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Abstract

Finding fast yet accurate numerical solutions to the Helmholtz equation remains a challenging task. The pollution error (i.e.
he discrepancy between the numerical and analytical wave number k) requires the mesh resolution to be kept fine enough

to obtain accurate solutions. A recent study showed that the use of Isogeometric Analysis (IgA) for the spatial discretization
significantly reduces the pollution error. However, solving the resulting linear systems by means of a direct solver remains
computationally expensive when large wave numbers or multiple dimensions are considered. An alternative lies in the use of
(preconditioned) Krylov subspace methods. Recently, the use of the exact Complex Shifted Laplacian Preconditioner (CSLP)
with a small complex shift has shown to lead to wave number independent convergence while obtaining more accurate numerical
solutions using IgA.

In this paper, we propose the use of deflation techniques combined with an approximated inverse of the CSLP using a
geometric multigrid method. Numerical results obtained for one- and two-dimensional model problems, including constant and
non-constant wave numbers, show scalable convergence with respect to the wave number and approximation order p of the
spatial discretization. Furthermore, when kh is kept constant, the proposed approach leads to a significant reduction of the
computational time compared to the use of the multigrid-approximated or exact inverse of the CSLP with a small shift, in
particular for three-dimensional model problems.
c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Helmholtz; Pollution; Numerical dispersion; Isogeometric Analysis; GMRES; Deflation

1. Introduction

The Helmholtz equation has been widely studied in various fields of physics ranging from biomedical physics
o geo- and nuclear physics. The electromagnetic scattering problem thus finds many applications in engineering
ractices. Many efforts have been made to find fast yet accurate numerical solutions to the Helmholtz problem. The
atter remains a challenging topic in research due to the pollution error and the resulting linear system having
ndesirable properties. In particular, the pollution error results from a discrepancy between the analytical and
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numerical wave number [1–3]. Consequently, the mesh resolution has to be kept fine enough to obtain accurate
numerical solutions. If we let k denote the wave number, Ndof the number of degrees of freedom in one dimension
and p the order of a finite difference or standard finite element scheme, then

Ndof = Ck
(

p+1
p

)
,

here C is a constant that only depends on the accuracy achieved [4]. In practice, this has led to the rule of thumb
h ≈

2π
10 , where 10 denotes the number of degrees of freedom per wavelength and h the mesh width. However, the

resulting numerical solution still suffers from pollution, unless the resolution is kept at C(k p+1h p) ≤ 1, for a general
p-th order scheme. While this minimizes the pollution error, the resulting linear systems are too large for direct
olution methods. This exacerbates in higher-dimensions, which opens the door to the use of iterative solution
ethods. Due to the resulting linear systems being indefinite and non-Hermitian, Krylov subspace methods are

ecessary. In fact, even using standard multigrid as a stand-alone solver diverges for the Helmholtz equation [5,6].
oreover, for Krylov subspace methods, the number of iterations until convergence grows with the wave number k.

Thus, the difficulty in solving Helmholtz-type problems can be reduced to optimizing the trade-off between having
accurate numerical solutions, while using a scalable solver.

One potential way to mitigate this problem is to adopt Isogeometric Analysis (IgA) [7] as a discretization
technique. IgA can be considered as the natural extension of the finite element method (FEM) to higher-order
B-splines and has become widely accepted as a viable alternative to standard FEM. The use of high-order B-splines
or Non-Uniform Rational B-splines (NURBS) enables a highly accurate representation of complex geometries and
bridges the gap between computer-aided design (CAD) and computer-aided engineering (CAE) tools. Furthermore, a
higher accuracy per degree of freedom can be achieved compared to standard FEM [8]. A new branch of studies has
demonstrated that IgA furthermore helps to control the pollution error while keeping the size of the resulting linear
system moderate [9–13]. In [14], the authors investigated the obtained accuracy for several Helmholtz-type problems
using a non-constant wave number and documented increased accuracy. Thus, while the use of IgA for Helmholtz-
type problems becomes more established, the process of solving the underlying discretized systems remained fairly
untouched. Until recently, a study by Diwan et al. [15] covered this for the Helmholtz equation and researched the
use of IgA together with an iterative solver. There, the resulting linear systems are solved using the Generalized
Minimum Residual Krylov method (GMRES) preconditioned with the Complex Shifted Laplacian Preconditioner
(CSLP) using a small complex shift. The results show wave number independent convergence of the iterative solver
and, at the same time, higher accuracy of the numerical solution.

The well-known CSLP has been the industry standard for many years [16]. While this has accelerated the
convergence dramatically, the number of iterations increases with the wave number k, which is why in order to
obtain wave number independent convergence, the complex shift has to be kept at O(k−1) [17]. One drawback
of keeping the shift very small is that the resulting preconditioner starts resembling the original matrix and exact
inversion puts a heavy tax on the computational resources. Therefore, a few multigrid cycles are often used to
approximate the inverse of the CSLP, which amounts to O(N ) FLOPs [16]. However, in order to prevent multigrid
from diverging, the complex shift has to be kept as large as possible O(1) [18].

As a consequence, recent developments have led to a broad range of preconditioners such as domain de-
composition based preconditioners [19–25], sweeping preconditioners [26–30] and (multilevel) deflation based
preconditioners [31–33]. One of these new preconditioners is the Adapted Deflation Preconditioner (ADP) [33],
which uses quadratic Bézier curves to construct the deflation space. There, second order finite differences was used
to construct the linear systems on the fine-level. The construction of Z should balance the computational cost of
the coarse-grid solve and the k-independent convergence. Although cubic and higher-order schemes are expected to
result in more accuracy on the coarse-level, the associated computational costs might outweigh the benefits of using
such schemes. For finite difference discretizations, the two-level deflation preconditioner has shown to be simple yet
competitive to the small-shift and exact inversion of CSLP in terms of wave number independent convergence and
computational complexity for large wave numbers k. In essence, the deflation preconditioner projects the near-zero
igenvalues of the CSLP-preconditioned system onto zero. These near-zero eigenvalues are known to interfere with
ast convergence of the Krylov subspace solver.

Consequently, our aim in this paper is to extend the research direction set out in [14,15], by combining state-
f-the-art iterative solvers with IgA to obtain both accurate and computationally efficient numerical solutions. In

articular, we propose the use of deflation techniques combined with an approximated inverse of the CSLP using
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multigrid to obtain scalable and faster convergence with respect to the wave number k and the order p. We study
one-, two- and three-dimensional model problems containing both a constant wave number k and a variable wave
number k(x, y). In the latter case, we focus on the performance of the solver in the presence of sharp discontinuities
in the wave number and the underlying solution. For the two-dimensional model problems, we report the number
of iterations and the CPU-timings to show that the use of deflation combined with a multigrid-approximated CSLP
allows for tremendous gain in computational efficiency while keeping scalable convergence in terms of the number
of iterations. The method outperforms the exact inversion of the CSLP with a small complex shift in terms of
number of iterations and CPU-timings when a large constant or non-constant wave number is used. For the three-
dimensional model problems, the combined use of deflation and multigrid-approximated CSLP leads to a significant
speedup compared to the use of both a multigrid-approximated and exact inversion of the CSLP. In case of a curved
geometry, the use of deflation (without CSLP) as a preconditioner further decreases the CPU-timings.

The paper is organized as follows. We start with the variational formulation and spatial discretization of the
Helmholtz equation in Section 2. In Section 3 we discuss the deflation preconditioning technique for the Krylov
subspace method. Here we introduce the use of higher-order Bézier curves as a basis for the deflation space. We
then proceed by performing a spectral analysis of the preconditioned systems and various numerical experiments
in Section 4 in order to determine the convergence behavior. We provide CPU-timings in order to assess the
computational time complexity. We conclude our results in Section 5.

2. Problem definition

We start by presenting the variational formulation and B-spline discretization of the two-dimensional inhomoge-
neous Helmholtz equation. In Section 4 instances of this general problem will be considered to assess the quality
of our proposed solution method.

2.1. Variational formulation

To illustrate the variational formulation, we consider the inhomogeneous Helmholtz equation in two dimensions
adopting inhomogeneous Robin boundary conditions:

− ∆u(x, y) − k2(x, y)u(x, y) = f (x, y), (x, y) ∈ Ω ⊂ R2, (1)(
∂

∂n
− ik(x, y)

)
u(x, y) = g(x, y), (x, y) ∈ ∂Ω . (2)

Here, Ω is a connected Lipschitz domain, f ∈ L2(Ω ), g ∈ L2(∂Ω ) and k(x, y) a non-constant wave number. Let
s define V as the first order Sobolev space H 1(Ω ). The variational formulation of (1) is obtained by multiplication
ith a test function v ∈ V and application of integration by parts: Find u ∈ V such that

a(u, v) = ( f, v), ∀v ∈ V, (3)

here

a(u, v) =

∫
Ω

∇u · ∇v dΩ −

∫
Ω

k2uv dΩ − i
∫

∂Ω

kuv dΓ ( f, v) =

∫
Ω

f v dΩ +

∫
∂Ω

gv dΓ . (4)

A geometry function F is then defined to parameterize the physical domain Ω by describing an invertible mapping
to connect the parameter domain Ω0 = (0, 1)2 with the physical domain Ω .

F = Ω0 → Ω , F(ξ, η) = (x, y). (5)

The considered geometries throughout this paper can be described by a single geometry function F, that is, the
physical domain Ω is topologically equivalent to the unit square. In case of more complex geometries, a family of
functions F(m) (m = 1, . . . , K ) is defined and we refer to Ω as a multipatch geometry consisting of m patches. For
a more detailed description of multipatch constructions, the authors refer to chapter 2 of [34].

2.1.1. B-spline basis functions
To discretize Eq. (1), univariate B-spline basis functions are defined on the parameter domain Ω0 by an underlying

knot vector Ξ = {ξ , ξ , . . . , ξ , ξ }. Here, N denotes the number and p the order of the B-spline basis
1 2 N+p N+p+1

3
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Fig. 1. Linear and quadratic B-spline basis functions based on the knot vectors Ξ1 = {0, 0, 1, 2, 3, 3} and Ξ2 = {0, 0, 0, 1, 2, 3, 3, 3},
espectively. For interpretation of the color references in this and upcoming figures, the reader is referred to the web version of this article.

unctions. Based on this knot vector, the basis functions are defined recursively by the Cox-de Boor formula [35],
tarting from the constant ones

φ j,0(ξ ) =

{
1 if ξ j ≤ ξ < ξ j+1,

0 otherwise.
(6)

Higher-order B-spline basis functions of order p > 0 are then defined recursively

φ j,p(ξ ) =
ξ − ξ j

ξ j+p − ξ j
φ j,p−1(ξ ) +

ξ j+p+1 − ξ

ξ j+p+1 − ξ j+1
φ j+1,p−1(ξ ). (7)

The resulting B-spline basis functions φ j,p are non-zero on the interval [ξ j , ξ j+p+1) and possess the partition
f unity property. Furthermore, the basis functions are C p−m j -continuous, where m j denotes the multiplicity of
not ξ j . Throughout this paper, we consider a uniform knot vector with knot span size h, where the first and last
not are repeated p + 1 times. As a consequence, the resulting B-spline basis functions are C p−1 continuous and

interpolatory at both end points. Fig. 1 illustrates both linear and quadratic B-spline basis functions based on such
a knot vector.

For the multi-dimensional case, the tensor product of univariate B-spline basis functions is adopted for the spatial
discretization. Let Ndof denote the total number of multivariate basis functions Φ j,p. The spline space Vh,p can then
be written as follows

Vh,p = span{Φ j,p ◦ F−1
} j=1,...,Ndof . (8)

The Galerkin formulation of (3) now becomes: Find uh,p ∈ Vh,p such that

a(uh,p, vh,p) = ( fh,p, vh,p), ∀vh,p ∈ Vh,p. (9)

The discretized problem in (9) can be written as a linear system(
Sh,p − Mh,p − iNh,p

)
uh,p = fh,p. (10)

Here,
(
Sh,p

)
i, j =

∫
Ω ∇Φi,p · ∇Φ j,p dΩ is the stiffness matrix,

(
Mh,p

)
i, j =

∫
Ω k2Φi,pΦ j,p dΩ the mass matrix

nd
(
Nh,p

)
i, j =

∫
∂Ω kΦi,pΦ j,p dΓ the boundary mass matrix. Next, by defining Ah,p = Sh,p − Mh,p − iNh,p we

an write

Ah,puh,p = fh,p. (11)

or the ease of notation, we will proceed with the notation Au = f, and drop the subscript (h, p).

. Preconditioned Krylov subspace methods

For Helmholtz-type problems, the number of degrees of freedom grows with the wave number k. Consequently,
for larger values of k the linear systems become very large, especially in two and three dimensions. As a result, direct
solvers become unattractive and computationally expensive due to fill-in. Thus, in order to solve the model problems,
an iterative method is considered. For normal matrices (i.e. AA∗

= A∗A), the convergence of Krylov subspace
4
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methods is closely related to the underlying distribution of the eigenvalues. The more clustered the eigenvalues, the
better and faster the method converges. For MP 1-B, we can easily deduce the analytical eigenvalues which are
given by λ j = j2π2

−k2. It is easy to see that the resulting systems will have both positive and negative eigenvalues,
endering it indefinite. This limits our choice of Krylov subspace methods, where often GMRES is chosen as the
nderlying iterative solver. Throughout the years, the performance of GMRES for the Helmholtz equation has been
tudied widely, with an extensive overview given in [5,29,36]. One of these preconditioners is the CSLP, which is
efined by taking the original coefficient matrix A and adding a complex shift. Thus, in the one-dimensional case,

CSLP B is given by

B = A + βik2I, (12)

nd the resulting preconditioned system becomes

B−1Au = B−1f. (13)

ere, I denotes the identity matrix and β ∈ R the shift. In practice, the CSLP is often included by applying a fixed
umber of V-cycles of a (geometric) multigrid method to approximate B−1. As a smoother within the multigrid
ethod, we adopt damped Jacobi (with damping parameter ω = 0.6). Note that the use of standard smoothers

i.e. Jacobi or Gauss–Seidel) within a multigrid solver [37] in IgA results in p-dependent convergence. This has led
to the development of non-standard smoothers to obtain p-independent convergence rates [38–43]. Their application
within a multigrid method to approximate B−1 is, however, out of the scope of this paper. In order for B−1 to remain
a good preconditioner, the shift β should not be too small as otherwise multigrid will diverge [5,20]. On the other
hand, the preconditioner should still remain close enough to the original coefficient matrix A, which is also why β

should not be too large.
While the complex shift transfers part of the unwanted spectrum onto the complex axis, unless the shift is kept

very small, near-zero eigenvalues start appearing around the origin as the wave number increases [31,44,45]. This
effect accumulates in higher-dimensions. Especially the real part of these near-zero eigenvalues is known to have
a detrimental effect on the convergence behavior of the Krylov solver. One simple yet effective way to get rid of
these unwanted near-zero eigenvalues is to use deflation. By using an orthogonal projection, the deflation operator,
which we will denote by P projects these unwanted eigenvalues onto zero. Thus, for a general symmetric linear
system, we can define the projection matrix P̂ and its complementary projection P as

P̂ = AQ where Q = ZE−1ZT and E = ZTAZ, (14)
A ∈ Rn×n, Z ∈ Rn×m,

P = I − AQ.

ere the matrix Z is the deflation matrix whose columns consist of the deflation vectors and E denotes the coarse-
grid variant of the original coefficient matrix A. The performance of the deflation preconditioner depends on the
choice of Z. In principle, the deflation matrix is defined as the prolongation and restriction matrix from a multigrid
etting using a first-order linear interpolation scheme [31,46–50]. While this improves the convergence significantly,
he near-zero eigenvalues start reappearing for very large wave numbers k. Consequently, it has been shown recently

that the use of a quadratic interpolation scheme results in close to wave number independent convergence for the
two-level deflation preconditioner [33]. In fact, the use of these higher-order deflation vectors results in a smaller
projection error compared to the case where a linear interpolation scheme is used. To construct the stencil for the
deflation matrix Z, we start by introducing the rational Bézier curve.

efinition 1 (Bézier Curve). A Bézier curve of degree n is a parametric curve defined by

B(t) =

n∑
j=0

b j,n(t)Pj , 0 ≤ t ≤ 1, (15)

here the polynomials

b j,n(t) =

(
n
j

)
t j (1 − t)n− j , j = 0, 1, . . . , n, (16)

re known as the Bernstein basis polynomials of order n. The points Pj are called control points for the Bézier
urve.
5
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Definition 2 (Rational Bézier Curve). A rational Bézier curve of degree n with control points P0, P1, . . . , Pn and
scalar weights w0, w1, . . . , wn ∈ R is defined as

C(t) =

∑n
j=0 w j b j,n(t)Pj∑n

j=0 w j b j,n(t)
. (17)

The motivation for using the rational Bézier curve is that the latter formulation allows for the weights to be
djusted in order to account for the higher requested accuracy at the even degrees of freedom. To see why this
s necessary, note that for large k the solutions become very oscillatory and the use of linear basis functions to
onstruct the deflation vectors is not sufficiently accurate to map the underlying eigenvectors to its coarse-grid
ounterpart. In particular, when using a linear scheme to construct the grid-transfer operators, the even degrees of
reedom j are copied onto the alternate grid and the value at the odd degrees of freedom j are determined by taking

a weighted value of its neighbors. In particular for the one-dimensional case, if we define the coarse grid function
with respect to the degree of freedom j by [u2h] j , then the linear scheme is given by

efinition 3 (Linear Interpolation). Let [u2h]( j−1)/2 and [u2h]( j+1)/2, be the neighboring degrees of freedom of
[u2h] j . Then the prolongation scheme for the even nodes can be characterized by a Rational Bézier curve of

egree 1 with polynomials

b0,1(t) = 1 − t,
b1,1(t) = t,

henever j is odd by taking the weights w0 = w1 = 1 and t =
1
2 . Note that in case w0 = w1 and non-rational we

obtain the original Bézier curve.

C(
1
2

) =

1
2 [u2h]( j−1)/2 + (1 −

1
2 )[u2h]( j+1)/2

1
2 + (1 −

1
2 )

, (18)

=
1
2

(
[u2h]( j−1)/2 + [u2h]( j+1)/2

)
. (19)

hen j is even, we take the middle component [u2h] j/2, which itself gets mapped onto the fine grid.

We thus consider a quadratic rational Bézier curve as this allows us to replace the even component by a weighted
average as well. The main difference is that the stencil to construct the grid-transfer operators now has a larger
support and can thus provide more accuracy, as an increase in the number of iterations can be attributed to a loss
of accuracy on the coarse-level. The quadratic scheme is given by

Definition 4 (Quadratic Approximation). Let [u2h]( j−2)/2 and [u2h]( j+2)/2, be the neighboring degrees of freedom of
u2h] j . Then the prolongation operator can be characterized by a Rational Bézier curve of degree 2 with polynomials

b0,2(t) = (1 − t)2,

b1,2(t) = 2t(1 − t),

b2,2(t) = t2,

and [u2h] j/2, whenever j is even. Because we wish to add more weight whenever j is even, we take weights
w0 = w2 =

1
2 , w1 =

3
2 and t =

1
2 to obtain

C(t) =

1
2 (1 − t)2[u2h] j−1 +

3
2 2t(1 − t)[u2h] j +

1
2 (t)2[u2h] j+1

1
2 (1 − t)2 +

3
2 2t(1 − t) +

1
2 (t)2

=

1
2 (1 −

1
2 )2[u2h] j−1 +

3
2 (2)( 1

2 )(1 −
1
2 )[u2h] j +

1
2 ( 1

2 )2[u2h] j+1
1
2 (1 −

1
2 )2 +

1
2 (2)( 1

2 )(1 −
1
2 ) +

1
2 ( 1

2 )2

=

1
8 [u2h] j−1 +

3
4 [u2h] j +

1
8 [u2h] j+1

1

=
1
8

(
[u2h] j−1 + 6[u2h] j + [u2h] j+1

)
.

6
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When j is odd, [u2h]( j−1)/2 and [u2h]( j+1)/2 are associated to an even degree of freedom and the resulting stencil
eads to the standard linear interpolation scheme.

Thus, with respect to the coarse-grid function u2h at degree of freedom j , we can define the stencil for the
rolongation and restriction operator as

[Zu2h] j =

{ 1
8

(
[u2h]( j−2)/2 + 6 [u2h]( j)/2 + [u2h]( j+2)/2

)
if j is even,

1
2

(
[u2h]( j−1)/2 + [u2h]( j+1)/2

)
if j is odd

}
, (20)

or j = 1, . . . , Ndof and[
ZTuh

]
j =

1
8

(
[uh](2 j−2) + 4 [uh](2 j+1) + 6 [uh](2 j) + 4 [uh](2 j+1) + [uh](2 j+2)

)
, (21)

or j = 1, . . . ,
Ndof

2 . Additionally, a weight-parameter ε can be included to further increase the accuracy of the
prolongation and restriction operator [33]. In this case, the stencil for the prolongation and restriction operator is
given by

[Zu2h] j =

{ 1
8

(
[u2h]( j−2)/2 + (6 − ε) [u2h]( j)/2 + [u2h]( j+2)/2

)
if j is even,

1
2

(
[u2h]( j−1)/2 + [u2h]( j+1)/2

)
if j is odd

}
, (22)

for j = 1, . . . , Ndof and[
ZTuh

]
j =

1
8

(
[uh](2 j−2) + 4 [uh](2 j+1) + (6 − ε) [uh](2 j) + 4 [uh](2 j+1) + [uh](2 j+2)

)
, (23)

for j = 1, . . . ,
Ndof

2 . The value of ε is constant with respect to k and kh and is chosen such that the
projection error is minimized. In [33] this value has been determined analytically for the one-dimensional case (see
Equation 5.13) and is adopted throughout this paper unless stated otherwise. Similarly, a cubic rational Bézier
curve can be constructed in an analogous way, which for the coarse-grid function u2h at degree of freedom j leads
to the stencil

[Zu2h] j =

{ 1
32

(
6 [u2h]( j−2)/2 + 20 [u2h]( j)/2 + 6 [u2h]( j+2)/2

)
if j is even,

1
32

(
[u2h]( j−3)/2 + 15 [u2h]( j−1)/2 + 15 [u2h]( j−1)/2 + [u2h]( j+3)/2

)
if j is odd

}
, (24)

or j = 1, . . . , Ndof and[
ZTuh

]
j
=

1
32

(
[uh](2 j−3) + 6 [uh](2 j−2) + 15 [uh](2 j+1) + 20 [uh](2 j) + 15 [uh](2 j+1) + 6 [uh](2 j+2) + [uh](2 j+3)

)
,

(25)

or j = 1, . . . ,
Ndof

2 . In Section 4.6.1, we will also use the cubic scheme in the one-dimensional numerical
experiments to explore the performance of both schemes with respect to the number of iterations to reach
convergence. As the use of cubic and higher-order schemes is currently an active topic of research, no analytical
weight-parameter ε has been constructed yet.

The aforementioned construction of Z using higher-order rational Bézier curves naturally extends to higher-
imensions by taking the Kronecker product of Z with itself to construct the 2- and 3D-variants respectively. This
pproach is widely used in the multigrid context [51].

Now that we have a stencil to construct Z, we can use Eq. (14) to construct the deflation preconditioner. The
esulting linear system to be solved becomes

PTAu = PTf. (26)

ften, the deflation preconditioner P is combined with the CSLP B to accelerate convergence. The motivation for
ombining these methods comes from the observation that the eigenvalues of the CSLP preconditioned system
ove to zero, leading to an increase in the number of iterations as the wavenumber grows [52]. Thus, by first

reconditioning and then deflating, the deflation preconditioner is applied to the preconditioned coefficient matrix
−1A. Given that the CSLP and the coefficient matrix A share the same eigenvectors, rigorous Fourier analysis

RFA) has been used to analytically determine the spectrum of the preconditioned operator [33,50]. Combined with
SLP, the preconditioned system appears to have better clustering properties. Thus, combining the deflation operator
with the CSLP B leads to the following linear system which needs to be solved

PTB−1Au = (I − AQ)TB−1Au = (I − AQ)TB−1f, (27)
7



V. Dwarka, R. Tielen, M. Möller et al. Computer Methods in Applied Mechanics and Engineering 377 (2021) 113694

P
r
d
s

4

a
t
t
t
a
o
o
c

4

a
r

4

H
r

H
m

where, as mentioned previously, B−1 is generally approximated using a multigrid method. Note that the operator
T is never formed explicitly but is constructed through matrix vector products with Z and A. Moreover, we will

efer to P based on the higher-order quadratic approximation as the ’Adapted Deflation Preconditioner’ (ADP) to
istinguish between the standard deflation preconditioner using linear interpolation and the higher-order deflation
cheme.

. Numerical results

To assess the quality of the proposed iterative solver, this section starts with defining a variety of one-, two-
nd three-dimensional model problems based on the general problem described in Section 2.1. Then, we study
he pollution error for our one-dimensional model problem when adopting high-order B-spline basis functions for
he spatial discretization. In [15], a detailed first application of IgA for Helmholtz problems has been given. We
herefore only show the pollution reduction for the model problem MP 1-A in this paper. We proceed by conducting
spectral analysis in one dimension (MP 1-B) to investigate the effect of the proposed preconditioning techniques

n the spectrum of the preconditioned operator. Finally, the convergence of the iterative solver is studied in terms
f both iteration numbers and CPU timings. These are obtained for the proposed deflation based preconditioner and
ompared to the use of the (exactly inverted) CSLP.

.1. One-dimensional model problems

In this subsection, we present the considered one dimensional model problems. These model problems will be
dopted in the remainder of this section to investigate the pollution error and the number of iterations needed to
each convergence with the proposed solution strategy.

.1.1. MP 1-A
The first one-dimensional model problem, MP 1-A, is given below

−
d2u(x)

dx2 − k2 u(x) = 0, x ∈ Ω = (0, 1), (28)

u(x) = 1, x = 0,

u′(x) − iku(x) = 0, x = 1.

ere, homogeneous Dirichlet and Sommerfeld boundary conditions are applied on the left and right boundary,
espectively. The exact solution for MP1-A is given by u(x) = eikx . Model problem MP 1-A will be adopted to

investigate the pollution error for various values of the approximation order p of the B-spline basis functions.

4.1.2. MP 1-B
Model problem MP1-B involves an inhomogeneous source term. Furthermore, Dirichlet boundary conditions are

applied on both boundaries, resulting in the following model problem

−
d2u(x)

dx2 − k2 u(x) = δ(x −
1
2

), x ∈ Ω = (0, 1), (29)

u(x) = 0, x = 0,

u(x) = 0, x = 1.

ere, δ denotes the Dirac delta function. The analytic solution of MP1-B is based on the Green’s function of this
odel problem and is given by

u(x) = 2
∞∑
j=1

sin ( jπx) sin
(

jπ 1
2

)
j2π2 − k2 , x ∈ Ω = [0, 1],

k2
̸= j2π2, j = 1, 2, 3, . . . .

Note that, for k2
= j2π2, the eigenfunction expansion would become defective as this would imply resonance and

unbounded oscillations in the absence of dissipation. Therefore, we explicitly impose the extra condition k2
̸= j2π2
asserting that our Green’s function exists.

8
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o

By imposing Dirichlet boundary conditions, the resulting system matrix exhibits the most unfavorable distribution
of the eigenvalues [45]. Note that the inclusion of Sommerfeld radiation conditions instead would slightly shift the
eigenvalues away from the origin due to the natural occurring damping.

4.2. Two-dimensional model problems

Both two-dimensional model problems will be presented in this subsection. In particular, we consider model
problems involving a constant and non-constant wave number.

4.2.1. MP 2-A
In two dimensions, we consider as MP 2-A the natural extension of MP 1-B to two dimensions:

− ∆u(x, y) − k2u(x, y) = δ(x −
1
2
, y −

1
2

), (x, y) ∈ Ω = (0, 1)2, (30)

u(x, y) = 0, (x, y) ∈ ∂Ω ,

Again, the analytic solution is given by the Green’s function:

u(x, y) = 4
∞∑

i=1

∞∑
j=1

sin (iπx) sin
(
iπ 1

2

)
sin ( jπy) sin

(
jπ 1

2

)
i2π2 + j2π2 − k2 , (x, y) ∈ Ω = [0, 1]2, (31)

k2
̸= i2π2

+ j2π2, i, j = 1, 2, 3, . . . .

4.2.2. MP 2-B
As model problem MP 2-B, we consider a non-constant wave number k = k(x, y), an inhomogeneous source

function and Dirichlet boundary conditions on the entire boundary ∂Ω .

− ∆u(x, y) − k2(x, y)u(x, y) = δ(x −
1
2
, y −

1
2

), (x, y) ∈ Ω = (0, 1)2, (32)

u(x, y) = 0, (x, y) ∈ ∂Ω .

Here, k(x, y) is chosen to be a two-dimensional step function consisting of 16 different values. For a fixed value
f k, the values vary between 1

2 k and 3
2 k. Fig. 2 shows the considered field k(x, y) for k = 100. This model

problem uses various horizontal layers in order to test the performance of the solver when a variable wave number
k(x, y) is used. This is particularly important to investigate as in certain cases for Helmholtz-type problems the
underlying solver might diverge. This has been reported for domain decomposition based preconditioners using
inexact factorizations [29].

Fig. 2. Wave number distribution for k(x, y). k has been set to have a base value of 100. The figure shows the step-function to illustrate
the variation profile of the wave number with respect to the x- and y-direction.
9
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4.3. Three-dimensional model problems

Finally, two three-dimensional model problems are considered, involving a non-curved and curved geometry. The
resulting linear systems for these model problems have been obtained using the open source package GeoPDEs [53].

4.3.1. MP 3-A
We consider MP 3-A the natural extension of MP 2-A to three dimensions:

− ∆u(x, y, z) − k2u(x, y, z) = δ(x −
1
2
, y −

1
2
, z −

1
2

), (x, y, z) ∈ Ω = (0, 1)3, (33)

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω ,

Again, the analytic solution is given by the Green’s function:

u(x, y, z) = 4
∞∑

i=1

∞∑
j=1

∞∑
l=1

sin (iπx) sin
(
iπ 1

2

)
sin ( jπy) sin

(
jπ 1

2

)
sin (lπ z) sin

(
lπ 1

2

)
i2π2 + j2π2 + l2π2 − k2 ,

(x, y, z) ∈ Ω = [0, 1]3, (34)
k2

̸= i2π2
+ j2π2

+ l2π2, i, j, l = 1, 2, 3, . . . .

.3.2. MP 3-B
As a final model problem, we consider a constant wave number on a curved (single patch) geometry

− ∆u(x, y, z) − k2u(x, y, z) = δ(x −
1
2
, y −

1
2
, z −

1
2

), (x, y, z) ∈ Ω , (35)

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω ,

ere, Ω is a quarter annulus in three dimensions. Fig. 3 shows the considered geometry and the obtained solution
or MP 3-B.

Fig. 3. Illustration of the considered geometry (left) and solution (right) for MP 3-B.

4.4. Pollution error

In this section we will briefly discuss the effects of using IgA on the pollution error for the Helmholtz equation.
As mentioned previously, the h-version of the error studies have shown that as the wave number k increases,
the numerical solution suffers from dispersion errors [54,55]. While in 1D, one can define an exact modified
wavenumber which is able to minimize and bound the pollution error, this is not possible in 2D and 3D as this
relies on the direction of the waves [54,55]. Thus, instead of resorting to very fine meshes, it has been shown
that higher-order methods suffer from less dispersion error and provide a viable alternative to obtaining accurate
solutions while keeping the problem size economical [56,57]. In particular, Corollary 4.6 of [56] provides us with
the following h-error estimate (given ∥u∥L2 ∼ 1)( p −1 p) ( p−1)
∥uex − uh∥L2 ≤ C h + k (kh) h 1 + k(kh) . (36)

10
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Fig. 4. L2-error under h-refinement for MP 1-A using p = 1 (left) and p = 2 (right) for different wave numbers.

Note that for p > 1, the error decreases asymptotically faster compared to p = 1 where the error scales at best
with k. In order to illustrate these properties, we plot the L2-error under mesh refinement for our one-dimensional
MP 1-A. Fig. 4 shows the L2-error under mesh refinement for different values of k obtained for p = 1 (left) and
p = 2 (right). Note that, the k-dependence for p = 1 significantly differs from p = 2, as predicted in Corollary 4.6
in [56]. In fact, the numerical results presented in [56] (see Figure 2), showing the relative L2-error under mesh
refinement, are in agreement with the results presented in Fig. 4.

Fig. 5. L2-error for MP 1-A using p = 1 to p = 5 for various wave numbers k. The solid line uses 10 degrees of freedom per wavelength
(kh = 0.625) and the dashed line uses 7.5 degrees of freedom per wavelength (kh = 0.825).

While the use of IgA significantly reduces the pollution error, they do not remain pollution-free as the
avenumber becomes very large [57]. We illustrate this using the ’rule of thumb’, where the waves are resolved
sing 10 degrees of freedom per wavelength. Note that this has been used widely in practice and lies within the
re-asymptotic range for p = 1. In Fig. 5 we observe that, using kh = 0.625 for p = 2 to p = 5, the L2-error with
espect to the analytical solution decreases. While this leads to significant more accurate solutions, we do observe
hat as the wave number increases, the L2-error increases accordingly. Moreover, as k increases the advantage
f using p = 5 over p = 4 decreases as both lead to similar accuracy. For standard FEM, this was already
bserved [58]. Furthermore, decreasing the number of degrees of freedom per wavelength from 10 (solid line) to
11
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7.5 (dashed line) already results in lower accuracy. In fact, the achieved accuracy for p = 4 and p = 5 with 7.5
degrees of freedom per wavelength is similar to the obtained accuracy for p = 3 when 10 degrees of freedom per
wavelength are used. In this work, we will proceed by keeping kh = 0.625 and increasing the order p as we want
o examine the extent of the iterative solver within this pre-asymptotic range. However, note that for engineering
ractices, the error can be bounded in the 0.1 to 1% range, where IgA can provide more accurate solutions using
maller linear systems [57].

.5. Spectral analysis

We now proceed by analyzing the spectrum of the preconditioned system of MP 1-B. By using Dirichlet boundary
onditions, we have the most unfavorable distribution of eigenvalues, allowing us to fully examine the potency
f the preconditioner. It is widely known that the near-zero eigenvalue distribution strongly affects the resulting
onvergence factor of Krylov subspace methods. In general, these eigenvalues close to the origin hamper the
onvergence of such methods. It should be noted, however, that results for MP 1-A, involving both Dirichlet and
ommerfeld boundary conditions, do not significantly differ from the ones presented in this section. With respect to
SLP, many studies have confirmed that unless the complex shift is kept very small and the inversion is performed
xactly, the eigenvalues cluster near the origin [17,20,45]. In this work, we are not inverting the CSLP exactly and
e thus need to derive a proxy of the multigrid iteration used to approximate the inverse. This can be done by
sing the two-grid iteration matrix from a multigrid setting [59]. This leads to the following approximation for B

B̃−1
≈

(
I − (ωD)−1B

)ν (
I − ZB−1

2h Z⊤
) (

I − (ωD)−1B
)ν

,

here B2h denotes the coarse-grid variant of the CSLP, D the diagonal of B and ν denotes the smoothing
teps. Additionally, we use damped Jacobi as a smoother with damping parameter ω = 0.6. Note that for the
ultigrid cycle, Z is now the standard geometric multigrid prolongation and restriction operator based on the linear

nterpolation scheme. Using this approximation for B−1, we study the eigenvalues of the linear system PTB̃−1A,
here P denotes the adapted deflation preconditioner based on the quadratic Bézier scheme.
Fig. 6 shows the spectra of the preconditioned linear system for k = 50 (left) and k = 500 (right) for different

alues of p. The complex shift has been set to β = 1 and one pre- and post-smoothing step has been used. Note
hat half of the eigenvalues of the preconditioned system will be projected onto the origin. The other half of the
igenvalues will therefore be non-zero. For k = 50 (left), all eigenvalues for a fixed value of p have a spiral shape,
part for the case p = 1. Furthermore, the angle between the eigenvalues and the real-axis in Quadrant 2 becomes
maller for higher values of p. Therefore, we can expect a p-dependency for small values of k for p ≥ 2. For
= 500 this becomes even more obvious visually, as the higher number of degrees of freedom leads to more

igenvalues. As the preconditioned operator becomes too large to determine all eigenvalues, it remains unsure how
he spectra will further develop for large values of k.

Fig. 6. Spectrum of the preconditioned operator PB̃−1A for different values of p, where k = 50 (left) and k = 500 (right) for MP 1-B.
12
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Next, in Fig. 7, we fix p = 2 (left) and p = 5 (right) and let k increase from k = 50 to k = 250. Here we can
learly observe that for p = 2, the eigenvalues remain fairly clustered in a semi-circular shape. Increasing k leads
o a larger radius of this semi-circle and therefore a larger spread of the eigenvalues. If we focus on the small box
ontaining a detailed illustration of what is occurring near the origin, we observe that for larger k more and more
igenvalues are starting to move closer towards the origin. Closest to the origin we can clearly see the eigenvalues
or k = 250 (purple) and k = 200 (red) appearing. Although the eigenvalues seem less clustered for p = 5, the same
eneral behavior can be observed. Classically, deflation based preconditioners are combined with the CSLP in order

Fig. 7. Spectrum of the preconditioned operator PB̃−1A for different values of k, where p = 2 (left) and p = 5 (right) for MP 1-A. No
eight-parameter has been included.

o obtain faster GMRES-convergence. Note that the projection matrix P projects a certain part of the spectrum of the
oefficient matrix A onto zero. The addition of the CSLP ensures that the remaining non-zero eigenvalues are shifted
owards the complex axis, which gives it the typical circular spectrum in the complex plane. However, for finite
ifferences discretizations, the use of the CSLP combined with higher-order deflation is often redundant as wave
umber independent convergence can already be attained by using deflation without the CSLP [33]. An interesting
oint of investigation would be to study the spectrum of the preconditioned system PA. In Fig. 8, we study the
pectrum of PA where we use the weight-parameter ε in order to construct accurate higher-order deflation vectors.
e indeed observe that half of the eigenvalues are mapped onto zero and the remaining part of the eigenvalues

emains clustered. The eigenvalues no longer cross the negative real axis, which results in the preconditioned system
A being positive semi-definite. Apart from a scaling factor, the spectrum of k = 50 looks similar to the spectrum

of k = 250 and illustrative of the k-independent convergence. However if we compare p = 2 (left) to p = 5 (right),
we observe that for p = 5 the eigenvalues of PA are closer to zero and have a larger spread between the smallest
and largest eigenvalue. For example for k = 250, the eigenvalues for p = 2 lie in the ballpark of 450 to 550,
whereas for p = 5 the eigenvalues lie between 50 and 250.

For illustration purposes, we study the effect of interpolating and restricting the fine-grid systems with low
accuracy. In Fig. 9, we have plotted the spectrum of PA, where we deliberately set the weight-parameter to a
value which lowers the accuracy of the interpolation scheme to construct the deflation matrix Z. It immediately
becomes apparent that the resulting preconditioned system is again indefinite as some eigenvalues are still negative.
Moreover, if we compare p = 2 (left) to p = 5 (right), we observe a larger spread for p = 2 compared to p = 5.
This is the opposite of what we observed in Fig. 8. In both cases, the example is illustrative of the fact that having
a low-order interpolation scheme to construct the prolongation and restriction operator, will lead to an ineffective
mapping of the underlying eigenvalues and eigenvectors. As the wave number increases and the solutions become
more oscillatory, the accurate mapping of the fine- and coarse-space becomes of increasing importance. Therefore,
we chose a weight-parameter such that the projection error with respect to the eigenvectors is minimized [33].
13
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Fig. 8. Real part of the spectrum of the preconditioned operator PA for different values of k, where p = 2 (left) and p = 5 (right) for MP
1-B. No weight-parameter has been included.

Fig. 9. Real part of the spectrum of the preconditioned operator PA for different values of k, where p = 2 (left) and p = 5 (right) for MP
1-B. Here we have used the weight-parameter ε.

4.6. Numerical experiments

We will now present the convergence results for our model problems using the preconditioners described above.
Unless stated otherwise, we set the grid resolution at kh ≈ 0.625, which is equivalent to using 10 degrees of
freedom per wavelength. We use GMRES as the underlying Krylov subspace method and use a stopping criterion
on the relative residual of 10−7. A serial implementation is considered on an Intel(R) i7-8665 CPU @ 1.90 GHz
using 8 GB of RAM.

For the sake of completeness and clarity, we briefly introduce the notation of the preconditioners used in the
experiments.

• D := Adapted Deflation Preconditioner (ADP) + GMRES.
• Dε := Adapted Deflation Preconditioner (ADP) + GMRES using the shift-parameter ε to construct the

deflation matrix. The value has been taken from [33] and is constant throughout the use of the numerical
experiments.

• Cex := CSLP (exactly inverted) + GMRES.
• DC j

MG := AD P preconditioner + GMRES using j number of multigrid V-cycles combined with (damped)
Jacobi smoothing.

• DεC j
MG := ADε P preconditioner + GMRES using j number of multigrid V-cycles combined with (damped)

Jacobi smoothing.
14



V. Dwarka, R. Tielen, M. Möller et al. Computer Methods in Applied Mechanics and Engineering 377 (2021) 113694

o
i

a
a

i
i

c
a
I

T
N
q

c

c
k
p
o
w
p

w
a
d
i
i

4.6.1. One-dimensional model problems
We start by numerically solving MP 1-B using the deflation preconditioner together with the multigrid

approximation of the CSLP. We differentiate between deflation with and without the weight-parameter ε and we
vary the number of V-cycles between 1 and 10 iterations to obtain a fair approximation of the inverse of the CSLP.
Table 1 shows the number of GMRES iterations for the three different combinations. Starting with DC1

MG (first
column) we observe that the number of iterations both grow with k and p. These results are in line with the spectral
analysis from Section 4.5, in particular Figs. 6 and 7. There we observed that the angle the eigenvalues make with
the real axis becomes smaller for increasing p, anticipating some p-dependent convergence. Similarly, in Fig. 6,
the radius of the circular shape of the eigenvalues grows with k, leading to the expectation that the number of
iterations could grow with k. However, for very large wave numbers such as k = 104, we observe that the number

f iterations is inversely related to p. Note that the spectrum of such large wave numbers has not been examined
n this work.

For DεC1
MG (second column) we solely observe p-dependent and k-independent convergence. In order to obtain

p-independent convergence as well, we allow for more iterations within multigrid in order to construct a more
ccurate approximation of the inverse of the CSLP. The results reported in the third column confirm that a better
pproximation of the inverse of the CSLP is indeed able to reduce the p-dependent convergence. Once we add

the weight parameter ε to the deflation preconditioner we obtain k-independent convergence up to 106. Finally,
ncreasing the number of V-cycles to 10 for DεC10

MG (third column) leads to p-independent convergence and shows
dentical results to inverting CSLP exactly; see Table 3. Note, however, that the application of DεC10

MG is more
expensive compared to the application of DεC1

MG . This result is in line with the literature as regards the p-dependent
onvergence observed for IgA discretizations combined with multigrid. Generally speaking, more smoothing steps
nd/or intricate smoothers are needed in order to counteract the increasing number of iterations for higher-order
gA schemes.

able 1
umber of (preconditioned) GMRES iterations to reach convergence for MP 1-B. Here we combine the two-level deflation (D) using
uadratic Bézier curves with the CSLP. The shift β has been set to 1. CSLP has been inverted using C1

MG and C10
MG respectively.

k = 102 k = 103 k = 104 k = 105 k = 106

N = 161 N = 1601 N = 16 001 N = 160 001 N = 1 600 001

DC1
MG DεC1

MG DεC10
MG DC1

MG DεC1
MG DεC10

MG DC1
MG DεC1

MG DεC10
MG DC1

MG DεC1
MG DεC10

MG DC1
MG DεC1

MG DεC10
MG

p = 1 7 7 5 7 7 5 13 7 5 50 7 5 ∗ 10 5
p = 2 5 5 5 6 5 5 10 5 5 28 5 5 ∗ 5 5
p = 3 6 6 5 6 6 5 8 6 5 22 6 5 ∗ 6 5
p = 4 9 9 5 9 9 5 10 10 5 19 9 5 74 9 5
p = 5 16 16 5 16 16 5 13 15 5 21 15 5 46 15 5

Alternatively, cubic Bézier curves can be adopted as well to construct the deflation matrix Z; see Table 2. For
DC1

MG , the use of cubic Bézier curves leads to a lower number of iterations when higher values of k are considered
ompared to the use of quadratic Bézier curves. Compared to DεC1

MG and DεC10
MG (using quadratic interpolation),

the number of iterations is similar for most values of k. Note that the use of cubic Bézier curves, even when
ombined with CSLP and multiple V-cycles, does not lead to k- and p-independent convergence. Moreover, for
= 106, the use of DC10

MG leads a significant higher number of iterations. It should be noted that an optimal weight
arameter has only been determined analytically in literature for the quadratic case. The use of cubic (and higher-
rder interpolation schemes) is currently an active topic of research. Considering the computational costs associated
ith a higher-order interpolation scheme, we will adopt quadratic Bézier curves throughout the remainder of this
aper.

As mentioned previously, for a finite difference scheme, it has been shown that the deflation preconditioner
ithout CSLP could also lead to close to wave number independent convergence. Thus, analogously, we perform
similar test to examine how well the deflation preconditioner performs with no other preconditioner. We will

istinguish two cases; ADP without weight parameter D and ADP with weight parameter Dε. Results are reported
n Table 3, where we compare the number of iterations to the number of iterations obtained by using the (exactly
nverted) CSLP with shift k−1 (Cex ). Note that, the exactly inverted CSLP leads to iteration numbers independent
15
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Table 2
Number of (preconditioned) GMRES iterations to reach convergence for MP 1-B. Here we combine the two-level deflation (D) using cubic
Bézier curves with the CSLP. The shift β has been set to 1. CSLP has been inverted using C1

MG and C10
MG respectively.

k = 102 k = 103 k = 104 k = 105 k = 106

N = 161 N = 1601 N = 16 001 N = 160 001 N = 1 600 001

DC1
MG DC1

MG DC10
MG DC1

MG DC1
MG DC10

MG DC1
MG DC1

MG DC10
MG DC1

MG DC1
MG DC10

MG DC1
MG DC1

MG DC10
MG

p = 1 7 5 5 7 5 5 7 5 5 8 7 7 16 16 16
p = 2 5 5 5 5 5 5 5 5 5 6 6 6 11 11 11
p = 3 6 5 5 6 5 5 6 5 5 6 5 5 11 9 6
p = 4 10 5 5 10 5 5 10 5 5 10 5 5 12 8 8
p = 5 18 6 5 17 5 5 17 5 5 15 6 5 16 6 6

of both k and p. In absence of the weight parameter, the number of GMRES iterations preconditioned with D
ncreases with k and p for wave numbers k < 105. These results are similar to the ones reported in Table 1, where
e observed a similar effect for DC1

MG . The observed number of iterations is also in agreement with the spectral
nalysis from Fig. 9 in Section 4.5. It has been shown that as the accuracy of ADP decreases, the projection error
ncreases, and the eigenvalues are not accurately projected onto the origin. As a result, the number of iterations is
xpected to increase with k. However, we did observe that this effect is less pronounced for larger values of p,
hich is why we obtain better convergence for larger values of k when p ≥ 4.
Adding the weight parameter significantly improves the convergence of the GMRES method with respect to

-dependent convergence. In particular, wave number independent convergence is observed for values of k up to
06. This is in line with the spectral analysis from Fig. 8 in Section 4.5. There, we observed that an accurate
nterpolation scheme ensures that half of the eigenvalues are mapped onto the origin and the spectrum remains as
lustered as possible. However, for p = 5 we observed that the smallest and largest eigenvalue lie further away,
hich could explain the p-dependent convergence, and in particular the higher number of iterations observed for

p = 5. Thus, similar to multigrid solvers, deflation based solvers are also subjected to p-dependent convergence.
he effect can be circumvented by combining both methods and increasing the number of V-cycles.

able 3
umber of (preconditioned) GMRES iterations to reach convergence for MP 1-B. Here we use GMRES with either two-level deflation (D

nd Dε) using quadratic Bézier curves or exact inverse of CSLP Cex using β = k−1. * indicates that the number of max iterations (100)
as been reached without convergence.

k = 102 k = 103 k = 104 k = 105 k = 106

N = 161 N = 1601 N = 16 001 N = 160 001 N = 1 600 001

D Dε Cex D Dε Cex D Dε Cex D Dε Cex D Dε Cex

p = 1 9 9 5 8 9 5 13 9 5 49 9 5 ∗ 11 5
p = 2 7 5 5 6 5 5 10 5 5 28 5 5 ∗ 5 5
p = 3 8 8 5 8 8 5 10 8 5 20 8 5 ∗ 8 5
p = 4 13 13 5 13 13 5 13 13 5 20 11 5 68 13 5
p = 5 19 20 5 19 20 5 16 20 5 25 19 5 48 20 5

4.6.2. Two-dimensional model problems
In the previous subsection, it was observed that combining the deflation preconditioner Dε with the approximated

CSLP C j
MG yields the best results in terms of iteration numbers. In this subsection, we apply this preconditioner to

MP 2-A, the natural extension of MP 1-B to two dimensions. In particular, CPU timings are determined to obtain
a fair comparison in terms of computational costs.

Table 4 compares DC1
MG and DεC12

MG with the exactly inverted CSLP Cex . For DεC12
MG , we obtain close to k- and

p- independent convergence. Only for p = 5, the number of iterations increases. Here, 3 pre- and post-smoothing
teps and a shift of β = 4.2 are adopted. It has been shown that, when CSLP is combined with deflation, the shift

can be as large as 10 without negatively affecting the number of iterations [60]. In our experiments, we have
16
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found β = 4.2 to be the optimal value, leading to the least number of iterations. However, letting β vary does not
impact the number of iterations significantly [60].

For the Cex preconditioner, a shift of (3k)−1 has been adopted. Both the shift k−1 as well the shift β = (3k)−1

does not lead to wave number independent convergence. In fact, Cex uses more iterations for p < 5 in most cases.
This can be explained by the fact that we are using Dirichlet boundary conditions, which are known to cause
a less favorable distribution of the eigenvalues compared to the use of Sommerfeld radiation conditions [45]. In
particular, keeping the shift k−2 results in wave number independent convergence but leads to very uneconomical
systems, which are close to the original coefficient matrix.

Table 4
Number of (preconditioned) GMRES iterations to reach convergence for MP 2-A. Here we combine the two-level deflation (D) using
quadratic Bézier curves with CSLP. CSLP has been inverted using C1

MG and C12
MG respectively where the shift has been set to β = 1 and

β = 4.2 respectively. When using Cex , the shift has been set to β = 3k−1.

k = 50 k = 100 k = 150 k = 200 k = 250

N = 6241 N = 25 281 N = 57 121 N = 101 761 N = 159 201

DC1
MG DεC12

MG Cex DC1
MG DεC12

MG Cex DC1
MG DεC12

MG Cex DC1
MG DεC12

MG Cex DC1
MG DεC12

MG Cex

p = 1 7 7 7 8 7 8 12 12 10 8 8 9 12 9 10
p = 2 10 7 7 10 7 8 10 7 8 11 8 11 12 8 10
p = 3 18 6 6 20 9 8 18 7 7 20 7 11 19 7 10
p = 4 36 7 6 36 7 8 36 7 7 36 7 11 37 7 10
p = 5 85 20 7 86 21 8 87 21 7 86 21 11 21 21 10

Fig. 10 shows the corresponding CPU times to reach convergence with the GMRES method when applying
DεC12

MG and Cex as a preconditioner. The CPU-timings have been obtained using the Matlab 2019b ’tic toc’
ommand and include the computations needed to build and apply the different preconditioners as well as the
MRES iterations. For k = 50, inverting the CSLP preconditioner exactly leads to the lowest CPU times for all

values of p considered. However, from k = 150 already, the opposite holds: DεC12
MG is computationally more

efficient compared to the exact CSLP preconditioner. This effect becomes more pronounced as k increases. Thus,
the larger k, the larger the computational speedup of the deflated preconditioned solver relative to the solver using
the exact inversion of the CSLP combined with a small complex shift.

Fig. 10. CPU-time in seconds (s) for p = 2 to p = 5 for MP 2-A. The plot contains the timings for k = 50, 100, 150, 200 and k = 250.
C stands for DεC12

MG and C stands for Cex using β = (3k)−1.

Next, we consider model problem MP 2-B, where the wave number is non-constant and given by a two-
imensional step function. This is an important benchmark as some solvers only perform successfully when a
onstant wave number is used. Moreover, it allows for testing whether the numerical solver can deal with sharp
isruptions in the underlying velocity, which is the main focus of this section. In Fig. 11 we have plotted the constant
17
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k

d

(left) and variable (right) solution for MP 2-A and MP 2-B respectively using k = 100 as a base wave number. The
step-function used to vary k throughout the numerical domain is observed to disrupt the symmetric pattern observed
for k = 100 (right).

Fig. 11. Real part of the two-dimensional numerical solution for the constant (left) and non-constant (right) wave number k(x, y) where
= 100.

Table 5 shows the number of GMRES iterations needed to reach convergence when DC12
MG and Cex are applied as

a preconditioner. With respect to p-dependent convergence, the number of iterations slightly varies with p for both
preconditioned systems. In contrast to MP 2-A, however, we also observe a small increase in the number of iterations
as k increases for both preconditioned systems. However, in terms of iterations, the deflated preconditioned system
needs less iterations compared to the system using the exact inversion of the CSLP and a very small complex
shift. Unlike the results from the constant wave number model problem, we therefore report weakly dependent
convergence on k. However, note that for p = 5, the convergence appears to resemble wave number independent
convergence. We do note that using the deflation preconditioner combined with the multigrid approximation of the
CSLP, the number of iterations could be improved by using more V-cycles. These are relatively cheap in terms of
computational costs as they are of order O(Ndof) FLOPs and given that the diagonal scaled Jacobi smoother is used.

Table 5
Number of (preconditioned) GMRES iterations to reach convergence for MP 2-B. Here we combine two-level deflation using quadratic
Bézier curves with CSLP (DC12

MG ). For p < 5 we use 3 pre- and post smoothing steps, whereas for p = 5 we use 2 pre- and post
smoothing steps. CSLP has been inverted using C12

MG where the shift has been set to β = 4.2. When using Cex , the shift has been set to
β = (3k)−1 and CSLP is inverted exactly.

k = 50 k = 100 k = 150 k = 200 k = 250

N = 6241 N = 25 281 N = 57 121 N = 101 761 N = 159 201

DC12
MG Cex DC12

MG Cex DC12
MG Cex DC12

MG Cex DC12
MG Cex

p = 1 13 12 16 19 22 24 25 27 29 28
p = 2 13 13 16 20 20 24 25 29 32 36
p = 3 10 13 11 16 14 23 15 28 20 39
p = 4 10 13 13 20 12 22 13 26 19 38
p = 5 18 13 19 16 17 23 21 29 20 39

The corresponding CPU timings are provided in Fig. 12. The combination of deflation and the approximated
eflation preconditioner (DC12

MG) is cheaper for all values of p and k. Hence, already for moderate values of
k, applying the CSLP preconditioner exactly is more expensive. Note that, for higher values of k, the difference
between both approaches also becomes more visible in terms of CPU timings. This effect will only be magnified
in 3D-applications.
18
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Fig. 12. CPU-time in seconds (s) for p = 2 to p = 5 for MP 2-B. The plot contains the timings for k = 50, 100, 150, 200 and k = 250.
DC stands for DεC12

MG and C stands for Cex using β = (3k)−1.

4.6.3. Three-dimensional model problems
Finally, we consider model problems MP 3-A and MP 3-B to investigate the performance of our solution strategy

in three dimensions on a curved and non-curved geometry. Fig. 13 shows the number of (preconditioned) GMRES
iterations and CPU times to reach convergence for both MP 3-A and MP 3-B for k = 10, where for p = 5
the coefficient matrix has size 9261 × 9621. For MP 3-A, the number of iterations needed with DC12

MG is higher
compared to the use of Cex . Despite needing more iterations as p increases, the CPU times are significantly lower
when adopting both deflation and the approximated CSLP, with the exception of p = 5. Note that, the higher
number of iterations needed for p = 5 to reach convergence has also been observed for the two-dimensional model
problems.

As approximating the CSLP is known to reduce the computational costs compared to an exact inversion (in
particular in higher dimensions and for larger values of k), results with an approximated CSLP have been added as
well. Here, the CSLP is approximated with a single multigrid cycle, using β = 1 and applying 25 smoothing steps.
Both the value of β and the number of smoothing steps have been determined such that the computational costs
are minimized. For all values of p, combining two-level deflation with CSLP leads to lower iteration numbers and

PU times.
For MP 3-B, the use of the approximated or exact CLSP as a preconditioner leads to a substantially higher

umber of iterations for all values of p compared to DC12
MG . Hence, the CSLP is less effective for the model

roblem involving a curved geometry, leading to significantly higher CPU times.

As the results for MP 3-A and MP 3-B indicate that CSLP is less efficient when applied on a curved geometry,
he use of two-level deflation using quadratic Bézier curves as a preconditioner has been investigated as well.
ig. 14 shows the number of GMRES iterations and CPU times needed for MP 3-B when two-level deflation Dϵ

is applied as a preconditioner for different values of k. For k = 10, the number of iterations to reach convergence
lies (roughly) between the number of iterations needed with C1

MG and Cex . In terms of CPU times, however, the
use of two-level deflation as preconditioner significantly improves the results. In fact, on the curved geometry for
example, we obtain a speedup factor of more than 100× when using two-level deflation without CSLP compared
the exact inverted CSLP for k = 10 and p = 5.
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Fig. 13. Number of (preconditioned) GMRES iterations and CPU times to reach convergence for MP 3-A and MP 3-B, where k = 10. Here
e combine two-level deflation using quadratic Bézier curves with CSLP (DC12

MG ). For p < 5 we use 3 pre- and post smoothing steps,
hereas for p = 5 we use 2 pre- and post smoothing steps. CSLP has been inverted using C12

MG where the shift has been set to β = 4.2.
hen using C1

MG and Cex , the shift has been set to β = 1 and β = (k)−1, respectively, and CSLP is inverted using a single multigrid cycle
adopting 25 smoothing steps) or exactly.

Fig. 14. Number of (preconditioned) GMRES iterations and CPU times to reach convergence for MP 3-B. Here we apply two-level deflation
using quadratic Bézier curves (Dϵ ) as a preconditioner.

5. Conclusion

In this work, we focus on the combination of IgA discretized linear systems with a state-of-the-art iterative solver
using deflation and a geometric multigrid method. In particular, we extend the line of research set out by [15], where
it was shown that the use of IgA reduces the pollution error significantly compared to p-order FEM. The authors
have shown that the use of the exact inverse of the CSLP preconditioner with a small complex shift, yields wave
number independent convergence for moderate values of k. Instead of inverting the CSLP exactly and using a small
omplex shift, we use a standard multigrid method to approximate its inverse and combine it with a two-level
20
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deflation preconditioner to accelerate the convergence of GMRES. We use a large complex shift in order to ensure
that the multigrid algorithm does not diverge.

The use of deflation techniques is motivated by studying the spectrum of the preconditioned systems. Deflation
projects the unwanted negative and near-zero eigenvalues corresponding to the smooth eigenmodes onto zero,
thereby accelerating the convergence of GMRES. Our spectral analysis shows that for increasing k and p, the
spectrum remains well-clustered. This is supported by the numerical results in 1D as the number of iterations
remains k- and p-independent for kh constant. If we exclude the CSLP, we obtain k independent convergence and
the number of iterations increases slightly with p.

When deflation is combined with CSLP, the number of iterations weakly depends on k and p for kh constant in
the 2D case. Starting from k = 150, the deflation based preconditioner combined with the approximate inverse of
the CSLP outperforms the exact inversion of the CSLP with shift β = (3k)−1 in terms of CPU-timings. The obtained
speed-up becomes more significant as the wave number k increases. Results for the highly varying non-constant
wave number model show a slight dependence on k but an inversely related dependence on p as the wave number
increases. Even for this model problem, the proposed solver outperforms in terms of number of iterations and
CPU-timings, when compared to the use of the exact inversion of the CSLP with a small complex shift.

For the three-dimensional model problems, the deflation based preconditioner combined with the approximate
inverse of the CSLP outperforms the exact inversion of the CSLP with shift β = (k)−1 in terms of CPU-timings
already for k = 10. Interestingly, the CSLP applied on the curved geometry performs worse compared to the use
of two-level deflation in terms of CPU times. On this geometry, we obtain a speedup factor of more than 100 when
using two-level deflation without CSLP compared to the exact CSLP. Future research will focus on further analyzing
this behavior in more detail.

Although the considered model problems in this paper all involve single patch geometries, our solution strategy
can (in principle) also be applied to multipatch geometries. Here, the resulting system matrix has a block
structure, as is the case with Domain-Decomposition methods. As practical applications often involve multiple
patches, future research will focus on exploring the use of the approximate inverse of the CSLP and/or deflation
to solve the Helmholtz equation on multipatch geometries, possibly adopting strategies as often employed in
Domain-Decomposition methods.
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