential equations derived in the previous sections. Finally, the
circuitry is simulated using Simulink.

5.5.1 Thermal

The optothermal drive actuating the membrane is represented by an AC
voltage source in the left bottom of figure 5.2. It controls the voltage con-
trolled current source driving an RC circuit consisting of a capacitor Cth and
a resistor Rth in parallel. This circuit resembles the thermal flux delivered
to the graphene with corresponding heat capacity and thermal boundary
resistance. The equation for the membrane temperature (eq. 5.1) is written
next to the equation for the currents running through this circuit:

d∆T
dt

+
∆T
τth

=
PAC
Cth

eiωt

Cth
dVC
dt

+
VC
Rth

= ith

Comparison shows that the voltage across the capacitor VC can represent
the temperature of the membrane T. Thermal expansion sets the membrane
in motion. Therefore, this voltage controls the source driving the circuit in
the mechanical domain.

5.5.2 Mechanical domain

The mechanical motion of the membrane is represented by a driven damped
harmonic oscillator. The motion for the membrane translates to an RLC
circuit in figure 5.2 with a resistor Rm = c, an inductor Lm = m and a
capacitor Cm = 1/k, driven by two voltage controlled voltage sources, Vth =
α∆T and Vgas = β∆P. The equation of motion (5.14) is written next to the
expression for the electric potential in this circuit:

m
d2z
dt2 + c

dz
dt

+ kz = α∆T + β∆P

Lm
d2q
dt2 + Rm

dq
dt

+
q

Cm
= Vth + Vgas
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Figure 5.2: Equivalent electric model for the porous membrane.

Comparison shows that the charge q on the capacitor in this circuit can
represent the deflection z of the membrane. In the schematic the voltage
over the capacitor, VC = q

Cm
, is taken as an output for readout.

5.5.3 Pneumatic domain

The optothermal drive causing adiabatic expansion of the gas is represented
by an AC voltage source in figure 5.2. Moreover, the movement of the mem-
brane compresses the gas. The voltage over the capacitor in the mechanical
domain kz controls a voltage controlled voltage source which is connected to
a derivator to change the signal into the effective compression −Cgasγ dz

dt . A
voltage controlled current source drives an RC circuit consisting of a capac-
itor Cgas and a resistor Rgas in parallel. This circuit resembles the pressure
in the cavity with corresponding effective pressure capacity and permeation
resistance. The equation for the pressure in the cavity (eq. 5.10) is written
next to the equation for the currents running through this circuit:

d∆P
dt

+
∆P
τgas

=
PAC
Cgas

eiωt + γ
dz
dt

Cgas
dVC
dt

+
VC

Rgas
= igas + Cgasγ

dz
dt

Comparison shows that the voltage across the capacitor VC can represent the
pressure inside the cavity P. The force exerted by the gas sets the membrane
in motion. Therefore, this voltage controls the source driving the circuit in
the mechanical domain.
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Table 5.1: Details concerning the values used for the equivalent electric model.

Symbol Represented quantity Value Unit

Thermal Cth Heat capacity 2.65 · 10−15 F
Rth Thermal resistance 1.32 · 107 Ω

Mechanical Lm Mass 5.5 · 10−15 H
Cm Stiffness 3.7 · 10−2 F
Rm Damping 1.0 · 10−8 Ω

Pneumatic Cgas Gas capacity 8.53 · 10−22 F
Rgas Permeation resistance 9.43 · 1014 Ω

γ Compression ratio 2.0 · 1010

5.6 electric model simulation
The equivalent electric model discussed in the previous chapter is used to
simulate the results for gas permeation through the porous graphene mem-
brane in Simulink. First, the numerical values used in the model are dis-
cussed. Then, the results from simulations are shown. The Simulink model
together with the source code to run the simulation can be found on Github
(url: https://github.com/IrekRoslonStudent/thesis).

5.6.1 Numerical values

The numerical values of the electrical components in figure 5.2 are to repre-
sent the physical reality. The components are discussed in the same order
as they appeared in the previous sections. The numerical values used are
collected in table 5.1.

thermal domain Based on the extensive discussion on the optothermal
characterization by Dolleman et al., the heat capacity Cth of the suspended
graphene as well as the thermal resistance Rth can be calculated using the
formulas:

Cth = cp,gρghgπa2 (5.21)

Rth = (GBhg2πa)−1 (5.22)

Here cp,g, ρg and hg is are respectively the heat capacity, density and height
of the graphene, and a is the membrane radius. The thermal resistance
is attributed to limited boundary conductance GB at the interface between
the membrane and the supporting material, caused by phonon mismatch.51

Based on thermal times measured in the next chapters the boundary con-
ductance is set to 24 MW/m2K to agree with a thermal equilibration time
τth = 35 ns, which is within the reported values of 30± 20 MW/m2K.

mechanical domain In the mechanical domain, the properties of graphene
known from literature together with the expected resonance frequency ω0
and Q-factor are used to model the RLC:

Lm = ρghgπa2 (5.23)

Cm =
1

ω2
0 Lm

(5.24)

Rm =
ω0L

Q
(5.25)

https://github.com/IrekRoslonStudent/thesis
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The density of graphene is 0.77 mg/m2.2 Therefore one drum weighs 5.5 ·
10−15 kg. This is a minimum value, since contaminations on the drum are
not taken into account.

pneumatic domain The values for the gas capacity and permeation resis-
tance are taken from effusion theory:

Cgas =
V

NAKBT
(5.26)

Rgas =

√
2πMNAKBT

A
(5.27)

The gas compression ratio γ is calculated using:

γ =
P0

z0
(5.28)

Modeled values match Krypton at a pressure of 60 mbar and a temperature
of 300K. Experimental measurements with these settings are discussed in
depth in the gas permeation results section.

5.6.2 Simulation results

Figure 5.3 shows the bode plot and analogous real-imaginary graph with
the simulation results. The simulation has been run using the values listed
in table 5.1. Amplification is chosen such that the magnitude lies close to 0

dB in the circuit. The mechanical resonance is clearly visible on the right in
all three graphs. In the imaginary part of the graph two bumps are visible.
These bumps correspond to the two time constants τgas and τth. The two
time constants are easiest seen in the real-imaginary graph, which is why
this representation is used in the following chapters.

The modeled data are fitted to the algebraic expression in equation 5.4. The
fitting should return the values that were used as an input to the model:

τth = RthCth = 35 ns

τgas = RgasCgas = 804 ns

A fit to the simulated data is shown in figure 5.4. The fitted value for τgas,
806 ns, matches the modeled value of 804 ns. On the other hand, the ther-
mal equilibration time τth matches significantly worse. Fitting results in a
time constant of 30 ns, which is 15% away from the modeled value. It is
asserted that the proximity of the resonance peak has a negative impact on
the quality of the fit, since the algebraic expression does not include the
resonance peak.

In order to improve data analysis, a Laplacian is fitted to the resonance
peak in panel A and subtracted to arrive at the result in panel B. Then, the
original fitting procedure to find the two time constants is applied. New
τth and τgas found are respectively 36 and 780 ns. Both values are within
3% from modeled. It turns out that subtracting the resonance peak greatly
improves the results for the thermal time constant, and slightly affects the
permeation time constant.



5.6 electric model simulation 29

-60

-40

-20

0

20

M
ag

ni
tu

de
 (d

B)

Frequency (Hz)

-500

-400

-300

-200

-100

0

Ph
as

e 
(d

eg
re

es
)

10
4

10
5

10
6

10
7

10
8

-1

-0.5

0

0.5

1
real
imaginary

10
4

10
5

10
6

10
7

10
8

A
m

pl
itu

de
 (V

/V
0)

τ
gas

τ th

Figure 5.3: Simulated results using an equivalent electric circuit for the porous
membrane, represented in a magnitude plot, a phase plot and a real-
imaginary plot. The mechanical resonance at 35 MHz is pronounced in
all three graphs. The two time constants τgas and τth are recognizable as
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30 gas permeation model

Frequency (Hz)

104 105 10 6 107

τth= 36 ns

τgas = 780 ns

A

Subtract

108

0.5

0

-0.5

-1

1

1.5

104 105 10 6 107

B

108

0.5

0

-0.5

-1

1

1.5
Real simulated data
Imaginary simulated data
Model imaginary part
Model real part

Real simulated data
Imaginary simulated data
Model imaginary part
Model real part

Frequency (Hz)

Im
(z

   )
, R

e(
z 

  )
 (V

/V
)

Im
(z

   )
, R

e(
z 

  )
 (V

/V
)

τgas = 806 ns

τth= 30 ns

ω
ω

ω
ω

Figure 5.4: Simulated results are fitted to the algebraic model in equation 5.4. A)
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6 RESULTS

This chapter discusses the gas permeation measurements of two porous
graphene samples. The samples in this chapter have been exposed to highly
energetic ion bombardment with 136Xe42+6.6MeV/u, with a fluence of 5.09 ·
109 ions per square centimeter at the SME beamline of GANIL (Caen, France),
which is similar to the treatment described by Madauß et al.20

The reader is first introduced to the typical form of a frequency response
that is obtained from the experiments. Then, it is argued that the measured
results can be explained by the model proposed in chapter 5. To verify
the model the gas permeation time constants are extracted and shown to
follow Graham’s effusion law with τgas ∝

√
M. Also the dependency of the

thermal time constants on the gas is discussed. The presence of gas opens
a new thermal pathway, decreasing the time needed for transfer of energy.
Measurement sets of two drums are discussed in depth.

6.1 typical response

A typical frequency response including both phase delays and the first me-
chanical resonance peak is displayed in figure 6.1. Both the real and imagi-
nary parts of the data are shown. As the first mechanical resonance at 22.1
MHz obscures a part of data of interest, a fit to the resonance is subtracted
from the data in figure 6.1A to obtain the graph in figure 6.1B. Now, it is
possible to fit the imaginary part of the data in panel B. The imaginary part
of the response has two clear bumps. These bumps correspond to the two
time constants τgas and τth, as indicated in the figure. The observed real
part of the amplitude is slightly offset along all frequencies, probably due
to cross-talk between the red and blue laser.

6.1.1 Time constants

The two bumps in the imaginary part of the frequency response are caused
by phase delay with respect to the applied optothermal drive of either the
pressure inside the cavity or the temperature of the membrane. The ob-
served behavior can be summarized as follows:

• ω << τgas, τth, ω0 : In the low-frequency limit the motion of the mem-
brane follows the applied drive and the response is purely real.

• ω ≈ τgas : At frequencies close to the associated permeation time
constant τgas = 1/ω the pressure of the gas trapped inside the cavity
is out of phase with respect to the movement of the membrane. This
results in membrane motion being out of phase with respect to the
drive caused by gas actuation.
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Figure 6.1: Frequency response of the drum in Krypton at 60 mbar. In A the original
response including the mechanical resonance peak at 22 MHz is shown.
The harmonic oscillator fits (shown in A) are subtracted to arrive at B.
Now, the model with two time constants can be applied with fitted pa-
rameters a = 0.017, b = 0.019, τth = 35 ns and τgas = 805 ns.

• ω ≈ τth : At frequencies close to the associated thermal time constant
τth = 1/ω the membrane temperature is out of phase with respect
to the movement of the membrane. This again results in membrane
motion being out of phase with respect to the drive.

• ω ≈ ω0 : At a driving frequency close to the mechanical resonance a
resonance peak appears independently of the pneumatic and thermal
delays.

6.1.2 Coefficients

The coefficients a and b set the peak heights of the two bumps. The sign of
coefficient a can be either positive or negative depending on the buckling
direction of the membrane. The buckling direction determines whether a
tension increase causes the membrane to move towards or away from the
substrate. The parameter b will always have the same sign, as the forces
from the gas act independently from the membrane buckling. The opposite
signs for the two coefficients are favorable in sight of data analysis, as it is
easier to distinguish the two bumps when they have opposite direction.

6.2 measurements
The permeation and thermal time constants τgas and τth are extracted for a
range of gasses varying in mass from 4u (He) to 130u (SF

6
). The experimen-

tal results from two devices are presented in figures 6.2 and 6.3. Each figure
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presents a series of measurements performed at 60 mbar in panel A. Panel B
and C show permeation and thermal time constants at all various pressures
including the measurements in panel A. The results from the two samples
are discussed separately.

sample 1 Panel A in figure 6.2 presents a series of measurements at 60

mbar with different gasses, where the molecular mass of each gas is indi-
cated by a circle. The effusion time clearly depends on the mass of the
gas, shifting to lower frequencies with increasing mass. The imaginary part
of the measurement data is fitted (grey lines) to equation (5.4) and both
time constants are marked by red bars. While τgas varies nearly an order
of magnitude, the thermal time τth is almost constant. Panel B shows that
the permeation time constant closely follows Graham’s effusion law with
τgas ∝

√
M. This agrees with equation 2.12 for classical effusion. At a pres-

sure of 500 mbar Kn < 1 for only SF
6
. At 1000 mbar all gasses except

Helium and Neon have Kn < 1. The behavior in the environments with
low Knudsen number deviates from the effusion trend that is visible at the
higher Knudsen numbers. The viscosity of the gas starts playing a role and
the measurements no longer coincide with the line drawn for the effusion
model.

sample 2 Panel A in figure 6.3 presents a series of measurements at 60

mbar with different gasses, where the molecular mass of each gas is indi-
cated by a circle. The measurements on tetrafluormethane and sulfurhex-
afluoride differ from the trend visible along the other gasses. These two
gasses have been measured separately, a week later. The change could be
explained by experimental mistakes or sample degradation during the week.
The imaginary part of the measurement data is fitted (grey lines) to equa-
tion (5.4) and both time constants are marked by red bars. Panel B shows
that the permeation time constant follows Graham’s effusion law τgas ∝

√
M

when tetrafluormethane and sulfurhexafluoride are not taken into account.
At a pressure of 500 mbar Kn < 1 for only SF

6
. At 1000 mbar all gasses

except Helium and Neon have Kn < 1. The behavior in the environments
with low Knudsen number deviates from the effusion trend that is visible
at the higher Knudsen numbers. The viscosity of the gas starts playing a
role and the measurements no longer coincide with the line drawn for the
effusion model.

6.3 thermal time constant
The presence of gas in the cavity opens a new thermal pathway for the
membrane to lose heat and the thermal time constant is expected to decrease
as compared to the vacuum measurement. In view of the small dimensions
of the gap between the membrane and the substrate the Knudsen formula
is used to calculate the effective thermal conductivity ke f f of the gas:

ke f f

k0
=

1
1 + CT

Pd
(6.1)

Where C is a constant equal to 7.6 ∗ 10−5, d is the distance between the mem-
brane and the substrate and k0 is the thermal conductivity of the gas.52,53

Panel B in figures 6.2 and 6.3 show that the gas indeed provides a new heat
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Figure 6.2: Measured permeation and heating times of a porous SLG membrane for
various gasses. In panel A the imaginary part of the signal is overlayed
by its fit and the extracted time constant are highlighted by red marks
for measurements performed at 60 mbar. The gray bounds represent a
response of 0.04 V/V0. The relative particle mass is represented by the
area of the circles next to the gas name. Panel B shows that the perme-
ation time τgas follows the square root of the particle mass according to
equation 2.12. At higher pressures the Knudsen number becomes too
low for classical effusion to apply and the measurements deviate from
this law. Panel C shows the thermal time τth as compared to a measure-
ment in vacuum.
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Figure 6.3: Measured permeation and heating times of a porous SLG membrane for
various gasses. In panel A the imaginary part of the signal is overlayed
by its fit and the extracted time constant are highlighted by red marks
for measurements performed at 60 mbar. The gray bounds represent a
response of 0.04 V/V0. The relative particle mass is represented by the
area of the circles next to the gas name. Panel B shows that the perme-
ation time τgas follows the square root of the particle mass according to
equation 2.12. At higher pressures the Knudsen number becomes too
low for classical effusion to apply and the measurements deviate from
this law. Panel C shows the thermal time τth as compared to a measure-
ment in vacuum.
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Figure 6.4: Frequency response of a perforated drum at a pressure of 8 mbar, which
is considered low vacuum. The original response including two mechan-
ical resonance peaks is shown. The harmonic oscillator fits for the first
resonance (not shown) are subtracted before further analysis. A model
with only thermal delay can be applied with fitted parameters a = 0.0023,
τth = 36 ns, f = 25.5 MHz and q = 31.

conduction pathway, decreasing the thermal time constant as the effective
thermal conductivity increases.

6.4 comparison with vacuum
The presence of two time constants is characteristic for perforated mem-
branes in gaseous environments. Measurements in vacuum show only one
maximum in the imaginary response, corresponding to a thermal time τth =
41 ns for sample 1 and τth = 36 ns for sample 2. Figure 6.4 shows a fre-
quency response of a perforated drum at low vacuum. The first bump,
attributable to the permeation delay, diminishes. The thermal delay with
τth = 36ns is still present. Also, the unperforated reference samples show
only one peak, again corresponding to expected values for τth. Therefore, it
has to be concluded that the measured response indeed must be a contribu-
tion of gas permeation.



7 CONCLUS ION AND D ISCUSS ION

A sensing method is presented that is based on measuring the phase delay of
the membrane motion caused by the forces from the permeating gas. Perfo-
rations allow the gas to flow out at a speed characteristic for the gas species.
At driving frequencies close to the corresponding permeation speed, the
membrane’s phase delay is maximal. The method is well able to distinguish
gasses with varying mass based on their effusion speed.

In this thesis two samples are highlighted. These samples have both small
pores which are 14 nm on average and a single big pore of approximately
400 nm. The big pore size lies within the Knudsen effusion regime and
permeation time constant are shown to follow Graham’s law with τgas ∝

√
M

for measurements on a range of gasses (He, Ne, N
2
, Ar, CO

2
, Kr, CH

4

and SF
6
) at a pressure of 60 mbar. At increased pressures of 500 and 1000

mbar the behavior deviates from Graham’s law whenever Kn < 1. The
permeation rate measurements seemingly benefit from the big pore by the
increased response arising from the high flow.

This research explains the mechanical behavior of a perforated resonator
below its resonance frequency in the presence of gas. The measurement of
the frequency response curve performs well at frequencies down to 10 kHz.
The method is less suitable for lower frequencies and corresponding low
permeation speeds, at which colorimetry or capacitive read-out are more
suitable. Phase delay gas recognition opens a new, higher detection range
of over 3 orders of magnitude.

7.1 gas permeation model

The measured frequency response is explained by a gas permeation model
which describes the mechanical response to a sinusoidal driving force of a
perforated graphene membrane in gaseous environment. It is argued that
two delays are present in the frequency response below the first mechanical
resonance. The delays depend on the characteristic gas permeation time τgas
and the thermal equilibration time τth. The gas permeation model is tested
by simulation of an equivalent circuit in Simulink. The simulations verify
that two permeation time constants can be seen below the first mechanical
resonance. Further improvements can be made to achieve a model that is
more versatile, including squeeze film and gas damping effects.

In the mechanical domain the values of the resonance frequency and Q-
factor are predefined before running the simulation. Therefore, the model
does not calculate effects as gas damping and squeeze film stiffness increase.
Implementation would require automatic numerical value calculation of the

37



38 conclusion and discussion

electrical components, based on gas, pressure and temperature input. This
would also greatly enhance the ease of use of the simulation.

The presented model is applicable not only for graphene but to any two-
dimensional material, provided that it can be optothermally driven. The
permeability of the pores can be tuned by changing the size and chemical
structure to achieve specific response, allowing for far higher sensitivities.
The inherent high measurement speed of the method and low power con-
sumption promise implementability as a gas, chemical and biological sensor
for portable devices.

7.2 recommendations
Hundreds of drums perforated with only small pores have been checked,
but finding the characteristic behavior with two time constants proved to
be very hard. Three drums have been found to show this behavior. Two of
them have been characterized using the AFM and turned out to have a big
hole in them, which increased the effusion area by a factor two.

The presence of both small pores and a big pore gives space to questions
about the exact permeation pathway. It is therefore recommendable to rule
out the possibility that the gas is escaping only through the big pore. An ad-
ditional measurement with a milled big pore in an otherwise unperforated
membrane should clarify this matter. It is suggested to perform the milling
with a focused ion beam for controllable pore size or use samples with a
venting channel.

The most interesting applications of nanoporous graphene require down-
sizing the pores even farther. To assure reasonable sensitivities a high poros-
ity is needed. Therefore, it is recommended to work with higher porosities
than presented in this work. Nevertheless, this thesis shows an account of
MEMS gas sensing on timescales not accessible before. The understanding
of the interplay between the gas and the membrane mechanics makes it pos-
sible to predict mechanical phase delay in nanodrum oscillators and paves
the way to broader application of two-dimensional materials.
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A TABLES

Table A.1: Gas properties of gasses used during the experiments.54,55

Kinetic diameter Mass Specific heat capacity Thermal conductivity
(10−10 m) (u) (J/KgK) (10−3 W/mK)

Nitrogen 3.6 28 1047 26

Neon 2.8 20 1038 49

Krypton 3.6 84 251 10

Helium 2.6 4 5204 150

Argon 3.4 40 532 18

Carbondioxide 3.3 44 837 16

Sulfurhexafluoride 5.5 146 669 14

Tetrafluorcarbon 4.7 88 658 16
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Table A.2: Mean free path (mfp) and Knudsen number (Kn) for the gasses used in
the experiments at various pressures assuming a 400 nm pore.

1000 mbar 500 mbar 60 mbar

mfp (nm) Kn mfp (nm) Kn mfp (nm) Kn

Nitrogen 220 0.6 440 1.1 3700 9

Neon 390 1.0 780 1.9 6500 16

Krypton 230 0.6 450 1.1 3800 9

Helium 430 1.1 870 2.2 7200 18

Argon 250 0.6 510 1.3 4200 11

Carbondioxide 270 0.7 540 1.3 4500 11

Sulfurhexafluoride 970 0.2 200 0.5 1600 4

Tetrafluorcarbon 130 0.3 270 0.7 2200 6
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